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ABSTRACT
Background. Aedes albopictus is an aggressive invasivemosquito species that represents
a serious health concern not only in tropical areas, but also in temperate regions due
to its role as vector of arboviruses. Estimates of mosquito biting rates are essential to
account for vector-human contact in models aimed to predict the risk of arbovirus
autochthonous transmission and outbreaks, as well as nuisance thresholds useful for
correct planning of mosquito control interventions. Methods targeting daytime and
outdoor biting Ae. albopictus females (e.g., Human Landing Collection, HLC) are
expensive and difficult to implement in large scale schemes. Instead, egg-collections
by ovitraps are the most widely used routine approach for large-scale monitoring of
the species. The aim of this work was to assess whether ovitrap data can be exploited
to estimate numbers of adult biting Ae. albopictus females and whether the resulting
relationship could be used to build risk models helpful for decision-makers in charge
of planning of mosquito-control activities in infested areas.
Method. Ovitrap collections and HLCs were carried out in hot-spots of Ae. albopictus
abundance inRome (Italy) along awhole reproductive season. The relationship between
the two sets of data was assessed by generalized least square analysis, taking into account
meteorological parameters.
Result. The mean number of mosquito females/person collected by HLC in 15′ (i.e.,
females/HLC) and the mean number of eggs/day were 18.9 ± 0.7 and 39.0 ± 2.0,
respectively. The regression models found a significant positive relationship between
the two sets of data and estimated an increase of one biting female/person every five
additional eggs found in ovitraps. Both observed and fitted values indicated presence of
adults in the absence of eggs in ovitraps. Notably, wide confidence intervals of estimates
of biting females based on eggs were observed. The patterns of exotic arbovirus outbreak
probability obtained by introducing these estimates in risk models were similar to those
based on females/HLC (R0 > 1 in 86% and 40% of sampling dates for Chikungunya and
Zika, respectively; R0 < 1 along the entire season for Dengue). Moreover, the model
predicted that in this case-study scenario an R0 > 1 for Chikungunya is also to be
expected when few/no eggs/day are collected by ovitraps.
Discussion. This work provides the first evidence of the possibility to predict mean
number of adult biting Ae. albopictus females based on mean number of eggs and to
compute the threshold of eggs/ovitrap associated to epidemiological risk of arbovirus
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transmission in the study area. Overall, however, the large confidence intervals in the
model predictions represent a caveat regarding the reliability of monitoring schemes
based exclusively on ovitrap collections to estimate numbers of biting females and plan
control interventions.

Subjects Entomology, Parasitology
Keywords Invasive mosquitoes, Epidemiological modelling, Chikungunya, Biting rate, R0, Zika,
Dengue, Europe, Ovitrap, Arboviruses

INTRODUCTION
Aedes albopictus (Skuse) (Diptera: Culicidae) is an aggressive daytime biting invasive
mosquito species (Hawley, 1988) which represents a serious health concern not only in trop-
ical areas, but also in temperate regions of Europe, US and China where it is now well estab-
lished (Medlock et al., 2015). In fact, the species is a competent vector for many arboviruses
(Gratz, 2004), such as the most recent pandemic Zika virus (Di Luca et al., 2016), and has
been responsible for large Chikungunya virus epidemics in Indian Ocean islands and in
India (Higgs, 2006; Enserink, 2006; Roth et al., 2014). In Europe, it was responsible for the
first outbreak of an exotic arbovirus (i.e., >200 confirmed Chikungunya cases in Ravenna
Province, north-east Italy in 2007) and of the transmission of autochthonous cases of
Dengue and Chikungunya in France and Croatia in more recent years (Rezza et al., 2007;
Angelini et al., 2007; Gjenero-Margan et al., 2011; Grandadam et al., 2011; Delisle et al.,
2015; Succo et al., 2016).

Estimates of mosquito biting rates are essential to account for vector-human contact
in models aiming at predicting the risk of autochthonous transmission and outbreaks of
mosquito-borne diseases, as well as mosquito nuisance. These estimates can be obtained by
collecting mosquitoes on human volunteers (i.e., human landing collection, HLC), a very
labour-intensive process, unethical in areas of proven disease transmission (Silver, 2008).
Other methods targeting biting females of daytime outdoor biting species (e.g., BG-sentinel
traps for Ae. albopictus) are expensive and difficult to implement in large scale schemes.
Thus, models aimed to predict the risk of autochthonous transmission and outbreaks of
arbovirus by Ae. albopictus are constrained by the difficulty to obtain fine-scale
entomological data.

