569 research outputs found

    Cost-Effective TSV Grouping for Yield Improvement of 3D-ICs

    No full text
    Three-dimensional Integrated Circuits (3D-ICs) vertically stack multiple silicon dies to reduce overall wire length, power consumption, and allow integration of heterogeneous technologies. Through-silicon-vias (TSVs) which act as vertical links between layers pose challenges for 3D integration design. TSV defects can happen in fabrication process and bonding stage, which can reduce the yield and increase the cost. Recent work proposed the employment of redundant TSVs to improve the yield of 3D-ICs. This paper presents a redundant TSVs grouping technique, which partition regular and redundant TSVs into groups. For each group, a set of multiplexers are used to select good signal paths away from defective TSVs. We investigate the impact of grouping ratio (regular-to-redundant TSVs in one group) on trade-off between yield and hardware overhead. We also show probabilistic models for yield analysis under the influence of independent and clustering defect distributions. Simulation results show that for a given number of TSVs and TSV failure rate, careful selection of grouping ratios lead to achieving 100% yield at minimal hardware cost (number of multiplexers and redundant TSVs) in comparison to a design that does not exploit TSV grouping ratios

    Investigation into yield and reliability enhancement of TSV-based three-dimensional integration circuits

    No full text
    Three dimensional integrated circuits (3D ICs) have been acknowledged as a promising technology to overcome the interconnect delay bottleneck brought by continuous CMOS scaling. Recent research shows that through-silicon-vias (TSVs), which act as vertical links between layers, pose yield and reliability challenges for 3D design. This thesis presents three original contributions.The first contribution presents a grouping-based technique to improve the yield of 3D ICs under manufacturing TSV defects, where regular and redundant TSVs are partitioned into groups. In each group, signals can select good TSVs using rerouting multiplexers avoiding defective TSVs. Grouping ratio (regular to redundant TSVs in one group) has an impact on yield and hardware overhead. Mathematical probabilistic models are presented for yield analysis under the influence of independent and clustering defect distributions. Simulation results using MATLAB show that for a given number of TSVs and TSV failure rate, careful selection of grouping ratio results in achieving 100% yield at minimal hardware cost (number of multiplexers and redundant TSVs) in comparison to a design that does not exploit TSV grouping ratios. The second contribution presents an efficient online fault tolerance technique based on redundant TSVs, to detect TSV manufacturing defects and address thermal-induced reliability issue. The proposed technique accounts for both fault detection and recovery in the presence of three TSV defects: voids, delamination between TSV and landing pad, and TSV short-to-substrate. Simulations using HSPICE and ModelSim are carried out to validate fault detection and recovery. Results show that regular and redundant TSVs can be divided into groups to minimise area overhead without affecting the fault tolerance capability of the technique. Synthesis results using 130-nm design library show that 100% repair capability can be achieved with low area overhead (4% for the best case). The last contribution proposes a technique with joint consideration of temperature mitigation and fault tolerance without introducing additional redundant TSVs. This is achieved by reusing spare TSVs that are frequently deployed for improving yield and reliability in 3D ICs. The proposed technique consists of two steps: TSV determination step, which is for achieving optimal partition between regular and spare TSVs into groups; The second step is TSV placement, where temperature mitigation is targeted while optimizing total wirelength and routing difference. Simulation results show that using the proposed technique, 100% repair capability is achieved across all (five) benchmarks with an average temperature reduction of 75.2? (34.1%) (best case is 99.8? (58.5%)), while increasing wirelength by a small amount

    Design for pre-bond testability in 3D integrated circuits

    Get PDF
    In this dissertation we propose several DFT techniques specific to 3D stacked IC systems. The goal has explicitly been to create techniques that integrate easily with existing IC test systems. Specifically, this means utilizing scan- and wrapper-based techniques, two foundations of the digital IC test industry. First, we describe a general test architecture for 3D ICs. In this architecture, each tier of a 3D design is wrapped in test control logic that both manages tier test pre-bond and integrates the tier into the large test architecture post-bond. We describe a new kind of boundary scan to provide the necessary test control and observation of the partial circuits, and we propose a new design methodology for test hardcore that ensures both pre-bond functionality and post-bond optimality. We present the application of these techniques to the 3D-MAPS test vehicle, which has proven their effectiveness. Second, we extend these DFT techniques to circuit-partitioned designs. We find that boundary scan design is generally sufficient, but that some 3D designs require special DFT treatment. Most importantly, we demonstrate that the functional partitioning inherent in 3D design can potentially decrease the total test cost of verifying a circuit. Third, we present a new CAD algorithm for designing 3D test wrappers. This algorithm co-designs the pre-bond and post-bond wrappers to simultaneously minimize test time and routing cost. On average, our algorithm utilizes over 90% of the wires in both the pre-bond and post-bond wrappers. Finally, we look at the 3D vias themselves to develop a low-cost, high-volume pre-bond test methodology appropriate for production-level test. We describe the shorting probes methodology, wherein large test probes are used to contact multiple small 3D vias. This technique is an all-digital test method that integrates seamlessly into existing test flows. Our experimental results demonstrate two key facts: neither the large capacitance of the probe tips nor the process variation in the 3D vias and the probe tips significantly hinders the testability of the circuits. Taken together, this body of work defines a complete test methodology for testing 3D ICs pre-bond, eliminating one of the key hurdles to the commercialization of 3D technology.PhDCommittee Chair: Lee, Hsien-Hsin; Committee Member: Bakir, Muhannad; Committee Member: Lim, Sung Kyu; Committee Member: Vuduc, Richard; Committee Member: Yalamanchili, Sudhaka

