21 research outputs found

    Interoperability framework for supporting information-based assistance in the factory

    Get PDF
    The aim of this paper is to propose new interoperability solution, based on Info-Engine framework and web services technology to support data exchange and extraction from PLM system, specially the Windchill tool. This solution will be implemented as a connector module of more generic framework, named Digital Factory Assistant (DFA). The DFA framework aims to provide factory workers by a set of knowledge and information based decision support to improve their activity performance

    An AutomationML model for plug-and-produce assembly systems

    Get PDF
    This paper aims to support the creation of high performance ‘Plug-and-Produce’ systems by proposing a new semantic model that targets the use of AutomationML (AML). In this direction, the focus is narrowed to the self-description of equipment modules that highlights the use of ‘Skill’ concept. An insight description on how the concept of ‘Skill Recipe’ can be used to execute the equipment ‘Skills’ to fulfil the product's assembly requirements is also provided. This is viewed as a critical concept to achieve high performance in ‘Plug-and-Produce’. To translate the base semantic definitions, we have developed new libraries that are fully compliant with the AML standard. The main purpose of using AML in this context is to bridge production and other engineering domains. An overview of the literature that covers the past and current trends in data exchange and standards is presented, while pointing out the existing challenges and limitations. The vision of this paper is to support the standardization effort of integrating information for design, build, ramp-up and operation of production systems. Hence, this approach elucidates the use of existing AML concepts to model and instantiate Product, Process and Resource (PPR), and the underlying definitions such as: ‘Skills’, ‘Skill Recipes’ and ‘Skill Requirements’. Finally, this paper illustrates the implementation of this approach in AML with a help of an industrial case study demonstrated within the openMOS project

    Product, process and resource model coupling for knowledge-driven assembly automation

    Get PDF
    : Accommodating frequent product changes in a short period of time is a challenging task due to limitations of the contemporary engineering approach to design, build and reconfigure automation systems. In particular, the growing quantity and diversity of manufacturing information, and the increasing need to exchange and reuse this information in an efficient way has become a bottleneck. To improve the engineering process, digital manufacturing and Product, Process and Resource (PPR) modelling are considered very promising to compress development time and engineering cost by enabling efficient design and reconfiguration of manufacturing resources. However, due to ineffective coupling of PPR data, design and reconfiguration of assembly systems are still challenging tasks due to the dependency on the knowledge and experience of engineers. This paper presents an approach for data models integration that can be employed for coupling the PPR domain models for matching the requirements of products for assembly automation. The approach presented in this paper can be used effectively to link data models from various engineering domains and engineering tools. For proof of concept, an example implementation of the approach for modelling and integration of PPR for a Festo test rig is presented as a case study

    Gestión de ontologías e instanciación en modelos de fabricación

    Get PDF
    En la actualidad, las empresas viven en un entorno cada vez más competitivo en el que no es suficiente con ser eficaz, sino que hay que ser eficiente si se quiere permanecer en el mercado. Hoy en día, el hecho de entregar un producto de calidad a tiempo empieza a estar al alcance de cualquiera, si se quiere marcar la diferencia para competir en el mercado se tiene que ser eficiente, es decir, se tiene que hacer optimizando el uso de recursos. Esto no va en relación con el número de recursos en sí, sino con cómo funcionan y si se les saca el máximo rendimiento. No importa cuántos recursos tengas. Si no los sabes usar, nunca serán suficientes. Con el conocimiento sucede lo mismo. No es cuánto tengas, sino cómo lo usas y para qué. Está claro que es necesario adquirir conocimiento, pero de nada vale tener información que no sirve o información que sirve, pero no se sabe interpretar ni transmitir adecuadamente. Históricamente, siempre se ha empleado mucho tiempo en el diseño de nuevos productos y sus procesos de fabricación. Además, cada vez se requieren productos más avanzados y customizados, por lo que el desarrollo se ha vuelto más complicado, pero si se quiere ser competitivo hay que ser eficiente. Hay que introducir los productos en el mercado de manera más rápida, por eso es importante tener una buena base que permita no tener que empezar de cero cada vez que se requiera desarrollar el diseño o la fabricación de un producto. Por este motivo, el hecho de extraer todo tipo de información para nuevos productos se convierte en una necesidad, pero de nada vale tener información si ésta no se almacena, transmite e interpreta correctamente. De esto último trata la interoperabilidad, de compartir conocimiento sin que se pierda información. La interoperabilidad es clave en un sector en el que entra en juego una cadena de suministro. Cuantos más agentes entren a formar parte de la cadena más veces se tiene que compartir la información y mayor es la probabilidad de que ésta no se transmita correctamente. El objetivo de este TFM es desarrollar una herramienta que permita la comunicación entre aplicaciones diferentes y demostrar que es posible transmitir el conocimiento entre ellas a través de ontologías.Universidad de Sevilla. Máster en Ingeniería Aeronáutic

