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Abstract: This paper aims to support the creation of high 

performance ‘Plug-and-Produce’ systems by proposing a new 

semantic model that targets the use of AutomationML (AML). In this 

direction, the focus is narrowed to the self-description of equipment 

modules that highlights the use of ‘Skill’ concept. An insight 

description on how the concept of ‘Skill Recipe’ can be used to 

execute the equipment ‘Skills’ to fulfil the product’s assembly 

requirements is also provided. This is viewed as a critical concept to 

achieve high performance in ‘Plug-and-Produce’. To translate the 

base semantic definitions, we have developed new libraries that are 

fully compliant with the AML standard. The main purpose of using 

AML in this context is to bridge production and other engineering 

domains. An overview of the literature that covers the past and 

current trends in data exchange and standards is presented, while 

pointing out the existing challenges and limitations. The vision of 

this paper is to support the standardization effort of integrating 

information for design, build, ramp-up and operation of production 

systems. Hence, this approach elucidates the use of existing AML 

concepts to model and instantiate Product, Process and Resource 

(PPR), and the underlying definitions such as: ‘Skills’, ‘Skill 

Recipes’ and ‘Skill Requirements’. Finally, this paper illustrates the 

implementation of this approach in AML with a help of an industrial 

case study demonstrated within the openMOS project. 

Keywords: AutomationML; ‘Plug-and-Produce’; Cyber 

Physical Systems; semantic models; Product, Process and 

Resource; Skill; Skill Recipe; Skill Requirement 

I.  INTRODUCTION 

The vision of the ‘open Dynamic Manufacturing Operating 
System for Smart ‘Plug-and-Produce’ automation components’ 
(openMOS) project [1] is targeted at maximizing the economic 
sustainability of production systems by following three main 
innovation strands: (1) enabling ‘Plug-and-Produce’ capabilities 
for automation equipment, robots and machines, (2) aiding 
horizontal and vertical communication between all hardware 
and software entities for innovating new business functions, and 
(3) creating a manufacturing operating system (MOS) that is 
easily extendable and adaptable towards the introduction of new 
products, work orders and equipment modules, which envisages 
easy deployment, optimization and changeover management 
strategies.   

In terms of the assembly domain, the existence of standards 
will be critical to achieve adaptable systems by guaranteeing 
compatibility between assembly equipment modules. The effort 
towards standardization is collaborative and mutually beneficial 

rather being limited to any individual company or an 
organization [2]. The standardization of these models is based 
on the maturity of the domain knowledge that ensures 
interoperability, integration and acceptance of the technology 
[3]. Within the domain of manufacturing automation, numerous 
standards have been developed by ISO, ISA and IEC. Due to the 
inherent and complex nature of this domain, most of these 
standards are part of lengthy series and difficult to implement. 
Nonetheless, the effort towards standardization is critical for the 
realization of the current drive towards CPS. The vision requires 
a clear, transparent and scalable ‘language’ and model that 
facilitates the integration of existing and emerging technologies 
across various engineering domains.  

This paper proposes an AML based model that formalizes 
the use of ‘Plug-and-Produce’ components and creates the basic 
elements that supports CPS. The proposed approach builds on 
the existing AML concepts and makes it open for the integration 
of current legacy systems with other engineering domains, while 
enabling the next generation of CPS. The use of AML for the 
assembly domain and its wider industrial acceptance will be a 
positive move towards standardization. 

