
An AutomationML Model for Plug-and-Produce

Assembly Systems

Paul Danny, Pedro Ferreira, Niels Lohse

Loughborough University, Wolfson School of Mechanical,

Electrical and Manufacturing Engineering,

EPSRC Centre for Innovative Manufacturing

in Intelligent Automation, Holywell Park,

Loughborough, UK – LE11 3QZ

[P.Danny, P.Ferreira, N.Lohse]@lboro.ac.uk

Magno Guedes

INTROSYS – Integration for Robotic Systems SA,

R&D Department,

Estrada dos 4,

Castelos Lote 67,

2950-805 Quinta do Anjo, PT

[Magno.Guedes]@introsys.eu

Abstract: This paper aims to support the creation of high

performance ‘Plug-and-Produce’ systems by proposing a new

semantic model that targets the use of AutomationML (AML). In this

direction, the focus is narrowed to the self-description of equipment

modules that highlights the use of ‘Skill’ concept. An insight

description on how the concept of ‘Skill Recipe’ can be used to

execute the equipment ‘Skills’ to fulfil the product’s assembly

requirements is also provided. This is viewed as a critical concept to

achieve high performance in ‘Plug-and-Produce’. To translate the

base semantic definitions, we have developed new libraries that are

fully compliant with the AML standard. The main purpose of using

AML in this context is to bridge production and other engineering

domains. An overview of the literature that covers the past and

current trends in data exchange and standards is presented, while

pointing out the existing challenges and limitations. The vision of

this paper is to support the standardization effort of integrating

information for design, build, ramp-up and operation of production

systems. Hence, this approach elucidates the use of existing AML

concepts to model and instantiate Product, Process and Resource

(PPR), and the underlying definitions such as: ‘Skills’, ‘Skill

Recipes’ and ‘Skill Requirements’. Finally, this paper illustrates the

implementation of this approach in AML with a help of an industrial

case study demonstrated within the openMOS project.

Keywords: AutomationML; ‘Plug-and-Produce’; Cyber

Physical Systems; semantic models; Product, Process and

Resource; Skill; Skill Recipe; Skill Requirement

I. INTRODUCTION

The vision of the ‘open Dynamic Manufacturing Operating
System for Smart ‘Plug-and-Produce’ automation components’
(openMOS) project [1] is targeted at maximizing the economic
sustainability of production systems by following three main
innovation strands: (1) enabling ‘Plug-and-Produce’ capabilities
for automation equipment, robots and machines, (2) aiding
horizontal and vertical communication between all hardware
and software entities for innovating new business functions, and
(3) creating a manufacturing operating system (MOS) that is
easily extendable and adaptable towards the introduction of new
products, work orders and equipment modules, which envisages
easy deployment, optimization and changeover management
strategies.

In terms of the assembly domain, the existence of standards
will be critical to achieve adaptable systems by guaranteeing
compatibility between assembly equipment modules. The effort
towards standardization is collaborative and mutually beneficial

rather being limited to any individual company or an
organization [2]. The standardization of these models is based
on the maturity of the domain knowledge that ensures
interoperability, integration and acceptance of the technology
[3]. Within the domain of manufacturing automation, numerous
standards have been developed by ISO, ISA and IEC. Due to the
inherent and complex nature of this domain, most of these
standards are part of lengthy series and difficult to implement.
Nonetheless, the effort towards standardization is critical for the
realization of the current drive towards CPS. The vision requires
a clear, transparent and scalable ‘language’ and model that
facilitates the integration of existing and emerging technologies
across various engineering domains.

This paper proposes an AML based model that formalizes
the use of ‘Plug-and-Produce’ components and creates the basic
elements that supports CPS. The proposed approach builds on
the existing AML concepts and makes it open for the integration
of current legacy systems with other engineering domains, while
enabling the next generation of CPS. The use of AML for the
assembly domain and its wider industrial acceptance will be a
positive move towards standardization.