On the other hand, the most widely available entomological data for Ae. albopictus come
from egg-collection by ovitraps, a routine large-scale monitoring approach. This has been
largely exploited by public administrations to survey the species abundance, due to its
limited implementing costs (ECDC, 2012). The use of egg abundance in risk models can be
convenient, provided this can be proved to be a good predictor of biting adults. However,
the relationship betweenmosquito eggs and biting females is not straightforward (Qiu et al.,
2007; ECDC, 2012) and may be differently affected by climatic (e.g., temperature, rainfall,
wind; Hawley, 1988; Waldock et al., 2013; Vallorani et al., 2015), ecological (e.g., number
of alternative oviposition sites Davis et al., 2015) and demographic (e.g., human and
alternative hosts densities) factors.

Manica et al. (2017), PeerJ, DOI 10.7717/peerj.2998 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.2998


As of today, no studies have attempted to quantitatively predict numbers of adult biting
Aedes females from ovitrap data, although a study from Indonesia showed a positive cor-
relation between eggs in ovitrap and number of host-seeking Aedes aegypti females in BG-
sentinel traps (Tantowijoyo et al., 2016). The aims of the present study were to (i) investigate
the relationship between the mean number of human-biting Ae. albopictus females and
number of eggs in ovitraps along the mosquito reproductive season and (ii) assess the
accuracy of this relationship. An accurate prediction of numbers of adult biting females
fromovitrap data would in fact provide decision-makers in charge of planning ofmosquito-
control activities with a straightforward measure of high mosquito densities, associated to
higher nuisance, as well as higher risk of arbovirus outbreaks. In order to achieve these
goals, we carried out parallel ovitrap and human landing collections in two hot-spots of
high Ae. albopictus abundance in Rome (Italy) and assessed the relationship between the
two sets of data by regression analysis.

MATERIALS & METHODS
Study sites
Human Landing Collections (HLC) and ovitrap collections were carried out from July
21th to October 31th 2014 in two Ae. albopictus heavily infested study sites (∼1-hectar
each) inside the metropolitan area of Rome (Italy), at about 400 m distance from each
other: the botanical garden inside the campus of La Sapienza University of Rome (Site
A, 41◦54′12.6′′N and 12◦30′59.7′′E; see Cianci et al., 2015) and the enclosed garden of the
Institute of Anatomy (Site B, 41◦54′23.32′′N and 12◦30′57.35′′E; see Caputo et al., 2012).

Mosquito collections
HumanLandingCollectionswere performed three days perweek (i.e., onMonday,Wednes-
day and Friday) by two qualified operators in two outdoor spots located at a distance of ap-
proximately 100mwithin each study site. The operators gave their consent to carry outHLC
after being informed of potential risks. At planned day, collections started 1 h before sunset
and finished within 30 min. Each HLC (i.e., a single collection made by a single operator
in one spot) lasted for 15 min; after rotating between spots within the site, operators moved
to the second site. In the following day of collection, the first site sampled was the second
one sampled in previous collection day. In case of rain immediately before or during HLC
time, collections were postponed to the next scheduled day. During each HLC, the operator
seated exposing a ∼4,200 cm2 naked area in one foreleg. Biting female mosquitoes were
killed with a racket zapper as soon as they landed on the skin. Killed mosquitoes were
identified and counted directly in the field.

Egg collections were carried out by ovitraps filled with 300 ml water and internally lined
with a germination paper on which mosquito females lay their eggs (Velo et al., 2016). Ten
ovitraps were positioned in site A and five in site B (this difference in number of ovitraps
is due to lack of open space derived by the presence of a large building in site B). In the
same day of HLC, operators collected germination papers in sealed plastic bags, emptied
ovitraps, and replenished them with tap water. Egg counting was carried out under a
stereomicroscope in the laboratory. Each month, approximately 1/10 of collected eggs
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were hatched and reared to the adult stage in order to confirm exclusive presence of Ae.
albopictus.

In view of the following considerations we assume that removing Ae. albopictus adult
females and their eggs from the field doesn’t significantly affect the mosquito population
size and temporal dynamics: (i) collections were carried out in typical hot-spots of high
Ae. albopictus density (Manica et al., 2016) in heavily infested areas (Marini et al., 2010;
Cianci et al., 2015; Caputo et al., 2015); (ii) after the arrival in an infested area a human
host can attract all the females present within a radius of only 4–7 m in 15′ HLC (Mogi &
Yamamura, 1981); (iii) the time required by HLC represents only a small fraction of the
overall female daily biting activity (Hawley, 1988); (iv) the number of ovitraps employed is
to be considered negligible compared to number of potential natural breeding sites in the
study sites (e.g., catch basins, vases, pots, flowerpot saucers).

