

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

1

Manufacturing Systems Interoperability

in Dynamic Change Environments

By

Neil Hastilow

Under the Supervision of

Dr. R. I. M. Young

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy of Loughborough University

June 2013

© by Neil Hastilow 2013

2

Certificate of Originality
Thesis Access Conditions and Deposit Agreement

Students should consult the guidance notes on the electronic thesis deposit and the access conditions in the
University’s Code of Practice on Research Degree Programmes

Author: Neil Hastilow

Title: Manufacturing Systems Interoperability in Dynamic Change Environments

I Neil Hastilow, Yew Tree House, High St., Marchington, Uttoxeter, “the Depositor”,
would like to deposit ‘Manufacturing Systems Interoperability in Dynamic Change Environments’, hereafter
referred to as the “Work”, once it has successfully been examined in Loughborough University Institutional
Repository

Status of access OPEN

Moratorium Period…………………………………years, ending…………../…………20……………………….

Status of access approved by (CAPITALS):……………………………………………………………………

Supervisor (Signature)………………………………………………...…………………………………...

School of……………………………………………………………………...…………………………………

Author's Declaration I confirm the following :

CERTIFICATE OF ORIGINALITY
This is to certify that I am responsible for the work submitted in this thesis, that the original work is my own except
as specified in acknowledgements or in footnotes, and that neither the thesis nor the original work therein has been
submitted to this or any other institution for a degree

NON-EXCLUSIVE RIGHTS
The licence rights granted to Loughborough University Institutional Repository through this agreement are entirely
non-exclusive and royalty free. I am free to publish the Work in its present version or future versions elsewhere. I
agree that Loughborough University Institutional Repository administrators or any third party with whom
Loughborough University Institutional Repository has an agreement to do so may, without changing content,
convert the Work to any medium or format for the purpose of future preservation and accessibility.

DEPOSIT IN LOUGHBOROUGH UNIVERSITY INSTITUTIONAL REPOSITORY
I understand that open access work deposited in Loughborough University Institutional Repository will be
accessible to a wide variety of people and institutions - including automated agents - via the World Wide Web. An
electronic copy of my thesis may also be included in the British Library Electronic Theses On-line System (EThOS).
I understand that once the Work is deposited, a citation to the Work will always remain visible. Removal of the
Work can be made after discussion with Loughborough University Institutional Repository, who shall make best
efforts to ensure removal of the Work from any third party with whom Loughborough University Institutional
Repository has an agreement. Restricted or Confidential access material will not be available on the World Wide
Web until the moratorium period has expired.

3

- That I am the author of the Work and have the authority to make this agreement and to hereby give Loughborough
University Institutional Repository administrators the right to make available the Work in the way described above.
- That I have exercised reasonable care to ensure that the Work is original, and does not to the best of my knowledge
break any UK law or infringe any third party’s copyright or other Intellectual Property Right. I have read the
University’s guidance on third party copyright material in theses.
- The administrators of Loughborough University Institutional Repository do not hold any obligation to take legal
action on behalf of the Depositor, or other rights holders, in the event of breach of Intellectual Property Rights, or
any other right, in the material deposited.

The statement below shall apply to ALL copies:

This copy has been supplied on the understanding that it is copyright material and that no quotation from the
thesis may be published without proper acknowledgement.

Restricted/confidential work: All access and any copying shall be strictly subject to written permission from the
University Dean of School and any external sponsor, if any.

Author's signature……………………………………..Date…………………………………...…………...……

user’s declaration: for signature during any Moratorium period (Not Open work):
I undertake to uphold the above conditions:

Date Name (CAPITALS) Signature Address

4

Abstract
The benefits of rapid i.e. nearly real time, data and information enabled decision making at

all levels of a manufacturing enterprise are clearly documented: the ability to plan accurately,

react quickly and even pre-empt situations can save industries billions of dollars in waste. As

the pace of industry increases with automation and technology, so the need for accurate,

data, information and knowledge increases. As the required pace of information collection,

processing and exchange change so to do the challenges of achieving and maintaining

interoperability as the systems develop: this thesis focuses on the particular challenge of

interoperability between systems defined in different time frames, which may have very

different terminology. This thesis is directed to improve the ability to assess the requirement

for systems to interoperate, and their suitability to do so, as new systems emerge to support

this need for change.

In this thesis a novel solution concept is proposed that assesses the requirement and

suitability of systems for interoperability. The solution concept provides a mechanism for

describing systems consistently and unambiguously, even if they are developed in different

timeframes. Having resolved the issue of semantic consistency through time the analysis of

the systems against logical rules for system interoperability is then possible. The solution

concept uses a Core Concept ontology as the foundation for a multi-level heavyweight

ontology. The multiple level ontology allows increasing specificity (to ensure accuracy), while

the heavyweight (i.e. computer interpretable) nature provides the semantic and logical,

rigour required.

A detailed investigation has been conducted to test the solution concept using a suitably

dynamic environment: Manufacturing Systems, and in particular the emerging field of

Manufacturing Intelligence Systems. A definitive definition for the Manufacturing Intelligence

domain, constraining interoperability logic, and a multi-level domain ontology have been

defined and used to successfully prove the Solution Concept. Using systems from different

timeframes, the Solution concept testing successfully identified systems which needed to

interoperate, whether they were suitable for interoperation and provided feedback on the

reasons for unsuitability which were validated as correct against real world observations.

Keywords: ontology, manufacturing intelligence, semantics, foundation ontology, core

concept ontology, manufacturing systems, interoperability.

5

Acknowledgements
I would like to thank my supervisor Dr Bob Young for his patient, thought provoking and

insightful support, encouragement and guidance. Working with Bob over the last 3 years has

resulted in a significant change in my thought processes and perception of the world around

me for which I am a better engineer and extremely grateful. Bobs good humoured but

challenging input have not only ensured this work is something I am very proud of, but also

something I have enjoyed a great deal.

I would also like to thank Prof Keith Case for acting as my independent reviewer, Dr. Nitishal

Chungoora (Tish) for his extensive support in learning the programming and ontology

structuring skills and Dr. George Gunendran for is support with the IODE toolset.

I would like to thank Dr Nigel Bird and Dr Mark Turner for proposing, authorising and then

supporting my part time studies as part of my professional development. I would also like to

thank the subject matter experts who contributed to the MI definition activities, whose

combined knowledge was crucial to this work.

I would like to thank my parents for their untiring love, support and drive to ensure I achieve

a potential I did not necessarily know I had.

Finally I would like to thank my wife Helen. Without her love and support this would not have

been possible. She has run our home, our lives and our family for 3 years. Not only has she

never begrudged the loss of weekends, evenings, holidays, and our life revolving around my

research schedule but her constant, unwavering support whether it be re-assurance, a timely

cup of tea or the knowledge that she will sort ‘everything else out’ is what has given me the

strength to see this through. This, like everything I do is because of and for her.

6

List of Acronyms
AI Analysis Indicator

BPMN Business Process Modelling Notation

CAA Civil Aviation Authority

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CAPP Computer Aided Process Planning

CIM Computer Integrated Manufacturing

CL Common Logic

CNC Computer Numeric Control

EASA European Aviation Safety Agency

ECLIF Extended Common Logic Interchange Format

EIC Engineering Improvement Centre

EMI Enterprise Manufacturing Intelligence

ERP Enterprise Resource Management

GD&T Geometric Design and Tolerancing

HR Human Resources

IC Integrity Constraint

ICT Information and Communications Technology

IMKS Interoperable Manufacturing Knowledge System

IODE Integrates Ontology Development Environment

IR Inference Rule

ISO International Standards Organisation

IT Information Technology

KBE Knowledge Based Engineering

KFL Knowledge Framework Language

KIF Knowledge Interchange Framework

KPI Key Performance Indicator

KPV Key Process Variable

7

LAN Local Area Network

MDI Model Driven Interoperability

MES Manufacturing Execution System

MESA Manufacturing Execution Systems Association

MI Manufacturing Intelligence

MLO Medium Level Ontology

MRP Material Requirement Planning

MSCoC Manufacturing Systems Centre of Competence

OEE Overall Equipment Effectiveness

OEM Original Equipment Manufacturer

PDM Product Data Management

PFMEA Process Failure Mode Effect Analysis

PI Performance Indicator

PIM Platform Independent Model

PLM Product Lifecycle Management

PPM Parts Per Million

PSL Process Specification Language

QMS Quality Management System

SCADA Supervisory Control and Data Acquisition

SFDM Shop Floor Data Management

SFIT Shop Floor Information Technology

SMIF Semantic Manufacturing Interoperability Framework

UML Unified Modelling Language

WIP Work In Progress

XML Extensible Mark-up Language

8

Table of Contents

ABSTRACT .. 4

ACKNOWLEDGEMENTS ... 5

LIST OF ACRONYMS .. 6

TABLE OF CONTENTS ... 8

TABLE OF FIGURES ... 12

1 INTRODUCTION ... 15

1.1 CONTEXT .. 15
1.2 THE RESEARCH STRATEGY ... 17

1.2.1 Aims and objectives .. 17
1.2.2 Scope .. 17
1.2.3 Research method .. 17
1.2.4 Research hypothesis ... 18

1.3 SOLUTION DEVELOPMENT TOOLS AND TECHNIQUES ... 19
1.4 THESIS STRUCTURE ... 21

2 LITERATURE REVIEW .. 22

2.1 INTRODUCTION .. 22
2.2 LITERATURE REVIEW STRUCTURE ... 23
2.3 MANUFACTURING INTELLIGENCE ... 24

2.3.1 Business intelligence ... 26
2.3.1.1 Business intelligence, manufacturing intelligence and dashboards .. 26
2.3.1.2 Data standards ... 28
2.3.1.3 Data warehousing ... 28

2.3.2 Manufacturing knowledge/ intelligence systems ... 29
2.3.3 Manufacturing execution systems ... 29

2.3.3.1 ISA 95 MES model ... 30
2.3.3.2 Manufacturing system agility .. 31

2.3.4 Intelligent automation .. 32
2.3.4.1 Agent technology .. 33

2.3.5 Supervisory control and data acquisition systems .. 33
2.4 SYSTEMS LIFECYCLE .. 35

2.4.1 Systems lifecycle ... 35
2.4.1.1 Systems growth and complexity ... 35
2.4.1.2 Legacy systems .. 36
2.4.1.3 Endurant vs. perdurants ... 37
2.4.1.4 Dynamism and flexibility ... 37
2.4.1.5 Lifecycle timescales .. 38
2.4.1.6 Application lifecycle .. 38
2.4.1.7 System value and condition assessment .. 39

2.5 INFORMATION SHARING .. 40
2.5.1 Data, information and knowledge .. 40

2.5.1.1 Data, information and knowledge maintenance .. 40
2.6 INTEROPERABILITY ... 42

2.6.1 The Requirement for interoperability ... 42
2.6.2 Integration vs interoperability .. 43

2.6.2.1 Integration continuum ... 44
2.6.2.2 Taxonomy ... 45
2.6.2.3 Systems and technology .. 45
2.6.2.4 Information systems customisation for integration .. 46
2.6.2.5 PLM .. 46

9

2.6.2.6 PLM information exchange ... 46
2.6.3 Standards – semantic issues .. 46

2.6.3.1 Standards frameworks and adoption .. 47
2.6.3.2 Standards adaptation ... 47
2.6.3.3 Standards flexibility ... 48

2.6.4 Enterprise integration and interoperability .. 48
2.6.4.1 Integrated, unified and federated approaches .. 49

2.6.5 Integration architecture ... 50
2.6.5.1 Model driven architecture ... 50
2.6.5.2 Interoperability and information exchange frameworks .. 51
2.6.5.3 Semantic interoperability frameworks ... 52

2.6.6 Ontology .. 53
2.6.6.1 Ontologies and interoperability ... 54
2.6.6.2 Ontology creation ... 55
2.6.6.3 Ontology merging ... 56
2.6.6.4 Mapping .. 57
2.6.6.5 Ontology mapping .. 57
2.6.6.6 Concept mapping ... 57
2.6.6.7 Heavyweight and lightweight ontologies ... 57
2.6.6.8 Foundation and core concept ontologies .. 58
2.6.6.9 Foundation ontology adoption .. 60
2.6.6.10 Ontological vs taxonomic approaches .. 60
2.6.6.11 Descriptive and common logic .. 61

2.6.7 Context or viewpoints .. 61
2.7 TOOLS .. 63

2.7.1 XML ... 63
2.7.1.1 XML based exchange ... 63

2.7.2 RDF and OWL ... 64
2.7.3 Common logic tools ... 64
2.7.4 IODE, KFL and ECLIF ... 64

2.7.4.1 KFL ‘properties’ or types ... 65
2.7.4.2 KFL relations .. 66
2.7.4.3 KFL logic... 67
2.7.4.4 ECLIF instances ... 67
2.7.4.5 ECLIF queries ... 68

2.7.5 PSL .. 68
2.7.6 IDEF0 and IDEF3 .. 68
2.7.7 UML ... 69
2.7.8 Protégé .. 74
2.7.9 BPML & BPMN .. 74
2.7.10 Business to manufacturing mark-up language (B2MML) .. 80
2.7.11 Data dictionary .. 80

2.8 SUMMARY ... 82
2.8.1 Manufacturing intelligence – key points .. 82
2.8.2 Systems lifecycle – key points .. 82
2.8.3 Information sharing – key points ... 83
2.8.4 Conclusions ... 86
2.8.5 Key related areas of work ... 87
2.8.6 Further work .. 88

3 AN INDUSTRIAL INVESTIGATION OF KEY INTEROPERABILITY ISSUES 90

3.1 INTRODUCTION .. 90
3.2 THE NEED FOR INTEROPERABILITY .. 91
3.3 KEY INTEROPERABILITY ISSUES .. 93

3.3.1 Standards .. 93

10

3.3.2 Ontology .. 94
3.3.3 Legislation ... 94
3.3.4 Organisation .. 96
3.3.5 Systems and technology ... 97
3.3.6 Data, information and knowledge maintenance .. 99
3.3.7 Infrastructure ... 100
3.3.8 Architecture strategy ... 103

3.4 KEY DECLARATIONS ... 105
3.4.1 Process, systems and information .. 105
3.4.2 Process levels ... 106
3.4.3 Rate of change of systems .. 107

3.5 UNDERSTANDING THE COMPLEXITY OF MI SYSTEMS INTEROPERABILITY 108
3.5.1 Disparate organisation level timescales .. 108
3.5.2 MI system information flow .. 110
3.5.3 Manufacturing intelligence information structure .. 113
3.5.4 Inconsistent manufacturing systems definitions .. 114
3.5.5 Inconsistent MI definitions through time .. 115
3.5.6 The complexity of systems & information structure change over time. 116

3.6 SUMMARY ... 118

4 A NOVEL APPROACH TO MANUFACTURING SYSTEMS INTEROPERABILITY IN DYNAMIC
CHANGE ENVIRONMENTS ... 120

4.1 INTRODUCTION .. 120
4.2 SYSTEM INTEROPERABILITY CORE CONCEPT HEAVYWEIGHT ONTOLOGY 120

4.2.1 Ontology solution requirements .. 120
4.2.2 Solution concept overview .. 122

4.3 RESEARCH QUESTIONS .. 129

5 UNDERSTANDING THE SCOPE AND CONCEPTS IN MANUFACTURING INTELLIGENCE 130

5.1 INTRODUCTION .. 130
5.2 METHOD ... 131
5.3 LITERATURE SUMMARY .. 132
5.4 INDUSTRIAL SURVEY & RESEARCH .. 133

5.4.1 MI questions .. 133
5.4.2 Feedback ... 133

5.5 RESULTS ... 141
5.6 CONCLUSIONS ... 145

6 ONTOLOGY TERM, RELATIONSHIP AND LOGIC DEFINITION ... 146

6.1 INTRODUCTION .. 146
6.2 SUBJECT MATTER EXPERT BRAINSTORMS .. 148

6.2.1 Unconstrained brainstorming and affinity mapping ... 148
6.2.2 Prompted brainstorming .. 161

6.3 MI SYSTEM BUSINESS PROCESS MAPPING ... 162
6.3.1 Term identification ... 162
6.3.2 Instance identification .. 165

6.4 LOGIC DEVELOPMENT .. 172
6.5 CONCEPT AND RELATIONSHIP DEVELOPMENT AND STRUCTURING ... 176

7 FORMALISING THE ONTOLOGY ... 180

7.1 INTRODUCTION .. 180
7.2 SOLUTION DESIGN ... 180
7.3 FORMALISING THE LOGICAL RULES .. 182

11

7.3.1 Integrity constraint and inference rule evolution ... 182
7.4 CODING AND TESTING APPROACH ... 185

7.4.1 Codify the core ontology ... 185
7.4.2 Test the core ontology ... 187
7.4.3 Codify the level 1 ontology .. 188
7.4.4 Test the level 1 ontology ... 189
7.4.5 Develop the level 2 ontology ... 189
7.4.6 Codify the level 2 ontology .. 190

8 TESTING AND EXPERIMENTAL RESULTS ... 193

8.1 INTRODUCTION .. 193
8.2 CORE ONTOLOGY TESTING RESULTS ... 195
8.3 LEVEL 1 ONTOLOGY TESTING RESULTS ... 195

8.3.1 Example testing iteration ... 196
8.3.2 Findings ... 200

8.4 FULL ONTOLOGY TESTING RESULTS – EXPERIMENT 1 .. 202
8.4.1 Initial fact declarations ... 202
8.4.2 Fact listing updated using MI ontology .. 202
8.4.3 Examples of resulting errors ... 204
8.4.4 Fact listing corrected to allow loading ... 205
8.4.5 Experiment 1 summary ... 208

8.5 DECLARING 4 SYSTEMS IN THE CURRENT TIMEFRAME - EXPERIMENT 2 RESULTS 208
8.5.1 Introduction .. 208
8.5.2 Declaring new systems ... 208

8.6 DECLARING A SYSTEM FROM A DIFFERENT TIMEFRAME – EXPERIMENT 3 RESULTS 214
8.6.1 Structural logic response ... 215
8.6.2 Observed system issues ... 217
8.6.3 Query response ... 218

8.7 EXPERIMENTAL RESULTS SUMMARY .. 220

9 DISCUSSION, CONCLUSIONS AND FURTHER WORK ... 221

9.1 INTRODUCTION .. 221
9.2 HYPOTHESIS REVIEW ... 221
9.3 RESEARCH QUESTIONS REVIEW .. 222
9.4 KEY OBSERVATIONS ... 224

9.4.1 Solution concept .. 224
9.4.2 Ontology development .. 224
9.4.3 The IODE tool .. 226

9.5 NOVELTY AREAS .. 227
9.6 FURTHER WORK .. 229

10 REFERENCES .. 231

11 APPENDIX A – ONTOLOGY DEVELOPMENT CHANGE LOG ... 236

12 APPENDIX B – FULL ONTOLOGY LOGIC LISTING.. 238

13 APPENDIX C – FULL FACT BASE LISTING .. 242

14 APPENDIX D – FACT LISTING FOR A SYSTEM FROM A DIFFERENCE TIME DOMAIN. ... 261

15 APPENDIX E – FULL LISTING OF TYPE AND LOGIC DECLARATION 264

12

Table of Figures
Figure 2-1 Literature review structure ... 23
Figure 2-2 - View of technical quality and business value for applications (Maizlish, Handler
2005) ... 39
Figure 2-3 - IDEF0 system element representation .. 69
Figure 2-4 - Simple UML class figure for CAR .. 70
Figure 2-5 - Inheritance using tree notation .. 71
Figure 2-6 - Bi-directional association example .. 72
Figure 2-7 - Multiplicity examples ... 72
Figure 2-8 - Unidirectional association example ... 73
Figure 2-9 - Basic and composition aggregation examples .. 73
Figure 2-10 - Reflexive association example .. 74
Figure 2-11 - The subset of BPMN elements proposed for use (OMG 2008) 77
Figure 2-12 - A basic BPMN example ... 78
Figure 2-13 - A more complex BPMN example .. 79
Figure 3-1 - A simplified representation of some of the organisation’s knowledge and data-
bases .. 91
Figure 3-2 - Typical queries for the systems represented in Figure 3-1 92
Figure 3-3 – Representation of the global and cross functional influence of the Engineering
Improvement Centre (darker tone = stronger influence) ... 97
Figure 3-4 – The systems convergence strategy (provided by the organisation’s Systems
Executive) ... 99
Figure 3-5 - Representation of the PLM ‘backbone’ ... 103
Figure 3-6 – The Organisation’s core and overarching-reporting architectures. 104
Figure 3-7 - Basic description of a process ... 105
Figure 3-8 - The relationship between process, system, information and information structure
 .. 106
Figure 3-9 - MI systems at different organizational levels ... 109
Figure 3-10 – Example instances of information at different organisational levels 110
Figure 3-11 Example of Product Configuration information flow ... 111
Figure 3-12 Example of Product Variation information flow .. 112
Figure 3-13 Example of Product Geometry information flow .. 112
Figure 3-14 Combined, confusing information flow ... 113
Figure 3-15 - Manufacturing information structure changing as it passes through a system
 .. 114
Figure 3-16 - Inconsistent MI system definitions: OEE example ... 115
Figure 3-17 - Inconsistent MI definitions through time .. 116
Figure 3-18 - The complexity of heterogeneous system change .. 117
Figure 4-1 - A methodology of describing individual systems and their interactions and
interoperations is required .. 121
Figure 4-2 - Ontology competency questions and supporting questions 122
Figure 4-3 - Ontology based solution .. 123
Figure 4-4 - The solution proposal capability .. 124
Figure 4-5 - The specialised ontology levels scope .. 125
Figure 4-6 - The specialisation of ontologies from Foundation to Domain instances.......... 125
Figure 4-7 - The heavyweight Foundation ontology providing a consistent basis through time
 .. 127

13

Figure 4-8 - The solution enables the addition of new systems or versions ontology or
knowledge base. ... 128
Figure 5-1 MI questionnaire feedback .. 134
Figure 5-2 MI questionnaire feedback (continued) ... 135
Figure 5-3 MI questionnaire feedback (continued) ... 136
Figure 5-4 - MI questionnaire feedback (continued) ... 137
Figure 5-5 - Ordered tally results of feedback text mining .. 138
Figure 5-6 - Text analysis class diagram .. 139
Figure 5-7 - Results grouped by 'intent' .. 140
Figure 5-8 - Key concepts based on the 'intent' review .. 141
Figure 5-9 - Key concepts based on the literature review summary 142
Figure 6-1 - summary of the domain term and relationship enumeration methods 147
Figure 6-2 Overview of the lightweight representation of the level 1 ontology 149
Figure 6-3 - 'Metric' UML diagram ... 150
Figure 6-4 - 'Data UML diagram (part 1) ... 151
Figure 6-5 - 'Data UML diagram (part 2) ... 151
Figure 6-6 - 'Data UML diagram (part 3) ... 152
Figure 6-7 – ‘Constraint’ UML diagram ... 152
Figure 6-8 – ‘Target’ UML diagram ... 153
Figure 6-9 - 'Response' UML diagram .. 153
Figure 6-10 – ‘Timescale’ UML diagram ... 154
Figure 6-11 = ‘Manufacturing Method’ UML diagram .. 154
Figure 6-12 – ‘Interface’ UML diagram ... 155
Figure 6-13 – ‘Visualisation’ UML diagram ... 155
Figure 6-14 – ‘Collaboration’ UML diagram .. 155
Figure 6-15 – ‘Prediction’ UML diagram ... 156
Figure 6-16 – ‘Authority Level’ UML diagram .. 156
Figure 6-17 – ‘Standard’ UML diagram ... 157
Figure 6-18 – Sustainment Process’ UML diagram .. 157
Figure 6-19 – ‘Person’ UML diagram .. 158
Figure 6-20 – ‘Analysis’ UML diagram .. 158
Figure 6-21 – ‘Traceability Item’ UML diagram ... 159
Figure 6-22 – ‘Status’ UML diagram ... 159
Figure 6-23 – ‘System’ UML diagram ... 160
Figure 6-24 – ‘Resource’ UML diagram .. 160
Figure 6-25 - The process steps used to identify concepts, relationships and logic within the
BPMN diagrams .. 162
Figure 6-26 - The manufacturing process steps covered by the 32 BPMNs....................... 163
Figure 6-27 - A section of one of the BPMN diagrams ... 163
Figure 6-28 - Clarification of the ontology level model .. 165
Figure 6-29 – The process and systems identified within the initial cell of the facility. 166
Figure 6-30 - The domain information is used to create the 3 ontology levels which when
structured together form the proposed Ontology Solution .. 166
Figure 6-31 - Generic systems model ... 167
Figure 6-32 Generic systems model representations of the systems instances: MES System
 .. 168
Figure 6-33 Generic systems model representations of the systems instances: Part Tracking
System .. 168

14

Figure 6-34 Generic systems model representations of the systems instances: Wax Injection
Robot Control .. 169
Figure 6-35 Generic systems model representations of the systems instances: Wax Injection
Machine Control .. 169
Figure 6-36 Generic systems model representations of the systems instances: Wax Injection
Cell Control ... 170
Figure 6-37 - Generic systems model representations of the systems instances: CAPP
System .. 170
Figure 6-38 - Logic development themes developed from the challenges to interoperability
research .. 172
Figure 6-39 - Examples of differing subject matter expert generated relationships between
'parent' terms for the UML diagrams ... 177
Figure 6-40 - The ontology core concepts UML diagram .. 178
Figure 7-1 - The formalised solution ontology ... 181
Figure 7-2 - Codifying the core ontology ... 186
Figure 7-3 - IODE screenshot showing the Core Ontology terms 187
Figure 7-4 - Testing the core ontology .. 188
Figure 7-5 - Codifying the Level 1 ontology .. 188
Figure 7-6 - IODE screenshot showing Level 1 ontology terms .. 189
Figure 7-7 - Testing the Level 1 ontology ... 189
Figure 7-8 - Developing the Level 2 ontology using human interaction 190
Figure 7-9 - Codifying the Level 2 ontology facts, logic and queries 190
Figure 8-1 - Full ontology testing experiment 1 ... 194
Figure 8-2 - Full ontology testing experiments 2 and 3 ... 194
Figure 8-3 - Number of errors reported as each system was declared. 211
Figure 8-4 - IODE screenshot showing the 763 facts required to declare the 4 systems to the
ontology have successfully loaded. .. 212
Figure 8-5 - IODE screenshot showing the results of the ‘interoperates with' query 213
Figure 8-6 - Cross timeframe capability demonstrated using a previous timeframe to enable
validation ... 214
Figure 8-7 - IODE screenshot showing examples of the Activplant declaration errors 216
Figure 8-8 - IODE screenshot showing the Activplant load rejection due to 83 individual logic
violations which were due to 15 unique errors as reported in the error messages. 217
Figure 9-1 - The updated view of the ontology specialisation levels 225
Figure 9-2 The ontology representation with references to the ontology term listings 227
Figure 9-3 Summary of research novelty .. 228

15

1 Introduction

1.1 Context

As business enterprises become more data and information rich they have developed

systems and processes to help them manage this data and information. As these systems

have become more powerful and flexible they have also become crucial repositories for the

information of those businesses. In the ‘information age’ in which these enterprises are

currently operating this data, information and knowledge is as critical an asset as the capital

assets on the company accounts (Gunendran, Young 2006). The importance of the systems

to manage data, information and knowledge has been quickly recognised as a massive

commercial opportunity leading to an explosion in the number of systems to provide this

capability over the last 20 years.

The development of data, information and knowledge systems, hereafter referred to as

Knowledge Systems or KS, was initially driven by the individual functions within business

enterprises leading to finance, material scheduling, process planning, design and drafting,

human resources, quality, marketing systems etc that were entirely separate with limited

information flow between them. This approach was reinforced by the technology and

architecture requirements of multi-domain systems; prior to fast, flexible networks, the

solutions would have required a large mainframe which would have been impractical for

many small to medium enterprises. As technology has developed as an enabler, so too has

the recognition of the power of combining these KS domains to allow the re-use of the

system contents across the enterprise, and when combined, the contents of the systems can

achieve a synergy due to the wider perspective on information.

Over the last 10 years there has been a significant growth in the development of large

unitary systems that control multiple aspects of a business, key examples being: Enterprise

Resource Planning (ERP) systems such as SAP which can cover all aspects of customer

requirements management, human resources, material planning, process planning, finance,

and quality etc, and Product Lifecycle Management (PLM) systems which provide

authoritative systems for all product related data such as product definition, configuration,

process planning, validation etc. It can be seen that these large systems can overlap,

requiring similar data to live in both systems, such as process planning information. For the

enterprises that can afford to implement these large systems, there are still areas of

requirement even these systems do not meet. Where enterprises have legacy systems from

which they are not in a position to migrate, there is a need for the systems within the

enterprise to interoperate. Significant levels of research have been carried out on methods of

providing system interoperability within enterprises, however, there is an emerging domain

16

which poses some unique challenges when compared to other business function

requirements; Manufacturing Intelligence (MI).

Historically, shop floor systems were used to deliver machine instructions (CNC programs)

and collect and store output data (cycle times, numeric results etc). This data was manually

controlled and processed, meaning that even with significant manpower dedicated to the

task, only delayed, partially informed reaction to events could be managed. Manufacturing

Intelligence aims to leverage modern Information Communication Technologies (ICT) to

collect data from and monitor production systems in real time, and based on knowledge

embedded within the system, react to occurrences or infer indications of an upcoming

occurrence and pre-empt them. As an ideal, MI’s core function is to provide appropriate

responses to the information it has. It can be categorised as a knowledge system, as

knowledge is required to respond appropriately to information. This knowledge can be

shared with other systems such as PLM systems. MI is conventionally considered part of a

Manufacturing Execution System (MES) but this knowledge and data is crucial to all aspects

of the enterprise, included those that may have limited exposure to the MES system, and

therefore there is a strong requirement for interoperability. Where MI differs to other domains

of the enterprise’s systems is in the number of different systems it interfaces with and the

stability of the environment: each production area and resource within that area can be

considered a separate ‘system’. MI is a key challenge as the toolset for MI has not yet been

fully developed, meaning that a number of application systems are required to carry out the

function, and due to the rapid development of this field these systems are emerging,

changing and becoming obsolete very rapidly. This gives rise to the requirement to manage

the interoperability not just across current systems but across end of life and emerging and

not yet developed systems.

17

1.2 The research strategy

1.2.1 Aims and objectives

This research aims to define a mechanism for evaluating system interoperability

requirements and capability in environments which experience rapid change. This

mechanism should:

 Identify where interoperation is required between defined systems and whether

those systems meet the requirements for interoperability.

 Identify specifically how a system fails to meet the requirement of interoperability to

enable the failure to be addressed.

1.2.2 Scope

This research focuses on understanding the mechanisms for interoperation between

manufacturing intelligence (MI) systems and other systems and defines a mechanism for

providing interoperability through time within the MI domain. MI systems are a sub-type of

Manufacturing System. The MI domain has been chosen as it is an emerging domain subject

to disparate and rapid rates of system and data change which provides a suitable challenge

for this research to address. MI was identified as an area of increasing industrial focus, and

therefore relevance, due to the potential operational efficiency benefits it could enable. This

was confirmed through the literature review in Chapter 2 and the industrial investigation in

Chapter 3.

This research used the aerospace discrete part manufacturing industry to create and test the

proposed solution concept, however it was anticipated that the results would be applicable

beyond this industry.

1.2.3 Research method

This research was carried out in conjunction with a large international Aerospace Company.

The inclusion of the industrial aspect gave key insight into the industrial relevance of the

research (as described in Chapter 3), including potential future applications and benefits, as

well as providing a vital source of data with which to build the experimental solution.

This research used a hypothesis and test method. The initial literature review focused on 3

main related topics: Manufacturing Intelligence, Systems Lifecycles and Information Sharing.

These topics were the initiation points for the literature research to establish the current state

of the art regarding the understanding in the research domain. This was followed by industry

based research into the challenges to interoperability to gain an understanding of the

practical and real world implications of the issues this research aims to address. Against this

18

background work, the novel proposal for interoperability in dynamic change environments

was then defined along with the relating research questions (see Section 4.3):

1. What is Manufacturing Intelligence?

2. What are the concepts in the MI Systems domain?

3. Can a domain foundational or core concept ontology be defined and formalised?

4. Can the proposed concept be proven through the formalisation of the ontology.

 These research questions were the focus of the practical research which then resulted in

the embodiment of the proposed solution. This solution was then tested to verify the solution

and prove or disprove the research hypothesis.

1.2.4 Research hypothesis

The research hypothesis was stated as “Multiple systems can be defined using a consistent

foundational ontology comprising constraining logic to highlight whether each system meets

the requirements for interoperation with the others. Interoperability can then be ensured for

and with future systems and versions of systems through the inherent process of system

definition supporting the rapid development of interoperable systems.”

19

1.3 Solution development tools and techniques

The following sections describe the key tools and techniques that were selected, interpreted

and developed for use in this research and the reason for their selection.

The approach can be summarised as:

 Using a heavyweight foundational ontology concept to provide consistency to

multiple versions of specialised ontologies and exploring the concept as applied to

Manufacturing Systems interoperability.

 Using a reinterpretation of the Noy, McGuiness (2001) approach to suit the

development of a heavyweight ontology:

 Using Business Process Mapping Notation diagrams to capture real world systems,

their ‘agents’, process flows, information flows, logic and objects (OMG 2012, OMG

2008). These could then be used to populate the ‘term pool’ as well as develop logic,

relationships and eventually populate the knowledge base and create test cases

which were captured in a diagrammatic style loosely based on IDEF0 (FIPS 1993).

 Using Unified Markup Language Class Diagrams to structure the term pool and

visualize the relationships throughout the ontology development.

 Formalising the ontology by codifying the ontology using the IODE heavyweight

ontology tool, and Common Logic (IODE 2010).

The use of foundational ontology concept is fundamental to the solution proposal, as the

method for providing semantic consistency. The use of a heavyweight ontology provides

greater rigour and enables the use of equally rigorous, machine executed logic(see

Chapter 2). This ability to embed complex Common Logic into the ontology is a critical

requirement of the solution proposal.

The Noy, McGuiness (2001) method has been demonstrated by a number of other projects

to be an effective framework for ontology development in the literature review, and suitable

for reinterpretation for the development of heavyweight ontologies. It is a manual method,

which allows the user to focus on the most relevant concepts at the possible cost of domain

concept coverage. However this risk was mitigated by the use of a number of concept

enumeration approaches as detailed in Chapter 6.

BPMN was selected for its ability to clearly represent a process flow, the process agents,

events and information flows. Although the toolset is potentially extremely comprehensive,

the main strength of BPMN was that it is intuitive for individuals within the manufacturing

industry due to is similarity to many common flow charting standard. To make the most of

this attribute a small subset of the available chart elements were used. This resulted in no

20

loss of process fidelity but enabled the process owners to chart their own process, mitigating

the risk of any loss of fidelity when communicating to an independent scribe or when

learning to use the more complex compound chart elements.

IDEF0 (FIPS 1993) is an industry standard for system notation, so a basic derivation of its

representation of a system was used due to the common understanding of the notation

amongst the contributors.

UML class diagrams allow the creation of structured concept taxonomies including the

nature and description of the relationships between the concepts e.g. binary, tertiary etc. The

facet or slots of the concepts were not used in this case as the functionality of the ontology

was intended to be provided by the constraining logic and relationships.

The IODE version 4.1.2 tool was selected based on its success in the Interoperable

Manufacturing Knowledge Systems (IMKS) project, both because this indicated it was a

suitable tool and also because this created the potential to reuse parts of the IMKS work if

appropriate (Young et al. 2007, Young et al. 2010, Chungoora, Young 2010a, Chungoora,

Young 2010b), as it would share the IODE systems in-built Medium Level Ontology (MLO)

and system logic as a base.

For detailed descriptions of the tools and their merits see Chapter 2.

21

1.4 Thesis structure

This thesis has been structured into into the following chapters:

 Introduction

o Introducing the aims and scope of the research as well as stating the

research method and hypothesis.

 Literature review

o A review of relevant current literature and current state of the art knowledge.

 An industrial investigation of key interoperability issues

o An investigation of key issues within the research domain in an industrial

context, including the declaration of some key models that have been used

with this work.

 A novel approach to manufacturing systems interoperability in dynamic change

environments

o The exploration of the research domain leading to the research questions and

solution concept proposal.

 Understanding the scope and concepts in manufacturing intelligence

o Research into the definition of the MI domain and enumerating the concepts

within it.

 Ontology term, relationship and logic definition

o Exploring the domain terms, relationships, and the constraining logic and their

relative structure and evolution.

 Formalising the ontology

o Detailing the formalisation of the terms, relationships and logic of the ontology

into a heavyweight ontology solution including testing and validation of the

solution.

 Testing and experimental results

o Results of the experimental application of the ontology solution to real world

systems examples allowing validation of the solution concept against actual

experience.

 Discussion, conclusions and further work

o Review of the research, the solution concept and hypothesis and suggestions

for further work.

Relevant detailed supporting information has been included in Appendices.

22

2 Literature review

2.1 Introduction
The aim of this literature review was to identify the current state of the art with respect to the

research scope. This review discusses the concepts and conclusions of the current state of

the art as well as identifying particularly relevant work.

This literature review has been structured around three core topics which represent the

scope of this work:

 Manufacturing Intelligence

 Systems Lifecycle

 Information Sharing

These topics have then been expanded upon in two further levels of detail (see Literature

Review Structure section).

The method used for this review was an iterative process with three main steps:

 Review of academic papers and published material using structured resources such

as Loughborough University Library, Wolfston School, IMechE , Rolls-Royce

Technical Library and focused internet resources.

 Expansive concept keyword searches based on the initial stage of the review.

 Focused concept using subject matter experts.

It was anticipated that the first iteration of this process would be based on the 3 core topics,

with subsequent iterations expanding through the lower level detail.

From the cursory knowledge of the 3 core topics, it was also anticipated that significant

levels of published work and information on Information Sharing should be returned using

the term ‘Information sharing’ as a starting search expression, which can be expanded upon

using related search terms. There should be published material on the Systems Lifecycle

and Manufacturing topics, however, much of the core work relevant to these topics may be

in other fields under other titles (e.g. in software development under the name ‘Application

Lifecycle’ or business improvement under ‘Business Intelligence’), i.e. the initial research

iteration (using these titles as the search terms) may return minimal information requiring

more ‘lateral’ research.

23

2.2 Literature review structure
This review has been structured around a three core topics as shown in Figure 2-1. The

review of literature was carried out at two levels. The 1st level covered the high level sub-

topics, under which there may be a 2nd more detailed or specific level of research:

Figure 2-1 Literature review structure

TOPIC LEVEL 1 LEVEL 2

MANUFACTURING INTELLIGENCE BUSINESS INTELLIGENCE Business Intelligence, Manufacturing Intelligence and Dashboards

Data Warehousing

MANUFACTURING KNOWLEDGE/ INTELLIGENCE SYSTEMS

MANUFACTURING EXECUTION SYSTEMS ISA 95 MES Model

Manufacturing System Agility

INTELLIGENT AUTOMATION Agent Technology

Holonic Manufacturing

SYSTEMS LIFECYCLE SYSTEMS LIFECYCLE Legacy systems

Endurant vs. Perdurants

Dynamism

Lifecycle Timescales

Application Lifecycle

System Value and Condition Assessment

INFORMATION SHARING DATA, INFORMATION AND KNOWLEDGE Data, Information and Knowledge Maintenance

INTEROPERABILITY

THE REQUIREMENT FOR INTEROPERABILITY

INTEGRATION VS INTEROPERABILITY Integration Continuum

Taxonomy

Systems and Technology

Information Systems Customisation for Integration

PLM PLM Information Exchange

STANDARDS – SEMANTIC ISSUES Standards Frameworks and Adoption

Standards Adaptation

Standards Flexibility

ENTERPRISE INTEGRATION AND INTEROPERABILITY Integrated, Unified and Federated Approaches

INTERGRATION ARCHITECTURE Model Driven Architecture

Interoperability and Information Exchange Frameworks

Semantic Interoperability frameworks

ONTOLOGY Ontologies and Interoperability

Ontology Creation

Ontology Merging

Mapping

Ontology Mapping

Concept Mapping

Heavyweight and Lightweight Ontologys

Foundation Ontology

Foundation Ontology Adoption

Ontological vs Taxonomic approaches

Descriptive and Common Logic

CONTEXT OR VIEWPOINTS

TOOLS XML

XML Based Exchange

RDF and OWL

Common Logic Tools

PSL

IDEF0 and IDEF3

UML

Protégé

BPML

Business to Manufacturing Mark‐up Language (B2MML)

24

2.3 Manufacturing intelligence
The majority of recently published material on manufacturing intelligence (also referred to as

‘Enterprise Manufacturing Intelligence’(Siemens AG 2011, Unver 2012)) is technical or sales

material (ISA 2000, ISA 2005), with however relatively little work published has been

published on the future direction of the MI field. This literature focuses on what functionality

specific MI products have without providing a coherent description of the purpose or scope

of MI. These tools and literature meet the current basic understanding of Manufacturing

Intelligence as described in the following section. This understanding is typified in published

standards and literature descriptions of MI as a dynamic and rapidly changing and relatively

unpredictable field (Unver 2012, ISA 2000, ISA 2005, Chen, Chien 2011).

Manufacturers need a comprehensive view of their operations at all times. They must be

equipped with the most relevant information in the proper context so that holistic decisions

can be made appropriately. Manufacturing Intelligence is the synthesis of the key elements

(manufacturing performance, business intelligence, and real-time information) required for

global manufacturers to compete in the current business environment. Manufacturing

Intelligence is the next generation of decision support capabilities for global manufacturers. It

is about making real-time manufacturing information, with "drill anywhere" capabilities,

available to manufacturing executives and plant staff to facilitate decision-making and

improve their supply chain performance (Unver 2012, Fulcher 2005, Toung 2006).

Brown(2007) comments on the recent heavy investment in MI which is being driven by the

need to optimize operations and compliance with company goals, targets and corporate

responsibilities. The author describes MI as the primary area of investment, projected to

even exceed spending on ERP.

The key functions of MI have been described as (Jacobson, & Eriksen 2011):

 Aggregation: Making available data from many sources, most often databases.

 Contextualization: Providing a structure, or model, for the data that will help users

find what they need, usually a folder tree utilizing a hierarchy such as the ISA-95

standard.

 Analysis: Enabling users to analyze data across sources and especially across

production sites. This often includes the ability for true ad hoc reporting.

 Visualization: Providing tools to create visual summaries of the data to alert decision

makers and call attention to the most important information of the moment. The most

common visualization tool is the dashboard.

25

 Propagation: Automating the transfer of data from the plant-floor up to enterprise-

level systems such as SAP, or vice versa.

Manufacturing Intelligence has been described as “the synthesis of three key elements

(manufacturing performance, business intelligence, and real-time information) required for

global manufacturers to compete in the current business environment. Manufacturing

intelligence is the next generation of decision support capabilities for global manufacturers.

However this raises unanswered questions of how real-time information systems and

business level information system can not only be made to interoperate but how that

interoperation can be sustained through time as they are subject to disparate systems

lifecycles and rates of change(Toung 2006, Panetto, Molina 2008, Wang 2010, Mochal

2005).

The major PLM and Manufacturing Execution System (MES) system provider Siemens have

stated that MES systems can be used to provide real-time information about what is

happening on the shop floor for strategic (medium to long term) decision making as well as

operational (immediate to short term) decisions (Siemens AG 2011, Panetto, Molina 2008).

Within this scope, the function of informing manufacturing decision making and enabling

appropriate reactions is termed 'Manufacturing Intelligence', a term which they describe as

evolving from the more established field of 'Business Intelligence': the collection and use of

business data for decision making. This description implies MI is a sub-function of MES.

The view of MI as a subset of is MES shared by Brown(2007), however elements of the

emerging MI functions such as the extension in the real time/ control functions on the shop

floor are extending the conventional limits of MES definitions.

Recent literature seems to confuse matters further (Siemens AG 2011, Unver 2012): the

literature describes the term ‘Enterprise Manufacturing Intelligence’ showing the MES

system crossing the ISA95 (ISA 2000, ISA 2005) Level 3 and 4 threshold to allow enterprise

level reporting while also integrating with the controls level systems at levels 0,1 and 2 to

provide real time data. This literature references the use of the ISA 95 model directly, but

does not attempt to resolve the paradox that the standard defines Level 3 as the ‘Execution

Level’ where the MES resides, hence having referenced ISA 95 to describe their proposed

solutions, they then contravene the std. by having the MES operating at Levels 3 and 4,

while also being integrated with levels 0,1 and 2; implying there is no reason to discriminate

between these levels. The term Enterprise Manufacturing Intelligence seems to represent an

aspiration to make MI more informed and powerful by pulling in information from many other

areas of an enterprise, which in turn implies MI is outgrowing the ISA 95 definition of MI as a

26

sub function of MES. This ambiguity is referred to as 'flexibility' by MESA (MESA 2012), but

it results in a risk of misalignments of interpretation between users of the standard.

It can be seen that despite the available and emerging standards describing manufacturing

systems and data collection, the definition of MI is still highly ambiguous: lacking detail and

specificity and with some key aspects of descriptive standards being contradictory. There is

therefore a need for work to create a description of MI which defines both its scope and

purpose in order to understand the interoperability requirements of the processes and

related systems.

2.3.1 Business intelligence
Business Intelligence is a term for a large number of knowledge management products and

functions that turn data into useful information that can support business decisions. These

include Data Warehousing, Decision Support Systems (which enable forecasting) and

Executive Information Systems (which provide direct access to domestic and external data

sources for executive analysis)(Hodges 2007).

 Some of the key concepts in Business Intelligence are common to other knowledge

management initiatives such as PLM: these include:

 A single version of the truth (authoritative data sources such as the PLM Master

Model)

 High levels of collaboration, enabled by global collaboration tools with version and

access management.

 Flexible reporting carried out directly from the data storage source to ensure

maximum use or re-use of the gathered data and information without the risk of

unintended non-standard data manipulation.

Some of the commonly available tools used to provide these capabilities are products such

as Microsoft’s ‘SharePoint’, ‘SQLServer’ and ‘Reportbuilder’(Jones).

2.3.1.1 Business intelligence, manufacturing intelligence and dashboards
MESA presents a hierarchical model consisting of Performance Indicators (PI also referred

to as Key Performance Indicators or KPI) and Analysis Indicators (AI). At the top level are

the enterprise indicators such as profit. If these deviates from expectation, the PI's at site

level will be reviewed and it may be idenitified that a specific site is underperforming, hence

a PI is an AI for the layer above it. Production is at the bottom of the Business Intelligence

hierarchy and it is at this level that it can be referred to as Manufacturing Intelligence in

manufacturing enterprises. Dashboards are near real time displays of PIs or KPIs at an

operational level, however, they generally require user interpretation and action based on

27

experience so are also often referred to Data Dashboards. Business Intelligence systems

refresh their data on a much lower frequency, such as once a day or shift, meaning that data

can be out of date and there is a delay before feedback on any action taken (Scholten

2009). The reviewed literature describes these systems but does not describe the emerging

field of Manufacturing Intelligence which merges the concepts of real time data collection

and display with automated or highly informed decision making and actioning.

MESA has commissioned a study into the most commonly used KPIs (where a KPI is

defined as the most important PI). Discounting the ones that are legislative requirements

such as Health and Safety Incidents, it shows that the KPIs used by most successful large

and small business are (Scholten 2009):

 On Time Delivery

 Manufacturing Cycle Time

 Total Inventory

 First Pass Yield

 Capacity Utilisation

 Customer reject rate (PPM)

 Batch/ Lot/ Unit Right 1st Time

 WIP inventory

These can be processed with Manufacturing Execution Systems (MES) data (and each

other) to provide other calculated metrics and PIs such as:

 Quality

 Throughput

 Compliance

 Utilisation

 Inventory

 Customer service

It can be seen that the KPIs require significant data collection and a level of data

manipulation, and the second list of PIs require further data manipulation. As these metrics

are defined in Natural Language they can be interpreted in many ways, and then processed

in varying ways. Each level of process provides opportunity for further levels of interpretation

hence the comparison of KPIs across an enterprise could be misleading. Even an industry

standard such as Overall Equipment Effectiveness (OEE) which is calculated from Quality x

28

Availability x Performance is subject to this problem with each element needing local

interpretation for specific applications (See Ontology Section).

2.3.1.2 Data standards
Significant work has been carried out on the definition of standards for data collection, which

have been increasingly focused on the challenge of manufacturing shop floor data collection

such as the MANDATE standard (ISO 2010). This work references many other standards

that provide guidance on nonclementure for manufacturing organisations. It also defines that

certain aspects are out of scope limiting is applicability in the MI field:

 Product information

 Component information

 Cutting tools

 Technical maintenance information

 Enterprise modelling (including tools and techniques)

The purpose of the standard is stated as aiding the collection of data and information at

Level 2 of the organisation and providing to Level 3 for operations management (ISA 2000,

ISA 2005). While this represents beneficial progress, it is in conflict with the idea that MI may

be displayed and used at the control or process level (using modern systems that enable a

data driven business) or the MI may require data from all levels of the organisation(Siemens

AG 2011) so serves to confuse the definition of MI rather than clarify it.

2.3.1.3 Data warehousing
Data warehousing is a approach that combines data and information into a single database

suitable for analysis. The warehouse is not a unitary system (ie it is made up of a number of

systems) and is designed to be used on an enterprise-wide basis. The system stores data,

meta data and summary information. Data warehousing has evolved since its introduction in

the 1990’s from systems that took years to build and weeks or months to update (and hence

were only used for long term decision making) to data marts which are smaller more agile

versions that are interfaced to provide wider coverage. The literature states that current

systems use a common meta data storage systems to overcome the problem of inconsistent

meta data across the data marts. This, however, this is just the imposition of a global

standard rather than a resolution (see Standards section). Current data warehouses require

near real time updating and are used by a much increased number and variety of people

(Hodges 2007).

29

2.3.2 Manufacturing knowledge/ intelligence systems
Work carried out on Industrial Product Services Systems shares similar requirements to MI

systems (Meier, Roy & Seliger 2010). This work proposes a system that captures in-service

data and information from the process and using data mining algorithms (such as pattern

recognition or pattern classification) processes it to knowledge and uses these algorithms to

create rules for process prognosis based on actual conditions. This work goes on to

conclude that this capability needs developing for future PLM systems and for other life cycle

stages such as Manufacture and Disposal.

 Izza (2009) published a comprehensive list and review of discrete industrial information

systems such as CAD, CAM, ERP, EDM, MES, PDM, PLM etc however it omits MI systems.

This is a common issue across most of the manufacturing systems literature reviewed: very

little has been published focusing on MI systems or their specific requirements and

considerations for information sharing.

2.3.3 Manufacturing execution systems
Manufacturing Execution Systems have been characterised by MESA International (a trade

association of MES vendors) as having these principal functions (ISA 2000, ISA 2005,

Panetto, Molina 2008, Jr., Michel 2000):

 Planning system interface

 Data collection

 Exception management

 Work orders

 work stations

 Inventory / Materials and material movement

with MES supporting functions including:

 Genealogy

 Maintenance

 Time and Attendance

 Statistical Process Control

 Quality Assurance

 Process data

 Documentation Management

Some of these functions may be performed manually while others may be automated by

individual software packages. The reviewed literature states that the increasing complexity of

30

intelligent closed loop control systems and the variations in functionality required from plant

to plant has led to the view that MES systems should be modular with standard interfaces

(Panetto, Molina 2008, Jr., Michel 2000). The relative limitations of using interfacing

compared to integrating or interoperating are discussed in the information sharing section. It

may not however, be appropriate to bring all functions within one system due to the

increased inflexibility this can cause, requiring an ability for systems to interoperate, and to

operate on separate but compatible lifecycles (Panetto, Molina 2008).

MES systems can be used to provide real-time information about what is happening on the

shop floor for strategic (medium to long term) decision making as well as operational

(immediate to short term) decisions (Siemens AG 2011, Panetto, Molina 2008). The field of

informing manufacturing decision making and enabling appropriate reactions is termed

'Manufacturing Intelligence', a term which has evolved from the more established field of

'Business Intelligence': the collection and use of business data for decision making. This

description implies MI is a sub-function of MES.

MES are characterised by a heterogeneous set of applications which operate between direct

equipment control and enterprise systems (Jr., Michel 2000). A detailed MES and integration

standard is provided in the ISA 95 group of standards (ISA 2000, ISA 2005)

Scholten (2009)describes at length the functions of MES and their relative strengths and

applications. Some key points are:

 MES sub systems sub sector reporting capabilities require further development

 MES are often used to collect vast amounts of production data, but reporting is

generally an offline activity on a daily weekly or monthly basis.

 MES dashboard near real time data to allow human operational decision making

2.3.3.1 ISA 95 MES model
The definitive definition of a Manufacturing Execution System (MES) is the ISA95 standard

and supporting papers from MESA (ISA 2000, ISA 2005, Scholten 2009). ISA95 describes a

Enterprise Control System Integration (not automation) and its functions in levels with

associated timescales:

 Level 4: Business Planning in logistics - popularly called the ERP Layer. This is

referred to as the Enterprise Domain in the standard to be platform independent and

these activities are focused on the longer term i.e. weeks and months

 Level 3: Referred to as the MES Layer this is described as the Control Domain in

ISA95. These activities focus on activities such as plant efficiency, product quality,

31

material storage locations, machine availability etc. These activities are usually in the

timescales of days, hours or minutes.

 Levels 2,1,0: These lower Control Domain levels are where the production process

takes place, with the help of PLCs, sensors, actuator, SCADA solutions and other

control systems. These are either monitored in a timescale of minutes, seconds or

milliseconds (Level 2), sensed and manipulated (Level 1) or the actual production

process (Level 0).

This model clearly defines the time-scope of MES to be days to minutes and the role to be

operational activities. Some activities that can be considered to be based on MI systems and

information such as KPI reporting and control sit partially in Level 3 and MES. Nevertheless,

the (near) real-time nature of MI data clearly aligns it to Levels 2,1 and 0. As such, the

traditional view as MI as a subset of MES is called into question, with it appearing to bridge

both MES and Controls systems levels. While the published literature talks extensively about

functions that straddle the border between Level 3 and 4, using tools such as Business to

Manufacturing Mark-up Language (B2MML), there is no specific mention of functions that

straddle Level 3 and the lower levels or tools to do this. While B2MML could be used for this

interaction it will be limited to the scope of ISA95 which itself does not cover MI terms in

detail and relies on natural language descriptions of concepts and their relationships, which

are open to ambiguous interpretation. This ambiguity is referred to as 'flexibility' by MESA

(MESA 2012), but it results in a risk of misalignments of interpretation between users of the

standard.

The levels described in ISA95 are also reflected in the ISO 15531 MANDATE standard (ISA

2000, ISA 2005, ISO 2010). However, this standard uses the IEC 62264-1 model which is

entirely compatible with the ISA95 wording:

 Level 4: Business Planning & Logistics, Plant Production Scheduling, Operational

Management.

 Level 3: Manufacturing Operations and Control

 Level 2,1,0: Batch, Continuous, Discrete Control

2.3.3.2 Manufacturing system agility
Agility is the ability of an enterprise to make a flexible, dynamic, reconfigurable and quick

response to change in an unpredictable business environment (Qiao, Liu 2009). In this paper

the authors discuss a method of providing cross-lifecycle data systems using a unified data

model. While this work only defines a solution concept it does provide a compelling link

between manufacturing system interoperability, manufacturing decision making,

32

manufacturing organisational agility and the potential route to a solution using a unified data

model approach.

2.3.4 Intelligent automation
To cope with the increasing pace, variability, flexibility and requirement for interaction

between elements of the manufacturing enterprise (often referred to a ‘holons’) the MI

approach has been used as an enabler for Intelligent Automation. The conventional

Computer Integrated Manufacturing (CIM) could lead to large monolithic, centralised

systems which can take many months to implement and be inflexible due to their complexity.

The actual implementation of CIM developed into more decentralised, hierarchical solutions

(Schoop et al. 2002). This work describes a manufacturing model where the distributed

intelligent manufacturing elements or systems dynamically interact to achieve global and

local manufacturing objectives. The flexibility of the overall system will be limited by the

individual elements (or holons) as well as the coordinating or supervisory system.

A description of Intelligent Automation is proposed as the integration of several emerging

technologies and paradigms (Schoop et al. 2002):

 Agent technology

 Mechatronics

 Intelligent Manufacturing

 Holonic control systems.

 Key areas of technology research to enable Intelligent Automation have been identified

within this work as being:

 Distributed planning, dynamic re-scheduling, and intelligent supervision

o Planning and re-scheduling capabilities included in an automation island

o Monitoring, Diagnosis, Recovery (decision-making processes)

o Remote monitoring, diagnosis and maintenance

 Interoperability between Local Control, Co-ordination Control Level and Intra-

Enterprise Level

o Functional, Logic and Physical System Architecture; Agent based MES

systems

 Automation Design Environment

o Support the optimization of costs during the life-cycle of Automation Solutions

o Integration of Discrete-Event Control Simulation with Process- and

Component-Simulation

33

2.3.4.1 Agent technology
“An agent is considered a software entity situated in a production environment, with enough

intelligence that is capable of autonomous control actions in this environment and of co-

operation relationships by participating in association’s and agreements with other entities in

order to meet its design objectives. An agent should be able to act without the direct

intervention of humans or other agents, and should have control over its own actions and

internal state” (Schoop et al. 2002). As per this description controller and scheduler systems

can be considered agents. This approach is limited by the standardisation and coordination

of the agents developed by different suppliers leading to:

 Duplication of functionality

 Lack of standard agent definitions or terms

 Limited reusability

 Limited ability to integrate with legacy systems

The review literature proposes that that the agent approach is not appropriate for production

system due to the heterogeneous and dispersed nature of the physical agents in production

as well as the requirement for dynamic decision rule capability (Schoop et al. 2002). It is

these issues that the transition to holonic systems is attempting to resolve.