II. LITERATURE REVIEW

Along with the rest of the society, production systems are
also becoming more dependent on the implementation of the
advances in information and communication technologies
(ICT). ‘Plug-and-Produce’ was proposed to simplify the way
assembly systems are built. This means equipment should be
enabled with automatic discovery and registration of machine
topology, along with capability orchestration by communicating
with their networked partners [4]. This leads to more self-aware,
agile and responsive equipment modules which are able to deal
unplanned breakdowns and rapid fluctuations in production
requests [5]. There is an expectation that manufacturing
enterprises should be able to receive information from their
stakeholders and operational units much quicker to act/react
faster. However, the production landscape is complex with high
interdependence between of equipment supplies, system
integrator and end users. Quick responses to the volatile market
demands has become more challenging with respect to the
growing demand towards highly customized products, which
exponentially increases the number of possible variations
(different colors, shapes, features, etc.) for the same product.
This subsequently increases the complexity of designing
assembly lines in a short period of time.

The reported work is a part of the openMOS project partially funded by

the European Commission as a part of the EC-H2020-IA (GA 680735).

To tackle some of these challenges, quite a few research
projects such as: EUPASS [6], IDEAS [7], Transparency [8] and
ReBorn [9] were focused on addressing some of the inherent
problems within the assembly domain. The outcome from such
projects are mainly related to the formalization of the product to
be assembled, the definition of processes to assemble the
product and the description of the actual physical system that
executes the assembly processes. This includes the detailed
description and information mapping between Product, Process
and Resource (PPR) domains to facilitate the automated
generation of process sequences and system configurations for
production requests [10].

The ‘Skill’ concept that is based on the IEC 61499 standard
[11] served as the base for building the domain models in the
above mentioned projects. This alone would not be sufficient to
establish the relationships, dependencies and other underlying
constraints that will support the design and operation of
production systems. The definition of ‘Skill Requirements’
facilitates the formalization of the product work flow
requirements; special handling needs and other business
objectives. The ‘Skills’ define the functional capabilities of the
equipment modules, while the ‘Skill Recipe’ is an instance of
‘Skill’ with varying granularity, and it is specially catered to
fulfill the various parametric requirements of the ‘Skill
Requirements’. The recurrent use of these concepts and
definitions reflects that the use of standards for this domain is
not alone a good practice, but an essential tool for creating
reliable systems and repeatable processes to support the next
generation CPS [12]. In this direction, quite a few engineering
process libraries and best-practice guidelines are established by
the research projects and standardization organizations. A few
popular and the most resent standards are:

• VDI guideline 2221 “Systematic approach to the

development and design of technical systems and

products” [13]

• VDI guideline 5200 “Factory Planning” [14]

• VDI guideline 2206 “Development methodology for

mechatronic systems” [15]

• Factory Design and Improvement (FDI) model [16]

• ISA-88 the hierarchical model for manufacturing control

architecture [17]

• ISA-95 automated interface between manufacturing

enterprises and control systems [18]

The various data formats applicable for modelling
mechatronic systems are: the ‘STandard for the Exchange of
Product Model data’ (STEP) – ISO 10303 [19], ‘Jupiter
Tesselation’ (JT) – a data format for geometry representation
defined within ISO 14306, ‘XML Process Definition Language’
(XPDL) – is an XML dialect for business process modelling, and
‘XML Metadata Interchange’ (XMI) - is a data format for
exchanging meta data standardized by ‘Object Management
Group’ (OMG) popularly known for ‘Product Lifecycle
Management’ (PLM) products. In this landscape, data exchange
formats like AML and STEP can be a major game-changer by
being able to cover all or at least most of the key information
within the engineering processes of the production systems [20].
[16] has conducted a detailed analysis of various standards
within the PPR domain and presented it as shown in Table 1.