Meteorological data
Meteorological data (i.e., hourly records of temperature at 2 m from ground, wind speed
and precipitation) were obtained by the opendata archive of the ‘‘Ministero delle Politiche
Agricole, Alimentari e Forestali’’ (weather station Roma Collegio Romano https://www.
politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/7012, accessed 2 June
2015). Meteorological data were aggregated to obtain the following variables of interest:

• daily average wind speed, average temperature and total mm of rainfall;
• a binary rainfall index indicating the occurrence of rainfall during the day;
• average temperature and accumulated mm of rainfall recorded over one, two, three
weeks prior to collection day.

Statistical analysis
All analyses were carried out using the software R version 3.3.1 (R Core Team, 2016) and
the packages nlme (Pinheiro et al., 2016), MuMIn (Barton, 2016), AICcmodavg (Mazerolle,
2016) and ggplot2 (Wickham, 2009).

A Pearson correlation between the mean number of female/site/day (i.e., the mean num-
ber of biting Ae. albopictus females collected by the two operators in the two spots within a
site in a single day) and the mean number of eggs/site/day at lag 0 (i.e., the mean number
of eggs from each ovitrap within each site divided by the number of days the ovitrap was
active) was computed.

Basic estimate of biting females based on mean number of egg/day in
ovitrap (Model-I)
This relationship was tested by means of regression analysis also accounting for
meteorological variables that could affect HLC sampling. Response variable was the mean
number of female/site/day (i.e., the mean number of biting Ae. albopictus females collected
by the two operators in the two spots within a site in a single day). Explanatory variables
were site, mean number of eggs/site/day at lag 0 (i.e., the mean number of eggs from each
ovitrap within each site divided by the number of days the ovitrap was active), mean
number of eggs/site/day at lag 1 (i.e., the mean number of eggs/site/day in the seven days
precedingHLC sampling), themean number of eggs/site/day at lag 2 (i.e., themean number

Manica et al. (2017), PeerJ, DOI 10.7717/peerj.2998 4/21

https://peerj.com
https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/7012
https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/7012
http://dx.doi.org/10.7717/peerj.2998


of eggs/site/day from 7 to 14 days preceding HLC sampling). The choice of lag 0, 1 and 2
was based on: (i) the mean time from egg oviposition to first blood-meal, which during the
summer months in temperate areas is <14 days (B Caputo, pers. obs., 2014), and (ii) the
fact that routine ovitrap surveillance in large-scale monitoring schemes is usually carried
on a weekly base, at least in Italy (ISS, 2016).

In addition, some explanatory variables were included, i.e., meteorological variables
recorded on the day of HLC sampling such as the precipitation occurrence (yes or no)
and the average daily values for wind speed, temperature and temperature quadratic term.
Temperature and wind data were centred (subtracted its mean) to help interpretation of
results (Schielzeth, 2010). Due to irregularly observed data and the longitudinal structure of
the data, a continuous auto-regressive correlation structure of order 1 was considered in the
model. The resulting model was fitted using the generalized least squared method by maxi-
mizing the restricted log-likelihood (REML). Model assumptions were verified by checking
the model normalized residuals for any pattern or dependency. This model, hereafter-
defined ‘‘full model’’, including all the ecologically relevant parameters available, was
used to generate a set of all plausible sub-models. The model considering the temperature
quadratic term included also the linear one. A multi-model selection approach (Burnham
& Anderson, 2002) was then employed to compare all models in the set. Models were
ranked by AICc (Burnham & Anderson, 2002) using maximum likelihood estimation (ML)
(Faraway, 2006). Results of the ranking process were used to calculate weights and the
relative importance for each variable by summing the Akaike weights for each model that
contains the parameter of interest. The model having the lowest AIC was then selected and
refitted using REMLModel, performancewas assessed using in-sample errors by computing
the rootmean squared error (RMSE), which represents the sample standard deviation of the
differences between predicted values and observed values and could be interpreted as an
estimation of the standard deviation of the unexplained variance. Pearson correlation
between observed and fitted mean values was also computed.

