12,679 research outputs found

    Are yellow eels from Lake Balaton able to cope with high pressure encountered during migration to the Sargasso sea? The case of energy metabolism

    Get PDF
    Eels from Lake Balaton are unique because they do not undergo the silvering process and do not migrate. The question is whether these eels, despite such particularities, retain their ability to cope with migration constraints, usually high pressure. To ascertain this, eels were exposed for 3 days to 10.1 MPa of hydrostatic pressure (HP) and the effects of this on aerobic metabolism were evaluated by measuring oxygen consumption (MO2), Cytochrome Oxydase activity (COX) and energetic nucleotide contents in red and white muscles. The results show that Balaton eels survive HP. However, 3 days under pressure induces an alteration in aerobic metabolism. Moreover, when only muscle fibres are exposed to HP, there is a significant decrease in maximal aerobic capacities (-20%). The results are discussed in terms of the ability of these eels to migrate, bearing in mind that this activity represents a high percentage of maximal aerobic capacity when compared with other populations

    The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise

    Get PDF
    When attacked by a predator, fish respond with a sudden fast-start motion away from the threat. Although this anaerobically-powered swimming necessitates a recovery phase which is fueled aerobically, little is known about links between escape performance and aerobic traits such as aerobic scope (AS) or recovery time after exhaustive exercise. Slower recovery ability or a reduced AS could make some individuals less likely to engage in a fast-start response or display reduced performance. Conversely, increased vigilance in some individuals could permit faster responses to an attack but also increase energy demand and prolong recovery after anaerobic exercise. We examined how AS and the ability to recover from anaerobic exercise relates to differences in fast-start escape performance in juvenile golden gray mullet at different acclimation temperatures. Individuals were acclimated to either 18, 22, or 26°C, then measured for standard and maximal metabolic rates and AS using intermittent flow respirometry. Anaerobic capacity and the time taken to recover after exercise were also assessed. Each fish was also filmed during a simulated attack to determine response latency, maximum speed and acceleration, and turning rate displayed during the escape response. Across temperatures, individuals with shorter response latencies during a simulated attack are those with the longest recovery time after exhaustive anaerobic exercise. Because a short response latency implies high preparedness to escape, these results highlight the trade-off between the increased vigilance and metabolic demand, which leads to longer recovery times in fast reactors. These results improve our understanding of the intrinsic physiological traits that generate inter-individual variability in escape ability, and emphasize that a full appreciation of trade-offs associated with predator avoidance and energy balance must include energetic costs associated with vigilance and recovery from anaerobic exercise

    Perfluorocarbon Enhanced Glasgow Oxygen Level Dependent (GOLD) magnetic resonance metabolic imaging identifies the penumbra following acute ischemic stroke

    Get PDF
    The ability to identify metabolically active and potentially salvageable ischaemic penumbra is crucial for improving treatment decisions in acute stroke patients. Our solution involves two complementary novel MRI techniques (Glasgow Oxygen Level Dependant (GOLD) Metabolic Imaging), which when combined with a perfluorocarbon (PFC) based oxygen carrier and hyperoxia can identify penumbra due to dynamic changes related to continued metabolism within this tissue compartment. Our aims were (i) to investigate whether PFC offers similar enhancement of the second technique (Lactate Change) as previously demonstrated for the T2*OC technique (ii) to demonstrate both GOLD metabolic imaging techniques working concurrently to identify penumbra, following administration of Oxycyte® (O-PFC) with hyperoxia. Methods: An established rat stroke model was utilised. Part-1: Following either saline or PFC, magnetic resonance spectroscopy was applied to investigate the effect of hyperoxia on lactate change in presumed penumbra. Part-2; rats received O-PFC prior to T2*OC (technique 1) and MR spectroscopic imaging, which was used to identify regions of tissue lactate change (technique 2) in response to hyperoxia. In order to validate the techniques, imaging was followed by [14C]2-deoxyglucose autoradiography to correlate tissue metabolic status to areas identified as penumbra. Results: Part-1: PFC+hyperoxia resulted in an enhanced reduction of lactate in the penumbra when compared to saline+hyperoxia. Part-2: Regions of brain tissue identified as potential penumbra by both GOLD metabolic imaging techniques utilising O-PFC, demonstrated maintained glucose metabolism as compared to adjacent core tissue. Conclusion: For the first time in vivo, enhancement of both GOLD metabolic imaging techniques has been demonstrated following intravenous O-PFC+hyperoxia to identify ischaemic penumbra. We have also presented preliminary evidence of the potential therapeutic benefit offered by O-PFC. These unique theranostic applications would enable treatment based on metabolic status of the brain tissue, independent of time from stroke onset, leading to increased uptake and safer use of currently available treatment options

    Rates of Performance Loss and Neuromuscular Activity in Men and Women During Cycling: Evidence for A Common Metabolic Basis of Muscle Fatigue