II. LITERATURE REVIEW 

Along with the rest of the society, production systems are 
also becoming more dependent on the implementation of the 
advances in information and communication technologies 
(ICT). ‘Plug-and-Produce’ was proposed to simplify the way 
assembly systems are built. This means equipment should be 
enabled with automatic discovery and registration of machine 
topology, along with capability orchestration by communicating 
with their networked partners [4]. This leads to more self-aware, 
agile and responsive equipment modules which are able to deal 
unplanned breakdowns and rapid fluctuations in production 
requests [5]. There is an expectation that manufacturing 
enterprises should be able to receive information from their 
stakeholders and operational units much quicker to act/react 
faster. However, the production landscape is complex with high 
interdependence between of equipment supplies, system 
integrator and end users. Quick responses to the volatile market 
demands has become more challenging with respect to the 
growing demand towards highly customized products, which 
exponentially increases the number of possible variations 
(different colors, shapes, features, etc.) for the same product. 
This subsequently increases the complexity of designing 
assembly lines in a short period of time. 
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To tackle some of these challenges, quite a few research 
projects such as: EUPASS [6], IDEAS [7], Transparency [8] and 
ReBorn [9] were focused on addressing some of the inherent 
problems within the assembly domain. The outcome from such 
projects are mainly related to the formalization of the product to 
be assembled, the definition of processes to assemble the 
product and the description of the actual physical system that 
executes the assembly processes. This includes the detailed 
description and information mapping between Product, Process 
and Resource (PPR) domains to facilitate the automated 
generation of process sequences and system configurations for 
production requests [10].  

The ‘Skill’ concept that is based on the IEC 61499 standard 
[11] served as the base for building the domain models in the 
above mentioned projects. This alone would not be sufficient to 
establish the relationships, dependencies and other underlying 
constraints that will support the design and operation of 
production systems. The definition of ‘Skill Requirements’ 
facilitates the formalization of the product work flow 
requirements; special handling needs and other business 
objectives. The ‘Skills’ define the functional capabilities of the 
equipment modules, while the ‘Skill Recipe’ is an instance of 
‘Skill’ with varying granularity, and it is specially catered to 
fulfill the various parametric requirements of the ‘Skill 
Requirements’. The recurrent use of these concepts and 
definitions reflects that the use of standards for this domain is 
not alone a good practice, but an essential tool for creating 
reliable systems and repeatable processes to support the next 
generation CPS [12]. In this direction, quite a few engineering 
process libraries and best-practice guidelines are established by 
the research projects and standardization organizations. A few 
popular and the most resent standards are: 

• VDI guideline 2221 “Systematic approach to the 

development and design of technical systems and 

products” [13] 

• VDI guideline 5200 “Factory Planning” [14] 

• VDI guideline 2206 “Development methodology for 

mechatronic systems” [15] 

• Factory Design and Improvement (FDI) model [16] 

• ISA-88 the hierarchical model for manufacturing control 

architecture [17] 

• ISA-95 automated interface between manufacturing 

enterprises and control systems [18] 

The various data formats applicable for modelling 
mechatronic systems are: the ‘STandard for the Exchange of 
Product Model data’ (STEP) – ISO 10303 [19], ‘Jupiter 
Tesselation’ (JT) – a data format for geometry representation 
defined within ISO 14306, ‘XML Process Definition Language’ 
(XPDL) – is an XML dialect for business process modelling, and 
‘XML Metadata Interchange’ (XMI) -  is a data format for 
exchanging meta data standardized by ‘Object Management 
Group’ (OMG) popularly known for ‘Product Lifecycle 
Management’ (PLM) products. In this landscape, data exchange 
formats like AML and STEP can be a major game-changer by 
being able to cover all or at least most of the key information 
within the engineering processes of the production systems [20]. 
[16] has conducted a detailed analysis of various standards 
within the PPR domain and presented it as shown in Table 1. 

Table 1: Summary of standards relevant for enabling PPR data exchange [16] 

PPR Category Standards 

Product data 

DXF, DWG, CGM, HPGL, IGES, STEP AP203, 

STEP AP214, JT, VRML, X3D, STEP AP239, 

AP242 and the OMG PLM Services 

Process data OAGIS, ANSI/ISA-95, MTConnect, PSL 

Resource data 
CMSD, B2MML, STEP AP239 and the OMG 
PLM Services 

IEC 62714 is one of the most promising solution for data 
exchange focused towards the domain of automation 
engineering. ‘AutomationML’ (AML) is a data format defined 
with in IEC 62714, which is XML schema based and has been 
developed to support dynamic data exchange in any 
heterogeneous engineering environment [21]. AML uses 
CAEX, a top-level and neutral data format providing the 
interface for well-established data formats in engineering 
aspects that includes topology, geometry, kinematics, behavior 
and sequencing information. The main aim of AutomationML is 
to join engineering tools of different domains such as; process 
control engineering, mechanical plant engineering, electrical 
design, process engineering, robot programming, PLC 
programming, HMI development etc. The modelling features of 
various data formats was analyzed by [22]. Table 2 is an 
aggregated representation of [22]’s detailed study. 