Table 1: Summary of standards relevant for enabling PPR data exchange [16]

PPR Category Standards

Product data

DXF, DWG, CGM, HPGL, IGES, STEP AP203,

STEP AP214, JT, VRML, X3D, STEP AP239,

AP242 and the OMG PLM Services

Process data OAGIS, ANSI/ISA-95, MTConnect, PSL

Resource data
CMSD, B2MML, STEP AP239 and the OMG
PLM Services

IEC 62714 is one of the most promising solution for data
exchange focused towards the domain of automation
engineering. ‘AutomationML’ (AML) is a data format defined
with in IEC 62714, which is XML schema based and has been
developed to support dynamic data exchange in any
heterogeneous engineering environment [21]. AML uses
CAEX, a top-level and neutral data format providing the
interface for well-established data formats in engineering
aspects that includes topology, geometry, kinematics, behavior
and sequencing information. The main aim of AutomationML is
to join engineering tools of different domains such as; process
control engineering, mechanical plant engineering, electrical
design, process engineering, robot programming, PLC
programming, HMI development etc. The modelling features of
various data formats was analyzed by [22]. Table 2 is an
aggregated representation of [22]’s detailed study.

Table 2: Requirement fulfilment of data formats (based on [22])

Features

Data Formats

A
M

L

S
T

E
P

J
T

X
P

D
L

X
M

L

Mechanical Data + + + - -

Electrical Data + + - - -

Process Control Data + - - + -

Topological Information + + + - +

Establishing Concept Relationships + + - - +

Tracing Concept Dependencies + + - - +

AML provides a common language for different engineering
tools and links for detailed engineering information, which is
easily exchangeable between multi-engineering disciplines and
projects. Nevertheless, AML as some limitations that should be
taken into account for effective and efficient description of PPR
engineering domains. The main difficulties listed by [23] in
terms of using of AML are as follows:

• Complex data structures with intricate links between

disciplines.

• Difficulties in the integration of AML with different

disciplines internally and with external data.

• Limited support for cross-disciplinary analytics by the end

users.

• Limited options for platform independent browsing of

AML data.

• Support tools for dealing with the above points as well as

modeling and assessment of changes.

This paper focuses on defining new libraries within AML
that facilitates the creation of ‘Skill Requirements’, ‘Skills’ and
‘Skill Recipes’ for the self-description of equipment modules to
support high performance in ‘Plug-and-Produce’.

III. PROBLEM DEFINITION

 The self-description provides all the physical and functional
specifications of an equipment module for the creation of a
virtual entity, which will be a digital replica of that equipment
module. In terms of ‘Plug-and-Produce’ devices, they should
have embedded information about their process capabilities
(Skills), data that it gathers during the execution of the
processes, and other information relevant to its maintenance and
diagnostics details. This is critical for CPS, since these systems
would require an exact virtualization of actual physical entities
to deliver their vision. In this direction, AML is viewed as the
prime candidate to aggregate all the information of a physical
entity (electrical, mechanical, geometry, etc.) in a coherent
structure that can be easily interpreted across multiple
engineering domains and tools.

An AML file can be an aggregation of several self-
descriptions of equipment modules, which can be used to
represent a hierarchical system or sub-system. The information
stored in this AML file can be used to provide an overview of
the same system in the cloud (cyber-side), which precisely can
display a list of functional capabilities (‘skills’) that a
workstation or an assembly cell can perform. This correlation
between the cyber and the physical sides can help the user to
virtually design, simulate and evaluate several management
strategies. Therefore, the cyber representation of a physical
system can help to emulate via monitoring, event forecasting and
optimization based on the current and past data archives. This
needs to support the system integration and exchange of
information throughout the several phases of assembly system
development such as: design, build, ramp-up, production and
change (reconfiguration) phases.

One of the significant challenges in this respect is to
formalise the structure of the self-description concept in way that
it is compliant with existing sematic models targeting CPS.

Another major challenge lies in the aggregation of self-
descriptions, which can be of varying levels of system topology.
It is important to note that the self-description includes the
process capabilities of the equipment modules, but it does not
provide the information on how to execute these capabilities to
realize a product. This will require several links between the
‘Skill Requirements’ of the product and the actual execution
information from the equipment module’s ‘Skill Recipes’.
Figure 1 provides an overview of the challenges with the
integration and mapping of information across the system. The
self-description files require relationships between the PPR
domains as well as information related to equipment granularity.

