14,784 research outputs found

    Arboviruses and the challenge to establish systemic and persistent infections in competent mosquito vectors : the interaction with the RNAi mechanism

    Get PDF
    Arboviruses are capable to establish long-term persistent infections in mosquitoes that do not affect significantly the physiology of the insect vectors. Arbovirus infections are controlled by the RNAi machinery via the production of viral siRNAs and the formation of RISC complexes targeting viral genomes and mRNAs. Engineered arboviruses that contain cellular gene sequences can therefore be transformed to "viral silencing vectors" for studies of gene function in reverse genetics approaches. More specifically, "ideal" viral silencing vectors must be competent to induce robust RNAi effects while other interactions with the host immune system should be kept at a minimum to reduce non-specific effects. Because of their inconspicuous nature, arboviruses may approach the "ideal" viral silencing vectors in insects and it is therefore worthwhile to study the mechanisms by which the interactions with the RNAi machinery occur. In this review, an analysis is presented of the antiviral RNAi response in mosquito vectors with respect to the major types of arboviruses (alphaviruses, flaviviruses, bunyaviruses, and others). With respect to antiviral defense, the exo-RNAi pathway constitutes the major mechanism while the contribution of both miRNAs and viral piRNAs remains a contentious issue. However, additional mechanisms exist in mosquitoes that are capable to enhance or restrict the efficiency of viral silencing vectors such as the amplification of RNAi effects by DNA forms, the existence of incorporated viral elements in the genome and the induction of a non-specific systemic response by Dicer-2. Of significance is the observation that no major "viral suppressors of RNAi" (VSRs) seem to be encoded by arboviral genomes, indicating that relatively tight control of the activity of the RNA-dependent RNA polymerase (RdRp) may be sufficient to maintain the persistent character of arbovirus infections. Major strategies for improvement of viral silencing vectors therefore are proposed to involve engineering of VSRs and modifying of the properties of the RdRp. Because of safety issues (pathogen status), however, arbovirus-based silencing vectors are not well suited for practical applications, such as RNAi-based mosquito control. In that case, related mosquito-specific viruses that also establish persistent infections and may cause similar RNAi responses may represent a valuable alternative solution

    Arbovirus emergence in the temperate city of Córdoba, Argentina, 2009-2018

    Get PDF
    The distribution of arbovirus disease transmission is expanding from the tropics and subtropics into temperate regions worldwide. The temperate city of Córdoba, Argentina has been experiencing the emergence of dengue virus, transmitted by the mosquito Aedes aegypti, since 2009, when autochthonous transmission of the virus was first recorded in the city. The aim of this work is to characterize the emergence of dengue and related arboviruses (Zika and chikungunya) in Córdoba since 2009. Herein, we present a data set with all known information about transmission of dengue, Zika, and chikungunya viruses in Córdoba, Argentina from 2009-2018, including what information is known of dengue virus (DENV) serotypes in circulation and origins of imported cases. The data presented in this work will assist researchers in investigating drivers of arbovirus emergence and transmission in Córdoba, Argentina and contribute to a better understanding of the global problem of the expanding distribution of arbovirus disease transmission.Fil: Robert, Michael A.. University Of The Sciences; Estados UnidosFil: Tinunin, Daniela T.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Benitez, Elisabet Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Ludueña Almeida, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Romero, Moory. State University of New York; Estados UnidosFil: Stewart-Ibarra, Anna M.. State University of New York; Estados UnidosFil: Estallo, Elizabet Lilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin

    New insights into control of arbovirus replication and spread by insect RNA interference pathways

    Get PDF
    Arthropod-borne (arbo) viruses are transmitted by vectors, such as mosquitoes, to susceptible vertebrates. Recent research has shown that arbovirus replication and spread in mosquitoes is not passively tolerated but induces host responses to control these pathogens. Small RNA-mediated host responses are key players among these antiviral immune strategies. Studies into one such small RNA-mediated antiviral response, the exogenous RNA interference (RNAi) pathway, have generated a wealth of information on the functions of this mechanism and the enzymes which mediate antiviral activities. However, other small RNA-mediated host responses may also be involved in modulating antiviral activity. The aim of this review is to summarize recent research into the nature of small RNA-mediated antiviral responses in mosquitoes and to discuss future directions for this relatively new area of research

    Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges

    Get PDF
    Arthropod-borne viruses (arboviruses) pose a considerable threat to human and animal health, yet effective control measures have proven difficult to implement, and novel means of controlling their replication in arthropod vectors, such as mosquitoes, are urgently required. One of the most exciting approaches to emerge from research on arthropods is the use of the endosymbiotic intracellular bacterium Wolbachia to control arbovirus transmission from mosquito to vertebrate. These α-proteobacteria propagate through insects, in part through modulation of host reproduction, thus ensuring spread through species and maintenance in nature. Since it was discovered that Wolbachia endosymbiosis inhibits insect virus replication in Drosophila species, these bacteria have also been shown to inhibit arbovirus replication and spread in mosquitoes. Importantly, it is not clear how these antiviral effects are mediated. This review will summarize recent work and discuss determinants of antiviral effectiveness that may differ between individual Wolbachia/vector/arbovirus interactions. We will also discuss the application of this approach to field settings and the associated risks

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    Historical Patterns of Arboviral Seroprevalence across Africa and Asia

