209 research outputs found

    Transcriptome analysis of controlled and therapy-resistant childhood asthma reveals distinct gene expression profiles

    Get PDF
    Background: Children with problematic severe asthma have poor disease control despite high doses of inhaled corticosteroids and additional therapy, leading to personal suffering, early deterioration of lung function, and significant consumption of health care resources. If no exacerbating factors, such as smoking or allergies, are found after extensive investigation, these children are given a diagnosis of therapy-resistant (or therapy-refractory) asthma (SA). Objective: We sought to deepen our understanding of childhood SA by analyzing gene expression and modeling the underlying regulatory transcription factor networks in peripheral blood leukocytes. Methods: Gene expression was analyzed by using Cap Analysis of Gene Expression in children with SA (n = 13), children with controlled persistent asthma (n = 15), and age-matched healthy control subjects (n = 9). Cap Analysis of Gene Expression sequencing detects the transcription start sites of known and novel mRNAs and noncoding RNAs. Results: Sample groups could be separated by hierarchical clustering on 1305 differentially expressed transcription start sites, including 816 known genes and several novel transcripts. Ten of 13 tested novel transcripts were validated by means of RT-PCR and Sanger sequencing. Expression of RAR-related orphan receptor A (RORA), which has been linked to asthma in genome-wide association studies, was significantly upregulated in patients with SA. Gene network modeling revealed decreased glucocorticoid receptor signaling and increased activity of the mitogen-activated protein kinase and Jun kinase cascades in patients with SA. Conclusion: Circulating leukocytes from children with controlled asthma and those with SA have distinct gene expression profiles, demonstrating the possible development of specific molecular biomarkers and supporting the need for novel therapeutic approaches.Peer reviewe

    Evolution records a Mx tape for anti-viral immunity

    Get PDF
    Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx) genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host-virus interactions and species-specific susceptibility to viral infection

    Ultrasensitivity of the Bacillus subtilis sporulation decision

    Get PDF
    Starving Bacillus subtilis cells execute a gene expression program resulting in the formation of stress-resistant spores. Sporulation master regulator, Spo0A, is activated by a phosphorelay and controls the expression of a multitude of genes, including the forespore- specific sigma factor σF and the mother cell-specific sigma factor σE. Identification of the system-level mechanism of the sporulation decision is hindered by a lack of direct control over Spo0A activity. This limitation can be overcome by using a synthetic system in which Spo0A activation is controlled by inducing expression of phosphorelay kinase KinA. This induction results in a switch-like increase in the number of sporulating cells at a threshold of KinA. Using a combination of mathematical modeling and single-cell microscopy, we investigate the origin and physiological significance of this ultrasensitive threshold. The results indicate that the phosphorelay is unable to achieve a sufficiently fast and ultrasensitive response via its positive feedback architecture, suggesting that the sporulation decision is made downstream. In contrast, activation of σF in the forespore and of σE in the mother cell compartments occurs via a cascade of coherent feed-forward loops, and thereby can produce fast and ultrasensitive responses as a result of KinA induction. Unlike σF activation, σE activation in the mother cell compartment only occurs above the KinA threshold, resulting in completion of sporulation. Thus, ultrasensitive σE activation explains the KinA threshold for sporulation induction. We therefore infer that under uncertain conditions, cells initiate sporulation but postpone making the sporulation decision to average stochastic fluctuations and to achieve a robust population response

    Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

    Get PDF
    Rationale: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene–environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2

    GO-PROMTO Illuminates Protein Membrane Topologies of Glycan Biosynthetic Enzymes in the Golgi Apparatus of Living Tissues