IV. THE AML MODEL

 The primary objective of this model is to use as much of
possible concepts from AML and enhance them by integrating
‘Plug-and-Produce’ concepts enabling the seamless use of AML
for CPS. Toward this end, an existing semantic model will be
used as a baseline for the aggregation of all the various phases
of development and operation of assembly systems. The aim is
to ensure that the AML model can be used by the assembly
system, its components, and other engineering tools and
domains that are under the roof of CPS. The model also
incorporates the Product, Process and Resource (PPR), as it is a
core concept of AML, that is used to establish the links, which
ultimately allow the assembly system to execute processes to
create a product or its sub-part. The main motivation for using
AML is to ensure interoperability with other tools, which AML
already delivers [21].

The semantic model established in the openMOS project [1]
serves as the baseline for enhancing AML with the necessary
concepts required to enable ‘Plug-and-Produce’ while ensuring
that the AML core concepts are respected. The semantic model
was developed to enable ‘Plug-and-Produce’ via the analysis of
the relationships between the core concepts, such as: ‘Skill’,
‘Skill Requirement’ and ‘Skill Recipe’, with an underlying
common concept of ‘Skill Type’. ‘Skill’ defines the process
capabilities of the assembly system and its sub-systems or
‘Equipment Modules’. The ‘Skill Requirements’ enable the
formalization of the product, or other equipment’s, needs and
business objectives. Both these concepts need to share a
common ‘Skill Type’ if automatic matching between them is
expected. The next step enables the base for system to operate,
which is the definition of how the ‘Skill’ will be executed to
fulfil a ‘Skill Requirement’. This requires the creation of a ‘Skill
Recipe’, which not only establishes the traceability between

Figure 1: Overview of Problem Definition

Figure 2: Overview of the Semantic Model

these two concepts, but also is used to formalize the necessary
parameters for the execution of ‘Skills’ as shown in Figure 2.
This is particularly important in real systems, as these tend to be
tweaked in the ramp-up stage, until the system is setup for
production.

As mentioned above, the ‘Skill Recipe’ concept defines how
a ‘Skill Requirement’ can be fulfilled by an equipment’s ‘Skill’,
which has an acceptable range of ‘Parameters’. In AML, the
‘Skill Recipe’ is an instantiation of a ‘Skill’ with specific
‘Parameter Settings’ that can fulfill one or more ‘Skill
Requirements’. The ‘Composite Skill’ concept provides the
means to deal with varying degrees of process capability
granularity. The proposed model takes advantage of the already
defined ‘Skill Requirement’ to establish higher level
compositions, which can be fulfilled by lower level ‘Skill
Recipes’. It is important to note that there can be multiple ‘Skill
Recipes’ for each ‘Skill Requirement’. Similarly, there can be
multiple ‘Skill Requirements’ for those ‘Skill Recipes’. This
means we can decouple all ‘Equipment Modules’ and their ‘Skill
Recipes’, to use them as a part of aggregated ‘Composite Skills’,
or use the same ‘Skill Recipes’ to match the product
requirements.

The execution of assembly processes are event based and it
uses the ‘Control Port’ of the ‘Skill’ to trigger the start of the
execution of Skill Recipes. Other important ports are the
‘Information Ports’ as these can be used to include some of the
KPIs, such as execution time or energy consumption. These are
intended for later use towards the performance measurements

and optimizing the execution of assembly processes. The
equipment’s ‘Physical Port’ establishes physical interfaces with
other equipment modules. An interface is defined by the means
of two ports, where the ports are of the same type and compatible
port directions.