Table 2: Requirement fulfilment of data formats (based on [22]) 

 

 

Features 

Data Formats 

A
M

L
 

S
T

E
P

 

J
T

 

X
P

D
L

 

X
M

L
 

Mechanical Data + + + - - 

Electrical Data + + - - - 

Process Control Data + - - + - 

Topological Information + + + - + 

Establishing Concept Relationships + + - - + 

Tracing Concept Dependencies + + - - + 

AML provides a common language for different engineering 
tools and links for detailed engineering information, which is 
easily exchangeable between multi-engineering disciplines and 
projects. Nevertheless, AML as some limitations that should be 
taken into account for effective and efficient description of PPR 
engineering domains. The main difficulties listed by [23] in 
terms of using of AML are as follows: 

• Complex data structures with intricate links between 

disciplines. 

• Difficulties in the integration of AML with different 

disciplines internally and with external data. 

• Limited support for cross-disciplinary analytics by the end 

users. 

• Limited options for platform independent browsing of 

AML data.  

• Support tools for dealing with the above points as well as 

modeling and assessment of changes. 

This paper focuses on defining new libraries within AML 
that facilitates the creation of ‘Skill Requirements’, ‘Skills’ and 
‘Skill Recipes’ for the self-description of equipment modules to 
support high performance in ‘Plug-and-Produce’.  



III. PROBLEM DEFINITION 

 The self-description provides all the physical and functional 
specifications of an equipment module for the creation of a 
virtual entity, which will be a digital replica of that equipment 
module. In terms of ‘Plug-and-Produce’ devices, they should 
have embedded information about their process capabilities 
(Skills), data that it gathers during the execution of the 
processes, and other information relevant to its maintenance and 
diagnostics details. This is critical for CPS, since these systems 
would require an exact virtualization of actual physical entities 
to deliver their vision. In this direction, AML is viewed as the 
prime candidate to aggregate all the information of a physical 
entity (electrical, mechanical, geometry, etc.) in a coherent 
structure that can be easily interpreted across multiple 
engineering domains and tools. 

An AML file can be an aggregation of several self-
descriptions of equipment modules, which can be used to 
represent a hierarchical system or sub-system. The information 
stored in this AML file can be used to provide an overview of 
the same system in the cloud (cyber-side), which precisely can 
display a list of functional capabilities (‘skills’) that a 
workstation or an assembly cell can perform. This correlation 
between the cyber and the physical sides can help the user to 
virtually design, simulate and evaluate several management 
strategies. Therefore, the cyber representation of a physical 
system can help to emulate via monitoring, event forecasting and 
optimization based on the current and past data archives. This 
needs to support the system integration and exchange of 
information throughout the several phases of assembly system 
development such as: design, build, ramp-up, production and 
change (reconfiguration) phases. 

One of the significant challenges in this respect is to 
formalise the structure of the self-description concept in way that 
it is compliant with existing sematic models targeting CPS. 

Another major challenge lies in the aggregation of self-
descriptions, which can be of varying levels of system topology. 
It is important to note that the self-description includes the 
process capabilities of the equipment modules, but it does not 
provide the information on how to execute these capabilities to 
realize a product. This will require several links between the 
‘Skill Requirements’ of the product and the actual execution 
information from the equipment module’s ‘Skill Recipes’. 
Figure 1 provides an overview of the challenges with the 
integration and mapping of information across the system. The 
self-description files require relationships between the PPR 
domains as well as information related to equipment granularity. 