2.3.5 Supervisory control and data acquisition systems
Supervisory Control and Data Acquisition Systems (SCADA) are a widely used set of

technologies and standards used to collect data from shop floor equipments. They are

relatively low level technologies that allow the collection and storage of real time data feeds

from control systems which are otherwise considered to be a very disparate technology

group with which to communicate (Hak-Man Kim, Jong-Joo Lee & Dong-Joo Kang

2007).Most of the current development on these systems are focusing on developing the

security robustness of these systems, which is currently seen as a weakness: IT system

priorities are confidentiality, authentication, integrity, availability, and non-repudiation:

SCADA systems emphasize reliability, real-time response, tolerance of emergency

situations, personnel safety, product quality, and plant safety, usually to the exclusion of any

security mechanism that might hinder these (Cesar 2008, Coates et al. 2010).

It has been proposed that SCADA systems can be enhanced through the addition of ‘smart

substations’ which are clients that sit under the SCADA system and provide a flexible

interface with the disparate control systems (Hak-Man Kim, Jong-Joo Lee & Dong-Joo Kang

2007). ‘Smart’ in this context refers to the ability to connect to many different types of

equipment using wired and wireless networks. It does not however provide true context to

34

the data or suggest a framework under which this can be done, therefore the data cannot be

acted upon and is not ‘intelligence’.

35

2.4 Systems lifecycle

2.4.1 Systems lifecycle
A large number of system lifecycles have been reviewed that have been defined by

academic groups and consultants. While these were all incentivised to highlight the unique

benefits of their model, and use significantly different levels of detail and number of steps in

their models, they all conform to the same core process as defined within ISO 15288

(Willcocks, Lester 2003, Degler, Battle 2003, Rafinejad 2007, Taylor 2003, ISO 2002).

 Concept Stage

 Development stage

 Production Stage

 Utilisation Stage

 Support Stage

 Retirement Stage

There are a number of other steps that have been excluded from this summarised list such

as post implementation, validation and stakeholder definitions etc as these can be seen as

implied in the major steps listed. ISO 15288 provides a standard framework on which

specific lifecycles for specific process can be built using these core stages. These core

stages therefore represent the most widely applicable definition of the systems lifecycle.

2.4.1.1 Systems growth and complexity
Matt (2007) carries out an extensive review of the nature of complexity, summarising it as: “

a complex system is one that has a large number of elements whose relationships are not

simple.....the different nature of relations can be considered a driver of complexity”. This

work goes on to distinguish between: “structural complexity, which is caused by the number

of elements and their interconnectedness, and dynamic complexity caused by feedback

loops and highly dynamic and nonlinear behavior. Moreover, complexity can be understood

as interaction between complicatedness and dynamics“. This work was focused on solving

the issue of maintaining key functional requirements during organisational growth, but its

consideration of an organisation as a system means that many of its key findings and

considerations are not directly relevant to other systems. This work proposes that the

problem of growth in systems can be resolved by using axiomatic designed networks i.e.

structures that are controlled by rules (in this case logical rules), as well as redefining the

structure of the system as its growth exceed manageable limits. This holds a direct parallel

to the approach of using common logic rule or axioms to structure an ontology about a

system (Young et al. 2007, Young et al. 2010, Yu-Liang Chi 2010, Young et al. 2005, Young

et al. 2009), with those rules controlling the rate and level of growth before a defined change

36

is required. The complexity in a system-focused ontology would be driven by the number of

elements (concepts) and relationships along with the level of change in the domain which is

consistent with the researched descriptions of complexity within this work (Matt 2007). This

seems to support the hypothesis that heavyweight ontology could be used to support the

development and sustainment of a system while maintaining its functionality and

interoperability.

2.4.1.2 Legacy systems
Galliers (eds)(2003)describes how the inheritance of legacy IT and systems can deter

investment in new systems. One reason for this is due to resources being consumed by

operational and support issues, and the occurrence and severity of these issues will

increase with time meaning that organisational and system agility can decay exponentially.

This author proposes two ways to address this issue:

• Ongoing evaluation of exiting systems (to identify issues and opportunities and

provide both a qualitative and quantitive assessment of the need for action)

• Benchmarking against external comparators (to re-align IT/ systems approach based

on 'best in class')

Both of these activities rely on a constant mechanism of comparison and communication

between new and old systems within the same domain or across domain (in the case of

benchmarking): however, no solution to this issue is proposed.

A systems lifecycle approach has been proposed as a method of ensuring more effective

systems development and implementation (Willcocks, Lester 2003). This work references

high profile projects such as Taurus in the UK London financial markets, which was

abandoned in 1993 at a cost of approx £0.5Bn, as an example of the difficulty of introducing

new systems and distils the common core issues to be:

• Project size and complexity

• The 'newness' of the technology

• Level of structure within the project

• Human, political and cultural issues

It can be implied from this research that 'green field' systems implementations (i.e. those

with no legacy systems in place) have a higher probability of success than those replacing

legacy systems or processes, this is logical given the issues listed above, as the additional

requirement to move an enterprise from one system to newer replacement significantly

increases the impact of these issues. The research has shown that the post implementation

phases of the systems lifecycle are the most neglected, and while a model has been

37

proposed that uses evaluation stages of subsequent lifecycle iterations to review the

implemented systems, this does not provide any mechanism for pre-empting any

compatibility issues or even enabling a constant basis of evaluation between the old and

new systems. In this way any development or implementation of a replacement system or

systems can be viewed as a post implementation iteration of the systems lifecycle for the

legacy system.

2.4.1.3 Endurant vs. perdurants
A useful differentiation between manufacturing entities e.g. concepts or properties is whether

they are enduring or perduring. Enduring entities (endurants) are not time limited such as the

concept of a ‘person’, whereas perduring (perdurants) require a time description such as ‘a

person’s life’ i.e. an endurant would participate in a perdurant (Borgo, Leitão 2007, Masolo et

al. 2003). This multiplicative approach would prove useful when describing entities across

lifecycles as it allows the description of two entities within the same time-space, rather than

two aspects of the same entity e.g. a machine tool and the amount of matter that forms that

machine tool. The related topics of 3D and 4D ontologies i.e. whether entities should be

described using a temporal dimension was adjudged out of scope as the temporal nature of

objects is not the focus of this research.

2.4.1.4 Dynamism and flexibility
Izza (2009) refers to the concept of dynamism as a characteristic of enterprise applications.

This is a useful concept as it links together the rate of change of the system with the level of

change in the enterprise environment. This work also describes the need for system

flexibility as being driven by the evolution of organisations, regulations, IT, business and cost

containment which in turn requires the system integration to be equally flexible. This link

between organisational evolution, system flexibility and the requirement for flexible

integration is important as the conventional route to achieve integration or interoperation

requires standardisation which constrains this flexibility (see Chapter 3).

A key driving factor for system flexibility, in the context of this work is the need for flexibility

to change or replace the system. This confirms that MI systems which operate at the lowest,

fastest paced level of the organisation are themselves subject to fast paced change i.e. the

development or replacement of systems. The industrial investigation (see Chapter 3) has

shown that the difficulty of maintaining interoperation between systems during change often

constrains the level of systems change possible. Izza’s proposed solution must therefore be

able to deal with fast paced change of systems while still enabling system design flexibility,

which effectively rules out conventional approaches which rely on conformance to an explicit

standard or framework.

38

2.4.1.5 Lifecycle timescales
The timescales for a systems lifecycle will depend on many factors, a simple example is the

computer hardware required. Personal computers can be considered to have a maximum

reliable life of 10 years. If the system is critical or operating in a harsh environment then this

may be halved or quartered. The practical difficulties of ensuring older system work on

newer hardware and operating systems means it is generally advisable to upgrade the

system to a current version at the same time (Wiles 2002). In this example it can be seen

that the environment in which a system operates can significantly reduce the system refresh

lifecycle timescale and hence the frequency of system replacements. The fast evolution of

information and communication technologies is causing new types of problem for integration

and interoperability (Panetto, Molina 2008).

Software and systems tend to be designed around the capabilities and limits of the machines

and data available at the time, and as these develop over time so solution providers develop

system with more features and functions, and hence the accelerating pace of technology is

reducing the system lifecycle timescale(Degler, Battle 2003).

An often trivialised issue affecting IT lifecycles is ‘fashion’ (Wang 2010). Capitalising on

trends and fashions in IT and Management is vital for systems suppliers and consultants,

whilst the ability to globally adopt systems once initial pilots or testing is proven successful is

equally important to the customers in order to maximise the benefits they bring. The

reviewed work shows that there is a negative benefit in the 1st year of adoption for early

adopters which becomes a neutral affect in Year 2 moving to positive effect in the 3rd year

(Wang 2010). This can be linked to the costs and complexity of early lifecycle adoption and

so IT and systems suppliers as well as customers are striving to accelerate systems through

the early lifecycle stages to minimise this effect. This in turn acts as an accelerating effect on

the lifecycle iteration rate.

2.4.1.6 Application lifecycle
Application lifecycles (as there a many types) can be considered a lifecycle within, and

similar to the systems lifecycle. Tradition 'waterfall' methods (analyze, design, code, test)

have been replaced by the iterative Rapid Application Development (RAD) approach. The

iterative, agile approach tend to be beneficial when the requirements are not well defined or

are particularly complex, whereas the waterfall approach may be more appropriate where

there is a requirement for a greater integration with current applications. Where the

application is a development of extension of an existing application an enhancement

lifecycle may be appropriate (Mochal 2005).

39

2.4.1.7 System value and condition assessment
Leading organizations periodically look at classes of applications and plot them based on

their business value and technical condition. A suitable format for high level portfolio analysis

can be conducted as shown below. This is a Boston Consulting Group type approach which

was proposed for application analysis however it is equally applicable as a systems level as

shown in Figure 2-2. (Maizlish, Handler 2005):

Figure 2-2 - View of technical quality and business value for applications (Maizlish, Handler 2005)

 Systems ending up in the lower left quadrant have low business value and are in

poor technical condition. They are candidates for retirement, consolidation, or

replacement.

 Systems in the lower right quadrant have high business value but are in poor

technical condition. They are candidates for reengineering and modernization.

 Systems in the upper left quadrant are in excellent technical condition but have low

business value. They are candidates for re-evaluation and repositioning.

 Systems in the upper right quadrant have high business value and are in excellent

technical condition. Counter to conventional wisdom, these applications are still worth

worrying about. They must be carefully maintained and evolved; otherwise, they will

end up in the lower left quadrant over time.

This analysis still relies on a qualitative assessment process leading to consistency

problems regarding the interpretation of the systems key concepts and performance.

40

2.5 Information sharing

2.5.1 Data, information and knowledge
Data is generally well understood as being words, numbers, pictures, the meaning of which

may change with context (Young et al. 2005), and information being data in context so it has

a particular meaning. Generally, knowledge defines the relationship between information

within or across contexts (Gunendran, Young 2006, Young et al. 2005). Knowledge can also

be considered to consist of relations between facts and decisions (Liu, Young 2007).

There is some difference of opinion on the exact nature of knowledge, albeit the underlying

ethos is common e.g.:

 Knowledge is generated when information is combined with context and experience

(Huang, Yang & Wang 1999)

 Knowledge, coupled with experience, leads to wisdom (Maizlish, Handler 2005)

High-quality data and information provide organizations with knowledge to enable effective

actions and decision-making. Research indicates that 90% of all business decisions are

suboptimal because of data quality. Ironically, the biggest data quality complaint does not

pertain to the accuracy of the data but the completeness of the data. Incomplete data

translates into incomplete information, which leads decision makers to rely on intuition with

greater frequency than desired. Most organizations do not know what data or information

they have. They have no idea about the value of their data or information. Most

organizations are aware that their data are important, valuable, and imperfect (Maizlish,

Handler 2005).

The quality of information depends on its accuracy and its relevance to the context. Some

valuable information management approaches are being explored in Knowledge

Management disciplines including (Degler, Battle 2003):

• Granularity of information-both in terms of storage and presentation

• The importance of metadata, particularly as it they relates to context

• Increased reusability of information, including the creation of "knowledge objects"

• Information structured in ways that move away from the 'document' and 'page'

metaphors

2.5.1.1 Data, information and knowledge maintenance
Enterprise knowledge is dynamic, and so a knowledge base quickly becomes obsolete if it

does not continue to incorporate new information quickly and does not have a mechanism

for removing out-of-date or contradictory information (Degler, Battle 2003).

41

Any knowledge, information or data base requires maintenance, both of the systems and the

contents. The design of any interoperation mechanism or process must not compromise this

ability and ideally should enhance it by providing a unique authoritative source for any data

type. Change control in an expensive interoperable system can be highly complex as the

systems need to provide suitably rigorous but agile change mechanisms for a vast array of

data types i.e. from orders, finance, technical product definitions and personnel details to

local communication memos and work instructions (Young et al. 2007, Hodges 2007).

Structuring information and knowledge around products or product families such as the

Product Range Model approach for variant product design, provides a mechanism for data

re-use and could potentially allow the use of heuristics for knowledge maintenance as new

designs ideas are accepted. (Costa, Young 2001)

42

2.6 Interoperability

An essential attribute of interoperability is seamless information transfer in all directions (Jr.,

Michel 2000). This work provides a summary of different aspects of an enterprise that can be

integrated or interoperated. However this work does not mention the requirement to integrate

systems through time (ie between old and new systems).

2.6.1 The Requirement for interoperability
Significant levels of work have been published on the requirement for interoperability as an

enabler for collaboration. This work has covered many perspectives and areas of focus with

some of the most relevant to this work being:

 Collaboration between Design and Manufacturing Functions (Gunendran, Young

2006, Young et al. 2007, Chungoora, Young 2010a, Chungoora, Young 2010b,

Young et al. 2005).

 Collaboration across Enterprises (Panetto, Molina 2008, Chen, Doumeingts &

Vernadat 2008, Lin, Harding 2007)

 Product Support Services Interoperability Requirements (Meier, Roy & Seliger 2010)

 Design and Product Lifecycle Information Exchange (Young et al. 2009, Kim, Manley

& Yang 2006, Choi 2010, Skarka 2005, Kyoung-Yun Kim et al. 2009), Design

Knowledge re-use (Costa, Young 2001)

 Supply Chain Integration (Yu-Liang Chi 2010, Deshayes, Foufou & Gruninger 2007,

Chun-Che Huang, Shian-Hua Lin 2010, Taghaboni-Dutta, Trappey & Trappey 2010).

 Manufacturing Integration, Data Management, Decision Making and Knowledge

Sharing (Young et al. 2010, Unver 2012, Chen, Chien 2011, Panetto, Molina 2008,

Qiao, Liu 2009, Liu, Young 2007, Guerra-Zubiaga, Young 2008, Alsafi, Vyatkin 2010,

Xiong et al. 2010, Zaremba 2003, Vincent Wang, Xu 2013)

 Specific industry examples such as Healthcare (Zhang, Xu & Ewins 2007),

Automotive (Guo Wen-yue, Qu Hai-cheng & Hong 2010, Blomqvist, Öhgren 2008),

Furniture Manufacture (Agostinho et al. 2009) and E-learning (Lagos, Setchi 2007).

The common themes within all of this work are:

 Interoperability between functions, domains and systems is an increasing

requirement which is delivering massive benefits wherever it is achieved.

 The recognition that common basis of sharing meaning (both processes and

systems) is a fundamental prerequisite for unambiguous communication.

 While standards have a part to play in allowing shared meaning, they require

interpretation which leaves them prone to semantic miscommunication.

43

 There are a large number of approaches to achieving interoperability many of which

focus on different aspects of the challenge.

 The use of an abstract or common model defining concepts, objects, rules and

relationships, which are mapped to real world specific instances. Common focuses

of this work are:

o Using the common model to create conformal instances

o Using instances to define a common model

o Using existing instances and a common model to define rules or

relationships.

 The recognition of the computational complexity of semantic reasoning and the

significant time and effort required to represent the evolution of dynamically

changing data (Kyoung-Yun Kim et al. 2009).

 ICT based solutions have traditionally resulted in systems which are limited in scope,

complex, burdensome and inflexible to change (Young et al. 2007).

MESA International have published literature on a framework concept they refer to as ‘P2E’

or ‘Plant to Enterprise’ which recognises the importance of integration or interoperation of

the shop floor and enterprise level systems within an organisation to enable better decisions

e.g. regarding improvements etc (MESA 2012). This literature highlights the timescale

related challenge of interfacing large enterprise system with dynamic shop floor system. It

references the limitations of singular interface standard approaches such as middleware

systems and proposes a loose, developing framework of approaches that might be used, but

falls short of proposing a solution to this issue.

2.6.2 Integration vs interoperability
Interoperability can be described as the ability to exchange and use information. IEC

standard IEC/65/290/DC describes it as the level of compatibility (Izza 2009). The IEC

standard classifies the levels of compatibility as:

 Incompatible

 Coexistent

 Interconnectable

 Interworkable

 Interoperable

 Interchangeable.

44

 Interchangeability includes the concept of interoperability and requires that the semantic

and application functionality is defined such that should any system be substituted it will

continue to operate albeit possibly with different dynamic responses (Izza 2009).

The work by Izza (2009) provides a thorough review of Integration approaches, which

reviews much of the same material as the work reviewed on Interoperability Frameworks

(see Interoperability Frameworks section). This work refers to the risk of confusing

interoperability and integration; however, seems to occasionally blur the line between these

concepts in its review. This work resulted in a useful 2D evaluation framework of integration

techniques and tools using an axis with a scale form syntactic to semantic and the other axis

static to dynamic.

2.6.2.1 Integration continuum
Panetto, Molina (2008) states that integration is generally considered to 'go beyond mere

interoperability' to involve some level of function dependence. By this definition integrated

systems must be interoperable but interoperable system may not be integrated. Interfacing

can be considered a level of integration below interoperability. The implied description of

fully integrated systems as being superior to interoperable systems does not take account of

the issue of robustness; by this definition and failure of one system integrated with another is

likely to result in a failure of the integrated systems, while interoperable systems are likely to

be more robust.

Panetto, Molina (2008) goes on to provide a useful comparison of some key integration

frameworks which can be summarised as:

 Levels of Information System Interoperability (LISI): Focuses on technical

interoperability and the complexity of interoperation in 5 stages (Isolated, Connected,

Functional Distributed, Domain Integrated, Universal)

 Organisational Interoperability Maturity (OIM): Extends the LISI model into the areas

of Organisational Interoperability in 5 stages (Independent, Ad-hoc, Collaborated,

Integrated, Unified)

 Levels of Conceptual Interoperability Model (LCIM): Extends the technical model of

LISI in the area of Conceptual Interoperability in 5 stages (System Specific,

Documented, Aligned Static, Aligned Dynamic, Harmonised)

 NATO C3 Technical Architecture (NC3TA): Focuses on the level of content structure

in 4 levels (Unstructured data, Structured data, seamless data sharing, and seamless

information sharing)

45

 European Interoperability Framework (EIF): This framework shows the progressive

levels of challenge that must be overcome to achieve increasing levels of

interoperability (Technical, Semantic and Organisational)

The review aligns these frameworks and allows the conclusion that to achieve

organisationally integrated and seamless information sharing that domain integration and

dynamic alignment of concepts must have been achieved which requires the Technical and

Semantic challenges to have been overcome. To achieve unified information sharing the

concepts must be harmonised, the technical interoperation must be universal and the

organisational challenges must also be overcome.

2.6.2.2 Taxonomy
A major obstacle in information exchange is the differences in taxonomies used by various

members of a supply chain. The work of Taghaboni-Dutta, Trappey et al. (2010) proposes

an XML based framework for a supply chain integration hub that resolves this issue using an

XML schema for interfacing. This work proposes that it resolves the interoperability issue,

but it can be seen that while it only provides an advanced level of interfacing or integration,

the data structures and hierarchies alone do not resolve the potential semantic

inconsistencies which will prevent interoperability.

2.6.2.3 Systems and technology
Even if an enterprise uses current technology there is still complexity associated with

interoperation between systems’ competing software tools (Young et al. 2007).

A number of large enterprises have tried to overcome the challenge of integration or

interoperation across systems by insisting that their suppliers use the same tools. This only

results in the issue being pushed further down the supply chain, onto suppliers who are likely

to be dealing with other enterprises who will use different systems. This issue is significant,

and within the Automotive Industry alone the impact has been assessed as being in the

order of $1Billion (Young et al. 2009, Borgo, Leitão 2007).

Web based technologies are improving global access to IT support solutions, they generally

still focus on discrete areas of the business or systems, and in themselves do not have the

capability to resolve the interoperability issues. Attempts to create inter-domain integrated

systems have required significant overheads and result in inflexibility hence is not currently

practically supported (Young et al. 2007).

The Information and Communication Technology requirements for interoperability have been

identified as a key challenge by NIST, INTEROP and work by a number of authors. This

work has also identified that the traditional approaches to integrated information sharing

46

have fallen short of the requirements for enterprise level decision making (Young et al. 2009)

as do the approaches using interfacing systems or middleware (MESA 2012).

2.6.2.4 Information systems customisation for integration
The review by Izza (2009) of information systems integration provides some useful

categorisations of systems which will need to be considered when defining an integration

approach e.g.:

 Black box – unavailability of code or interfaces

 Grey box – unavailability of code but availability of interfaces

 White box – availability of code and interfaces

This work draws the important conclusion that even if the code is available it is generally

inappropriate to modify it, advocating the use of application wrappers or interfacing systems.

It can be inferred that any code/ system customisation would reduce the ability to migrate

from one application to another.

2.6.2.5 PLM
The conventional description of PLM as “a strategic business approach for the collaboration,

creation, management and dissemination and use of product definition information” (Anon

2008) does not fully represent the current developments in PLM Design and Manufacturing

Information and Knowledge Management such as (Young et al. 2007, Chungoora, Young

2010a, Young et al. 2009, Liu, Young 2007, Choi 2010) which are developing wider

information models and capabilities covering all aspects of the process and resources

required to operate the enterprise. Much of the work reviewed in the literature review is

either directly or indirectly contributing to this field.

2.6.2.6 PLM information exchange
Product Lifecycle Management tools are a key tool for product data and data storage and

exchange. PLM systems have evolved from the conventional CAD and PDM tools hence

much of the development on this toolset has focused on the Design context of the lifecycle

and the management of product, process and resource information.(Young et al. 2009, Choi

2010). While these systems provide a method of information organisation and management

they have significant limitations in terms of representing knowledge. The tight configuration

control requirements of PLM systems do not fit well with the requirements of interoperable

collaborative engineering (across domains or multiple system) (Young et al. 2010).

2.6.3 Standards – semantic issues
Deshayes, Foufou et al. (2007) describe standards as a “consensus on the semantics of

terms” going on to describe how standards will have different semantics for the same

47

concepts and will express them in different ways. The multiplicity of standards is therefore

highlighted as an integration challenge. This work goes on to describe an ontological

approach to standards integration, which could also be used to integrate separate domain

ontologies.

Syntactic integration using standards such as XML, ebXML or RossettaNet use (implicit)

informal semantics (Izza 2009) and therefore are subject to the issues of inconstant

semantic interpretation.

Young, Gunendran et al (2007) provided a compelling example how the same fundamental

term such as ‘Process’ defined in several standards (ISO/CEN 19439, ISO 15531-1:ISO

18629-1, ISO 10303-49) demonstrating the lack of rigour when using a solely standards

based approach.

2.6.3.1 Standards frameworks and adoption
In order to align product data, business and technology activities and enable interoperation,

standards are a must. Specific standards are often defined within the framework of larger

standards, an example being the FUNSTEP standard (ISO 10303-AP236) which is defined

within the STEP group of standards (Jr., Michel 2000, Agostinho et al. 2009). This standard

has been declared as a possible foundation for data exchange; however, it has not been

widely adopted.

Having attempted to overcome the issues relating to defining a workable standard the next

challenge is to manage the adoption of and compliance to that standard. In a diverse

enterprise supply chain many of the other challenges described in this section will lead to

conflicting attitudes and approaches to these standards because even if the standard is

adopted, unless it is implemented in a uniform manner variation can result. A number of

authors have described these issues related to the adoption of standards (Lin, Harding 2007,

Choi 2010, Deshayes, Foufou & Gruninger 2007) as well as the issue of having to chose

from conflicting standards (Jr., Michel 2000).

2.6.3.2 Standards adaptation
ISO 10303 AP224 fundamental concepts were used in the work to define the Semantic

Manufacturing Interoperability Framework, which were adapted and formalised as part of the

research (Chungoora, Young 2010a). This raises the questions of how far a standard can be

‘adapted’ while still being a generically applicable standard, and the risk introduced if other

users adapt the same standard in a different way (i.e with the two adaptations be mutually

compatible?).

48

Annex A of ISO/EIC 15288:2002 provides guidance on the tailoring of the international

standard to allow its adoption in a variety of circumstances (ISO 2002).

It is common for standards to be built upon or ‘extended’ (Deshayes, Foufou & Gruninger

2007). These extensions are generally not limited to the use of the base standard’s ontology

meaning these domain or application specific extensions cannot be aligned or linked in the

same way that domain ontology based on a common core (or standard) ontology can be

(see Foundation Ontology section).

2.6.3.3 Standards flexibility
The standards used within the enterprise, be these design standards, communication

standards, architecture standards etc, which are usually enacted to improve commonality

and interoperability can result in organisations and functional inflexibility and an inability to

adapt to new requirements. Any global standard that is defined would need to be suitably

comprehensive in scope and coverage to accommodate any requirements from any function

within the enterprise. Defining such a standard would be impractical, as its

comprehensiveness would render the standard itself inflexible; compounding the constraints

any standard applies to an organisation. The larger the organisation or data model the more

the more likely it is that the standard coverage will be incomplete (Lin, Harding 2007). A

one-by-one representation of information according to defined standards is not a simple job,

and so is not worth the enormous cost and time needed to conform to the standards (Choi

2010).

2.6.4 Enterprise integration and interoperability
A definition of an enterprise in ISO 15704 (Chen, Doumeingts & Vernadat 2008) is given as

“one or more organisations sharing a definite mission, goals and objectives to offer an output

such as a product or service”. This work goes on to summarise the difference between

Enterprise Integration and Enterprise Interoperability as being the degree of coupling. If

systems are tightly coupled, displaying interdependence, coherence and uniformity, they can

be considered integrated. Interoperability, however, is characterised by looser coupling,

coexistence, autonomy and a federated environment. The approach to interoperability is

defined according to ISO 14258 as being:

 Integrated : where there exists a detailed, common, agreed format for all models

 Unified :where semantic equivalence is enabled by a common meta-level structure

across constituent models

 Federated’ :where there is no common format and models must dynamically

accommodate (through a shared ontology) rather than having a predetermined

meta-model.

49

2.6.4.1 Integrated, unified and federated approaches
As described in (ISO 1999) the approaches to interoperability can be categorised as:

 Integrated - With integrated models there is a standard model form. Diverse models

are interpreted against the common template. Standard or reference models must be

as rich as the constituent models. All models can be stored in standard form with

information filtered or translated by the applications. Alternatively, standard models

can be agreed to by constituent model owners, as in STEP. There are enormous

difficulties associated with standardizing large numbers of models. Therefore, the

ability to deal with something less than integrated models is most certainly

necessary.

 Unified - The unified approach assumes that there exists a template that provides a

common meta-level structure across constituent models, providing a means for

establishing semantic equivalence. This template is then the basis for a meta-model.

The meta-model is not in an executable form as it is in integrated situations. Using

the meta-model, any model can be translated into any other. Loss of some semantics

is possible. Normalized semantics is established by owners of constituent models.

 Federated - The federated model scenario exists if one assumes that no agent can

impose requirements for semantic equivalence across all models of an enterprise.

Models must be taken as encountered. The template is at the meta level and, as in

the unified situation, the template is not executable. Some degree of integration or

unification would help the communication process. Interoperability requires that

models be dynamically accommodated rather than having a predetermined meta-

model. This would be furthered with some sort of predetermined terminology system.

Definitions are a particularly difficult problem for process interoperability when the

namespace contains federated models.

Many different approaches and programs of work have been reviewed (Chungoora, Young

2010a, Panetto, Molina 2008, Izza 2009, Young et al. 2005, Young et al. 2009, Chen,

Doumeingts & Vernadat 2008, Lin, Harding 2007, Zhang, Xu & Ewins 2007, Usman 2012,

Shen, Carlson & Peter Tarczy-Hornoch 2009, Latif, Boyd & Hannam 1993, Ray, Jones 2006)

and the general conclusions are:

 The Integrated approach is currently widely used, with its associated limitations of

significant resource requirements and flexibility etc.

 The majority of work on interoperability solution development is following a Unified

approach. While the details of the frameworks and modelling approaches differ, the

common concept of meta-model definitions supported by formalised ontologies is

50

widely replicated. This approach is still generally in the concept and demonstrator

development stage, and while credible routes to implementation have been

proposed, implementation levels are still limited.

 The ISO (ISO 1999) description of the Federated approach is consistent with the

findings of the reviewed research: this approach gives rise to significant ontology

problems. The difficulties of ontology building, mapping and verification etc are

discussed within the literature review, and therefore the problems arising in an

approach where there is no semantic standard exacerbate the complexity and

workload of any resolution approach. While Federated approaches have been

described they have been declared impractical within the standard, and the Unified

approach the preferred option.

2.6.5 Integration architecture
Architectures for integration and interoperation have been discussed in detail by Chen,

Doumeingts et al. (2008). While a number of definitions for ‘architecture’ are offered, the

most relevant is “the structure of components, their inter-relationships and the principles and

guidelines governing their design and evolution over time”. This definition is carried out at a

high level of abstraction, allowing representation of the system in terms of features rather

than detailed requirements on functions, data and resources. This work compares the key

research on enterprise architectures such as the Computer Integrated Manufacturing Open

System Architecture (CIMOSA), the Purdue Enterprise Reference Architecture (PERA) etc.

The authors describe the key deficiency in the development of Interoperability Architectures

as being one of the lack of a standard ontology for concepts, relationships and properties of

enterprise architectures, which is common across other aspects of interoperability fields of

research.

2.6.5.1 Model driven architecture
The Object Management Group (OMG) has proposed a Model Driven Architecture (MDA)

using hierarchical common concept models which are defined by Meta and Meta-Meta

models in turn. These models are (in descending hierarchical order): Computation

Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific Model

(PSM). The CIM considers the environment and requirements without the detailed structure

being defined), the PIM considers the operation of a system without focusing on

requirements of any specific platform and the PSM takes the PIM and considers the

requirements These common concept models can be mapped and transformed to each

other using morphisms (either altering or non altering) or another transformation tool (Young

et al. 2010, Young et al. 2009, Agostinho et al. 2009).

51

Chen, Doumeingts et al. (2008) described work which has been carried out within the

framework of INTEROP and ATHENA on Model Driven Interoperability (MDI) based on MDA

and enterprise interoperability concepts. This aims to allow automatic transformation

between the CIM, PIM and PSM model levels and allow interoperation between models

within different enterprises which use the same MDI architecture.

This MDA approach has been adopted by the Interoperable Manufacturing Knowledge

Systems project (Young et al. 2010). As part of this work they have provided a compelling

argument that where multiple PIMs are used there is a need for a heavyweight ontology

which underlies these models as well as an ability to evaluate the differences in concepts

across domains to verify the extent to which they are sharable.

2.6.5.2 Interoperability and information exchange frameworks
“The main purpose of an interoperability framework is to provide an organizing mechanism

so that concepts, problems and knowledge on enterprise interoperability can be represented

in a more structured way” (Jr., Michel 2000, Chen, Doumeingts & Vernadat 2008). Chen,

Doumeingts et al. (2008) details the work carried out to develop interoperability frameworks.

These frameworks show different ways of describing and categorising interoperability. This

research describes how the work of various groups e.g. IDEAS, C4ISR AWG, ATHENA,

NEHTA, has been built upon by the INTEROP Network of Excellence (NoE) framework. This

framework appears to be a well rounded structure which is defined in 3 dimensions:

 Interoperability Barriers : these are categorised as Conceptual (syntactic and

semantics), Technological and Organisation Barriers as per the E-Health (NEHTA)

framework

 Interoperability Concerns (Enterprise Level) : Data, Service (application), Process

(sequence of services), Business as per the ATHENA work

 Interoperability Approaches: Integrated, Unified, Federated as per ISO 14258 (ISO

1999).

This framework defines a useful three dimensional enterprise interoperability domain within

which tools and activities can be categorised and compared.

Similar work has been carried out defining common knowledge frameworks to enable

collaboration or interoperability(Liu, Young 2007). This work classifies the information and

knowledge used to support manufacturing decision making into 3 domain specific knowledge

models:

 Product Model

52

 Manufacturing (capability) Model

 Order Model

Two variants of each model are described: Local and Global. This work goes on to focus on

the relationships within and between the models at the same and different organisation

levels and is proposed for discrete decision making support. This work uses standardisation

and explicit definitions to provide unambiguous structure, but as previously discussed this

comes with a very high construction and maintenance overhead, which makes real world

operation impractical.

It has been demonstrated that the product model approach is limited in its ability to capture

the multiple viewpoint representations and the knowledge of relationships between such

viewpoints (Gunendran, Young 2006). It is reasonable to infer that the other 2 models will be

equally limited unless this multi-modal requirement is addressed (i.e. the ability to

accommodate multiple domains). A method of achieving integration (i.e. not Interoperability)

between product design viewpoints is proposed in this work using separate product

information and knowledge layers and knowledge links, however there is a need to reduce

the complexity of these links before this approach (or similar) could be expanded to other

contexts and lifecycle stages.

2.6.5.3 Semantic interoperability frameworks
The use of frameworks based on semantic interoperability is an approach emerging from

several areas, such as the ISO standards community (ISO TC184/SC4) (Young et al. 2010,

Chungoora, Young 2010a). These papers propose the Semantic Manufacturing

Interoperability Framework (SMIF) and the IMKS project. This work is built upon some of the

strongest emerging ontological approaches i.e.:

 It uses common logic (CL) based ontological formalism

 It uses a heavyweight foundation ontology defined on the CL formalism

 It uses this foundation ontology to define domain specific ontologies

This approach provides more formal mechanisms for the capture of knowledge by starting

from a low level of abstraction (such as GD&T semantics for product features). Heavyweight

methods were used to provide interoperable knowledge sharing between domain models.

This work was limited to aspects of the design and manufacturing phases of the (product)

Lifecycle i.e. the complexities of applying this approach across multiple lifecycle phases with

their multiple domains were not in their scope.

53

The Agile Manufacturing Data Management approach (Qiao, Liu 2009) displays a similar

approach to those previously discussed in that it uses a multi-layered architecture which can

be summarised as:

 1st layer: Core concept and objects in a domain ontology (databases)

 2nd Layer: Meta models describing the relationships between the objects (service

components).

 The core concept and meta models together define a unified manufacturing data

model combining Manufacturing Management, Enterprise Resource and Product &

Process Information models.

 3rd Layer: Service Layer, providing application Service Applications (web based)

 4th Layer: Business Level services

The 3rd and 4th Layers of this model are predominantly detailed as part of the description of

the use of different technology, but Layers 1 and 2 are an attempt (albeit loosely defined) to

address the same issues as the more detailed MSIF

2.6.6 Ontology
It may be considered ironic that there are a number of definitions of an ontology such as that

provided in (Noy, McGuinness 2001, Li, Yang & Ramani 2009). The definition that is used

within this research is: ’a basis for shared meaning’ . A lack of practical ontology results in

semantic miscommunication: where the same term is used to define multiple concepts or

objects and where multiple terms are used to define the same concept or object) (Young et

al. 2007). Shared definitions of objects and concepts themselves do not ensure effective

unambiguous communication, as this requires a wider lexicon of terms to enable the

detailing and exchange of meta data and emerging data, information and knowledge types

(Liu, Young 2007). An example of this ambiguous ontological interpretation is the

understanding of what ‘process’ information may be; the work reviewed seems to use a

generally common understanding of this information to be the process steps, activities and

their relationships and requirements, however this could equally refer to Manufacturing

Intelligence (MI) dynamic information, although there is little evidence of MI information

requirements being included or accommodated.

Noy, McGuinness (2001) highlights the contradictory definitions of ontology (particularly

within Artificial Intelligence literature) and proposes a clarification which appears to be

strongly related to object based programming conventions:

 Ontology – Is a formal explicit description of concepts in a domain

54

 ‘Concepts’ are also sometimes called ‘classes’ which can also be divided in sub-

classes

 The ‘roles’ or ‘properties’ of classes are defined within ‘slots’

 The restrictions on slots are referred to as ‘facets’ or ‘role restrictions’

 An ontology along with individual instances constitute a knowledge base (no clear

definition of where a ontology ends and a knowledge base begins is provided)

The use of shared ontology has been proven to aid in the persistent representation of

information across heterogeneous and design collaborations. Kim (2006) detailed a review

of the development of Ontologies. Related tools such as PSL (Process Specification

Language) and the semantic web describe how they were initially too high level to be

practically applicable but have become increasingly detailed . This works goes on to propose

an ontology based product development collaboration model but it does not address the

issues of security or automatic ontology construction. It does show how structuring concepts

using standard semantic terms and defined relationships provides the capability for

computers to infer relationships for specific model instances.

Projects that operate within inter-enterprise environments or across multiple domains face

the issue of different information models being used by different functions or areas. The local

teams will develop models, vocabulary and terms that most effectively address their specific

needs. While a standard vocabulary will help individuals within a domain to communicate it

will not support flexibility from outside this domain due to the issues discussed in the

‘Standards’ section (Lin, Harding 2007).

2.6.6.1 Ontologies and interoperability
A number of authors have included useful reviews of the history and development of the field

of Ontologies within the context of interoperability (Noy, McGuinness 2001, Young et al.

2007, Borgo, Leitão 2007, Kim, Manley & Yang 2006, Kyoung-Yun Kim et al. 2009, Li, Yang

& Ramani 2009). However a suitably generic set of terms for evaluating an ontology have

been proposed (Borgo, Leitão 2007, Blomqvist, Öhgren 2008):

 Expressiveness of the language (glossaries, natural/ formal languages)

 Purpose of the ontology (terminological ontologies, information ontologies,

Knowledge sharing; where each level adds complexity)

 The domain covered (manufacturing, design, management, finance)

 Structural complexity (Degree of branching, depth of the hierarchy)

55

A number of manufacturing information systems have used ontologies to describe the

structure an relationship between domain intra-organisational concepts e.g. MOSES,

CIMOSA and MISSION (Lagos, Setchi 2007).

The reasons for creating an ontology have been summarised by Noy, McGuinness (2001)

as:

 To share common understanding of the structure of information among people of

software agents.

 To enable reuse of domain knowledge.

 To make domain assumptions explicit.

 To separate domain knowledge from the operational knowledge.

 To analyze domain knowledge.

The authors go on the describe these points in detail. These descriptions emphasise the

relevance of ontology based knowledge sharing to providing consistency of understanding

and enabling clear representation of domain knowledge.

2.6.6.2 Ontology creation
Noy, McGuiness (2001) describe a manual approach to defining an ontology. This approach

is predicated by the assumptions that there is no one correct way to model a domain (as it

depends on the intended use of the model). Ontology creation is an iterative process and the

concepts in the ontology are likely to be nouns and verbs (describing objects and

relationships). The defined approach relies on the creator of the ontology focusing on the

most relevant concepts and properties, and using this focus on relevance to offset the

inevitable incompleteness of an ontology. The approach is summarised in the following

steps:

1. Determine the domain and scope of the ontology – The intended use of the ontology

must be understood to ensure the resulting model is relevant. Techniques such as

‘Competency questions’ can be used to this end.

2. Consider reusing existing ontologies – Many ontologies have been defined (libraries

of reusable ontologies are available) and many of them are in tools which allow them

to be exported.

3. Enumerate important terms in the ontology – Writing down a list of all key terms,

properties or statements to be used by or with the ontology in a ‘brainstorm’, focusing

on being as comprehensive as possible while maintaining relevance.

4. Define the classes and the class hierarchy – Using either a top-down, or bottom-up

or a communication of both the classes are organised into a hierarchical taxonomy.

56

5. Define the properties of classes – Intrinsic (e.g. flavour), extrinsic (e.g. name), parts (

if the object is structured) and relationships are just some of the types of properties

that can be defined within ‘slots’.

6. Define the facets of the slots – These describe the constraints on the slot values

such as: number of values (cardinality), slot value type (e.g. string, number, boolean,

enumerated (defined list) and instance) domain and range of a slot.

7. Create instances – populating the classes.

This work provides a significant level of detailed guidance on the structuring, process,

nomenclature and logical considerations in ontology construction which summarises much of

the legacy research and provides a very useful framework to follow.

Blomqvist, Öhgren (2008) Li, Yang et al (2009) provided a useful review of manual and

automatic techniques for ontology creation. For manual methods the key factors compared

were the level of definition, lifecycle coverage and level of reuse of existing ontologies. The

outcome of this work can be summarised as:

 Automatic approaches provide a structured result but will not capture the most

specific concepts without further development. This approach relies on pattern

recognition and so is limited by the level of structure and pattern that is available to

find.

 The manual approach gives a less structured result with less complex relations and

axioms, but it captures the more specific and relevant concepts (corroborated by the

work of Noy, McGuiness (2001)).

 A combination of the approaches in the future therefore appears the logical

conclusion with manual being most appropriate for the high and low level of the

ontology and automatic then being used to populate the middle levels.

The last point is corroborated by the findings of Li, Yang at al (2009).

Work has been published on the automation of the merging of separate ontologys, whether

that is generic, domain, application or service ontologies (Wang et al. 2007).

2.6.6.3 Ontology merging
The ontology merging work of Wang et al (2007) was built on the use of OWL-S (as a non-

natural language descriptor), Wordnet (as a disambiguating knowledge base) and its own

ontology merging algorithm. This work reviews and discounts other approaches to this issue

due to their requirement for manual input, limitation to lightweight ontologies and insufficient

knowledge base development. This technique relies on the imported ontologies being fully

defined within their own domains. In practice it is unlikely that the separate ontologies will be

57

fully documented as the work to document them all to generate a global ontology would be

impractical.

2.6.6.4 Mapping
Mapping has been used as a method of integrating multiple viewpoint representations

(Gunendran, Young 2006). The reviewed work highlights the limitations of mapping and

translation, as they are limited to mapping between two models or viewpoints, and in the

case of translation, are unidirectional. It also refers to other work that is looking to combine

these approaches with agent based and ontology based approaches.

2.6.6.5 Ontology mapping
Ontology mapping has been proposed as a method of reconciling semantic structures

across multiple domain ontologies (Chungoora, Young 2010a). The approach proposed in

the SMIF uses logic/ rule based mapping, it is postulated that this resolves some of the

current limitations of existing ontology mapping frameworks, although it does not mention

explicitly which.

Ontology mapping concerns the establishment of ontology links (or mappings) between two

ontologies. This means that for each ontology entity (concept, relation, attribute, etc) a

corresponding entity in the second ontology is attempted to be found, with the same or the

closest intended meaning; usually this correspondence is expressed by 1 to 1 functions (Izza

2009). This work provides a detailed review of mapping and matching techniques, finding

mapping to be a key field of research for integration technologies.

2.6.6.6 Concept mapping
Concept mapping between supply chain members, using a XML schema has been proposed

(Taghaboni-Dutta, Trappey & Trappey 2010) however it requires that those wishing to use

the system must create a custom mapping interface to map their unique XML forms to a

defined standard i.e. the interface uses the XML structures of the source and target files to

create a visual structure for the user to manually assign mapping rules which are saved for

future use. This system does not address semantic inconsistencies, and while the mapping

rules a relatively simplistic, this could cause erroneous mappings for different uses of the

same terms.

2.6.6.7 Heavyweight and lightweight ontologies
There are two commonly used categories of ontology: ‘Lightweight’ and ‘Heavyweight’.

Lightweight ontologies require some level of interpretation leaving some opportunity for

miscommunication e.g. a dictionary: the terms are explicitly defined but this is using a

common but unscientific language. Lightweight ontologies allow shared discussions, but are

not rigorously enough defined to allow systematic or automatic communication, action and

58

inference. Heavyweight ontologies by definition provide this capability and therefore share

some basic structural requirements with machine code or programming languages. A

heavyweight ontology uses formal (machine interpretable) logic in the form of axioms to

avoid the terminological and conceptual ambiguities due to unintended interpretations

(Borgo, Leitão 2007).

The complex topic of creating heavyweight ontology to enable systems integration (and their

benefits over lightweight approaches) is the subject of significant published and ongoing

review and research (Young et al. 2007, Young et al. 2010, Young et al. 2005, Young et al.

2009, Usman 2012, Usman et al. 2011). The reviewed literature consistently states that

lightweight ontologys lack the rigour required to prevent ambiguity or the requirement for

manual interpretation. It is also apparent that much of the work on heavyweight ontologies

has been carried out for high level or foundational ontologies meaning they have been

difficult to practically apply. This was overcome with the development of the Core Concept

Ontology (Usman 2012, Usman et al. 2011).

2.6.6.8 Foundation and core concept ontologies
A ‘Foundation Ontology’ is one which is used as a general basis for building further domain

specific (‘core’) ontologies (Borgo, Leitão 2007). Research in linguistics has suggested that

as few as 60 semantic primitives are adequate to construct a very large number of concepts

(Cassidy 2008). Work to define the ADACOR manufacturing core ontology highlighted the

difficulties to build, maintain and modify proprietary ontologies to be used by heterogeneous

manufacturing control applications, especially those built upon distributed approaches such

as multi-agent systems. This problem pushed for new approaches in the development of

manufacturing ontologies to simplify the effort to build, maintain and modify the ontologies.

Following a review of the alternatives, the adoption of an established first order logic based

foundational ontology (DOLCE) (Masolo et al. 2003) to structure the ADACOR concepts was

suggested to overcome this problem and to improve the consistency of the overall system

(Borgo, Leitão 2007). This work was limited to manufacturing scheduling and control entities

and no real world testing was carried out. However, this work implied the approach that

would be later explicitly defined and demonstrated by the work or the SMIF and IMKS

research (Young et al. 2007, Young et al. 2010, Chungoora, Young 2010a, Chungoora,

Young 2010b).

It has been proposed that it is possible to define an elemental foundation ontology that can

be used to construct domain specific ontologies which, because of their shared root

meanings can then provide that ability to interoperate. It has been proposed by Young,

Gunendran et al (2007) that it may not be possible to create one foundation ontology that

59

can support the diversity of requirements for all possible domains. In this paper they suggest

it may be possible to use multiple foundations ontologies: this would create an extra ontology

layer that would require relationships between the foundation ontologies to be defined (a

significant task). This work is part of the foundation work for the Interoperable Manufacturing

Knowledge Systems (IMKS) research team at Loughborough University whose work is a key

foundation for this research. The IMKS project focuses on interoperability across the

manufacturing and design domains, and aims to identify a manufacturing foundation

ontology through industrial research to identify key concepts and verification methods and

uses Common Logic for system design and a PLM system as a source and repository for

relevant product and manufacturing facility information (Young et al. 2010). Cassidy (2008)

proposed an opposite scenario, where communities could operate using their own local

ontology, and as long as they can translate it into a common foundation ontology they could

exchange information without semantic mismatches. To simplify this translation task,

Cassidy stated that the number of elements in the core ontology should be minimised. This

approach is similar to the approach to standards integration proposed by Deshayes, Foufou

et al. (2007) which holds the domain ontologies to be of primary importance which can be

used to define a core ontology by classifying (manufacturing) concepts and relationships in a

coherent modular architecture. This work was progressed further, leading to the

development of the Core Concept Ontology (Usman 2012, Usman et al. 2011). The

reviewed literature provides a comprehensive review of the previous work on light and

heavyweight foundation ontology development and concludes that the level of abstraction or

generalisation needed to make an ontology foundational leads to it being too generic to be

practically applicable. The concept of a Core Concept Ontology is proposed and

demonstrated, providing a foundational ontology for a particular domain which can then be

used to develop further, more specialised, sub-domain ontologies with the Core Concept

ontology providing semantic consistency. This domain specific foundational or Core Concept

Ontology was adopted as a core principle of the solution concept for this research.

The Core Concept ontology adopts the IODE (IODE 2010) toolsets principles of ‘concepts’

and ‘Individuals’ where an individual is any concept that cannot be further instantiated. The

concepts are related by Meta Logic which constrains and structures them (Chungoora,

Young 2010a, Usman 2012).

The published information on the IMKS recognises the need for further work on greater

Product Lifecycle coverage as well as knowledge maintenance. Two key areas not

discussed are the ability to maintain interoperability through multiple system lifecycle

iterations, and the foundation ontology extension requirements specifically for Manufacturing

Intelligence

60

2.6.6.9 Foundation ontology adoption
The foundation ontologies OpenCyc, SUMO, DOLCE and BFO have been developed to

have the expressivity of First Order Logic, meaning that they should enable semantic

interoperability which enables computerised inference using rules expressing domain

knowledge. None of these projects have adopted the approach of creating a common

foundation ontology; in turn their adoption for use has been limited (Usman 2012, Cassidy

2008). The proposed solutions for this limited adoption can be summarised as:

 The number or core concepts should be as small as possible (for simplicity).

 The ontology should be public (for inclusiveness)

 There should be a intuitive natural language interface (to identify duplication)

 The ontology format should have the expressiveness of first order logic as a

minimum.

The COSMO ontology project is intending to demonstrate some of these solutions, although

it is not intended to be deployed beyond this demonstration activity (Cassidy 2008).

A key challenge for the use of Ontologies is the level of time and effort required to construct,

verify and maintain them. Many of the papers reviewed identified automatic and semi-

automatic mapping such as algorithms and heuristics as areas for further work (Lin, Harding

2007).

The principal of structured ontology based metadata and rules have been adopted and

applied to web platforms, creating the ‘semantic web’ and ontology based query systems

(Lin, Harding 2007).

Ontologies share the inheritance features with the object oriented (OO) programming

languages, which are indeed suitable for implementing ontological procedures. However, in

OO programming, the focus is on designing the operational properties, that is, the methods

of a class, whereas ontology development is based on the structural properties, that is,

relationships of a class. More importantly, the OO approach lacks the conceptual content of

ontologies, and it is not sufficient for addressing rich knowledge modelling needs (Li, Yang &

Ramani 2009).

2.6.6.10 Ontological vs taxonomic approaches
Currently, there is some confusion between taxonomy-based and ontology-based

applications. One of the major differences between taxonomies and ontologies is that

ontology represents much richer domain contexts than a taxonomy or a list of taxonomies. A

taxonomy is a hierarchical classification of concepts in a sub domain. These concepts are

connected only by domain-independent (i.e., taxonomic) relationships such as is-a. An

61

ontology, however, consists of several taxonomies, along with multiple domain specific (i.e.,

non-taxonomic) relationships to connect concepts across taxonomies (Li, Yang & Ramani

2009).

2.6.6.11 Descriptive and common logic
While the use of OWL’s Description Logic (DL) goes some way to provide formal meanings

to terms, it cannot provide the same level of ability as knowledge representation formalisms

such as Common Logic (CL). While OWL allows the definition of binary relationships, CL

allows more complex relationships such as the position within a process sequence. The use

of CL then allows the use of standard process semantics from the Process Specification

Language (PSL) which can then form the basis for a manufacturing ontology (Young et al.

2009). Comprehensive standards and descriptions of both PSL and CL have been published

(ISO 2007, ISO 2004).

2.6.7 Context or viewpoints
Context can be described as the collection of relevant conditions and surrounding influences

that makes a situation unique and comprehensible. The field of artificial intelligence has

been exploring the implications of context in areas such as natural language processing for

decades and has had to readjust its initial high hopes for machines that can mimic human

intelligence. Context is enormously complex involving numerous interacting factors that

people may not recognise on a conscious level, and many of which are outside the ability of

machine input devices to capture (Degler, Battle 2003).

A product or process needs to be considered from multiple perspectives or viewpoints to

satisfy the many conflicting requirements that must be addressed (Gunendran, Young 2006).

In the case of a product or tool, examples of functional viewpoints might be:

manufacturability, cost, maintainability etc. Most of the work reviewed discussing information

viewpoints is based around product information, however, the principals are equally

applicable to process and resource information etc. Approaches for information integration

between viewpoints are reviewed in the ‘Interoperability Frameworks’ section.

The core issue of sharing meaning across functions has been described in many ways; one

of the most common shorthand descriptions is that of ‘context’ as it is applicable to the many

different barriers. It is the concept of context that was used to describe the limitation of the

conventional geometric feature based approach to knowledge sharing. The feature is

generally defined in one specific context e.g. design, which will not relate to the

manufacturing or assembly contexts (Young et al. 2007). The two contexts may refer to the

same geometry using different terms and parameters or there may be no direct geometric

correlation between the features as defined in their contexts.

62

Young, Gunedran et al(2009) described three key contexts for knowledge structuring:

 Lifecycle

 Product

 System

These are all valid ways of perceiving the interoperability requirement. The Lifecycle context,

as described in this work, considers the information and knowledge through the Design,

Manufacturing, Operation and Disposal stages of the enterprise activity. The Product context

considers the information and knowledge relating to product features, functions and

associated activity, processes and most importantly, the relationships between them. It is

within this context that design or manufacturing part families are useful, with these distinct

types of part family groupings representing aspects of the Lifecycle context. The Systems

context considers the software systems used. The Model Driven Architecture (MDA)

approach is proposed as a suitable way to specify IT solutions that work across multiple

platforms (see ‘Architecture’ section).

It is reasonable to infer from this work that to achieve enterprise level interoperability,

methods for communication of information and knowledge must be able to be understood in

a consistent, unambiguous way across contexts and viewpoints (see section on mapping),

and that these contexts have significant overlaps and duplication.

A widely recognised way to resolve the issue of ‘context for data, information and knowledge

is to structure it around products or product families. Cost, Young (2001) discussed this

approach and proposed a Product Range Model for variant product design that structures

information about the product and its functions, design solutions and their interactions

63

2.7 Tools
This section reviews the relevant tools in the field of research.

2.7.1 XML

XML (extensible mark-up language) has been used by a number of different authors as

suitably robust syntactic structure (Choi 2010, Taghaboni-Dutta, Trappey & Trappey 2010),

but it can only be used to document and represent information structures that have been

explicitly defined. XML defines the content of a page in a platform independent manner

(suitable for PIMs) and is extensible in that it allows the creation of new tags for new and

unforeseen purposes (Jr., Michel 2000)

2.7.1.1 XML based exchange
Choi (2010) describes the development of an XML based neutral file format for the

management of PPR data using the PLM Services 1.0 specification for the definition of a

PLM PIM and PSM (see Model Driven Architecture section). This work highlights that PLM

Services are inflexible due to the inclusion of information extraneous for information

exchange. A more fundamental issue is that this work relies on natural language to define

concepts and relationships and so this work has similarities to that of Taghaboni-Dutta,

Trappey et al.(2010) in that it describes the development of an XML schema for the

exchange of information and XML/ adapters/ translators/ mapping approaches without first

addressing the issue of ontology alignment. As such it is possible that these methods could

provide a structured method for mapping concepts or relationships in separate domain

models (see Mapping section) which turn out to be incorrectly or inconsistently interpreted

leading to an ambiguous or erroneous exchange (see Ontology section)

Choi (2010)provides a detailed review of the development of product data exchange formats

(many of which have been embodied in XML). Key points of this review are:

 Most exchange formats have focused on the exchange of product geometry

information rather than PLM information.

 The PLM XML format that has been developed by Siemens is still biased towards

product geometry and while it is an open schema, its development is limited by the

requirement for commercial software (PLM XML SDK)

 Even if all encompassing information exchange encompassing standards were

available, they could not be implemented due to the lack of a system which supports

them.

64

2.7.2 RDF and OWL

RDF provides a simple data model and the RDF schema defines a simple ontology language

with classes, sub-classes, properties and sub- properties and domain and range restrictions

for expressing metadata. However, the RDF schema is not explicit (formal) enough when it

comes to representing complex constraints. OWL (Web Ontology Language) has been

developed as a vocabulary extension to RDF. (Kim, Manley & Yang 2006).

Lin (2007) used the expressiveness of the OWL primitives in the manufacturing taxonomy

and axioms to enhance the information integration with an inter enterprise community. This

work also includes a sound review of the development of the semantic web and associated

standards (i.e. RDF and OWL).

By providing additional vocabulary along with a formal semantics, OWL facilitates greater

machine interpretability of Web content than that supported by XML, Resource Definition

Framework (RDF), or RDF Schema. In 2004, the World Wide Web Consortium made OWL a

recommendation for Semantic Web technology. Semantic Web Rule Language is based on

a combination of the OWL DL and OWL Lite sublanguages of OWL and is intended to be the

rule language of the Semantic Web (Kyoung-Yun Kim et al. 2009).

2.7.3 Common logic tools

Knowledge Framework Language (KFL) is a specific example of a Common Logic based

ontological formalism which provides expressive logic in which to encode subject matter

ontology. First order logic based tools such as KFL provide much greater expressivity than

taxonomic model based tools such as OWL (Chungoora, Young 2010a, Deshayes, Foufou &

Gruninger 2007). The work on the COSMO ontology proposed the use of OWL with the

intention of enabling automatic translation to a common logic compliant language (such as

Knowledge Interchange Format KIF (Deshayes, Foufou & Gruninger 2007) or IKL) by

representing rules, functions and higher-arity relations in the OWL format (Cassidy 2008).

Both the work to implement the Semantic Manufacturing Interoperability Framework (Young

et al. 2010) and the IMKS project used KFL, therefore the Integrated Ontology Development

Environment (IODE) was used as it is capable of handling Common Logic-based semantic

frameworks (Chungoora, Young 2010a).

2.7.4 IODE, KFL and ECLIF

 As described in Section 2.7.3 the IODE system uses Knowledge Framework Lanfuage

(KFL) and Extended Comon Logic Interchange Format (ECLIF). In this research, KFL was

used to declare relationships, logic and types, whilst ECLIF was used to declare instances

65

build the queries. The following section describe the basic declarations and formats used in

this research.

2.7.4.1 KFL ‘properties’ or types

The following code is an example that declares a type of person called ‘operator’:

:Use MI

:Prop Operator

:Inst Type

:sup Person

:name "Operator"

:rem "An Operator is a Person responsible for operating or carrying out the Process."

The ‘Use’ statement declares the context for this declaration; in IODE the same term can be

declared in multiple contexts, which can be explicitly called as by prefixing a term with the

context. In this example when instantiating ‘Operator’ in this context it should be called as

‘MI.Operator’. If another context ‘Finance’ existed then a finance operator would be

instantiated using the term ‘Finance.Operator’ which would be separate from the

‘MI.Operator’ instance in the knowledge base.

