52,727 research outputs found

    Geophysical tests for habitability in ice-covered ocean worlds

    Get PDF
    Geophysical measurements can reveal the structure of icy ocean worlds and cycling of volatiles. The associated density, temperature, sound speed, and electrical conductivity of such worlds thus characterizes their habitability. To explore the variability and correlation of these parameters, and to provide tools for planning and data analyses, we develop 1-D calculations of internal structure, which use available constraints on the thermodynamics of aqueous MgSO4_4, NaCl (as seawater), and NH3_3, water ices, and silicate content. Limits in available thermodynamic data narrow the parameter space that can be explored: insufficient coverage in pressure, temperature, and composition for end-member salinities of MgSO4_4 and NaCl, and for relevant water ices; and a dearth of suitable data for aqueous mixtures of Na-Mg-Cl-SO4_4-NH3_3. For Europa, ocean compositions that are oxidized and dominated by MgSO4_4, vs reduced (NaCl), illustrate these gaps, but also show the potential for diagnostic and measurable combinations of geophysical parameters. The low-density rocky core of Enceladus may comprise hydrated minerals, or anydrous minerals with high porosity comparable to Earth's upper mantle. Titan's ocean must be dense, but not necessarily saline, as previously noted, and may have little or no high-pressure ice at its base. Ganymede's silicious interior is deepest among all known ocean worlds, and may contain multiple phases of high-pressure ice, which will become buoyant if the ocean is sufficiently salty. Callisto's likely near-eutectic ocean cannot be adequately modeled using available data. Callisto may also lack high-pressure ices, but this cannot be confirmed due to uncertainty in its moment of inertia

    A reconstruction of the multipreference closure

    Full text link
    The paper describes a preferential approach for dealing with exceptions in KLM preferential logics, based on the rational closure. It is well known that the rational closure does not allow an independent handling of the inheritance of different defeasible properties of concepts. Several solutions have been proposed to face this problem and the lexicographic closure is the most notable one. In this work, we consider an alternative closure construction, called the Multi Preference closure (MP-closure), that has been first considered for reasoning with exceptions in DLs. Here, we reconstruct the notion of MP-closure in the propositional case and we show that it is a natural variant of Lehmann's lexicographic closure. Abandoning Maximal Entropy (an alternative route already considered but not explored by Lehmann) leads to a construction which exploits a different lexicographic ordering w.r.t. the lexicographic closure, and determines a preferential consequence relation rather than a rational consequence relation. We show that, building on the MP-closure semantics, rationality can be recovered, at least from the semantic point of view, resulting in a rational consequence relation which is stronger than the rational closure, but incomparable with the lexicographic closure. We also show that the MP-closure is stronger than the Relevant Closure.Comment: 57 page

    Towards Closed World Reasoning in Dynamic Open Worlds (Extended Version)

    Full text link
    The need for integration of ontologies with nonmonotonic rules has been gaining importance in a number of areas, such as the Semantic Web. A number of researchers addressed this problem by proposing a unified semantics for hybrid knowledge bases composed of both an ontology (expressed in a fragment of first-order logic) and nonmonotonic rules. These semantics have matured over the years, but only provide solutions for the static case when knowledge does not need to evolve. In this paper we take a first step towards addressing the dynamics of hybrid knowledge bases. We focus on knowledge updates and, considering the state of the art of belief update, ontology update and rule update, we show that current solutions are only partial and difficult to combine. Then we extend the existing work on ABox updates with rules, provide a semantics for such evolving hybrid knowledge bases and study its basic properties. To the best of our knowledge, this is the first time that an update operator is proposed for hybrid knowledge bases.Comment: 40 pages; an extended version of the article published in Theory and Practice of Logic Programming, 10 (4-6): 547 - 564, July. Copyright 2010 Cambridge University Pres

    Analytic Scattering and Refraction Models for Exoplanet Transit Spectra

    Full text link
    Observations of exoplanet transit spectra are essential to understanding the physics and chemistry of distant worlds. The effects of opacity sources and many physical processes combine to set the shape of a transit spectrum. Two such key processes - refraction and cloud and/or haze forward scattering - have seen substantial recent study. However, models of these processes are typically complex, which prevents their incorporation into observational analyses and standard transit spectrum tools. In this work, we develop analytic expressions that allow for the efficient parameterization of forward scattering and refraction effects in transit spectra. We derive an effective slant optical depth that includes a correction for forward scattered light, and present an analytic form of this correction. We validate our correction against a full-physics transit spectrum model that includes scattering, and we explore the extent to which the omission of forward scattering effects may bias models. Also, we verify a common analytic expression for the location of a refractive boundary, which we express in terms of the maximum pressure probed in a transit spectrum. This expression is designed to be easily incorporated into existing tools, and we discuss how the detection of a refractive boundary could help indicate the background atmospheric composition by constraining the bulk refractivity of the atmosphere. Finally, we show that opacity from Rayleigh scattering and collision induced absorption will outweigh the effects of refraction for Jupiter-like atmospheres whose equilibrium temperatures are above 400-500 K.Comment: ApJ accepted; submitted Feb. 7, 201

    Higher-Order Contingentism, Part 1: Closure and Generation

    Get PDF
    This paper is a study of higher-order contingentism – the view, roughly, that it is contingent what properties and propositions there are. We explore the motivations for this view and various ways in which it might be developed, synthesizing and expanding on work by Kit Fine, Robert Stalnaker, and Timothy Williamson. Special attention is paid to the question of whether the view makes sense by its own lights, or whether articulating the view requires drawing distinctions among possibilities that, according to the view itself, do not exist to be drawn. The paper begins with a non-technical exposition of the main ideas and technical results, which can be read on its own. This exposition is followed by a formal investigation of higher-order contingentism, in which the tools of variable-domain intensional model theory are used to articulate various versions of the view, understood as theories formulated in a higher-order modal language. Our overall assessment is mixed: higher-order contingentism can be fleshed out into an elegant systematic theory, but perhaps only at the cost of abandoning some of its original motivations
    • …
    corecore