33 research outputs found

    Landsliding Pre-Warning System

    Get PDF
    In this project we have to study of landslide, it occurs naturally we can’t stop natural cause but we can alert the people. Due to landslide there will losses of human life and properties. This project present landslide alert system by using wireless sensors that transmitted by zigbee module from this we can alert the people. In this we used three sensors accelerometer sensor, water level sensor, temperature sensor. Accelerometer sensor is used to measure the slop of angle if there is any movement in landslide and we used water level sensor to collect the depth of water in land. Temperature sensor is used to check the change in temperature. This data is given to microcontroller it is used to read the measurement and display on LCD. GPS is used to give latitude and longitude all reading is given to transmitter zigbee. This information is transmitting to receiver zigbee which is display on LCD and buzzer will activate due to this we can alert people and save human life and properties. This is real time project to save the human life

    Design Dan Implementasi Wireless Sensor Network Pada Prototype Pendeteksian Material Galodo

    Get PDF
    Flash flood (debris flow) or people of Padang called  “galodo”  is one disaster that could threaten any time, especially at plateau with high rainfall. This study is an attempt to design prototype which is implemented to detect the content of the existing material in river flows due to “Galodo”. This research design and implement the wireless sensor network to transmit information or sensor output data and data receivers on prototype of “Galodo” material detection with laboratory testing scale. This system consist of a transmitter device that includes a sound sensor, Arduino Uno, and XBee S2, and a receiver that includes the XBee S2 and raspberry Pi as a database server. Data in data server are expected can distinguish the water in” Galodo” bring small material such as sand or larger or just contain of water. The information obtained display in graphic on the website to system data monitoring including time delay for sending data from transmitter to receiver

    Wireless Sensor Network for Landslide Monitoring in Nusa Tenggara Timur

    Get PDF
    Landslides in many regions constitute serious hazards that cause substantial life and financial losses. To overcome and reduce the damages, efforts to monitor landslides are developed. One such technology utilizes a wireless sensor network (WSN). Results obtained from studies conducted in the Ikanfoti village, Kupang District, Nusa Tenggara Timur (NTT) Province (S 10o16’ 21.9” and E 123o40’59.8”) as pilot project, give result that the application of WSN can be applied properly. We detect and measure vibrations caused by landslides by vibration sensor (accelerometer) on Micaz devices. The results of this study indicate that changes in accelerometer values ranging from 0.2 g (gravity) to 0.49 g of either the X or Y of accelerometer indicate that soil begins to move but not significantly. Value above 0.5 g is a value that indicating a significant change of ground motion. The value of 1 g and above of ground motion indicates a very strong activity and should be alarmed. It is expected that this research provides the foundation for the application of WSN in various areas in NTT Province and Indonesia in general, for establishing thorough and reliable early warning system (EWS)

    HOW CONSTRUCT A WLAN MULTI-DATA ACQUISITION SYSTEM BASED ON THE INTEGRATION OF ARDUINO AND NI-LABVIEW PLATFORMS FOR EDUCATIONAL APPLICATIONS

    Get PDF
    A construção de uma Rede Local Sem Fio (RLSF) com um Sistema de Aquisição de multi-Dados (SAD) para aplicações educacionais é relatado, onde um banco de dados para a intensidade da luz, temperatura e potencial elétrico de um painel fotovoltaico foi gerado. Os sinais analógicos de três diferentes sistemas de sensores/transdutores são recolhidos e enviados para um placa Arduino Uno Revisão 3. Os sinais analógicos são convertidos em dados digitais através de um código guardado no microprocessador Arduino e, em seguida, transmitido via Internet através da utilização da tecnologia sem fios suportada por um servidor Arduino Uno WiFi acoplada à placa Arduino Uno. Dados da Internet são adequadamente recuperados, armazenados em uma base de dados, e  apresentado continuamente pelo software NI-Labview desenvolvido. Esta ferramenta fornece o professor controle remoto e monitoramento de experimentos físicos desenvolvidos pelos alunos, e seria muito relevante em Educação a Distância (EaD) onde as aulas experimentais podem ser desenvolvidas pelo tutor e aquisição de dados remotamente monitorado em tempo real pelo decente.Es relatada la construcción de un sistema de adquisición de datos múltiples (DAS) con base en redes de área local inalámbrica (WLAN) para aplicaciones educativas, en el cual que se generó una base de datos para la intensidad luminosa, la temperatura y el potencial eléctrico de un panel fotovoltaico. Las señales analógicas procedentes de tres diferentes sistemas de sensores/transductores se recogen y se envían a una placa Arduino Uno Revisión 3. Las señales analógicas son convertidas a datos digitales a través de un código guardado en el microprocesador de la placa Arduino y luego se difunden pela Internet mediante el uso de la tecnología WLAN soportada por un servidor de internet en un shield WiFi compatible, acoplado con la placa Arduino Uno. Los datos de Internet se recuperan correctamente, se almacenan como una base de datos y se muestran continuamente a través de una aplicación de software desarrollada en NI-Labview. Esta herramienta provee al profesor de control remoto y monitoreo de los experimentos físicos desarrollados por los estudiantes, y sería muy relevante en la Educación a Distancia (DE) donde las clases experimentales pueden ser desarrolladas por el tutor y la adquisición de datos remotamente monitoreados en tiempo real por el profesor.The construction of a Wireless Local Area Network (WLAN) multi-Data Acquisition System (DAS) for educational applications is reported, were a database for light intensity, temperature and electric potential for a photovoltaic panel was generated. Analog signals from three different sensors/transducer systems are collected and sent to an Arduino Uno Revision 3 board. The analog signals are converted to digital data through a code saved on the Arduino microprocessor and then broadcasted to the internet by the use of the WLAN technology supported by an Arduino WiFi Shield server coupled to the Arduino Uno board. Data from the internet are properly retrieved, stored as a database, and continuously displayed by the development of a NI-Labview software application. This tool provides the teacher remote control and monitoring of physical experiments developed by students, and it would be very relevant in Distance Education (DE) where experimental classes can be developed by the tutor and the acquisition of data remotely monitored in real time by the teacher