Improved estimate of biting females based on mean number of egg/day in
ovitrap (Model-II)
Following the same approach, we built a new regression model aiming at improving the
basic prediction of biting females obtained from Model I where only egg counts and
short-term meteorological variables were considered. Specifically, we added average values
for meteorological variables (temperature and precipitation) computed for a longer period
preceding HLC sampling (till three weeks before) in order to take into account the effect of
climatic variables not only onHLC sampling, due tomosquito activity, but also onmosquito
population dynamics. Explanatory variables were the same used in Model-I: site, mean
number of eggs/site/day (only at lag 0), the precipitation occurrence (yes or no) and the
average values for wind speed and temperature quadratic term recorded on the day of
collection. In addition, in this case, the average daily temperature and accumulated precip-
itation, with their quadratic terms, recorded over the previous one, two, three weeks were
also included as explanatory variables. Again, temperature, wind and rainfall variables were
centred and a continuous auto-regressive correlation structure of order 1 was considered. A
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set of plausible sub-models was then generated. Themodel set was tailored in order to retain
models considering at most three meteorological variables (one for temperature, one for
rainfall and one for wind) in order to avoid collinearity among meteorological explanatory
variables. Models considering the quadratic terms included also the corresponding linear
one. All models in the set were then compared and ranked by AICc (Burnham & Anderson,
2002) using ML estimation (Faraway, 2006). The model having the lowest AIC was then
selected and refitted using REML. RMSE and Pearson correlation between observed and
fitted mean values were computed. Collinearity was investigated using the function corvif
(Zuur et al., 2009). During the model validation process, a simulation study was carried
out to assess how the relationship between the mean number of egg/day in ovitraps and
biting females from HLC, obtained from the best Model II, is influenced by the number
of ovitraps considered. To test this, Model-II was re-fitted on simulated subsets of the
original dataset; precisely, subsets were simulated by fixing at each step the number of
ovitraps included in the analysis (from one to 15 traps, that is the actual number used
in the best Model II) and then resampling with replacement (1,000 times each step) the
number of ovitraps to be considered. Model-II was re-fitted on every subset in order to
obtain mean values and 95% confidence intervals for the parameters of interest (i.e., the
estimated value of the mean number/eggs/day parameter, its significance, the RMSE and
the Pearson correlation) for each fixed number of ovitraps.

Basic reproduction number and outbreak probability of exotic arbovirus
The basic reproduction number (R0) formosquito-borne arboviruses such asChikungunya,
Dengue andZika virus can be calculated fromdensities of human andmosquito populations
and several epidemiological parameters according to the following formula R0=RHV

0 RVH
0

(Smith et al., 2012). Symbols, interpretations, values and literature references for each
parameter are reported in the Table 1. Specifically, RHV

0 =
kχV
γ

V
H

ωV
ωV+m

could be interpreted
as the product of the number of infectious mosquitoes generated from an infectious human
while RVH

0 =
kχH
m as the number of infectious humans generated by the infectious

mosquitoes surviving the extrinsic incubation period. When R0< 1 (epidemic threshold),
the probability of observing sustained arbovirus transmission after importation of a case
is negligible. When R0 > 1, the outbreak probability is given by the following formula:

p= 1− RVH
0 +1

RVH
0 (RHV

0 +1)
.

HLC-observed data and HLC-predicted values obtained from Model-2, multiplied by a
correction factor x as in Carrieri et al. (2012b), were used to estimate the number of bites
on human per mosquito (kV /H ).

RESULTS
Ovitrap and HLC collections
A total of 5,678 biting Ae. albopictus adult females and 25,120 Ae. albopictus eggs were
collected. The mean number of females/person collected by HLC in 15′ (hereafter
females/HLC) was 20.8 (±0.9 SE) and 17.1 (±0.9 SE) in Site-A and in Site-B, respectively.
Themaximumnumber of females/HLCwas 47 in Site-A and 45 in site-B. Themean number
of eggs/day was 35.6 (±3.4 SE) and 40.7 (±2.4 SE) in Site-A and Site-B, respectively. The
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Table 1 Epidemiological parameters. Symbols, values and references for the parameters used.