IV. THE AML MODEL 

 The primary objective of this model is to use as much of 
possible concepts from AML and enhance them by integrating 
‘Plug-and-Produce’ concepts enabling the seamless use of AML 
for CPS. Toward this end, an existing semantic model will be 
used as a baseline for the aggregation of all the various phases 
of development and operation of assembly systems. The aim is 
to ensure that the AML model can be used by the assembly 
system, its components, and other engineering tools and 
domains that are under the roof of CPS. The model also 
incorporates the Product, Process and Resource (PPR), as it is a 
core concept of AML, that is used to establish the links, which 
ultimately allow the assembly system to execute processes to 
create a product or its sub-part. The main motivation for using 
AML is to ensure interoperability with other tools, which AML 
already delivers [21]. 

The semantic model established in the openMOS project [1] 
serves as the baseline for enhancing AML with the necessary 
concepts required to enable ‘Plug-and-Produce’ while ensuring 
that the AML core concepts are respected.  The semantic model 
was developed to enable ‘Plug-and-Produce’ via the analysis of 
the relationships between the core concepts, such as: ‘Skill’, 
‘Skill Requirement’ and ‘Skill Recipe’, with an underlying 
common concept of ‘Skill Type’. ‘Skill’ defines the process 
capabilities of the assembly system and its sub-systems or 
‘Equipment Modules’. The ‘Skill Requirements’ enable the 
formalization of the product, or other equipment’s, needs and 
business objectives. Both these concepts need to share a 
common ‘Skill Type’ if automatic matching between them is 
expected. The next step enables the base for system to operate, 
which is the definition of how the ‘Skill’ will be executed to 
fulfil a ‘Skill Requirement’. This requires the creation of a ‘Skill 
Recipe’, which not only establishes the traceability between 

 

Figure 1: Overview of Problem Definition 

 

Figure 2: Overview of the Semantic Model 



these two concepts, but also is used to formalize the necessary 
parameters for the execution of ‘Skills’ as shown in Figure 2. 
This is particularly important in real systems, as these tend to be 
tweaked in the ramp-up stage, until the system is setup for 
production. 

As mentioned above, the ‘Skill Recipe’ concept defines how 
a ‘Skill Requirement’ can be fulfilled by an equipment’s ‘Skill’, 
which has an acceptable range of ‘Parameters’. In AML, the 
‘Skill Recipe’ is an instantiation of a ‘Skill’ with specific 
‘Parameter Settings’ that can fulfill one or more ‘Skill 
Requirements’. The ‘Composite Skill’ concept provides the 
means to deal with varying degrees of process capability 
granularity. The proposed model takes advantage of the already 
defined ‘Skill Requirement’ to establish higher level 
compositions, which can be fulfilled by lower level ‘Skill 
Recipes’. It is important to note that there can be multiple ‘Skill 
Recipes’ for each ‘Skill Requirement’. Similarly, there can be 
multiple ‘Skill Requirements’ for those ‘Skill Recipes’. This 
means we can decouple all ‘Equipment Modules’ and their ‘Skill 
Recipes’, to use them as a part of aggregated ‘Composite Skills’, 
or use the same ‘Skill Recipes’ to match the product 
requirements. 

The execution of assembly processes are event based and it 
uses the ‘Control Port’ of the ‘Skill’ to trigger the start of the 
execution of Skill Recipes. Other important ports are the 
‘Information Ports’ as these can be used to include some of the 
KPIs, such as execution time or energy consumption. These are 
intended for later use towards the performance measurements 

and optimizing the execution of assembly processes. The 
equipment’s ‘Physical Port’ establishes physical interfaces with 
other equipment modules. An interface is defined by the means 
of two ports, where the ports are of the same type and compatible 
port directions. 

The model also uses the AML core structures, namely the 
following libraries: System Unit Class Library, Role Class 
Library and Interface Class Library. The system unit class 
library serves as a platform of templates for creating specific 
classes for ‘Equipment Modules’, ‘Physical Ports’, processes 
classified as ‘Skills’ and other concepts within the assembly 
domain. The role class library facilitates the creation of specific 
types for ‘Equipment Modules’, ‘Skills’, ‘Ports’ and other type 
specifics for concepts within this domain. The interface class 
library helps to define the various types of interfaces such as: 
‘Physical Connections’, ‘Material Flow Connections’, 
‘Precedence Connections’ and others that are defined within this 
domain. These concepts can be aggregated to define the 
necessary concepts which can in turn be used to create ‘Instance 
Hierarchies’ for assembly system requirements, equipment 
modules and system configurations. Figure 3 gives an overview 
of the main concepts added as well as how the libraries are 
interrelated.  