    Digital Twins: Review and Challenges

    Full text link
    [EN] With the arises of Industry 4.0, numerous concepts have emerged; one of the main concepts is the digital twin (DT). DT is being widely used nowadays, however, as there are several uses in the existing literature; the understanding of the concept and its functioning can be diffuse. The main goal of this paper is to provide a review of the existing literature to clarify the concept, operation, and main characteristics of DT, to introduce the most current operating, communication, and usage trends related to this technology, and to present the performance of the synergy between DT and multi-agent system (MAS) technologies through a computer science approach.This work was partly supported by the Spanish Government (RTI2018-095390-B-C31)Juárez-Juárez, MG.; Botti, V.; Giret Boggino, AS. (2021). Digital Twins: Review and Challenges. Journal of Computing and Information Science in Engineering. 21(3):1-23. https://doi.org/10.1115/1.405024412321

    Ingénierie systèmes basée sur les modèles appliquée à la gestion et l'intégration des données de conception et de simulation : application aux métiers d'intégration et de simulation de systèmes aéronautiques complexes

    Get PDF
    The aim of this doctoral thesis is to contribute to the facilitation of design, integration and simulation activities in the aeronautics industry, but more generally in the context of collaborative complex product development. This objective is expected to be achieved through the use and improvement of digital engineering capabilities. During the last decade, the Digital Mock-Up (DMU) – supported by Product Data Management (PDM) systems – became a key federating environment to exchange/share a common 3D CAD model-based product definition between co-designers. It enables designers and downstream users(analysts) to access the geometry of the product assembly. While enhancing 3D and 2D simulations in a collaborative and distributed design process, the DMU offers new perspectives for analysts to retrieve the appropriate CAD data inputs used for Finite Element Analysis (FEA), permitting hence to speed-up the simulation preparation process. However, current industrial DMUs suffer from several limitations, such as the lack of flexibility in terms of content and structure, the lack of digital interface objects describing the relationships between its components and a lack of integration with simulation activities and data.This PhD underlines the DMU transformations required to provide adapted DMUs that can be used as direct input for large assembly FEA. These transformations must be consistent with the simulation context and objectives and lead to the concept of “Product View” applied to DMUs andto the concept of “Behavioural Mock-Up” (BMU). A product view defines the link between a product representation and the activity or process (performed by at least one stakeholder) that use or generate this representation as input or output respectively. The BMU is the equivalent of the DMU for simulation data and processes. Beyond the geometry, which is represented in the DMU,the so-called BMU should logically link all data and models that are required to simulate the physical behaviour and properties of a single component or an assembly of components. The key enabler for achieving the target of extending the concept of the established CAD-based DMU to the behavioural CAE-based BMU is to find a bi-directional interfacing concept between the BMU and its associated DMU. This the aim of the Design-Analysis System Integration Framework (DASIF) proposed in this PhD. This framework might be implemented within PLM/SLM environments and interoperate with both CAD-DMU and CAE-BMU environments. DASIF combines configuration data management capabilities of PDM systems with MBSE system modelling concepts and Simulation Data Management capabilities.This PhD has been carried out within a European research project: the CRESCENDO project, which aims at delivering the Behavioural Digital Aircraft (BDA). The BDA concept might consist in a collaborative data exchange/sharing platform for design-simulation processes and models throughout the development life cycle of aeronautics products. Within this project, the Product Integration Scenario and related methodology have been defined to handle digital integration chains and to provide a test case scenario for testing DASIF concepts. These latter have been used to specify and develop a prototype of an “Integrator Dedicated Environment” implemented in commercial PLM/SLM applications. Finally the DASIF conceptual data model has also served as input for contributing to the definition of the Behavioural Digital Aircraft Business Object Model: the standardized data model of the BDA platform enabling interoperability between heterogeneous PLM/SLM applications and to which existing local design environments and new services to be developed could plug.L’objectif de cette thèse est de contribuer au développement d’approches méthodologiques et d’outils informatiques pour développer les chaînes d’intégration numériques en entreprise étendue. Il s’agit notamment de mieux intégrer et d’optimiser les activités de conception, d’intégration et de simulation dans le contexte du développement collaboratif des produits/systèmes complexes.La maquette numérique (DMU) – supportée par un système de gestion de données techniques (SGDT ou PDM) – est devenue ces dernières années un environnement fédérateur clé pour échanger et partager une définition technique et une représentation 3D commune du produit entre concepteurs et partenaires. Cela permet aux concepteurs ainsi qu’aux utilisateurs en aval (ceux qui sont en charge des simulations numériques notamment) d’avoir un accès à la géométrie du produit virtuel assemblé. Alors que les simulations numériques 3D et 2D prennent une place de plus en plus importante dans le cycle de développement du produit, la DMU offre de nouvelles perspectives à ces utilisateurs pour récupérer et exploiter les données CAO appropriées et adaptées pour les analyses par éléments finis. Cela peut ainsi permettre d’accélérer le processus de préparation du modèle de simulation. Cependant, les environnements industriels de maquettes numériques sont actuellement limités dans leur exploitation par : - un manque de flexibilité en termes de contenu et de structure, - l’absence d’artefact numérique 3D permettant de décrire les interfaces des composants de l’assemblage, - un manque d’intégration avec les données et activités de simulation.Cette thèse met notamment l’accent sur les transformations à apporter aux DMU afin qu’elles puissent être utilisées comme données d’entrée directes pour les analyses par éléments finis d’assemblages volumineux (plusieurs milliers de pièces). Ces transformations doivent être en cohérence avec le contexte et les objectifs de simulation et cela nous a amené au concept de « vue produit » appliquée aux DMUs, ainsi qu’au concept de « maquette comportementale » (BMU). Une « vue produit » définit le lien entre une représentation du produit et l’activité ou le processus utilisant ou générant cette représentation. La BMU est l’équivalent de la DMU pour les données et les processus de simulation. Au delà des géométries discrétisées, la dénommée BMU devrait, en principe, lier toutes les données et les modèles qui seront nécessaires pour simuler le comportement d’un ou plusieurs composants. L’élément clé pour atteindre l’objectif d’élargir le concept établi de la DMU (basée sur des modèles CAO) à celui de la BMU (basée sur des modèles CAE), est de trouver un concept d’interface bidirectionnel entre la BMU et sa DMU associée. C’est l’objectif du « Design-Analysis System Integration Framework » (DASIF) proposé dans cette thèse de doctorat. Ce cadre a vise à être implémenté au sein d’environnements PLM/SLM et doit pouvoir inter-opérer à la fois avec les environnements CAD-DMU et CAE-BMU. DASIF allie les fonctionnalités de gestion de données et de configuration des systèmes PDM avec les concepts et formalismes d’ingénierie système basée sur les modèles (MBSE) et des fonctionnalités de gestion des données de simulation (SDM). Cette thèse a été menée dans le cadre d’un projet de recherche européen : le projet CRESCENDO qui vise à développer le « Behavioural Digital Aircraft » (BDA) qui a pour vocation d’être la« colonne vertébrale » des activités de conception et simulation avancées en entreprise étendue. Le concept du BDA doit s’articuler autour d’une plateforme collaborative d’échange et de partage des données de conception et de simulation tout au long du cycle de développement et de vie des produits aéronautiques. [...