Parameter Description CHIKV DENV ZIKAV

Value
(range)

Reference Value
(range)

Reference Value Reference

k Human biting rate (the
number of bites to humans
per mosquito per day)

0.09
(0.05–0.16)

Poletti et al. (2011) 0.09
(0.05–0.16)

Poletti et al. (2011) 0.09
(0.05–0.16)

Poletti et al. (2011)

m Mortality rate (1/g= aver-
age mosquito life-span in
days)

Function
(Temperature)

Poletti et al. (2011) Function
(Temperature)

Poletti et al. (2011) Function
(Temperature)

Poletti et al. (2011)

χH Susceptibility to infection
of humans, transmission
efficiency from an infected
mosquito to human

65%
(50%–80%)

Dumont, Chiroleu &
Domerg (2008)

31%
(10%–50%)

Manore et al. (2014) 50%
(1%–100%)

Wong et al. (2013)
and Chouin-
Carneiro et al.
(2016)

χV Susceptibility to infection
of mosquito, transmission
efficiency from an infected
human to mosquito

85%
(70%–100%)

Talbalaghi et al.
(2010) and Vega-
Rua et al. (2013)

31%
(10%–50%)

Manore et al. (2014) 50%
(0.8%–
100%)

Wong et al. (2013)
and Chouin-
Carneiro et al.
(2016)

1/ωV Length of extrinsic incuba-
tion period

2.5
(2–3)
days

Dumont, Chiroleu
& Domerg (2008)
and Dubrulle et al.
(2009)

10
(7–14)days

Manore et al. (2014) 10.5
(7–14) days

Guzzetta et al.
(2016a)

1/γ Infectious period in human
hosts

4.5 (2–7)
days

Parola et al. (2006)
and Dumont, Chi-
roleu & Domerg
(2008)

6 (3–7)
days

Manore et al. (2014) 5.8 (4–7)
days

Guzzetta et al.
(2016a)

X Correction factor 0.101 Carrieri et al.
(2012b)

0.101 Carrieri et al.
(2012b)

0.101 Carrieri et al.
(2012b)

kV /H Ratio of mosquito per
human

Time
dependent

Observed by human
landing collection

Time
dependent

Observed by human
landing collection

Time
dependent

Observed by human
landing collection

M
anica

etal.(2017),PeerJ,D
O
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Figure 1 Seasonal patterns of Aedes Albopictus eggs and adults. Seasonal patterns of eggs and adults per
site per day in botanical garden (Site-A) and the enclosed garden of the Institute of Anatomy (Site-B) in
Sapienza University, Rome, Italy. Dots represent mean biting adults. Crosses represent mean eggs/day.

maximum number of eggs collected in one ovitrap in a single sampling was 288 in Site-A
and 300 in Site-B. No eggs were found in 109 out of 644 ovitrap collections (16.9%).
A bimodal temporal pattern of egg and adult abundance, consistent with the pattern
observed in previous years (Manica et al., 2016), was observed in both study sites (Fig. 1).
A significant Pearson correlation was found between the mean number of female/site/day
and the mean number of eggs/site/day at lag 0 (r = 0.47, df = 71, p-values = <0.0001).

Basic estimate of biting females based on mean number of egg/day
in ovitrap
Results of regression analysis carried out to estimate biting females based on mean number
of egg/day accounting for meteorological variables that could affect HLC sampling—show
that the model with lowest AIC had as explanatory variables the mean number of eggs/site/-
day at lag 0 and average dailywindmeasured at day of sampling (Model-I; Table 2; Table S1).
The estimated parameter for the continuous AR1 correlation is 0.85. The model-averaged
importance of terms computed after the multi-model selection process (192 models) are
mean number/eggs/day lag 0 (0.81) and temperature (0.52). Other explanatory variables
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Table 2 Coefficient and statistics of the parameters for Model-I. Coefficient and statistics of the pa-
rameters for the best (lowest AIC) generalized least square model with continuous AR1 correlation struc-
ture analysing the relationship between the mean numbers of biting Ae. albopictus females/site/day and the
mean number eggs/site/day.

Coeff. Value SE T -value p-value

Intercept 14.719 2.493 5.904 <0.0001
Mean number of eggs/site/day 0.233 0.071 3.280 0.0016
Wind −1.855 1.221 −1.519 0.1334

Table 3 Coefficient and statistics of the parameters for Model-II. Coefficient and statistics of the pa-
rameters for the best (lowest AIC) generalized least square model with continuous AR1 correlation struc-
ture analysing the relationship between the mean numbers of biting Ae. albopictus females/site/day and the
mean number eggs/site/day accounting for the lagged effects of meteorological variables.