    Get PDF
    The durations that muscular force and power outputs can be sustained until failure fall predictably on an exponential decline between an individual’s 3-s burst maximum to the maximum performance they can sustain aerobically. The exponential time constants describing these rates of performance loss are similar across individuals, suggesting that a common metabolically based mechanism governs muscle fatigue; however, these conclusions come from studies mainly on men. To test whether the same physiological understanding can be applied to women, we compared the performance-duration relationships and neuromuscular activity between seven men [23.3 ± 1.9 (SD) yr] and seven women (21.7 ± 1.8 yr) from multiple exhaustive bouts of cycle ergometry. Each subject performed trials to obtain the peak 3-s power output (Pmax), the mechanical power at the aerobic maximum (Paer), and 11–14 constant-load bouts eliciting failure between 3 and 300 s. Collectively, men and women performed 180 exhaustive bouts spanning an ~6-fold range of power outputs (118–1116 W) and an ~35-fold range of trial durations (8–283 s). Men generated 66% greater Pmax (956 ± 109 W vs. 632 ± 74 W) and 68% greater Paer (310 ± 47 W vs. 212 ± 15 W) than women. However, the metabolically based time constants describing the time course of performance loss were similar between men (0.020 ± 0.003/s) and women (0.021 ± 0.003/s). Additionally, the fatigue-induced increases in neuromuscular activity did not differ between the sexes when compared relative to the pedal forces at Paer. These data suggest that muscle fatigue during short-duration dynamic exercise has a common metabolically based mechanism determined by the extent that ATP is resynthesized by anaerobic metabolism

    The effects of changing climate on faunal depth distributions determine winners and losers

    No full text
    Changing climate is predicted to impact all depths of the global oceans, yet projections of range shifts in marine faunal distributions in response to changing climate seldom evaluate potential shifts in depth distribution. Marine ectotherms’ thermal tolerance is limited by their ability to maintain aerobic metabolism (oxygen- and capacity-limited tolerance), and is functionally associated with their hypoxia tolerance. Shallow-water (<200 m depth) marine invertebrates and fishes demonstrate limited tolerance of increasing hydrostatic pressure (pressure exerted by the overlying mass of water), and hyperbaric (increased pressure) tolerance is proposed to depend on the ability to maintain aerobic metabolism, too. Here, we report significant correlation between the hypoxia thresholds and the hyperbaric thresholds of taxonomic groups of shallow-water fauna, suggesting that pressure tolerance is indeed oxygen-limited. Consequently, it appears that the combined effects of temperature, pressure, and oxygen concentration constrain the fundamental ecological niches (FENs) of marine invertebrates and fishes. Including depth in a conceptual model of oxygen- and capacity-limited FENs’ responses to ocean warming and deoxygenation confirms previous predictions made based solely on consideration of the latitudinal effects of ocean warming (e.g. Cheung et al., 2009), that polar taxa are most vulnerable to the effects of climate change, with Arctic fauna experiencing the greatest FEN contraction. In contrast, the inclusion of depth in the conceptual model reveals for the first time that temperate fauna as well as tropical fauna may experience substantial FEN expansion with ocean warming and deoxygenation, rather than FEN maintenance or contraction suggested by solely considering latitudinal range shifts

    A YY1-dependent increase in aerobic metabolism is indispensable for intestinal organogenesis

    Get PDF
    During late gestation, villi extend into the intestinal lumen to dramatically increase the surface area of the intestinal epithelium, preparing the gut for the neonatal diet. Incomplete development of the intestine is the most common gastrointestinal complication in neonates, but the causes are unclear. We provide evidence in mice that Yin Yang 1 (Yy1) is crucial for intestinal villus development. YY1 loss in the developing endoderm had no apparent consequences until late gestation, after which the intestine differentiated poorly and exhibited severely stunted villi. Transcriptome analysis revealed that YY1 is required for mitochondrial gene expression, and ultrastructural analysis confirmed compromised mitochondrial integrity in the mutant intestine. We found increased oxidative phosphorylation gene expression at the onset of villus elongation, suggesting that aerobic respiration might function as a regulator of villus growth. Mitochondrial inhibitors blocked villus growth in a fashion similar to Yy1 loss, thus further linking oxidative phosphorylation with late-gestation intestinal development. Interestingly, we find that necrotizing enterocolitis patients also exhibit decreased expression of oxidative phosphorylation genes. Our study highlights the still unappreciated role of metabolic regulation during organogenesis, and suggests that it might contribute to neonatal gastrointestinal disorders

    A mathematical modelling study of an athlete's sprint time when towing a weighted sled

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s12283-013-0114-2.This study used a mathematical model to examine the effects of the sled, the running surface, and the athlete on sprint time when towing a weighted sled. Simulations showed that ratio scaling is an appropriate method of normalising the weight of the sled for athletes of different body size. The relationship between sprint time and the weight of the sled was almost linear, as long as the sled was not excessively heavy. The athlete’s sprint time and rate of increase in sprint time were greater on running surfaces with a greater coefficient of friction, and on any given running surface an athlete with a greater power-to-weight ratio had a lower rate of increase in sprint time. The angle of the tow cord did not have a substantial effect on an athlete’s sprint time. This greater understanding should help coaches set the training intensity experienced by an athlete when performing a sled-towing exercise

    Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients during Hypercapnoea A Broadband NIRS Study

    Get PDF
    Using broadband near-infrared spectroscopy (NIRS) and cerebral micro-dialysis (MD), we investigated cerebral cellular metabolism and mitochondrial redox states, following hypercapnoea in 6 patients with traumatic brain injury (TBI). In all patients hypercapnoea increased intracranial pressure and cerebral blood flow velocity measured with transcranial Doppler. Despite the likely increase in cerebral oxygen delivery, we did not see an increase in the oxidation status of cytochrome-c-oxidase [oxCCO] in every patient. Analysis of the NIRS data demonstrated two patterns of the changes; Group A (n = 4) showed an increase in [oxCCO] of 0.34(+/-0.34)mu M and Group B (n = 2) a decrease of 0.40(+/- 0.41)mu M. Although no obvious association was seen between the Delta[oxCCO] and the MD, measured changes in lactate and pyruvate concentrations. Further work using model informed data interpretation may be helpful in understanding the multimodal signals acquired in this heterogeneous patient group
    corecore