The ‘Prop’ statement introduces the property of whatever is being declared, generally using

its name, as described in the ‘Name’ statement, although when the name is impractically

long or has spaces in it, this property will be a condensed version. It is this declaration that is

used when referring to the declaration in the future e.g. a declaration with the name ‘Group

Capital Controller’ may have the property ‘GCController. The IMKS coding conventions have

been followed so each word or initial of a property is capitalised.

The ‘Inst’ declares what is being instantiated, in this work the declarations are all ‘Types’. An

instance of a type cannot cease to be such while it exists.

The ‘Sup’ statement declares the super-type relationship for this type. In this example

‘Operator’ has the supertype ‘Person’ i.e. an operator is a type of person. A type may have a

number of super-types, but it cannot be its own supertype.

The ‘Rem’ statement declares a text based description of the declared property to allow

human interpretation of its meaning.

66

2.7.4.2 KFL relations

Unlike UML KFL does not use ‘attributes’, instead describes entities by relating them to each

other or primitive data values. The following code declares two relations called ‘higherThan’

and ‘hasOpAuthorityLevel’

:Rel higherThan

:Inst BinaryRel

:Inst IrreflexiveBR

:Inst TransitiveBR

:Sig Top Top

:Rel hasOpAuthorityLevel

:Inst BinaryRel

:Sig Top OpAuthorityLevel

:name "has Operational Authority Level"

The ‘Rel’ statement declares the relation, whilst the ‘Inst’ statement declares what

relationship it instantiates. The relation types used in this work were:

 Binary Relations: a relation linking two properties

 Irreflexive: the binary must have different properties for each of its arguments e.g. for

the ‘higherThan’ relation, A can be higher than B or vice versa, but A cannot be

higher than A.

 Transitive: If the relation applies to A and B, and B and C it can be inferred that it will

also hold for A and C.

The ‘Sig’ statement declares the signature of the relation; for a binary relation this must be

the two properties for which the relation can be valid. This effectively constrains the

relationship validity so it is critical that it is defined at the right level of generalisation. In the

‘higherThan’ example shown above the relation holds for any properties so the signature is

declared as ‘Top-Top’ with top being the most general property. For the

‘hasOpAuthorityLevel’ example the signature shows that the relation can apply to any

property, but that the other property must be an ‘OperationalAuthorityLevel’.

67

It was through these sections of code as listed in Appendix E that the UML diagrams in

Section 6.2.1 were formalised or codified.

2.7.4.3 KFL logic

The terms and syntax used within KFL use a similar structure to ECLIF (see Sections 2.7.4.4

and 2.7.4.5), and the IODE tool itself does use ECLIF for queries. KFL uses 6 logical

operators of which 5 were used:

 Implication: following the basic ‘if – then’ form this operator uses a first argument (the

antecedent) and a second (the conclusion). If the antecedent is true then the

conclusion argument will also be true. The implication statement starts with ‘=>’ and

is followed by the two arguments, which look like ECLIF statements in parenthesis.

 Conjunction: this introduces the logical ‘AND’ operator to the logic. The conclusion

argument is true if all the linked antecedents are true.

 Disjunction: this introduces the logical ‘OR’ operator. The conclusion argument is true

if any of the antecedents are true.

 Negation: this introduces the ‘NOT’ operator. The conclusion is true if the antecedent

is false.

 Existential Quantification: this introduces the ‘EXISTS’ statements. If valid instances

for the terms in the antecedent can be found then the conclusion is true.

The Universal Quantification (FORALL) operator, which makes the conclusion true if the

antecedent is true for all instances, was not required for this work.

This logic was used to form Inference Rules (IRs) that allow knowledge to be inferred about

instances. The same logical operators were also used to form Integrity Constraints (ICs)

which, if violated result in a reaction based on the strength of the IC. Two of the available

four strengths were used: Soft, in which case a violation generates an error message but

allows the transaction to complete, and Hard in which case a violation results in a

transaction rollback (i.e. a failure to load).

2.7.4.4 ECLIF instances

ECLIF sentences are declared in parentheses with the predicate (the property or relation)

first followed by the entity the predicate applies to:

(Operator Bob) – Bob is declared as an operator

(isTallerThan Bob John) – Bob is taller than John

68

2.7.4.5 ECLIF queries

Both KFL and ECLIF use ‘?’ to identify an unknown variable e.g. ?x. By inserting variables in

to declarations or logical statements, queries can be formed:

(isTallerThan Bob ?x) – Will return all things that are taller than Bob

(and(isTallerThan Bob ?x)(Person ?x)) – Will return all things that are taller than Bob but that

are also declared as being a ‘person’.

2.7.5 PSL

The Process Specification Language (PSL) (ISO 18629) is the result of work on heavyweight

ontology for manufacturing and provides greater expressive rigour then lightweight ontology

languages such as UML, IDEF0 and IDEF3 which have previously been used as structured

tools for requirements capture and system design using less formal text-based descriptions

to define classes and relationships. PSL is a useful example of heavyweight ontology but

has limited support for concepts related to manufacturing resources and to work piece

relationship to process, limiting its applicability for this research (Young et al. 2007).

 An approach that has been used to overcome this limitation with respect to product design

and manufacture is to use the Common Logic process semantics from PSL with the Core

Product Model from ISO 10303 AP224 (Chungoora, Young 2010a). The work on

heavyweight ontologies and PSL has been a key driver for the Interoperable Manufacturing

Knowledge System (IMKS) project (Young et al. 2010) which focuses on interoperability

across design and manufacturing domains.

2.7.6 IDEF0 and IDEF3

The integrated definition for function modelling was original developed by the US DoD and

was subsequently released as an industry standard (FIPS 1993). It has subsequently

become the basis for the generic systems models. The labelling nonclementure of the

diagram elements varies, with the software based IDEF0 labels of Control and Mechanism/

Call being often replaced with ‘Constraint’ and Resource’ in the systems engineering domain

(see Figure 2-3).

69

FUNCTION
NAME

Control

Input

Mechanism Call

Output

Figure 2-3 - IDEF0 system element representation

Due to the lack of a single integrated tool for the identification of information requirements

and structure for a system, the STEP community have used a combination of IDEF0 (for

functional requirements and information flow mapping) and EXPRESS (for information

modelling). Some have also used IDEF3 capture process relationships and work flows. The

effectiveness of these approaches is hampered by the requirement that the system

designers to agree on terminology (see Ontology section) (Young et al. 2009).

Modelling processes with IDEF0 and IDEF3 can provide a clear view of interaction points

and concurrency (Dorador, Young 2000).

2.7.7 UML
The Unified Modelling Language (UML) is a standard modelling language used in many

methodologies, especially those that use object oriented techniques. UML can be used to

model (or diagram) almost any entity, including programs, business processes, hardware,

networks and architectures. It can be used to provide a common foundation for modelling in

an organization (Mochal 2005). UML uses a number of different diagrams to describe a

system, these diagrams are classified as either ‘structure’ or ‘behavioural’ diagrams.

Structure diagrams show the static structure of the system being modelled and include class,

component and object diagrams. Behavioural diagrams show the dynamic behaviour

between the objects in the system such as activity, use case and sequence diagrams (Bell

2004).

UML has been used in conjunction with IDEF0 and IDEF3 in application design, where the

IDEF tools were used to provide the top-down approach and UML the detailed bottom-up

approach. This duel approach was necessary as UML is suitable for software design, but

needed the extra support for requirement capture stage of the lifecycle (see Systems

Lifecycle section) for the definition of the structure of the information models (Dorador,

Young 2000).

70

The UML class diagrams have been selected for use as it is a widely understood notation

and tool for describing the objects and relationships and is therefore a useful tool to develop

a more detailed understanding of the objects and classes identified through BPMN

construction activity.

This section describes the use and construction of Class diagrams within the standards set

by OMGs UML 2 specification. Class diagrams are typically used to show classes,

interfaces, data types and components, while other UML diagrams enable greater focus on

some of these elements, the class diagram is particularly useful as it has an ability to

represent them all (Bell 2004).

Figure 2-4 shows how classes are represented in UML.

Figure 2-4 - Simple UML class figure for CAR

The class is shown as a rectangle with 3 compartments, the top compartment shows the

class name (in bold type), the middle shows the class’s attributes and the bottom the class’s

operations. The middle and bottom compartments are optional and while they may be used

later in this work, initially only the class names will be used to ensure the correct level of

focus on the basic structure before moving on to more detailed considerations.

The attribute list follows the convention ‘name : attribute type’ where the unit type description

is an appropriate unit for the user of the diagram e.g. if the diagram is to be used to generate

code, the units must be available within that programming language, whereas in a business

class diagram the units can be less constrained. Adding an equals sign and a value to an

attribute indicates a default value, e.g. in the CAR example a new car starts with a mileage

of 0 miles.

The operations list uses the convention ‘name (parameter list) : type of value returned’

where ‘(parameter list) represents the input parameters for the function. In the CAR example

the ServiceCountdown parameter is used in the getServiceDue operations to return a due

date for the next service.

Class Name

Class Attributes

Class Operations

CAR

Make : String
Registered : Date
Mileage : Integer = 0

getServiceDue (ServiceCountdown : Integer) : Date

71

UML 2 includes a notation standard for showing instances of a class, which is largely similar

to class notation with the constraint that the instance diagram relationships must match the

class diagram relationships. Instance modelling instances is likely to provide an

inappropriate level of detail in this work so is unlikely to be used to a significant level.

A key concept in object oriented design is that of inheritence: this is where a child class

inherits the same functionality as the parent class (or super class). The child can then add

specific functionality of it’s own in addition to this.

Figure 2-5 - Inheritance using tree notation

Figure 2-5 shows that two child classes (sportscar and ATVcar) have been defined beneath

the CAR superclass. Each of these classes inherits the attributes and operations from the

CAR class (these are not relisted at the child level) and incremental attributes are shown for

each class. Inheritance is indicated by drawing a connector from the child to the superclass

with a closed, unfilled arrowhead pointing to the superclass.

It is possible to define a superclass which is abstract which in turn defines abstract

operations which can be implemented in different was in separate child classes. This is not

envisioned to be a key requirement for this work.

CAR

Make : String
Registered : Date
Mileage : Integer = 0

getServiceDue (ServiceCountdown : Integer) : Date

Sportscar

bhPower : Integer

aveLaptime (laptime : mins) : mins

ATVcar

groundClearance : Integer

towingWeight (cargoWeight : Kgs) : Kgs

72

The relationships between objects must be modelled for clarity. UML uses 5 types of

association:

 Bi-directional (standard): A solid line between classes indicates that both classes

are aware of each other and that there is a reciprocal relationship of some sort. The

diagram will also indicate the multiplicity and the role the class takes. This

information is added next to the class box. The role describes the nature of the

association while the multiplicity describes whether this association is unique to

specific instances or multiple instances (in either direction).

Figure 2-6 - Bi-directional association example

0..1 Zero or one

1 (or any other integer) One (or other integer) only

0..* Zero or more

* Zero or more

2..8 Two to eight (inclusive)

Figure 2-7 - Multiplicity examples

 Unidirectional: Only one of the related classes knows that the relationship exists.

This is common when modelling processed flows as backflow in process such as

manufacturing are often considered impractical or undesirable unless required for

process feedback.

Class A Class B 0..*

0..1

usedBy

Configures

An instance of Class A is associated with a specific instance of Class B (or no
instances), however that Class B instance may be also associated with other
instances of Class A. Class A configures Class B, and Class B is used by Class A.

73

Figure 2-8 - Unidirectional association example

 Association Class : It is possible to define a class which contains information purely

relating to the relationship. In this case the class would exist for every instance of that

relationship and would be shown as a class box connected by a dotted line to the

association line between the two primary classes.

 Aggregation : Two forms of aggregation can be described; ‘Basic’ and

‘Composition’. Basic composition shows one class to be part of another and is

represented by showing an unfilled diamond at the superclass end of the association

line. Composition aggregation is similar to basic except that the child class cannot

exist independently of the parent.

Figure 2-9 - Basic and composition aggregation examples

 Reflexive : Rather than being a relationship between two classes an association can

describe relationships between class instances.

Class A Class B

3

partClass

Basic Aggregation: Class A contains 3 instances of Class B, but if Class A
ceases to exists the instances of class B persist

Class A Class B

1..

partClass

Composition Aggregation: Class A contains at least 1 instances of Class B, but
if Class A ceases to exists the instances of class B are no longer valid/ exist.

Class A Class B

0..*

produces

Class A produces (any number of) Class B.

74

Figure 2-10 - Reflexive association example

For clarity it is sometimes desirable to show how classes are grouped. This grouping should

be logical to the context of the diagram and the user of the information. UML supports a

‘package’ notation which can be displayed as a large folder representation within which the

grouped classes are shown and which has the group title displayed on the folder tab.

UML 2 also has the ability to display the internal structure of a class. This can be used to

simplify the interpretation of compositional diagrams, especially where there are a number of

relationships. This is particularly useful for describing physical classes, but is unlikely to be

required for this research. Further information on this and other aspects of UML not directly

applicable to this work is available (Bell 2004).

2.7.8 Protégé

The open source ‘Protégé’ ontology editor and knowledge based framework tool is

considered to be one of the most widely used ontology engineering tools and well supported

by the medical informatics group at Stanford University (Noy, McGuinness 2001). It provides

tools for ontology editing including concept, taxonomy and relationship building as well as

ontology visualisation. Protégé supports multiple representation formats such as XML, RDF

schema and OWL (Li, Yang & Ramani 2009). This view is supported by the use of the tool in

(Blomqvist, Öhgren 2008).

2.7.9 BPML & BPMN

BPMN and BPML were both developed by the Business Process Management Initiative

(BPMI), however, they are now supported by the Object Management Group (OMG)(OMG

2012, OMG 2008).

Business Process Modelling Notation is a standard for modelling business process and web

services. BPMN provides a number of advantages to modelling business processes over the

Class A
defines

definedBy

1

0..*

Certain instances of Class A can be used to define other instances of Class A
however not all instances will have another instance to define.

75

Unified Modelling Language (UML). First, it offers a process flow modelling technique that is

more conducive to the way business analysts model i.e. it is more user friendly and

potentially more intuitive to understand for non analysts. Second, its solid mathematical

foundation is expressly designed to map to business execution languages, whereas UML is

not. BPMN can map to UML, and provides a solid business modelling front end to systems

design with UML (White 2005).

BPML (Business Process Modelling Language) is a tool for business process description

which defines a formal model for abstract and executable business processes. BPML is

capable of expressing:

 Activities of varying complexity

 Transactions and their compensations

 Data management

 Concurrency

 Exception handling

 Operations Semantics

BPML also provides a grammar in the form of an XML schema for persistence and

interchange of definitions across heterogeneous systems (Izza 2009).

BPMN has been chosen for the following reasons:

 It is capable of describing and specifying processes and systems from many

‘perspectives’ e.g.:

o Process flow

o Inputs/ outputs/ Variables

o Data flow

o Decisions/ reactions

o Roles and responsibilities

o Process boundaries/ scope

o Timescales

 There are a number of specific tools, templates and processes for mapping a

process from these perspectives; however, BPMN is particularly capable of providing

an easily understood overview on a page.

 The Business Process Mapping Notation is a global standard which should be

intuitive for engineers familiar with flow charting.

 This method can show the process information inputs and outputs of a System Input

Process Output (SIPOC), the (complex if required) process flow and decisions and

76

key roles and events. As such it is a concise and clear way of representing a process

and its requirements.

Some key aspects of the BPMN standard are:

 There are start, finish and intermediate events.

 Pools represent different organisations or groups, which can if required be broken

down in to lanes represent individual participants.

 Process flow arrows cannot cross pools (the separate pools have their own process

which may be joined/ triggered/ coordinated by messages or data flow).

 An event can be put on the edge of an activity to signify an ‘interrupt’ i.e. under

certain circumstances follow this path.

 Gates can be considered like decision boxes in normal flow charting and are able to

split or join process flows

 The diagram author needs to consider at what level to map the process, and it is

likely that that once started they will change their mind, so it is recommended to

sketch out the process before using electronic tools.

This section describes BPMN v1.1 however, v2 has recently been published. The new

revision is consistent with the earlier version but develops more complex and capable

coordination capabilities between parallel processes. One of the key aspects for which

BPMN has been selected is its clarity and ease of use for those with basic flow charting

experience, as such a small subset of the full elements available will be recommended for

use (see Figure 2-11). Using a combination of these basic elements it is possible to

represent many of the elements discounted. While this may not be as efficient as using the

full element set, it makes deployment and use of the tool by inexperienced users easier and

more consistent. This means that the changes in v2 are not particularly relevant in this case.

77

Advise against using greyed out
elements unless absolutely
necessary to maintain simplicity

Figure 2-11 - The subset of BPMN elements proposed for use (OMG 2008)

These elements can be used to describe a process, its flow, decisions, events, interruptions,

messages/ data/ information items and flow as shown in the following examples. These

diagrams are clear and intuitive but can be implemented in a number of ways depending on

the intended outcome. This is particularly important when deciding the level of detail at which

to map, and how the agents (i.e. swim lanes) are defined.

When mapping a number of processes, consistency in the level of detail and method of

construction are vital. Like most standards, to enable its wide application it allows significant

interpretation (see literature review ‘Standards’ section). This will be managed by using a

core team of modelling facilitators who meet regularly to compare developments and one

strong development coordinator.

Figure 2-12 and Figure 2-13 show example BPMN diagrams.

78

Figure 2-12 - A basic BPMN example

79

Figure 2-13 - A more complex BPMN example

80

2.7.10 Business to manufacturing mark-up language (B2MML)

B2MML is a set of XML schemas for exchanging information between MES level functions

and Business level functions such as ERP. This is based on the object models defined in

ISA95 (ISA 2000, ISA 2005, Scholten 2009).

2.7.11 Data dictionary
A Data Dictionary or metadata repository can be described as a "centralized repository of

information about data such as meaning, relationships to other data, origin, usage, and

format." (Lecky 2003, IBM 1993) : It describes in detail how a database was designed and all

its key characteristics. This information allows developers and analysts to quickly access

information about the tables, fields, procedures, processes and other information in the

system.

The Data Dictionary defines the basic organisation of a database and collects together

detailed information about database system components such as: data element definitions

(tables, fields, key fields, primary keys, relationships etc), program elements used by the

database to move data about or to manipulate it in some way, records (numbers of - not the

actual records themselves), system parameters, system information, files and other system

components, entity relationship diagrams.

A Data Dictionary can be produced:

 Automatically using a software tool to interrogate the database and map its structure

 Manually by combing through the code to determine the structure

 By a combination of automatic and manual processes.

The reviewed literature suggests that a combined automatic and manual process is best as

the automatic systems can map the database schema but cannot gather the business

context of each field or the underlying functional requirements such as storage length etc.

The relative abilities of the manual and automatic data dictionary construction methods to

gather large amount of data without significant qualitative weighting or smaller amounts but

focusing on context and relevance holds a strong parallel with ontology creation methods

(see Ontology Creation section). As described in the Ontology section, by many definitions a

dictionary is an ontology, albeit a relatively simple one.

The Data dictionary is a detailed tool for explicitly documenting detailed data and information

structure and is useful as such. However, while it can describe data stores in great detail, it

still requires natural language descriptions and interpretation and is therefore subject to

semantic inconsistencies. A data dictionary is also specific to an instance e.g. a database or

81

individual operation. While tools are being developed to map dictionaries/ ontology’s, they

still require manual validation (see Ontology Mapping section)

82

2.8 Summary

2.8.1 Manufacturing intelligence – key points
 Manufacturing Intelligence has been described as critical to business performance in

modern manufacturing.

 MI deals with many heterogeneous functions, systems and holonic production units

 MI is rapidly evolving both conceptually and technologically and is influencing and

affecting the systems and process with which it functions, in some cases interfacing,

interoperating, integrating, or replacing entirely.

 MI has traditionally been described as a sub function of MES systems, however, the

increasing scope of MI is now expanding beyond the traditional scope of MES

system e.g. while the collection of production data is within the traditional scope of

MES systems the use of embedded knowledge to inform the control of a unit of

Holons merges this function with the control level of the enterprise according to the

ISA95 definition.

 The business functions supported by MI data and information work on vastly different

timescales, from discrete year-to-year planning at ERP level to (near) real time

monitoring and interaction at the control level.

 MI requires systems which are agile and dynamic, with that ability to be rapidly re-

engineered in timescales that are compatible with these functions.

 MI is used to generate, monitor and in some cases react to KPIs which are the

crucial metrics used to monitor enterprise performance at all levels and timescales,

however, these KPIs are loosely defined using natural language meaning that even

within an enterprise they can be generated and interpreted inconsistently.

 SCADA systems can provide a technical solution to shop floor level supervisory

control, but they are not capable of resolving domain semantic inconstancies which

therefore have to be hard coded or fully mapped and designed into the control

protocols, both of which are inflexible and cumbersome solutions.

 SCADA systems have not historically been directly integrated with MES systems and

certainly not with PLM or ERP systems due to the potentially incompatible time bases

and semantics of the systems.

2.8.2 Systems lifecycle – key points
 While there are clear systems lifecycle framework models available, these focus on

the development of an individual system through to its retirement. This lifecycle may

be iterative, generating many version of that system, but there is limited

consideration of a migration lifecycle stage where functionality moves from one

83

system to another, and maintaining functional equivalence at the specification and

functional levels.

 Organisational and Technology development

 As timescales of systems lifecycles are accelerating and becoming shorter, anything

that hampers this pace can be considered a threat to business or enterprise

development.

 System developments, which are replacing legacy systems, are the most complex

and likely to fail.

 Concepts or properties within a system can be differentiated by whether they are

time limited or not (endurant or perdurant), enabling and possibly requiring two styles

of description of entities within the same times space.

 Proposed systems for assessing system conditions rely on qualitative assessment

leading to consistency problems.

2.8.3 Information sharing – key points
 The requirement for interoperability between functions, domains and systems is

increasing due to the significant benefits it can enable.

 Enterprise data, information and knowledge are dynamic as are the related systems;

Knowledge sharing mechanisms must not constrain the ability to maintain this

content and these systems.

 Significant levels of work have been published on information sharing as an enabler

for collaboration, (particularly between design and manufacturing), however, this

work generally focuses as collaboration within one timeframe (i.e. between domains

at a particular time) rather than enabling interoperability across timeframes.

 The recognition that common basis of sharing meaning (both processes and

systems) is a fundamental prerequisite for unambiguous communication.

 While standards have a part to play in allowing shared meaning, they require

interpretation which leaves them prone to semantic miscommunication.

 There are a large number of approaches to achieving interoperability many of which

focus on different aspects of the challenge.

 The use of an abstract or common model defining concepts, objects, rules and

relationships, which are mapped to real world specific instances. Common focuses

of this work are:

o Using the common model to create conformal instances

o Using instances to define a common model

o Using existing instances and a common model to define rules or

relationships.

84

 The recognition of the computational complexity of semantic reasoning and the

significant time and effort required to represent the evolution of dynamically

changing data.

 ICT based solutions have traditionally resulted in systems which are limited in scope,

complex, burdensome and inflexible to change.

 Interchangability includes the concept of interoperability and requires that the

semantic and application functionality be maintained if a system is substituted.

 Fully integrated systems, with their implied interdependency pose a greater

operational risk than interoperable systems (systems which can exchange and use

information together but function separately). Integration of individual systems can

result in complexity and inflexibility.

 All reviewed models of interoperability share the view that achieve seamless

information sharing the dynamic alignment of concepts across domains must be

achieved which in turn required the technical and semantic challenges to be

overcome.

 Enforcing the use of standard systems or tools to overcome the technical challenges

of interoperation is ineffective unless the entire supply chain (internal and external)

can adopt the standard tools. External suppliers will be unable to adopt the various

systems their customers would be enforcing.

 Customisation of systems to achieve integration significantly reduces the ability to

migrate to new versions or alternative systems in the future. This integration

capability must be designed into the functionality and configuration in the early

lifecycle stages using the systems core capabilities

 The tight configuration control requirements of PLM systems do not fit well with the

requirements of interoperability across many systems.

 While standards are vital for interoperability, standards constructed using natural

language, even those using tools such as XML, are subject to the issues of

inconsistent semantic interpretation and the adaptation requirement for specific

implementations. An integration standard which is totally comprehensive would be

impractical to define and too inflexible to apply.

 The unified approach to interoperability is generally considered to be more

appropriate and applicable than the inflexible and cumbersome integrated approach

and impractical, ontologically challenging federated approach.

 The lack of standard ontology’s for concepts, relationships and properties of

enterprise architectures is the key deficiency in the development of interoperability

architectures.

85

 Foundation ontology’s using a model driven approach have been proposed to enable

inter-domain interoperability. The use of common logic, heavyweight ontology’s has

been used to make these ontology’s unambiguous.

 Interoperability work has generally been constrained to single product lifecycle

stages and multiple domains or multiple product lifecycle stages (mainly design and

manufacturing) and single domains due to the complexity of the concept relationships

within a single stage or domain being exponentially increased over multiple stages or

domains.

 The optimum ontology creation method uses a combination of manual and automatic

techniques to gain the focus on concept relevance of a manual approach and the

coverage and structure of an automatic approach.

 The challenges of maintaining interpretational consistency across domains and

contexts is the key challenge for interoperability.

 Three key contexts for structuring knowledge have been defined as Lifecycle,

Product and System.

 To achieve enterprise level interoperability, methods for communication of

information and knowledge must be able to be understood in a consistent

unambiguous way across contexts and viewpoints and that these contexts have

significant overlaps and duplication.

 The Model Driven Architecture has been proposed as a suitable way to specify IT

solutions that work across multiple platforms.

 The challenges of differing system and data timescales has been recognised within

the Manufacturing domain, however, only a loose framework of approaches to

meeting this challenge has been proposed rather than a specific solution.

86

2.8.4 Conclusions
The conventional or current definitions of Manufacturing Intelligence are out of date and

insufficient. They fail to address the evolving requirements for near real time decisions and

information for longer term planning from the shop floor along with the capability to take

decisions and enact the outcome based on information and knowledge embedded within the

systems as a collective.

While integration of MES and PLM/ ERP systems is being considered, this is poorly aligned

with the nature of the new MI requirements. The technical requirements for MI are potentially

aligned with the developments in data collection systems, however, without a

comprehensive definition of MI it is unlikely that all the technical requirements will be met.

The benefits of rapid i.e. nearly real time, data and information enabled decision making at

all levels of a manufacturing enterprise are clearly documented. The ability to plan

accurately, react quickly and even pre-empt situations can save industries billions of dollars

or pounds in waste. As the pace of industry increases with automation and technology, so

the need for accurate data, information and knowledge increases. As the required pace of

information collection and exchange increase the challenges and risks of applying context to

data correctly and interpreting it increase exponentially leading to the risk of inconsistent or

incorrect interpretation and subsequent incorrect decisions and actions being taken.

As new systems develop it is unlikely that it will be possible to maintain a one to one

mapping between the new and old systems scope. This gives rise to the complexity of

having to migrate data and information from and to and multiple systems. An interoperability

method that is non system, format, context or perspective specific should allow this.

Applying global standards to systems and process on a manufacturing shop floor to provide

consistent data is theoretically possible. However natural language-based standards are not

sufficiently rigorous to provide semantic consistency, flexible enough to keep pace with the

rapid new developments and changes or extensible enough to be able to describe emerging

concepts and relationships without a level of local customisation. Therefore a framework

standard could be used, but would require a more structured ontology to describe the

objects, concepts and relationships within the standard. If this ontology is suitably extensible

and flexible it may be possible to keeps pace with the changes within the MI field,

maintaining consistent, unambiguous information exchange. If the basis for this ontology is

consistent, it may also be possible to use it to describe or define future MI systems and

implicitly ensure semantic and functions consistency.

87

The degree and rate of change and the number of systems, interfaces, concepts and

relationships affected when considering MI systems, is increasing. The nature of the MI as a

fast evolving field with many different functions/ domains, poorly defined concept standards

and no standard ontology led to this being significant information sharing challenge. If this

challenge is not addressed it is unlikely that MI will function across an enterprise (albeit there

may be local islands of autonomation and success) or that any MI capabilities will be

sustained over time.

The use of an ontological and in particular, a foundation ontology approach, as proposed for

other areas of information sharing may go some way to resolve the challenges posed when

maintaining and extending MI capabilities, but what is unclear is how this approach will cope

with the rate and unpredictability of future changes and developments and the complexities

of dealing with so many holonic manufacturing domains, which may be provided by different

solution providers and so may have their own perspectives and semantics, as well as being

used across the many enterprise functions and even shared between enterprises.

2.8.5 Key related areas of work
Key areas of related research were reviewed, highlighting gaps in the current research that

are covered by this work are summerised and listed below. A full list of related topics

reviewed can be found in the literature review:

Manufacturing intelligence definition: The reviewed material showed there is a lack of clarity

regarding the definition of manufacturing intelligence, with some of the definitions being

incompatible.

Dynamism: Highlights the need for flexibility through time for enterprise applications due to

the rate of change in the systems but does not propose a solution.

System growth and complexity: Raises the issue of change, proposing using axioms to

constrain growth in the desired way but does not make the link to heavyweight ontology

development research.

Legacy systems: The reviewed work proposes a solution to the interoperability challenge of

legacy system which relies on a consistent method of system comparison within or across

domains, however no solution is proposed. A systems lifecycle based solution has also been

proposed, however, this does not suggest a solution for the need to evaluate post-

implementation and evaluation stages for legacy and emerging systems.

Timescales: This work linked the operating environment and the lifecycle rate, highlights the

impact on system interoperability challenges, but does not propose a solution.

88

The requirement for interoperability: The requirement for enterprise to shop floor

interoperability is described, along with the limitations of standards and interface-based

solutions proposing a draft framework standard approach, which is still subject to semantic

inconsistency and impedes flexibility and ability to change. This interoperability research

focuses on interoperability within one timescale rather than between timescales or legacy

and emerging systems.

Semantic Standards: This work develops and formalizes the Semantic Manufacturing

Interoperability Framework standard proposing that the looser control of a framework allows

adaptations to allow the standard to develop through time, however, no mechanism to

ensure that the developments on the Semantic model are consistent through time is

proposed.

Concept alignment: To achieve organisationally integrated and seamless information

sharing, alignment of concepts must have been achieved, however, the solutions proposed

have limited applicability in dynamic environments.

Foundation Ontology: Work on the development of foundation ontologies to provide

semantic consistency was reviewed. This work identified several areas for further work

including knowledge maintenance through time. Two key areas not discussed are the ability

to maintain interoperability through multiple system lifecycle iterations, or the foundation

ontology extension requirements specifically for Manufacturing Intelligence

2.8.6 Further work
This review has identified the need for further work in a number of areas:

 An approach for describing strategic manufacturing requirements, objectives and

measures in a way which allows the automatic/ systematic flow down of these

requirements and automatic configuration of sub-objectives, metrics and measures

(such as KPIs/KPVs)

 A more robust, unambiguous description of key metrics and monitors e.g.

(KPIs/KPVs) to provide a basis for consistent automation of reporting and knowledge

based reaction.

 An up to date definition of Manufacturing Intelligence based less on technology and

more on process and interactions with other functions and business processes.

 An approach to ensure flexible, timely, unambiguous information sharing between MI,

MES, Control Systems and the production process including intelligent, data driven

decisions, actions and automation.

89

 How the risk and complexity of legacy system replacement can be addressed using

the techniques being developed in the field of information sharing (across domains),

focusing in particular on the rapidly developing field of MI due to the rapid

development lifecycle, differing timescales and number of system elements,

concepts, domains etc.

 The most appropriate level of, and approach to Manufacturing Intelligence knowledge

sharing between systems including the correct level of explicit, standard definitions

versus dynamic information and knowledge management.

 Developing the principal of heavyweight foundation ontology for MI to provide cross

lifecycle MI continuity and extendibility, including objects, concepts and relationships.

 Defining an updated definition of MI, MI standards and ontology that allows MI to be

delivered through the configuration of off the shelf product functionalities rather than

focused MI applications which in turn could provide a basis for consistent lifecycle

development and migration i.e. flexing to adopt future requirements while maintaining

required functionality.

90

3 An industrial investigation of key interoperability issues

3.1 Introduction

The purpose of this industrial investigation was to identify the relevance and impact of the

issues relating to interoperability in dynamic change environments in an industrial

environment. Due to the nature of the information the name of the company has been

withheld. The investigation was carried out with the support of subject matter experts and

technical authorities within the company.

The investigation focused on a large and diverse organisation which operates as a design

and manufacturing solution provider over a large and complex supply chain. It’s

understanding of the power of integrating its many areas of knowledge has led the company

to become a leader in the management of knowledge and information on a massive scale.

The organisation has been leading and coordinating work at key institutions around the

world to allow the relating of essential information and knowledge to its products using a

feature based approach. It is also developing one of the world’s most comprehensive PLM

systems, which can be seen as an indicator of its commitment and approach to knowledge

management.

The following subsections cover the need for, and key challenges to interoperability. The

content has been grouped under subsection headings which reflect the significant topics

identified in the literature review. Key concepts that were defined to enable a clear

understanding of the research material have been declared in this chapter with these

concepts being further developed in Chapter 4. In Section 3.4, fundamental concepts elicited

through the industrial investigation are declared, such as what a ‘system’ is in relation to a

‘process’ which. These declarations have been used to ensure any underlying models or

assumptions are explicitly described. The final section explores the industrial understanding

of interoperability in the MI domain

91

3.2 The need for interoperability

The diagram below represents a simplified view of some key types of data and the systems

in place to store it within the organisation. It shows that this data can be split between and in

some cases duplicated across multiple systems. It includes a reference to the knowledge

bases that the organisation access but does not necessarily own such as public, supplier

and advanced research centres.

Figure 3-1 - A simplified representation of some of the organisation’s knowledge and data- bases

Figure 3-2 shows the kinds of query that can be resolved by these knowledge/ data bases in

the context of a particular feature. The feature context is critical to the query as the same

query in a different context or different feature would possibly require a different answer. As

a product and service engineering company, many of the organisations system are

configured to store data and a product or feature context which is a strong basis for

interoperability amongst those systems. The risk is when a query from a different domain

e.g. HR, is put to these systems as it may be misinterpreted, or when a system that is not

able to use the same feature context e.g. a design or manufacturing feature, is integrated.

This diagram also shows that a query that spans several knowledge/ data bases cannot be

resolved without the data being collated separately.

92

Figure 3-2 - Typical queries for the systems represented in Figure 3-1

The following sections will describe how the organisation approaches the challenges of

increasing system interoperability.

93

3.3 Key interoperability issues

3.3.1 Standards

The organisation has a large and comprehensive system of standards, however, its Quality

Management System is an intranet based systems which provides access to the mandatory

and legal standards for the whole company. The organisational diversity that these

standards have to cover, and the fact they are externally audited requirements, mean that

they are defined at a high level. The QMS holds standards for systems procurement

processes as well as portfolio management. The QMS also references other standards such

as PLM Operating Procedures and Best Practices. The intranet also contains many process

guides and other non mandatory documents for the operation of the ERP system (SAP),

Product Data Management System (Metaphase) and the Execution System (SFDM). These

systems are centrally configured and the company has undertaken significant programmes

of work to converge the global instances to common configurations. This is coupled with very

strong change and interface standards and governance due to the legal implications.

The usage of these ‘core’ systems is, however, very lightly guided rather than governed

leading to significant variation in data population and completeness. While the company has

focused heavily on reducing the number of SAP exception messages which are indicators of

data issues, they are still prevalent as are production order variances due to incorrect part

cost and detail assignments.

The organisation has a large number of other systems (over 1000), which have little or no

configuration standard or enforced usage standard. There are some local data standards

such as naming conventions, however, these cannot be globally enforced due to the inability

of the large variety of systems across the company to adopt them along with the lack of

willingness of the separate business units to adopt them. This is largely a legacy issue and

standardisation programs for the systems versions, configurations and data standards are

underway to improve the situation, which relies on business engagement with the central

‘Centres of Competence’ that are driving these standards. A community of ‘Capability

Leaders’ is used to guide the development of new systems but their availability and authority

is limited due to the organisation size and structure leading to control being a significant

challenge.

The organisation is working towards component feature standardisation within its PLM

system; these features are then to be used as the hub for related feature meta data including

axioms (context driven limits) and attributes (costs and capabilities) which can be linked to

manufacturing method data through the Computer Aided Process Planning system (part of

94

the corporate PLM system). There are a number of projects developing standard feature

approaches within the organisation, working with partner companies such as ITP in Spain

and Darmstadt University. The fact that there are disparate approaches to feature

standardisation indicates the size of the challenge to developing standards across an

organisation of this size.

3.3.2 Ontology

The organisation is very aware that it lacks a common ontology across its sites, businesses

and functions at the fundamental product levels of communication. The same fundamental

manufacturing documentation within the one business unit is referred to as; Manufacturing

Instructions, Technical Instructions, Data Cards, Standard Operating Procedures, indicating

the depth of this issue. Key Business metrics such as Right First Time, Scrap, Yield, Product

Cost, Productivity are calculated in subtly different manners using inconsistent source data;

while there are standard calculation definitions the terms of the calculations have different

meanings in different areas. Automated reporting of these metrics e.g. feature ‘right first

time’, without an effective heavyweight ontology to provide consistency has led to difficulty

comparing measures across the company. Even within the core company systems there are

domain semantic issues; material is an attribute of a product e.g. titanium, as well as a

reference to a product assignment to a customer order within the ERP planning system e.g.

‘material requirement planning’.

3.3.3 Legislation

Many of the components and technologies used by the organisation are considered to have

sensitive or military application and as such they are subject to export control. As is common

in high technology industries, the organisation relies heavily on its intellectual property and

technology to maintain a competitive advantage. Failure to manage data and information

systems and processes properly could have serious legal and commercial ramifications.

Control cannot be achieved by total isolation or exclusion, as 80% of the organisation’s

manufacturing takes place in its external supply chain, as does a significant amount of its

design engineering. Its total supply chain is truly global requiring real time integration

between offices on different continents. Until recently the only mechanism for control of data

were manual combined with standard security approaches such as secure networks and

offices, however, the advent of the global PLM process has necessitated far more complex

mechanisms. The organisation’s PLM system segregates data between engine related

groups which have varying levels of access control and for which all individuals need to be

explicitly added for access. All data is subject to a ‘Default Non Exportable’ rule which

ensures the natural state of data is that it cannot be removed from its native database

instance. The only way to export data from an instance is to apply an export project to it. The

95

application of export projects is a manual process requiring knowledge of the export control

levels for any dataset, with the ability to apply projects being a restricted privilege. Applying

export and security meta data to each data set allows the global PLM instances to

communicate and share data in a secure way. It is important to note that this raises

significant levels of transactional bureaucracy, is still fundamentally reliant on individuals

classifying every dataset correctly and has led to architectural inflexibility which has affected

the performance of the system and its processes: The organisation has a PLM instance in

Derby and another in Bristol along with other instances including North America, Germany

and India. However the data control protocols that are required to comply with legal

requirements cannot differentiate between instances in the same country and those in

different countries, meaning that data has to be formally exported in the same way between

Bristol and Derby domestic engineering teams. This has proven to be a significant burden

and barrier to the implementation of the PLM working principals and practices. It is important

to note that with significant compromises a level of control has been applied to the PLM

system within the Siemens Teamcentre environment but this has not been achieved with

other systems and the strategy for achieving that level of control is to bring more data and

functions within the Teamcentre environment, making them subject to the PLM change

control processes. This level of change control may not be appropriate for all data and

information types and may become an unnecessary functional constraint due to the systems

inability to identify and manage every data type in the most appropriate way.

A key aspect of the Civil Aviation Authority (CAA) and European Aviation Safety Agency

(EASA) requirements for ensuring safety is that the method of manufacture and component

validation history is retained and traceable. It is also a requirement that critical components

are serialised and have full histories allowing any component to be traced back through the

supply chain and allowing the identification of operators, inspectors and engineers that have

made decisions affecting the parts as well as the operation sequence and resources used.

Depending on the data and component type, this information may have to be stored for a

fixed period or for the life of that engine or type of engine plus a fixed number of years.

Unless this history is available for a component it may not be used. The engine

configuration, component history etc within the organisation is stored in a number of systems

including:

 SFDM – production and shop floor quality and yield history

 SAP – Manufacturing method and processes and finance data

 PLM – Product definition, validation and configuration

 PDM (Metaphase) – Product configuration.

96

 Archived Paper/ other media Documents – Component X-ray images, production

documentation.

 Other electronic archives

This list is not exhaustive, even so there is clear overlap and duplication of systems and data

and the interoperability of these systems is very limited. Maintaining the robust controls

required for legal requirements across systems is an area requiring significant further work.

3.3.4 Organisation

The investigation focuses on a large and diverse organisation; its separate divisions and the

disparity in division size can make balanced cross sector decision making complex. Many of

the company systems are governed and configured by the Engineering and Technology

(E&T) organisation which has to make the judgement as to whether all sectors or divisions

should be given equal ranking when balloting changes or proposals. The organisation has

grown significantly over the last 20 years, the level of growth across its different business

sectors could not be achieved through organic growth alone so it has been accelerated by

strategic acquisitions. The organisation has a number of Joint Ventures around the world as

well as strategic embedded suppliers of both products and services Due to this

conglomeration over time of many organisations, there has been an accumulation of many

systems carrying out the same function and in some instances different configurations of the

same system all of which will be on very different architectures.

Internally the organisation operates as a matrix organisation and uses functional ‘Centres of

Competence’ within the global ‘Engineering Improvement Centre’ (EIC) to drive

standardisation across the organisation. As a separate entity from the business units, it has

a limited ability to enforce compliance to standards and methods and more fundamentally as

a function its ability to understand the wider business requirements is entirely dependent on

the engagement from the business units. The EIC function largely operates from one site in

Derby and its level of influence can be seen to dissipate across organisation, functional and

geographical barriers as shown in Figure 3-3.

97

Figure 3-3 – Representation of the global and cross functional influence of the Engineering Improvement

Centre (darker tone = stronger influence)

The organisation is world renowned for engineering excellence, and because of its history,

reputation and core business it has a strong design engineering focus; ‘Engineering’ in the

organisation is typically an abbreviation for ‘Design Engineering’. This can manifest as an

imbalance in some areas of understanding of the wider business requirements: where cross

functional corporate systems such as PLM are being deployed, the balance between the

traditional design and product configuration engineering activities requirements capture and

the Manufacturing and logistical etc, may not be optimal.

The size and complexity of the enterprise, which is exacerbated by the acquired diversity

along with the strong lead provided by the EIC organisation has resulted in a general

strategy for information system interoperability of bringing all data and systems within the

bounds of one unitary system; in this case PLM. This has also developed an approach to the

deployment of PLM methods that does not always distinguish between the PLM

methodology and the PLM core system (Teamcentre) i.e. as general assumption that if ‘it’ is

not in Teamcentre ‘it’ is not PLM compliant.

3.3.5 Systems and technology

As previously discussed the organisation has a large diversity of acquired and developed

systems. Many of its legacy systems are highly customised to meet specific requirements;

this includes the legacy CAD system CADDS5 which was heavily customised by

98

Computervision (the original vendor) to meet the organisation’s complex design and

parametric modelling techniques. This customisation resulted in an inability to accept further

upgrades to both hardware and software which in turn led to increasing difficulty to maintain

the system and its interfaces with other systems that were changing such as the analysis

systems that used the CAD data it produced.

The organisation uses a very wide range of versions of hardware and operating system; it

maintains a basic capability to access data created on legacy systems such as VAXs

systems and mainframes due to an inability to migrate these systems and data onto new

platforms. Figure 3-4 shows the strategy to move from this position of significant complexity

to one where the business uses a small number of unitary systems. The business is

expending significant time and resource investigating how to move all its data into either a

single, or one of a small number of databases.

The organisation’s experiences maintaining a number of smaller systems without any clear

interface standards, has shaped it approach to systems development. It is focusing on

simplifying the management of data in one context at a time; the PLM system is being

developed to manage product data, the ERP system manages enterprise planning etc. What

has not yet been resolved is how to deal with the use of a unitary system across many

domains. The functions within these domains will have different perspectives on the data

and information within the systems due to the lack of a common and standard lexicon of

terms or ontology. Without the ability to definitively describe the data and information within a

system in an unambiguous way the reliability of the decisions taken upon the information will

be dependent on whether the person making the decision happens to share the system

designer’s view of the data e.g. if a manufacturing engineering process owner sees a ‘yield’

figure in the ERP system of 70% against their process, he or she will assume that 70% of

the parts processed will be conforming whereas a MRP controller will assume the cumulative

yield of the process route to that point will result in a 70% yield. This relatively simple

difference could result in excess WIP, which if replicated across the company would cost

approximately £250M.

As well as pursuing a strategy of large centralised systems the organisation has also

implemented strict controls on the development of systems dictating that systems can be

configured in line with agreed internal standards that are supported by the OEM but must not

be customised. Rather than customising the products after purchase, it is partnering with the

systems suppliers i.e. Siemens, Hewlett Packard and SAP to influence the development of

future product releases.

99

Figure 3-4 – The systems convergence strategy (provided by the organisation’s Systems Executive)

3.3.6 Data, information and knowledge maintenance
The organisation has a strategy for the convergence of its systems (Figure 3-4), which is

recognised as a long term endeavour. The current situation is that data and information is

duplicated in many systems, in many cases using separate and un-correlated domain

ontologys. This makes it difficult to identify or resolve this duplication and also makes it

almost impossible to ensure the data does not diverge as it is updated. Significant levels of

resource are being focused on this issue, and it recognises knowledge and information

management as a key business function, and as such there are specialised functions within

the organisation leading the development of its information management capabilities.

A common anecdotal example of data duplication and maintenance issues within the

organisation is the maintenance of personnel listings: this organisation data is stored in the

corporate web based HR Online system, as well as the legacy store in the People and

Knowledge module of the ERP system SAP. This data is also in the corporate Excel based

load and capacity tools, training planning tools and skills assessment tools as well as a

100

number of other systems. Some, but by no means all of these systems use a manual

download of the data from either HR Online or SAP. However many rely on repeated manual

entry. Virtually all these systems require manually auctioned or at least manually triggered

updates. There are also numerous systems which use subsets of this data filtered by meta

data such skill type, resource area or function. Unfortunately these meta tags are not

standardised, globally available or populated in a standard way by the contributing functions

across domains. The result is that this data is manually entered into many systems and

maintained in a divergent manner leading to inconsistent data. A number of managers were

approached and none felt that a request for this organisation data from the HR or Business

functions would result in a consistent or accurate result. All stated that they would recreate

the data from local knowledge rather than correct data stores being used. None of these

managers would consider entering a request for a complex subset of this data as they did

not believe the data was suitably structured or the meta-data available. If this anecdotal case

is representative of other systems and processes there will be a massive benefit from central

repositories that are suitably structured and accessible to allow different functional

perspectives to interoperate with them.

In the areas of the business that do have a single authoritative data source e.g. the PDM

system, change is managed by rigorous change control boards ultimately chaired by one or

two individuals. This level of constraint is required due to the criticality of these systems but

this does make them inflexible. It could seem that all of the change mechanisms for these

systems are there to prevent uncontrolled change, however, there do not seem to be any

mechanisms that promote or aid change ultimately resulting in lower organisational flexibility.

The organisation’s legacy systems have generally been used as data stores, where data is

manually managed, with varying levels of access and change control. These stores have

little interoperability or cross referencing capability and what integration there is, is hard

coded so that any changes to the data store structure will corrupt the communication

mechanisms and any related reporting solutions.

The organisation has recently initiated research into knowledge maintenance which should

help inform its future systems strategies. It is also developing and deploying web based

centralised reporting solutions using the COGNOS system (see Section 3.3.8) which should

provide far greater flexibility by providing an over-arching reporting mechanism.

3.3.7 Infrastructure

For over a decade the organisation has operated a core business network infrastructure.

This infrastructure was originally targeted only at the Aerospace sector of the business and

so the coverage is incomplete. This infrastructure is secure, robust and fully supported by

101

the company's IT solution provider Hewlett Packard including security and recoverability.

The organisations sites around the world are not all directly linked by a Business LAN, albeit

some of the key systems do have instances around the world that can communicated such

as SAP and PLM. Direct connection across nation borders is complex due to the legal

requirements to control the flow of knowledge and information. The organisation does

operate a collaboration tool called 'ForumPass' which is authored and supported by one of

its subdivisions company 'Exostar'. Forumpass is a web hosted, secure data store where

users can create pages similar to those of social networking sites. These pages can be

linked and used as message boards, balloting tools, public document stores, information

'wiki' sites etc. The system also provides the capability to launch teleconferencing 'Webex'

sessions where users can remotely view and share files and even edit them collaboratively.

While this toolset is useful for the manual exchange of discrete data and information, it does

not provide a mechanism for a seamless and automated flow of information, meaning it is

best suited to specific discussions on a focused topic and leading to the risk that it is

incomplete or out of date. The organisation’s PLM programme has a work stream dedicated

to collaboration, and it is through this system that the exchange of technical information is

planned to be enabled and controlled. The company also has a central "IT Infrastructure"

organisation which splits its scope into 6 work streams:

* Client Infrastructure

* Compute, Service Integration

* Network

* Factory and Facilities

* Programme Planning

However this function has a limited opportunity for interaction with the wide range of

business units, which do not have their own IT functions with which to interface, and so the

business communication flow in to this organisation tends to be centrally and functional led

rather than holistic. There is also a risk that a central function such as this, with a depth of

understanding of its area of work and the legal and technical requirements, may develop

solutions to meet the technical infrastructure challenges without fully understanding or

developing a global requirements vision, resulting in a centrally mandated solution that does

not match the business expectations.

The organisation has historically operated local factory shop floor networks for the delivery of

CNC programs and basic data capture which have not been connected to the business

102

infrastructure. These legacy systems were non standard and little more than cables and

switches with little or no security. This 'fire break' approach has been necessary due to the

complexity and lack of standardisation of the machine systems on the shop floor which due

to their age and customisation are unstable or insecure. Connecting these systems to the

businesses LAN infrastructure would be an unacceptable security risk and where this has

been done has proven to jeopardise the stability of the business infrastructure. Over the last

5 years the organisation’s Manufacturing Systems Centre of Competence has developed

and deployed a standard shop floor technical 'Tech LAN' infrastructure which is still plant

based but provides an improved level of security (class 3 or unsecure) at a local level, and

also provides the ability to connect to the business LAN via an automated communication

bridge using the Microsoft MQ to mirror files through a firewall which prevents manual

transfer of data between the two networks. This is currently used to allow the DNC systems

to store the master programs on a the secure business LAN where they can be recovered in

an emergency and to pass them through a firewall using Microsoft MQ to a shop floor

technical LAN to be deployed to the machine tools. While this is a significant improvement it

means MQ is a single point of failure and the communication mechanism between the

business LAN and Tech LAN is limited to the automatic transfer of files within specific

folders. This is sufficient for the transfer of data but significantly constrains the transfer of

information and knowledge as it is difficult to pass context and conditional informations with

the data. The MSCoC is therefore starting to deploy an architecture called Tech LAN 2 which

is a Class 2 network which allows dynamic interoperation between the 2 LAN domains as it

is secure and supported. Tech LAN 2 does, however, push this requirement for security and

standardisation further out onto the shop floor meaning the individual clients either need to

be of an approved standard with sandard Virus software (F-Secure) and standardised builds

with access control, or they must be connected to a buffer client which in turn is connected

to the Tech LAN. Tech LAN 2 has also moved from using geographically dispersed or 'local’

tech LAN servers to using a large campus server for the entire site. There is discussion

regarding the use of this server for the within-region sites e.g. the whole of the UK, however

even with high availability architecture design, it is felt by some business units that this

represents a too significant business continuity risk. The move to Tech Lan 2 is creating a

massive standardisation workload and cost and relies on the engagement of the local

business unit, but the ongoing supportability and benefits on centralised systems lifecycle

management will easily offset this cost.

103

3.3.8 Architecture strategy

As discussed earlier, the organisation has a clear strategy to reduce the number of systems

interfaces. Figure 3-5 shows how all the elements of its PLM system are intended to be

joined by a common backbone allowing the interaction of the elements of the PLM

environment such as CAPP, CAD, CAM and data management. The interoperability of these

PLM elements will still be dependent on the use of an ontology or ontologies across all

elements that will enable the unambiguous and automatic communication.

While Figure 3-6 clearly shows the organisation’s strategy to move to a few well supported,

carefully configured solutions. The organisation’s Information Management Centre of

Competence has identified a requirement to provide flexible and rapid reporting which is not

constrained in its mode of data manipulation as it works on data extracts from authoritative

systems and is configured in such a way as to provide a powerful, fast, cross system

manipulation and reporting tool. It is to meet this need that it is developing its COGNOS

solution which will be able to extract data from any of the organisations systems, and

reconfigure it in to a star schema for rapid manipulation. While this system will still be limited

by the effectiveness of the data standards, meta data availability and use of a common

ontology, it effectively provides a matrix approach to systems architecture; the direct,

1

Enterprise PLM
Building Blocks

Systems
Engineering

Provides traceability of
customer requirements,
system requirements
and compliance

Capability
Management

Knowledge Management
– “best methods” for

design, manufacture,
assembly

Key Systems
Enablement

Allows Design Key
Systems to interact
with PLM.

CAPP

Generates manufacturing,
assembly and maintenance
instructions; captures execution
data.

CAD/CAM

Generate geometry and its
method of manufacture in an
integrated process.

D
ata

M
anagem

ent

Allows in-context access to executive data
generated throughout product lifecycle.
Includes workflow control of the
production of key Engineering reports.

Co
lla

bo
ra

tio
nShares Product Definition Data

across RRand to Customers,
Partners, Suppliers.

Infrastructure Enablement

B
a

ck
bo

ne

Drives creation and maintenance of
product definition: executive Bills
of Material, product definition data,
and how-to instructions.

Figure 3-5 - Representation of the PLM ‘backbone’

104

rigorous systems to system interfaces between the unitary, authoritative systems and some

smaller satellite systems, and separate flexible reporting capability capable of extracting

from any of the systems and manipulating the data as far as the data and knowledge content

will allow.

Figure 3-6 – The Organisation’s core and overarching-reporting architectures.

105

3.4 Key declarations

3.4.1 Process, systems and information

The activities carried out within the Manufacturing domain, and the wider enterprise can be

described as processes in that they take inputs and modify them, using resources and

constraints, into the required outputs as shown in Figure 3-7. This process description can

be used to define all physical and transactional aspects of an enterprise.

Figure 3-7 - Basic description of a process

‘Systems’ in the context of this work are instances of a process e.g. production scheduling is

the process of interpreting the business output requirements based on customer demand

and planning the required production launch schedules based on the manufacturing lead

time and operational capacity. The production scheduling system is the system within a

specific enterprise that carries out of supports this process using the defined instances of

input data and constraints. Conversely a process can be considered the function of a

system. As can be seen in Figure 3-8, using this conceptual linkage between a process and

a system, a process can be represented using the same IDEF0 style representation (FIPS

1993) that would be used for a system (see Section 2.7.6)

The non-physical inputs and outputs of a system will take the form of information, as any

input data would need appropriate contextual meta data applied either implicitly or explicitly,

to ensure it is used appropriately. The rate at which systems take in, process and then

output information can be considered their ‘processing rate’.

The information which is input and output requires a structure. This structure allows the

system to know where to find specific elements of the information and is necessary to

ensure consistent system function or process.

106

Figure 3-8 - The relationship between process, system, information and information structure

This description of a system as something that carries out a process using information which

has a structure implies a connection between the system used and the structure of the

information being input and output.

3.4.2 Process levels

The process within an enterprise can be defined as falling within 3 levels which were aligned

to the ISA95 organisation levels (see Section 3.5.1) :

 1st Order Process are those that directly interact with the Manufacturing Operation

e.g. Maintenance, Logistics, Product, Process Improvement.

 2nd Order Process are those that may interact directly with the Manufacturing

Operation as well as with 1st order perspectives e.g. Research and Development,

Marketing and Sales.

 3rd Order Process are those that interact with 1st and 2nd order processes but not

directly with the Manufacturing Operation e.g. Enterprise Executive, Supply/ Value

chain Planning.

The first order process take operational information and use it to perform their function; as

long as the information content and structure is as expected and the process functions as

specified the output should be valid. Second order process function similarly to first order

processes however they also take the output from first order processes. This introduces the

risk that any issues with the structure or content of the first order process or the operational

information can undermine the validity of the second order process. This risk is further

compounded in third order process. This highlights the risk that the further removed from the

107

source operational information and process is, and the more that information is processed

prior to input into a process the greater the risk of process inconsistency.

3.4.3 Rate of change of systems

The information processing rate of a system, shown as the organisational level timescales in

the Section 3.5.1, and the rate of change of the system are linked to each other and the

organisational level due to:

 The level of complexity and risk

 The level of regulatory impact

 The lead-time due to training, testing and development etc.

As the system and information structure are linked the rate of change of the system is linked

the rate of change of the information structure.

108

3.5 Understanding the complexity of MI systems interoperability

3.5.1 Disparate organisation level timescales

An organisation can be defined as comprising three levels (see Chapter 2):

 Enterprise Level: At the highest organisation level, Enterprise Systems help inform

and enact Enterprise wide coordination and strategic processes. These business

processes involved tend to be long – in many cases greater than a year.

 Execution Level: At the middle level, the Execution Systems help inform and enact

the process that result from the Enterprise processes. These processes tend to be

either geographically or functionally limited and work on timescales of hours to

weeks.

 Shop-Floor Level: At the Shop Floor level, the systems generate fast paced

information about the operational processes as well as enacting control over the

process with timescales ranging from milliseconds to minutes.

MI information is created and used across all levels of the organisation with the rate at which

information is processed differing at different levels due to the rate of information input or

availability and the process timescales. It is important to note that the conventional definition

of MI systems describe them as bridging between the Execution and Shop-Floor levels,

whereas this research resulted in and uses a definition where parts of the MI system can

reside at any level of the organisation.

 Figure 3-9 shows examples of the systems that may operate at the different levels. This

figure is a simplification, as systems may support multiple processes which may span

operational levels e.g. a CAD system can support either a drafting process (Execution Level)

or PLM design process (Enterprise Level). While this complexity has been removed from this

figure it is important to be aware that systems may support a number of processes across a

number of these organisational levels and hence may support a number of different process

timescales and processing rates.