Coeff. Value SE T -value p-value

Intercept 20.109 2.438 8.247 <0.0001
Mean number of eggs/site/day 0.245 0.073 3.337 0.0014
Temp −0.891 0.471 −1.891 0.0630
Temp2 −0.289 0.086 −3.348 0.0013
Rain 2 week lag −0.141 0.081 −1.739 0.0867
Wind −2.943 1.321 −2.228 0.0293
Site-B −4.648 2.620 −1.774 0.0807

with values <0.50 are mean number/eggs/day lag 1 (0.50), wind (0.44), rain occurrence
(0.37), site (0.37), mean number/eggs/day lag 2 (0.35), and temperature2 (0.28). A
positive relationship between the mean numbers of females/HLC and the mean numbers
eggs/site/day is observed (Fig. 2A). The estimated coefficient for the mean number of
eggs/site/day is 0.233 However, Model-I does not satisfactory explain the variability of the
collected number of adult females (Pearson correlation = 0.53; RSME = 8.9; Fig. 2B) and
only partially describes the observed temporal pattern of biting females (Figs. 2C and 2D).

Improved estimate of biting females based on mean number of
egg/day in ovitrap
In order to improve the accuracy of estimates, meteorological variables that may affect the
mosquito population dynamics were added to Model-I. After model ranking (Table S2),
the explanatory variables of the model with lowest AIC (Model-II) are the mean number of
eggs/site/day, the wind, the mean temperature in the day when HLCs were carried out and
its quadratic term, the mean rainfall during two weeks before HLC and the two Sites (Table
3). The parameter estimate for the continuous AR1 correlation is 0.70. As for Model-I, a
positive relationship between the mean numbers of females/HLC and the mean numbers
eggs/site/day is observed; the estimated coefficient for the mean number of eggs/site/day
is 0.245 (Fig. 3A). Compared to Model-I, Model-II better explains the variability of the
collected number of adult females (Pearson correlation = 0.76; RSME = 6.9; Fig. 3B) and
better predicts their temporal pattern (Figs. 3C and 3D). Results of the simulation study
indicated that 10 traps were sufficient to give 80% power in detecting the mean
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Figure 2 Basic relationship between ovitrap collections and HLC (Model-I). (A) x-axis, mean num-
ber of eggs/site/day; y-axis, mean number of Ae. albopictus biting females. Solid line, fitted values; dashed
lines, 95% confidence intervals; blue dots, Site-A observed data; orange dots, Site-B observed data. (B)
Observed vs Fitted HLC values. (C) Site-A observed and fitted values of the mean number of biting fe-
males collected during HLC along the season. x-axis, date of collection; y-axis the mean number of biting
females; horizontal mark, fitted values; dark dots, observed data; vertical solid lines, 95% confidence in-
tervals. (D) Site-B observed and fitted values of the mean number of biting females collected during HLC
along the season. x-axis, date of collection; y-axis the mean number of biting females; horizontal mark, fit-
ted values; dark dots, observed data; vertical solid lines, 95% confidence intervals.

number/eggs/day effect and that a further increase of the number of ovitraps would have a
low probability to improve the results (Fig. S2).

Estimates of risk of exotic arbovirus autochthonous transmission
Estimates of R0 for CHIKV in the study area range from 1 to 2.4 when calculated both
on the basis of observed and fitted biting females, with the exception of few dates at the
beginning and at the end of the sampling period (Fig. S1). On the contrary R0< 1 is always
obtained for DENV and ZIKAV, with the exception of few sampling dates between late
August and October, when R0 for ZIKAV ranges between 1 and 1.5 (Fig. S1). Figure 4
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Figure 3 Improved relationship between ovitrap collections and HLC (Model-II). (A) x-axis, mean
number of eggs/site/day; y-axis, mean number of Ae. albopictus biting females. Solid line, fitted values;
dashed lines, 95% confidence intervals; blue dots, Site-A observed data; orange dots, Site-B observed data.
(B) Observed vs Fitted HLC values. (C) Site-A observed and fitted values of the mean number of biting fe-
males collected during HLC along the season. x-axis, date of collection; y-axis the mean number of biting
females; horizontal mark, fitted values; dark dots, observed data; vertical solid lines, 95% confidence in-
tervals. (D) Site-B observed and fitted values of the mean number of biting females collected during HLC
along the season. x-axis, date of collection; y-axis the mean number of biting females; horizontal mark, fit-
ted values; dark dots, observed data; vertical solid lines, 95% confidence intervals.