    A survey of carbon nanotube interconnects for energy efficient integrated circuits

    Get PDF
    This article is a review of the state-of-art carbon nanotube interconnects for Silicon application with respect to the recent literature. Amongst all the research on carbon nanotube interconnects, those discussed here cover 1) challenges with current copper interconnects, 2) process & growth of carbon nanotube interconnects compatible with back-end-of-line integration, and 3) modeling and simulation for circuit-level benchmarking and performance prediction. The focus is on the evolution of carbon nanotube interconnects from the process, theoretical modeling, and experimental characterization to on-chip interconnect applications. We provide an overview of the current advancements on carbon nanotube interconnects and also regarding the prospects for designing energy efficient integrated circuits. Each selected category is presented in an accessible manner aiming to serve as a survey and informative cornerstone on carbon nanotube interconnects relevant to students and scientists belonging to a range of fields from physics, processing to circuit design

    X‐ray microscopy and automatic detection of defects in through silicon vias in three‐dimensional integrated circuits

    Get PDF
    Through silicon vias (TSVs) are a key enabling technology for interconnection and realization of complex three-dimensional integrated circuit (3D-IC) components. In order to perform failure analysis without the need of destructive sample preparation, x-ray microscopy (XRM) is a rising method of analyzing the internal structure of samples. However, there is still a lack of evaluated scan recipes or best practices regarding XRM parameter settings for the study of TSVs in the current state of literature. There is also an increased interest in automated machine learning and deep learning approaches for qualitative and quantitative inspection processes in recent years. Especially deep learning based object detection is a well-known methodology for fast detection and classification capable of working with large volumetric XRM datasets. Therefore, a combined XRM and deep learning object detection workflow for automatic micrometer accurate defect location on liner-TSVs was developed throughout this work. Two measurement setups including detailed information about the used parameters for either full IC device scan or detailed TSV scan were introduced. Both are able to depict delamination defects and finer structures in TSVs with either a low or high resolution. The combination of a 0.4 objective with a beam voltage of 40 kV proved to be a good combination for achieving optimal imaging contrast for the full-device scan. However, detailed TSV scans have demonstrated that the use of a 20 objective along with a beam voltage of 140 kV significantly improves image quality. A database with 30,000 objects was created for automated data analysis, so that a well-established object recognition method for automated defect analysis could be integrated into the process analysis. This RetinaNet-based object detection method achieves a very strong average precision of 0.94. It supports the detection of erroneous TSVs in both top view and side view, so that defects can be detected at different depths. Consequently, the proposed workflow can be used for failure analysis, quality control or process optimization in R&D environments

    Reliable Design of Three-Dimensional Integrated Circuits

    Get PDF

    Overcoming the Challenges for Multichip Integration: A Wireless Interconnect Approach

    Get PDF
    The physical limitations in the area, power density, and yield restrict the scalability of the single-chip multicore system to a relatively small number of cores. Instead of having a large chip, aggregating multiple smaller chips can overcome these physical limitations. Combining multiple dies can be done either by stacking vertically or by placing side-by-side on the same substrate within a single package. However, in order to be widely accepted, both multichip integration techniques need to overcome significant challenges. In the horizontally integrated multichip system, traditional inter-chip I/O does not scale well with technology scaling due to limitations of the pitch. Moreover, to transfer data between cores or memory components from one chip to another, state-of-the-art inter-chip communication over wireline channels require data signals to travel from internal nets to the peripheral I/O ports and then get routed over the inter-chip channels to the I/O port of the destination chip. Following this, the data is finally routed from the I/O to internal nets of the target chip over a wireline interconnect fabric. This multi-hop communication increases energy consumption while decreasing data bandwidth in a multichip system. On the other hand, in vertically integrated multichip system, the high power density resulting from the placement of computational components on top of each other aggravates the thermal issues of the chip leading to degraded performance and reduced reliability. Liquid cooling through microfluidic channels can provide cooling capabilities required for effective management of chip temperatures in vertical integration. However, to reduce the mechanical stresses and at the same time, to ensure temperature uniformity and adequate cooling competencies, the height and width of the microchannels need to be increased. This limits the area available to route Through-Silicon-Vias (TSVs) across the cooling layers and make the co-existence and co-design of TSVs and microchannels extreamly challenging. Research in recent years has demonstrated that on-chip and off-chip wireless interconnects are capable of establishing radio communications within as well as between multiple chips. The primary goal of this dissertation is to propose design principals targeting both horizontally and vertically integrated multichip system to provide high bandwidth, low latency, and energy efficient data communication by utilizing mm-wave wireless interconnects. The proposed solution has two parts: the first part proposes design methodology of a seamless hybrid wired and wireless interconnection network for the horizontally integrated multichip system to enable direct chip-to-chip communication between internal cores. Whereas the second part proposes a Wireless Network-on-Chip (WiNoC) architecture for the vertically integrated multichip system to realize data communication across interlayer microfluidic coolers eliminating the need to place and route signal TSVs through the cooling layers. The integration of wireless interconnect will significantly reduce the complexity of the co-design of TSV based interconnects and microchannel based interlayer cooling. Finally, this dissertation presents a combined trade-off evaluation of such wireless integration system in both horizontal and vertical sense and provides future directions for the design of the multichip system

