Ontology based semantic engineering framework and tool for reconfigurable automation systems integration

Abstract

Digital factory modelling based on virtual design and simulation is now emerging as a part of mainstream engineering activities, and it is typically geared towards reducing the product design cycle time. Reconfigurable manufacturing systems can benefit from reusing the existing knowledge in order to decrease the required skills and design time to launch new product generations. The various industrial simulation systems are currently integrating product design, matching processes and resource requirements to decrease the required skills and design time to launch new products. However, the main focus of current reconfigurable manufacturing systems has been modular production lines to support different manufacturing tasks. Additionally, the design data is not transferrable from various domain-specific software to a collaborative and intelligent platform, which is required to capture and reuse design knowledge. Product design is still dependent on the knowledge of designers and does not link to the existing knowledge on processes and resources, which are in separate domains. To address these issues, this research developed an integration method based on semantic technologies and product, process, resource and requirements (PPRR) ontologies called semantic-ontology engineering framework (SOEF). SOEF transferred original databases to an ontology-based automation data structure with a semantic analysis engine. A pre-defined semantic model is developed to recognise custom requirement and map existing knowledge with processing data in the automation assembly aspect. The main research contribution is using semantic technology to process automation documentation and map semantic data to the PPRR ontology structure. Furthermore, this research also contributes to the automatic modification of system simulation based on custom requirements. The SOEF uses a JAVA-based command-line user interface to present semantic analysis results and import ontology outputs to the vueOne system simulation tool for system evaluation

    Similar works