shows the relationship between the mean number of eggs/site/day and the values of R0 for
CHIKV computed using average HLC values (solid lines) with their confidence intervals
(grey area) predicted by Model II during Ae. albopictus reproductive season (from June
to September). Despite the large confidence intervals in the estimation of R0 values for
CHIKV based on fitted biting females, results indicate that R0 is >1 when at least 28, 20,
20, 3, 12 and 79 eggs/day are collected between June and November, respectively. Below
these numbers of eggs/day, R0= 1 is included within the confidence intervals and does not
allow to predict the onset of the outbreak with 95% of confidence. Similar patterns of the
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Figure 4 Relationship betweenmean number eggs/day/ovitrap and R0 estimates along Aedes albopic-
tus reproductive season in a highly infested area in Rome. (A–F): x-axis, mean eggs/day; y-axis, mean
R0. Solid black line, mean R0 value computed using average HLC values predicted by Model II for the
given value of mean eggs/day. Grey area, 95% confidence intervals. Meteorological variables were con-
sidered at their monthly mean values. (A) June, (B) July, (C) August, (D) September, (E) October, (F)
November.

risk of outbreak for arboviruses in the study area are obtained either based on HLC data
or on estimates of biting females from Model-II (Fig. 5). Risk of CHIKV outbreak ranges
from 40 to 80% from the second half of August to the end of the October, with only few
exceptions Figs. 5A and 5B). Risk of ZIKAV ranges between 0 and 20% up to second half
of September when it raises up to 40% and decreases afterwards (Figs. 5C and 5D). No risk
of outbreak (p= 0) is predicted for DENV (not shown).

DISCUSSION
Ovitrap data are considered appropriate to assess presence/absence of Ae. albopictus in
a given site but not adult abundance, due to the several biases potentially affecting the
outcome of ovitrap collections and their relationship with the adult mosquito population
(Qiu et al., 2007; Straetemans, 2008;ECDC, 2012).However, due to feasibility and economic
reasons, the number of eggs in ovitraps represents the most commonly available data
provided by large-scale routine monitoring activities carried out by public administrations
in infested areas, at least in Europe (e.g., Severini et al., 2008; Carrieri et al., 2012a; Flacio et
al., 2006; Collantes et al., 2016). Thus, number of eggs in ovitraps is often taken as the only
indicator of high nuisance or of higher risk of disease transmission and used for planning
mosquito control interventions. Establishing a threshold in the number of eggs/ovitrap
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Figure 5 Estimated risk of exotic arbovirus outbreaks from an infected case in a highly infested area in
Rome. Estimated risk of exotic arbovirus outbreaks based either on observed HLC data (A, B), or on the
mean number eggs/site/day and its estimated relationship with biting Ae. albopictus females by Model-II
(C, D). x-axis, months; y-axis, outbreak probability. Blue dots, mean values in Site-A; Orange triangles,
mean values in Site-B; solid lines, confidence intervals.

over which nuisance could affect the quality of life (Halasa et al., 2014) and represent a risk
of arbovirus transmission could serve as a very useful tool for decision-makers in charge
of planning mosquito-control activities in infested areas.

This work provides the first evidence of a significant positive relationship between ovitrap
data and data from HLC, i.e., the gold standard for assessing biting rate of human-biting
mosquito (Silver, 2008) and estimating nuisance and risk of arbovirus transmission.

Results also highlight the possibility to predictmeannumber of adult biting females based
on mean number of eggs. Counterintuitively, the mean number of eggs at Lag 0 provided
a better fit than the lagged effects. Indeed, eggs have a double significance: they may reflect
either eggs from which the collected adults were originated (Lag 1 and 2) or eggs laid by
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collected adults (Lag 0). The reason why the latter provided the best fit may be that blood-
feeding follows oviposition in a short time. This would imply that the number of biting
females is correlated with those of ovipositing females in few previous days. On the other
hand, larval development is more affected by climatic conditions over a long time and the
relationship with production of adults eventually seeking for host is likely to change along
the season, weakening the significance of Lag 1 and 2. In addition to this, it is likely that the
same climatic conditions affect in the same way oviposition and host-seeking behaviours
of the population at a given time strengthening the effect of Lag 0. In order to improve the
prediction, several variables are considered: daily temperature, daily wind speed and the
lagged effect of rainfall, reflecting the negative effect of not-optimal temperatures, of strong
winds and of precipitation on adult mosquito flight and survival (Hawley, 1988; Waldock
et al., 2013). However, despite this significant relationship, the accuracy of the prediction
is relatively low, as indicated by wide confidence intervals on the predicted values (e.g.,
for a prediction of 20 females, the observed value is predicted to be between 6 and 34 in
95% of the cases). This low accuracy was expected due to the several local eco-climatic
factors potentially affecting mosquito biting and oviposition activities, as well as to possible
migration from neighbouring areas and the experimental scheme adopted. In particular,
it should be noted that in the present work, a 15′-long HLC on unprotected volunteers
in the daily peak of Ae. albopictus activity (Hawley, 1988; Delatte et al., 2010; Carrieri et al.,
2012b) was taken as a proxy of the number of biting female/person/day. Moreover, the
competition of other human hosts present during the HLC and of natural oviposition sites
alternative to ovitraps were not taken into account.