The model also uses the AML core structures, namely the
following libraries: System Unit Class Library, Role Class
Library and Interface Class Library. The system unit class
library serves as a platform of templates for creating specific
classes for ‘Equipment Modules’, ‘Physical Ports’, processes
classified as ‘Skills’ and other concepts within the assembly
domain. The role class library facilitates the creation of specific
types for ‘Equipment Modules’, ‘Skills’, ‘Ports’ and other type
specifics for concepts within this domain. The interface class
library helps to define the various types of interfaces such as:
‘Physical Connections’, ‘Material Flow Connections’,
‘Precedence Connections’ and others that are defined within this
domain. These concepts can be aggregated to define the
necessary concepts which can in turn be used to create ‘Instance
Hierarchies’ for assembly system requirements, equipment
modules and system configurations. Figure 3 gives an overview
of the main concepts added as well as how the libraries are
interrelated.

One of the key feature of AML is that it supports the
mapping of information to establish relationships and
dependencies. In this sense, this model defines a few new
interface classes in AML such as: ‘Requirement Connector’, and
‘Precedence Connector’, while making use of the existing ‘Port
Connector’ and ‘PPR connector’. The ‘Requirement Connector’
is used to map the connections between the ‘Skill Recipe’ that
fulfils a specific ‘Skill Requirement’ and the ‘Equipment’ used
to fulfil that ‘Skill Requirement’. ‘Precedence Connectors’
provide links which express the sequential precedence
relationships between the ‘Skill Requirements’. The ‘Port
Connector’ helps to map the physical interface between two
‘Equipment Modules’. The ‘PPR Connector’ maps the links
between the product to its process specifications and the
processes as shown in Figure 4. A detailed version of this
approach will be available at [1] as an open access document.

Figure 3: Overview of the Basic AML Concepts and Relationships

Figure 4: Overview of the AML Connections

V. ILLUSTRATIVE EXAMPLE

 The illustrative example for the proposed model is based on
a demonstrator developed within the openMOS project [1]. The
demonstrator provides a scenario to illustrate the use of AML to
instantiate a simple assembly cell consisting of self-descriptive
‘Plug-and-Produce’ equipment modules and to highlight how
these can be linked to higher level information that enable the
system to operate. The demonstrator is a robotic assembly cell
developed for testing and training purposes. This is
comprehensive enough to demonstrate the complexity of the
system, and is compliant with current OEM standards used
within the automotive industry. The cell breakdown is shown in
Figure 5. The cell is used for spot welding of a car parts (herein
referred as the ‘products’ shown in Figure 6 (B)). The setup of
the assembly cell includes a workstation consisting of a 6-DoF
robotic arm, a welding module and a vision system for
inspecting the quality of the weld. The product is delivered to
the assembly cell according to the production needs via an
Automated Guided Vehicle (AGV). The main purpose of the
demonstrator in terms of the project is to display the developed
execution approach and integrate legacy systems with the recent
‘Plug-and-Produce’ concepts.

 The first step in using AML to instantiate a hierarchical
system is to define the system interfaces, which helps to map the
relationships between different entities and concepts in the
model. In the current use case, we are mainly dealing with
interfaces, namely: ‘Requirement Connector’, ‘Port Connector’,
‘Precedence Connector’ and ‘PPR Connector’. The second step
is to define the classifications and the functional behavior of the
assembly equipment, which ideally should already exist as it
defines the system taxonomy. Here, in addition to AML base
role class library, a few case specific role classes were created
such as: equipment types, skill types, port types, parameter

types, etc. Also, all the role classes should be assigned with
appropriate interfaces as shown in Figure 3. It is important to
note that these definitions (type specifications) should ideally be
the same for the entire domain of assembly systems, but it is
permissible to have project specific definitions to enable
reusability in restrictive environments.

Both the system interfaces and the role classes are expected
to be less changeable elements of the system, as these provide
overarching definitions for the systems. The third step in is to
create the system unit classes in accordance with the rules and
guidelines defined in the semantic model. This step involves the
allocation of roles to each of the newly created system unit
classes. It is important to note that each element in the system
unit class can have one or more roles assigned to it, as it might
fulfil multiple roles in the system. AML also provides the feature
‘Role Requirement’ to ensure that the class has a mandatory role.

