195 research outputs found

    Warm Gas in the Inner Disks around Young Intermediate Mass Stars

    Get PDF
    The characterization of gas in the inner disks around young stars is of particular interest because of its connection to planet formation. In order to study the gas in inner disks, we have obtained high-resolution K-band and M-band spectroscopy of 14 intermediate mass young stars. In sources that have optically thick inner disks, i.e. E(K-L)>1, our detection rate of the ro-vibrational CO transitions is 100% and the gas is thermally excited. Of the five sources that do not have optically thick inner disks, we only detect the ro-vibrational CO transitions from HD 141569. In this case, we show that the gas is excited by UV fluorescence and that the inner disk is devoid of gas and dust. We discuss the plausibility of the various scenarios for forming this inner hole. Our modeling of the UV fluoresced gas suggests an additional method by which to search for and/or place stringent limits on gas in dust depleted regions in disks around Herbig Ae/Be stars

    Dense Molecular Gas In A Young Cluster Around MWC 1080 -- Rule Of The Massive Star

    Full text link
    We present CS J=2→1J = 2 \to 1, 13^{13}CO J=1→0J = 1 \to 0, and C18^{18}O J=1→0J = 1 \to 0, observations with the 10-element Berkeley Illinois Maryland Association (BIMA) Array toward the young cluster around the Be star MWC 1080. These observations reveal a biconical outflow cavity with size ∌\sim 0.3 and 0.05 pc for the semimajor and semiminor axis and ∌\sim 45\arcdeg position angle. These transitions trace the dense gas, which is likely the swept-up gas of the outflow cavity, rather than the remaining natal gas or the outflow gas. The gas is clumpy; thirty-two clumps are identified. The identified clumps are approximately gravitationally bound and consistent with a standard isothermal sphere density, which suggests that they are likely collapsing protostellar cores. The gas kinematics suggests that there exists velocity gradients implying effects from the inclination of the cavity and MWC 1080. The kinematics of dense gas has also been affected by either outflows or stellar winds from MWC 1080, and lower-mass clumps are possibly under stronger effects from MWC 1080 than higher-mass clumps. In addition, low-mass cluster members tend to be formed in the denser and more turbulent cores, compared to isolated low-mass star-forming cores. This results from contributions of nearby forming massive stars, such as outflows or stellar winds. Therefore, we conclude that in clusters like the MWC 1080 system, effects from massive stars dominate the star-forming environment in both the kinematics and dynamics of the natal cloud and the formation of low-mass cluster members. This study provides insights into the effects of MWC 1080 on its natal cloud, and suggests a different low-mass star forming environment in clusters compared to isolated star formation.Comment: 42 pages, 5 tables, and 13 figures, accepted for publication in Ap

    Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo HII Region KR 140

    Full text link
    We use 2MASS and MSX infrared observations, along with new molecular line (CO) observations, to examine the distribution of young stellar objects (YSOs) in the molecular cloud surrounding the halo HII region KR 140 in order to determine if the ongoing star-formation activity in this region is dominated by sequential star formation within the photodissociation region (PDR) surrounding the HII region. We find that KR 140 has an extensive population of YSOs that have spontaneously formed due to processes not related to the expansion of the HII region. Much of the YSO population in the molecular cloud is concentrated along a dense filamentary molecular structure, traced by C18O, that has not been erased by the formation of the exciting O star. Some of the previously observed submillimetre clumps surrounding the HII region are shown to be sites of recent intermediate and low-mass star formation while other massive starless clumps clearly associated with the PDR may be the next sites of sequential star formation.Comment: Accepted for publication in MNRAS, 8 pages, 10 figure

    Electromagnetic compatibility of implantable neurostimulators to RFID emitters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study is to investigate electromagnetic compatibility (EMC) of implantable neurostimulators with the emissions from radio frequency identification (RFID) emitters.</p> <p>Methods</p> <p>Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz</p> <p>Results</p> <p>The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure.</p> <p>Conclusions</p> <p>The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters.</p