109

Figure 3-9 - MI systems at different organizational levels

Figure 3-10 shows the alignment of Process Levels (see Section 3.4.2) and Organisational

levels and shows instances of information at each level: Performance Metric information

types have been used in this example.

110

Figure 3-10 – Example instances of information at different organisational levels

3.5.2 MI system information flow

The flow of information between MI systems is highly complex, crossing functional,

organisational, process and geographic domains. Figure 3-14 to Figure 3-14 show three

examples of flow individually and then combined to show the complexity given just three

instances of information type. These examples are:

 Product Configuration Information

 Product Variation to Specification Information

 Product Geometry Information

These information flows cross the organisational levels and therefore connect processes and

systems which are operating on different timescales (see Section 3.5.1). Process and

systems operating on shorter timescales which require inputs from those operating on longer

timescales have to assume that that input information remains valid between updates. In

some cases these faster operating process and systems feed and subsequently receive

111

information back from slower process and systems. This results in information latency

despite the faster system providing the information at the required rate. This latency can be

caused by any one of the many and disparate inputs which are required to generate a valid

output. In an operational environment it is usually unacceptable to stop operations to wait for

this latency, therefore at any time a number of systems may be operating with inputs which

are out of date.

These figures allow a simple description of the full complexity of MI information flow given

only 3 examples are shown and the potential numbers of information instances.

Figure 3-11 Example of Product Configuration information flow

112

Figure 3-12 Example of Product Variation information flow

Figure 3-13 Example of Product Geometry information flow

113

Figure 3-14 Combined, confusing information flow

The information that is input to these systems may be modified and output in a number of

ways:

 With the content changed but the structure the unchanged

 With the content and structure changed

 With the content unchanged and the structure changed

3.5.3 Manufacturing intelligence information structure

As previously discussed the individual MI systems within an enterprise take in disparate

information types, use it to perform their function or functions and then output information.

These input and output information flows have a structure. The information structures may

vary even within a particular information type. The same information type may be output

from the system with the information structure changed or unchanged. It is also common for

one information type to be processed and used with other information types to create a new

type with a hybrid structure.

114

Figure 3-15 - Manufacturing information structure changing as it passes through a system

Figure 3-15 represents these data structure changes, with data elements 1 to 10 being input

into a CAD system from 3 different inputs with their own unique data structures, which are

represented by the links between the numbered data elements. The CAD system takes

these data elements and constructs its own internal data model. The CAD system is then

able to output the same 10 data elements in different data structures using the CAD system

data model. In this example, data element 1 is input in a structure which shows a parallel

relationship with elements 2 and 3. The CAD system data model has been designed such

that it knows there is a relationship between element 4 in input 2 and the elements in input 1

as shown in the CAD system data model. Using this larger model the CAD system is then

able to generate an output which contains data elements 1 and 5 in a valid structure inferred

from the overall CAD systems data structure. In this way, data element structures are input,

combined, inferred or transformed and then output from systems.

3.5.4 Inconsistent manufacturing systems definitions

The use of inconsistent semantics is a significant risk to MI systems. Figure 3-16 uses the

industry standard Overall Equipment Effectiveness (OEE) metric as an example of

inconsistency between two geographic locations within an organisation:

115

Figure 3-16 - Inconsistent MI system definitions: OEE example

Both operational plants use the industry standard definition of OEE: Availability x Quality x

Productivity. However, each of these sub-metrics can be calculated using different source

information. Each of these methods is valid and the information used will be driven by the

data available within the plant. The result will be that the OEEs in these two plants will be

inconsistent and incomparable. If decisions are made based on this comparison e.g.

sourcing decisions based on plant effectiveness, the outcome will be unpredictable: if it is

assumed that parts are being sourced at the most effective plant, but that plant turns out to

be less effective, there could be significant impact on overall enterprise effectiveness and

profit.

3.5.5 Inconsistent MI definitions through time

The previous example of inconsistent MI definitions (see Section 3.5.4) can be adapted to

show a comparable issue with consistency through time rather than across and organisation:

116

Figure 3-17 - Inconsistent MI definitions through time

Figure 3-17 shows the inconsistency between two time frames within the same operational

plant. In this way the plant may report a change in OEE metric without any true change in

operational effectiveness despite the use of a standard definition of the OEE metric.

The gap between the two timescales A and B i.e. the rate of change of the system, varies as

per the previously described timescales and information processing rate models. The risk of

MI definition inconsistency over time is proportional to the rate of system and Information

structure change which in turn is related to the organizational level.

3.5.6 The complexity of systems & information structure change over time.

The previous section has described:

 The level of information flow within the MI domain (both types and complexity)

 The diverse information structures and the importance of structure compatibility and

consistency.

 The rates of information processing, the levels at which it is processed.

 The potential risk and impact of inconsistent MI definitions.

 The different rates of change across an organization.

This section will describe why the heterogeneous nature of system and information structure

rates of change is a significant challenge to maintaining MI system functionality and

interoperability.

117

Figure 3-18 shows a simple set of 4 systems (systems A,B,C1 and C2) with simple

information flows (Da,Db1 and Db2). This model is to transition to a future state where

system B is split into two systems and systems C1 and C2 are combined into a single

system. It can be seen that all of the data flows, including their content and structure, are

required to change. It is usual, however, for there to be an interim state as the systems do

not change at the same rate, as can be seen in the figure, and this creates a complex interim

state where the outputs from Systems Bf1 and Bf2 need to provide a consistent flow of

information (i.e. Db1 and Db2) to Systems C1 and C2 from the new inputs Daf1 and af2.

Figure 3-18 - The complexity of heterogeneous system change

When this model is considered in the context of the previous sections i.e. the levels of

information sharing, systems and timescale disparity the full complexity and challenge of

maintaining consistent processes, systems and information flow is apparent.

118

3.6 Summary
The key findings of the work to understand MI systems interoperability issues were:

 Manufacturing Intelligence Systems and information flows are complex and

numerous and operate across all levels of the organisation

 These MI information flows are required to provide and support different info

structures, even at a local level.

 The definitions of/ used in MI system can be inconsistent across an enterprise

undermining the ability to share information

 Definition inconsistency is compounded the more the MI information is processed

hence enterprise system are at the greatest risk.

 The defined MI system and information flow and the process level/ metric level

definitions can be aligned to the ISA 95 system timescales model

 The same model of MI definition inconsistency used across an organisation can be

used to describe inconsistency through time.

 The risk of MI system and information definition inconsistency over time is

proportional to the rate of change of systems in Information structure, hence MI is a

key area of hazard.

 A generic lifecycle can be used to describe systems and information structure

change process. These lifecycles can be used to represent the non uniform rates of

change.

 Heterogeneous system and information structure changes combined with the number

of information types and systems and hence opportunities for inconsistency make MI

systems information sharing over time a significant challenge.

The impact on an enterprise of these issues can be summarized as:

• An inability to create, update or maintain complex, integrated legacy systems

resulting in potentially catastrophic business continuity risks. This also results in the

failure to adopt systems improvements which can put the enterprise at a competitive

disadvantage.

• A motivation to avoid systems interoperation or integration leading to ‘islands of

information’ and making manufacturing decisions on incomplete information.

• Significant effort required on manual data collection and collation which due to its

manual nature cannot meet the speed, accuracy or reliability requirements for MI

decision making.

• An inability to consistently specify new MI systems, leading to system incompatibility

or inconstancy, which in the worst case may be undiscovered i.e. the systems would

119

be misinterpreting each other and not functioning as intended without the users being

aware.

• The reliance on standards to manage these issues means the systems can only

develop as fast as the standards, and the wider the standards are used the more

difficult consensus on updates is to achieve and so change becomes slower, as such

a widely deployed standard would be unable to support the rate of change at the

manufacturing operational level.

• Limited understanding or ability to express the requirements of systems as

individuals and as a network leading to Enterprise system requirements over-riding

manufacturing or operational level requirements due to them being generally

recognized as more business critical without understanding either the impact of the

alternative options.

• Lack of robust methods of ensuring system consistency results in the requirement for

massive regression testing to mitigate the business continuity risk. This level of

testing constrains ability to adopt change, as well as having a significant cost and

resource impact i.e. if this testing is not practicable, the change cannot be addopted.

The impact summarised above results in an inability to create or maintain automated MI

systems across a large organization. These systems are, and will be increasingly, required

to optimize manufacturing enterprises and make good manufacturing decisions in a timely

manner; this inability will therefore limit the effectiveness and competitiveness of these

organizations.

120

4 A novel approach to manufacturing systems interoperability in

dynamic change environments

4.1 Introduction

In this chapter the requirements for the solution concept are explored and the solution

concept described. Based on this novel core concept ontology based solution, a set of

research questions are defined. These research questions provide the framework for the

research and testing activities.

4.2 System interoperability core concept heavyweight ontology

4.2.1 Ontology solution requirements
Based on the understanding generated in Chapter 3 the solution requirement can be defined

as:

• A method to describe and specify future MI systems which ensures consistency and

continuity of system function.

• This method must be able to consistently describe and specify any element of a

current or future system or the systems in its entirety including its concepts,

relationships, processes, interactions and interoperation and must work across the

different organisation levels. This must include new concepts or types of relationship.

• The descriptions must be unambiguous and robust despite the nature of the future

systems being unknown at the point the method is defined.

• Concepts must be machine interpretable.

• The solution must support the rapid and disparate nature of MI systems rates of

change.

The requirement of the solution to deal with dynamic and developing systems

interoperability implies the requirement for a unified approach (see section 2.6.4.1)

where interoperability is provided through a common meta-structure.

Figure 4-1 represents the requirement within a single timeframe: each individual system

must be understood as well as their configuration and interactions. This is represented

by the analogy of explicitly defined geometrical elements which are assembled into a

specific form with the cross systems interactions shown. The required solution must be

able to provide this basic requirement within the MI domain, but it must also enable the

overall form and the systems and their interactions to develop over time.

121

Figure 4-1 - A methodology of describing individual systems and their interactions and interoperations is

required

In line with the selected, ontological approach, the solution must answer the ontology

competency questions which in this case were defined to identify and ensure interoperability

between systems. These competency questions shown in the Figure 4-2 were defined

through the analysis of the literature review and industrial investigation (see Chapters 2

and 3).

122

Figure 4-2 - Ontology competency questions and supporting questions

4.2.2 Solution concept overview

Developing the identified gaps in the current knowledge, this research proposes the

development of a mechanism for enabling and assessing system interoperability through

time. The MI domain was chosen as a suitable domain to develop the solution, which also

required work to define the domain to the required level of rigor.

Figure 4-3 describes how this approach meets the requirements detailed in the previous

section by continuing the geometrical analogy: A MI domain Foundational Ontology or Core

Concept Ontology (see section 2.6.6.8) is built upon a clear scope definition and used to

define individual the systems, which in this case are represented by geometrical shapes.

The foundational ontology, which may be supported by more specialised domain ontologies,

in this example would be geometrical form descriptors. This ontology can be used to

describe the individual systems and over all form as they change over time because they still

conform to the foundational geometrical descriptors The individual systems can be designed

to ‘fit’ together to form the overall system consistently due to this common foundation, and

while the individual systems and processes may change over time, represented in this case

123

by the different scale of shape of the geometries, the functionality is retained and further

developed.

Figure 4-3 - Ontology based solution

The solution concept is able to identify where system interoperability is occurring or required

and ensures interoperability by answering the competency questions defined in section

4.3.1. and constraining the system definition in line with explicit logic that defines the

requirements for interoperability. The proposed solution answers these questions through a

combination of core logic as new systems are declared to it, and user interaction or queries.

As new systems are declared to the solution, it develops and expands both through explicit

declarations from the user and inferred knowledge using the embedded system rules.

The proposed solution uses a common MI foundation ontology (which is a Core Concept

Ontology) which is specialized to form various domain ontologys for the different areas

across which the MI information flows for the purpose of specifying or describing the relevant

systems and processes. These domain ontologies will be consistent because they use the

same foundation, however, they will require the rigour and machine interpretability of a

heavyweight ontology.

124

The proposition is: because the foundation ontology embodies the core foundational

requirements of MI, even emerging MI concepts and relationships can be defined from this

foundation in a manner consistent with the existing ontologies.

Figure 4-4 shows the capability of the proposed solution and how it extends the current state

of the art.

Figure 4-4 - The solution proposal capability

Figure 4-5 shows the proposed multi level ontology approach as proposed for MI. The

foundation ontology is applicable on a much wider scope than Manufacturing intelligence

systems due to its level of abstraction, This foundation ontology’s scope can be described as

‘Systems’. The more specialised core concept ontology developed from the foundation

ontology narrows in scope, to focus on Manufacturing Systems. It is at the domain ontology

level that the scope is specialised to Manufacturing Intelligence systems, with the final level

of specialisation being the specific instances that populate the knowledge base. It is

important to note that the instances may not conventionally be considered part of the

ontology, but the proposed solution will rely on the populated instances to function therefore

in this case they are an integral part of the ontology solution.

125

Figure 4-5 - The specialised ontology levels scope

Figure 4-6 - The specialisation of ontologies from Foundation to Domain instances

Figure 4-6 shows the foundation ontology being used to defined two core concept

ontologies, which are then used to define a number of domain ontologies. A potential

example would be a Manufacturing System and Communication System core concept

126

ontology, which could both be defined from the same Systems foundation ontology. These

two ontologies would be consistent due to the use of a common foundation.

This approach builds on research in the field of ontology based interoperation (see

Chapter 2). The further development that will be required to meet the requirements of MI, will

be the development of this method to address change over time i.e. applying an additional

time axis to Figure 4-6.

Figure 4-7 shows the Foundation ontology being specialized, but also shows that the

foundation ontology provides consistency and enables interoperation within a single time

snapshot, and also that the persistence of this foundation ontology will provide this capability

through time. The rate of change within the individual domains i.e. the rate of progress

through versions does not need to be uniform or constant across the various domains.

127

Figure 4-7 - The heavyweight Foundation ontology providing a consistent basis through time

Figure 4-7 shows the domain consistency being maintained through time. Figure 4-8 shows

that either new systems can be added to the domain or new versions of any system can be

added, with the heavyweight ontological rigor ensuring that the interactions with existing

systems are understood and that system or version has been designed in line with the

logical constraints for interoperability. If it is not, the solution will prompt the user for more

information or flag the error.

128

Figure 4-8 - The solution enables the addition of new systems or versions ontology or knowledge base.

129

4.3 Research questions
To confirm the validity of the proposed approach 4 research questions were defined:

5. What is Manufacturing Intelligence?

6. What are the concepts in the MI Systems domain?

7. Can a domain foundational or core concept ontology be defined and formalised?

8. Can the proposed concept be proven through the formalisation of the ontology.

The research work carried out to answer these questions is the subject of Chapters 5, 6, 7

and 8 respectively.

130

5 Understanding the scope and concepts in manufacturing

intelligence

5.1 Introduction

This chapter details the research carried out to create a definition for ‘Manufacturing

Intelligence’ in response to research question 1 (Section 4.3). The resulting definition

resolves the inconsistencies and lack of clarity idenified in the literature review (Section 2.3).

This work used a combination of literature research and industry based research to create a

clear understanding and definition of Manufacturing Intelligence. This work resolves potential

contradictions in existing understanding resulting in a lightweight ontological model that

allows a definition that is relevant for many perspectives and also identifies relevant terms

and relationships within the domain.

‘Manufacturing Intelligence (MI)’ is a term which is increasingly common in industry and

which has been referenced in standards for a number of years (ISA 2000, ISA 2005).

Despite the prevalence of the term, there is a lack of clarity regarding the definition of MI with

many aspects of the existing definitions conflicting with each other.

MI was chosen as a target domain as it is widely recognised as a key area for investment

and rapid development through the literature review and industrial investigation in Chapter 2

and 3.

131

5.2 Method
Following a review of existing literature, open questions were defined that could be used to

prompt answers from relevant industrial experts regarding their understanding of the term

‘Manufacturing Intelligence’ without leading or biasing their input. The respondents were

chosen so as to provide a cross section of organisational levels and functional roles across a

manufacturing landscape. The responses were then transcribed and key text terms gathered

from them. These key text terms were grouped by synonyms and a tally created against

each question and response to indicate key concepts of interest. These terms were also

mapped using the UML class diagram convention to understand the relationship between

them. The synonyms were then further interpreted with industry experts and grouped by

meaning or function to provide a stronger indication of the expert’s views of the key functions

of Manufacturing Intelligence. These results were then interpreted in the context of the

existing literature based definitions and an updated definition of MI created. This definition

was then assessed against the existing literature and individual inputs from the experts.

132

5.3 Literature summary
The key points of the reviewed literature are:

 MI supports manufacturing decision making and reactions

 While MI is defined in standards as a sub function of manufacturing execution

systems, there is no attempt to resolve the issue that MES systems reside at Level 3

of the organisational model whereas MI information could come from other levels as

implied in the emerging term ‘Enterprise Manufacturing Intelligence’.

 MI is loosely defined.

 MI has been described as the combination of Business Intelligence, manufacturing

performance and real-time information.

 The links between Performance Indicators/Key Performance Indicators and MI is

implied but not explicitly stated.

 MI systems do not yet seem to be given the same recognition as ERP, MES and

CADCAM systems and there are few detailed MI systems requirements available.

 While MI is generally considered to involve distributed systems, connection (via

SCADA systems) of ‘intelligent machines’ does not constitute MI due to the lack of

overall coordination and orchestration.

 Key functions of MI are aggregations, contextualization, analysis, visualisation and

propagation of manufacturing information.

While most of the material is compatible, the emergence of the term ‘Enterprise

Manufacturing Intelligence’ (Siemens AG 2011, AMR Research 2011) seems to represent an

aspiration to make MI more informed and powerful by pulling in information from many other

areas of an enterprise, which in turn implies MI is outgrowing the ISA 95 definition of MI as a

sub function of MES. This makes the definition of MI or its emerging form of EMI even less

clearly defined.

133

5.4 Industrial survey & research
It has been recognised that MI is loosely defined as described in the literature review in

Chapter 2. This has led to many different interpretations of the meaning and scope of MI

across the manufacturing domain. The survey respondents were chosen to reflect the

breadth of individuals with a view on MI. 30% of the respondents were aware of the term MI,

but were unable to provide answers to the questions.

On this basis the individuals that were able to provide strong answers were considered

subject matter experts. This was not solely on the basis of their knowledge of MI but also

taking into account their knowledge of the manufacturing domain.

5.4.1 MI questions
The three open questions used to gather input were:

 In your view, what is 'Manufacturing Intelligence'/ what does it mean?

 What is it for/ what is its purpose?

 How will we know when we have it (what does success look like)?

The MI questions were sent to 40 individuals in a wide range relevant roles. Their responses

are tabulated below against their role title.

The format of the responses was left open to avoid constraining the thought processes of the

respondents.

While the responses display some key themes, no clear consistent answer could be inferred

directly. It was therefore necessary to carry out a level of structured analysis of the response

content to draw meaningful conclusions.

5.4.2 Feedback
Figure 5-1 to Figure 5-4 summarise the responses to the MI definition questions:

134

Figure 5-1 MI questionnaire feedback

In your view, what is 'Manufacturing Intelligence'/ what does it mean?
Senior Vice President Data on our processes, inputs and outputs

Process Excellence Manager
To me Manufacturing Intelligence would provide a complete picture of the actual and potential performance of a
manufacturing facility

Capability Acquisition Engineer
The capture and use of Manufacturing Data from actual manufacturing/inspection processes. E.g. Dimensional
Data, Process KPV’s etc

Process Team Leader
Manufacturing Intelligence is about getting the information to the right people in the right place at the right time. It is
the “intelligence” of our manufacturing processes and their performance

Manufacturing Systems Architect

 Business Intelligence applied to a manufacturing production context..it is therefore composed of two high-level
elements:

The interface with control systems and IT systems in order to collect/extract production data (actually a pre-
requisite of MI, not strictly a component)
The implementation of a “data warehouse” and reporting solution (including the development of manufacturing-
specific reports) to enable analysis of the data

Manufacturing Intelligence is NOT what Org X are doing - they are “enriching” the process definition in the router
and developing the control systems to constrain the process to its authored definition - this is process control, not
manufacturing intelligence..although some MI is generated as a by-product

Shop Floor Systems Super User
Using data to make informed decisions that reduce waste in Manufacturing processes

Head of Manufacturing Engineering
All data collected as input (e.g. KIPVs) as well as output during the course of a manufacturing process

Manufacturing Product Introduction &
Technical Governance Executive

MI is data about a manufacturing process, including inputs in-process variables, controls, and outputs. The term
includes the tools/systems for capturing such data and for processing it into useful information to control and
improve current processes and design new processes which are capable and robust from day 1

Chief of Man Sys

 Being able to collect data from manufacturing processes in a system independent of being created manually by
an operator or automatically from the machine controller or any device connected to the machine tool, furnace, etc.
Ability to analyse, report and store these data

Manufacturing Systems leader

MI should be an extended form of BI which is widely used to aid the allocation of scares resources in business. MI
is a comprehensive set of tools any of which are used to answer the question where do I send my scare resources
in order to maximise my profit/benefit

Manufacturing Systems Executive

MI is two things to me. First it is the collection of Key Process Variable data (i.e. feeds, speeds, pressure,
temperatures), Product Attribute Data (i.e. actual geometry, surface condition) and Operational Data (Operator ID,
start and stop times, OEE, downtime reasons). Second and more importantly it is the reporting and analytics of
this information in such a way as to generate meaningful information (intelligence) that allows us to bake in process
improvements and control the process to produce more consistent conforming product.

Data Driven Business Programme Manager
The combination of data and knowledge built into an entity ie a standard feature

135

Figure 5-2 MI questionnaire feedback (continued)

What is it for/ what is its purpose?
Senior Vice President improving business performance, both short term immediate tactical, and long term strategic

Process Excellence Manager

Providing:
Process capability - actual measured at process and part level
Quality performance
Delivery performance
Op by op real time processing time and quality (where are the parts and are they proceeding on time and to
quality)
Processing cost by part and Op
System utilisation and capacity
Resource utilisation and capacity
Manufacturing risks and preventions/mitigations are maintained in near real time
Energy and other overhead cost monitored tracked

Capability Acquisition Engineer

Used for monitoring of processes
To look for deviations from expected behaviour in order to avoid production of non-conforming components
To monitor the health of equipment and plan maintenance etc
Used to build a knowledge of the process to enable identification of improvements and optimisations
Used to drive design decisions for future component designs to maximise compliance with actual manufacturing
capability

Process Team Leader

Answering qns such as:
Do we have a dimensional quality problem? Do we have an emerging bottleneck? Do we have a spate of issues
on one particular feature of our parts? Do we have a problem with the efficiency of one particular piece of kit? Are
our furnaces running over temperature? Etc etc etc etc

Manufacturing Systems Architect
The purpose is to provide the capability to process the derived data in order to determine/prioritise/monitor
process improvement initiatives

Shop Floor Systems Super User
To provide users (ME, Ops, Logistics etc) with knowledge to improve process capability and reduce cost

Head of Manufacturing Engineering
Req'd to understand inputs/outputs to maintain and further improve capable manufacturing process

Manufacturing Product Introduction &
Technical Governance Executive

MI should help us to reach a point where manufacturing processes are self-controlling with minimum manual
intervention, and where that manual intervention is informed by data rather than skill or opinion. It should provide us
with the information to prioritise opportunities for improvement and to ensure such improvement actually delivers
results. It should help us to design robust and capable processes for new parts and products.

Chief of Man Sys

MI is used as data base for improvement activities following the DMAIC process and ensuring that data are
captured and stored where required for verification of compliance of an approved make process of a product, e.g.
coolant flow, temperature limits, pressure, etc.

Manufacturing Systems leader

MI is a comprehensive set of tools any of which are used to answer the question where do I send my scare
resources in order to maximise my profit/benefit

Manufacturing Systems Executive

MI is two things to me. First it is the collection of Key Process Variable data (i.e. feeds, speeds, pressure,
temperatures), Product Attribute Data (i.e. actual geometry, surface condition) and Operational Data (Operator ID,
start and stop times, OEE, downtime reasons). Second and more importantly it is the reporting and analytics of
this information in such a way as to generate meaningful information (intelligence) that allows us to bake in process
improvements and control the process to produce more consistent conforming product.

Data Driven Business Programme Manager
Definition of a capable and robust product design or process based on Manufacturing Intelligence in a “real-time
environment”

136

Figure 5-3 MI questionnaire feedback (continued)

How will we know when we have it (what does success look like)?
Senior Vice President Right first time processes, that are stable and capable

Process Excellence Manager

We can accurately predict production times (launch to complete)
We can track actual against predicted production times
We can accurately predict factory capacity
We can identify quality and delivery issues before they impact the customer
Component cost build up is visible
Problems can be identified and isolated within 60 mins.
People at each level have easy visibility of information they need to understand the progress and issues with their
task
Everyone is utilising the same consistent base data
The Manufacturing Information System data is a key driver for all management decisions

Capability Acquisition Engineer

Data is being used
Both at the monitored process “duckboard” and at cell leadership level to monitor, report and correct deviations
from expected behaviour
By MTM to monitor health of machine tools to better plan maintenance and prevent failures and downtime
By Manufacturing Engineers to drive, investigate and deliver process improvement activities.
By Design Engineers to influence design decisions towards our actual manufacturing capability

The key word here is “used”, merely having the capability installed is not good enough.

Process Team Leader

Access to this data at headline and drill down levels to allow management, engineering, logistics, shopfloor to
understand where our problems are as they happen.

In systems that can be compared directly (not via excel) so you can see if machine KPV issues relate to part
quality issues (for example).

Manufacturing Systems Architect

A full definition of the data to be collected from each process under change management (otherwise how do we
know when we’re “done”?)
- A full definition of the reporting solution used to interpret the data (and hence the required data model) -
(otherwise how do we know when the solution is complete?)
- The active storage of such data in the “data warehouse” (got to be implemented/working right?)
- The deployment of the reporting solution in accordance with the requirements derived from bullet #2 (as previous)
- The active management of the processes using the MI toolset (Business Metrics - CPK etc.?) - (most important -
how do we know we’re using it to derive benefit?)

Shop Floor Systems Super User
When all users have easy access to knowledge that can be used to identify the route causes of waste

Head of Manufacturing Engineering

 Overall measure must be feature-based Cpk values 1.33.
 Sub-milestones could include assessments against KPIVs and process outputs.

Manufacturing Product Introduction &
Technical Governance Executive

When all our most critical processes have a level of control and knowledge sufficient to make them robust and
capable.

Chief of Man Sys

My vision would be that the above mentioned is available without having still the need for paperwork. To enter data
into a system for further analysis or reporting is no longer required since data once recorded can be transferred
and used wherever needed.

Manufacturing Systems leader

Our scarce resource is often time and people so when you look at MI as a subset of BI we would look at
understand where your pressure points are (often Non-conformance or delivery pressure) and use the intelligence
derived for MI to better allocate our scare resources (people and time).

Manufacturing Systems Executive
success looks like a number of continuous improvement engineers per plant using the MI data in DMAIC projects
to drive up quality, and that we see the plant KPI's improving in line with this.

Data Driven Business Programme Manager
When we have a closed loop system whereby products are designed on MI and the process feedback is
maintained and updated the ongoing design process

137

Figure 5-4 - MI questionnaire feedback (continued)

The feedback was analysed and key words within sentences extracted and tallied against

each of the questions. This simply shows the number of times certain words were used and

allows the inference of some key themes.

Shop Floor Systems
Technichal Manager

 MI forms part of the
Manufacturing Execution
System (MES)

 Subset of Business
Intelligence, providing data
collection and analysis for
process improvement
opportunities

 Includes operator feedback
of plant status

 Reporting capability
providing performance and
quality information

138

Figure 5-5 - Ordered tally results of feedback text mining

These words were then treated like concepts and using the input from the respondents and

subject matter experts, relationships between them were defined within the MI context. This

provides some level of structure to the gathered text based concepts and allows a further

level of interpretation. Figure 5-6 shows a UML representation of these concepts and

relationships. At this point it was unclear as to which level of the ontology concept shown in

Figure 4-8 these terms would reside, however, the overall diagram allows the MI domain

ontology scope to be defined.

Terms that were gathered, but that were unanimously agreed by subject matter experts on

review not to be significant within the MI context were excluded from this diagram.

0 10 20 30 40

Data

Process Improvement/ process capability inc…

Process Understanding

Knowledge

Quality/ Non Quality

Production Planning

Metric/ measure

Reporting

Inputs/ outputs

Predicting/ Anticipating

Information

Performance/ Utilisation

Cost

Operator Feedback/ Process feedback

Consistency

Business Intelligence

Problem resolution/ reaction

people/ roles

Decision

Analysis

Real Time

Maintenance

Delivery

Visible

Manufacturing Execution Systems

Risk

IT

Compliance
In your view, what is
'Manufacturing Intelligence'/
what does it mean?

What is it for/ what is its
purpose?

How will we know when we
have it (what does susses look
like)?

139

Compliance

Analysis

Real Time

Maintenance

Delivery

Visible

MES

Risk

IT

Data

Process
Capability

Process
Improvement

Process
Understanding

Knowledge

Quality

Production
Planning

Metric

Output

Reporting

Input

UtilisiationPerformance

Process
Feedback

Consistency

Business
Intelligence

Cost

Problem
resolution

Roles

Decision

enables

adapts

executes

generates

processes

informs

hasTimescale

quantifies

communicates

updatedBy

hasVisibility

maintains

contributesTo

collates

hasAgents

hasPrerequisite

Prediction
references

requires

Figure 5-6 - Text analysis class diagram

Using this increased level of understanding and structure it was possible to combine some of

the terms or concepts by intent or by shared meaning or purpose. This provided a stronger

indication of the concepts that were more significant to the meaning of MI.

140

Figure 5-7 - Results grouped by 'intent'

0 10 20 30 40 50 60

Predicting/ Anticipating/ process understanding/ knowledge

Inputs/ outputs/ data

Process Improvement/ process capability inc rft

Production Planning/ delivery/MES

Quality/ Non Quality

Metric/ measure

Reporting/ visible

Performance/ Utilisation/ cost

Consistency/ compliance/ maintnence

Information

Operator Feedback/ Process feedback

Decision/ analysis

Business Intelligence

Problem resolution/ reaction

people/ roles

Real Time

Risk

IT In your view, what is 'Manufacturing
Intelligence'/ what does it mean?

What is it for/ what is its purpose?

How will we know when we have it
(what does susses look like)?

141

5.5 Results
The class diagram constructed from the survey results was reviewed against the ‘intent’
concept tally to identify the key concepts according to the survey results. These were
highlighted on the class diagram, and represent the key concerns of the respondents.

Figure 5-8 - Key concepts based on the 'intent' review

The class diagram was then reviewed against the literature review summary to identify those

concepts which are also highlighted within the literature and these were highlighted on a

separate version of the diagram.

142

Figure 5-9 - Key concepts based on the literature review summary

It was anticipated that there would not be a significant overlap in these key concept sets, due

to the stated need for this research. To ensure a meaningful outcome it was necessary to

understand the links between the two apparently distinct key concept sets identified by the

literature and survey results.

The key concepts from both the survey results and the literature review were tabulated and

interpreted to find if they were:

 An enabler for another concept

 A descriptor of another concept

 A generalisation of another concept

143

It was clear that the two concept sets are closely linked and the apparent differences in

specific terms could be due to slightly different but consistent perspectives arising from

developments in the field of MI and knowledge management e.g. the literature focuses on

the ability to make decisions, whilst the survey recognises the need for data, knowledge and

understanding to make those decisions

This interpretation, along with the relationships allowed summary conclusion sentences to be

constructed that use these concepts and example would be: “MI involves the visual reporting

of real time data”. It was also possible to infer some statements due to the concepts that

appear to have weaker relationships or have not been referred to directly or indirectly by the

key concepts.

Table 1 - Survey Key Concepts vs. Literature Key Concepts

Survey Key Concepts Literature Key Concepts

Process Understanding Business Intelligence

Process Improvement Visible

Knowledge Decision

Reporting Real Time

Data Analysis

Prediction MES

Metric Performance

The summary statements inferred from the key concepts and their relationships as shown in

the class diagram were:

 MI involves the use of, and visual reporting of real time data.

 MES are involved in the support of MI.

 MI enables the prediction of future performance and how decisions will affect that

performance.

 MI uses visual metrics to communicate information and trigger and inform actions

and decisions.

 MI informs business intelligence but is distinct from it.

144

 MI generates process understanding knowledge using data and metric analysis.

 MI enables quantified process improvement using real time data, process

understanding and knowledge.

 MI supports manufacturing decision making.

 MI can be used to drive manufacturing process and metric improvement

 MI takes data, including real time data and helps create information and knowledge

and enables the re-use of this data, information and knowledge for performance and

process improvement.

 MI can be applied to any identified manufacturing metric

 MI can be enabled by, but is not inherently IT or an IT system.

 MI relies on compliance and sustainment processes to enable process improvement.

From these statements it was possible to create a summary statement for the purpose and

intent of MI which could be used to create answers to the research questions:

In your view, what is 'Manufacturing Intelligence'/ what does it mean?

Manufacturing Intelligence enables good manufacturing decisions based on understanding

of the current status and the ability to predict and control the outcome of any given decision.

What is it for/ what is its purpose?

Communicating and improving manufacturing performance as quantified by appropriate

metrics, with the appropriateness of metrics also being informed by MI understanding.

How will we know when we have it (what does success look like)?

The organisation has the right metrics and targets in place to achieve the organisations

objectives. Everyone is aware of the current performance of the organisation and process

against the target metrics, likely future trends in the metrics and how to either maintain or

improve performance to achieve the short, medium and long term targets.

145

5.6 Conclusions
Using the published literature and structured analysis of industry subject matter experts it

has been possible to create model answers to the questions “ What is MI”, “What is its

purpose” and “ What does an future state with MI look like”. When these answers are

reviewed against the literature and subject matter expert input it can be seen that the derived

answers provide consistency with nearly all the apparently diverse views.

Two key assumptions or statements that do not align with the derived definitions are: “MI is a

sub function of MES systems” and “ MI is an IT system....”. Invalidating these statements

resolves the apparent conflict with the ISA95 model timescales, where MES systems reside

within this model and the timescales involved in MI processes, data and information. It also

ensures that MI is understood to be a function of systems and processes enabled by IT but

not solely an IT solution.

The new definition of MI is a high level description that provides an outline scope of the MI

function. The class diagrams were used purely to structure the concepts or terms and the

relationships between them and should not be considered complete concept maps for MI.

Similarly, the process used shares some similarities with ontology development processes

(Noy, McGuinness 2001, Blomqvist, Öhgren 2008, Wang et al. 2007, Frankovic, Budinska

2006, Zahedi, Sinha 2010), but the output is not intended to be the full MI ontology and the

level of specialisation in the terms is clearly inconsistent. These terms, relationships, logic

statements and the understanding developed through this work would prove to be key in the

development of the full and foundational MI Ontologies which are described in the following

sections.

The clarified scope was used to focus the next phases of concept development to ensure the

MI domain onotology’s represented in Figure 4-8 remained focused on the correct scope.

146

6 Ontology term, relationship and logic definition

6.1 Introduction

This chapter describes the elicitation and development of the domain concepts for the

Systems, Manufacturing Systems and Manufacturing Intelligence domains in response to

research question 2 (Section 4.3). These concepts included the relationships, logic and the

development and identification of the subgroup of core concepts which form the core and

domain ontologies and would ultimately be used to populate the instances within the

ontology solution as shown in Figure 4-8. Some of these terms would be used in the later

formalisation and testing research to test the core function of the solution concept including

the ability to add instances from different timeframes.

Following the MI definition work and as shown in Figure 6-1, two other methods were used

to identify and develop the domain terms, relationships and logic: subject matter

brainstorming and business process mapping. This combination of techniques was used to

avoid unconscious bias in the research and to ensure sufficient domain coverage which was

identified as a risk with manual techniques (Blomqvist, Öhgren 2008, Li, Yang & Ramani

2009). The use of standard tools and methods such as BPMN, UML class diagrams,

brainstorming and the ontology development approach ensured that the method could be

reused in other domains in the future. The ability to reuse the method is vital to allowing the

solution concept developed in this research to be taken further or re-applied in subsequent

research.

Sections 6.4 and 6.5 describe the logic development based on the ontology competency

questions listed in Section 4.2.1, and the subsequent development and structuring of the

concepts and relationships identified.

147

Figure 6-1 - summary of the domain term and relationship enumeration methods

148

6.2 Subject matter expert brainstorms

6.2.1 Unconstrained brainstorming and affinity mapping

A selection of 45 manufacturing systems industrial experts were gathered with

representation from the Aerospace, Automotive, Electronic, Power Generation, Nuclear,

Machine Tool and Naval industries with the experts representing large multinational to small

(<5 person) enterprises. There was also input from manufacturing systems solutions

providers as well as manufacturing systems forum organisers. Due to the number and

diversity of input a number of different brainstorms were carried out. This was to allow free

and open contribution without the risk of industrial intellectual property leakage between

contributors, as well as the practical considerations of gathering such a diverse group in one

event.

Following a briefing on the definition of MI used for this work to ensure the diverse views on

the meaning of MI were resolved, the contributors were asked to volunteer words or

concepts that they felt were strongly related to this field of activity. The standard rules of

brainstorming were observed i.e. no input was discussed in detail, no criticism of ideas was

permitted, everyone was expected to contribute, all input was recorded. After 2 hours over

200 terms had been volunteered. This input was an unstructured list of terms recorded on

‘sticky notes’ in no particular order. The attendees were then asked to group these terms into

pools with similar meaning, functions or any other sort of linkage and where this linkage was

not already present as a term, add it. This process was used to clarify the meaning of each

term with the group as well as providing structure to the input. Finally they were asked to

identify where terms could be linked to other terms by the relationship ‘is a’ link e.g. ‘dog’ is a

‘mammal’. This led the experts to define a basic taxonomy without unnecessary

preconceptions of what the result of the work should be. The experts were deliberately not

told about the whole process up front to avoid their own preconceived ideas of the MI

domain biasing the resulting output.

Following this session this input was captured in the form of a UML class diagram. A list was

constructed using the terms that represented the groupings or which had not been added to

a grouping, this list would then be used as the prompting information for the prompted

brainstorms. This list also included 1st level sub terms of the larger groupings. This was to

avoid the prompts for the next stage being too open or high level, which could result in a

failure to achieve an increase depth of detail in the prompted brainstorms.

It is important to note that while the author had views on the input e.g. some terms clearly

seemed to be sub types of another term, no guidance or modifications were made to the

149

input at this stage. The input was not modified by the author until the later term structuring

activity was started to ensure the input represented the subject matter experts input.

The following figures show a lightweight representation of the level 1 ontology. These

diagrams represent the final results of the level 1 ontology development. Figure 6-2 shows

on overview of the UML representation: the terms are structured around potential core

concepts with the following figures showing the detail of each term grouping:

 Metric

 Data

 Constraint

 Target

 Response

 Timescale

 Manufacturing

Method

 Interface

 Visualisation

 Collaboration

 Prediction

 Authority Level

 Standard

 Sustainment

 Person

 Analysis

 Traceability Item

 Status

 System

 Resource

Figure 6-2 Overview of the lightweight representation of the level 1 ontology

150

Figure 6-3 - 'Metric' UML diagram

151

Figure 6-4 - 'Data UML diagram (part 1)

Figure 6-5 - 'Data UML diagram (part 2)

152

Figure 6-7 – ‘Constraint’ UML diagram

Figure 6-6 - 'Data UML diagram (part 3)

153

Figure 6-9 - 'Response' UML diagram

Figure 6-8 – ‘Target’ UML diagram

154

Figure 6-11 = ‘Manufacturing Method’ UML diagram

Figure 6-10 – ‘Timescale’ UML diagram

155

Figure 6-14 – ‘Collaboration’ UML diagram

Figure 6-12 – ‘Interface’ UML diagram

Figure 6-13 – ‘Visualisation’ UML diagram

156

Figure 6-15 – ‘Prediction’ UML diagram

Figure 6-16 – ‘Authority Level’ UML diagram

157

Figure 6-18 – Sustainment Process’ UML diagram

Figure 6-17 – ‘Standard’ UML diagram

158

Figure 6-20 – ‘Analysis’ UML diagram

Figure 6-19 – ‘Person’ UML diagram

159

Figure 6-22 – ‘Status’ UML diagram

Figure 6-21 – ‘Traceability Item’ UML diagram

160

Figure 6-24 – ‘Resource’ UML diagram

Figure 6-23 – ‘System’ UML diagram

161

6.2.2 Prompted brainstorming

15 of the subject matter experts described in Section 6.3.1 were gathered and presented

with the UML diagram that represented the root terms from the term groupings generated in

the unconstrained brainstorms. They were given the same brief on the MI domain definition

and scope and were asked to generate term lists relating to each of the prompts. This group

were not shown the full output from the previous group to avoid ‘leading’ or biasing their

input.

This prompted brainstorming, in addition to the unconstrained brainstorming was used to try

and ensure the breadth (unconstrained) and depth (prompted) of input.

Once the inputs were rationalised and combined with similar terms being referred to the

experts for resolution, the resultant full diagram had over 350 terms and the prompt list had

42 terms.

The final part of this activity was to provide the subject matter experts a sheet with the 42

core terms printed on it and ask them to construct lines between the terms that have some

form of relationship or interaction and try and define that relationship, of which an example is

shown in Figure 6-39. It was interesting to note that the experts struggled with such an open

brief and some required examples. Examples were given in a totally different domain

(sports) to avoid biasing or directing their input. This input was used as part of the

relationship development (see Section 6.5).

162

6.3 MI system business process mapping

In order to provide real world based input for the term pool and populate the solution

ontology it was necessary to identify a source of instances and a method to capture them for

this purpose. The approach taken was to use a structure process mapping standard (BPMN)

that would allow the representation of real process and systems within a manufacturing

facility. Figure 6-25 shows a simplified set of process steps that were used to identify

relevant terms and logic in the BPMN diagrams. Although not shown, this process was

highly iterative and required significant cross referencing of the identified terms with the

subject matter experts and emerging UML class diagram taxonomies.

Figure 6-25 - The process steps used to identify concepts, relationships and logic within the BPMN
diagrams

6.3.1 Term identification

The term pool was populated using 32 BPMN maps which cover all process steps within a

specific state of the art manufacturing facility as represented in Figure 6-26:

Add all suitable terms and relationships to the term pool for addition to
the UML taxonomy. Add all suitable logic statements to logic listing.

Identify conditional process flows.
The BPMN standard allows the mapping of

conditional process flows based on rules or events
These conditions were assesed for their suitability

to be used within the ontology logic.

Identify verbs relating to inputs/ outputs and agents
idenitify verbs linked through process, information

or object flow lines to any system.
These verbs were reviewed to idenitify any

relations described by these verbs.

Identify all system input/ output nouns
idenitify nouns linked through process, information

or object flow lines to any system.
This step idenitified linked terms linked to the
idenitified systems or system process steps.

Idenitfy all systems (agents)
The BPMNs idenitify key systems or system capabilities as swimlane titles or as nouns within process

steps.

Collate BPMN diagrams

163

Figure 6-26 - The manufacturing process steps covered by the 32 BPMNs

A separate process map was created for every manufacturing process or defined sub

process, with the ‘agents’ being defined as either the people, major equipment or systems.

This allowed the information and data flows and activities to be clearly shown along with the

affected agents. The BPMN maps are not included due to confidentially issues.

Figure 6-27 - A section of one of the BPMN diagrams

164

The relevant agents, information types, sources, flows and process described within the

BPMNs were manually identified and added to the term pool. The BPMNs were also used to

validate the defined logic (see Section 6.4) against real systems i.e. ensuring the logical

rules are consistent with reality.

Figure 6-27 shows as section of a BPMN. This example shows the ‘matrix reader’ system as

an agent with its own swimlane within the manual cell. The diagram shows the part serial

and part numbers to be system inputs, a reject or accept signal the outputs, the operator as

a resource and the question ‘do numbers validate’ as the system constraint.

Figure 4-5 described the solution concept as having 3 discrete ontology levels plus

instances. That concept was modified based on a greater understanding of the BPMN and

IODE tool functions, so that the second level of the ontology was actually the instances and

the foundational level was clarified as being a core concept ontology as it was intended to be

foundational within a specific domain. These changes are described in Figure 6-28 which

shows how the core concept ontology is built upon by the more specialised Level 1

(manufacturing systems domain) ontology and the Level 2 ontology (which is comprised of

the instances within the MI domain). When combined they are structured as shown, with the

level one semantics extending the core concept ontology semantics and the Level 1 logic

extending the core ontology logic. The logic is shown as being built on the semantics as the

logic cannot be constructed without the semantics being defined. The Level 2 semantics

(instances) and logic are then added to the taxonomy of the core and Level 1 ontologys.

165

Figure 6-28 - Clarification of the ontology level model

The terms gathered from 32 BPMN diagrams, along with the brainstorming and MI definition

research contributed to the creation of the core concept and Level 1 ontology term pool as

described in Figure 6-1 and Section 6.3.1. leaving an outstanding requirement for suitable

instances with which to populate the Level 2 (MI domain) ontology.

6.3.2 Instance identification

6 systems which were identified as ‘agents’ on the BPMN diagrams were selected to

potentialy populate the knowledge base or ‘Level 2 ontology’ with facts about these systems.

The 6 selected were chosen as they all operated in the initial cell of the facility. These 6

systems were:

 A Computer Aided Process Planning System (CAPP)

 A Manufacturing Execution System (MES)

 A Part Tracking System

 A Wax Injection Robot Control System

 A Wax Injection Machine Control

 A Wax Injection Cell Control

166

Figure 6-29 shows the process and systems which were identified within the initial

manufacturing cell of the facility. Figure 6-30 shows how the BPMN information maps to the

different ontology levels.

Figure 6-29 – The process and systems identified within the initial cell of the facility.

Figure 6-30 - The domain information is used to create the 3 ontology levels which when structured
together form the proposed Ontology Solution

167

Following the identification of the core systems model as part of the core ontology UML

diagram (see Section 6.5) it was decided to use this model to represent the 6 systems that

would be captured for potential entry into the knowledge base (only 4 were eventually

required). This visual representation allowed a simple overview of the systems inputs and

outputs which could then be reviewed for the other applicable types against which they

should be classified. The visual representations were also used with subject matter experts

to prompt any missing facts. This proved highly effective as many of the facts were

reclassified and a significant number of additional facts identified. The non system related

facts and those related to the system inputs, outputs, resources and constraints could be

declared. This phasing or fact declaration provided much needed structure to allow effective

classification and coding of the facts.

Figure 6-31 - Generic systems model

The following Figures detail the IDEF0 representations on the manufacturing cell systems.

168

Figure 6-32 Generic systems model representations of the systems instances: MES System

Figure 6-33 Generic systems model representations of the systems instances: Part Tracking System

169

Figure 6-34 Generic systems model representations of the systems instances: Wax Injection Robot
Control

Figure 6-35 Generic systems model representations of the systems instances: Wax Injection Machine
Control

170

Figure 6-36 Generic systems model representations of the systems instances: Wax Injection Cell Control

Figure 6-37 - Generic systems model representations of the systems instances: CAPP System

It was recognised early in this stage of the research that any systems identified and declared

would be done so in the context of the wax injection cell. This means that any system that

operates outside of this context would eventually need further facts adding. The ontology

approach used in this research would allow further inputs, outputs, resources, constraints

171

and other related facts to be added within the standard structure of the extendable ontology

in the same way that subject matter expert’s additional facts were added.

172

6.4 Logic development

In order to constrain the emerging terms within the developing heavyweight ontology logical

rules were required. These rules would have to constrain the terms within the combined

contexts of both the MI systems domain and the requirements for interoperability.

The research described in Section 5.5 which resulted in the definition of MI generated some

basic defining statements which could be used to help define logic and relationships later in

the process. These were relatively loose descriptive statements that proved to be useful in

creating a clear MI definition but required a level of interpretation to generate logic and

relationships as described in Section 6.6.

Based on the findings from the literature review and industrial investigation (see Chapters 2

and 3) the challenges to systems interoperability could be grouped into ‘themes’ and these

themes were then be used to identify constraining logic, to which a type or instance within

the ontology must conform if it is to meet the requirements for interoperability. The logic

themes and example logic are shown in Figure 6-38:

Figure 6-38 - Logic development themes developed from the challenges to interoperability research

The next approach was to focus the subject matter experts on the purpose of the ontology

and list rules and relationships between individual terms using the UML taxonomies as a

prompt. The development of these rules was structured around the key themes previously

173

identified as the challenges to system interoperability. This work resulted in the following

statements:

 Each data instance has a technical authority level

 Each data instance has an operational authority level

 Decisions about systems can only be made by super users or administrators

 Non standard systems specifications require manager and super user approval

 A Person has a technical authority level

 A Person has an operational authority level

 If a person’s operational authority level is less than the data authority level they

cannot access the data

 If a person’s technical authority level is less than the data authority level they cannot

access the data

 Having technical authority does not give a person operational authority

 A system should use a standard data structure

 Anything with obsolete or deleted status should not be used

 For something to be approved, all data must be proven or approved.

 A change decision makes proven data unproven.

 If data is not approved it is be default unapproved

 The use of unapproved data within a system renders the system output unapproved

 Users or employees cannot change unproven to proven or unapproved to approved

 Outside of its validity timescale data becomes unapproved

 Equipment maintenance requires maintenance data

 Output data should must have a timestamp

 Finish data Timestamps cannot precede a start timestamp.

 Increasing a person’s authority requires some sort of training

 For a person to work with a system there must be a HMI

 For two or more systems to work together there must be a system-system interface

defined

 For 2 systems to measure the same metric they must use the same data types.

 For decisions to be consistent across people and systems the same data or metrics

must be used.

 A system requires sustainment processes to remain consistent.

 People require training to remain consistent

 The durations between training to maintain person consistency must be defined.

 Maintenance intervals for a equipment must be defined

174

 The consistency of people and systems should be monitored.

 Metrics must be defined for any form of monitoring

 Targets must be defined for any form of monitoring.

 Reactions must be defined for any form of monitoring

 A system must be described by a functional and non functional spec

 If a system uses IT there must be an IT spec.

 Proactive feedback uses input data

 Reactive feedback uses output data

 Responses require output data

 Using non standard data structures requires super user authority

 Specifications must be approved by people with leaders and super users authority or

higher

 System inputs, outputs must be specified for a system

 System resource and constraints should be specified for a system

 Metric targets have a validity timescale

 Metric data has a validity timescale

 A system has a data type if it is an input, output, resource or constraint

 If a system outputs a program it is a programming system

 If a system has data inputs but no data outputs it is a data storage system

 If a system is the only store of a data type it is an archiving system

 Data should not be stored in 2 archiving systems

 If data is stored in 2 archiving systems one must be declared the authoritative data

store

 Data should have a data retention category (mandatory/ non mandatory)

 Data should have and export control category (export controlled/ non export

controlled)

 Data should have a security category (public, private, secret, top secret)

 systems should have a security, export control and data retention category

 If an system doesn’t have a security category if should be set to public

 If an system doesn’t have an export control category it should be set to non export

controlled

 If an system doesn’t have a data retention category if should be set to non mandatory

 systems that have security category of public can only input or output public category

data

175

 systems that have security category of private can only input or output public or

private category data

 systems that have security category of secret can only input or output public, private

or secret category data

 systems that have security category of top secret can only input or output public,

private, secret or top secret category data

 systems with an export control category of non export control can only input or output

non export control data

 systems with an data retention category of non mandatory control can only input or

output non mandatory retention data

 If a data item is the input of one system and the output of another these systems are

series associated

 If a system outputs data to another system it is an input for that other system

 A system functional spec must define a performance metric and metric target

 Systems that share the same input, outputs resources or constraints are parallel

associated

 If a system outputs data that is not input into it, it is the data source for that data

The term pool, taxonomy and relationship development the logic development were all

iterative and interlinked, with developments in one area requiring a form of regression

assessment to ensure all logic and relationships still held true and comply to the constraining

logic. This logic was also checked against the BPMNs (representing real systems and

process) to ensure the correlation with reality. At this stage this was a manual activity, and

the complexity due to the number of terms and relationships was highlighted by the number

of issues that would be highlighted during the ontology coding activity, where these checks

were carried out by the software in a very rigorous manner.

176

6.5 Concept and relationship development and structuring

The MI definition, subject matter expert brainstorming and process mapping activity resulted

in a large term pool, and a smaller subset which represented parent terms for the terms

groupings within the pool. This large pool was structured into a taxonomy although at this

stage the subset was unstructured.

When the output from the relationship identification exercise carried out with the subject

matter experts (see Section 6.3.2) was reviewed it was clear the area within the

Manufacturing Systems domain that each expert worked, heavily influenced their input: the

Computer Aided Process Planning experts represented the relationships relevant to them,

which were different to those of the Manufacturing Execution System experts. Therefore all

of the 16 sheets provided were reviewed simultaneously through a manual review and all

identified links between terms were reviewed to identify whether common parent

relationships existed. These common relationships were then manually checked to ensure

none of the other defined relationships conflicted with them. It is noteworthy that despite the

large number of relationships, no conflicts were found. These were considered to be the

initial relationship list for the concept groups. The next, and very arduous activity was to

apply these relationships to the groups and ensure that the relationships hold for all

members of that grouping, and issues were identified, a decision had to be made as to

whether the term had been incorrectly grouped or added to the taxonomy or whether the

relationships was either invalid or only held for a sub branch of that group within the

taxonomy.

Figure 6-39 shows two examples of relationships defined by different subject matter experts

through the prompted brainstorming described in Section 6.2.2. The two experts identified

that the terms ‘Decision’ and ‘Response’ have a relationship, however one defined this as

‘requires a’ and the other ‘will determine a’. In this case the relationships while different are

compatible once interpreted. This interpretation was checked with the experts for accuracy,

and the relationships both accepted for future consolidation or inclusion in the ontology.

177

Figure 6-39 - Examples of differing subject matter expert generated relationships between 'parent' terms
for the UML diagrams

The next phase of the research was to review the logic (see Section 6.4) and use this to

define and then test the relationships between the term pools in addition to the previous

work. Similarly to the previous relationship development exercise, this led to the

development of generic relationships but also led to significant developments in the terms

pools as the application of relationships necessitated splitting some of the initial groupings

and the combining of other under a newly identified parent term. This activity was highly

iterative and continued even through the coding activity as can be seen in the in the

development change log (see Appendix A).

These relationships form a core or ‘structural’ part of the ontology logic, in that all future

types or instances would have to conform to these relationships, as they are defined from

the logic of Manufacturing Systems interoperability between the parent terms of the term

groupings. These parent terms, through the ongoing development, would come to be the

core or foundational terms described within the solution concept (Figure 4-8), as shown in

Figure 6-40:

178

Figure 6-40 - The ontology core concepts UML diagram

179

A key finding of this stage of the work was the unconscious emergence of a standard

systems model within the core ontology UML diagram shown in Figure 6-40. The

development of the large number of terms and relationships was extremely complex and

detailed, therefore it was not until a full review of the emerging results was carried out that

the fact that the terms System, Input, Output, Resource and Constraint, were related in a

conventional systems diagram format (see Section 6.3.2). This was taken as affirmation of

the Core, Level 1 and Level 2 approach described in Figure 6-28, as through the

development of a very large and complex Manufacturing Systems/ Manufacturing

Intelligence Systems term pool (which would reside at Level 1) the generic system model

emerged as a central part of the core concept model: this is consistent with the ontology

domain (see Figure 6-40).

This phase of the research resulted in the large term pool taxonomy for Manufacturing

Systems (Level 1 of the solution ontology), the core term model including core relationships

within this pool, relationships that relate to Level 1 terms only and Level 1 and core terms,

and a set of logic constraining the terms in the context of the requirements for

interoperability.

180

7 Formalising the ontology

7.1 Introduction

This chapter details the work to create a formalised ontology and logic solution in support of

the solution concept described in Section 4.2.2 in response to research question 3

(Section 4.3). The concepts, relationships and logic identified through the research explained

in Chapter 6 were formalised using the IODE tool described in Section 2.7.4.

7.2 Solution design

Figure 7-1 shows a representation of the formalised multi-level ontology: The core and Level

1 ontology logic was built upon the declared core and Level 1 terms and relationships. This

logic was described as ‘structural’ as it was explicitly coded through constraining logic or

integrity constraints and inference rules which allow the inference of new relationships based

on predefined logic. This structural logic in the Core and Level 1 ontologies forms the meta

knowledge that as described in the unified approach to interoperability (Usman 2012). This

logic can span both the core and Level 1 ontology levels, requiring the Core and Level 1

semantics to be declared prior to logic declaration; hence the logic is shown as being built on

the semantic levels. The Level 2 ontology is declared using the full set of Core and Level 1

semantics and logic hence is shown at the top of the ontology structure. The detailed

development and testing of the solution is shown in Section 7.4.

181

Figure 7-1 - The formalised solution ontology

Figure 7-1 shows how the solution functions:

 A new system is declared into the knowledge base (Level 2 ontology).

 If the new system is rejected by any of the structural logic i.e. it does not meet the

requirements for interoperability as defined within the ontology solution logic, the

declaration is rolled back and the system is rejected from the knowledge base with

corresponding error message feedback.

 If the new system meets the requirements for interoperability it is incorporated into

the knowledge base and becomes available for queries; the formalised ontology in

itself is only a part of the solution as it only answers some of the ontology

competency questions set out in Section 4.2.1. Formalised queries were required to

fully answer the competency questions not answered by the function of the structural

logic.

Section 7.4.6 lists the ontology competency questions, how the solution answers them, and

the code for any queries.

182

7.3 Formalising the logical rules

The rules defined in Chapter 6 were rewritten using a more rigorous common logic format.

Where possible the statements were written in the ‘if’, ‘then’ format to aid the process of

coding them in the Knowledge Framework Language (KFL). It was found that logic

statements not written in this format often required several logical statements to codify them,

whereas those defined using this format were usually defined in a single code statement.

This proved important at the testing stage, as it was difficult to keep track of which code

statements affected which logical rules where there was not a one to one correlation. It was

also found that the rules written in this format were easier to codify as it clearly structures the

object and conditional statements in a manner suitable for coding.

