5,642 research outputs found

    Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast

    Get PDF
    A combined multidimensional chromatography-mass spectrometry approach known as "MudPIT" enables rapid identification of proteins that interact with a tagged bait while bypassing some of the problems associated with analysis of polypeptides excised from SDS-polyacrylamide gels. However, the reproducibility, success rate, and applicability of MudPIT to the rapid characterization of dozens of proteins have not been reported. We show here that MudPIT reproducibly identified bona fide partners for budding yeast Gcn5p. Additionally, we successfully applied MudPIT to rapidly screen through a collection of tagged polypeptides to identify new protein interactions. Twenty-five proteins involved in transcription and progression through mitosis were modified with a new tandem affinity purification (TAP) tag. TAP-MudPIT analysis of 22 yeast strains that expressed these tagged proteins uncovered known or likely interacting partners for 21 of the baits, a figure that compares favorably with traditional approaches. The proteins identified here comprised 102 previously known and 279 potential physical interactions. Even for the intensively studied Swi2p/Snf2p, the catalytic subunit of the Swi/Snf chromatin remodeling complex, our analysis uncovered a new interacting protein, Rtt102p. Reciprocal tagging and TAP-MudPIT analysis of Rtt102p revealed subunits of both the Swi/Snf and RSC complexes, identifying Rtt102p as a common interactor with, and possible integral component of, these chromatin remodeling machines. Our experience indicates it is feasible for an investigator working with a single ion trap instrument in a conventional molecular/cellular biology laboratory to carry out proteomic characterization of a pathway, organelle, or process (i.e. "pathway proteomics") by systematic application of TAP-MudPIT

    Metabolic and Chaperone Gene Loss Marks the Origin of Animals: Evidence for Hsp104 and Hsp78 Sharing Mitochondrial Clients

    Full text link
    The evolution of animals involved acquisition of an emergent gene repertoire for gastrulation. Whether loss of genes also co-evolved with this developmental reprogramming has not yet been addressed. Here, we identify twenty-four genetic functions that are retained in fungi and choanoflagellates but undetectable in animals. These lost genes encode: (i) sixteen distinct biosynthetic functions; (ii) the two ancestral eukaryotic ClpB disaggregases, Hsp78 and Hsp104, which function in the mitochondria and cytosol, respectively; and (iii) six other assorted functions. We present computational and experimental data that are consistent with a joint function for the differentially localized ClpB disaggregases, and with the possibility of a shared client/chaperone relationship between the mitochondrial Fe/S homoaconitase encoded by the lost LYS4 gene and the two ClpBs. Our analyses lead to the hypothesis that the evolution of gastrulation-based multicellularity in animals led to efficient extraction of nutrients from dietary sources, loss of natural selection for maintenance of energetically expensive biosynthetic pathways, and subsequent loss of their attendant ClpB chaperones.Comment: This is a reformatted version from the recent official publication in PLoS ONE (2015). This version differs substantially from first three arXiV versions. This version uses a fixed-width font for DNA sequences as was done in the earlier arXiv versions but which is missing in the official PLoS ONE publication. The title has also been shortened slightly from the official publicatio

    The influence of microgravity on invasive growth in Saccharomyces cerevisiae

    Get PDF
    This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Sigma 1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Sigma 1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Sigma 1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium

    The hypoxic transcription factor KlMga2 mediates the response to oxidative stress and influences longevity in the yeast Kluyveromyces lactis

    Get PDF
    Hypoxia is defined as the decline of oxygen availability, depending on environmental supply and cellular consumption rate. The decrease in O2 results in reduction of available energy in facultative aerobes. The response and/or adaptation to hypoxia and other changing environmental conditions can influence the properties and functions of membranes by modifying lipid composition. In the yeast Kluyveromyces lactis, the KlMga2 gene is a hypoxic regulatory factor for lipid biosynthesis-fatty acids and sterols-and is also involved in glucose signaling, glucose catabolism and is generally important for cellular fitness. In this work we show that, in addition to the above defects, the absence of the KlMGA2 gene caused increased resistance to oxidative stress and extended lifespan of the yeast, associated with increased expression levels of catalase and SOD genes. We propose that KlMga2 might also act as a mediator of the oxidative stress response/adaptation, thus revealing connections among hypoxia, glucose signaling, fatty acid biosynthesis and ROS metabolism in K. lactis