    Carbon Nanotube Interconnects for End-of-Roadmap Semiconductor Technology Nodes

    Get PDF
    Advances in semiconductor technology due to aggressive downward scaling of on-chip feature sizes have led to rapid rises in resistivity and current density of interconnect conductors. As a result, current interconnect materials, Cu and W, are subject to performance and reliability constraints approaching or exceeding their physical limits. Therefore, alternative materials such as nanocarbons, metal silicides, and Ag nanowires are actively considered as potential replacements to meet such constraints. Among nanocarbons, carbon nanotube (CNT) is among the leading replacement candidate for on-chip interconnect vias due to its high aspect-ratio nanostructure and superior currentcarrying capacity to those of Cu, W, and other potential candidates. However, contact resistance of CNT with metal is a major bottleneck in device functionalization. To meet the challenge posed by contact resistance, several techniques are designed and implemented. First, the via fabrication and CNT growth processes are developed to increase the CNT packing density inside via and to ensure no CNT growth on via sidewalls. CNT vias with cross-sections down to 40 nm 40 nm are fabricated, which have linewidths similar to those used for on-chip interconnects in current integrated circuit manufacturing technology nodes. Then the via top contact is metallized to increase the total CNT area interfacing with the contact metal and to improve the contact quality and reproducibility. Current-voltage characteristics of individual fabricated CNT vias are measured using a nanoprober and contact resistance is extracted with a first-reported contact resistance extraction scheme for 40 nm linewidth. Based on results for 40 nm and 60 nm top-contact metallized CNT vias, we demonstrate that not only are their current-carrying capacities two orders of magnitude higher than their Cu and W counterparts, they are enhanced by reduced via resistance due to contact engineering. While the current-carrying capacities well exceed those projected for end-of-roadmap technology nodes, the via resistances remain a challenge to replace Cu and W, though our results suggest that further innovations in contact engineering could begin to overcome such challenge

    Study of the impact of lithography techniques and the current fabrication processes on the design rules of tridimensional fabrication technologies

    Get PDF
    Working for the photolithography tool manufacturer leader sometimes gives me the impression of how complex and specific is the sector I am working on. This master thesis topic came with the goal of getting the overall picture of the state-of-the-art: stepping out and trying to get a helicopter view usually helps to understand where a process is in the productive chain, or what other firms and markets are doing to continue improvingUniversidad de sevilla.Máster Universitario en Microelectrónica: Diseño y Aplicaciones de Sistemas Micro/Nanométrico

    A Holistic Solution for Reliability of 3D Parallel Systems

    Full text link
    As device scaling slows down, emerging technologies such as 3D integration and carbon nanotube field-effect transistors are among the most promising solutions to increase device density and performance. These emerging technologies offer shorter interconnects, higher performance, and lower power. However, higher levels of operating temperatures and current densities project significantly higher failure rates. Moreover, due to the infancy of the manufacturing process, high variation, and defect densities, chip designers are not encouraged to consider these emerging technologies as a stand-alone replacement for Silicon-based transistors. The goal of this dissertation is to introduce new architectural and circuit techniques that can work around high-fault rates in the emerging 3D technologies, improving performance and reliability comparable to Silicon. We propose a new holistic approach to the reliability problem that addresses the necessary aspects of an effective solution such as detection, diagnosis, repair, and prevention synergically for a practical solution. By leveraging 3D fabric layouts, it proposes the underlying architecture to efficiently repair the system in the presence of faults. This thesis presents a fault detection scheme by re-executing instructions on idle identical units that distinguishes between transient and permanent faults while localizing it to the granularity of a pipeline stage. Furthermore, with the use of a dynamic and adaptive reconfiguration policy based on activity factors and temperature variation, we propose a framework that delivers a significant improvement in lifetime management to prevent faults due to aging. Finally, a design framework that can be used for large-scale chip production while mitigating yield and variation failures to bring up Carbon Nano Tube-based technology is presented. The proposed framework is capable of efficiently supporting high-variation technologies by providing protection against manufacturing defects at different granularities: module and pipeline-stage levels.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168118/1/javadb_1.pd
    corecore