At this early stage it was apparent that the syntactic, semantic and logical rigor that was

required when coding the heavyweight ontology, while significantly increasing the

complexity, would enable the solution to discern acceptable and non acceptable conditions

in the knowledge base if the correct rules were formalised within it such as the example

given in Section 7.4.1. Without this complexity, the solution could not resolve the issue of

potential ontological ambiguity.

7.3.1 Integrity constraint and inference rule evolution

A list of the Inference Rule (IR) and Integrity Constraint (IC) logic for the 3 levels of the

ontology was developed with examples being:

 If a system input is not approved the system output is not approved (IR)

 A system type must have some form of inputs, outputs, resource and constraints

defined (IC)

A full list of the logic statements is available in Appendix B.

It can be seen that there are relatively few rules at the Core level, which is due to the limited

number of terms available. There are also few rules for the Level 2 ontology as this level is

more about providing the specialised terms for the MI domain and instances. The majority of

the logic is created in the Level 1 ontology due to it having both the Level 1 and Core

ontology terms and relationships to consider, and is not the instance level ontology (unlike

Level 2). The different level of logic required at the ontology levels was consistent with the

solution concept:

 A core concept ontology should have relatively low numbers of foundational concepts

or terms, meaning the opportunity for logical rule is limited as this could result in the

183

ontology becoming overly specific or over-constrained and so limiting its applicability.

This would be a key failing for a ‘core’ or foundational ontology.

 Domain ontologies, as shown in Figure 4-8, would be expected to contain a large

number of domain specific concepts and terms, meaning the opportunity and

requirement for constraining logic are much greater.

 The ‘Level 2’ ontology defined in this research, which is effectively the knowledge

base, would be expected to contain a large and potentially rapidly growing number of

terms, but these would be ‘instances’ of the terms defined in the higher level

ontologies. As such they would be constrained by the structural logic of the

ontologies on which is it built (i.e. IR, ICs and relationships) but would generally be at

an inappropriately high level of specificity to define broadly applicable constraining

logic hence little of no structural logic would be expected.

The logic statement numbers that are missing in Appendix B are those which were proposed

but discounted prior to coding. The logic statements that are numbered with letter suffixes

are those that have been broken down into a number of simple statements: this was due to

the need to declare the statement at the right ontological level i.e. the right level of

specificity, requiring logic to be declared explicitly at core concept (core ontology), Domain

concept (domain ontology) or instance (knowledge base) level or at multiple levels. The

statements that have been struck through with a statement in red have been removed or

discounted through the ontology development process for the reason stated. The listing does

not show that many of the statements that were initially written at one level were moved to

another depending on the developing view of the level of generalisation of the logic .

There were a large number of changes made to the logic statements during the ontology

development, excluding syntax errors and corrections. The key reasons for modifications

can be summarised as:

 Logic removed/ modified as it was incorrectly stated at either the type or instance

level (i.e. the wrong ontology level/ level of generalisation). This was the most

common issue.

 Logic removed completely as it is not relevant to the core purpose of the solution i.e.

is not related to system interoperability.

 Logic removed completely as the statement was disproved through the testing stage.

 Logic removed completely as it duplicates another statement.

 IC removed as the application of the rule has been automated through the use of an

inference rule (IR).

184

Further issues were identified during the testing stages however, these are discussed

throughout Chapter 8.

185

7.4 Coding and testing approach

7.4.1 Codify the core ontology

The core terms and relationships were declared in KFL forming the Core Semantics and

common logic Integrity Constraints and Inference Rules used to accurately constrain the

ontology in line with the UML model. This level of logic is referred to a ‘structural’ as it is

required within the IODE tool to represent the relationships. Figure 7-2 represents this by

showing the core logic being built in the ‘foundation’ of the Core semantics.

The following code shows examples of this activity. The first section of code declares

something called ‘Data’ which is an subtype of ‘Object’ and an instance of a Type i.e. it is a

superclass which will have subclasses. This is followed by a lightweight descriptive

statement. For further detail see Section 2.7.4.

:Prop Data

:Inst Type

:sup Object

:name "Data"

:rem "Data is the lowest level of abstraction of information or knowledge and are numbers,
characters or images that require a context to have meaning, at which point it becomes
information."

The code shown below declares a relationship called ‘hasStructure’ which is a

BinaryRelationship i.e. it relates two items, so if two items are not declared the relationship

constraints will be invalidated. The relationship signature states that the two items joined by

this relationship must be an instance or subtype of Data or DataStructure for the relationship

to be valid.

:Rel hasStructure

:Inst BinaryRel

:Sig Data DataStructure

:name "has Structure"

The following code is an example of an Integrety Constraint. The IC states that if a thing

called ‘t1’ and a second thing ‘t2’ interoperate, then an interface ‘i1’ will exist and be shared

by both things.

(=> (and (interopsWith ?t1 ?t2)

186

 (hasInterface ?t1 ?i1)

 (hasInterface ?t2 ?i2))

 (exists (?i)

 (and (Interface ?i)

 (hasInterface ?t1 ?i)

 (hasInterface ?t2 ?i))))

:IC hard "If two arguments <code>?t1</code> <code>?t2</code> interoperate with each
other they must have some associated interface <code>?i</code> in common."

Figure 7-2 - Codifying the core ontology

Figure 7-3 shows the core ontology terms loaded into the IODE taxonomy. It can be seen

that the MI context in which the terms are declared (shown as a MI. prefix) is built upon the

IODE medium level ontology (MLO). The MLO term ‘Duration’ is highlighted in the figure and

it can be seen that it is declared at the same level as the MI terms ‘Status’ and

‘AuthorityLevel’. There was a conscious effort to re-use MLO terms to avoid duplication of

terms within the IODE tool, which could introduce semantic ambiguity.

187

Figure 7-3 - IODE screenshot showing the Core Ontology terms

7.4.2 Test the core ontology

The test data set used with the core ontology comprised facts and types specifically

designed to test the logic functions as expected i.e. accepting compliant data and triggering

the logic to flag or reject non compliant data. The data test comprised the initial domain

concepts (which would be developed further before being finally compiled into the Level 1 or

domain ontology as listed in Appendix E). This test was relatively simple due to the limited

number of concepts and relationships, involving the declaration of one sub type to each core

term and is represented in Figure 7-4.

The Core Semantics and Logic were used to validate the IODE tool itself: due to its limited

size it was possible to test all of the terms to ensure the tool itself behaves as expected.

188

Figure 7-4 - Testing the core ontology

7.4.3 Codify the level 1 ontology

The Level 1 UML diagram was codified into ontology within the IODE tool in a similar

manner to the Core ontology (see Section 7.4.1). This ontology is built on top of the Core

ontology (semantics and logic) and is loaded incrementally to it as shown in Figure 7-5 i.e.

without the Core ontology the Level 1 ontology is invalid.

Figure 7-5 - Codifying the Level 1 ontology

Figure 7-6 shows the Level 1 term ‘OpAuthorityLevel’ and sub terms declared into the

ontology, along with the lightweight ontology description. That these terms loaded showed

that they met the structural logic requirements i.e. they met the defined constraints for

something that is an operation authority level. Further testing was required to ensure that the

terms were appropriately constrained by declaring instances to the ontology.

189

Figure 7-6 - IODE screenshot showing Level 1 ontology terms

7.4.4 Test the level 1 ontology

A second test data set, which is shown in Section 8.3.1 was created to test the combined

Level 1 and Core Ontology (as previously described and in line with the solution concept

described in Figure 4-7, to be valid the Level 1 ontology must be built on (i.e. include) the

Core Ontology). Although this data set could not be fully comprehensive due to the number

of terms, relationships and logical statements, a representative sample of facts and queries

designed to give a thorough trial of the ontology was created.

Figure 7-7 - Testing the Level 1 ontology

7.4.5 Develop the level 2 ontology

The method of developing the Level 2 (MI systems domain) ontology was different from

Level 1: it involved the use of a test data set using a subset of the production data that would

ultimately be used to populate the Level 2 ontology fully for the solution trials to fully declare

a theoretical system. Manual interrogation of the Level 1, Core and developing Level 2

ontology focusing on the ontology development themes and competency questions was

190

used to further develop the Level 2 ontology. Figure 7-8 represents how the thought

processes and lines of enquiry used to answer the competency questions were used to

develop the Level 2 logic such as “If the output of one system is the input of another system

the systems interoperate” (the full logic listing can be seen in Appendix B).

Figure 7-8 - Developing the Level 2 ontology using human interaction

7.4.6 Codify the level 2 ontology

The final stage of this development was the full population of the ontology to cover a specific

set of BPMNs covering the 1st cell in the facility that was mapped, as described in

Section 6.3.1, and to codify the manually developed queries required to answer the

competency questions as representated in Figure 7-9.

Figure 7-9 - Codifying the Level 2 ontology facts, logic and queries

The detail of this activity and the other testing activity is described in Chapter 8.

191

The following ECLIF queries were developed by focusing on the competency questions.

These queries represent the code that was needed to interact with the ontology system and

fact base to fully answer the onotology competency questions that were defined in

Section 4.2.1. which were in turn aligned to the research hypothesis in Section 1.2.4.

Competency Question: Is the system allowed to interoperate with another system?

Answer: Partially answered by structural logic i.e. if it loads into the fact base and

interoperates it is valid, but also requires the use of one of the following queries depending

on the required level of specificity of the answer:

(interopsWith ?x ?y) – What entities interoperate?

(and(interopsWith ?x ?y) (system ?x)) – What entities do systems interoperate with?

(and(interopsWith ?x ?y) (system ?x)(system ?y)) – What systems interoperate?

(not(interopsWith ?x ?y) – What systems do not interoperate

Competency Question: What other systems are involved?

Answer: Inferring related systems by function and description (excluding those already

declared as interoperating as they are covered by the previous question):

(and (System ?x)(System ?y)(hasInput ?x ?i)(hasOutput ?x ?o)(hasResource ?x

?r)(hasConstraint ?x ?c) (hasInput ?y ?i)(hasOutput ?y ?o)(hasResource ?y

?r)(hasConstraint ?y ?c)) – one of a number of ways of identifying systems with the same

inputs, outputs, resources and constraints.

(and (hasInput ?x ?i)(hasInput ?y ?i)) – Identify entities with the same input.

(and (hasOutput ?x ?o)(hasOutput ?y ?o)) – Identify entities with the same output.

(and (hasResource ?x ?r)(hasResource ?y ?r)) – Identify entities with the same resource.

(and (hasConstraint ?x ?c)(hasConstraint ?y ?c)) – Identify entities with the same constraint.

(mayAccess ?x ?y) – Identify entities which may access each other.

(and(System ?x)(System ?y)(mayAccess ?x ?y)) – Identify systems which may access each

other.

(and(System ?x)(System ?y)(analyses ?x ?y)) – Identify systems which related by an

analysis process.

192

Competency Question: What data or information does the system create/ use?

Answer: List inputs, outputs, resources, constraints for a system.

(and(System ?x)(or(hasInput ?x ?i)(hasOutput ?x ?o)(hasResource ?x ?r)(hasConstraint ?x

?c)))

Competency Question: Does this system conform to my current understanding of

interoperability requirements?

Answer: Functionally answered by the structural logic: if the system being added to the

knowledge based does not meet the requirements for interoperability the logic will reject the

declaration (see Section 7.2).

Competency Question: Is the system adequately specified or understood?

Answer: Functionally answered by the structural logic: the right level of specification is not

available the solution will reject the system declaration. (see Section 7.2).

This chapter has described the creation of the formalised ontology solution, including the

logic and queries that were believed to be required to prove the research hypothesis stated

in Section 1.2.4. Chapter 8 goes on to detail the testing approach and results that were used

to validate this solution and ultimately the research hypothesis.

193

8 Testing and experimental results

8.1 Introduction
Initial testing was carried out on each level of the ontology solution as they were coded, as

described in Chapter 7. This testing verified the software and coding had been carried out

correctly prior to ontology being fully populated as opposed to the following testing which

verified the full ontology solutions ability to meet the function proposed by this research. The

full system testing was carried out through 2 rounds of experimental testing, followed by the

research experiment. The experiments each served the following functions, towards the aim

of answering research question 4 (Section 4.3):

 Experiment 1 (Figure 8-1): Validate the ability of the ontology solution to function as

expected using test data with known issues (error trapping). The queries were run

against the database to ensure that the ICs, IRs and relationships were working

correctly. Other manual queries were also run against the system to ensure the facts

had loaded and the logic was working correctly

 Experiment 2 (Figure 8-2): Validate the ability of the ontology solution to correctly

represent 4 of the real world systems based on the information from their BPMNs

maps as described in Section 6.3.2

 Experiment 3 (Figure 8-2): Validate the ability of the ontology solution to represent a

system from another timescale and identify the interoperability issues. Due to the

impracticality of using a system from a future timescale (it would be possible to

declare an emerging system, but by definition this would have no proven experience

to benchmark against), a legacy system was used which has known interoperability

issues. The success of the solution was judged against its ability to identify these

known issues.

194

Figure 8-1 - Full ontology testing experiment 1

Figure 8-2 - Full ontology testing experiments 2 and 3

195

8.2 Core ontology testing results
The Core Ontology testing highlighted basic inconsistencies in type/ relationship

declarations. Due to the small number of terms and relationships and logic in the Core

ontology the testing was straightforward and demonstrated that the IODE tool was

functioning as expected at a basic level constraining the declaration of concepts in line with

the ontology logic.

8.3 Level 1 ontology testing results
The purpose of the testing at this stage was to ensure the ontology and logic behaved as

expected, however a more in depth understanding of the IODE tool and the ontology also

resulted. Some of the understanding generated through the testing phase can be seen in

Appendix A.

The testing of the Level 1 Ontology was far more complex than the Core Ontology due to the

much larger number of terms, and the potentialy complex interaction of the logic. It became

very difficult to anticipate the interactions of the IC and IR logic as multiple relationships

could be inferred for a single term any of which could trigger IC logic.

The findings of this testing stage could be catogrised into the topics of:

 Ontology: Increased understanding of the terms and relationships (in particular the

structure of the terms and their level of generalization)

 Logic: Increased understanding of the logic

 Tool: Increased understanding of the IODE tool.

The increased understanding generated in these 3 areas helped clarify how the ontology

solution concept could be formalised and validated, with examples being:

 With the emergence of a systems model in the core terms which is similar to the

IDEF0 model (see Section 6.5), the 'system' prefixes and suffixes were removed from

a large number of the ontology terms as it was considered unnecessary as the

systemic nature is implicit. This was far more significant than a semantic or

nomenclature clarification: the systemic nature of the entities was formalised within

the ontology structure removing the need for manual interpretation of the term name

as the entities were logically constrained such that they must have inputs, outputs,

resources and constraints defined to be valid.

 Defining constraining logic at the right level of specificity or ontology level is crucial to

the solution concept succeeding e.g. relationships may be used between multiple

196

classes meaning the relationship signatures have to be defined at the highest

common level and then logic used to constrain the relationship back down to an

appropriate level.

 Binary relationships were used in preference of uniary relations to maximize the logic

capability and ontology flexibility. While uniary relationships for concepts such as

‘object status’ were possible, where status could be applied as a 'tag' to an object

such as 'deleted' or 'obsolete', binary relations enabled the use of more complex logic

to control the change of status and more flexible development of potential statuses

by using a Binary relationship 'hasStatus' and creating status objects.

 The level of term abstraction referenced in ontology logic should be used to define at

what ontological level the logic resides to aid logic development and control: logic

that only uses the types in the core ontology should be considered the primary core

logic, the logic that references domain Level 1 types will be the next level and

instance logic the most specialised logic. Logic that refers to both types and

instances may have to be split to allow this tiering to take place as per previous

points.

 Differences in the performance of IODE v3.4 and v4.2.1 (when using supTC

declarations) during early testing proved the importance of testing that the tool is

performing as expected prior to testing a specific application of that tool and that

using the most up to date version of the tools is crucial.

 Validation of the IODE tool highlighted that the context for a term (in KFL this is its

prefix) should always be explicitly coded as the inference of context by IODE, while

possible is not always accurate meaning IODE may recognize a single term as

having two different meanings which undermines the solutions concepts structure

logic.

 The structural logic is an important tool in the ontology development i.e. it can be

considered both the ‘means’ and the ‘end’ e.g. Integrity constraint 37 used the

relationship ‘hasConstraint’ for ‘Specifications’ which caused the logic to flag that

‘Specifications’ have been declared as a ‘Target’ rather than a ‘Constraint’. This

raised the question of whether a specification is a target or a constraint or whether a

target is a constraint. It can be expected that this type of learning will continue as the

solution is applied, however how this will affect ongoing maintenance of this solution

concept is unclear.

8.3.1 Example testing iteration
This section describes one iteration of the logic testing. The same approach was used many

times identifying and resolving issues in different areas of the ontology:

197

A set of ECLIF assertions were made to add a system instance called ‘TestSystem1’ to the

ontology. It is important to note that because they are instances they are effectively partial

populations of the Level 2 ontology as defined in Section 4.2.2. These assertions were

deliberately designed to contravene the Level 1 and core ontology logic to test its ability to

govern additions. The initial test was to simply declare an instance using the code:

(System TestSystem1)

This was correctly rejected by IODE for breaching many logic integrity constraints (ICS) or

rules. The next, far more complete input is shown below and was correctly rejected by the

system due to lack of functional or non functional specification being declared:

(System TestSystem1)
(Input TestInput1)
(Output TestOutput1)
(Resource TestResource1)
(Constraint TestConstraint1)
(hasResource TestSystem1 TestResource1)
(hasConstraint TestSystem1 TestConstraint1)
(hasSecurityCategory TestSystem1 Public)
(hasInput TestSystem1 TestInput1)
(hasOutput TestSystem1 TestOutput1)
(hasSecurityCategory TestInput1 Public)
(hasSecurityCategory TestOutput1 Public)

This issue was resolved and a deliberate error added: declaring a resource as being a

constraint (see below), which was correctly identified by the system and rejected with

suitable feedback (the error is underlined):

(System TestSystem1)
(Input TestInput1)
(Output TestOutput1)
(Resource TestResource1)
(Constraint TestConstraint1)
(FunctionalSpecification FuncSpec1)
(NonFunctionalSpecification NonFuncSpec1)
(hasConstraint TestSystem1 FuncSpec1)
(hasConstraint TestSystem1 NonFuncSpec1)
(hasResource TestSystem1 TestResource1)
(hasConstraint TestSystem1 TestResource1)
(hasSecurityCategory TestSystem1 Public)
(hasInput TestSystem1 TestInput1)
(hasOutput TestSystem1 TestOutput1)
(hasSecurityCategory TestInput1 Public)
(hasSecurityCategory TestOutput1 Public)

198

This error was corrected and the code resubmitted, IODE then identified the lack of

functional specification description of metrics and targets prompting the following code

additions:

(System TestSystem1)
(Input TestInput1)
(Output TestOutput1)
(Resource TestResource1)
(Constraint TestConstraint1)
(FunctionalSpecification FuncSpec1)
(NonFunctionalSpecification NonFuncSpec1)
(Metric TestMetric1)
(MetricTarget TestMetricTarget1)
(specifies FuncSpec1 TestMetric1)
(specifies FuncSpec1 TestMetricTarget1)
(hasConstraint TestSystem1 FuncSpec1)
(hasConstraint TestSystem1 NonFuncSpec1)
(hasResource TestSystem1 TestResource1)
(hasConstraint TestSystem1 TestConstraint1)
(hasSecurityCategory TestSystem1 Public)
(hasInput TestSystem1 TestInput1)
(hasOutput TestSystem1 TestOutput1)
(hasSecurityCategory TestInput1 Public)
(hasSecurityCategory TestOutput1 Public)

This input failed as the metric does not target a metric target and the metric target does not

have a validity timescale (the latter being only a warning as it is a soft IC).

The following code therefore loaded acceptable into the IODE system (with the soft IC

warning)

(System TestSystem1)
(Input TestInput1)
(Output TestOutput1)
(Resource TestResource1)
(Constraint TestConstraint1)
(FunctionalSpecification FuncSpec1)
(NonFunctionalSpecification NonFuncSpec1)
(Metric TestMetric1)
(MetricTarget TestMetricTarget1)
(hasTarget TestMetric1 TestMetricTarget1)
(specifies FuncSpec1 TestMetric1)
(specifies FuncSpec1 TestMetricTarget1)
(hasConstraint TestSystem1 FuncSpec1)
(hasConstraint TestSystem1 NonFuncSpec1)

199

(hasResource TestSystem1 TestResource1)
(hasConstraint TestSystem1 TestConstraint1)
(hasSecurityCategory TestSystem1 Public)
(hasInput TestSystem1 TestInput1)
(hasOutput TestSystem1 TestOutput1)
(hasSecurityCategory TestInput1 Public)
(hasSecurityCategory TestOutput1 Public)

This acceptable input was then modified to deliberately cause IC61 (‘a system cannot input

or output data with a higher security category than the system’) to reject the input on due to

the security categories conflicting (see below). It therefore was a matter of concern that the

following invalid code loaded acceptably (without the logic identifying the issue).

(System TestSystem1)
(Input TestInput1)
(Output TestOutput1)
(Resource TestResource1)
(Constraint TestConstraint1)
(FunctionalSpecification FuncSpec1)
(NonFunctionalSpecification NonFuncSpec1)
(Metric TestMetric1)
(MetricTarget TestMetricTarget1)
(hasTarget TestMetric1 TestMetricTarget1)
(specifies FuncSpec1 TestMetric1)
(specifies FuncSpec1 TestMetricTarget1)
(hasConstraint TestSystem1 FuncSpec1)
(hasConstraint TestSystem1 NonFuncSpec1)
(hasResource TestSystem1 TestResource1)
(hasConstraint TestSystem1 TestConstraint1)
(hasSecurityCategory TestSystem1 Public)
(hasInput TestSystem1 TestInput1)
(hasOutput TestSystem1 TestOutput1)
(hasSecurityCategory TestInput1 Public)
(hasSecurityCategory TestOutput1 Secret)

Queries were carried out against the ontology to identify whether TestSystem1 had the

‘Secret’ security category applied as per the assertion. The results showed that it had not. By

specifically asserting: (hasSecurityCategory TestSystem1 MI.Public) following the loading of

the erroneous code, the logic 'fired' and rejected the assertion due to IC61. It was noted the

asserting (hasSecurityCategory TestSystem1 Public) did not cause the logic to fire implying

there is a system issue resulting in IODE confusing types and instances? By explicitly

declaring the MI context this was resolved and the logic shown to fire (rejecting the

TestSystem1 instance). Subsequently by changing TestOutput1 to a security category of

Public resolved the issue and it loaded correctly in line with expectations:

200

(System TestSystem1)
(Input TestInput1)
(Output TestOutput1)
(Resource TestResource1)
(Constraint TestConstraint1)
(FunctionalSpecification FuncSpec1)
(NonFunctionalSpecification NonFuncSpec1)
(Metric TestMetric1)
(MetricTarget TestMetricTarget1)
(hasTarget TestMetric1 TestMetricTarget1)
(specifies FuncSpec1 TestMetric1)
(specifies FuncSpec1 TestMetricTarget1)
(hasConstraint TestSystem1 FuncSpec1)
(hasConstraint TestSystem1 NonFuncSpec1)
(hasResource TestSystem1 TestResource1)
(hasConstraint TestSystem1 TestConstraint1)
(hasSecurityCategory TestSystem1 MI.Public)
(hasInput TestSystem1 TestInput1)
(hasOutput TestSystem1 TestOutput1)
(hasSecurityCategory TestInput1 MI.Public)
(hasSecurityCategory TestOutput1 MI.Secret)

8.3.2 Findings
This testing activity proved that following the feedback of the testing findings into the solution

design the logic developed at this stage seems to be working as intended, constraining the

definition of systems to ensure suitable levels of information are provided and that the

content of that information does not contradict the system constraints which have been

constructed in line with interoperability requirements.

This work identified a potentially significant issue with the automatic context inference ability

of the latest versions of IODE (previous version have required the context to be explicitly

declared) this means this functionality cannot be treated as reliable and contexts should be

explicitly declared to avoid this bug in the ongoing development activities.

An additional outcome from this research as described in Section 8.3.1 was a strong

indication that the heavyweight ontological approach is effective at guiding a user to define a

system in a desired way and rejecting non compliant submissions to the ontology. This

indicated that subject to the logic being robust and appropriately focused on the desired

outcome this approach could be used to ensure a system was defined in an appropriate way

to maximise the interoperability of the system which validates the concept shown in

Figure 4-7, describing a multi level, (heavyweight) ontology defined within a single

timeframe.

201

202

8.4 Full ontology testing results – Experiment 1

8.4.1 Initial fact declarations
The following facts were taken directly from the BPMN map for the first cell in the facility

which used as the subject of the research as described in Sections 6.3.1 and 6.3.2. The

facts attempt to describe a Computer Aided Process Planning (CAPP) system.

(Operator wax_injection_operator)
(Supervisor wax_production_leader)
(Supervisor foundry_manufacturing_engineering_manager)
(Supervisor foundry_manufacturing_manager)
(ManufacturingEngineer wax_process_engineer)
(ManufacturingEngineer casting_part_owner)
(MaintenenceEngineer foundry_maintenence_engineer)
(MaterialController foundry_material_requirements_planning_controller)
(Informs wax_injection_operator wax_production_leader)
(System CAPP_system)
(Input core_specification)
(Output core_specification)
(Output core_chaplet_inspection_spec)
(Output wax_process_instruction)
(Output wax_process_parameter)

8.4.2 Fact listing updated using MI ontology
The BPMN facts were rejected by the ontology system as they did not declare the required

level of detail about the system. This was not a failure of the BPMN tool, but instead

represented the incomplete information or knowledge that had been initially presented. As

such this was viewed as the solution prompting that more information was required. Using

the system experts and the prompts from the ontology systems (IODE) the fact listing was

completed to allow the solution to accept the facts for this system to be accepted into the

fact or knowledge base. It can be seen when comparing the facts listed in Sections 8.4.1

and 8.4.2, that the required level of data to fully declare the CAPP system to the fact base is

significantly higher than was captured, even in a high quality BPMN diagram:

(Operator wax_injection_operator)
(Supervisor wax_production_leader)
(Supervisor foundry_manufacturing_engineering_manager)
(Supervisor foundry_manufacturing_manager)
(ManufacturingEngineer wax_process_engineer)
(ManufacturingEngineer casting_part_owner)
(MaintenanceEngineer foundry_maintenence_engineer)
(MaterialController foundry_material_requirements_planning_controller)
(informs wax_injection_operator wax_production_leader)
(StandardDataStructure XML)
(ValidityTimescale life_of_type)

203

(ValidityTimescale life_of_order)
(System CAPP_system)
(Input MI.core_specification)
(ProductSpecification MI.core_specification)
(Output MI.core_specification)
(Output MI.core_chaplet_inspection_spec)
(VisualSpecification MI.core_chaplet_inspection_spec)
(Output MI.wax_process_instruction)
(Output MI.wax_process_parameter)
(ProcessSpecification MI.wax_process_instruction)
(ProcessSpecification MI.wax_process_parameter)
(ProductSpecification MI.product_definition)
(Resource MI.PLM_server)
(Resource MI.PLPS_process)
(Resource MI.it_infrastructure)
(Resource MI.ERP_system)
(Resource MI.PLM_database)
(Resource MI.production_schedule)
(Resource MI.manufacturing_bill_of_material)
(Resource MI.bill_of_plant)
(Resource MI.geometry_models)
(Resource MI.bill_of_process)
(Resource MI.casting_part_owner)
(Resource MI.wax_process_engineer)
(Resource MI.foundry_manufacturing_engineering_manager)
(Constraint MI.PLPS_process)
(Constraint MI.data_storage_capacity)
(Constraint MI.RR_quality_management_system)
(Constraint MI.data_transfer_capacity)
(Constraint MI.data_processing_capacity)
(Constraint MI.ExportControlCategory)
(Constraint MI.RetentionCategory)
(Constraint MI.SecurityCategory)
(Constraint MI.product_definition)
(Constraint MI.EASA_requirements)
(NonFunctionalSpecification MI.capp_performance_requirements_spec)
(FunctionalSpecification MI.capp_functional_specification)
(FunctionalSpecification MI.RR_quality_management_system)
(hasConstraint MI.CAPP_system MI.PLPS_process)
(hasConstraint MI.CAPP_system MI.data_storage_capacity)
(hasConstraint MI.CAPP_system MI.RR_quality_management_system)
(hasConstraint MI.CAPP_system MI.data_transfer_capacity)
(hasConstraint MI.CAPP_system MI.data_processing_capacity)
(hasConstraint MI.CAPP_system MI.ExportControlCategory)
(hasConstraint MI.CAPP_system MI.RetentionCategory)
(hasConstraint MI.CAPP_system MI.SecurityCategory)
(hasConstraint MI.CAPP_system MI.product_definition)
(hasConstraint MI.CAPP_system MI.EASA_requirements)

204

(hasResource MI.CAPP_system MI.PLM_server)
(hasResource MI.CAPP_system MI.PLPS_process)
(hasResource MI.CAPP_system MI.PLM_database)
(hasResource MI.CAPP_system MI.production_schedule)
(hasResource MI.CAPP_system MI.manufacturing_bill_of_material)
(hasResource MI.CAPP_system MI.bill_of_plant)
(hasResource MI.CAPP_system MI.geometry_models)
(hasResource MI.CAPP_system MI.bill_of_process)
(hasResource MI.CAPP_system MI.casting_part_owner)
(hasResource MI.CAPP_system MI.wax_process_engineer)
(hasResource MI.CAPP_system MI.foundry_manufacturing_engineering_manager)
(SystemPerformanceMetric MI.CAPP_system_response_time)
(Metric MI.CAPP_system_response_time)
(MetricTarget MI.CAPP_system_response_time_target)
(hasTarget MI.CAPP_system_response_time MI.CAPP_system_response_time_target)
(hasSecurityCategory MI.CAPP_system MI.Private)
(hasExportControlCategory MI.CAPP_system MI.ExportControlled)
(hasRetentionCategory MI.CAPP_system MI.MandatoryRetention)

8.4.3 Examples of resulting errors
The following messages are examples of some of the typical error messages that required

the fact declarations for the CAPP system to be modified and how the fact declarations and

logic were updated to resolve them:

Systems <code>CAPP_system</code> with a retention category of non mandatory

retention can only input <code>MI.core_specification</code> or output

<code>MI.core_specification</code> non mandatory retention data.

This error means the CAPP system has been declared as having a non mandatory data

retention category but it inputs and outputs mandatory data. Once the retention category of

the data and system were confirmed as being correct the logic was. It was concluded that

the retention category of a system is only relevant if an input is not subsequently output

(implying the system retains the input). This error also highlighted a key difference between

inputs and resources: resources are used by a system but implicitly are never retained by

the system therefore the retention logic does not apply.

The disjoint properties (RootCtx.disjointWith) RootCtx.Particular and RootCtx.Universal

should not have any instances in common, but they have MI.ExportControlCategory.

(See the development log) This error is due to an ECLIF declaration of logic that already

exists in the structural KFL logic. The IODE system was found to be very intolerant of

205

duplication of logic declarations in the structural (KFL) logic and fact declarations for

instances.

A system <code>CAPP_system</code> must be described by a functional and non

functional spec.

This was a typical, if misleading error: the actual error is not a lack of spec but a lack of

metrics within that spec, this error displayed correctly once the duplication of logic error was

resolved. IODE seems to have a flaw where one significant and valid error message can

cause many other erroneous errors which can in turn mask the root cause error.

Target individuals have a validity timescale individual

<code>MI.CAPP_system_response_time_target</code>.

This error was a simple matter of the CAPP system response time metric target not having a

validity timescale declared (how long should this target be considered valid by default)

These examples show the complex nature of the development of the fact declarations and

logic.

8.4.4 Fact listing corrected to allow loading
This listing represents the CAPP system fact listing that allowed the CAPP system

declaration to be accepted into the fact base effectively confirming that it meets the ontology

structural logic criteria for being suitable for interoperation:

(Operator wax_injection_operator)
(Supervisor wax_production_leader)
(Supervisor foundry_manufacturing_engineering_manager)
(Supervisor foundry_manufacturing_manager)
(ManufacturingEngineer wax_process_engineer)
(ManufacturingEngineer casting_part_owner)
(MaintenanceEngineer foundry_maintenence_engineer)
(MaterialController foundry_material_requirements_planning_controller)
(informs wax_injection_operator wax_production_leader)

(hasTechAuthorityLevel wax_injection_operator MI.User)
(hasTechAuthorityLevel wax_production_leader MI.User)
(hasTechAuthorityLevel foundry_manufacturing_engineering_manager
MI.Administrator)
(hasTechAuthorityLevel foundry_manufacturing_manager MI.User)
(hasTechAuthorityLevel wax_process_engineer MI.Superuser)
(hasTechAuthorityLevel casting_part_owner MI.Superuser)

206

(hasTechAuthorityLevel foundry_maintenence_engineer MI.Superuser)
(hasTechAuthorityLevel foundry_material_requirements_planning_controller MI.User)
(hasOpAuthorityLevel wax_injection_operator MI.Employee)
(hasOpAuthorityLevel wax_production_leader MI.Leader)
(hasOpAuthorityLevel foundry_manufacturing_engineering_manager MI.Manager)
(hasOpAuthorityLevel foundry_manufacturing_manager MI.Manager)
(hasOpAuthorityLevel wax_process_engineer MI.Employee)
(hasOpAuthorityLevel casting_part_owner MI.Employee)
(hasOpAuthorityLevel foundry_maintenence_engineer MI.Employee)
(hasOpAuthorityLevel foundry_material_requirements_planning_controller
MI.Employee)
(StandardDataStructure MI.XML)
(ValidityTimescale MI.life_of_type)
(ValidityTimescale MI.life_of_order)
(ValidityTimescale MI.life_of_contract)
(System MI.CAPP_system)
(Input MI.core_specification)
(Output MI.wax_process_instruction)
(Output MI.wax_process_parameter)
(Output MI.core_specification)
(Output MI.core_chaplet_inspection_spec)
(Resource MI.PLM_server)
(Resource MI.PLPS_process)
(Resource MI.it_infrastructure)
(Resource MI.ERP_system)
(Resource MI.PLM_database)
(Resource MI.production_schedule)
(Resource MI.manufacturing_bill_of_material)
(Resource MI.bill_of_plant)
(Resource MI.geometry_models)
(Resource MI.bill_of_process)
(Resource MI.casting_part_owner)
(Resource MI.wax_process_engineer)
(Resource MI.foundry_manufacturing_engineering_manager)
(Constraint MI.PLPS_process)
(Constraint MI.data_storage_capacity)
(Constraint MI.RR_quality_management_system)
(Constraint MI.data_transfer_capacity)
(Constraint MI.data_processing_capacity)
(Constraint MI.product_definition)
(Constraint MI.EASA_requirements)
(MI.FunctionalSpecification MI.capp_functional_specification)
(MI.FunctionalSpecification MI.RR_quality_management_system)
(MI.NonFunctionalSpecification MI.capp_performance_requirements_spec)
(Metric MI.CAPP_system_response_time)
(MetricTarget MI.CAPP_system_response_time_target)
(hasTarget MI.CAPP_system_response_time MI.CAPP_system_response_time_target)
(specifies MI.capp_functional_specification MI.CAPP_system_response_time)

207

(specifies MI.capp_functional_specification MI.CAPP_system_response_time_target)
(hasConstraint MI.CAPP_system MI.capp_performance_requirements_spec)
(hasConstraint MI.CAPP_system MI.capp_functional_specification)
(hasConstraint MI.CAPP_system MI.RR_quality_management_system)
(hasConstraint MI.CAPP_system MI.PLPS_process)
(hasConstraint MI.CAPP_system MI.data_storage_capacity)
(hasConstraint MI.CAPP_system MI.RR_quality_management_system)
(hasConstraint MI.CAPP_system MI.data_transfer_capacity)
(hasConstraint MI.CAPP_system MI.data_processing_capacity)
(hasConstraint MI.CAPP_system MI.product_definition)
(hasConstraint MI.CAPP_system MI.EASA_requirements)
(hasResource MI.CAPP_system MI.PLM_server)
(hasResource MI.CAPP_system MI.PLPS_process)
(hasResource MI.CAPP_system MI.PLM_database)
(hasResource MI.CAPP_system MI.production_schedule)
(hasResource MI.CAPP_system MI.manufacturing_bill_of_material)
(hasResource MI.CAPP_system MI.bill_of_plant)
(hasResource MI.CAPP_system MI.geometry_models)
(hasResource MI.CAPP_system MI.bill_of_process)
(hasResource MI.CAPP_system MI.casting_part_owner)
(hasResource MI.CAPP_system MI.wax_process_engineer)
(hasResource MI.CAPP_system MI.foundry_manufacturing_engineering_manager)
(hasInput MI.CAPP_system MI.core_specification)
(hasOutput MI.CAPP_system MI.core_specification)
(hasOutput MI.CAPP_system MI.core_chaplet_inspection_spec)
(hasOutput MI.CAPP_system MI.wax_process_instruction)
(hasOutput MI.CAPP_system MI.wax_process_parameter
(hasSecurityCategory MI.CAPP_system MI.Private)
(hasExportControlCategory MI.CAPP_system MI.ExportControlled)
(hasRetentionCategory MI.CAPP_system MI.MandatoryRetention)
(VisualSpecification MI.core_chaplet_inspection_spec)
(ProcessSpecification MI.wax_process_instruction)
(ProcessSpecification MI.wax_process_parameter)
(ProductSpecification MI.product_definition)
(SystemPerformanceMetric MI.CAPP_system_response_time)
(hasTimescale MI.CAPP_system_response_time_target MI.life_of_order)
(hasRetentionCategory MI.core_specification MI.MandatoryRetention)
(hasRetentionCategory MI.wax_process_parameter MI.MandatoryRetention)
(ProductSpecification MI.core_specification)
(MI.hasSecurityCategory MI.core_specification MI.Private)
(MI.hasSecurityCategory MI.wax_process_instruction MI.Private)
(MI.hasSecurityCategory MI.wax_process_parameter MI.Private)
(MI.hasSecurityCategory MI.core_specification MI.Private)
(MI.hasSecurityCategory MI.core_chaplet_inspection_spec MI.Private)
(hasTimescale MI.CAPP_system_response_time_target MI.life_of_contract)

208

8.4.5 Experiment 1 summary
While the formalization and testing is presented as a sequential activity, it can be seen that

they were parallel or iterative activities resulting in a much stronger understanding of the

ontology, the logic and the IODE tool. This understanding resulted in the ontology and

constraining logic being formalized in the IODE tool successfully.

 The testing phases proved that the solution concept as described in Figure 4-7 functioned

as anticipated within the Manufacturing Systems domain, constraining the knowledge base

to accept only manufacturing systems that meet its understanding of being designed for

interoperability and was ready to be populated and tested against real, deployed systems

evidence and used to validate that the concept is applicable and holds true across time

frames.

8.5 Declaring 4 systems in the current timeframe - Experiment 2 results

8.5.1 Introduction
The work described in Section 8.4 resulted in a formalised multi-level ontology into which it

was proven that facts could be declared which could be processed and if necessary fire

logical rules to infer new facts or to reject the declared fact if it contravenes the logical

constraints. This chapter details the work to apply this capability to a set of data which would

test its ability to answer the research questions and prove or disprove the research

hypothesis.

Four systems which had been recently designed for a state of the art automated

manufacturing facility with interoperability as a key priority and which have proven their

interoperability were declared to the system, these being:

 A Computer Aided Process Planning system.

 A Manufacturing Execution system

 A Part Tracking system

 A Cell Control system.

These systems had been described using IDEF0 notation from the BPMN diagrams and the

methodology used to derive the facts from these was the same as used in the development

phase in Chapter 7. This represented the largest populated fact base that the system had

seen and effectively populated the Level 2 ontology or knowledge base.

8.5.2 Declaring new systems
The facts describing the systems shown in Figure 8-2 were declared to the ontology as they

were defined from the BPMN diagrams. The declaration of the 1st of the 4 systems from the

current timeframe (the computer aided process planning system) required over 300 facts

209

and resulted in 400 error messages. This represented a large number of syntax errors due to

the input method being manual text input, and a large number of expected but missing

declarations. While the system returned 400 errors messaged, it was apparent that there

were only really 3 types of error:

 Syntax errors, i.e. coding errors.

 Missing declarations i.e. insufficient information or missing facts

 Explicit contravention of constraining ontology logic i.e. declaring an unacceptable

fact.

On detailed investigation it was found that there were 20 syntax errors and 85 missing

declarations, the remaining error messages were repeated errors due to the erroneous

terms or facts affecting multiple logic strings or relationships. Using the error messages, the

BPMN and the detailed system specifications which were also made available, the 85 fact

declarations the ontology tool had prompted through error messages were added. The

syntax errors were then corrected and the system was successfully loaded into the

knowledge base.

The 2nd system declared to the ontology required only 120 facts and resulted in 300 errors

messages (of which 130 were valid errors). It was noticed at this point that the reduced

number of facts was due to many of the facts declared for the first system e.g. most of the

people and their relationships had to be declared initially, and many of these people were

involved with the second system. This initially seemed a positive aspect as it reduced the

number of required declarations for subsequent systems but while investigating some of the

errors if became apparent that this actually increases the risk of facts being inconsistently

declared: it is very easy to declare the same concept using two names at different points for

example a cell team lead could be declared as ‘MI.cell_Lead’ or ‘MI.cell_TeamLead’, and

duel declarations of the same entity like this can disrupt the function of the logic as some

logic may fire against either of both the instances with confusing results. Very few of these

errors were syntax errors which was attributed to increased user experience and knowledge.

The reason for the high level of errors i.e. more errors than facts, was that as well as missing

information or declarations about the 2nd system, with two interoperating systems now

declared into the ontology far more of the logic was brought into action, so many of the facts

the ontology tool was prompting for were also invalidating or ‘firing’ a number of logic

statements. The addition of the missing facts (as prompted by the logic error messages)

resolved these errors and the 1st and 2nd system loaded correctly. It was noted at this stage

that once the systems were ‘fully’ declared i.e. all mandatory information was provided, that

210

they did not fire any logic that would indicate they could not or should not interoperate which

reflected the real world experience.

The 3rd and 4th systems were subsequently declared, requiring only 140 facts in total and

each system resulting in only 40 error messages which represented only 6 or 7 actual errors.

The reduction in the number of facts was once again due to a number of the facts required

having already been declared for systems 1 and 2. The reduction in errors and facts is

linked, as the fewer missing facts the fewer errors and this results in less false errors. Once

again once the facts the ontology tool prompted for were added, no interoperability issues

were flagged which correlates with the real world understanding of these systems.

Figure 8-3 shows the relative number of errors reported as each system was declared.

Overall the manual coding of the facts was laborious, slow and complex. Each subsequent

system addition required constant reviewing of all the existing fact declarations to avoid duel

declarations creating semantic inconstancy for specific instances. Due to this issue, the

addition of system 4, (which had a quarter of the facts and one tenth of the error messages

of system 1) took slightly longer than system 1. Based on the increasing complexity of this

manual checking process adding many more systems would become exponentially more

difficult.

Once all four systems were successfully loaded into the ontology knowledge base, the Level

2 ontology was considered populated enough to add a system from a different timeframe to

investigate the research questions and hypothesis.

211

Figure 8-3 - Number of errors reported as each system was declared.

The process of loading the 4 real world systems into the knowledge base, reconfirmed the

findings from Experiment 1 regarding the validity of the solution concept shown in

Figure 4-7, but also validated that the rules used to test system interoperability within the

solution concept were consistent with real world observations of deployed systems in that

when fully declared the 4 systems were assessed as being interoperable which is in line

with the observations of these systems in practice.

Figure 8-4 shows an IODE screenshot following the successful loading of 763 facts that

were required to describe the 4 systems idenitified in the BPMN maps in suitable detail to

meet to requirements of the ontology solution structural logic.

0

50

100

150

200

250

300

350

400

450

Number of Errors reported

1st System

2nd System

3rd System

4th System

212

Figure 8-4 - IODE screenshot showing the 763 facts required to declare the 4 systems to the ontology
have successfully loaded.

The final testing activity was to run the queries detailed in Section 7.4.6 against the fact

base. Figure 8-5 shows the results of the key ‘interoperates with’ query which identifies what

systems interoperate with each other. The solution correctly identified the interactions

between the systems despite none of them being explicitly declared i.e. none of these

systems were linked using an explicit ‘interopsWith’ relationship, but these relationships

were inferred through the complex ontology logic.

213

Figure 8-5 - IODE screenshot showing the results of the ‘interoperates with' query

214

8.6 Declaring a system from a different timeframe – Experiment 3
results

Finally, a legacy shop floor data collection system named ‘ActivPlant’ was declared to the

system. This system had been designed and implemented twelve years before the other four

systems and was therefore defined using different terms and was not designed to

interoperate with the newer systems.

This experiment was designed to demonstrate the ability to determine the requirement for

interoperability and the suitability for interoperability of systems from different timeframes

and the potential to constrain system designs within the limits of interoperability. The

experiment used a system from a previous timeframe as this allowed the results to be

validated against the real world experiences as shown in Figure 8-6. The capability could

then be inferred to future timescales, which cannot be proven in the same way.

Figure 8-6 - Cross timeframe capability demonstrated using a previous timeframe to enable validation

This section details the results of loading these facts into the Ontology, the subsequent

execution of the queries defined in Section 7.4.6. and the comparison of these results and

the real world understanding of the interoperability issues between Activplant and the new

systems.

215

Appendix D lists the facts collected from a BPMN and specification for the legacy Activplant

system, which was installed in 1999. This was effectively the 5th system to be declared into

the Level 2 ontology. The system required 120 facts to be declared which is an increase

from systems 3 and 4. This reflected the fact that the system was not designed to

interoperate with the other systems and therefore does not share or re-use many of their

term instances. Unfortunately because some instances were shared the increasingly

laborious and error prone manual review of all previously declared facts had to take place to

ensure no duel declarations of the same instances.

8.6.1 Structural logic response

As shown in Figure 8-7 and Figure 8-8 the ontology solution reported that there were 83

instances of logical rules being violated by the legacy system facts, however it was identified

that of these 83 viloations there were only 15 unique error messages (repeated a number or

times) falling into the following 4 categories:

 Some dataset’s retention category are unspecified

The system retention category was specified as ‘non mandatory’ meaning it is not suitable to

be the sole repository for mandatory retention data. This system and any system

interoperating with it require mandatory retention data sets to be output to other systems

suitable for the mandatory retention of data. Confirmation that any overall system (i.e. the

network of interoperating systems of which this is one) satisfies data retention requirements

cannot be achieved while the data retention categories are ambiguous. The ontology logic

fails-safe by assuming any data defaults to the highest (mandatory) retention category hence

the system flagged that the retention categories are not all specified and also that not all

input data sets are being output to other systems, which is a requirement for mandatory

retention data being input to a non mandatory retention system (this is coded into the

ontology logic).

 Metrics do not have validity timescales

The metrics and metric targets do not have validity timescales, meaning that the system

itself and any interoperating system which are using the metrics to inform decisions (a key

part of the MI process) will be unable to discern whether the metric or target are still valid.

This gives rise to the significant risk of invalid decisions based on ‘out of date’ information

(metrics were identified as a key decision input as part of the MI definition research). This

timescale aspect is crucial when considering systems and process over multiple timeframes

or a time continuum.

216

 Security Category of data unspecified

Similarly to the retention category issue, the lack of explicit security classification mean the

nature and requirements for data exchange between systems is difficult to design suitably.

The assumption of a high security requirement, while ‘fail-safe’ may result in interoperation

with other systems being inhibited or prevented by unnecessary security rigor.

 Some data structures not specified

The lack of specification regarding data structures is a clear barrier to interoperability, as

systems would be unable to reliably interpret and process exchanged or shared data. This

can result in unpredictable or unreliable system function and output.

Figure 8-7 - IODE screenshot showing examples of the Activplant declaration errors

217

Figure 8-8 - IODE screenshot showing the Activplant load rejection due to 83 individual logic violations
which were due to 15 unique errors as reported in the error messages.

The Activplant system was rejected from the ontology system meaning the ontology system

therefore correctly declared the Activplant system as unsuitable for interoperation with the

other systems in the knowledge base. While this limitation regarding interoperability was

proven against the 4 systems previously declared to the knowledge base, it is reasonable to

infer this inability to any systems than have not been specifically designed to overcome the

Activplant systems interoperability shortcomings i.e. even systems not yet in the knowledge

base.

8.6.2 Observed system issues
The actual issues experienced with the Activplant system were:

 Data Storage: The system is only certified for the storage of non mandatory retention

data, which means any mandatory data input into the system has to be stored

elsewhere. However at the point of implementation it was not clear which data sets

this affected so no mechanisms for this archiving or export capability were put in

place.

218

 Unexpected OEE results: the initial metric results from the system could not be

validated. This was found to be due to the input signal data not being in the structure

that had been assumed, leading to errors in the metric calculation.

 System slowing: this was found to be due to the system being unable to discern

which datasets and metric were no longer valid. The system when processing reports

or queries would therefore use all data in the database (including invalid legacy

data). This was a similar issue for any other systems interoperating with the

Activplant system: they had to take all possible data whether still relevant or not e.g.

if a ‘running’ condition was set for a particular machine in the machine monitoring

module, but not subsequently updated due to a system shutdown the machine would

still be seen to be running by the system despite the machine signal no longer being

valid (the machines never run for more than 1 hr continuously).

 Migration: when specifying a replacement system for the Activplant solution, it was

found to be impractical to identify the system functions in detail due to the lack of

clarity caused by the data structures not being explicit. Some of the data structures

were not man-readable, meaning experimentation was required to derive the

structure, and even then with some level of uncertainty. This has meant that the

Activplant replacement system and all interfaces have had to be designed anew.

It can be seen that the ontology system rejection messages regarding Activplant are

consistent with the nature of the interoperability (including migration which can be thought of

as interoperability between versions of the same system) issues observed in reality.

8.6.3 Query response

A key issue with the solution model shown in Figure 7-1 was identified at this stage: if the

structural logic rejects the system from the ontology for not meeting the logical requirements

for interoperability, then the system does not exist in the ontology to allow the queries listed

in Section 7.4.5 to be run.

To overcome this issue for this research, a separate version of the ontology was created

where all logic rule were declared as ‘soft’ i.e. they would flag an error but not prevent the

facts loading. The facts were then loaded and the queries run. The queries correctly returned

the expected results, identifying inputs, outputs, resources and constraints and inferring

through the structural logic that this system would be required to interoperate with the newer

systems.

As should be expected, manual queries of other logic returned unreliable results as the

Activplant declaration did not meet the requirements of the structural logic, and the IODE

219

tool is designed to reject unacceptable facts. On this basis, while the queries were proven to

work in this case, forcing declarations into the ontology in this way should not be used as

part of the process and the application of the solution concept should itself be considered a

sequential process as shown in Figure 7-1. If a system fails to load into the knowledge base,

then the process cannot proceed to the query stage until the issues raised by the logic are

addressed. It may be beneficial for a mechanism for running these queries against systems

prior to loading to prevent failure in system design and loading, however, this is out of scope

of this research.

220

8.7 Experimental results summary

The results from the experiments showed that the ontology was able to identify systems that

interoperate, even if that relationship is not explicitly declared (in Figure 8-5). If the systems

are not suitable for interoperation it will reject the system from the knowledge based

returning a related error. The solution demonstrated this capability within a single timeframe

and between systems from different timeframes. The semantic and logical consistency

provided by the heavyweight ontology with a core concept ontology level provided by the

solution concept described in Section 4.2.2, meet the requirement described in Section 4.2.1

which validates the concept described in Figure 4-7.

The errors generated by the ontology relating to the Activplant system were consistent with

the real world issues with the system. While the detailed failure modes may have been

difficult to predict, if this approach had been used for the Activplant system the 4 root causes

to a number of operation and interoperation issues would have been resolved at the

definition stage.

The queries designed to answer the competency questions that were not resolved by the

structural logic were shown to be effective in themselves, but the issue was identified that

the queries cannot be run against a system that has been rejected from the knowledge base.

This creates a dependency, that the fundamental design of a system must be compatible

with interoperability before the further queries that would aid system design work, can be

run.

221

9 Discussion, conclusions and further work

9.1 Introduction

This chapter reviews the experimental results against the hypothesis and the research

questions. Conclusions are drawn about the research and solution concept before

suggestions for further work are made.

9.2 Hypothesis review

The research hypothesis was stated in Section 1.2.4 as: “Multiple systems can be defined

using a consistent foundational ontology comprising constraining logic to highlight whether

they meet the requirements for interoperation. Interoperability can then be ensured for and

with future systems and versions of systems through the inherent process of system

definition enabling the rapid development of interoperable systems.”

This has been proven to be conceptually true. The factors limiting the pace of development

are largely technological and so should be practically resolvable through further

development.

A possible limitation discovered through this the research was that a system can only be

analyzed by queries once it is in the knowledge base as shown in Figure 7-1, but it cannot

enter the knowledge base reliably until it meets the requirement for interoperability. This

limits the amount of information about a system that can be gained by the user to that

provided by the structural logic feedback (when rejecting a new system declaration to the

knowledge base).

222

9.3 Research questions review

The research questions, as stated in Section 4.3, have been answered in the following way:

1. What is Manufacturing Intelligence?

The research detailed in Chapter 5 resulted in a definition which was able to resolve the

apparent inconstancies in the current descriptions of MI: “Manufacturing Intelligence

enables good manufacturing decisions based on understanding of the current status and

the ability to predict and control the outcome of any given decision.”

Its purpose being: “Communicating and improving manufacturing performance as

quantified by appropriate metrics, with the appropriateness of metrics also being

informed by MI understanding.

On achievement of MI: “The organisation has the right metrics and targets in place to

achieve the organisations objectives. Everyone is aware of the current performance of

the organisation and process against the target metrics, likely future trends in the metrics

and how to either maintain or improve performance to achieve the short, medium and

long term targets”.

2. What are the concepts in the MI Systems domain?

The UML diagrams in Section 6.2.1 and Figure 6-40 show the Level 1 and Core Concept

ontologies, while Appendix C shows the full ECLIF Fact Listing that was used to populate

the Level 2 Ontology, which in this case is actually the knowledge base. These

ontologies together form the MI systems ontology, albeit the Core and Level 1 ontologies

would be applicable in other domains as they are effectively Systems and Manufacturing

systems ontologies in their own right.

3. Can a Domain foundational ontology or Core Concept be defined and formalised?

The domain foundational ontology has been defined in this research as the core concept

ontology as defined in Section 6.5. The formalisation of this has been described in

Chapter 7 resulting in the KFL and ECLIF code within the IODE ontology tool. The

resulting solution was tested and proven to respond in line with the design intent.

4. Can the proposed concept be proven through the formalisation of the ontology?

The solution proposal described in Section 4.2.2 has been successfully proven in

Chapter 8.5: the heavyweight ontology has provided a basis of logical and semantic

223

consistency across timeframes, in this case for the analysis and definition of MI systems

interoperability capability.

224

9.4 Key observations

The following conclusions regarding the solution concept, ontology development and IODE

tool were drawn from the research:

9.4.1 Solution concept
 The research has successfully answered the research questions and the solution

concept can therefore be considered to have proven the research hypothesis.

 This solution was demonstrated using the MI domain but the same approach would be

applicable to any other system domain due to the scope of the core concept ontology.

 In this work it is demonstrated that the ontology solution provides consistency of

meaning across timeframes, as it would across physical or organisational domains (see

Figure 4-7) therefore different timeframes can be considered in a similar way to

conventional domains.

 It has been shown that the solution concept shown in Figure 4-8 allows new systems to

be defined using new terms, whilst maintaining constancy with legacy terms, and

allowing the legacy logic to be applied to the new terms appropriately due to the

consistency provided by the core ontology.

 The queries that allow rapid understanding of the systems within the knowledge base

cannot be used on system facts that failed the structural logic tests as this failure results

in the system facts being rejected from the knowledge base. Initial feedback is therefore

limited to the error messages from the attempt to load the system facts into the

knowledge base. While this does not hazard the success of the solution, it does

significantly increase the time to resolve MI system design for interoperability issues.

9.4.2 Ontology development
 Defining constraining logic at the right level of specificity or ontology level is crucial to the

solution concept succeeding e.g. relationships may be used between multiple classes

meaning the relationship signatures have to be defined at the highest common level and

then logic used to constrain the relationship back down to an appropriate level.

 The heavyweight ontology development led to the systemic nature of the system entities

being formalised within the ontology structure (i.e. a system could be identified as such

by the attributes that make it a system rather than its name): the entities were logically

constrained such that they must have inputs, outputs, resources and constraints defined

to be valid.

 The ‘System’ core concept ontology would be applicable to any systems field.

 The Manufacturing Systems ontology (Level 1 ontology) which includes the core concept

ontology is applicable to any Manufacturing Systems field.

225

 Domain ontologys (Level 1) require the most constraining logic and ontology definitions

when compared to core concept or Level 2 ontologys. They also therefore generate

significantly more testing errors and complexity.

 The level of term abstraction referenced in ontology logic should be used to define at

what ontological level the logic resides to aid logic development and control: logic that

only uses the types in the core ontology should be considered the primary core logic, the

logic that references domain Level 1 types will be the next level and instance logic the

most specialised logic. Logic that refers to both types and instances may have to be split

to allow this tiering to take place

 The understanding of the ontology specialisation shown in Figure 4-5 evolved throughout

the research: the term ‘foundation ontology’ was updated to ‘core concept ontology’ as it

is a foundational ontology basis within this domain, and the instances actually formed

part of the MI or Level 2 ontology (see Figure 9-1).

 The overall MI system ontology is invalid without all 3 levels of ontology, as is the

constraining logic, hence the decision to include the instances as part of the ontology.

Figure 9-1 - The updated view of the ontology specialisation levels

 The use of the core concept ontology and Level 1 ontology ensures that any new

concepts that emerge over time, can be described in a consistent way and adopt any

constraining logic that has been defined for its parent concept allowing new concepts

and instances to be added over time, whilst maintaining the ontological and logical

consistency and constraints.

 While the development of new concepts was considered by this research, the ongoing

development of the constraining logic was not. The later stages of the development of

the logic, where corrections were made, proved that changing the logic can have very

unpredictable results due to the change in inference conditions and constraints. Adding

logic without understanding all of the existing logic would give rise to a significant risk of

226

invalidating the overall logic through the creation of self referencing logic or circular

statements. This issue was considered out of scope for this research but would be a

significant area of future work.