    Direct observation of twist mode in electroconvection in I52

    Full text link
    I report on the direct observation of a uniform twist mode of the director field in electroconvection in I52. Recent theoretical work suggests that such a uniform twist mode of the director field is responsible for a number of secondary bifurcations in both electroconvection and thermal convection in nematics. I show here evidence that the proposed mechanisms are consistent with being the source of the previously reported SO2 state of electroconvection in I52. The same mechanisms also contribute to a tertiary Hopf bifurcation that I observe in electroconvection in I52. There are quantitative differences between the experiment and calculations that only include the twist mode. These differences suggest that a complete description must include effects described by the weak-electrolyte model of electroconvection

    Pulsating pre-main sequence stars in IC 4996 and NGC 6530

    Get PDF
    Asteroseismology of pulsating pre-main sequence (PMS) stars has the potential of testing the validity of current models of PMS structure and evolution. As a first step, a sufficiently large sample of pulsating PMS stars has to be established, which allows to select candidates optimally suited for a detailed asteroseismological analysis based on photometry from space or ground based network data. A search for pulsating PMS members in the young open clusters IC 4996 and NGC 6530 has been performed to improve the sample of known PMS pulsators. As both clusters are younger than 10 million years, all members with spectral types later than A0 have not reached the zero-age main sequence yet. Hence, IC 4996 and NGC 6530 are most suitable to search for PMS pulsation among their A- and F-type cluster stars. CCD time series photometry in Johnson B and V filters has been obtained for IC 4996 and NGC 6530. The resulting light curves for 113 stars in IC 4996 and 194 stars in NGC 6530 have been subject to detailed frequency analyses. 2 delta Scuti-like PMS stars have been discovered in IC 4996 and 6 in NGC 6530. For another PMS star in each cluster, pulsation can only be suspected. According to the computed pulsation constants, the newly detected PMS stars seem to prefer to pulsate in a similar fashion to the classical delta Scuti stars, and with higher overtone modes.Comment: A&A in prin

    Dynamics of the circumstellar gas in the Herbig Ae stars BF Orionis, SV Cephei, WW Vulpeculae and XY Persei

    Get PDF
    We present high resolution (lambda / Delta_lambda = 49000) echelle spectra of the intermediate mass, pre-main sequence stars BF Ori, SV Cep, WW Wul and XY Per. The spectra cover the range 3800-5900 angstroms and monitor the stars on time scales of months and days. All spectra show a large number of Balmer and metallic lines with variable blueshifted and redshifted absorption features superimposed to the photospheric stellar spectra. Synthetic Kurucz models are used to estimate rotational velocities, effective temperatures and gravities of the stars. The best photospheric models are subtracted from each observed spectrum to determine the variable absorption features due to the circumstellar gas; those features are characterized in terms of their velocity, v, dispersion velocity, Delta v, and residual absorption, R_max. The absorption components detected in each spectrum can be grouped by their similar radial velocities and are interpreted as the signature of the dynamical evolution of gaseous clumps with, in most cases, solar-like chemical composition. This infalling and outflowing gas has similar properties to the circumstellar gas observed in UX Ori, emphasizing the need for detailed theoretical models, probably in the framework of the magnetospheric accretion scenario, to understand the complex environment in Herbig Ae (HAe) stars. WW Vul is unusual because, in addition to infalling and outflowing gas with properties similar to those observed in the other stars, it shows also transient absorption features in metallic lines with no obvious counterparts in the hydrogen lines. This could, in principle, suggest the presence of CS gas clouds with enhanced metallicity around WW Vul. The existence of such a metal-rich gas component, however, needs to be confirmed by further observations and a more quantitative analysis.Comment: 21 pages, 13 figures. Accepted for publication by Astronomy & Astrophysic

    New Perspectives on the X-ray Emission of HD 104237 and Other Nearby Herbig Ae/Be Stars from XMM-Newton and Chandra