Figure 5: Overview of the Demonstrator Setup

Figure 6: Overview of the Implementation of PPR Relationships in AML

Once the three libraries of AML are filled with appropriate
definitions, the instantiation of the system can be initiated by
dragging and dropping (using AML editor) appropriate system
unit classes into the newly created instance hierarchy. Finally, it
is necessary to establish the dependencies and relationships
between various instances by connecting the appropriate
interface ports. This will detail the physical (equipment
configuration) and logical (process configuration) configuration
of the system.

The demonstrator modules include specific skills as shown
in Figure 6(A). The concept ‘Skill’ is categorized into ‘Atomic
Skill’ and ‘Composite Skill’. For instance, ‘Pick and Place’ is a
composite skill encapsulating three atomic skills, which can be
defined as: ‘hold’, ‘move’ and ‘release’. For simplification, any
skill which cannot be broken down is classified as atomic. The
robot controls the welding module and therefore encapsulates
the welding module inside it. The welding module includes a
simple ‘weld’ (Atomic) skill, while the robot has ‘pick’
(Atomic), ‘drop’ (Atomic), ‘go to’ (Atomic) and ‘weld program’
(Composite) skills. The vision system has an ‘inspect’ (Atomic)
skill. For each ‘Skill’, there can be multiple ‘Skill Recipes’, but
most cases have one ‘Skill Recipe’ per ‘Skill’, as they have no
variability. The workstation on the higher-level exposes two
skills, ‘task’ (Composite) and ‘task full’ (Composite). The ‘Skill
Recipes’ for these composite skills includes ‘Skill
Requirements’, which will be fulfilled by the equipment’s
atomic recipes as seen in Figure 6(C).

One of the key aspect of this contribution is on mapping the
information relevant to the ‘Skill Recipes’ and how this is
aggregated in a hierarchical system. It is important to note that
every instance of an ‘Equipment Module’, including its related
AML libraries, is the representation of an individual self-
description file, which can then be aggregated to create the self-
description of the system as shown in Figure 6(A). These files
will include the ‘Skill Recipes’, which are instances of the
‘Skills’ as described in Section IV. Figure 6 (C) illustrates the
concept of ‘Composite Skill’ providing an overview of how its
‘Skill Requirements’ are linked to the ‘Atomic Recipes’,
following the proposed approach in Section IV. The product’s
requirements shown in Figure 6 (B) are matched with an
appropriate ‘Skill Recipe’ that has a specific ‘Parameter Setting’
that can fulfill a ‘Skill Requirement’. The ‘Skill’ executes the
‘Skill Recipe’ when the appropriate ‘Control Port’ is triggered
by the arrival of the product to the workstation. Figure 6 (D)
provides the aggregated AML file overview using the AML
editor. This demonstrates the ease of decoupling elements as
AML is XML based. This aggregated information can support
higher-level decision making, while upgrading or changing the
system.

VI. CONCLUSION

The paper provides insight into the potential use of AML to
be extended to support ‘Plug-and-Produce’ concepts. This
would mean a seamless integration with other engineering
domains as AML already provides support for multiple tools.
The basic principles behind the AML enhancements is
illustrated with the help of an industrial case study used to
demonstrate the activities of the openMOS project. This also

exhibits the potential of AML as self-description files, which can
be aggregated to generate the overall system description.

 However, the instantiation effort for such models is quite
tedious and time consuming, as AML does not have sufficient
supporting tools. Additionally, the possibility of human error
and maintaining consistency of information over several users is
very difficult. In line with this, the future work will focus on
developing an Application Program Interface (API) that
comforts the entire process of modelling with AML Editor and
supports the validation of the enhanced AML model.
Furthermore, the future work will be focused on the translation
and information mapping from AML to OPC UA to enrich the
‘Plug-and-Produce’ capabilities by enabling auto-discovery
functionality, ultimately targeting the use of this information for
system execution.

ACKNOWLEDGMENT

The reported work is a part of openMOS project partially
funded by the European Commission as part of EC-H2020-IA
(GA 680735). The support is gratefully acknowledged.