9.4.3 The IODE tool
 The ontology tool used in this research (IODE) proved very powerful and

comprehensive. It can however appear to generate false errors on failures to load facts

into the knowledge base, and due to its lack of graphical interface or visual programming

aids or prompts it requires a significant coding capability, knowledge of ECLIF and KFL

and significant manual debugging of code.

 When declaring large numbers of facts into a large knowledge base, it is very easy to

declare a fact twice (semantically or syntactically inconsistency). This is a significant

hazard to the function on the structural logic.

227

9.5 Novelty areas
The new knowledge generated through this research fall into the following key areas:

 A definition of Manufacturing Intelligence: a clear definition of Manufacturing

Intelligence which resolves the identified inconsistencies of scope and meaning.

 The solution concept (as described in Figure 4-8) for evaluating system

interoperability in dynamic environments for current and emerging systems, through

the use of heavyweight ontologies to provide semantic consistency across

timeframes.

 A ‘Systems’ core concept heavyweight ontology (Figure 9-2)

 A ‘Manufacturing Systems’ domain heavyweight ontology (Level 1)

 A ‘Manufacturing Intelligence’ domain heavyweight ontology (Level 2)

Figure 9-2 The ontology representation with references to the ontology term listings

 Common logic rules (as part of the heavyweight ontologies) focusing on the

requirements for systems interoperability.

 A set of definitive question which can be used to evaluate a systems suitability and

requirement for interoperability (the ontology competency questions in Figure 4-2)

 Detailed knowledge about the creation of multi-level heavyweight ontologies.

Shown in Figure 6-35 Shown in Figures
6-2 to 24

Examples shown in Chapter
8.4.4 (full listing in Appendix C)

228

Figure 9-3 summarises the novelty detailed within this thesis: the novel concept of a core

concept ontology providing consistency across timeframes which was developed into the

solution for system interoperability through the creation of multi level ontologies, constraining

logic and a domain definition.

Figure 9-3 Summary of research novelty

229

9.6 Further work

This work defined and explored an approach to providing a rigorous mechanism for the

consistent sharing of meaning through heavyweight ontologies, which uses a multi-level

ontology with domain ontologies built upon a core concept ontology to provide cross domain

consistency (in this work, the timeframe being considered is treated as a domain). The

heavyweight nature of the ontologies allows constraining, automated logic to be constructed

to infer additional facts based on those declared to it and to test for specific conditions; in

this case interoperability. This research identified areas for future work as being:

 Can the approach to assessing interoperability explored in this research be applied to

unrelated fields and other constraining requirements e.g. could the same approach

be used to idenitify and ensure that all legal cases taken on by a legal body are

successful? In this example, the heavyweight ontology would be required to create a

common understanding of legal case precedence and legislation, with the multi-level

ontology approach allowing domain ontologies in the different legal domains, while

the constraining logic and queries would be used to set and assess the criteria for

success?

 Can the solution concept explored in this work be combined with real time inputs and

a decision making capability to provide an intelligent automation solution? If a

solution, could:

o Use a heavyweight multi level ontology approach to provide consistent

meaning across domains which experience different levels and rates of

change.

o Combine the text based IODE declarations with real time condition signals,

and replace the interoperability logic with other decision making logic.

 Then it may be possible to create a solution that takes inputs from multiple domains,

some of which are ‘sensed’ in real time, interprets them consistently, and provides

decision feedback based on structural logic. An example might be a production

scheduling solution, which is able to consistently interpret text based input from many

enterprise functions (e.g. finance, sales, maintenance), along with real time signals

(e.g. stock level, waiting time, equipment availability) and structural logic to decide

what products to launch, when, and where based on the current and likely upcoming

conditions.

 A method of developing the structural logic in the solution concept through time is

required that will allow resolution of any issues this raises with the ontology or

knowledge base.

230

 Exploring the applicability of the ‘System’ core concept ontology to other system

fields.

 Usability developments to the IODE tool set such as:

o The ability to easily identify similar or identical facts in the knowledge based

during declaration (i.e. before the facts are committed to the knowledge base)

to avoid unintended duel declarations.

o A mechanism for loading unacceptable facts temporarily to allow some

queries to be run on them (this would require the tool to resolve the violated

logic temporarily to ensure queries return valid results).

o A native, configurable graphical user interface that’s allows queries etc to be

assigned to buttons etc without the need for significant programming skills.

231

10 References

Agostinho, C., Almeida, B., Nuñez-Ariño, M.J. & Jardim-Gonçalves, R. 2009, "Interoperability and Standards: The
Way for Innovative Design in Networked Working Environments", Proceedings of the 19th CIRP Design
Conference, March 13, 2009, pp. 139.

Alsafi, Y. & Vyatkin, V. 2010, "Ontology-based reconfiguration agent for intelligent mechatronic systems in
flexible manufacturing", Robotics and Computer-Integrated Manufacturing, vol. 26, no. 4, pp. 381-91.

AMR Research 2011, 7/06/2011-last update, Enterprise Manufacturing Intelligence [Homepage of Wikimedia
Foundation Inc], [Online]. Available: http://en.wikipedia.org/wiki/Enterprise_manufacturing_intelligence
[2011, 07/07].

Anon 2008, "Manufacturers are investing heavily in PLM", T & P: Tooling & Production, vol. 74, no. 11, pp. 39-39.

Bell, D. 2004, 15/09/2004-last update, UML basics: The class diagram [Homepage of IBM], [Online]. Available:
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/ [2011, 6/1/2011].

Blomqvist, E. & Öhgren, A. 2008, "Constructing an enterprise ontology for an automotive supplier", Engineering
Applications of Artificial Intelligence, vol. 21, no. 3, pp. 386-397.

Borgo, S. & Leitão, P. 2007, Foundations for a Core Ontology of Manufacturing, Springer US.

Brown, M. 2007, "'Don't give me more data; give me more knowledge!'", Hydrocarbon Processing, vol. 87, no. 4,
pp. 19.

Cassidy, P. 2008, "Toward an open-source foundation ontology representing the Longman’s defining vocabulary:
The COSMO Ontology OWL version", Proc. Third International Ontology for the Intelligence Community
Conference, eds. K.B. Laskey & D. Wijesekera, CEUR Workshop Proceedings, Fairfax, VA.

Cesar, P. 2008, "A scada wireless network attack protection", Intech'08 - Proceedings of the 9th International
Conference on Intelligent Technologies, vol. ISSU, pp. 139-142.

Chen, D., Doumeingts, G. & Vernadat, F. 2008, "Architectures for enterprise integration and interoperability: Past,
present and future", Computers in Industry, vol. 59, no. 7, pp. 647-659.

Chen, L.-. & Chien, C.-. 2011, "Manufacturing intelligence for class prediction and rule generation to support
human capital decisions for high-tech industries", Flexible Services and Manufacturing Journal, vol. 23,
no. 3, pp. 263-289.

Choi, S.S. 2010, "XML-based neutral file and PLM integrator for PPR information exchange between
heterogeneous PLM systems", International Journal of Computer Integrated Manufacturing, vol. 23, no.
3, pp. 216-228.

Chun-Che Huang & Shian-Hua Lin 2010, "Sharing knowledge in a supply chain using the semantic Web", Expert
Systems with Applications, vol. 37, no. 4, pp. 3145-61.

Chungoora, N. & Young, R.I.M. 2010a, A framework to support semantic interoperability in product design and
manufacture, Loughborough University.

Chungoora, N. & Young, R.I.M. 2010b, "The configuration of design and manufacture knowledge models from a
heavyweight ontological foundation", International Journal of Production Research, .

Coates, G.M., Hopkinson, K.M., Graham, S.R. & Kurkowski, S.H. 2010, "A Trust System Architecture for SCADA
Network Security", Power Delivery, IEEE Transactions on, vol. 25, no. 1, pp. 158-169.

Costa, C.A. & Young, R.I.M. 2001, "Product range models supporting design knowledge reuse", Proceedings of
the Institution of Mechanical Engineers -- Part B -- Engineering Manufacture, vol. 215, no. 3, pp. 323-
337.

232

Degler, D. & Battle, L. 2003, "Knowledge Management in Pursuit of Performance: The Challenge of Context" in
EPSS Revisited: A Lifecycle for Developing Performance-Centered Systems, ed. G. Dickelman,
International Society for Performance Improvement, Books34x7.

Deshayes, L., Foufou, S. & Gruninger, M. 2007, An Ontology Architecture for Standards Integration and
Conformance in Manufacturing, Springer Netherlands.

Dorador, J.M. & Young, R.I.M. 2000, "Application of IDEF0, IDEF3 and UML methodologies in the creation of
information models", International Journal of Computer Integrated Manufacturing, vol. 13, no. 5, pp. 430-
445.

FIPS, P. 1993, "183 (1984).“Integration definition for Function Modeling (IDEF0)”. Federal Information Processing
Standards, United States National Institute of Standards and Technology (NIST)", Computer Systems
Laboratory, Gaithersburg, .

Frankovic, B. & Budinska, I. 2006, "The Role of Ontology in Building of Knowledge Systems for Industrial
Applications", 4th Slovakian-Hungarian Joint Symposium on Applied Machine IntelligenceHerľany,
Slovakia, Jan 20-21, pp. 15-25.

Fulcher, J. 2005, "Just married: integration platforms plus automated mapping systems boost continuous-
improvement efforts", Manufacturing Business Technology.Vol.23, vol. 23, no. 9, pp. 46-47.

Guerra-Zubiaga, D.A. & Young, R.I.M. 2008, "Design of a manufacturing knowledge model", International Journal
of Computer Integrated Manufacturing, vol. 21, no. 5, pp. 526.

Gunendran, A.G. & Young, R.I.M. 2006, "An information and knowledge framework for multi-perspective design
and manufacture", International Journal of Computer Integrated Manufacturing, vol. 19, no. 4, pp. 326-
338.

Guo Wen-yue, Qu Hai-cheng & Hong, C. 2010, "Semantic web service discovery algorithm and its application on
the intelligent automotive manufacturing system", .

Hak-Man Kim, Jong-Joo Lee & Dong-Joo Kang 2007, "A Platform for Smart Substations", Future Generation
Communication and Networking (FGCN 2007), pp. 579.

Hodges, M.S. 2007, Computers: Systems, Terms and Acronyms, 17th Edition, SemCo Enterprises.

Huang, K., Yang, W.L. & Wang, R.Y. 1999, Quality information and knowledge, Prentice Hall, Upper Saddle
River, NJ.

IBM, 1993, IBM Dictionary of Computing, 10th edn, McGraw-Hill, Inc, New York, NY, USA.

IODE, H. 2010, "Ontology Library reference" in Highfleet's IODE/XKS Documentation, Baltimore.

ISA 2005, ANSI/ISA-95.00.03-2005, Enterprise-Control Systems Integration Part 3: Activity Models of
Manufacturing Operations Management, American National Standards, North Carolina.

ISA 2000, ANSI/ISA-95.00.01-2000, Enterprise-Control Systems Integration Part 1: Models and Terminology,
American National Standards, North Carolina.

ISO 2010, ISO 15531-44 Industrial automation systems and integration -- Industrial manufacturing management
data -- Part 44: Information modelling for shop floor data acquisition, ISO, Geneva.

ISO 2007, ISO/IEC 24707 Information technology — Common Logic
(CL): a framework for a family of logicbased
languages, ISO, Switzerland.

ISO 2004, ISO 18629-1: Industrial automation systems and integration -- Process specification language -- Part
1: Overview and basic principles, ISO, Switzerland.

233

ISO 2002, ISO/IEC 15288: Systems and software engineering - System life cycle processes, ISO, Geneva.

ISO 1999, ISO TC184/SC5/WG1 Industrial Automation Systems—Concepts and Rules for Enterprise
Models, April 14, 1999.

Izza, S. 2009, "Integration of industrial information systems: from syntactic to semantic integration approaches",
Enterprise Information Systems, vol. 3, no. 1, pp. 1-57.

Jacobson, S.F., & Eriksen, L. 2011, The Manufacturing Performance Dilemma, Part 1: Overcoming Visibility
Hurdles With Enterprise Manufacturing Intelligence, Gartner, Stamford, USA.

Jones, S. , Improve Your Business Decisions. Available: http://www.pcpro.co.uk/business-intelligence/research
[2011, 5/8/2011].

Jr., J.A.J., & Michel, F.J. 2000, Next Generation Manufacturing: Methods and Techniques, John Wiley & Sons
(US).

Kim, K., Manley, D.G. & Yang, H. 2006, "Ontology-based assembly design and information sharing for
collaborative product development", Computer-Aided Design, vol. 38, no. 12, pp. 1233.

Kyoung-Yun Kim, Chin, S., Kwon, O. & Ellis, R.D. 2009, "Ontology-based modeling and integration of
morphological characteristics of assembly joints for network-based collaborative assembly design", (AI
EDAM) Artificial Intelligence for Engineering Design, Analysis and Manufacturing, vol. 23, no. 1, pp. 71-
88.

Lagos, N. & Setchi, R.M. 2007, "A manufacturing ontology for e-learning", Innovative Production Machines and
Systems, July 2-13, pp. 552-557.

Latif, M.N., Boyd, R.D. & Hannam, R.G. 1993, "Integrating CAD and manufacturing intelligence through features
and objects", International Journal of Computer Integrated Manufacturing, vol. 6, no. 1, pp. 87-April.

Lecky, S. 2003, "Systems documentation explained - the Data Dictionary", The Journal of Information
Development, vol. Ist Quarter.

Li, Z., Yang, M.C. & Ramani, K. 2009, "A methodology for engineering ontology acquisition and validation", (AI
EDAM) Artificial Intelligence for Engineering Design, Analysis and Manufacturing, vol. 23, no. 1, pp. 33-
47.

Lin, H.K. & Harding, J.A. 2007, "A manufacturing system engineering ontology model on the semantic web for
inter-enterprise collaboration", Computers in Industry, vol. 58, no. 5, pp. 428-437.

Liu, S. & Young, R.I.M. 2007, "An exploration of key information models and their relationships in global
manufacturing decision support", Proceedings of the Institution of Mechanical Engineers -- Part B --
Engineering Manufacture, vol. 221, no. 4, pp. 711-724.

Maizlish, B. & Handler, R. 2005, IT Portfolio Management Step-by-Step: Unlocking the Business Value of
Technology, John Wiley & Sons (US).

Masolo, c., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A. & Schneider, L. 2003, The WonderWeb library of
foundational ontologies preliminary report, ISTC-CNR, Padova, Italy.

Matt, D.T. 2007, "Reducing the structural complexity of growing organizational systems by means of axiomatic
designed networks of core competence cells", Journal of Manufacturing Systems, vol. 26, no. 3-4, pp.
178-187.

Meier, H., Roy, R. & Seliger, G. 2010, "Industrial Product-Service Systems--IPS2", CIRP Annals - Manufacturing
Technology, vol. 59, no. 2, pp. 607.

MESA 2012, , What is P2E? It's 'Plant to Enterprise' [Homepage of MESA International], [Online]. Available:
http://www.mesa.org/en/aboutus/whatisp2e.asp [2012, 03/16].

234

Mochal, T. 2005, The Complete Book of Project-Related Terms and Definitions: Mysteries Explained, TenStep,
Inc.

Noy, N.F. & McGuinness, D.L. 2001, , Ontology Development 101: A Guide to Creating Your First Ontology
[Homepage of Stanford Knowledge Systems Laboratory], [Online]. Available:
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-
abstract.html3/30/2011].

OMG 2012, , Object Management Group Business Process Model and Notation [Homepage of Object
Management Group], [Online]. Available: http://www.bpmn.org/ [2011, 02/02].

OMG 2008, 17/01/2008-last update,
Business Process Modeling Notation, V1.1 [Homepage of Object Management Group], [Online].
Available: http://www.omg.org/spec/BPMN/1.1/PDF [2011, 24/5/2011].

Panetto, H. & Molina, A. 2008, "Enterprise integration and interoperability in manufacturing systems: Trends and
issues", Computers in Industry, vol. 59, no. 7, pp. 641-646.

Qiao, L. & Liu, W. 2009, "Agile manufacturing data management", vol. 407-408, pp. 189-193.

Rafinejad, D. 2007, Innovation, Product Development and Commercialization: Case Studies and Key Practices
for Market Leadership, J. Ross Publishing.

Ray, S. & Jones, A. 2006, Manufacturing interoperability, Springer Netherlands.

Scholten, B. 2009, MES Guide for Executives: Why and How to Select, Implement, and Maintain a Manufacturing
Execution System, ISA, North Carolina, USA.

Schoop, R., Colombo, A.W., Suessmann, B. & Neubert, R. 2002, "Industrial experiences, trends and future
requirements on agent-based intelligent automation", IECON 02 [Industrial Electronics Society, IEEE
2002 28th Annual Conference of the], pp. 2978.

Shen, T.H., Carlson, C.S. & Peter Tarczy-Hornoch 2009, SNPit: A federated data integration system for the
purpose of functional SNP annotation, Elsevier Scientific Publishers.

Siemens AG 2011, 12/04/2011-last update, Enterprise Manufacturing Intelligence [Homepage of Siemens AG],
[Online]. Available:
http://www.automation.siemens.com/mcms/mes/en/mes_suites/intelligencesuite/Documents/ED_IS_gen
eral.pdf [2011, 07/12].

Skarka, W. 2005, "Contemporary problems connected with including standard for the exchange of product model
data (ISO 10303 - STEP) in designing ontology using UML and XML", Computer Assisted Mechanics and
Engineering Sciences, vol. 12, no. 2, pp. 231-246.

Taghaboni-Dutta, F., Trappey, A.J.C. & Trappey, C.V. 2010, "An XML based supply chain integration hub for
green product lifecycle management", Expert Systems with Applications, vol. 37, no. 11, pp. 7319-28.

Taylor, J. 2003, Managing Information Technology Projects: Applying Project Management Strategies to
Software, Hardware, and Integration Initiatives, AMACOM.

Toung, E. 2006, "Plant floor, enterprise intersect at 'manufacturing intelligence'", Plant Engineering, vol. 60, no. 9,
pp. 31-4.

Unver, H.O. 2012, "An ISA-95-based manufacturing intelligence system in support of lean initiatives",
International Journal of Advanced Manufacturing Technology, , pp. 1-14.

Usman, Z. 2012, A Manufacturing Core Concepts Ontology to Support Knowledge Sharing (Doctoral Thesis),
Loughborough University.

235

Usman, Z., Young, R., Chungoora, N., Palmer, C., Case, K. & Harding, J. 2011, "A Manufacturing Core Concepts
Ontology for Product Lifecycle Interoperability" in , eds. M. Sinderen & P. Johnson, Springer Berlin
Heidelberg, , pp. 5-18.

Vincent Wang, X. & Xu, X.W. 2013, "An interoperable solution for Cloud manufacturing", Robotics and Computer-
Integrated Manufacturing, .

Wang, P. 2010, "Chasing the Hottest It: Effects of Information Technology Fashion on Organizations", MIS
Quarterly, vol. 34, no. 1, pp. 63-85.

Wang, X., Vitvar, T., Hauswirth, M. & Foxvog, D. 2007, "Building Application Ontologies from Descriptions of
Semantic Web Services", Web Intelligence, IEEE/WIC/ACM International Conference on, pp. 337.

White, S.A. 2005, "Introduction to BPMN", [Online], . Available from:
http://www.bpmn.org/Documents/Introduction_to_BPMN.pdf.

Wiles, T.E. 2002, "Chapter 5.10 - Computers" in Standard Handbook of Plant Engineering, ed. R.C. Rosaler, 3rd
Edition edn, McGraw-Hill Engineering, Books24x7.

Willcocks, L.P. & Lester, s. 2003, "Chapter 20 - Information Technology and Organizational Performance—
Beyond the IT Productivity Paradox" in Strategic Information Management: Challenges and Strategies in
Managing Information Systems, eds. R.D. Galliers & D.E. Leidner, Third Edition edn, Elsevier Science
and Technology Books, Inc, Books24x7.

Xiong, G., Nyberg, T.R., Wang, F. & IEEE/ITSS 2010, "Real-Time Manufacturing Integration and Intelligence
Solution Applied in Global Process Industry", , pp. 5.

Young, R., Chungoora, N., Usman, Z., Anjum, N., Gunendran, G., Palmer, C., Harding, J., Case, K. & Cutting-
Decelle, A.F. 2010, "An exploration of foundation ontologies and verification methods for manufacturing
knowledge sharing", Workshop on Interoperability for Enterprise Software and Applications (I-ESA
Workshop, 2010)Coventry, UK, April 13.

Young, R.I.M., Gunedran, G., Chungoora, N., Harding, J. & Case, K. 2009, "Enabling Interoperable
Manufacturing Knowledge Sharing in PLM", The 6th International Product Lifecycle Management
Conference, July 6-8.

Young, B., Cutting-Decelle, A., Guerra, D., Gunendran, G., Das, B. & Cochrane, S. 2005, Sharing Manufacturing
Information and Knowledge in Design Decision and Support, Springer Netherlands.

Young, R.I.M., Gunendran, A.G., Cutting-Decelle, A. & Gruninger, M. 2007, "Manufacturing knowledge sharing in
PLM: a progression towards the use of heavy weight ontologies", International Journal of Production
Research, vol. 45, no. 7, pp. 1505-1519.

Yu-Liang Chi 2010, "Rule-based ontological knowledge base for monitoring partners across supply networks",
Expert Systems with Applications, vol. 37, no. 2, pp. 1400-7.

Zahedi, F. & Sinha, A.P. 2010, "Ontology design for strategies to metrics mapping", , pp. 7.

Zaremba, M.B. 2003, "Integration and control of intelligence in distributed manufacturing", Journal of Intelligent
Manufacturing, vol. 14, no. 1, pp. 25-42.

Zhang, J.K., Xu, W. & Ewins, D. 2007, "System Interoperability Study for Healthcare Information Systems with
Web Sevices", Journal of Computer Science, vol. 3, no. (7), pp. 515-522.

236

11 Appendix A – Ontology development change log

Element Change Description

Term Pool MI Definition Work ‐ Initial creation

Core Term Pool Subject matter expert brain storm and initial core term list creation

Hierarchy Grouping terms around core list and structuring into hierarchies

Core Term Pool Update core term list based on hierarchy core terms

Term Pool Identify terms from BPMN maps and ad to hierarchy model

Core Term Pool Review core terms following BPMN work

Term Pool

Provide the core concepts to further subject matter experts for

population ‐ added to hierarchies

Hierarchy

Combine hierarchies together to reduce the number of core terms (high

number of core terms is counter intuitive) also number of core terms

with few defined specialisations

Hierarchy Error corrections identified during term coding into IODE

Ontology Identify and address duplication or overlap with MLO and IMKS work

Relationships Initial relationship definition (between core terms)

Logic Initial list of logic statements generated

Hierarchy

Following initial logic listing some issues in Hierarchy v6 and Core terms

list v5 require updating: 'Response' structure aligned under core concept

'decision' as any response is a part of a decision process. The missing

requirement for an approved and unapproved status for data and objects

identified as a key requirement for usability. Input and Output data types

identified as underutilised as part of the hierarchy, the importance of

input and output aspects of many different terms has identified that

these should be elivated to core concept/ terms. Team leader term

removed as too specific and replaced with 'Leader': a generic elevation of

an employee. Specification has been removed as a core concept and

made a sub concept of Target as the logic development show that

specifications are a thing to be met which is a core characteristic of

targets.

Core Term Pool

The relationships initial defined for Specification and System (specifies)

and Prediction and Response (anticipates) are effectively re‐routed to

the core concepts that they are moved under hence Target specifies

System and Prediction anticipates Decision. Manufacturing Method has

not driven any key logic at this stage so has been removed as a core

concept. It can be seen at this stage that the generic model of a system

(ie inputs, output, resource and constraints is in the core concept pool.

Given the nature of this ontology this is intuitively logical, it could be

proposed that the work to date may have been ‘too bottom up’ to

identify this basic core model. Having identified this, the ‘system’ prefix

which has specialised both of these terms has been removed leaving the

core terms “Constraint” and “Resource”.

Relationships

It has become apparent that the Core concept UML model is defining the

core relationships. Basic logic will be used to narrow the generalised

relationships in line with the UML diagram: Relationships may be used

between multiple classes meaning the Relationship Signatures have to

be defined at the highest common level and then logic used to constrain

the relationship back down to an appropriate level.

Relationships

An error has been idenitified due to the assumption the the MLO

heirichy is Top ‐ Type ‐ Instance (decending), however instance and type

are both instances of Top hence if something can be either a type or

instance it must be declared as Top in the Relationship signature. The

core relations have all been reviewed accordingly.

237

Relationships

The relationships that are required to create the logical rules (IC and Irs)

beyond the basic core concept model represent a greater level of

specialisation of the ontology, but still more general than domain

instances or facts.

Logic

The use of Uniary relationships was considdered for concepts such as

object status, where status could be applied as a 'tag' to an object such as

'deleted' or 'obselete', however it was felt that there would be need for

logic to control the change of status which means using a Binary

relationship 'hasStatus' and createing status objects.

Logic

The use of supTC for some of the data authLevel relationships was

considdered to allow any data type or instance to be covered. This has

been adopted for some concepts but not data at this point as they should

be applied to instances as the controls over data require contextual

information such as product type etc to set the controls rather than just

the data type.

Logic

Instances and types have bcome intrmingled in the logic, as the

understanding of the logic has evolved: the level of absstraction will be

used to differentiate ie logic that only uses the types in the core model

wil be consisered foundational the primary foundational logic, the logic

that refernaces types will be the next level and instance logic the most

specialised logic. Logic that refers to both types and instances may have

to be split to allow this tiering to take place.

Logic

The hard Ics stating that a person must have operational and technichal

authority levels have been downgraded to a Soft IC as Irs have been

added the give a person a default based auth level if no level is explicitly

set. The IC logic is not that a person should have a auth level declared

(explicetly).

Logic

Individual Ics stating that a person and data must have technical and

operational authority levels set have lead to a generalised core IC that

they should have an authority level (core type) defined.

Ontology

The ontology development has been clarified in 3 tiers: core, level1 and

level 2. The KFL files and logic have been restructured accordingly so that

the levels can be loaded, tested and developed individualy and

incrementaly. This structure makes coding and debugging easier.

Logic

Core and Level 1 logic loaded into IODE v3.4, and sucsesfuly debugged

however using test cases identified that the logic was not firing correctly

allowing invalid facts to be loaded into the knowledge base. It appears

this is IODE issue with the use of supTC. Version 4.2.1 was tested and

found to trigger correctly. V3.4 can therefore only be used for basic

taxonomic development (this is preferable due to the the use of OMS's

being removed in v4.1.2)

Logic

Code fixing:removed use of 'exists' in Irs, as this requires the IR to create

instances which is not possible in IODE.

Logic

Next round of checking whether logic applies to types or instances

(ongoing and itterative process).

Logic

37IC uses the relationship hasConstraint for Specifications which flagged

that Specifications have been declared as a Target rather than a

constrraint. The solution options are to create a hasSpecification

relationship or realign specifications as a type of constraint. The function

of specifications in this domain context are to constrain the system scope

and development so to realigning would be appropriate which prevents

creating an additional specialised relationship (it is becoming clear that

the unnessisary prolliferation of specialised relationships will make the

management and maintnence of the logic at that level impractical)

238

12 Appendix B – Full ontology logic listing

No. Logic statement
Ontology
Level

2
Every type of data has some associated type of technical authority level ‐ removed
as auth level cannot be set at type level (requires other context info)

3
Every type of data has some associated type of operational authority level‐
removed as auth level cannot be set at type level (requires other context info)

4
Decisions about systems can only be made by people who are superusers or
administrators‐ Removed, not relevant to competency qns

5
Non std systems specifications require manager and superuser approval‐
Removed, not relevant to competency qns

6
Every <sym>Person</sym> <code>?p</code> item must have a
<sym>TechAuthorityLevel</sym> <code>?ta</code>. Level 1

7
Every <sym>Person</sym> <code>?p</code> item must have a
<sym>OpAuthorityLevel</sym> <code>?oa</code>. Level 1

8
If some person <code>?p</code> individual does not have some associated
technical authority level individual, then it should default to User. Level 1

9
If some person <code>?p</code> individual does not have some associated
Operational authority level individual, then it should default to Employee Level 1

10
If a person individual has an op auth level which is either equivalent to or higher
than that of a data individual, then the person has access to the data Level 1

11
If a person individual has an tech auth level which is either equivalent to or higher
than that of a data individual, then the person has access to the data. Level 1

12
Having technical authority does not give a person operational authority ‐ removed
as does not contribute to the ontologys logical purpose

13a
<sym>Data</sym> <code>?d</code> should use a
<sym>StandardDataStructure</sym> <code>?sds</code>. Level 1

13b
<sym>Data</sym> <code>?d</code> types should use a
<sym>StandardDataStructure</sym> type <code>?sds</code>. Level 1

14a

Anything <code>?t</code> with an associated individual of
<sym>ObsoleteStatus</sym> or <sym>DeletedStatus</sym> cannot be an input to
a System individual. Level 1

14b

Anything <code>?t</code> with an associated type of
<sym>ObsoleteStatus</sym> or <sym>DeletedStatus</sym> cannot be an input to
a System type. Level 1

14c
Anything <code>?t</code> with <sym>ObsoleteStatus</sym> or
<sym>DeletedStatus</sym> cannot be an input to a System individual. Level 1

14d
Anything <code>?t</code> with <sym>ObsoleteStatus</sym> or
<sym>DeletedStatus</sym> cannot be an input to a System type. Level 1

15a

If a system <code>?s</code> output <code>?o</code> is associated with an
ApprovedStatus individual, then the system input(s) <code>?i</code> must also
have the same status Level 1

15b

If a system <code>?s</code> output <code>?o</code> is associated with an
ApprovedStatus type, then the system input(s) <code>?i</code> must also also
have the same status type. Level 1

15c
If a system output <code>?o</code> has ApprovedStatus, then the system input(s)
<code>?i</code> must also have ApprovedStatus. Level 1

16
Any <sym>Data</sym> type affected by a <sym>ChangeDecision</sym> type is of
<sym>UnapprovedStatus</sym>. Level 1

17a
If some data individual does not have some associated status type/individual, then
it should default to UnapprovedStatus. Level 1

239

17b
If some data type does not have some associated status type/individual, then it
should default to UnapprovedStatus. Level 1

18 If a system input is not approved the system output is not approved

22
System or system type output data must have a traceability item or type of
traceability item ‐ Removed as duplicates IC 72

25
For a person to work with a system there must be a HMI ‐generalised to
interopsWith level

26
For two or more systems to work together there must be a system system
interface defined ‐ generalised to interopsWith level

27 If two systems output the same metric their input should be the same. Level 1

34a
A <sym>Metric</sym> <code>?me</code> should be defined for any
<sym>Monitor</sym> <code>?mr</code> to monitor. Level 1

34b
A <sym>Metric</sym> <code>?me</code> type should be defined for any type of
<sym>Monitor</sym> <code>?mr</code> to monitor. Level 1

35
A <sym>Metric</sym> <code>?me</code> must have a <sym>Target</sym>
<code>?t</code> to target. Level 1

36
A <sym>Monitor</sym> <code>?m</code> must have a defined
<sym>Response</sym> <code>?r</code>. Level 1

37
A system <code>?s</code> must be described by a functional and non functional
spec Level 1

38 If a system uses IT there must be an IT spec. ‐ Removed as IT type not defined

39a
Proactive feedback individuals <code>?pf</code> are informed by input data
individuals <code>?d</code> Level 1

40a
Reactive feedback individuals <code>?rf</code> are informed by output data
individuals <code>?d</code> Level 1

41
Responses require output data – removed due to conflicts with proactive feedback
use of input data

42
Using non std data structures requires superuser authority ‐ Removed as conflicts
with other logic

43
Specifications must be approved by people with leaders and superusers authority
or higher deleted ‐ not required for interoperability

44a
A system individual <code>?s</code> must have some form of inputs, outputs,
resource and constraints defined. Level 1

44b
A system type must have some form of inputs, outputs, resource and constraints
defined. Level 1

45
System resource and constraints should be specified for a system ‐ removed,
combined with the input and output logic

46a
Target <code>?t</code> individuals have a validity timescale individual
<code>?v</code>. Level 1

46b Target <code>?t</code> types have a validity timescale type <code>?t</code> Level 1

47a Data <code>?d</code> individuals have a validity timescale individual. Level 1

47b Data types <code>?d</code> have a validity timescale type<code>?v</code>. Level 1

52 Data should not be stored in 2 archiving systems ‐ Removed, conflicts with logic 53

54 Data individuals should have a data retention category type or instance. Level 1

55 Data individuals should have an export control category type or individual. Level 1

56 Data individuals should have a security control category type or individual. Level 1

57
systems must have a security, export control and data retention category
individual or type ‐ removed as Irs infer a default value

58a
If some system individual does not have some associated security category
type/individual, then it should default to Public. Level 1

240

58b
If some system type does not have some associated security category
type/individual, then it should default to Public. Level 1

59a
If some system individual does not have some associated export control category
type/individual, then it should default to ExportControlled. Level 1

59b
If some system type does not have some associated export control category
type/individual, then it should default to ExportControlled. Level 1

60a
If some system individual does not have some associated retention category
type/individual, then it should default to NonMandatoryRetention. Level 1

60b
If some system type does not have some associated retention category
type/individual, then it should default to NonMandatoryRetention. Level 1

61
Systems <code>?s</code> that have security category of public can only input or
output public category data. Level 1

62
Systems <code>?s</code> that have security category of private can only input
<code>?i</code> or output <code>?o</code> public or private category data. Level 1

63

Systems <code>?s</code> that have security category of secret can only input
<code>?i</code> or output <code>?o</code> public, private or secret category
data. Level 1

64

Systems <code>?s</code> that have security category of top secret can input
<code>?i</code> or output <code>?o</code> public, private, secret or top secret
category data. Level 1

65

Systems <code>?s</code> with an export control category of non export control
can only input <code>?i</code> or output <code>?o</code> non export
controlled data. Level 1

66a

Systems <code>?s</code> with a retention category of non mandatory retention
can only input <code>?i</code> o non mandatory retention data. If mandatory
data is input to a non mandatory retention system is must be output as well so it
exists in another system. Level 1

68
If a system outputs data to another system it is an input for that other system ‐
removed as non value added

69

A system <code>?s</code> should have a functional specification
<code>?fs</code> that describes metrics <code>?m</code> or metric targets
<code>?mt</code>, if multiple functional specs exist not all may contain metrics. Level 1

70
Systems that share the same input, outputs resources or constraints are parallel
associated ‐ removed as non value added

71

If a system outputs data that is not input into it, it is the data source for that data ‐
removed as can be discovered by query eg search for something that is and output
from a system but not an input to the same system

72a
If an entity is a data output <code>?x</code> individual then it must have a
traceability item <code>?y</code> individual defined. Level 1

72b If an entity is a data output type then it must have a traceability item type defined. Level 1

73
Traceability items <code>?x</code> <code>?y</code> must be consistent
between interoperating systems <code>?a</code> <code>?b</code>. Level 1

75 tech auth level increments from user ‐ superuser ‐ administrator

76 op auth level increments from employee, leader, manager, executive

77a
If some data individual does not have some associated retention category
type/individual, then it should default to NonMandatoryRetention. Level 1

77b
If some data type does not have some associated retention category
type/individual, then it should default to NonMandatoryRetention Level 1

78a
If some data individual does not have some associated export control category
type/individual, then it should default to ExportControlled. Level 1

78b If some data type does not have some associated export control category Level 1

241

type/individual, then it should default to ExportControlled.

79a
If some data individual does not have some associated security category
type/individual, then it should default to Private Level 1

79b
If some data type does not have some associated security category
type/individual, then it should default to Private Level 1

80 If a system input is not approved the system output is not approved. Level 1

81
If 2 things interoperate they must share some type of interface ‐ removed as logic
does not hold true

82
Every data individual has some associated operational authority level individual. ‐
removed as logic does not hold true

83
Every data individual has some associated technical authority level individual.‐
removed as logic does not hold true

84
Every type of data has some associated type of authority level ‐ removed as logic
does not hold true

85
An instance of <sym>Prediction</sym> anticipates the <sym>Output</sym>
instance or <sym>Decision</sym> instance Core

86
A <sym>Prediction</sym> type anticipates the <sym>Output</sym> type or
<sym>Decision</sym> type Core

87
<sym>Analysis</sym><code>?x</code> informs <sym>Decision</sym>
<code>?y</code> Core

88
<sym>Analysis</sym> <code>?x</code>or some type of Analysis should inform
some <sym>Decision</sym> type <code>?y</code>. Core

89a
If two system individuals <code>?x</code> <code>?y</code>interoperate with
each other, then they require some associated interface individual. Core

89b
If a system individual <code>?x</code> interoperate with a person individual
<code>?y</code>, then they require some associated interface individual. Core

89c
If two system types <code>?x</code> <code>?y</code> interoperate with each
other, then they require some associated interface type Core

89d
If a system type interoperates with a person type, then both system and person
types require some associated interface type. Core

90
If two arguments <code>?t1</code> <code>?t2</code> interoperate with each
other they must have some associated interface <code>?i</code> in common. Core

91
If the output of one system is the input of another system the systems
interoperate Level 2

92 If two things have the same interface they interoperate Level 2

93 If something analyses something else they interoperate Level 2

94 If something informs something else they interoperate Level 2

95 If something may access something else they interoperate Level 2

242

13 Appendix C – Full fact base listing
;==
;Declare People
;==

(Operator MI.wax_injection_operator)
(Supervisor MI.wax_production_leader)
(Supervisor MI.foundry_manufacturing_engineering_manager)
(Supervisor MI.foundry_manufacturing_manager)
(ManufacturingEngineer MI.wax_process_engineer)
(ManufacturingEngineer MI.casting_part_owner)
(MaintenanceEngineer MI.foundry_maintenence_engineer)
(MaterialController MI.foundry_material_requirements_planning_controller)
(ManufacturingEngineer MI.CAPP_superuser)
(ManufacturingEngineer MI.CAPP_keyuser)

(informs MI.wax_injection_operator MI.wax_production_leader)
(informs MI.CAPP_keyuser MI.CAPP_superuser)

(hasTechAuthorityLevel MI.wax_injection_operator MI.User)
(hasTechAuthorityLevel MI.wax_production_leader MI.User)
(hasTechAuthorityLevel MI.foundry_manufacturing_engineering_manager
MI.Administrator)
(hasTechAuthorityLevel MI.foundry_manufacturing_manager MI.User)
(hasTechAuthorityLevel MI.wax_process_engineer MI.Superuser)
(hasTechAuthorityLevel MI.casting_part_owner MI.Superuser)
(hasTechAuthorityLevel MI.foundry_maintenence_engineer MI.Superuser)
(hasTechAuthorityLevel MI.foundry_material_requirements_planning_controller
MI.User)
(hasTechAuthorityLevel MI.CAPP_superuser MI.Superuser)
(hasTechAuthorityLevel MI.CAPP_keyuser MI.User)

(hasOpAuthorityLevel MI.wax_injection_operator MI.Employee)
(hasOpAuthorityLevel MI.wax_production_leader MI.Leader)
(hasOpAuthorityLevel MI.foundry_manufacturing_engineering_manager MI.Manager)
(hasOpAuthorityLevel MI.foundry_manufacturing_manager MI.Manager)
(hasOpAuthorityLevel MI.wax_process_engineer MI.Employee)
(hasOpAuthorityLevel MI.casting_part_owner MI.Employee)
(hasOpAuthorityLevel MI.foundry_maintenence_engineer MI.Employee)
(hasOpAuthorityLevel MI.foundry_material_requirements_planning_controller
MI.Employee)
(hasOpAuthorityLevel MI.CAPP_superuser MI.Employee)
(hasOpAuthorityLevel MI.CAPP_keyuser MI.Employee)

(StandardDataStructure MI.XML)
(StandardDataStructure MI.profinet_signal)

243

(StandardDataStructure MI.SQL_table)
(StandardDataStructure MI.NX6_CAD_format)
(StandardDataStructure MI.std_document_template)
(ValidityTimescale MI.life_of_type)
(ValidityTimescale MI.life_of_order)
(ValidityTimescale MI.life_of_contract)

;==
;Declare Systems
;==

(System MI.CAPP_system)

(Input MI.core_specification)
(Input MI.method_of_manufacture)
(Input MI.manufacturing_bill_of_material)
(Input MI.bill_of_plant)
(Input MI.geometry_models)
(Input MI.bill_of_process)
(Input MI.product_history)

(Output MI.wax_process_instruction)
(Output MI.wax_process_parameter)
(Output MI.core_specification)
(Output MI.core_chaplet_inspection_spec)
(Output MI.manufacturing_technical_package)

(Resource MI.PLM_server)
(Resource MI.PLPS_process)
(Resource MI.it_infrastructure)
(Resource MI.ERP_system)
(Resource MI.ERP_bridge)
(Resource MI.PLM_database)
(Resource MI.production_schedule)
(Resource MI.casting_part_owner)
(Resource MI.wax_process_engineer)
(Resource MI.foundry_manufacturing_engineering_manager)
(Resource CAPP_superuser)
(Resource CAPP_keyuser)

(Constraint MI.PLPS_process)
(Constraint MI.CAPP_data_storage_capacity)
(Constraint MI.RR_quality_management_system)
(Constraint MI.CAPP_data_transfer_capacity)
(Constraint MI.CAPP_data_processing_capacity)
(Constraint MI.product_definition)
(Constraint MI.EASA_requirements)
(Constraint MI.technical_package_std)

244

(Constraint MI.business_IT_infrastructure_availability)

(MI.FunctionalSpecification MI.capp_functional_specification)
(MI.FunctionalSpecification MI.RR_quality_management_system)
(MI.NonFunctionalSpecification MI.capp_performance_requirements_spec)
(Metric MI.CAPP_system_response_time)
(MetricTarget MI.CAPP_system_response_time_target)
(hasTarget MI.CAPP_system_response_time MI.CAPP_system_response_time_target)
(specifies MI.capp_functional_specification MI.CAPP_system_response_time)
(specifies MI.capp_functional_specification MI.CAPP_system_response_time_target)

(hasConstraint MI.CAPP_system MI.capp_performance_requirements_spec)
(hasConstraint MI.CAPP_system MI.capp_functional_specification)
(hasConstraint MI.CAPP_system MI.RR_quality_management_system)
(hasConstraint MI.CAPP_system MI.PLPS_process)
(hasConstraint MI.CAPP_system MI.CAPP_data_storage_capacity)
(hasConstraint MI.CAPP_system MI.RR_quality_management_system)
(hasConstraint MI.CAPP_system MI.CAPP_data_transfer_capacity)
(hasConstraint MI.CAPP_system MI.CAPP_data_processing_capacity)
(hasConstraint MI.CAPP_system MI.product_definition)
(hasConstraint MI.CAPP_system MI.EASA_requirements)
(hasConstraint MI.CAPP_system MI.technical_package_std)
(hasConstraint MI.CAPP_system MI.business_IT_infrastructure_availability)

(hasResource MI.CAPP_system MI.PLM_server)
(hasResource MI.CAPP_system MI.ERP_system)
(hasResource MI.CAPP_system MI.it_infrastructure)
(hasResource MI.CAPP_system MI.ERP_bridge)
(hasResource MI.CAPP_system MI.PLPS_process)
(hasResource MI.CAPP_system MI.PLM_database)
(hasResource MI.CAPP_system MI.production_schedule)
(hasResource MI.CAPP_system CAPP_superuser)
(hasResource MI.CAPP_system CAPP_keyuser)
(hasResource MI.CAPP_system MI.casting_part_owner)
(hasResource MI.CAPP_system MI.wax_process_engineer)
(hasResource MI.CAPP_system MI.foundry_manufacturing_engineering_manager)

(hasInput MI.CAPP_system MI.core_specification)
(hasInput MI.CAPP_system MI.method_of_manufacture)
(hasInput MI.CAPP_system MI.manufacturing_bill_of_material)
(hasInput MI.CAPP_system MI.bill_of_plant)
(hasInput MI.CAPP_system MI.geometry_models)
(hasInput MI.CAPP_system MI.bill_of_process)
(hasInput MI.CAPP_system MI.product_history)

(hasOutput MI.CAPP_system MI.core_specification)
(hasOutput MI.CAPP_system MI.core_chaplet_inspection_spec)
(hasOutput MI.CAPP_system MI.wax_process_instruction)

245

(hasOutput MI.CAPP_system MI.wax_process_parameter)
(hasOutput MI.CAPP_system MI.manufacturing_technical_package)

(hasSecurityCategory MI.CAPP_system MI.Private)
(hasExportControlCategory MI.CAPP_system MI.ExportControlled)
(hasRetentionCategory MI.CAPP_system MI.MandatoryRetention)
(VisualSpecification MI.core_chaplet_inspection_spec)
(ProcessSpecification MI.wax_process_instruction)
(ProcessSpecification MI.wax_process_parameter)
(ProductSpecification MI.product_definition)
(MI.SystemResponseTimeMetric MI.CAPP_system_response_time)
(hasTimescale MI.CAPP_system_response_time_target MI.life_of_order)
(hasRetentionCategory MI.core_specification MI.MandatoryRetention)
(hasRetentionCategory MI.wax_process_parameter MI.MandatoryRetention)
(ProductSpecification MI.core_specification)
(MI.SysSysInterface MI.ERP_bridge)
(MI.hasInterface MI.CAPP_system MI.ERP_bridge)
(MI.hasInterface MI.CAPP_system MI.MES_CAPP_Bridge)

(MI.hasSecurityCategory MI.method_of_manufacture MI.Private)
(MI.hasSecurityCategory MI.manufacturing_bill_of_material MI.Private)
(MI.hasSecurityCategory MI.product_history MI.Private)
(MI.hasSecurityCategory MI.bill_of_process MI.Private)
(MI.hasSecurityCategory MI.geometry_models MI.Private)
(MI.hasSecurityCategory MI.manufacturing_technical_package MI.Private)
(MI.hasSecurityCategory MI.bill_of_plant MI.Private)
(MI.hasSecurityCategory MI.core_specification MI.Private)
(MI.hasSecurityCategory MI.wax_process_instruction MI.Private)
(MI.hasSecurityCategory MI.wax_process_parameter MI.Private)
(MI.hasSecurityCategory MI.core_chaplet_inspection_spec MI.Private)
(hasTimescale MI.CAPP_system_response_time_target MI.life_of_contract)

(ProductSpecification MI.core_specification)
(VisualData MI.core_specification)
(DimensionalData MI.core_specification)
(ProcessData MI.method_of_manufacture)
(ResourceData MI.manufacturing_bill_of_material)
(ResourceData MI.bill_of_plant)
(ProductData MI.geometry_models)
(ResourceData MI.geometry_models)
(ProcessData MI.bill_of_process)
(ProductionHistory MI.product_history)
(ProductData MI.product_history)
(ProcessData MI.wax_process_instruction)
(DatacardData MI.wax_process_parameter)

(ProductSpecification MI.core_chaplet_inspection_spec)
(VisualData MI.core_chaplet_inspection_spec)

246

(ProcessData MI.manufacturing_technical_package)
(ProductData MI.manufacturing_technical_package)
(ProcessSpecification MI.PLPS_process)
(OrderData MI.production_schedule)

(SystemStorageCapacityMetric MI.CAPP_data_storage_capacity)
(MetricTarget MI.CAPP_data_storage_capacity_target)
(hasTarget MI.CAPP_data_storage_capacity MI.CAPP_data_storage_capacity_target)
(specifies MI.capp_functional_specification MI.CAPP_data_storage_capacity_target)
(specifies MI.capp_functional_specification MI.CAPP_data_storage_capacity)

(SystemFlowCapacityMetric MI.CAPP_data_transfer_capacity)
(MetricTarget MI.CAPP_data_transfer_capacity_target)
(hasTarget MI.CAPP_data_transfer_capacity MI.CAPP_data_transfer_capacity_target)
(specifies MI.capp_functional_specification MI.CAPP_data_transfer_capacity_target)
(specifies MI.capp_functional_specification MI.CAPP_data_transfer_capacity)

(SystemFlowCapacityMetric MI.CAPP_data_processing_capacity)
(MetricTarget MI.CAPP_data_processing_capacity_target)
(hasTarget MI.CAPP_data_processing_capacity
MI.CAPP_data_processing_capacity_target)
(specifies MI.capp_functional_specification
MI.CAPP_data_processing_capacity_target)
(specifies MI.capp_functional_specification MI.CAPP_data_processing_capacity)

(ProductSpecification MI.product_definition)
(ProcessSpecification MI.EASA_requirements)
(ProcessSpecification MI.technical_package_std)
(ITSpecification MI.business_IT_infrastructure_availability)

(TraceabilityData MI.coreID)
(TraceabilityData MI.partID)
(TraceabilityData MI.operator_id)
(TraceabilityData MI.wax_robot_start_timestamp)
(TraceabilityData MI.wax_process_start_timestamp)
(TraceabilityData MI.wax_machine_id)
(TraceabilityData MI.tool_id)
(TraceabilityData MI.wax_process_end_timestamp)
(TraceabilityData MI.unique_identifier)

(TraceabilityItem MI.coreID)
(TraceabilityItem MI.partID)
(TraceabilityItem MI.operator_id)
(TraceabilityItem MI.wax_robot_start_timestamp)
(TraceabilityItem MI.wax_process_start_timestamp)
(TraceabilityItem MI.wax_machine_id)
(TraceabilityItem MI.tool_id)
(TraceabilityItem MI.wax_process_end_timestamp)

247

(TraceabilityItem MI.unique_identifier)

(hasTraceItem MI.CAPP_data_storage_capacity_target MI.unique_identifier)
(hasTraceItem MI.CAPP_data_transfer_capacity_target MI.unique_identifier)
(hasTraceItem MI.CAPP_data_processing_capacity_target MI.unique_identifier)
(hasTraceItem MI.core_specification MI.unique_identifier)
(hasTraceItem MI.method_of_manufacture MI.unique_identifier)
(hasTraceItem MI.manufacturing_bill_of_material MI.unique_identifier)
(hasTraceItem MI.bill_of_plant MI.unique_identifier)
(hasTraceItem MI.geometry_models MI.unique_identifier)
(hasTraceItem MI.bill_of_process MI.unique_identifier)
(hasTraceItem MI.production_schedule MI.unique_identifier)
(hasTraceItem MI.manufacturing_technical_package MI.unique_identifier)
(hasTraceItem MI.manufacturing_technical_package MI.partID)
(hasTraceItem MI.core_chaplet_inspection_spec MI.unique_identifier)
(hasTraceItem MI.core_chaplet_inspection_spec MI.partID)
(hasTraceItem MI.core_chaplet_inspection_spec MI.coreID)
(hasTraceItem MI.wax_process_parameter MI.unique_identifier)
(hasTraceItem MI.wax_process_parameter MI.partID)
(hasTraceItem MI.wax_process_instruction MI.partID)
(hasTraceItem MI.wax_process_instruction MI.unique_identifier)
(hasTraceItem MI.product_history MI.unique_identifier)
(hasTraceItem MI.product_history MI.tool_id)
(hasTraceItem MI.product_history MI.wax_machine_id)
(hasTraceItem MI.product_history MI.wax_process_start_timestamp)
(hasTraceItem MI.product_history MI.wax_process_end_timestamp)
(hasTraceItem MI.product_history MI.wax_robot_start_timestamp)
(hasTraceItem MI.product_history MI.operator_id)
(hasTraceItem MI.product_history MI.partID)
(hasTraceItem MI.product_history MI.coreID)
(hasTraceItem MI.coreID MI.unique_identifier)
(hasTraceItem MI.partID MI.unique_identifier)
(hasTraceItem MI.operator_id MI.unique_identifier)
(hasTraceItem MI.wax_robot_start_timestamp MI.unique_identifier)
(hasTraceItem MI.wax_process_start_timestamp MI.unique_identifier)
(hasTraceItem MI.wax_machine_id MI.unique_identifier)
(hasTraceItem MI.tool_id MI.unique_identifier)
(hasTraceItem MI.wax_process_end_timestamp MI.unique_identifier)
(hasTraceItem MI.unique_identifier MI.unique_identifier)

(hasTimescale MI.coreID MI.life_of_type)
(hasTimescale MI.partID MI.life_of_type)
(hasTimescale MI.operator_id MI.life_of_type)
(hasTimescale MI.wax_robot_start_timestamp MI.life_of_type)
(hasTimescale MI.wax_process_end_timestamp MI.life_of_type)
(hasTimescale MI.wax_process_start_timestamp MI.life_of_type)
(hasTimescale MI.wax_machine_id MI.life_of_type)
(hasTimescale MI.tool_id MI.life_of_type)

248

(hasTimescale MI.unique_identifier MI.life_of_type)
(hasTimescale MI.CAPP_data_storage_capacity_target MI.life_of_contract)
(hasTimescale MI.CAPP_data_transfer_capacity_target MI.life_of_contract)
(hasTimescale MI.CAPP_data_processing_capacity_target MI.life_of_contract)
(hasTimescale MI.core_specification MI.life_of_type)
(hasTimescale MI.method_of_manufacture MI.life_of_order)
(hasTimescale MI.manufacturing_bill_of_material MI.life_of_order)
(hasTimescale MI.bill_of_plant MI.life_of_order)
(hasTimescale MI.geometry_models MI.life_of_type)
(hasTimescale MI.bill_of_process MI.life_of_order)
(hasTimescale MI.production_schedule MI.life_of_order)
(hasTimescale MI.manufacturing_technical_package MI.life_of_type)
(hasTimescale MI.core_chaplet_inspection_spec MI.life_of_type)
(hasTimescale MI.wax_process_parameter MI.life_of_order)
(hasTimescale MI.wax_process_instruction MI.life_of_order)
(hasTimescale MI.product_history MI.life_of_type)

(hasRetentionCategory MI.core_specification MI.MandatoryRetention)
(hasRetentionCategory MI.method_of_manufacture MI.MandatoryRetention)
(hasRetentionCategory MI.manufacturing_bill_of_material MI.MandatoryRetention)
(hasRetentionCategory MI.bill_of_plant MI.MandatoryRetention)
(hasRetentionCategory MI.geometry_models MI.MandatoryRetention)
(hasRetentionCategory MI.bill_of_process MI.MandatoryRetention)
(hasRetentionCategory MI.production_schedule MI.NonMandatoryRetention)
(hasRetentionCategory MI.manufacturing_technical_package MI.MandatoryRetention)
(hasRetentionCategory MI.core_chaplet_inspection_spec MI.MandatoryRetention)
(hasRetentionCategory MI.wax_process_parameter MI.NonMandatoryRetention)
(hasRetentionCategory MI.wax_process_instruction MI.MandatoryRetention)
(hasRetentionCategory MI.product_history MI.MandatoryRetention)
(hasRetentionCategory MI.coreID MI.MandatoryRetention)
(hasRetentionCategory MI.partID MI.MandatoryRetention)
(hasRetentionCategory MI.operator_id MI.MandatoryRetention)
(hasRetentionCategory MI.wax_robot_start_timestamp MI.NonMandatoryRetention)
(hasRetentionCategory MI.wax_process_end_timestamp MI.MandatoryRetention)
(hasRetentionCategory MI.wax_process_start_timestamp MI.MandatoryRetention)
(hasRetentionCategory MI.wax_machine_id MI.MandatoryRetention)
(hasRetentionCategory MI.tool_id MI.MandatoryRetention)
(hasRetentionCategory MI.unique_identifier MI.MandatoryRetention)

(hasDataStructure MI.core_specification MI.std_document_template)
(hasDataStructure MI.method_of_manufacture MI.SQL_table)
(hasDataStructure MI.method_of_manufacture MI.XML)
(hasDataStructure MI.manufacturing_bill_of_material MI.SQL_table)
(hasDataStructure MI.manufacturing_bill_of_material MI.XML)
(hasDataStructure MI.bill_of_plant MI.SQL_table)
(hasDataStructure MI.bill_of_plant MI.XML)
(hasDataStructure MI.geometry_models MI.NX6_CAD_format)
(hasDataStructure MI.bill_of_process MI.SQL_table)

249

(hasDataStructure MI.bill_of_process MI.XML)
(hasDataStructure MI.production_schedule MI.SQL_table)
(hasDataStructure MI.manufacturing_technical_package MI.std_document_template)
(hasDataStructure MI.core_chaplet_inspection_spec MI.std_document_template)
(hasDataStructure MI.wax_process_parameter MI.SQL_table)
(hasDataStructure MI.wax_process_parameter MI.XML)
(hasDataStructure MI.wax_process_instruction MI.std_document_template)
(hasDataStructure MI.product_history MI.SQL_table)
(hasDataStructure MI.product_history MI.XML)
(hasDataStructure MI.coreID MI.XML)
(hasDataStructure MI.partID MI.XML)
(hasDataStructure MI.operator_id MI.XML)
(hasDataStructure MI.wax_robot_start_timestamp MI.XML)
(hasDataStructure MI.wax_process_end_timestamp MI.XML)
(hasDataStructure MI.wax_process_start_timestamp MI.XML)
(hasDataStructure MI.wax_machine_id MI.XML)
(hasDataStructure MI.tool_id MI.XML)
(hasDataStructure MI.unique_identifier MI.XML)
(hasDataStructure MI.coreID MI.SQL_table)
(hasDataStructure MI.partID MI.SQL_table)
(hasDataStructure MI.operator_id MI.SQL_table)
(hasDataStructure MI.wax_robot_start_timestamp MI.SQL_table)
(hasDataStructure MI.wax_process_end_timestamp MI.SQL_table)
(hasDataStructure MI.wax_process_start_timestamp MI.SQL_table)
(hasDataStructure MI.wax_machine_id MI.SQL_table)
(hasDataStructure MI.tool_id MI.SQL_table)
(hasDataStructure MI.unique_identifier MI.SQL_table)

;===

(System MI.MES_system)

(Input MI.core_specification)
(Input MI.wax_process_instruction)
(Input MI.wax_process_parameter)
(Input MI.core_chaplet_inspection_spec)
(Input MI.tool_id)
(Input MI.wax_product_history)
(Input MI.wax_process_history)
(Input MI.wax_operator_feedback)