    An ontology-based approach for integrating engineering workflows for industrial assembly automation systems

    Get PDF
    Modern manufacturing organisations face a number of external challenges as the customer-base is more varied, more knowledgeable, and has a broader range of requirements. This has given rise to paradigms such as mass customisation and product personalisation. Internally, businesses must manage multidisciplinary teams that must work together to achieve a common goal despite spanning multiple domains, organisations, and due to improved communication technologies, countries. The motivation for this research is to therefore understand firstly how the multiplicity of stakeholders come together to realise the ever increasing and ever more complex number of product variants that manufacturing systems must now realise. The lack of integration of engineering tools and methods is identified to be one of the barriers to smooth engineering workflows and thus one of the key challenges faced in the current dynamic market. To address this problem, this research builds upon previous works that propose domain ontologies for representing knowledge in a way that is both machine and human readable, facilitating interoperability between engineering software. In addition to this, the research develops a novel Skill model that brings the domain ontologies into a practical, implementable framework that complements existing industrial workflows. The focus of this thesis is the domain of industrial assembly automation systems due to the role this stage of manufacturing plays in realising product variety. Therefore, the proposed ontological models and framework are applied to product assembly scenarios. The key contributions of this work are the consolidation of domain ontologies with a Skill model within the context of assembly systems engineering, development of a broader framework for the ontologies to sit within that complements existing workflows. In addition, the research demonstrates how the framework can be applied to connect assembly process planning activities with machine control logic to identify and rectify inconsistencies as new products are introduced. In summary, the thesis identifies the shortcomings of existing ontological models within the context of manufacturing, develops new models to address those shortcoming, and develops new, useful ways for ontological models to be used to address industrial problems by integrating them with virtual engineering tools

