1,377 research outputs found

    Paraconductivity of K-doped SrFe2As2 superconductor

    Full text link
    Paraconductivity of the optimally K-doped SrFe2As2 superconductor is investigated within existing fluctuation mechanisms. The in-plane excess conductivity has been measured in high quality single crystals, with a sharp superconducting transition at Tc=35.5K and a transition width less than 0.3K. The data have been also acquired in external magnetic field up to 14T. We show that the fluctuation conductivity data in zero field and for temperatures close to Tc, can be explained within a three-dimensional Lawrence-Doniach theory, with a negligible Maki-Thompson contribution. In the presence of the magnetic field, it is shown that paraconductivity obeys the three-dimensional Ullah-Dorsey scaling law, above 2T and for H||c. The estimated upper critical field and the coherence length nicely agree with the available experimental data.Comment: 12 pages, 5 figure

    Cost-effectiveness of CT angiography and perfusion imaging for delayed cerebral ischemia and vasospasm in aneurysmal subarachnoid hemorrhage

    Get PDF
    BACKGROUND AND PURPOSE: Delayed cerebral ischemia and vasospasm are significant complications following SAH leading to cerebral infarction, functional disability, and death. In recent years, CTA and CTP have been used to increase the detection of delayed cerebral ischemia and vasospasm. Our aim was to perform comparative-effectiveness and cost-effectiveness analyses evaluating CTA and CTP for delayed cerebral ischemia and vasospasm in aneurysmal SAH from a health care payer perspective. MATERIALS AND METHODS: We developed a decision model comparing CTA and CTP with transcranial Doppler sonography for detection of vasospasm and delayed cerebral ischemia in SAH. The clinical pathways were based on the Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association (2012). Outcome health states represented mortality and morbidity according to functional outcomes. Input probabilities of symptoms and serial test results from CTA and CTP, transcranial Doppler ultrasound, and digital subtraction angiography were directly derived from an SAH cohort by using a multinomial logistic regression model. Expected benefits, measured as quality-adjusted life years, and costs, measured in 2012 US dollars, were calculated for each imaging strategy. Univariable, multivariable, and probabilistic sensitivity analyses were performed to determine the independent and combined effect of input parameter uncertainty. RESULTS: The transcranial Doppler ultrasound strategy yielded 13.62 quality-adjusted life years at a cost of 154,719.TheCTAandCTPstrategygenerated13.89qualityadjustedlifeyearsatacostof154,719. The CTA and CTP strategy generated 13.89 quality-adjusted life years at a cost of 147,097, resulting in a gain of 0.27 quality-adjusted life years and cost savings of $7622 over the transcranial Doppler ultrasound strategy. Univariable and multivariable sensitivity analyses indicated that results were robust to plausible input parameter uncertainty. Probabilistic sensitivity analysis results yielded 96.8% of iterations in the right lower quadrant, representing higher benefits and lower costs. CONCLUSIONS: Our model results suggest that CTA and CTP are the preferred imaging strategy in SAH, compared with transcranial Doppler ultrasound, leading to improved clinical outcomes and lower health care costs

    More About the Tetrahedral Unstructured Software System

    Get PDF
    TetrUSS is a comprehensive suite of computational fluid dynamics (CFD) programs that won the Software of the Year award in 1996 and has found increasing use in government, academia, and industry for solving realistic flow problems (especially in aerodynamics and aeroelastics of aircraft having complex shapes). TetrUSS includes not only programs for solving basic equations of flow but also programs that afford capabilities for efficient generation and utilization of computational grids and for graphical representation of computed flows (see figure). The 2004 version of the Tetrahedral Unstructured Software System (TetrUSS), which is one of two software systems reported in "NASA s 2004 Software of the Year," NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 18, has been improved greatly since 1996. These improvements include (1) capabilities to simulate viscous flow by solving the Navier-Stokes equations on unstructured grids, (2) portability to personal computers from diverse manufacturers, (3) advanced models of turbulence, (4) a parallel-processing version of one of the unstructured-grid Navier-Stokes-equation-solving programs, and (5) advanced programs for generating unstructured grids

    Phase 1/2 Dose Escalating Study of Twice-Monthly Pemetrexed and Gemcitabine in Patients with Advanced Cancer and Non-small Cell Lung Cancer

    Get PDF
    IntroductionPemetrexed is synergistic with gemcitabine in preclinical models of non-small cell lung cancer (NSCLC). The optimal dose and utility of gemcitabine and pemetrexed was evaluated in a dose-escalating study.MethodsThe phase 1 study included patients with advanced tumors, whereas the phase 2 study included patients with locally advanced or metastatic NSCLC. Gemcitabine was infused over 30 minutes, followed by pemetrexed administered over 10 minutes on day 1 of a 14-day cycle. Treatment continued for 12 cycles or until disease progression. All patients received folic acid, Vitamin B12, and steroid prophylaxis.ResultsMaximum tolerated dose was gemcitabine 1500 mg/m2, followed by pemetrexed 500 mg/m2. Fifty-three patients (29 male, 24 female) were enrolled in the phase 2 study. Response rate was 20.8% (95% CI: 0.108–0.341), and the clinical benefit rate (CR + PR + SD) was 64.2%. Median time to disease progression was 4.6 months (95% CI: 2.79–6.18), median survival was 10.1 month (95% CI: 5.95–14.09, censorship = 20.75%), and 1-year survival was 41.0%. Common grade 3 or 4 adverse events (% of patients) were neutropenia (28.3%), fatigue (22.6%), and febrile neutropenia (9.4%).ConclusionsTwice-monthly gemcitabine and pemetrexed was well tolerated, with overall survival and clinical benefit indicating disease activity in NSCLC patients

    Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption

    Get PDF
    Neutrinos interact only very weakly, so they are extremely penetrating. However, the theoretical neutrino-nucleon interaction cross section rises with energy such that, at energies above 40 TeV, neutrinos are expected to be absorbed as they pass through the Earth. Experimentally, the cross section has been measured only at the relatively low energies (below 400 GeV) available at neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here we report the first measurement of neutrino absorption in the Earth, using a sample of 10,784 energetic upward-going neutrino-induced muons observed with the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories through the Earth. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an order of magnitude higher in energy than previous measurements. The measured cross section is 1.300.19+0.211.30^{+0.21}_{-0.19} (stat.) 0.43+0.39^{+0.39}_{-0.43} (syst.) times the prediction of the Standard Model \cite{CooperSarkar:2011pa}, consistent with the expectation for charged and neutral current interactions. We do not observe a dramatic increase in the cross section, expected in some speculative models, including those invoking new compact dimensions \cite{AlvarezMuniz:2002ga} or the production of leptoquarks \cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445

    Search for astrophysical sources of neutrinos using cascade events in IceCube

    Get PDF
    The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5σ5\sigma. This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from May 2010 to May 2012. We show that compared to the classic approach using tracks, this statistically-independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations 30\lesssim-30^\circ.Comment: 14 pages, 9 figures, 1 tabl
    corecore