    Full text link
    We present new X-ray observations of the nearby Herbig Ae star HD 104237 (= DX Cha) with XMM-Newton, whose objective is to clarify the origin of the emission. Several X-ray emission lines are clearly visible in the CCD spectra, including the high-temperature Fe K-alpha complex. The emission can be accurately modeled as a multi-temperature thermal plasma with cool (kT < 1 keV) and hot (kT > 3 keV) components. The presence of a hot component is compelling evidence that the X-rays originate in magnetically confined plasma, either in the Herbig star itself or in the corona of an as yet unseen late-type companion. The X-ray temperatures and luminosity (log Lx = 30.5 ergs/s) are within the range expected for a T Tauri companion, but high resolution Chandra and HST images constrain the separation of a putative companion to less than 1 arcsec. We place these new results into broader context by comparing the X-ray and bolometric luminosities of a sample of nearby Herbig stars with those of T Tauri stars and classical main-sequence Be stars. We also test the predictions of a model that attributes the X-ray emission of Herbig stars to magnetic activity that is sustained by a shear-powered dynamo.Comment: To appear in ApJ (part 1); 43 pages, 8 figures, 5 table

    C2D Spitzer-IRS spectra of disks around T Tauri stars: I. Silicate emission and grain growth

    Full text link
    Infrared ~5--35 um spectra for 40 solar-mass T Tauri stars and 7 intermediate-mass Herbig Ae stars with circumstellar disks were obtained using the Spitzer Space Telescope as part of the c2d IRS survey. This work complements prior spectroscopic studies of silicate infrared emission from disks, which were focused on intermediate-mass stars, with observations of solar-mass stars limited primarily to the 10 um region. The observed 10 and 20 um silicate feature strengths/shapes are consistent with source-to-source variations in grain size. A large fraction of the features are weak and flat, consistent with um-sized grains indicating fast grain growth (from 0.1--1.0 um in radius). In addition, approximately half of the T Tauri star spectra show crystalline silicate features near 28 and 33 um indicating significant processing when compared to interstellar grains. A few sources show large 10-to-20 um ratios and require even larger grains emitting at 20 um than at 10 um. This size difference may arise from the difference in the depth into the disk probed by the two silicate emission bands in disks where dust settling has occurred. The 10 um feature strength vs. shape trend is not correlated with age or Halpha equivalent width, suggesting that some amount of turbulent mixing and regeneration of small grains is occurring. The strength vs. shape trend is related to spectral type, however, with M stars showing significantly flatter 10 um features (larger grain sizes) than A/B stars. The connection between spectral type and grain size is interpreted in terms of the variation in the silicate emission radius as a function of stellar luminosity, but could also be indicative of other spectral-type dependent factors (e.g, X-rays, UV radiation, stellar/disk winds, etc.).Comment: 17 pages, 13 figures, accepted for publication by ApJ, formatted with emulateapj using revtex4 v4.

    European Multicenter Study for the Evaluation of a Dual-Layer Flow-Diverting Stent for Treatment of Wide-Neck Intracranial Aneurysms: The European Flow-Redirection Intraluminal Device Study

    Get PDF
    BACKGROUND AND PURPOSE: Endoluminal reconstruction with flow-diverting stents represents a widely accepted technique for the treatment of complex intracranial aneurysms. This European registry study analyzed the initial experience of 15 neurovascular centers with the Flow-Redirection Intraluminal Device (FRED) system. MATERIALS AND METHODS: Consecutive patients with intracranial aneurysms treated with the FRED between February 2012 and March 2015 were retrospectively reviewed. Complications and adverse events, transient and permanent morbidity, mortality, and occlusion rates were evaluated. RESULTS: During the defined study period, 579 aneurysms in 531 patients (median age, 54 years;range, 13-86 years) were treated with the FRED. Seven percent of patients were treated in the acute phase (3 days) of aneurysm rupture. The median aneurysm size was 7.6 mm (range, 1-36.6 mm), and the median neck size 4.5 mm (range, 1-30 mm). Angiographic follow-up of >3 months was available for 516 (89.1%) aneurysms. There was progressive occlusion witnessed with time, with complete occlusion in 18 (20%) aneurysms followed for up to 90 14 days, 141 (82.5%) for 180 +/- 20 days, 116 (91.3%) for 1 year +/- 24 days, and 122 (95.3%) aneurysms followed for >1 year. Transient and permanent morbidity occurred in 3.2% and 0.8% of procedures, respectively. The overall mortality rate was 1.5%. CONCLUSIONS: This retrospective study in real-world patients demonstrated the safety and efficacy of the FRED for the treatment of intracranial aneurysms. In most cases, treatment with a single FRED resulted in complete angiographic occlusion at 1 year
    • 

    corecore