    One Hub-One Process: A Tool Based View on Regulatory Network Topology

    Get PDF
    The relationship between the regulatory design and the functionality of molecular networks is a key issue in biology. Modules and motifs have been associated to various cellular processes, thereby providing anecdotal evidence for performance based localization on molecular networks. To quantify structure-function relationship we investigate similarities of proteins which are close in the regulatory network of the yeast Saccharomyces Cerevisiae. We find that the topology of the regulatory network show weak remnants of its history of network reorganizations, but strong features of co-regulated proteins associated to similar tasks. This suggests that local topological features of regulatory networks, including broad degree distributions, emerge as an implicit result of matching a number of needed processes to a finite toolbox of proteins.Comment: 18 pages, 3 figures, 5 supplementary figure

    Analysis of the transcriptional program governing meiosis and gametogenesis in yeast and mammals

    Get PDF
    During meiosis a competent diploid cell replicates its DNA once and then undergoes two consecutive divisions followed by haploid gamete differentiation. Important aspects of meiotic development that distinguish it from mitotic growth include a highly increased rate of recombination, formation of the synaptonemal complex that aligns the homologous chromosomes, as well as separation of the homologues and sister chromatids during meiosis I and II without an intervening S-phase. Budding yeast is an excellent model organism to study meiosis and gametogenesis and accordingly, to date it belongs to the best studied eukaryotic systems in this context. Knowledge coming from these studies has provided important insights into meiotic development in higher eukaryotes. This was possible because sporulation in yeast and spermatogenesis in higher eukaryotes are analogous developmental pathways that involve conserved genes. For budding yeast a huge amount of data from numerous genome-scale studies on gene expression and deletion phenotypes of meiotic development and sporulation are available. In contrast, mammalian gametogenesis has not been studied on a large-scale until recently. It was unclear if an expression profiling study using germ cells and testicular somatic control cells that underwent lengthy purification procedures would yield interpretable results. We have therefore carried out a pioneering expression profiling study of male germ cells from Rattus norvegicus using Affymetrix U34A and B GeneChips. This work resulted in the first comprehensive large-scale expression profiling analysis of mammalian male germ cells undergoing mitotic growth, meiosis and gametogenesis. We have identified 1268 differentially expressed genes in germ cells at different developmental stages, which were organized into four distinct expression clusters that reflect somatic, mitotic, meiotic and post-meiotic cell types. This included 293 yet uncharacterized transcripts whose expression pattern suggests that they are involved in spermatogenesis and fertility. A group of 121 transcripts were only expressed in meiotic (spermatocytes) and postmeiotic germ cells (round spermatids) but not in dividing germ cells (spermatogonia), Sertoli cells or two somatic control tissues (brain and skeletal muscle). Functional analysis reveals that most of the known genes in this group fulfill essential functions during meiosis, spermiogenesis (the process of sperm maturation) and fertility. Therefore it is highly possible that some of the οΏ½30 uncharacterized transcripts in this group also contribute to these processes. A web-accessible database (called reXbase, which was later on integrated into GermOnline) has been developed for our expression profiling study of mammalian male meiosis, which summarizes annotation information and shows a graphical display of expression profiles of every gene covered in our study. In the budding yeast Saccharomyces cerevisiae entry into meiosis and subsequent progression through sporulation and gametogenesis are driven by a highly regulated transcriptional program activated by signal pathways responding to nutritional and cell-type cues. Abf1p, which is a general transcription factor, has previously been demonstrated to participate in the induction of numerous mitotic as well as early and middle meiotic genes. In the current study we have addressed the question how Abf1p transcriptionally coordinates mitotic growth and meiotic development on a genome-wide level. Because ABF1 is an essential gene we used the temperature-sensitive allele abf1-1. A phenotypical analysis of mutant cells revealed that ABF1 plays an important role in cell separation during mitosis, meiotic development, and spore formation. In order to identify genes whose expression depends on Abf1p in growing and sporulating cells we have performed expression profiling experiments using Affymetrix S98 GeneChips comparing wild-type and abf1-1 mutant cells at both permissive and restrictive temperature. We have identified 504 genes whose normal expression depends on functional ABF1. By combining the expression profiling data with data from genome-wide DNA binding assays (ChIPCHIP) and in silico predictions of potential Abf1p-binding sites in the yeast genome, we were able to define direct target genes. Expression of these genes decreases in the absence of functional ABF1 and whose promotors are bound by Abf1p and/or contain a predicted binding site. Among 352 such bona fide direct target genes we found many involved in ribosome biogenesis, translation, vegetative growth and meiotic developement and therefore could account for the observed growth and sporulation defects of abf1-1 mutant cells. Furthermore, the fact that two members of the septin family (CDC3 and CDC10 ) were found to be direct target genes suggests a novel role for Abf1p in cytokinesis. This was further substantiated by the observation that chitin localization and septin ring formation are perturbed in abf1-1 mutant cells

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD
    • …
    corecore