One of the key feature of AML is that it supports the 
mapping of information to establish relationships and 
dependencies. In this sense, this model defines a few new 
interface classes in AML such as: ‘Requirement Connector’, and 
‘Precedence Connector’, while making use of the existing ‘Port 
Connector’ and ‘PPR connector’. The ‘Requirement Connector’ 
is used to map the connections between the ‘Skill Recipe’ that 
fulfils a specific ‘Skill Requirement’ and the ‘Equipment’ used 
to fulfil that ‘Skill Requirement’. ‘Precedence Connectors’ 
provide links which express the sequential precedence 
relationships between the ‘Skill Requirements’. The ‘Port 
Connector’ helps to map the physical interface between two 
‘Equipment Modules’. The ‘PPR Connector’ maps the links 
between the product to its process specifications and the 
processes as shown in Figure 4. A detailed version of this 
approach will be available at [1] as an open access document. 

 
Figure 3: Overview of the Basic AML Concepts and Relationships 

 

Figure 4: Overview of the AML Connections 



V. ILLUSTRATIVE EXAMPLE 

 The illustrative example for the proposed model is based on 
a demonstrator developed within the openMOS project [1]. The 
demonstrator provides a scenario to illustrate the use of AML to 
instantiate a simple assembly cell consisting of self-descriptive 
‘Plug-and-Produce’ equipment modules and to highlight how 
these can be linked to higher level information that enable the 
system to operate. The demonstrator is a robotic assembly cell 
developed for testing and training purposes. This is 
comprehensive enough to demonstrate the complexity of the 
system, and is compliant with current OEM standards used 
within the automotive industry. The cell breakdown is shown in 
Figure 5. The cell is used for spot welding of a car parts (herein 
referred as the ‘products’ shown in Figure 6 (B)). The setup of 
the assembly cell includes a workstation consisting of a 6-DoF 
robotic arm, a welding module and a vision system for 
inspecting the quality of the weld. The product is delivered to 
the assembly cell according to the production needs via an 
Automated Guided Vehicle (AGV). The main purpose of the 
demonstrator in terms of the project is to display the developed 
execution approach and integrate legacy systems with the recent 
‘Plug-and-Produce’ concepts. 

 The first step in using AML to instantiate a hierarchical 
system is to define the system interfaces, which helps to map the 
relationships between different entities and concepts in the 
model. In the current use case, we are mainly dealing with 
interfaces, namely: ‘Requirement Connector’, ‘Port Connector’, 
‘Precedence Connector’ and ‘PPR Connector’. The second step 
is to define the classifications and the functional behavior of the 
assembly equipment, which ideally should already exist as it 
defines the system taxonomy. Here, in addition to AML base 
role class library, a few case specific role classes were created 
such as: equipment types, skill types, port types, parameter 

types, etc. Also, all the role classes should be assigned with 
appropriate interfaces as shown in Figure 3. It is important to 
note that these definitions (type specifications) should ideally be 
the same for the entire domain of assembly systems, but it is 
permissible to have project specific definitions to enable 
reusability in restrictive environments.  

Both the system interfaces and the role classes are expected 
to be less changeable elements of the system, as these provide 
overarching definitions for the systems. The third step in is to 
create the system unit classes in accordance with the rules and 
guidelines defined in the semantic model. This step involves the 
allocation of roles to each of the newly created system unit 
classes. It is important to note that each element in the system 
unit class can have one or more roles assigned to it, as it might 
fulfil multiple roles in the system. AML also provides the feature 
‘Role Requirement’ to ensure that the class has a mandatory role. 