REFERENCES

[1] “openMOS - Open Dynamic Manufacturing Operating SYstem for Smart Plug-and-

Produce Automation Components.”

[2] Y. Koren, S. J. Hu, P. Gu, and M. Shpitalni, “Open-architecture products,” CIRP

Annals - Manufacturing Technology, vol. 62, no. 2, pp. 719–729, 2013.

[3] P. Ferreira, “An Agent-Based Methodology for Modular Assembly Systems,”

University of Nottingham, no. April, 2011.

[4] S. Wassilew, L. Urbas, J. Ladiges, A. Fay, and T. Holm, “Transformation of the

NAMUR MTP to OPC UA to allow Plug and Produce for Modular Process

Automation.”

[5] OECD, “Future Factory,” OECD Economic Surveys: Ireland 2011, pp. 8–9, 2011.

[6] “European Commission : CORDIS : Projects & Results Service : Evolvable

Ultra-Precision Assembly Systems.” [Online]. Available:

http://cordis.europa.eu/project/rcn/75342_en.html.

[7] “IDEAS project.” [Online]. Available: http://www.ideasproject.eu/.

[8] “Transparency Project.” [Online]. Available: http://www.transparency-

project.eu/index.php?transparency.

[9] “ReBorn Project.” [Online]. Available: http://www.reborn-eu-project.org/.

[10] B. R. Ferrer, B. Ahmad, A. Lobov, D. A. Vera, J. L. M. Lastra, and R. Harrison, “An

approach for knowledge-driven product, process and resource mappings for assembly

automation,” IEEE International Conference on Automation Science and

Engineering, vol. 2015–October, pp. 1104–1109, 2015.

[11] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. M. Y. Kuo, “IEC 61499 in a Nutshell,”

Model-Driven Design Using IEC 61499: A Synchronous Approach for Embedded and

Automation Systems, pp. 1–194, 2015.

[12] P. Ferreira and N. Lohse, “Configuration model for evolvable assembly systems,”

CIRP Conference on Assembly Technologies and Systems (CATS) 2012, pp. 75–79.

[13] VDI, “VDI 2221 Methodik zum Entwickeln und Kosntruieren technischer Systeme

und Produkte,” Verein Deutscher Ingenieure. pp. 1–44, 2013.

[14] VDI-Gesellschaft, “VDI 5200 - Fabrikplanung Planungsvorgehen,” VDI-Handbuch

Produktionstechnik und Fertigungsverfahren, vol. Band 1: Gr, pp. 1–24, 2011.

[15] V. D. I. VDI 2206, “VDI 2206 - Entwicklungsmethodik für mechatronische

Systeme,” Design. p. 118, 2004.

[16] S. Choi, K. Jung, B. Kulvatunyou, and K. C. Morris, “for Designing Smart

Manufacturing Systems,” vol. 121, pp. 422–433, 2016.

[17] A. N. Standard, Batch Control Part 1 : Models and Terminology, vol. 1, no.1995.

[18] D. Standard, “DRAFT STANDARD Enterprise-Control System Integration Part 1 :

Models and Terminology,” 2008.

[19] M. J. Pratt, “ISO 10303, the STEP standard for product data exchange, and its PLM

capabilities,” International Journal of Product Lifecycle Management, vol. 1, no. 1,

p. 86, 2005.

[20] X. Xu and A. Y. C. Nee, Advanced Design and Manufacturing Based on STEP. 2009.

[21] AutomationML e. V., “Whitepaper AutomationML Part 1 – AutomationML

Architecture State : May 2012,” no. May, pp. 1–80, 2012.

[22] A. Luder, N. Schmidt, R. Rosendahl, and M. John, “Integrating different information

types within AutomationML,” 19th IEEE International Conference on Emerging

Technologies and Factory Automation, ETFA 2014, 2014.

[23] M. Sabou, F. Ekaputra, O. Kovalenko, and S. Biffl, “Supporting the engineering of

cyber-physical production systems with the AutomationML analyzer,” 2016 1st

International Workshop on Cyber-Physical Production Systems, CPPS 2016.