    Get PDF
    The Golgi apparatus is the main site of glycan biosynthesis in eukaryotes. Better understanding of the membrane topology of the proteins and enzymes involved can impart new mechanistic insights into these processes. Publically available bioinformatic tools provide highly variable predictions of membrane topologies for given proteins. Therefore we devised a non-invasive experimental method by which the membrane topologies of Golgi-resident proteins can be determined in the Golgi apparatus in living tissues. A Golgi marker was used to construct a series of reporters based on the principle of bimolecular fluorescence complementation. The reporters and proteins of interest were recombinantly fused to split halves of yellow fluorescent protein (YFP) and transiently co-expressed with the reporters in the Nicotiana benthamiana leaf tissue. Output signals were binary, showing either the presence or absence of fluorescence with signal morphologies characteristic of the Golgi apparatus and endoplasmic reticulum (ER). The method allows prompt and robust determinations of membrane topologies of Golgi-resident proteins and is termed GO-PROMTO (for GOlgi PROtein Membrane TOpology). We applied GO-PROMTO to examine the topologies of proteins involved in the biosynthesis of plant cell wall polysaccharides including xyloglucan and arabinan. The results suggest the existence of novel biosynthetic mechanisms involving transports of intermediates across Golgi membranes

    The Ser82 RAGE variant affects lung function and serum RAGE in smokers and sRAGE production in vitro

    Get PDF
    Introduction: Genome-Wide Association Studies have identified associations between lung function measures and Chronic Obstructive Pulmonary Disease (COPD) and chromosome region 6p21 containing the gene for the Advanced Glycation End Product Receptor (AGER, encoding RAGE). We aimed to (i) characterise RAGE expression in the lung, (ii) identify AGER transcripts, (iii) ascertain if SNP rs2070600 (Gly82Ser C/T) is associated with lung function and serum sRAGE levels and (iv) identify whether the Gly82Ser variant is functionally important in altering sRAGE levels in an airway epithelial cell model. Methods: Immunohistochemistry was used to identify RAGE protein expression in 26 human tissues and qPCR was used to quantify AGER mRNA in lung cells. Gene expression array data was used to identify AGER expression during lung development in 38 fetal lung samples. RNA-Seq was used to identify AGER transcripts in lung cells. sRAGE levels were assessed in cells and patient serum by ELISA. BEAS2B-R1 cells were transfected to overexpress RAGE protein with either the Gly82 or Ser82 variant and sRAGE levels identified. Results: Immunohistochemical assessment of 6 adult lung samples identified high RAGE expression in the alveoli of healthy adults and individuals with COPD. AGER/RAGE expression increased across developmental stages in human fetal lung at both the mRNA (38 samples) and protein levels (20 samples). Extensive AGER splicing was identified. The rs2070600T (Ser82) allele is associated with higher FEV1, FEV1/FVC and lower serum sRAGE levels in UK smokers. Using an airway epithelium model overexpressing the Gly82 or Ser82 variants we found that HMGB1 activation of the RAGE-Ser82 receptor results in lower sRAGE production. Conclusions: This study provides new information regarding the expression profile and potential role of RAGE in the human lung and shows a functional role of the Gly82Ser variant. These findings advance our understanding of the potential mechanisms underlying COPD particularly for carriers of this AGER polymorphism

    Patient-centered digital biomarkers for allergic respiratory diseases and asthma: The ARIA-EAACI approach – ARIA-EAACI Task Force Report

    Get PDF
    Biomarkers for the diagnosis, treatment and follow-up of patients with rhinitis and/or asthma are urgently needed. Although some biologic biomarkers exist in specialist care for asthma, they cannot be largely used in primary care. There are no validated biomarkers in rhinitis or allergen immunotherapy (AIT) that can be used in clinical practice. The digital transformation of health and health care (including mHealth) places the patient at the center of the health system and is likely to optimize the practice of allergy. Allergic Rhinitis and its Impact on Asthma (ARIA) and EAACI (European Academy of Allergy and Clinical Immunology) developed a Task Force aimed at proposing patient-reported outcome measures (PROMs) as digital biomarkers that can be easily used for different purposes in rhinitis and asthma. It first defined control digital biomarkers that should make a bridge between clinical practice, randomized controlled trials, observational real-life studies and allergen challenges. Using the MASK-air app as a model, a daily electronic combined symptom-medication score for allergic diseases (CSMS) or for asthma (e-DASTHMA), combined with a monthly control questionnaire, was embedded in a strategy similar to the diabetes approach for disease control. To mimic real-life, it secondly proposed quality-of-life digital biomarkers including daily EQ-5D visual analogue scales and the bi-weekly RhinAsthma Patient Perspective (RAAP). The potential implications for the management of allergic respiratory diseases were proposed
    corecore