 

Figure 5: Overview of the Demonstrator Setup 

 

Figure 6: Overview of the Implementation of PPR Relationships in AML 



Once the three libraries of AML are filled with appropriate 
definitions, the instantiation of the system can be initiated by 
dragging and dropping (using AML editor) appropriate system 
unit classes into the newly created instance hierarchy. Finally, it 
is necessary to establish the dependencies and relationships 
between various instances by connecting the appropriate 
interface ports. This will detail the physical (equipment 
configuration) and logical (process configuration) configuration 
of the system.   

The demonstrator modules include specific skills as shown 
in Figure 6(A). The concept ‘Skill’ is categorized into ‘Atomic 
Skill’ and ‘Composite Skill’. For instance, ‘Pick and Place’ is a 
composite skill encapsulating three atomic skills, which can be 
defined as: ‘hold’, ‘move’ and ‘release’. For simplification, any 
skill which cannot be broken down is classified as atomic. The 
robot controls the welding module and therefore encapsulates 
the welding module inside it. The welding module includes a 
simple ‘weld’ (Atomic) skill, while the robot has ‘pick’ 
(Atomic), ‘drop’ (Atomic), ‘go to’ (Atomic) and ‘weld program’ 
(Composite) skills. The vision system has an ‘inspect’ (Atomic) 
skill. For each ‘Skill’, there can be multiple ‘Skill Recipes’, but 
most cases have one ‘Skill Recipe’ per ‘Skill’, as they have no 
variability. The workstation on the higher-level exposes two 
skills, ‘task’ (Composite) and ‘task full’ (Composite). The ‘Skill 
Recipes’ for these composite skills includes ‘Skill 
Requirements’, which will be fulfilled by the equipment’s 
atomic recipes as seen in Figure 6(C). 

One of the key aspect of this contribution is on mapping the 
information relevant to the ‘Skill Recipes’ and how this is 
aggregated in a hierarchical system. It is important to note that 
every instance of an ‘Equipment Module’, including its related 
AML libraries, is the representation of an individual self-
description file, which can then be aggregated to create the self-
description of the system as shown in Figure 6(A). These files 
will include the ‘Skill Recipes’, which are instances of the 
‘Skills’ as described in Section IV. Figure 6 (C) illustrates the 
concept of ‘Composite Skill’ providing an overview of how its 
‘Skill Requirements’ are linked to the ‘Atomic Recipes’, 
following the proposed approach in Section IV. The product’s 
requirements shown in Figure 6 (B) are matched with an 
appropriate ‘Skill Recipe’ that has a specific ‘Parameter Setting’ 
that can fulfill a ‘Skill Requirement’. The ‘Skill’ executes the 
‘Skill Recipe’ when the appropriate ‘Control Port’ is triggered 
by the arrival of the product to the workstation. Figure 6 (D) 
provides the aggregated AML file overview using the AML 
editor. This demonstrates the ease of decoupling elements as 
AML is XML based. This aggregated information can support 
higher-level decision making, while upgrading or changing the 
system.      

VI. CONCLUSION 

The paper provides insight into the potential use of AML to 
be extended to support ‘Plug-and-Produce’ concepts. This 
would mean a seamless integration with other engineering 
domains as AML already provides support for multiple tools. 
The basic principles behind the AML enhancements is 
illustrated with the help of an industrial case study used to 
demonstrate the activities of the openMOS project. This also 

exhibits the potential of AML as self-description files, which can 
be aggregated to generate the overall system description. 

 However, the instantiation effort for such models is quite 
tedious and time consuming, as AML does not have sufficient 
supporting tools. Additionally, the possibility of human error 
and maintaining consistency of information over several users is 
very difficult. In line with this, the future work will focus on 
developing an Application Program Interface (API) that 
comforts the entire process of modelling with AML Editor and 
supports the validation of the enhanced AML model. 
Furthermore, the future work will be focused on the translation 
and information mapping from AML to OPC UA to enrich the 
‘Plug-and-Produce’ capabilities by enabling auto-discovery 
functionality, ultimately targeting the use of this information for 
system execution. 
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