Model prediction accuracy is also affected by sampling effort; on one hand, increasing
the number of traps would decrease uncertainty of model prediction, on the other hand, at
small scale as in our experimental design, an intensive sampling effort could affectmosquito
population dynamic. Here we detect that our choice of using 15 traps well compensate
both aspects, in fact power analysis (Fig. S2) indicates that 15 traps are sufficient to have
a good statistical power (higher than 80%) but are negligible compared to the number of
natural breeding sites in the study sites (botanical and enclosed gardens).

In the study area, the models predicted an increase of one biting female/person every 5
additional eggs found in ovitraps, possibly reflecting that each female had a high number of
oviposition sites alternative to ovitraps where to lay its eggs, consistent with the species skip-
oviposition behaviour (Hawley, 1988; Davis et al., 2015; Davis, Kline & Kaufman, 2015).
The models estimated the presence of adult biting females also at zero mean number of
eggs/day, as also observed during the experiment. This is counterintuitive, as each adult
female releases tens of eggs each gonothrophic cycle, and questions the widely accepted
concept that ovitraps are a very sensible tool to detect the presence of adult females.

From the epidemiological perspective, the observed number of biting female/person
was in the range of those estimated in Emilia Romagna during the 2007 CHIKV-outbreak
(Poletti et al., 2011) and of those observed in other north-east Italy sites (Marini et al., 2015),
where similarmodels predicted a non-negligible risk of exotic arbovirus outbreaks (Guzzetta
et al., 2016a; Guzzetta et al., 2016b). Risk models predicted that the extremely high biting
rates observed in the study area were associated to an R0> 1 along most of the season for

Manica et al. (2017), PeerJ, DOI 10.7717/peerj.2998 14/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.2998/supp-11
http://dx.doi.org/10.7717/peerj.2998


CHIKV and in only a few weeks during the peak of mosquito abundance for ZIKAV. It is
interesting to note that risk models also showed that risk of CHIKV and ZIKAV outbreak
was higher not only at the peak of the summer season (i.e., August), but also in October,
reflecting the bimodal population dynamics already reported for the species in Rome (Man-
ica et al., 2016). Notably, these patterns are not to be extended to the whole metropolitan
area of Rome, as both study sites are hot-spots of Ae. albopictus abundance, due to the
presence of small green islandswithin a highly urbanized environment (Manica et al., 2016).

When estimates of adult biting Ae. albopictus females based on ovitrap data were
exploited in risk models, the patterns of exotic arbovirus outbreak probability were similar
to those obtained based on collected adults. The model allowed to predict the dynamics of
the risk of arbovirus outbreak in the study area based on the number of eggs in ovitraps
and to obtain threshold values of mean number of eggs/day above which interventions to
prevent the transmissionneed to be implemented. For example, in the case ofCHIKV,which
had the highest outbreak probability, mean numbers of eggs/ovitrap/day ranging from
three to 20 were associated to actual risk of transmission from June to October. This range
is frequently observed in Rome (Di Luca et al., 2001; Toma et al., 2003), suggesting that the
city has high risk of CHIKV outbreak in the presence of infected human hosts. However,
it remains to be established whether the relationship between eggs and biting adults is
maintained also in areas less suitable for high mosquito densities than the study sites.

The models here applied to estimate adult biting Ae. albopictus females based on ovitrap
data could be further improved by introducing other variables (e.g., number of oviposition
sites alternative to ovitraps) or by a more intense sampling effort with ovitraps, thus result-
ing in more accurate epidemiological estimates. However, the results here obtained repre-
sent a caveat regarding the significance of relying on large scale ovitrapmonitoring schemes
for estimating numbers of biting females and planning control interventions aiming at
preventing risk of arbovirus transmission (or of high nuisance). In order to fill the gap
between entomological studies, operational field surveillance and planning of mosquito
control activities, efforts should be concentrated on the development and validation of
new strategies to predict risk of arbovirus outbreaks and possibly provide straightforward
warning thresholds.
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