    Measurement Design of Sensor Node for Landslide Disaster Early Warning System

    Get PDF
    Landslide is one of the most frequent disaster happened in Indonesia. It can occur due to some major factors, e.g.; high rainfall and soil moisture. In order to predict the occurrence of landslide disaster, data sensing system of these factors are acquired. A prototype of data acquisition is proposed. The prototype provides sensors for sensing of four parameters, which are MPU 6050 sensor, tipping bucket with reed switch, two of FC-28 humidity sensors, and 801s sensor, to measure slope, rainfall, moisture, and ground vibration, respectively. This system is also equipped with the process of data retrieval or log data in real-time with SD Card in the process directly and delivery via the server via SIM900. From the sensor test results, which are obtained from reading value of each sensor, the system shows low error values of 0.165, 0, 0, 0.39, and 0.71, for MPU6050, tipping bucket, 801S, and the two of FC-28 sensors, respectively

    The application of WiFi-based wireless sensor network (WSN) in hill slope condition monitoring

    Get PDF
    In this paper, a wireless sensor network for landslide monitoring (WSNLM) system is described. WSNLM utilized a wireless protocol which is 802.11g. The hardware structure of the WSNLM is discussed where the important parts had been discussed in details. In order to assess the susceptibility of a hill slope to landslide, several parameters had been considered for the network. The important factors that affect landslide is the ground status, which is soil moisture, vibration in the land and also soil temperature. Other factors that can relate to landslide is the environment of the surrounding such as air temperature, humidity and atmospheric pressure. The outputs from the ADXL335 accelerometer were used for slope angle measurement. The output of a vibration transducer was also used to monitor the hill slope. To account for the susceptibility of the hill slope to the land slide, safety factor value is calculated in real time. The outcomes show that the average moisture content in the soil is around 3% on a sunny day and the safety factor for a sunny day is around 75. The moisture content in the soil on a rainy day increases tremendously to more than 20%. At the same time, the safety factor drops to around 70. The system in this paper has the potential to be used as a useful tool for the detection of lanslides

    THE RESEACH ON WIRELESS SENSOR NETWORK FOR LANDSLIDE MONITORING

    Full text link

    Perancangan Sistem Komunikasi LoRa Untuk Deteksi Dini Tanah Longsor

    Get PDF
    Bencana alam longsor merupakan sebuah kejadian yang tidak dapat diprediksi waktu terjadinya. Dalam penelitian ini diharapkan dapat membangun sebuah sistem komunikasi berbasis teknologi LoRa (Long Range) yang mampu menyokong sebagai upaya untuk mengurangi potensi kerusakan dari bencana alam tanah longsor. Terdapat beberapa perameter yang perlu dipertimbangkan sebagai tolak ukur. Diantara lain yaitu yaitu RSSI (Received Signal Strength Indication), SNR (Signal-to-Noise Ratio), BER (Bit Error Rate) dan PDR (Packet Delivery Radio). Cara kerja perangkat yaitu sensor membaca data-data berupa perubahan posisi, kelembapan tanah dan curah hujan. Kemudian mengirimkannya dengan memanfaatkan teknologi LoRa dan ketika data-data tersebut diterima di sink, perangkat sink akan merekam data-data sensor sekaligus memonitoring nilai RSSI, SNR, PDR dan BER. Pada pengujiannya, node source 1 yang berjarak 300 meter saat cuaca cerah maupun hujan didapati nilai RSSI -100 ~ -109 dBm dan nilai SNR 6.75 ~ -6.7 dengan nilai PDR 100%, sedangkan pada node source 2 yang berjarak 600 meter saat cuaca cerah maupun hujan didapati nilai RSSI -97 ~ -109 dBm dan nilai SNR 8.5 ~ -11.75 dB dengan nilai PDR 70-100%. Perlu diperhatikan bahwa jumlah bit pada data sensor yang dikirim selalu lengkap. Hal ini dibuktikan melalui nilai BER yang selalu 0 pada kedua node source
    corecore