(Output MI.core_specification)
(Output MI.core_chaplet_inspection_spec)
(Output MI.wax_process_instruction)
(Output MI.wax_process_parameter)
(Output MI.product_history)
(Output MI.wax_MES_report)
(Output MI.wax_operator_feedback)

250

(Output MI.wax_product_history)
(Output MI.tool_id)
(Output MI.wax_process_history)

(Resource MI.ERP_bridge)
(Resource MI.manufacturing_technical_package)
(Resource MI.casting_part_owner)
(Resource MI.wax_process_engineer)
(Resource MI.wax_injection_operator)
(Resource MI.production_plan)
(Resource MI.method_of_manufacture)
(Resource MI.MES_report_template)
(Resource MI.MES_HMI)
(Resource MI.production_schedule)
(Resource MI.IT_infrastructure)
(Resource MI.foundry_material_requirements_planning_controller)

(Constraint MI.MES_data_storage_capacity)
(Constraint MI.RR_quality_management_system)
(Constraint MI.MES_data_transfer_capacity)
(Constraint MI.MES_data_processing_capacity)
(Constraint MI.EASA_requirements)
(Constraint MI.business_IT_infrastructure_availability)

(MI.FunctionalSpecification MI.MES_system_functional_spec)
(MI.NonFunctionalSpecification MI.MES_system_nonfunctional_spec)

(Metric MI.MES_availability_metric)
(Metric MI.MES_response_time_metric)
(MetricTarget MI.MES_availability_metric_target)
(MetricTarget MI.MES_response_time_metric_target)
(hasTarget MI.MES_availability_metric MI.MES_availability_metric_target)
(hasTarget MI.MES_response_time_metric MI.MES_response_time_metric_target)
(specifies MI.MES_system_functional_spec MI.MES_availability_metric)
(specifies MI.MES_system_functional_spec MI.MES_response_time_metric)
(specifies MI.MES_system_functional_spec MI.MES_availability_metric_target)
(specifies MI.MES_system_functional_spec MI.MES_response_time_metric_target)

(hasConstraint MI.MES_system MI.MES_data_storage_capacity)
(hasConstraint MI.MES_system MI.RR_quality_management_system)
(hasConstraint MI.MES_system MI.MES_data_transfer_capacity)
(hasConstraint MI.MES_system MI.MES_data_processing_capacity)
(hasConstraint MI.MES_system MI.EASA_requirements)
(hasConstraint MI.MES_system MI.business_IT_infrastructure_availability)
(hasConstraint MI.MES_system MI.MES_system_functional_spec)
(hasConstraint MI.MES_system MI.MES_system_nonfunctional_spec)

251

(hasResource MI.MES_system MI.ERP_bridge)
(hasResource MI.MES_system MI.manufacturing_technical_package)
(hasResource MI.CAPP_system MI.casting_part_owner)
(hasResource MI.CAPP_system MI.wax_process_engineer)
(hasResource MI.CAPP_system MI.wax_injection_operator)
(hasResource MI.MES_system MI.production_plan)
(hasResource MI.MES_system MI.method_of_manufacture)
(hasResource MI.MES_system MI.MES_report_template)
(hasResource MI.MES_system MI.MES_HMI)
(hasResource MI.MES_system MI.production_schedule)
(hasResource MI.MES_system MI.IT_infrastructure)
(hasResource MI.MES_system
MI.foundry_material_requirements_planning_controller)

(hasInput MI.MES_system MI.core_specification)
(hasInput MI.MES_system MI.wax_process_instruction)
(hasInput MI.MES_system MI.wax_process_parameter)
(hasInput MI.MES_system MI.core_chaplet_inspection_spec)
(hasInput MI.MES_system MI.tool_id)
(hasInput MI.MES_system MI.wax_product_history)
(hasInput MI.MES_system MI.wax_process_history)
(hasInput MI.MES_system MI.wax_operator_feedback)

(hasOutput MI.MES_system MI.core_specification)
(hasOutput MI.MES_system MI.core_chaplet_inspection_spec)
(hasOutput MI.MES_system MI.wax_process_instruction)
(hasOutput MI.MES_system MI.wax_process_parameter)
(hasOutput MI.MES_system MI.product_history)
(hasOutput MI.MES_system MI.wax_MES_report)
(hasOutput MI.MES_system MI.wax_operator_feedback)
(hasOutput MI.MES_system MI.wax_product_history)
(hasOutput MI.MES_system MI.tool_id)
(hasOutput MI.MES_system MI.wax_process_history)

(Report MI.wax_MES_report)

(hasSecurityCategory MI.MES_system MI.Private)
(hasExportControlCategory MI.MES_system MI.ExportControlled)
(hasRetentionCategory MI.MES_system MI.NonMandatoryRetention)

(SystemPerformanceMetric MI.MES_availability_metric)
(hasTimescale MI.MES_availability_metric_target MI.life_of_order)
(hasTimescale MES_response_time_metric_target MI.life_of_order)
(ProductSpecification MI.core_specification)
(MI.SysSysInterface MI.MES_CAPP_Bridge)
(MI.SysSysInterface MI.MES_Middleware_Bridge)
(MI.hasInterface MI.MES_system MI.MES_HMI)
(MI.hasInterface MI.MES_system MI.MES_CAPP_Bridge)

252

(MI.hasInterface MI.MES_system MI.MES_Middleware_Bridge)
(HMI MI.MES_HMI)
(hasInterface MI.MES_system MI.ERP_bridge)
(hasTimescale MI.production_plan MI.life_of_order)
(hasTimescale MI.MES_response_time_metric_target MI.life_of_contract)

(Visualisation MI.MES_HMI)

(visualises MI.MES_HMI MI.core_specification)
(visualises MI.MES_HMI MI.wax_process_instruction)
(visualises MI.MES_HMI MI.wax_product_history)
(visualises MI.MES_HMI MI.core_chaplet_inspection_spec)
(visualises MI.MES_HMI MI.wax_operator_feedback)
(visualises MI.MES_HMI MI.wax_MES_report)
(visualises MI.MES_HMI MI.manufacturing_technical_package)

(Plan MI.production_plan)
(Plan MI.production_schedule)

(MI.hasSecurityCategory MI.tool_id MI.Private)
(MI.hasSecurityCategory MI.wax_product_history MI.Private)
(MI.hasSecurityCategory MI.wax_process_history MI.Private)
(MI.hasSecurityCategory MI.wax_operator_feedback MI.Private)
(MI.hasSecurityCategory MI.wax_MES_report MI.Private)

;==

(System MI.part_tracking_system)

(Input MI.stationID)
(Input MI.partID_reader_signal)

(Output MI.coreID)
(Output MI.wax_product_history)
(Output MI.wax_process_history)
(Output MI.wax_WIP_data)

(Resource MI.coreID)
(Resource MI.partID)
(Resource MI.wax_cell_layout)
(Resource MI.WIP_database)

(Constraint MI.partID_legibility)
(Constraint MI.part_tracking_system_range)
(Constraint MI.part_position_refresh_rate)

253

(ResourceData MI.stationID)
(ProductData MI.partID_reader_signal)
(ProcessData MI.partID_reader_signal)
(WIPInventoryData MI.wax_WIP_data)

(NonFunctionalSpecification MI.part_tracking_system_non_func_spec)
(FunctionalSpecification MI.part_tracking_system_func_spec)

(Metric MI.part_position_refresh_rate)
(MetricTarget MI.part_position_refresh_rate_target)
(hasTarget MI.part_position_refresh_rate MI.part_position_refresh_rate_target)
(specifies MI.part_tracking_system_func_spec MI.part_position_refresh_rate)
(specifies MI.part_tracking_system_func_spec MI.part_position_refresh_rate_target)

(hasTimescale MI.stationID MI.life_of_order)
(hasTimescale MI.partID_reader_signal MI.life_of_order)
(hasTimescale MI.wax_WIP_data MI.life_of_order)
(hasTimescale MI.wax_cell_layout MI.life_of_order)
(hasTimescale MI.WIP_database MI.life_of_contract)
(hasTimescale MI.part_position_refresh_rate MI.life_of_contract)
(hasTimescale MI.part_position_refresh_rate_target MI.life_of_contract)
(hasTimescale MI.wax_TAKT MI.life_of_contract)
(hasTimescale MI.wax_throughput MI.life_of_contract)
(hasTimescale MI.wax_WIP_level MI.life_of_contract)
(hasTimescale MI.wax_WIP_level_target MI.life_of_contract)
(hasTimescale MI.wax_throughput_target MI.life_of_contract)
(hasTimescale MI.wax_TAKT_target MI.life_of_contract)

(MI.hasSecurityCategory MI.stationID MI.Private)
(MI.hasSecurityCategory MI.partID_reader_signal MI.Private)
(MI.hasSecurityCategory MI.wax_WIP_data MI.Private)
(MI.hasSecurityCategory MI.wax_cell_layout MI.Private)
(MI.hasSecurityCategory MI.WIP_database MI.Private)
(MI.hasSecurityCategory MI.part_position_refresh_rate MI.Private)

(Metric MI.wax_WIP_level)
(Metric MI.wax_throughput)
(Metric MI.wax_TAKT)
(MetricTarget MI.wax_WIP_level_target)
(MetricTarget MI.wax_throughput_target)
(MetricTarget MI.wax_TAKT_target)
(hasTarget MI.wax_WIP_level MI.wax_WIP_level_target)
(hasTarget MI.wax_throughput MI.wax_throughput_target)
(hasTarget MI.wax_TAKT MI.wax_TAKT_target)
(specifies MI.part_tracking_system_func_spec MI.wax_WIP_level_target)
(specifies MI.part_tracking_system_func_spec MI.wax_throughput_target)
(specifies MI.part_tracking_system_func_spec MI.wax_TAKT_target)

254

(hasInput MI.part_tracking_system MI.stationID)
(hasInput MI.part_tracking_system MI.partID_reader_signal)

(hasOutput MI.part_tracking_system MI.coreID)
(hasOutput MI.part_tracking_system MI.wax_product_history)
(hasOutput MI.part_tracking_system MI.wax_process_history)

(hasResource MI.part_tracking_system MI.coreID)
(hasResource MI.part_tracking_system MI.partID)
(hasResource MI.part_tracking_system MI.wax_cell_layout)
(hasResource MI.part_tracking_system MI.WIP_database)

(hasConstraint MI.part_tracking_system MI.partID_legibility)
(hasConstraint MI.part_tracking_system MI.part_tracking_system_range)
(hasConstraint MI.part_tracking_system MI.part_position_refresh_rate)
(hasConstraint MI.part_tracking_system MI.part_tracking_system_func_spec)
(hasConstraint MI.part_tracking_system MI.part_tracking_system_non_func_spec)

(hasSecurityCategory MI.part_tracking_system MI.Private)
(hasExportControlCategory MI.part_tracking_system MI.MI.NonExportControlled)
(hasRetentionCategory MI.part_tracking_system MI.NonMandetoryRetention)

(MI.hasInterface MI.part_tracking_system MI.MES_Middleware_Bridge)

(hasDataStructure MI.partID_reader_signal MI.profinet_signal)
(hasDataStructure MI.stationID MI.SQL_table)
(hasDataStructure MI.wax_WIP_data MI.SQL_table)

(hasTraceItem MI.stationID MI.unique_identifier)
(hasTraceItem MI.partID_reader_signal MI.unique_identifier)
(hasTraceItem MI.partID_reader_signal MI.wax_robot_start_timestamp)
(hasTraceItem MI.partID_reader_signal MI.wax_process_start_timestamp)
(hasTraceItem MI.wax_WIP_data MI.partID)
(hasTraceItem MI.wax_WIP_data MI.coreID)
(hasTraceItem MI.wax_WIP_data MI.wax_machine_id)
(hasTraceItem MI.wax_WIP_data MI.wax_robot_start_timestamp)
(hasTraceItem MI.wax_WIP_data MI.wax_process_start_timestamp)
(hasTraceItem MI.wax_cell_layout MI.unique_identifier)
(hasTraceItem MI.WIP_database MI.unique_identifier)
(hasTraceItem MI.part_position_refresh_rate MI.unique_identifier)

;==

(ControlSystem MI.wax_injection_cell_control)
(SCADASystem MI.wax_injection_cell_control)
(ControlSystem MI.wax_injection_cell_control)
(AutomationSystem MI.wax_injection_cell_control)

255

(informs MI.wax_injection_cell_control MI.wax_process_engineer)
(informs MI.wax_injection_cell_control MI.foundry_maintenence_engineer)
(informs MI.wax_injection_cell_control
MI.foundry_material_requirements_planning_controller)

(Input MI.wax_inject_robot_command_confirmation)
(Input MI.core_request)
(Input MI.wax_injection_cycle_time)
(Input MI.wax_process_failure_warning)
(Input MI.core_chaplet_inspection_result)
(Input MI.wax_kpv)
(Input MI.operator_id)
(Input MI.wax_robot_end_timestamp)
(Input MI.wax_robot_start_timestamp)
(Input MI.wax_process_end_timestamp)
(Input MI.wax_process_start_timestamp)
(Input MI.wax_machine_id)
(Input MI.wax_product_history)
(Input MI.wax_process_history)

(Output MI.automation_instructions)
(Output MI.core_chaplet_inspection_spec)
(Output MI.wax_product_history)
(Output MI.wax_process_history)
(Output MI.wax_process_parameter)
(Output MI.wax_process_downtime_reasons)
(Output MI.wax_product_history)
(Output MI.wax_process_history)
(Output MI.wax_process_end_timestamp)
(Output MI.wax_process_start_timestamp)
(Output MI.operator_id)
(Output MI.wax_inject_robot_command_confirmation)
(Output MI.core_request)
(Output MI.wax_machine_id)

(Resource MI.wax_injection_control_program)
(Resource MI.wax_process_parameter)
(Resource MI.wax_cell_training_record)
(Resource MI.method_of_manufacture)
(Resource MI.wax_cell_HMI)
(Resource MI.wax_process_instruction)
(Resource MI.wax_injection_operator)

(Constraint MI.method_of_manufacture)
(Constraint MI.wax_cell_training_record)

(MI.FunctionalSpecification MI.wax_injection_cell_functional_specification)

256

(MI.NonFunctionalSpecification MI.wax_injection_cell_nonfunctional_specification)
(ThroughputMetric MI.wax_injection_cell_throughput)
(AvailabilityMetric MI.wax_injection_cell_availability)
(RFTMetric MI.wax_injection_cell_RFT)
(SystemResponseTimeMetric MI.wax_injection_cell_control_response_time)
(MetricTarget MI.wax_injection_cell_throughput_target)
(MetricTarget MI.wax_injection_cell_availability_target)
(MetricTarget MI.wax_injection_cell_RFT_target)
(MetricTarget MI.wax_injection_cell_control_response_time_target)
(hasTarget MI.wax_injection_cell_throughput
MI.wax_injection_cell_throughput_target)
(hasTarget MI.wax_injection_cell_availability MI.wax_injection_cell_availability_target)
(hasTarget MI.wax_injection_cell_RFT MI.wax_injection_cell_RFT_target)
(hasTarget MI.wax_injection_cell_control_response_time
MI.wax_injection_cell_control_response_time_target)

(hasConstraint MI.wax_injection_cell_control
MI.wax_injection_cell_functional_specification)
(hasConstraint MI.wax_injection_cell_control
MI.wax_injection_cell_nonfunctional_specification)

(hasInput MI.wax_injection_cell_control MI.wax_inject_robot_command_confirmation)
(hasInput MI.wax_injection_cell_control MI.core_request)
(hasInput MI.wax_injection_cell_control MI.wax_injection_cycle_time)
(hasInput MI.wax_injection_cell_control MI.wax_process_failure_warning)
(hasInput MI.wax_injection_cell_control MI.core_chaplet_inspection_result)
(hasInput MI.wax_injection_cell_control MI.wax_kpv)
(hasInput MI.wax_injection_cell_control MI.operator_id)
(hasInput MI.wax_injection_cell_control MI.wax_robot_end_timestamp)
(hasInput MI.wax_injection_cell_control MI.wax_robot_start_timestamp)
(hasInput MI.wax_injection_cell_control MI.wax_process_end_timestamp)
(hasInput MI.wax_injection_cell_control MI.wax_process_start_timestamp)
(hasInput MI.wax_injection_cell_control MI.wax_machine_id)
(hasInput MI.wax_injection_cell_control MI.wax_product_history)
(hasInput MI.wax_injection_cell_control MI.wax_process_history)

(hasOutput MI.wax_injection_cell_control MI.automation_instructions)
(hasOutput MI.wax_injection_cell_control MI.core_chaplet_inspection_spec)
(hasOutput MI.wax_injection_cell_control MI.wax_product_history)
(hasOutput MI.wax_injection_cell_control MI.wax_process_history)
(hasOutput MI.wax_injection_cell_control MI.wax_process_parameter)
(hasOutput MI.wax_injection_cell_control MI.wax_process_downtime_reasons)
(hasOutput MI.wax_injection_cell_control MI.wax_product_history)
(hasOutput MI.wax_injection_cell_control MI.wax_process_history)
(hasOutput MI.wax_injection_cell_control MI.wax_process_end_timestamp)
(hasOutput MI.wax_injection_cell_control MI.wax_process_start_timestamp)
(hasOutput MI.wax_injection_cell_control MI.operator_id)

257

(hasOutput MI.wax_injection_cell_control
MI.wax_inject_robot_command_confirmation)
(hasOutput MI.wax_injection_cell_control MI.core_request)
(hasOutput MI.wax_injection_cell_control MI.wax_machine_id)

(hasResource MI.wax_injection_cell_control MI.wax_injection_control_program)
(hasResource MI.wax_injection_cell_control MI.wax_process_parameter)
(hasResource MI.wax_injection_cell_control MI.wax_cell_training_record)
(hasResource MI.wax_injection_cell_control MI.method_of_manufacture)
(hasResource MI.wax_injection_cell_control MI.wax_cell_HMI)
(hasResource MI.wax_injection_cell_control MI.wax_process_instruction)
(hasResource MI.wax_injection_cell_control MI.wax_injection_operator)

(hasConstraint MI.wax_injection_cell_control MI.method_of_manufacture)
(hasConstraint MI.wax_injection_cell_control MI.wax_cell_training_record)

(hasSecurityCategory MI.wax_injection_cell_control MI.Private)
(hasExportControlCategory MI.wax_injection_cell_control MI.ExportControlled)
(hasRetentionCategory MI.wax_injection_cell_control MI.NonMandatoryRetention)

(hasTimescale MI.wax_injection_cell_throughput_target MI.life_of_contract)
(hasTimescale MI.wax_injection_cell_availability_target MI.life_of_contract)
(hasTimescale MI.wax_injection_cell_RFT_target MI.life_of_order)
(hasTimescale MI.wax_injection_cell_control_response_time_target
MI.life_of_contract)
(hasTimescale MI.wax_injection_cycle_time MI.life_of_contract)
(hasTimescale MI.wax_process_failure_warning MI.life_of_contract)
(hasDataStructure MI.wax_process_failure_warning MI.profinet_signal)
(hasTimescale MI.core_chaplet_inspection_result MI.life_of_type)
(hasDataStructure MI.core_chaplet_inspection_result MI.SQL_table)

(hasTimescale MI.wax_kpv MI.life_of_contract)
(hasDataStructure MI.wax_kpv MI.SQL_table)
(hasTimescale MI.wax_inject_robot_command_confirmation MI.life_of_contract)
(hasDataStructure MI.wax_inject_robot_command_confirmation MI.SQL_table)
(hasTimescale MI.wax_injection_cycle_time MI.life_of_contract)
(hasDataStructure MI.wax_injection_cycle_time MI.SQL_table)
(hasDataStructure MI.wax_inject_robot_command_confirmation MI.SQL_table)
(hasTimescale MI.wax_robot_end_timestamp MI.life_of_contract)
(hasDataStructure MI.wax_robot_end_timestamp MI.SQL_table)
(hasTimescale MI.wax_robot_start_timestamp MI.life_of_contract)
(hasDataStructure MI.wax_robot_start_timestamp MI.SQL_table)
(hasTimescale MI.wax_product_history MI.life_of_type)
(hasDataStructure MI.wax_product_history MI.SQL_table)
(hasTimescale MI.wax_process_history MI.life_of_type)
(hasDataStructure MI.wax_process_history MI.SQL_table)

258

(hasTimescale MI.wax_injection_control_program MI.life_of_type)
(hasDataStructure MI.wax_injection_control_program MI.XML)
(hasTimescale MI.wax_cell_training_record MI.life_of_type)
(hasDataStructure MI.wax_cell_training_record MI.SQL_table)
(hasTimescale MI.target_wax_injection_cycle_time MI.life_of_order)

(hasDataStructure MI.wax_injection_cycle_time MI.XML)
(MI.SysSysInterface MI.wax_injection_cell_control_MES_Bridge)
(MI.hasInterface MI.wax_injection_cell_control
MI.wax_injection_cell_control_MES_Bridge)
(HMI MI.wax_injection_cell_control_HMI)
(hasInterface MI.wax_injection_cell_control MI.wax_cell_HMI)
(hasInterface MI.wax_injection_operator MI.wax_cell_HMI)
(hasInterface MI.wax_process_engineer MI.wax_cell_HMI)
(hasInterface MI.foundry_material_requirements_planning_controller
MI.wax_cell_HMI)
(hasInterface MI.foundry_maintenence_engineer MI.wax_cell_HMI)
(hasInterface MI.MES_system MI.wax_cell_HMI)
(MI.SysSysInterface MI.wax_injection_cell_control_part_tracking_system_Bridge)
(hasInterface MI.wax_injection_cell_control
MI.wax_injection_cell_control_part_tracking_system_Bridge)
(hasInterface MI.part_tracking_system
MI.wax_injection_cell_control_part_tracking_system_Bridge)

(hasTraceItem MI.wax_process_history MI.operator_id)
(hasTraceItem MI.wax_process_history MI.wax_robot_start_timestamp)
(hasTraceItem MI.wax_process_history MI.wax_process_start_timestamp)
(hasTraceItem MI.wax_process_history MI.wax_machine_id)
(hasTraceItem MI.wax_product_history MI.coreID)
(hasTraceItem MI.wax_product_history MI.partID)
(PersonID MI.operator_id)
(WorkCentreID MI.wax_machine_id)
(StartTimestamp MI.wax_robot_start_timestamp)
(StartTimestamp MI.wax_process_start_timestamp)
(EndTimestamp MI.wax_robot_end_timestamp)
(EndTimestamp MI.wax_process_end_timestamp)
(Report MI.core_chaplet_inspection_result)
(Analysis MI.wax_robot_status_assesment)
(informs MI.wax_robot_status_assesment
MI.wax_inject_robot_command_confirmation_response)
(ReactiveFeedback MI.wax_inject_robot_command_confirmation_response)
(informs MI.wax_inject_robot_command_confirmation
MI.wax_inject_robot_command_confirmation_response)
(UtilisationData MI.wax_injection_cycle_time)
(ThroughputData MI.wax_injection_cycle_time)
(AvailabilityData MI.wax_process_failure_warning)
(InspectionRecord MI.core_chaplet_inspection_result)

259

(VisualData MI.core_chaplet_inspection_result)
(KPVData MI.wax_kpv)
(ResourceData MI.operator_id)
(TraceabilityData MI.operator_id)
(ProcessData MI.wax_inject_robot_command_confirmation)
(hasTraceItem MI.wax_inject_robot_command_confirmation MI.wax_machine_id)
(hasTraceItem MI.wax_inject_robot_command_confirmation MI.unique_identifier)
(hasTraceItem MI.wax_inject_robot_command_confirmation
MI.wax_process_end_timestamp)
(hasTraceItem MI.wax_inject_robot_command_confirmation
MI.wax_process_start_timestamp)

(TimeData MI.wax_injection_cycle_time)
(TimeData MI.wax_robot_end_timestamp)
(TimeData MI.wax_robot_start_timestamp)
(TimeData MI.wax_process_end_timestamp)
(TimeData MI.wax_process_start_timestamp)
(TraceabilityData MI.wax_process_end_timestamp)
(TraceabilityData MI.wax_process_start_timestamp)
(TraceabilityData MI.wax_machine_id)
(ProductionHistory MI.wax_product_history)
(ProductionHistory MI.wax_process_history)
(ProductionHistory MI.wax_process_failure_warning)
(ProcessParameterData MI.wax_process_history)
(OperationMetric MI.wax_injection_cycle_time)
(MetricTarget MI.target_wax_injection_cycle_time)
(hasTraceItem MI.core_chaplet_inspection_spec MI.coreID)
(hasTraceItem MI.wax_process_end_timestamp MI.partID)
(hasTraceItem MI.wax_process_start_timestamp MI.partID)
(hasTraceItem MI.wax_process_start_timestamp MI.operator_id)
(hasTraceItem MI.wax_process_end_timestamp MI.operator_id)
(hasTarget MI.wax_injection_cycle_time MI.target_wax_injection_cycle_time)

(ProductData MI.core_chaplet_inspection_spec)
(VisualSpecification MI.core_chaplet_inspection_spec)
(ProductSpecification MI.core_chaplet_inspection_spec)
(informs MI.method_of_manufacture MI.automation_instructions)
(specifies MI.method_of_manufacture MI.wax_process_parameter)
(informs MI.core_chaplet_inspection_spec MI.core_chaplet_inspection_result)

(ProgramData MI.wax_injection_control_program)
(ResourceData MI.wax_cell_training_record)
(informs MI.wax_cell_training_record MI.wax_injection_cell_control)
(HMI MI.wax_cell_HMI)
(visualises MI.wax_cell_HMI MI.wax_injection_cell_control)

260

(interopsWith MI.wax_injection_operator MI.wax_cell_HMI)
(specifies MI.wax_cell_training_record MI.TechAuthorityLevel)

(MI.Decision MI.wax_StartDecision)
(MI.Decision MI.wax_StopDecision)
(MI.Decision MI.wax_ChangeDecision)
(MI.Decision MI.wax_ContinueDecision)
(MI.Analysis MI.compare_actual_vs_spec_analysis)
(informs MI.compare_actual_vs_spec_analysis MI.wax_StartDecision)
(informs MI.compare_actual_vs_spec_analysis MI.wax_StopDecision)
(informs MI.compare_actual_vs_spec_analysis MI.wax_ChangeDecision)
(informs MI.compare_actual_vs_spec_analysis MI.wax_ContinueDecision)
(HMI MI.wax_cell_HMI)
(visualises MI.wax_cell_HMI wax_process_failure_warning)
(informs MI.wax_cell_HMI MI.wax_injection_operator)
(informs MI.wax_injection_operator MI.wax_cell_HMI)
(visualises MI.wax_cell_HMI MI.core_chaplet_inspection_result)
(visualises MI.wax_cell_HMI MI.WIPInventoryData)
(visualises MI.wax_cell_HMI MI.wax_product_history)
(visualises MI.wax_cell_HMI MI.wax_process_history)
(visualises MI.wax_cell_HMI MI.wax_process_parameter)
(visualises MI.wax_cell_HMI MI.wax_process_downtime_reasons)
(visualises MI.wax_cell_HMI MI.wax_injection_control_program)

(NonFunctionalSpecification MI.wax_injection_cell_nonfunctional_specification)
(FunctionalSpecification MI.wax_injection_cell_functional_specification)
(specifies MI.wax_injection_cell_functional_specification
MI.wax_injection_cycle_time)
(specifies MI.wax_injection_cell_functional_specification
MI.target_wax_injection_cycle_time)

(MI.Visualisation MI.wax_cell_HMI)

(MI.hasSecurityCategory MI.wax_inject_robot_command_confirmation MI.Private)
(MI.hasSecurityCategory MI.wax_process_downtime_reasons MI.Private)
(MI.hasSecurityCategory MI.core_request MI.Private)
(MI.hasSecurityCategory MI.wax_process_failure_warning MI.Private)
(MI.hasSecurityCategory MI.wax_injection_cycle_time MI.Private)
(MI.hasSecurityCategory MI.automation_instructions MI.Private)

261

14 Appendix D – Fact listing for a system from a difference time
domain.

;;;==
;;;Activplant legacy system
;;;==

(System MI.ActivPlantSystem)
(VisualisationSystem MI.ActivPlantSystem)
(DataCollectionSystem MI.ActivPlantSystem)
(ReportingSystem MI.ActivPlantSystem)

(Metric MI.PeriodOfInactivity)
(MetricTarget MI.PeriodOfInactivityLimit)
(hasTarget MI.PeriodOfInactivity MI.PeriodOfInactivityLimit)
(Metric MI.Availability)
(MetricTarget MI.AvailabilityTarget)
(hasTarget MI.Availability MI.AvailabilityTarget)
(Metric MI.ThroughputTime)
(MetricTarget MI.DesignThroughputTime)
(hasTarget MI.ThroughputTime MI.DesignThroughputTime)
(specifies MI.BusinessRequirementDocument MI.PeriodOfInactivity)
(specifies MI.BusinessRequirementDocument MI.PeriodOfInactivityLimit)
(specifies MI.BusinessRequirementDocument MI.ThroughputTime)
(specifies MI.BusinessRequirementDocument MI.DesignThroughputTime)
(specifies MI.BusinessRequirementDocument MI.Availability)
(specifies MI.BusinessRequirementDocument MI.AvailabilityTarget)

(Output MI.MachineInhibitSwitchSignal)
(Output MI.MEAArchive)
(Output MI.OEEReport)
(Output MI.KPVReport)
(Output MI.MeasurementResults)
(Output MI.OperatorChangeLog)

(hasOutput MI.ActivPlantSystem MI.MachineInhibitSwitchSignal)
(hasOutput MI.ActivPlantSystem MI.MEAArchive)
 (hasOutput MI.ActivPlantSystem MI.OEEReport)
 (hasOutput MI.ActivPlantSystem MI.KPVReport)
(hasOutput MI.ActivPlantSystem MI.MeasurementResults)
(hasOutput MI.ActivPlantSystem MI.OperatorChangeLog)

 (Input MI.PlannedDowntime)
(Input MI.DownTimeLosses)
(Input MI.MEAFile)
(Input MI.TraceabilityItems)

262

(Input MI.VisualInspectionResults)
(Input MI.DimensionalInspectionResults)

(hasInput MI.ActivPlantSystem MI.PlannedDowntime)
 (hasInput MI.ActivPlantSystem MI.DownTimeLosses)
 (hasInput MI.ActivPlantSystem MI.MEAFile)
 (hasInput MI.ActivPlantSystem MI.TraceabilityItems)
 (hasInput MI.ActivPlantSystem MI.VisualInspectionResults)
 (hasInput MI.ActivPlantSystem MI.DimensionalInspectionResults)

(Resource MI.ActivplantDatabase)
(Resource MI.MagerleOperator)
(Resource MI.NGVEngineer)
(Resource MI.PalletTracker)
 (Resource MI.OPCLayer)
 (Resource MI.840DController)

(hasResource MI.ActivPlantSystem MI.ActivplantDatabase)
(hasResource MI.ActivPlantSystem MI.MagerleOperator)
(hasResource MI.ActivPlantSystem MI.NGVEngineer)
(hasResource MI.ActivPlantSystem MI.PalletTracker)
(hasResource MI.ActivPlantSystem MI.OPCLayer)
(hasResource MI.ActivPlantSystem MI.840DController)

(Constraint MI.BusinessRequirementDocument)
(hasConstraint MI.ActivPlantSystem MI.BusinessRequirementDocument)

(Operator MI.MagerleOperator)
(ManufacturingEngineer MI.NGVEngineer)

(informs MI.ActivPlantSystem MI.NGVEngineer)
(informs MI.ActivPlantSystem MI.MagerleOperator)

 (hasTechAuthorityLevel NGVEngineer MI.User)
(hasTechAuthorityLevel MagerleOperator MI.User)
(hasOpAuthorityLevel MagerleOperator MI.Employee)
(hasOpAuthorityLevel NGVEngineer MI.Employee)
(StandardDataStructure FlatFileStructure)

(Visualisation MI.PlasmaScreen)
(visualises MI.PlasmaScreen MI.ActivPlantSystem)
(Report MI.OEEReport)

(NonFunctionalSpecification MI.BusinessRequirementDocument)
(FunctionalSpecification MI.BusinessRequirementDocument)
(hasSpecification MI.ActivPlantSystem MI.BusinessRequirementDocument)
 (hasRetentionCategory MI.ActivPlantSystem MI.NonMandatoryRetention)

263

(DataStructure MI.FlatFileStructure)
(hasDataStructure MI.MEAArchive MI.FlatFileStructure)
 (Report MI.RAGChart)
(Report MI.RFTReport)

(TraceabilityData MI.BatchID)
(TraceabilityData MI.PartID)
(TraceabilityData MI.PalletID)
(TraceabilityData MI.SerialNumber)

(TraceabilityItem MI.BatchID)
(TraceabilityItem MI.PartID)
(TraceabilityItem MI.PalletID)
(TraceabilityItem MI.SerialNumber)

(hasTraceItem MI.MEAArchive MI.BatchID)
(hasTraceItem MI.OEEReport MI.BatchID)
(hasTraceItem MI.KPVReport MI.BatchID)
(hasTraceItem MI.MeasurementResults MI.BatchID)
(hasTraceItem MI.MEAArchive MI.PartID)
(hasTraceItem MI.OEEReport MI.PartID)
(hasTraceItem MI.KPVReport MI.PartID)
(hasTraceItem MI.MeasurementResults MI.PartID)
(hasTraceItem MI.MEAArchive MI.PalletID)
(hasTraceItem MI.OEEReport MI.PalletID)
(hasTraceItem MI.KPVReport MI.PalletID)
(hasTraceItem MI.MeasurementResults MI.PalletID)
(hasTraceItem MI.MEAArchive MI.SerialNumber)
(hasTraceItem MI.OEEReport MI.SerialNumber)
(hasTraceItem MI.KPVReport MI.SerialNumber)
(hasTraceItem MI.MeasurementResults MI.SerialNumber)

(UniqueIdentifier MI.BatchID)
(ProductID MI.PartID)
(UniqueIdentifier MI.PalletID)
(ProductID MI.SerialNumber)

264

15 Appendix E – Full Listing of Type and Logic Declaration

CORE ONTOLOGY
Classes.KFL
:Ctx MI
:Inst UserContext
:supCtx MLO
:name "Manuf Intel Context"

:Use MI

;;;==
;;; Core Classes - Objects
;;;==
:Prop Input
:Inst Type
:sup Object
:name "Input"
:rem "An Input is taken into or used by a process or system. All process or systems require
some form of Input . Input is often the result of an Output from another System or Process
however an Output can also be the Input of of the same system or process: this is refered to
closed loop Feedback. A single system may have multiple input types and sources. Wherever
possible the source of input should be the only place that input is available from or the source
designated the authorative source."

:Prop Output
:Inst Type
:sup Object
:name "Output Data"
:rem "An Output results from the process of system activity. Even If an Input passes through
the process unchanged it should be considered output from that process if collected after
processing. Outputs are often collected to populate a Report."

:Prop TraceabilityItem
:Inst Type
:sup Object
:name "Traceability Item"
:rem "Traceability items are attached to data to allow it to be sorted, stored, retrieved and to
enable meaningful analysis across datasets."

:Prop Data
:Inst Type
:sup Object

:name "Data"
:rem "Data is the lowest level of abstraction of information or knowledge and are numbers,
characters or images that require a context to have meaning, at which point it becomes
information."

:Prop System
:Inst Type
:sup Object
:name "System"
:rem "A systems takes inputs and processes them into a required output using defined
processes and system resources within system constraints."

:Prop Constraint
:Inst Type
:sup Object
:name "Constraint"
:rem "Constraints are the limits, rules and structures within which an entitiy must exist or
function."

:Prop Resource
:Inst Type
:sup Object
:name "Resource"
:rem "Resources are the things used or consumed or required by an entity or process."

;;; :Prop ManufacturingMethod
;;; :Inst Type
;;; :sup Object
;;; :name "Manufacturing Method"
;;; :rem "The Manufacturing Method comprises the Bill of Material, Bill of Plant and Bill of
Process, which are combined with their constituate information to fully describe how to
manufacturing a specific product in a specific facility. Manufacturing Methods can be
generalised into generic template methods which are not directly applicable to any specific
product or facility but that can be easily specialised to suit. note: this is distinct from the IMKS
definition of Manufacturing Method."

:Prop Person
:Inst Type
:sup Object
:name "Person"
:rem "A Person is the role player or agent that carries out manual content of an activity or
process."

265

:Prop Metric
:Inst Type
:sup Object
:name "Metric"
:rem "A Metric is a measure that quantifies an attribute. Metrics are usually chosen to drive
specific direction or activities within an enterprise using metric targets and are linked to a
required outcome. Metrics are usually required to be highly visual to be effective."

:Prop Target
:Inst Type
:sup Object
:name "Target"
:rem "Targets represent the aim of the enterprise or activity as described by the available
metrics, therefore if the targets are defined effectively and are achieved, the enterprise will
have achieved its aim."

:Prop Analysis
:Inst Type
:sup Object
:name "Analysis"
:rem "Analysis is the structured review of data, information and knowledge to elicit further
data, information and knowledge from it."

:Prop Interface
:Inst Type
:sup Object
:name "Interface"
:rem "An interface is where one entity or system meets and interacts with another."

:Prop DataStructure
:Inst Type
:sup Object
:name "Data Structure"
:rem "To enable to automatic and repeatable interpretation and processing of data it must
have an known structure which relates the data elements to each other and potentially other
data-sets."

:Prop Visualisation
:Inst Type
:sup Object
:name "Visualisation"
:rem "Visualisation is the act or way of making something visually interpretable. This is
considdered an object due to the inherent need for visibiliy to have some eliment of physical
embodyment."

;;;==
;;; Core Classes - Events
;;;==

:Prop Prediction
:Inst Type
:sup Event
:name "Prediction"
:rem "A prediction is a statement of what will occur in the future such as a future position or
the outcome of an event, predictions are based on data, information and knowledge who's
availability is inversely proportional to the level of uncertainty in the prediction."

:Prop SustainmentProcess
:Inst Type
:sup Event
:name "Sustainment Process"
:rem " A Sustainment process is one that counteracts change and variation (both common
and special cause) to ensure the continuity of the current or intended state or process. It is
important to note that sustainment processes maintain the original intent of the current state,
so in changing circumstances a sustainment process will introduce change to maintain the
intended state i.e. Sustainment does to prevent all change in the process."

:Prop Decision
:Inst Type
:sup Event
:name "Decision"
:rem "A decision is the point of choosing from multiple options based on a desired outcome
and the available information. The current decision may be significantly removed from the
desired outcome i.e. many further decisions may be required, and may have direct, indirect,
intended and unintended implications."

:Prop Collaboration
:Inst Type
:sup Event
:name "Collaboration"
:rem "Collaboration is where 2 or more entities work together towards a shared aim or
outcome."

;;;==
;;; Core Classes - Quantity
;;;==

:Prop Timescale
:Inst Type
:sup Duration
:name "Timescale"
:rem "A Timescale is the period of time relating to or bounding a process or activity."

:Prop Status
:Inst Type
:sup Quantity

266

:name "Status"
:rem "Any object should have a status wihich describes the review or approval status of an
item, this indicates what Authority Level or Person has access to the item as well as how it
may be used."

:Prop AuthorityLevel
:Inst Type
:sup Quantity
:name "Authority Level"
:rem "Authority Levels are used to control the ability to carry out activities. Authority levels are
usually an incremental scale. If an individual or system does not have the required authority
level specified for an action, a logical check will not permit them to carry out that action."

Relations.KFL
;;; Start Date: 20th October 2011
;;; Author: Neil Hastilow
;;; Other Contributors: Tish Chungoora

:Use MI

;;;==
;;; Relations - From UML Core Concept Model
;;;==

:Rel anticipates
:Inst BinaryRel
:Inst IrreflexiveBR
:Inst TransitiveBR
:Sig Top Top
:name "anticipates"

:Rel informs
:Inst BinaryRel
:Inst TransitiveBR
:Sig Top Top
:name "informs"

:Rel hasStructure
:Inst BinaryRel
:Sig Data DataStructure
:name "has Structure"

:Rel hasTraceItem
:Inst BinaryRel
:Sig Top Top
:name "has Traceability Item "

:Rel hasAuthorityLevel
:Inst BinaryRel

:Sig Top Top
:name "has Authority Level"

:Rel hasStatus
:Inst BinaryRel
:Sig Top Status
:name "has Status"

:Rel analyses
:Inst BinaryRel
:Sig Analysis Data
:name "analyses"

:Rel hasTarget
:Inst BinaryRel
:Sig Metric Target
:name "has Target"

:Rel hasOutput
:Inst BinaryRel
:Sig System Output
:name "has Output"

:Rel specifies
:Inst BinaryRel
:Sig Top Top
:name "specifies"

:Rel hasConstraint
:Inst BinaryRel
:Sig Top Constraint
:name "has Constraint"

:Rel hasResource
:Inst BinaryRel
:Sig Top Resource
:name "has Resource"

:Rel visualises
:Inst BinaryRel
:Sig Visualisation Top
:name "visualises"

:Rel sustains
:Inst BinaryRel
:Sig SustainmentProcess Type
:name "sustains"

:Rel interopsWith

267

:Inst BinaryRel
:Inst SymmetricBR
:Sig Top Top
:name "interoperates with"

:Rel hasInterface
:Inst BinaryRel
:Sig Top Top
:name "has interface"

:Rel enables
:Inst BinaryRel
:Sig Top Top
:name "enables"

:Rel hasInput
:Inst BinaryRel
:Sig Top Input
:name "has Input"

Logic.KFL
;;; Start Date: 13th November 2011
;;; Author: Neil Hastilow
;;; Other Contributors: Tish Chungoora

:Use MI

;;;==
;;; Logic - UML Core Concept Model
;;;==

;;;==
;;; ICs - Core Concept model (constraining general relationships)
;;;==

;;;85 IC
(=> (anticipates ?x ?y)
 (or (and (Prediction ?x)
 (Output ?y))
 (and (Prediction ?x)
 (Decision ?y))))
:IC hard "An instance of <sym>Prediction</sym> anticipates the <sym>Output</sym>
instance or <sym>Decision</sym> instance."

;;;86 IC
(=> (anticipates ?x ?y)

 (or (and (supTC ?x Prediction)
 (supTC ?y Output))
 (and (supTC ?x Prediction)
 (supTC ?y Decision))))
:IC hard "A <sym>Prediction</sym> type anticipates the <sym>Output</sym> type or
<sym>Decision</sym> type."

;;;87 IC
(=> (Decision ?y)
 (exists (?x)
 (and (Analysis ?x)
 (informs ?x ?y))))
:IC hard "<sym>Analysis</sym><code>?x</code> informs <sym>Decision</sym>
<code>?y</code>."

;;;88 IC
(=> (supTC ?y Decision)
 (exists (?x)
 (and (or (supTC ?x Analysis)
 (= ?x Analysis))
 (informs ?x ?y))))
:IC hard "<sym>Analysis</sym> <code>?x</code>or some type of Analysis should inform
some <sym>Decision</sym> type <code>?y</code>."

;;;89a IC
(=> (and (System ?x)
 (System ?y)
 (interopsWith ?x ?y))
 (exists (?i1 ?i2)
 (and (Interface ?i1)
 (Interface ?i2)
 (hasInterface ?x ?i1)
 (hasInterface ?y ?i2))))
:IC hard "If two system individuals <code>?x</code> <code>?y</code>interoperate with each
other, then they require some associated interface individual."

;;;89b IC
(=> (and (System ?x)
 (Person ?y)
 (interopsWith ?x ?y))
 (exists (?i1 ?i2)
 (and (Interface ?i1)
 (Interface ?i2)
 (hasInterface ?x ?i1)
 (hasInterface ?y ?i2))))
:IC hard "If a system individual <code>?x</code> interoperate with a person individual
<code>?y</code>, then they require some associated interface individual."

268

;;;89c IC
(=> (and (supTC ?x System)
 (supTC ?y System)
 (interopsWith ?x ?y))
 (exists (?i1 ?i2)
 (and (supTC ?i1 Interface)
 (supTC ?i2 Interface)
 (hasInterface ?x ?i1)
 (hasInterface ?y ?i2))))
:IC hard "If two system types <code>?x</code> <code>?y</code> interoperate with each
other, then they require some associated interface type."

;;;89d IC
(=> (and (supTC ?x System)
 (supTC ?y Person)
 (interopsWith ?x ?y))
 (exists (?i1 ?i2)
 (and (supTC ?i1 Interface)
 (supTC ?i2 Interface)
 (hasInterface ?x ?i1)
 (hasInterface ?y ?i2))))
:IC hard "If a system type interoperates with a person type, then both system and person
types require some associated interface type."

;;;90 IC
(=> (and (interopsWith ?t1 ?t2)
 (hasInterface ?t1 ?i1)
 (hasInterface ?t2 ?i2))
 (exists (?i)
 (and (Interface ?i)
 (hasInterface ?t1 ?i)
 (hasInterface ?t2 ?i))))
:IC hard "If two arguments <code>?t1</code> <code>?t2</code> interoperate with each
other they must have some associated interface <code>?i</code> in common."

;;;==
;;; IRs - Core Concept model
;;;==

LEVEL 1 MODULES
Decision.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1
;;; Version 2 - reponse core concept demoted to sub concept of decision, change idenitified
by the logical descriptions being compatible.

:Use MI

;;;==
;;; Decision Classes - Level 1
;;;==

:Prop Response
:Inst Type
:sup Decision
:name "Response"
:rem "A response is a reaction to an occurrence or situation. The existence of a response is
dependent on the initial occurrence and the nature of the response will depend on the nature
of the occurrence"

:Prop StopDecision
:Inst Type
:sup Decision
:name "Stop Decision"
:rem " A Stop decision is one that results in the ceasation of a process or activity ."

:Prop StartDecision
:Inst Type
:sup Decision
:name "Start Decision"
:rem " A Start decision is one that results in the initiation of a process or activity."

:Prop ContinueDecision
:Inst Type
:sup Decision
:name "Continue Decision"
:rem "A Continue Decision is one that results in the unmodified continuation of a process or
activity ."

:Prop ChangeDecision
:Inst Type
:sup Decision
:name "Change Decision"
:rem "A Change Decision is one that results in the modified continuation of a process or
activity ."

 ;;;==
 ;;; Response Classes
 ;;;==

 :Prop Notification
 :Inst Type
 :sup Response
 :name "Notification"
 :rem " ."

269

 :Prop ANDON
 :Inst Type
 :sup Response
 :name "ANDON"
 :rem " ."

 :Prop Alarm
 :Inst Type
 :sup Response
 :name "Alarm"
 :rem " ."

 :Prop Feedback
 :Inst Type
 :sup Response
 :name "Feedback"
 :rem " ."

 ;;;==
 ;;; Feedback Classes
 ;;;==

 :Prop ProactiveFeedback
 :Inst Type
 :sup Feedback
 :name "Proactive Feedback"
 :rem " ."

 :Prop ReactiveFeedback
 :Inst Type
 :sup Feedback
 :name "ReactiveFeedback"
 :rem " ."

 :Prop ProcessException
 :Inst Type
 :sup Alarm
 :name "ProcessException"
 :rem " ."

 :Prop Adaptation
 :Inst Type
 :sup ProactiveFeedback
 :name "Adaptation"
 :rem " ."

 :Prop Correction
 :Inst Type

 :sup ReactiveFeedback
 :name "Correction"
 :rem " ."

 :Prop Reschedule
 :Inst Type
 :sup ReactiveFeedback
 :name "Reschedule"
 :rem " ."

(informs Analysis Response)
(informs Analysis StopDecision)
(informs StatisticalAnalysis StopDecision)
(informs Analysis ContinueDecision)
(informs Analysis StartDecision)
(informs StatisticalAnalysis ContinueDecision)
(informs Analysis ChangeDecision)
(informs StatisticalAnalysis ChangeDecision)
(informs BooleanAnalysis Notification)
(informs BooleanAnalysis ANDON)
(informs BooleanAnalysis Alarm)
(informs Analysis Feedback)
(informs Analysis ProactiveFeedback)
(informs Analysis ReactiveFeedback)
(informs Analysis ProcessException)
(informs Analysis Adaptation)
(informs Analysis Correction)
(informs Analysis Reschedule)

Interface.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Interface Classes - Level 1
;;;==

:Prop HMI
:Inst Type
:sup Interface
:name "Human Machine Interface"
:rem "A Human Machine Interface is the mechanism that allows a Person to Interface with a
Machine or System"

:Prop SysSysInterface
:Inst Type

270

:sup Interface
:name "System-System Interface"
:rem "System-System Interfaces are interfaces between systems with not direct human
interaction "

Logic.KFL
;;; Start Date: 21st October 2011
;;; Author: N Hastilow
;;; Other Contributors: Tish Chungoora

:Use MI

;;;==
;;;Actions outstanding
;;;Review all logic and segregate logic only referring to CORE CONCEPT types
;;;review the use of type and instances for each rule and duel declare if reqd
;;;note - all logic is created at this level by default, but is promoted to core level after review
;;;==

(ObsoleteStatus Obsolete)
(ArchievedStatus Archieved)
(DeletedStatus Deleted)
(ReturnStatus Return)
(ApprovedStatus Approved)
(UnapprovedStatus Unapproved)
(ConditionallyApprovedStatus ConditionallyApproved)

(UserTechAuthorityLevel User)
(SuperuserTechAuthorityLevel Superuser)
(AdministratorTechAuthorityLevel Administrator)

(EmployeeOpAuthorityLevel Employee)
(LeaderOpAuthorityLevel Leader)
(ManagerOpAuthorityLevel Manager)
(ExecutiveOpAuthorityLevel Executive)

(higherThan LeaderOpAuthorityLevel EmployeeOpAuthorityLevel)
(higherThan ManagerOpAuthorityLevel LeaderOpAuthorityLevel)
(higherThan ExecutiveOpAuthorityLevel ManagerOpAuthorityLevel)

(higherThan SuperuserTechAuthorityLevel UserTechAuthorityLevel)
(higherThan AdministratorTechAuthorityLevel SuperuserTechAuthorityLevel)

(hasTimescale MetricTarget UnknownValidityTimescale)
(hasTimescale Plan UnknownValidityTimescale)
(hasTimescale Vision UnknownValidityTimescale)

(hasTimescale Roadmap UnknownValidityTimescale)
(hasTimescale ProcessPlan UnknownValidityTimescale)
(hasTimescale ProductionPlan UnknownValidityTimescale)
(hasTimescale ReactionPlan UnknownValidityTimescale)
(hasTimescale InspectionPlan UnknownValidityTimescale)

;;;==
;;; General integrity constraints
;;;==

;;;62 IC.
(=> (and (System ?s)
 (Input ?i)
 (Output ?o)
 (hasSecurityCategory ?s MI.Private)
 (hasInput ?s ?i)
 (hasOutput ?s ?o))
 (and (or (hasSecurityCategory ?i MI.Public)
 (hasSecurityCategory ?i MI.Private))
 (or (hasSecurityCategory ?o MI.Public)
 (hasSecurityCategory ?o MI.Private))))
:IC hard "Systems <code>?s</code> that have security category of private can only input
<code>?i</code> or output <code>?o</code> public or private category data."

;;;63 IC.
(=> (and (System ?s)
 (Input ?i)
 (Output ?o)
 (hasSecurityCategory ?s MI.Secret)
 (hasInput ?s ?i)
 (hasOutput ?s ?o))
 (and (or (hasSecurityCategory ?i MI.Public)
 (hasSecurityCategory ?i MI.Private)
 (hasSecurityCategory ?i MI.Secret))
 (or (hasSecurityCategory ?o MI.Public)
 (hasSecurityCategory ?o MI.Private)
 (hasSecurityCategory ?o MI.Secret))))
:IC hard "Systems <code>?s</code> that have security category of secret can only input
<code>?i</code> or output <code>?o</code> public, private or secret category data."

;;;64 IC.
(=> (and (System ?s)
 (Input ?i)
 (Output ?o)
 (hasSecurityCategory ?s MI.TopSecret)
 (hasInput ?s ?i)
 (hasOutput ?s ?o))

271

 (and (or (hasSecurityCategory ?i MI.Public)
 (hasSecurityCategory ?i MI.Private)
 (hasSecurityCategory ?i MI.Secret)
 (hasSecurityCategory ?i MI.TopSecret))
 (or (hasSecurityCategory ?o MI.Public)
 (hasSecurityCategory ?o MI.Private)
 (hasSecurityCategory ?o MI.Secret)
 (hasSecurityCategory ?o MI.TopSecret))))
:IC hard "Systems <code>?s</code> that have security category of top secret can input
<code>?i</code> or output <code>?o</code> public, private, secret or top secret category
data."

;;;66 ICa.
(=> (and (System ?s)
 (Input ?i)
 (hasRetentionCategory ?s MI.NonMandatoryRetention)
 (hasInput ?s ?i))
 (or (hasRetentionCategory ?i MI.NonMandatoryRetention)
 (hasOutput ?s ?i)))
:IC hard "Systems <code>?s</code> with a retention category of non mandatory retention
can only input <code>?i</code> o non mandatory retention data. If mandatory data is input to
a non mandetory retention system is must be output as well so it exists in another system."

;;;65 IC.
(=> (and (System ?s)
 (Input ?i)
 (Output ?o)
 (hasExportControlCategory ?s MI.NonExportControlled)
 (hasInput ?s ?i)
 (hasOutput ?s ?o))
 (and (hasExportControlCategory ?i MI.NonExportControlled)
 (hasExportControlCategory ?o MI.NonExportControlled)))
:IC hard "Systems <code>?s</code> with an export control category of non export control
can only input <code>?i</code> or output <code>?o</code> non export controlled data."

;;;6 IC
(=> (Person ?p)
 (exists (?ta)
 (and (TechAuthorityLevel ?ta)
 (hasTechAuthorityLevel ?p ?ta))))
:IC hard "Every <sym>Person</sym> <code>?p</code> item must have a
<sym>TechAuthorityLevel</sym> <code>?ta</code>."

;;;7 IC
(=> (Person ?p)
 (exists (?oa)
 (and (OpAuthorityLevel ?oa)
 (hasOpAuthorityLevel ?p ?oa))))

:IC hard "Every <sym>Person</sym> <code>?p</code> item must have a
<sym>OpAuthorityLevel</sym> <code>?oa</code>."

;;;13a IC
(=> (Data ?d)
 (exists (?sds)
 (and (StandardDataStructure ?sds)
 (hasDataStructure ?d ?sds))))
:IC soft "<sym>Data</sym> <code>?d</code> should use a
<sym>StandardDataStructure</sym> <code>?sds</code>."

;;;13b IC - removed as not valid at type level
;(=> (supTC ?d Data)
; (exists (?sds)
; (and (supTC ?sds StandardDataStructure)
; (hasDataStructure ?d ?sds))))
;:IC soft "<sym>Data</sym> <code>?d</code> types should use a
<sym>StandardDataStructure</sym> type <code>?sds</code>."

;;;34a IC
(=> (Monitor ?mr)
 (exists (?me)
 (and (Metric ?me)
 (hasMonitor ?mr ?me))))
:IC soft "A <sym>Metric</sym> <code>?me</code> should be defined for any
<sym>Monitor</sym> <code>?mr</code> to monitor."

;;;34b IC
(=> (supTC ?mr Monitor)
 (exists (?me)
 (and (supTC ?me Metric)
 (hasMonitor ?mr ?me))))
:IC soft "A <sym>Metric</sym> <code>?me</code> type should be defined for any type of
<sym>Monitor</sym> <code>?mr</code> to monitor."

;;;35 IC
(=> (Metric ?me)
 (exists (?t)
 (and (Target ?t)
 (hasTarget ?me ?t))))
:IC hard "A <sym>Metric</sym> <code>?me</code> must have a <sym>Target</sym>
<code>?t</code> to target."

;;;36 IC
(=> (Monitor ?m)
 (exists (?r)
 (and (Response ?r)
 (hasResponse ?m ?r))))

272

:IC hard "A <sym>Monitor</sym> <code>?m</code> must have a defined
<sym>Response</sym> <code>?r</code>."

;;;15a IC
(=> (and (System ?s)
 (Input ?i)
 (Output ?o)
 (hasInput ?s ?i)
 (hasOutput ?s ?o)
 (ApprovedStatus ?a)
 (hasStatus ?o ?a))
 (hasStatus ?i ?a))
:IC hard "If a system <code>?s</code> output <code>?o</code> is associated with an
ApprovedStatus individual, then the system input(s) <code>?i</code> must also have the
same status."

;;;15b IC
(=> (and (System ?s)
 (Input ?i)
 (Output ?o)
 (hasInput ?s ?i)
 (hasOutput ?s ?o)
 (supTC ?a ApprovedStatus)
 (hasStatus ?o ?a))
 (hasStatus ?i ?a))
:IC hard "If a system <code>?s</code> output <code>?o</code> is associated with an
ApprovedStatus type, then the system input(s) <code>?i</code> must also also have the
same status type."

;;;15c IC
(=> (and (System ?s)
 (Input ?i)
 (Output ?o)
 (hasInput ?s ?i)
 (hasOutput ?s ?o)
 (hasStatus ?o ApprovedStatus))
 (hasStatus ?i ApprovedStatus))
:IC hard "If a system output <code>?o</code> has ApprovedStatus, then the system input(s)
<code>?i</code> must also have ApprovedStatus."

;;;14a IC
(=> (and (Top ?t)
 (ObsoleteStatus ?o)
 (DeletedStatus ?d)
 (or (hasStatus ?t ?o)
 (hasStatus ?t ?d)))
 (not (exists (?s)
 (and (System ?s)
 (hasInput ?s ?t)))))

:IC hard "Anything <code>?t</code> with an associated individual of
<sym>ObsoleteStatus</sym> or <sym>DeletedStatus</sym> cannot be an input to a System
individual."

;;;14b IC
(=> (and (Top ?t)
 (supTC ?o ObsoleteStatus)
 (supTC ?d DeletedStatus)
 (or (hasStatus ?t ?o)
 (hasStatus ?t ?d)))
 (not (exists (?s)
 (and (supTC ?s System)
 (hasInput ?s ?t)))))
:IC hard "Anything <code>?t</code> with an associated type of <sym>ObsoleteStatus</sym>
or <sym>DeletedStatus</sym> cannot be an input to a System type."