    Manufacturing systems interoperability in dynamic change environments

    Get PDF
    The benefits of rapid i.e. nearly real time, data and information enabled decision making at all levels of a manufacturing enterprise are clearly documented: the ability to plan accurately, react quickly and even pre-empt situations can save industries billions of dollars in waste. As the pace of industry increases with automation and technology, so the need for accurate, data, information and knowledge increases. As the required pace of information collection, processing and exchange change so to do the challenges of achieving and maintaining interoperability as the systems develop: this thesis focuses on the particular challenge of interoperability between systems defined in different time frames, which may have very different terminology. This thesis is directed to improve the ability to assess the requirement for systems to interoperate, and their suitability to do so, as new systems emerge to support this need for change. In this thesis a novel solution concept is proposed that assesses the requirement and suitability of systems for interoperability. The solution concept provides a mechanism for describing systems consistently and unambiguously, even if they are developed in different timeframes. Having resolved the issue of semantic consistency through time the analysis of the systems against logical rules for system interoperability is then possible. The solution concept uses a Core Concept ontology as the foundation for a multi-level heavyweight ontology. The multiple level ontology allows increasing specificity (to ensure accuracy), while the heavyweight (i.e. computer interpretable) nature provides the semantic and logical, rigour required. A detailed investigation has been conducted to test the solution concept using a suitably dynamic environment: Manufacturing Systems, and in particular the emerging field of Manufacturing Intelligence Systems. A definitive definition for the Manufacturing Intelligence domain, constraining interoperability logic, and a multi-level domain ontology have been defined and used to successfully prove the Solution Concept. Using systems from different timeframes, the Solution concept testing successfully identified systems which needed to interoperate, whether they were suitable for interoperation and provided feedback on the reasons for unsuitability which were validated as correct against real world observations

    Ontology based semantic engineering framework and tool for reconfigurable automation systems integration

    Get PDF
    Digital factory modelling based on virtual design and simulation is now emerging as a part of mainstream engineering activities, and it is typically geared towards reducing the product design cycle time. Reconfigurable manufacturing systems can benefit from reusing the existing knowledge in order to decrease the required skills and design time to launch new product generations. The various industrial simulation systems are currently integrating product design, matching processes and resource requirements to decrease the required skills and design time to launch new products. However, the main focus of current reconfigurable manufacturing systems has been modular production lines to support different manufacturing tasks. Additionally, the design data is not transferrable from various domain-specific software to a collaborative and intelligent platform, which is required to capture and reuse design knowledge. Product design is still dependent on the knowledge of designers and does not link to the existing knowledge on processes and resources, which are in separate domains. To address these issues, this research developed an integration method based on semantic technologies and product, process, resource and requirements (PPRR) ontologies called semantic-ontology engineering framework (SOEF). SOEF transferred original databases to an ontology-based automation data structure with a semantic analysis engine. A pre-defined semantic model is developed to recognise custom requirement and map existing knowledge with processing data in the automation assembly aspect. The main research contribution is using semantic technology to process automation documentation and map semantic data to the PPRR ontology structure. Furthermore, this research also contributes to the automatic modification of system simulation based on custom requirements. The SOEF uses a JAVA-based command-line user interface to present semantic analysis results and import ontology outputs to the vueOne system simulation tool for system evaluation

    Modelado de un sistema de planificación de procesos de fabricación mediante técnicas basadas en Model Based System Engineering

    Get PDF
    El objetivo de este trabajo fin de máster es el de implementar un diseño de un sistema de planificación de procesos empleando una de las nuevas técnicas presentes en el mundo industrial actual, la Ingeniería de Sistemas Basada en Modelos, comúnmente denominada MBSE. Esta ténica de modelado aparece ante la creciente complejidad del diseño de sistemas, en un marco de un mundo interconectado donde la interoperabilidad entre sistemas y la estandarización de procesos se hacen más necesarios que nunca. Por ello, aparece MBSE, que trata de diseñar sistemas de gran envergadura empleando simplificaciones a través de modelos que tienen su origen en el lenguaje UML. Así, en este proyecto se tratará de desarrollar un modelo mediante MBSE que permita realizar la customización de un sistema PLM implementado en un entorno aeronáutico a través de la herramienta Capella, para su posterior instanciación en el software PLM Aras Innovator.The aim of this master's thesis is to implement a design of a process planning system using one of the new techniques present in today's industrial world, Model-Based Systems Engineering, commonly known as MBSE. This modeling technique appears in the face of the growing complexity of system design, within the framework of an interconnected world where interoperability between systems and the standardization of processes are more necessary than ever. This is the reason for the emergence of MBSE, which attempts to design large-scale systems using simplifications through models originated in the UML language. Consequently, in this project, we will try to develop a model using MBSE that allows the customization of a PLM system implemented in an aeronautical environment through the Capella tool, for its subsequent instantiation in the Aras Innovator PLM software.Universidad de Sevilla. Máster Universitario en Ingeniería Aeronáutic
    corecore