    Get PDF
    The emergence and resurgence of arboviruses in recent history is challenging our scientific understanding of mosquito-borne diseases and their transmission. To better contextualize recent epidemics and gain insight into historical trends in arbovirus incidence, we conducted a literature review to identify serosurveys from Africa and Asia. We compiled all serosurvey data into a table and tested for variation in disease incidence across countries and between age categories. Our analysis showed that disease incidence was consistently higher in the \u3e15 age category than the \u3c15 age category and revealed significant variation in incidence across countries. In addition, the mean incidence of yellow fever virus was substantially higher than the incidences of the other diseases included in the analysis. Higher incidence in the \u3e15 age category is likely due to the long-term persistence of antibodies in human sera, while a higher incidence of yellow fever can likely be attributed to widespread vaccine use. Characteristics of countries with high disease incidence included a tropical climate, extended rainy season, and flat terrain, and countries with low disease incidence occurred at higher elevations and/or reflected a desert climate. This analysis can hopefully reveal the conditions most important in facilitating an arbovirus outbreak, leading to targeted prevention strategies in high-risk areas. It also highlights the need for continued serosurveys as a method of documenting disease spread

    Knockdown of piRNA pathway proteins results in enhanced Semliki forest virus production in mosquito cells

    Get PDF
    The exogenous siRNA pathway is important in restricting arbovirus infection in mosquitoes. Less is known about the role of the PIWI-interacting RNA pathway, or piRNA pathway, in antiviral responses. Viral piRNA-like molecules have recently been described following infection of mosquitoes and derived cell lines with several arboviruses. The piRNA pathway has thus been suggested to function as an additional small RNA-mediated antiviral response to the known infection-induced siRNA response. Here we show that piRNA-like molecules are produced following infection with the naturally mosquito-borne Semliki Forest virus in mosquito cell lines. We show that knockdown of piRNA pathway proteins enhances the replication of this arbovirus and defines the contribution of piRNA pathway effectors, thus characterizing the antiviral properties of the piRNA pathway. In conclusion, arbovirus infection can trigger the piRNA pathway in mosquito cells, and knockdown of piRNA proteins enhances virus production

    Wolbachia and arbovirus inhibition in mosquitoes

    Get PDF
    Wolbachia is a maternally inherited intracellular bacteria that can manipulate the reproduction of their insect hosts, and cytoplasmic incompatibility allows them to spread through mosquito populations. When particular strains of Wolbachia are transferred into certain Aedes mosquito species, the transmission capacity of important arthropod-borne viruses can be suppressed or abolished in laboratory challenges. Viral inhibition is associated with higher densities of transinfecting Wolbachia compared with wild-type strains of the bacterium. The upregulation of innate immune effectors can contribute to virus inhibition in Aedes aegypti, but does not seem to be required. Modulation of autophagy and lipid metabolism, and intracellular competition between viruses and bacteria for lipids, provide promising hypotheses for the mechanism of inhibition. Transinfecting virus-inhibiting strains can produce higher fitness costs than wild-type mosquito Wolbachia; however, this is not always the case, and the wMel strain has already been introduced to high frequency in wild Ae. aegypti populations

    Zika virus and the never-ending story of emerging pathogens and transfusion medicine

    Get PDF
    In the last few years, the transfusion medicine community has been paying special attention to emerging vector-borne diseases transmitted by arboviruses. Zika virus is the latest of these pathogens and is responsible for major outbreaks in Africa, Asia and, more recently, in previously infection-naïve territories of the Pacific area. Many issues regarding this emerging pathogen remain unclear and require further investigation. National health authorities have adopted different prevention strategies. The aim of this review article is to discuss the currently available, though limited, information and the potential impact of this virus on transfusion medicine

    From eggs to bites: do ovitrap data provide reliable estimates of Aedes albopictus biting females?

    Get PDF
    Background. Aedes albopictus is an aggressive invasive mosquito species that represents a serious health concern not only in tropical areas, but also in temperate regions due to its role as vector of arboviruses. Estimates of mosquito biting rates are essential to account for vector-human contact in models aimed to predict the risk of arbovirus autochthonous transmission and outbreaks, as well as nuisance thresholds useful for correct planning of mosquito control interventions. Methods targeting daytime and outdoor biting Ae. albopictus females (e.g., Human Landing Collection, HLC) are expensive and difficult to implement in large scale schemes. Instead, egg-collections by ovitraps are the most widely used routine approach for large-scale monitoring of the species. The aim of this work was to assess whether ovitrap data can be exploited to estimate numbers of adult biting Ae. albopictus females and whether the resulting relationship could be used to build risk models helpful for decision-makers in charge of planning of mosquito-control activities in infested areas. Method. Ovitrap collections and HLCs were carried out in hot-spots of Ae. albopictus abundance in Rome (Italy) along a whole reproductive season. The relationship between the two sets of data was assessed by generalized least square analysis, taking into account meteorological parameters. Result. The mean number of mosquito females/person collected by HLC in 150 (i.e., females/HLC) and the mean number of eggs/day were 18.9 ± 0.7 and 39.0 ± 2.0, respectively. The regression models found a significant positive relationship between the two sets of data and estimated an increase of one biting female/person every five additional eggs found in ovitraps. Both observed and fitted values indicated presence of adults in the absence of eggs in ovitraps. Notably, wide confidence intervals of estimates of biting females based on eggs were observed. The patterns of exotic arbovirus outbreak probability obtained by introducing these estimates in risk models were similar to those based on females/HLC (R0 > 1 in 86% and 40% of sampling dates for Chikungunya and Zika, respectively; R0 < 1 along the entire season for Dengue). Moreover, the model predicted that in this case-study scenario an R0 > 1 for Chikungunya is also to be expected when few/no eggs/day are collected by ovitraps. Discussion. This work provides the first evidence of the possibility to predict mean number of adult biting Ae. albopictus females based on mean number of eggs and to compute the threshold of eggs/ovitrap associated to epidemiological risk of arbovirus transmission in the study area. Overall, however, the large confidence intervals in the model predictions represent a caveat regarding the reliability of monitoring schemes based exclusively on ovitrap collections to estimate numbers of biting females and plan control interventions
    corecore