;;;14c IC
(=> (and (Top ?t)
 (or (hasStatus ?t ObsoleteStatus)
 (hasStatus ?t DeletedStatus)))
 (not (exists (?s)
 (and (System ?s)
 (hasInput ?s ?t)))))
:IC hard "Anything <code>?t</code> with <sym>ObsoleteStatus</sym> or
<sym>DeletedStatus</sym> cannot be an input to a System individual."

;;;14c IC
(=> (and (Top ?t)
 (or (hasStatus ?t ObsoleteStatus)
 (hasStatus ?t DeletedStatus)))
 (not (exists (?s)
 (and (supTC ?s System)
 (hasInput ?s ?t)))))
:IC hard "Anything <code>?t</code> with <sym>ObsoleteStatus</sym> or
<sym>DeletedStatus</sym> cannot be an input to a System type."

;;;39a IC
(=>(ProactiveFeedback ?pf)
 (exists (?d)
 (and(Data ?d)
 (Input ?d)
 (informs ?d ?pf))))
:IC hard "Proactive feedback individuals <code>?pf</code> are informed by input data
individuals <code>?d</code>."

;;;40a IC
(=>(ReactiveFeedback ?rf)

273

 (exists (?d)
 (and(Data ?d)
 (Output ?d)
 (informs ?d ?rf))))
:IC hard "Reactive feedback individuals <code>?rf</code> are informed by ouput data
individuals <code>?d</code>."

;;;44a IC
(=> (System ?s)
 (exists (?i ?o ?r ?c)
 (and (hasInput ?s ?i)
 (hasOutput ?s ?o)
 (hasResource ?s ?r)
 (hasConstraint ?s ?c))))
:IC hard "A system individual <code>?s</code> must have some form of inputs, outputs,
resource and constraints defined."

;;;44b IC - removed as not logical
;(=> (supTC ?s System)
; (exists (?i ?o ?r ?c)
; (and (hasInput ?s ?i)
; (hasOutput ?s ?o)
; (hasResource ?s ?r)
; (hasConstraint ?s ?c))))
;:IC hard "A system type must have some form of inputs, outputs, resource and constraints
defined."

;;;46a IC
(=> (Target ?t)
 (exists (?v)
 (and (ValidityTimescale ?v)
 (hasTimescale ?t ?v))))
:IC soft "Target <code>?t</code> individuals have a validity timescale individual
<code>?v</code>."

;;;46b IC
(=> (supTC ?t Target)
 (exists (?v)
 (and (ValidityTimescale ?v)
 (hasTimescale ?t ?v))))
:IC soft "Target <code>?t</code> types have a validity timescale type <code>?t</code>."

;;;47a IC
(=> (Data ?d)
 (exists (?v)
 (and (ValidityTimescale ?v)
 (hasTimescale ?d ?v))))

:IC hard "Data <code>?d</code> individuals have a validity timescale individual."

;;;47b IC - removed as not true at type level
;(=> (supTC ?d Data)
; (exists (?v)
; (and (supTC ?v ValidityTimescale)
; (hasTimescale ?d ?v))))
;:IC hard "Data types <code>?d</code> have a validity timescale type<code>?v</code>."

;;;37 IC
(=> (System ?s)
 (exists (?fs ?nfs)
 (and (FunctionalSpecification ?fs)
 (NonFunctionalSpecification ?nfs)
 (hasConstraint ?s ?fs)
 (hasConstraint ?s ?nfs))))
:IC hard "A system <code>?s</code> must be described by a functional and non functional
spec."

;;;73 IC
(=> (and (Input ?p)
 (Input ?q)
 (Data ?p)
 (Data ?q)
 (System ?a)
 (System ?b)
 (TraceabilityItem ?x)
 (hasInput ?a ?p)
 (hasInput ?b ?q)
 (hasTraceItem ?p ?x)
 (interopsWith ?a ?b)
 (SameAs ?p ?q))
 (exists (?y)
 (and (MI.TraceabilityItem ?y)
 (hasTraceItem ?q ?y)
 (SameAs ?x ?y))))
:IC hard "Traceability items <code>?x</code> <code>?y</code> must be consistent between
interoperating systems <code>?a</code> <code>?b</code>."

;;;72a IC
(=> (and (MI.Data ?x)
 (MI.Output ?z)
 (= ?x ?z))
 (exists (?y)
 (and (MI.TraceabilityItem ?y)
 (MI.hasTraceItem ?z ?y))))
:IC hard "If an entity is a data output <code>?x</code> individual then it must have a
traceability item <code>?y</code> individual defined."

274

;;;72b IC
(=> (and (supTC ?x Data)
 (supTC ?x Output))
 (exists (?y)
 (and (supTC ?y TraceabilityItem)
 (hasTraceItem ?x ?y))))
:IC hard "If an entity is a data output type then it must have a traceability item type defined."

;;;69 IC
(=> (and (System ?s)
 (FunctionalSpecification ?fs)
 (hasConstraint ?s ?fs))
 (exists (?m ?mt)
 (and (Metric ?m)
 (MetricTarget ?mt)
 (specifies ?fs ?m)
 (specifies ?fs ?mt))))
:IC soft "A system <code>?s</code> should have a functional specification
<code>?fs</code> that describes metrics <code>?m</code> or metric targets
<code>?mt</code>, if multiple functional specs exist not all may contain metrics."

;;;54 IC
(=> (Data ?d)
 (exists (?rc)
 (and (or (RetentionCategory ?rc)
 (supTC ?rc RetentionCategory))
 (hasRetentionCategory ?d ?rc))))
:IC soft "Data individuals should have a data retention category type or instance."

;;;55 IC
(=> (Data ?d)
 (exists (?ec)
 (and (or (ExportControlCategory ?ec)
 (supTC ?ec ExportControlCategory))
 (hasExportControlCategory ?d ?ec))))
:IC soft "Data individuals should have an export control category type or individual."

;;;56 IC
(=> (Data ?d)
 (exists (?sc)
 (and (or (SecurityCategory ?sc)
 (supTC ?sc SecurityCategory))
 (hasSecurityCategory ?d ?sc))))
:IC soft "Data individuals should have a security control category type or individual."

;;;61 IC.
(=> (and (System ?s)
 (Input ?i)

 (Output ?o)
 (hasSecurityCategory ?s MI.Public)
 (hasInput ?s ?i)
 (hasOutput ?s ?o))
 (and (hasSecurityCategory ?i MI.Public)
 (hasSecurityCategory ?o MI.Public)))
:IC hard "Systems <code>?s</code> that have security category of public can only input or
output public category data."

;;;==
;;; IRs - 1st level of specialisation from core model
;;;==

;;;80 IR
(=> (and (System ?s)
 (Input ?i)
 (Output ?o)
 (hasInput ?s ?i)
 (hasOutput ?s ?o)
 (not (hasStatus ?i ApprovedStatus)))
 (hasStatus ?o MI.UnapprovedStatus))
:rem "If a system input is not approved the system output is not approved."

;;;27 IR
(=> (and (System ?x)
 (System ?y)
 (Metric ?m)
 (hasInput ?x ?d1)
 (hasInput ?x ?d2)
 (hasOutput ?x ?m)
 (hasOutput ?y ?m))
 (SameAs ?d1 ?d2))
:rem "If two systems output the same metric their input should be the same."

;;;;16 IR
(=> (and (supTC ?cd ChangeDecision)
 (supTC ?d Data)
 (modifys ?cd ?d))
 (hasStatus ?d MI.UnapprovedStatus))
:rem "Any <sym>Data</sym> type affected by a <sym>ChangeDecision</sym> type is of
<sym>UnapprovedStatus</sym>."

;;;10 IR
(=> (and (Data ?d)
 (Person ?p)
 (hasOpAuthorityLevel ?d ?x)
 (hasOpAuthorityLevel ?p ?y)
 (or (SameAs ?x ?y)
 (higherThan ?x ?y)))

275

 (mayAccess ?p ?d))
:rem "If a person individual has an op auth level which is either equivalent to or higher than
that of a data individual, then the person has access to the data."

;;;11 IR
(=> (and (Data ?d)
 (Person ?p)
 (hasTechAuthorityLevel ?d ?x)
 (hasTechAuthorityLevel ?p ?y)
 (or (SameAs ?x ?y)
 (higherThan ?x ?y)))
 (mayAccess ?p ?d))
:rem "If a person individual has an tech auth level which is either equivalent to or higher than
that of a data individual, then the person has access to the data."

;;;8 IR
(=> (and (Person ?p)
 (not (exists (?ta)
 (hasTechAuthorityLevel ?p ?ta))))
 (hasTechAuthorityLevel ?p MI.User))
:rem "If some person <code>?p</code> individual does not have some associated technical
authority level individual, then it should default to User."

;;;9 IR
(=> (and (Person ?p)
 (not (exists (?oa)
 (hasOpAuthorityLevel ?p ?oa))))
 (hasOpAuthorityLevel ?p MI.Employee))
:rem "If some person <code>?p</code> individual does not have some associated
Operational authority level individual, then it should default to Employee."

;;;17a IR
(=> (and (Data ?d)
 (not (exists (?s)
 (hasStatus ?d ?s))))
 (hasStatus ?d MI.UnapprovedStatus))
:rem "If some data individual does not have some associated status type/individual, then it
should default to UnapprovedStatus."

;;;17b IR
(=> (and (supTC ?d Data)
 (not (exists (?s)
 (hasStatus ?d ?s))))
 (hasStatus ?d MI.UnapprovedStatus))
:rem "If some data type does not have some associated status type/individual, then it should
default to UnapprovedStatus."

;;;79a IR
(=> (and (Data ?d)

 (not (exists (?sc)
 (hasSecurityCategory ?d ?sc))))
 (hasSecurityCategory ?d MI.Private))
:rem "If some data individual does not have some associated security category
type/individual, then it should default to Private."

;;;79b IR
(=> (and (supTC ?d Data)
 (not (exists (?sc)
 (hasSecurityCategory ?d ?sc))))
 (hasSecurityCategory ?d MI.Private))
:rem "If some data type does not have some associated security category type/individual,
then it should default to Private."

;;;78a IR
(=> (and (Data ?d)
 (not (exists (?ec)
 (hasExportControlCategory ?d ?ec))))
 (hasExportControlCategory ?d MI.ExportControlled))
:rem "If some data individual does not have some associated export control category
type/individual, then it should default to ExportControlled."

;;;78b IR
(=> (and (supTC ?d Data)
 (not (exists (?ec)
 (hasExportControlCategory ?d ?ec))))
 (hasExportControlCategory ?d MI.ExportControlled))
:rem "If some data type does not have some associated export control category
type/individual, then it should default to ExportControlled."

;;;77a IR
(=> (and (Data ?d)
 (not (exists (?rc)
 (hasRetentionCategory ?d ?rc))))
 (hasRetentionCategory ?d MI.NonMandatoryRetention))
:rem "If some data individual does not have some associated retention category
type/individual, then it should default to NonMandatoryRetention."

;;;77b IR
(=> (and (supTC ?d Data)
 (not (exists (?rc)
 (hasRetentionCategory ?d ?rc))))
 (hasRetentionCategory ?d MI.NonMandatoryRetention))
:rem "If some data type does not have some associated retention category type/individual,
then it should default to NonMandatoryRetention."

;;;58a IR
(=> (and (System ?s)
 (not (exists (?sc)

276

 (hasSecurityCategory ?s ?sc))))
 (hasSecurityCategory ?s MI.Public))
:rem "If some system individual does not have some associated security category
type/individual, then it should default to Public."

;;;58b IR
(=> (and (supTC ?s System)
 (not (exists (?sc)
 (hasSecurityCategory ?s ?sc))))
 (hasSecurityCategory ?s MI.Public))
:rem "If some system type does not have some associated security category type/individual,
then it should default to Public."

;;;59a IR
(=> (and (System ?s)
 (not (exists (?ec)
 (hasExportControlCategory ?s ?ec))))
 (hasExportControlCategory ?s MI.ExportControlled))
:rem "If some system individual does not have some associated export control category
type/individual, then it should default to ExportControlled."

;;;59b IR
(=> (and (supTC ?s System)
 (not (exists (?ec)
 (hasExportControlCategory ?s ?ec))))
 (hasExportControlCategory ?s MI.ExportControlled))
:rem "If some system type does not have some associated export control category
type/individual, then it should default to ExportControlled."

;;;60a IR
(=> (and (System ?s)
 (not (exists (?rc)
 (hasRetentionCategory ?s ?rc))))
 (hasRetentionCategory ?s MI.NonMandatoryRetention))
:rem "If some system individual does not have some associated retention category
type/individual, then it should default to NonMandatoryRetention."

;;;60b IR
(=> (and (supTC ?s System)
 (not (exists (?rc)
 (hasRetentionCategory ?s ?rc))))
 (hasRetentionCategory ?s MI.NonMandatoryRetention))
:rem "If some system type does not have some associated retention category type/individual,
then it should default to NonMandatoryRetention."

Metric.KFL
;;; Start Date: 24th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Metric Classes - Level 1
;;;==

:Prop FIrstOrderMetric
:Inst Type
:sup Metric
:name "FIrst Order Metric"
:rem " ."

:Prop SecondOrderMetric
:Inst Type
:sup Metric
:name "Second Order Metric"
:rem " ."

:Prop ThirdOrderMetric
:Inst Type
:sup Metric
:name "Third Order Metric"
:rem " ."

:Prop QualityMetric
:Inst Type
:sup Metric
:name "Quality Metric"
:rem " ."

:Prop PerformanceMetric
:Inst Type
:sup Metric
:name "Performance Metric"
:rem " ."

:Prop ProjectMetric
:Inst Type
:sup Metric
:name "Project Metric"
:rem " ."

:Prop ProductMetric
:Inst Type
:sup Metric
:name "Product Metric"
:rem " ."

277

:Prop ReliabilityMetric
:Inst Type
:sup Metric
:name "Reliability Metric"
:rem " ."

:Prop ProcessMetric
:Inst Type
:sup Metric
:name "Process Metric"
:rem " ."

:Prop FinancialMetric
:Inst Type
:sup Metric
:name "Financial Metric"
:rem " ."

:Prop SupplierMetric
:Inst Type
:sup Metric
:name "Supplier Metric"
:rem " ."

:Prop CustomerMetric
:Inst Type
:sup Metric
:name "Customer Metric"
:rem " ."

;;;==
;;; Metric Classes - Quality
;;;==

 :Prop RejectRateMetric
 :Inst Type
 :sup QualityMetric
 :name "Reject Rate Metric"
 :rem " ."

 :Prop YieldMetric
 :Inst Type
 :sup QualityMetric
 :name "Yield Metric"
 :rem " ."

 :Prop CustomerServiceMetric
 :Inst Type
 :sup QualityMetric

 :name "Customer Service Metric"
 :rem " ."

 :Prop ComplianceMetric
 :Inst Type
 :sup QualityMetric
 :name "Compliance Metric"
 :rem " ."

 :Prop ConsistencyMetric
 :Inst Type
 :sup QualityMetric
 :name "Consistency Metric"
 :rem " ."

 :Prop RFTMetric
 :Inst Type
 :sup QualityMetric
 :name "Right 1st Time Metric"
 :rem " ."

;;;==
;;; Metric Classes - Performance
;;;==

 :Prop AvailabilityMetric
 :Inst Type
 :sup PerformanceMetric
 :name "Availability Metric"
 :rem " ."

 :Prop ThroughputMetric
 :Inst Type
 :sup PerformanceMetric
 :name "Throughput Metric"
 :rem " ."

 :Prop UptimeMetric
 :Inst Type
 :sup PerformanceMetric
 :name "Uptime Metric"
 :rem " ."

 :Prop UtilisationMetric
 :Inst Type
 :sup PerformanceMetric
 :name "Utilisation Metric"
 :rem " ."

278

 :Prop DeliveryMetric
 :Inst Type
 :sup PerformanceMetric
 :name "Delivery Metric"
 :rem " ."

 :Prop InventoryMetric
 :Inst Type
 :sup PerformanceMetric
 :name "Inventory Metric"
 :rem " ."

 :Prop SystemPerformanceMetric
 :Inst Type
 :sup PerformanceMetric
 :name "System Performance Metric"
 :rem " ."

 :Prop SystemCapacityMetric
 :Inst Type
 :sup SystemPerformanceMetric
 :name "System Capacity Metric"
 :rem " ."

 :Prop SystemLatencyMetric
 :Inst Type
 :sup SystemPerformanceMetric
 :name "System Latency Metric"
 :rem " ."

 :Prop SystemResponseTimeMetric
 :Inst Type
 :sup SystemPerformanceMetric
 :name "System Response Time Metric"
 :rem " ."

 :Prop InfrastructurePerformanceMetric
 :Inst Type
 :sup SystemPerformanceMetric
 :name "Infrastructure Performance Metric"
 :rem " ."

 :Prop HardwarePerformanceMetric
 :Inst Type
 :sup SystemPerformanceMetric
 :name "HardwarePerformanceMetric"
 :rem " ."

 :Prop SoftwarePerformanceMetric
 :Inst Type
 :sup SystemPerformanceMetric
 :name "Software Performance Metric"
 :rem " ."

 :Prop SystemStorageCapacityMetric
 :Inst Type
 :sup SystemCapacityMetric
 :name "System Storage Capacity Metric"
 :rem " ."

 :Prop SystemFlowCapacityMetric
 :Inst Type
 :sup SystemCapacityMetric
 :name "System Flow Capacity Metric"
 :rem " ."

;;;==
;;; Metric Classes - Misc
;;;==

 :Prop RiskMetric
 :Inst Type
 :sup ProjectMetric
 :name "Risk Metric"
 :rem " ."

 :Prop MilestoneMetric
 :Inst Type
 :sup ProjectMetric
 :name "Milestone Metric"
 :rem " ."

 :Prop FeatureMetric
 :Inst Type
 :sup ProductMetric
 :name "Feature Metric"
 :rem " ."

 :Prop CapabilityMetric
 :Inst Type
 :sup ProcessMetric
 :name "Capability Metric"
 :rem " ."

 :Prop OperationMetric
 :Inst Type
 :sup ProcessMetric

279

 :name "Operation Metric"
 :rem " ."

 :Prop ProcessCapabilityMetric
 :Inst Type
 :sup CapabilityMetric
 :name "Process Capability Metric"
 :rem " ."

 :Prop ActivityMetric
 :Inst Type
 :sup OperationMetric
 :name "Activity Metric"
 :rem " ."

Person.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Person Classes - Level 1
;;;==

:Prop Operator
:Inst Type
:sup Person
:name "Operator"
:rem "An Operator is a Person responsible for operating or carrying out the Process."

:Prop Designer
:Inst Type
:sup Person
:name "Designer"
:rem "A Designer is the Person responsible for the design or specification for an item."

:Prop ManufacturingEngineer
:Inst Type
:sup Person
:name "Manufacturing Engineer"
:rem "A Manufacturing Engineer is responsible for creating a manufacturing specification,
process and technical package that can be carried out by the Operator to realise the
Designers design or specification for an item ."

:Prop MaintenanceEngineer
:Inst Type
:sup Person

:name "Maintenance Engineer"
:rem "A Maintenance Engineer is responsible for designing and carrying out Maintenance
Processes ."

:Prop Supervisor
:Inst Type
:sup Person
:name "Supervisor"
:rem "Supervisors have elevated Authority Levels and are responsible for Marshalling and
supervising resources and processes to ensure compliance to processes and plans. These
activities also tend to include Metric Design and Metric Target setting and Monitoring."

:Prop MaterialController
:Inst Type
:sup Person
:name "Material Controller"
:rem "Material Controllers are responsible for the launch, flow and management of Material
into and through a Manufacturing Process and its delivery to the next stage of the Supply
Chain in line with the Production Plan. Material Controllers are responsible for the material
management i.e. its whereabouts, and stage through the manufacturing process including
ensuring the consumed and combined materials are available at the appropriate process
steps but are not responsible for the Manufacturing Process itself."

:Prop FinancePerson
:Inst Type
:sup Person
:name "Finance Person"
:rem "A Finance person is one that works to ensure the operational and business finance
Targets are met."

:Prop ITPerson
:Inst Type
:sup Person
:name "IT Person"
:rem "An Information Technology Person is one who is skilled in the development,
deployment or support of IT Systems or elements of IT Systems ."

:Prop LogisticsPerson
:Inst Type
:sup Person
:name "Logistics Person"
:rem "Logistics Personnel are responsible for movement of products throughout an Enterprise
or Supply Chain (as opposed to material controllers who control the)."

Prediction.KFL
;;; Start Date: 26th September 2011
;;; Author: N Hastilow
;;; Version 1

280

;;; Version 1.1 Remove Sup Analysis from RiskAnalysis as it is a predictive analysis

:Use MI

;;;==
;;; Prediction Classes - Level 1
;;;==

:Prop Estimate
:Inst Type
:sup Prediction
:name "Estimate"
:rem "An Estimate is an approximate prediction of a future value which is based on limited
information and judgment based on previous experience or associated trends."

:Prop FMEA
:Inst Type
:sup Prediction
:name "Failure Mode and Effect Analysis"
:rem "Failure Mode and Effect Analysis is the prediction of potential future failure
mechanisms and the potential effects of those mechanisms."

:Prop RiskAnalysis
:Inst Type
:sup Prediction
:name "RiskAnalysis"
:rem " A risk analysis idenitifys risks using and If......Then..... format, giving a ranking to the
probability and impact of each risk allong with mitigations and treatments to reduce or resolve
it."

:Prop Simulation
:Inst Type
:sup Prediction
:name "Simulation"
:rem "A Simulation is a representation of a system, enterprise, process etc which behaves in
a similar way to the actual enterprise etc. Simulations are used to investigate and rapidly
predict the response or outcomes of given scenarios with reduced risk, cost. "

 :Prop PFMEA
 :Inst Type
 :sup FMEA
 :name "Process Failure Mode and Effect Analysis"
 :rem "Process Failure Mode and Effect Analysis is the prediction of
potential future failure mechanisms and the potential effects of those mechanisms within a
process ."

 :Prop RoughOrderOfMagnitude
 :Inst Type
 :sup Estimate

 :name "Rough Order Of Magnitude"
 :rem "A Rough Order Of Magnitude Estimate is a very rough
approximate prediction of a future value which is based on very limited information and
judgment based on previous experience or associated trends. This represents a high risk
Estimate due to limited information or guidance."

 :Prop Quote
 :Inst Type
 :sup Estimate
 :name "Quote"
 :rem "A quote is an estimate based on detailed analysis of the the
requirements and solution work content, quote usualy have a limited period of valdidity, but
can also be invalidated by any specification Change."

Qualities.KFL
; Copyright 2008 Ontology Works, Inc. All rights reserved.

:Name "Qualities"
:Description "A theory of qualities"
:Use MLO

:Rel hasCtx
:Inst BinaryRel
:Sig Top Top

; author: kohl
; date: 1-11-2008
; depends on: ULO

; This theory defines a class of Qualities and well as a meta-class of QualityKinds. For
example, Blue is a Quality and Color is a QualityKind.
; This theory also defined relations between Particulars (see ULO Documentation), their
Qualities, and applicable QualityKinds.

:Prop Quality
:Inst Type
:Inst IntensionalRel
:sup AbstractEntity
:name "Quality"
:lex "?1 is a quality"
:rem "A quality is an <sym>MLO.AbstractEntity</sym> that can be attributed to a
<sym>Particular</sym> via the <sym>hasQuality</sym> relation. Qualities cannot exist
apart from the particulars they are attributed to (eg there could be no 'colored blue' quality if
there were no blue-colored things). A quality is held in common by all those things the quality
is attributed to. (eg the same quality instance is held by all blue-colored things)."

 :Prop QualityKind
 :Inst MetaProperty
 :sup Type

281

 :name "Quality Type"
 :lex "?1 is a kind of quality"
 :rem "All and only subclasses of <sym>Quality</sym> are instances
(<sym>RootCtx.inst</sym>) of QualityKind."
 :metaPropFor Quality

 (=> (supTC ?x Quality)
 (inst ?x QualityKind))
 :IC hard "All subclasses of Quality must be instances of QualityKind, but ?x is not."

 :Rel hasQuality
 :Inst AsymmetricBR
 :Sig Particular Quality
 :name "has quality"
 :lex "?1 is attributed quality ?2"
 :rem "The <sym>RootCtx.Relation</sym> that holds between a
<sym>Particular</sym> and a <sym>Quality</sym> attributed to it."

 :Rel hasQualityKind
 :Inst AsymmetricBR
 :Sig Particular Top
 :name "has quality kind"
 :lex "?1 is attributed some ?2"
 :rem "The <sym>RootCtx.Relation</sym> that holds between a
<sym>Particular</sym> and a <sym>QualityKind</sym> because that particular is attributed
some <sym>Quality</sym> that is an instance (<sym>RootCtx.inst</sym>) of the
QualityKind."
 :exampleRem "If Helen's table is colored blue, then it is true that the table has been
attributed some color:

 given: (hasColor helensTable Blue)

 therefore: (hasQualityKind helensTable Color)

 This relation can be used when it is known that some quality has been attributed to
a particular, but only the kind of quality is known. For example, it may be known that an
<sym>Object</sym> has a price, but it is unknown what that price is. Then, the following
could be asserted:

 (hasQualityKind object-56 Price)

 This would be new information if, indeed, not everything has a price."

Relations.KFL
;;; Start Date: 13th November 2011
;;; Author: Neil Hastilow
;;; Other Contributors: Tish Chungoora

:Use MI

;;;==
;;; Relations - 1st level of specialisation from core model
;;;==

:Rel higherThan
:Inst BinaryRel
:Inst IrreflexiveBR
:Inst TransitiveBR
:Sig Top Top

:Rel hasOpAuthorityLevel
:Inst BinaryRel
:Sig Top OpAuthorityLevel
:name "has Operational Authority Level"

:Rel hasTechAuthorityLevel
:Inst BinaryRel
:Sig Top TechAuthorityLevel
:name "has Technical Authority Level"

:Rel hasDataStructure
:Inst BinaryRel
:Sig Top Top
:name "has Data Structure"

:Rel hasMonitor
:Inst BinaryRel
:Sig Top Top
:name "has Monitor"

:Rel hasResponse
:Inst BinaryRel
:Sig Top Response
:name "has Response"

:Rel hasTimescale
:Inst BinaryRel
:Sig Top Top
:name "has Timescale"

:Rel hasSpecification
:Inst BinaryRel
:Sig Top Specification
:name "has Specification"

:Rel hasSecurityCategory
:Inst BinaryRel
:Sig Top Top
:name "has Security Category"

:Rel hasRetentionCategory
:Inst BinaryRel

282

:Sig Top Top
:name "has Retention Category"

:Rel hasExportControlCategory
:Inst BinaryRel
:Sig Top Top
:name "has Export Control Category"

:Rel modifys
:Inst BinaryRel
:Sig Top Top
:name "modifys"

:Rel mayAccess
:Inst BinaryRel
:Sig Top Top
:name "may Access"

:Rel SameAs
:Inst BinaryRel
:Inst EquivalenceBR
:Sig Top Top
:name "Same As"

Resource.KFL
;;; Start Date: 25th October 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Resource Classes - Level 1
;;;==

:Prop SystemResource
:Inst Type
:sup Resource
:name "System Resource"
:rem "System Resources are the things used and required by a system to perform the
process of turning inputs into outputs."

Status.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Status Classes - Level 1
;;;==

:Prop ObsoleteStatus
:Inst Type
:sup Status
:name "Obsolete Status"
:rem "Obsolete Status applies to items which are no longer valid and should not be used but
need to be kept for reference as part of a change history. Obsolete and Archived status are
commonly used for items once they have been Approved or Conditionally Approved, as
deleting approved items is rarely appropriate as they may have been used requiring a level of
traceability"

:Prop ArchievedStatus
:Inst Type
:sup Status
:name "Archieved Status"
:rem "Archieved Status applies to items which whilst still valid may not be immediately
relevant or in regular use. Archieved items are retained in large but slow archives which often
take considerable time or effort to retrieve the items, this is appropriate as the limited
relevance of the items mean they are infrequently retrieved. Obsolete and Archieved status
are commonly used for items once they have been Approved or Conditionally Approved, as
deleting approved items is rarely appropriate as they may have been used requiring a level of
traceability"

:Prop DeletedStatus
:Inst Type
:sup Status
:name "Deleted Status"
:rem " Deleted Status applied to items which have been removed or destroyed. This status
may be applied to the item records to indicate the item once existed but can no longer be
accessed without accessing backup records. Obsolete and Archived status are commonly
used for items once they have been Approved or Conditionally Approved, as deleting
approved items is rarely appropriate as they may have been used requiring a level of
traceability"

:Prop ReturnStatus
:Inst Type
:sup Status
:name "Return Status"
:rem " Return Status is applied to items which are were Unproven or have been Conditionally
Approved for development, and then modified as part of that development before being
returned for review prior to assessment for full approval."

:Prop ApprovedStatus
:Inst Type
:sup Status
:name "Approved Status"

283

:rem "Approved Status is applied to items which have been fully and unconditionally
approved for use."

:Prop UnapprovedStatus
:Inst Type
:sup Status
:name "Unapproved Status"
:rem "Unapproved status is the default status for any item prior to full or conditional approval.
This status does not necessarily mean the item needs modification, merely that it has not
been confirmed as suitable for use. Unproven items can either progress to being Fully or
Conditional Approved if suitable or may be deleted if unsuitable. Unapproved items would not
normally be Archived or given Obsolete Status as they should never be used precluding any
mandatory requirement for traceability."

:Prop ConditionallyApprovedStatus
:Inst Type
:sup Status
:name "Conditionally Approved Status"
:rem "Conditionally Approved Status is applied to items that are not suitable for full approval,
but are appropriate for use with limitations."

Sustainment Process.KFL
;;; Start Date: 26th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Sustainment Process Classes - Level 1
;;;==

:Prop ProcessMaintenance
:Inst Type
:sup SustainmentProcess
:name "Process Maintenance"
:rem " Process Maintenance counteracts change and variation (both common and special
cause) to ensure the continuity of the current process intent. It is important to note that
Process Maintenance maintains the original intent of the process, so in changing
circumstances a Process Maintenance will introduce change to maintain the process intent"

:Prop Monitor
:Inst Type
:sup SustainmentProcess
:name "Monitor"
:rem " A Monitor can be used to detect the current state, changes and can be used with
analysis to identify trends, trigger reactions and generate predictions ."

:Prop Training

:Inst Type
:sup SustainmentProcess
:name "Training"
:rem "Training is used to maintain or standardise the capability and knowledge of a Person in
changing circumstances. It is possible that the only change is Time, in which case the
Training would be referred to a 're-training'' as it is the repetition of identical training to refresh
the knowledge of a person."

:Prop EquipmentMaintenance
:Inst Type
:sup SustainmentProcess
:name "Equipment Maintenance"
:rem "Equipment Maintenance counteracts change and variation (both common and special
cause) to ensure the continuity of the current Equipment fit form and function. It is important
to note that Equipment Maintenance maintains the original intent of the Equipment, so in
changing circumstances a Equipment Maintenance will introduce change to maintain the
Equipment intent ."

;;;==
;;; Equipment Maintenance Level Classes
;;;==

:Prop ToolMaintenance
:Inst Type
:sup EquipmentMaintenance
:name "Tool Maintenance"
:rem "Tool Maintenance counteracts change and variation (both common and special cause)
to ensure the continuity of the current Tool fit form and function. It is important to note that
Tool Maintenance maintains the original intent of the Tool, so in changing circumstances a
Tool Maintenance will introduce change to maintain the Tool intent (eg regrinding a cutting
tool)."

:Prop ITMaintenance
:Inst Type
:sup EquipmentMaintenance
:name "IT Maintenance"
:rem "IT Maintenance counteracts change and variation (both common and special cause) to
ensure the continuity of the current IT specification, capability and function. It is important to
note that IT Maintenance maintains the original intent of the IT, so in changing circumstances
a IT Maintenance will introduce change to maintain the IT specification intent ."

:Prop MachineMaintenance
:Inst Type
:sup EquipmentMaintenance
:name "Machine Maintenance"
:rem "Machine Maintenance counteracts change and variation (both common and special
cause) to ensure the continuity of the current Machine fit form and function. It is important to
note that Machine Maintenance maintains the original intent of the Machine, so in changing

284

circumstances a Machine Maintenance will introduce change to maintain the Machine intent
."

:Prop InfrastructureMaintenance
:Inst Type
:sup EquipmentMaintenance
:name "Infrastructure Maintenance"
:rem "Infrastructure Maintenance counteracts change and variation (both common and
special cause) to ensure the continuity of the current Infrastructure specification, capability
and function. It is important to note that Infrastructure Maintenance maintains the original
intent of the Infrastructure, so in changing circumstances a Infrastructure Maintenance will
introduce change to maintain the Infrastructure specification intent ."

System.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; System Classes - Level 1
;;;==

:Prop StandardSystem
:Inst Type
:sup System
:name "Standard System"
:rem " "

:Prop NonStandardSystem
:Inst Type
:sup System
:name "Non Standard System"
:rem " "

 :Prop TacticalSystem
 :Inst Type
 :sup NonStandardSystem
 :name "Tactical System"
 :rem " "

;;;==
;;; Standard System Level Classes
;;;==

 :Prop VisualisationSystem
 :Inst Type
 :sup StandardSystem

 :name "Visualisation System"
 :rem " "

 :Prop DataCollectionSystem
 :Inst Type
 :sup System
 :name "Data Collection System"
 :rem " "

 :Prop DNCSystem
 :Inst Type
 :sup StandardSystem
 :name "DNC System"
 :rem " "

 :Prop ProgrammingSystem
 :Inst Type
 :sup StandardSystem
 :name "Programming System"
 :rem " "

 :Prop ControlSystem
 :Inst Type
 :sup StandardSystem
 :name "Control System"
 :rem " "

 :Prop ReportingSystem
 :Inst Type
 :sup StandardSystem
 :name "Reporting System"
 :rem " "

 :Prop CollaborationSystem
 :Inst Type
 :sup StandardSystem
 :name "Collaboration System"
 :rem " "

 :Prop StorageSystem
 :Inst Type
 :sup StandardSystem
 :name "Storage System"
 :rem " "

 :Prop AnalysisSystem
 :Inst Type
 :sup StandardSystem
 :name "Analysis System"

285

 :rem " "

 :Prop AutomationSystem
 :Inst Type
 :sup StandardSystem
 :name "Automation System"
 :rem " "

 :Prop Infrastructure
 :Inst Type
 :sup StandardSystem
 :name "Infrastructure"
 :rem " "

 :Prop ArchivingSystem
 :Inst Type
 :sup StorageSystem
 :name "Archiving System"
 :rem " "

 :Prop DocumentationSystem
 :Inst Type
 :sup StorageSystem
 :name "Documentation System"
 :rem " "

 :Prop DatabaseSystem
 :Inst Type
 :sup StorageSystem
 :name "Database System"
 :rem " "

 :Prop AdaptiveManufactureSystem
 :Inst Type
 :sup AutomationSystem
 :name "Adaptive Manufacture System"
 :rem " "

 :Prop SCADASystem
 :Inst Type
 :sup VisualisationSystem
 :name "SCADA System"
 :rem " "

Target.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1
;;; Version 2 Specification and sub concepts added - demoted from core concept status

:Use MI

;;;==
;;; Target Classes - Level 1
;;;==

:Prop MetricTarget
:Inst Type
:sup Target
:name "Metric Target"
:rem " A Metric Target represents the ideal value or state for a specific Metric. Metric Targets
are set in line with the overall enterprise objectives."

:Prop Plan
:Inst Type
:sup Target
:name "Plan"
:rem "A Plan represents the target sequence of activities and Timescale to achieve a specific
outcome."

:Prop Vision
:Inst Type
:sup Target
:name "Vision"
:rem "A Vision describes the desired final state. Visions should be high level and avoid
specific detail, instead creating a overall picture of a totally successful set of outcomes."

;;;==
;;; Plan Classes
;;;==

 :Prop Roadmap
 :Inst Type
 :sup Plan
 :name "Roadmap"
 :rem "A Roadmap is a chronological representation of events, milestones
or achievements where the connecting chronological Roadmap represents a consistent
theme or strategy ."

 :Prop ProcessPlan
 :Inst Type
 :sup Plan
 :name "Process Plan"
 :rem "A Process Plan represents the target sequence of activities and
Timescale to achieve a specific Process outcome ."

 :Prop ProductionPlan
 :Inst Type

286

 :sup Plan
 :name "Production Plan"
 :rem "A Production Plan represents the target production activities (such
as resourcing plan, material launch and processing) and Timescale to achieve a specific
delivery requirement ."

 :Prop ReactionPlan
 :Inst Type
 :sup Plan
 :name "Reaction Plan"
 :rem "A Reaction Plan details the prescribed Reaction activities or steps
to a specific Reaction trigger such as an alarm, or other Event."

 :Prop InspectionPlan
 :Inst Type
 :sup Plan
 :name "Inspection Plan"
 :rem "An Inspection Plan details the sequence of inspection activities
required to fully validate that the target of the inspection meets the Specification."

Timescale.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Timescale Classes - Level 1
;;;==

:Prop RealTimeTimescale
:Inst Type
:sup Timescale
:name "Real Time Timescale"
:rem " The Real Time Timescale represents a zero or near zero delay between any given
instant and an associated event."

:Prop ExecutionTimescale
:Inst Type
:sup Timescale
:name "Execution Timescale"
:rem "Execution Timescales are measured in hours and days and represent the appropriate
timescales for operational execution activities."

:Prop ValidityTimescale
:Inst Type

:sup Timescale
:name "Validity Timescale"
:rem " The Validity Timescale represents the timescale over which an entity, logical statement
or decision is valid. After this timescale the entity etc becomes invalid therefore should no
longer be used or considered reliable."

:Prop ControlTimescale
:Inst Type
:sup Timescale
:name "Control Timescale"
:rem "Control Timescales are measured in Milliseconds to minutes and represent the
appropriate timescales for operational control activities ."

:Prop EnterpriseTimescale
:Inst Type
:sup Timescale
:name "Enterprise Timescale"
:rem "Enterprise Timescales are measured in weeks and months and represent the
appropriate timescales for enterprise execution activities ."

:Prop RetentionTimescale
:Inst Type
:sup Timescale
:name "Retention Timescale"
:rem "The Retention Timescale represents the timescale for which an item must be retained
or retrievable. The implications of failing to retain for this length of time depend on the Data
Retention Category."

(ValidityTimescale KnownValidityTimescale)
(ValidityTimescale UnknownValidityTimescale)

Traceability Item.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Timescale Classes - Level 1
;;;==

:Prop RealTimeTimescale
:Inst Type
:sup Timescale
:name "Real Time Timescale"
:rem " The Real Time Timescale represents a zero or near zero delay between any given
instant and an associated event."

287

:Prop ExecutionTimescale
:Inst Type
:sup Timescale
:name "Execution Timescale"
:rem "Execution Timescales are measured in hours and days and represent the appropriate
timescales for operational execution activities."

:Prop ValidityTimescale
:Inst Type
:sup Timescale
:name "Validity Timescale"
:rem " The Validity Timescale represents the timescale over which an entity, logical statement
or decision is valid. After this timescale the entity etc becomes invalid therefore should no
longer be used or considered reliable."

:Prop ControlTimescale
:Inst Type
:sup Timescale
:name "Control Timescale"
:rem "Control Timescales are measured in Milliseconds to minutes and represent the
appropriate timescales for operational control activities ."

:Prop EnterpriseTimescale
:Inst Type
:sup Timescale
:name "Enterprise Timescale"
:rem "Enterprise Timescales are measured in weeks and months and represent the
appropriate timescales for enterprise execution activities ."

:Prop RetentionTimescale
:Inst Type
:sup Timescale
:name "Retention Timescale"
:rem "The Retention Timescale represents the timescale for which an item must be retained
or retrievable. The implications of failing to retain for this length of time depend on the Data
Retention Category."

(ValidityTimescale KnownValidityTimescale)
(ValidityTimescale UnknownValidityTimescale)

Visualisation.KFL
;;; Start Date: 26th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==

;;; Visualisation Classes - Level 1
;;;==

:Prop Report
:Inst Type
:sup Visualisation
:name "Report"
:rem "A Report visualises and comunicates Metrics, Data, Analysis etc. Reports are designed
for a specific purpose, and will combine any information or data to that end."

Analysis.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Analysis Classes - Level 1
;;;==

:Prop StatisticalAnalysis
:Inst Type
:sup Analysis
:name "Statisitical Process Control"
:rem " Statistical Analysis is the characterisation of a population by a mathmatical model
against which the the conformance of the population can be judged. This can be extended to
Statistical Process Control which uses this model to idenify anamolous occurances and the
propability of any particular outcome"

:Prop BooleanAnalysis
:Inst Type
:sup Analysis
:name "Boolean Analysis"
:rem " Boolean Analysis refers to the analysis of a particular event or outcome in boolean or
logical terms such as true or false. This would cover most rule based signals or automated
systems and requires predefined logical criteria against which to analyse a result and give an
outcome."

:Prop Diagnosis
:Inst Type
:sup Analysis
:name "Diagnosis"
:rem "Diagnosis is the retrospective Analysis that enables the understanding of an Event or
occurrence including causal factors "

 :Prop RootCauseAnalysis
 :Inst Type
 :sup Diagnosis

288

 :name "Root Cause Analysis"
 :rem "Root Cause Analysis is used to find the prime cause of an Event of
occurrence "

Authority.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Authority Level Classes - Level 1
;;;==

:Prop TechAuthorityLevel
:Inst Type
:sup AuthorityLevel
:name "Technical Authority Level"
:rem "Technical authority level represents the level of authority of a person or system over
technical aspects of the product, process, organisation eg those that can affect the fit, form or
function of the deliverable. Decisions that have higher risk implications generally require
higher levels of Technical Authority level. Operational and Technical Authority levels need to
be balanced appropriately as they Operational and Technical objectives often conflict."

:Prop OpAuthorityLevel
:Inst Type
:sup AuthorityLevel
:name "Operational Authority Level"
:rem "Operational authority level represents the level of authority of a person or system over
the operational aspects of the enterprise eg those that can affect the cost, delivery, resource
allocation etc. Operational and Technical Authority levels need to be balanced appropriately
as they Operational and Technical objectives often conflict."

;;;==
;;; Technical Authority Level Classes
;;;==

 :Prop AdministratorTechAuthorityLevel
 :Inst Type
 :sup TechAuthorityLevel
 :name "Administrator"
 :rem "Administrator is the highest Technical Authority Level.
Administrators have full authority to make changes and decisions with minimal constraint.
The application of Authority Level is tightly controlled due to the associated risks "

 :Prop UserTechAuthorityLevel
 :Inst Type
 :sup TechAuthorityLevel

 :name "User"
 :rem " User is the lowest Technical Authority Level, Users have limited
ability to make minor decisions and changes and only within specified limits. User is the
default level of access for any individual or system with technical authority."

 :Prop SuperuserTechAuthorityLevel
 :Inst Type
 :sup TechAuthorityLevel
 :name "Superuser"
 :rem " Superuser is a medium level of Technical Authority between User
and Administrator. Superusers have the ability to modify configuration and make decisions or
changes within limits that are defined by Administrators"

;;;==
;;; Operational Authority Level Classes
;;;==

 :Prop ExecutiveOpAuthorityLevel
 :Inst Type
 :sup OpAuthorityLevel
 :name "Executive"
 :rem " Executive is the highest Operational Authority Level. Executives
have full authority to make decisions over an enterprise strategy and direction as well as all
resources within the enterprise. "

 :Prop ManagerOpAuthorityLevel
 :Inst Type
 :sup OpAuthorityLevel
 :name "Manager"
 :rem "Manager is an Operational Authority Level below Executive and
above Team Leader. Managers have significant authority to make decisions within
subdivisions of the enterprise"

 :Prop LeaderOpAuthorityLevel
 :Inst Type
 :sup OpAuthorityLevel
 :name "Leader"
 :rem "Leader is an Operational Authority Level below Manager and
above Employee. Leaders have limited levels of authority to make decisions within aspects of
subdivisions of an enterprise. Leader is only one level of elivation above Employee, any level
above this will be a Manager of above."

 :Prop EmployeeOpAuthorityLevel
 :Inst Type
 :sup OpAuthorityLevel
 :name "Employee"
 :rem " Employee is the lowest Operational Authority Level. Employees
have little or no authority within the enterprise, and this tends to be limited within defined
options rather than free choices "

289

Collaboration.KFL
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Collaboration Classes - Level 1
;;;==

:Prop InternalCollaboration
:Inst Type
:sup Collaboration
:name "Internal Collaboration"
:rem " Internal Collaboration is the collaboration between entities within an enterprise."

:Prop ExternalCollaboration
:Inst Type
:sup Collaboration
:name "External Collaboration"
:rem " External Collaboration is the collaboration between entities in different enterprises ."

 :Prop InternalSystemCollaboration
 :Inst Type
 :sup InternalCollaboration
 :name "Internal System Collaboration"
 :rem " Internal Collaboration is the collaboration between Systems within
an enterprise."

 :Prop ExternalSystemCollaboration
 :Inst Type
 :sup ExternalCollaboration
 :name "External System Collaboration"
 :rem "External Collaboration is the collaboration between Systems in
different enterprises."

Constraint.KFL
;;; Start Date: 25th October 2011
;;; Author: N Hastilow
;;; Version 1
;;; Version 2 Specification added from Target

:Use MI

;;;==
;;; Constraint Classes - Level 1
;;;==

:Prop Specification
:Inst Type
:sup Constraint
:name "Specification"
:rem "A Specification describes a requirement in appropriate detail. Any solution that is
constructed and tested against a suitable specification and passes should meet the customer
needs and expectations."

:Prop SystemConstraint
:Inst Type
:sup Constraint
:name "System Constraint"
:rem "System Constraints are the limits, rules and structures within which any process must
function."

:Prop SecurityCategory
:Inst Type
:sup Constraint
:name "Security Category"
:rem " "

:Prop RetentionCategory
:Inst Type
:sup Constraint
:name "Data Retention Category"
:rem " "

:Prop ChangeControl
:Inst Type
:sup Constraint
:name "Change Control"
:rem " "

:Prop ExportControlCategory
:Inst Type
:sup Constraint
:name "Export Control"
:rem " "

 :Prop MandatoryRetention
 :Inst Type
 :sup RetentionCategory
 :name "Mandatory Retention"
 :rem " "

 :Prop NonMandatoryRetention
 :Inst Type
 :sup RetentionCategory

290

 :name "Non Mandatory Retention"
 :rem " "

 :Prop ExportControlled
 :Inst Type
 :sup ExportControlCategory
 :name "Export Controlled"
 :rem " "

 :Prop NonExportControlled
 :Inst Type
 :sup ExportControlCategory
 :name "Non Export Controlled"
 :rem " "

 :Prop Public
 :Inst Type
 :sup SecurityCategory
 :name "Public"
 :rem " "

 :Prop Private
 :Inst Type
 :sup SecurityCategory
 :name "Private"
 :rem " "

 :Prop Secret
 :Inst Type
 :sup SecurityCategory
 :name "Secret"
 :rem " "

 :Prop TopSecret
 :Inst Type
 :sup SecurityCategory
 :name "TopSecret"
 :rem " "

;;;==
;;; Specification Classes
;;;==

 :Prop ProductSpecification
 :Inst Type
 :sup Specification
 :name "Product Specification"
 :rem " ."

 :Prop ITSpecification
 :Inst Type
 :sup Specification
 :name "IT Specification"
 :rem " ."

 :Prop MaterialSpecification
 :Inst Type
 :sup Specification
 :name "Material Specification"
 :rem " ."

 :Prop FunctionalSpecification
 :Inst Type
 :sup Specification
 :name "Functional Specification"
 :rem " ."

 :Prop VisualSpecification
 :Inst Type
 :sup Specification
 :name "Visual Specification"
 :rem " ."

 :Prop ProcessSpecification
 :Inst Type
 :sup Specification
 :name "Process Specification"
 :rem " ."

 :Prop NonFunctionalSpecification
 :Inst Type
 :sup Specification
 :name "Non Functional Specification"
 :rem " ."

 :Prop StatementOfRequirements
 :Inst Type
 :sup Specification
 :name "Statement Of Requirements"
 :rem " ."

Data.KFL
;;; Start Date: 24th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

291

;;;==
;;; Data Classes - Level 1
;;;==

:Prop MaintenanceData
:Inst Type
:sup Data
:name "Maintenance Data"
:rem "Maintnence Data is the data used within a process to maintain or sustain the process.
This data is generaly used in a Maintnence Process or a Report"

:Prop InspectionData
:Inst Type
:sup Data
:name "Inspection Data"
:rem "Inspection Data is the Data used or generated by an inspection process or system."

:Prop ProcessData
:Inst Type
:sup Data
:name "Process Data"
:rem "Process Data is Data used or generated by a process."

:Prop MetaData
:Inst Type
:sup Data
:name "Meta Data"
:rem "Meta Data is Data about the containter of data or data content ."

:Prop OrderData
:Inst Type
:sup Data
:name "Order Data"
:rem "Order Data is Data relating to a Customer order, this can be directly relating to the
specifics of the order or data accumulated throughout the execution or fulfilment of the order."

:Prop TimeData
:Inst Type
:sup Data
:name "Time Data"
:rem "Time Data is Data that places or quantifies and item with relation to time. This includes
absolute or relative chronological ordering or Durration information."

:Prop ResourceData
:Inst Type
:sup Data
:name "Resource Data"
:rem "Resource Data is Data relating to Resources ."

:Prop TraceabilityData
:Inst Type
:sup Data
:name "Traceability Data"
:rem "Tracability Data is Data which can be used to sort, retreive or otherwise stratify other
data. Entitys can accumulate Traceability Data as they are processed as this ensures
tracability throughout the item lifecycle."

:Prop ProductData
:Inst Type
:sup Data
:name "Product Data"
:rem "Product Data is and Data that relates to a specific Product or Product type ."

;;;==
;;; Data Classes - Maintenance
;;;==

 :Prop MaintenanceSchedule
 :Inst Type
 :sup MaintenanceData
 :name "Maintenance Schedule"
 :rem "A Maintenence Schedule is a Plan of Maintenence activities."

 :Prop MaintenanceLog
 :Inst Type
 :sup MaintenanceData
 :name "Maintenance Log"
 :rem "A Maintenance Log is a historical record of executed Maintance
Process and relating Maintnence Data."

 :Prop BreakdownLog
 :Inst Type
 :sup MaintenanceLog
 :name "Breakdown Log"
 :rem "A Breakdown Log is a historical log of equipment failure."

 :Prop CalibrationSchedule
 :Inst Type
 :sup MaintenanceSchedule
 :name "Calibration Schedule"
 :rem "A Calibration Schedule is a Plan of calibration activities
for precision equipment or processes ."

 :Prop ServiceSchedule
 :Inst Type
 :sup MaintenanceSchedule
 :name "Service Schedule"

292

 :rem "A Service Schedule is a Plan of equipment servicing
activities. These activities should be timed to ensure calibration can be maintained and
breakdowns avoided."

;;;==
;;; Data Classes - Inspection
;;;==

 :Prop InspectionRecord
 :Inst Type
 :sup InspectionData
 :name "Inspection Record"
 :rem " ."

 :Prop DimensionalData
 :Inst Type
 :sup InspectionData
 :name "Dimensional Data"
 :rem " ."

 :Prop VisualData
 :Inst Type
 :sup InspectionData
 :name "Visual Data"
 :rem " ."

 :Prop MaterialData
 :Inst Type
 :sup InspectionData
 :name "Material Data"
 :rem " ."

 :Prop DescretePointData
 :Inst Type
 :sup DimensionalData
 :name "Descrete Point Data"
 :rem " ."

 :Prop CloudPointData
 :Inst Type
 :sup DimensionalData
 :name "Cloud Point Data"
 :rem " ."

 :Prop XRayData
 :Inst Type
 :sup VisualData
 :name "X Ray Data"
 :rem " ."

 :Prop CoatingData
 :Inst Type
 :sup MaterialData
 :name "Coating Data"
 :rem " ."

 :Prop AlloyData
 :Inst Type
 :sup MaterialData
 :name "Alloy Data"
 :rem " ."

 :Prop MeasurementMachineData
 :Inst Type
 :sup DescretePointData
 :name "Measurement Machine Data"
 :rem " ."

 :Prop GaugeData
 :Inst Type
 :sup DescretePointData
 :name "Gauge Data"
 :rem " ."

 :Prop StructuredLightData
 :Inst Type
 :sup DimensionalData
 :name "StructuredLightData"
 :rem " ."

 :Prop CTData
 :Inst Type
 :sup DimensionalData
 :name "Computer Tomography Data"
 :rem " ."

;;;==
;;; Data Classes - Process
;;;==

 :Prop ProcessParameterData
 :Inst Type
 :sup ProcessData
 :name "Process Parameter Data"
 :rem " ."

 :Prop KPVData
 :Inst Type

293

 :sup ProcessData
 :name "KPV Data"
 :rem " ."

 :Prop PerformanceData
 :Inst Type
 :sup ProcessData
 :name "Performance Data"
 :rem " ."

 :Prop DatacardData
 :Inst Type
 :sup ProcessParameterData
 :name "Datacard Data"
 :rem " ."

 :Prop ProgramData
 :Inst Type
 :sup ProcessParameterData
 :name "Program Data"
 :rem " ."

 :Prop RecipeData
 :Inst Type
 :sup ProcessParameterData
 :name "Recipe Data"
 :rem " ."

 :Prop AvailabilityData
 :Inst Type
 :sup PerformanceData
 :name "Availability Data"
 :rem " ."

 :Prop ThroughputData
 :Inst Type
 :sup PerformanceData
 :name "Throughput Data"
 :rem " ."

 :Prop UptimeData
 :Inst Type
 :sup PerformanceData
 :name "Uptime Data"
 :rem " ."

 :Prop UtilisationData
 :Inst Type
 :sup PerformanceData

 :name "Utilisation Data"
 :rem " ."

 :Prop DeliveryData
 :Inst Type
 :sup PerformanceData
 :name "Delivery Data"
 :rem " ."

 :Prop InventoryData
 :Inst Type
 :sup PerformanceData
 :name "Inventory Data"
 :rem " ."

 :Prop SystemPerformanceData
 :Inst Type
 :sup PerformanceData
 :name "System Performance Data"
 :rem " ."

 :Prop WIPInventoryData
 :Inst Type
 :sup InventoryData
 :name "WIP Inventory Data"
 :rem " ."

 :Prop TotalInventoryData
 :Inst Type
 :sup InventoryData
 :name "Total Inventory Data"
 :rem " ."

 :Prop OnTimeDeliveryData
 :Inst Type
 :sup DeliveryData
 :name "On Time Delivery Data Data"
 :rem " ."

 :Prop SystemCapacityData
 :Inst Type
 :sup SystemPerformanceData
 :name "System Capacity Data"
 :rem " ."

 :Prop SystemLatencyData
 :Inst Type
 :sup SystemPerformanceData
 :name "System Latency Data"

294

 :rem " ."

 :Prop SystemResponseTimeData
 :Inst Type
 :sup SystemPerformanceData
 :name "System Response Time Data"
 :rem " ."

 :Prop InfrastructurePerformanceData
 :Inst Type
 :sup SystemPerformanceData
 :name "Infrastructure Performance Data"
 :rem " ."

 :Prop HardwarePerformanceData
 :Inst Type
 :sup SystemPerformanceData
 :name "HardwarePerformanceData"
 :rem " ."

 :Prop SoftwarePerformanceData
 :Inst Type
 :sup SystemPerformanceData
 :name "Software Performance Data"
 :rem " ."

 :Prop SystemStorageCapacityData
 :Inst Type
 :sup SystemCapacityData
 :name "System Storage Capacity Data"
 :rem " ."

 :Prop SystemFlowCapacityData
 :Inst Type
 :sup SystemCapacityData
 :name "System Flow Capacity Data"
 :rem " ."

;;;==
;;; Data Classes - Misc
;;;==

 :Prop ProductionOrder
 :Inst Type
 :sup OrderData
 :name "Production Order"
 :rem " ."

 :Prop ProductionHistory

 :Inst Type
 :sup ProductData
 :name "Production History"
 :rem " ."

Data Structure.KFL
;;; Start Date: 25th September 2011
;;; Author: N Hastilow
;;; Version 1

:Use MI

;;;==
;;; Data Structure Classes - Level 1
;;;==

:Prop StandardDataStructure
:Inst Type
:sup DataStructure
:name "Standard Data Structure"
:rem " A Standard Data Structure is one which has been fully and rigorously documented and
is designed to be used by multiple instances."

:Prop DataDictionary
:Inst Type
:sup DataStructure
:name "Data Dictionary"
:rem "A Data Dictionary lists all of the identified data items and provides a natural language
description of the data item, its purpose and relationship to other data items or Processes ."

:Prop NonStdDataStructure
:Inst Type
:sup DataStructure
:name "Non Std Data Structure"
:rem "A Non Standard Data Structure is one which has not been fully and rigorously
documented and has not been designed to be used by multiple instances. Non Standard
Data Structures may also be referred to as Customised, Bespoke, Ad-hoc or unstructured ."

Level 2 Modules
Logic2
;;; Start Date: 20th Jan 2012
;;; Author: N Hastilow
;;; Other Contributors: Tish Chungoora

:Use MI

;;;==
;;;Competency Question 1a - Can it identify which systems wish to / need to interoperate?

295

;;;==

(=> (and (MI.System ?s1)
 (MI.System ?s2)
 (MI.Output ?o)
 (MI.Input ?i)
 (MI.hasOutput ?s1 ?o)
 (MI.hasInput ?s2 ?i)
 (= ?o ?i))
 (MI.interopsWith ?s1 ?s2))
:rem "If the output of one system is the input of another system the systems interoperate."

(=> (and(MI.hasInterface ?a ?b)
 (MI.hasInterface ?c ?d)
 (= ?b ?d))
 (MI.interopsWith ?a ?c))
:rem "If two things have the same interface they interoperate."

(=> (MI.analyses ?x ?y)
 (MI.interopsWith ?x ?y))
:rem "If something analyses something else they interoperate."

(=> (MI.informs ?x ?y)
 (MI.interopsWith ?x ?y))
:rem "If something informs something else they interoperate."

(=> (MI.mayAccess ?x ?y)
 (MI.interopsWith ?x ?y))

:rem "If something may access something else they interoperate."

