8 research outputs found

    WOUND HEALING CONCEPTS: CONTEMPORARY PRACTICES AND FUTURE PERSPECTIVES

    Get PDF
    The advancements in the development of wound dressings have seen tremendous growth in the past few decades. Wound healing approach has majorly shifted from dry healing to moist healing. There has been a significant advancement in our understanding of the underlying physiology involved in wound healing and the associated systemic factors having a direct or indirect influence on the healing. This has resulted in the development of wound dressings designed to treat specific types of wounds. The present review discusses the physiology of wound healing, followed by different factors that contribute to healing. The advancements in wound dressings with their merits and limitations, newer approaches in wound care i.e., hyperbaric oxygen, negative pressure therapy, skin substitutes and role of growth factors in wound healing, have been highlighted. In addition, more recent approaches for effective wound care like smart devices with sensing, reporting and responding functions are discussed

    Smart bandage with wireless strain and temperature sensors and battery-less NFC tag

    Get PDF
    This paper presents a smart bandage with wireless strain and temperature sensors and a battery-less Near Field Communication tag. Both sensors are based on conductive poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer. The highly sensitive strain sensor consists of a microfluidic channel filled with PEDOT:PSS in Polydimethylsiloxane (PDMS) substrate. The strain sensor shows 3 order ( 1250) increase in the resistance for 10% strain and considerably high gauge factor of 12500. The sensor was tested for 30% strain, which is more than typical stretching of human skin or body parts such as chest expansion during respiration. The strain sensor was also tested for different bending and the electrical resolution was 150% per degree of free bending and 12k% per percentage of stretching. The resistive temperature sensor, fabricated on a Polyvinyl Chloride (PVC) substrate, showed a 60% decrease in resistance when the temperature changed from 25.C to 85.C and a sensitivity of 1% per.C. As a proof of concept, the sensors and NFC tag were integrated on wound dressing to obtain wearable systems with smart bandage form-factor. The sensors can be operated and read from distance of 25 mm with a user-friendly smartphone application developed for powering the system as well as real-time acquisition of sensors data. Finally, we demonstrate the potential use of smart bandage in healthcare applications such as assessment of wound status or respiratory diseases such as asthma and COVID-19, where monitoring via wearable strain (e.g., respiratory volume) and temperature sensors is critical

    Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications

    Get PDF
    © 2020 Elsevier B.V. 4D printing is an emerging field in additive manufacturing of time responsive programmable materials. The combination of 3D printing technologies with materials that can transform and possess shape memory and self-healing capabilities means the potential to manufacture dynamic structures readily for a myriad of applications. The benefits of using multifunctional materials in 4D printing create opportunities for solutions in demanding environments including outer space, and extreme weather conditions where human intervention is not possible. The current progress of 4D printable smart materials and their stimuli-responsive capabilities are overviewed in this paper, including the discussion of shape-memory materials, metamaterials, and self-healing materials and their responses to thermal, pH, moisture, light, magnetic and electrical exposures. Potential applications of such systems have been explored to include advancements in health monitoring, electrical devices, deployable structures, soft robotics and tuneable metamaterials

    Digital and Analog Computing Paradigms in Printed Electronics

    Get PDF
    Da das Ende von Moore\u27s Gesetz schon absehbar ist, müssen neue Wege gefunden werden um den innovationsgetriebenen IT-Markt mit neuartiger Elektronik zu sättigen. Durch den Einsatz von kostengünstiger Hardware mit flexiblem Formfaktor, welche auf neuartigen Materialien und Technologien beruhen, können neue Anwendungsbereiche erschlossen werden, welche über konventionelle siliziumbasierte Elektronik hinausgehen. Im Fokus sind hier insbesondere elektronische Systeme, welche es ermöglichen Konsumgüter für den täglichen Bedarf zu überwachen - z.B. im Zusammenhang einer Qualitätskontrolle - indem sie in das Produkt integriert werden als Teil einer intelligenten Verpackung und dadurch nur begrenzte Produktlebenszeit erfordern. Weitere vorhersehbare Anwendungsbereiche sind tragbare Elektronik oder Produkte für das "Internet der Dinge". Hier entstehen Systemanforderungen wie flexible, dehnbare Hardware unter Einsatz von ungiftigen Materialien. Aus diesem Grund werden additive Technologien herangezogen, wie zum Beispiel gedruckte Elektronik, welche als komplementär zu siliziumbasierten Technologien betrachtet wird, da sie durch den simplen Herstellungsprozess sehr geringe Produktionskosten ermöglicht, und darüber hinaus auf ungiftigen und funktionalen Materialien basiert, welche auf flexible Plastik- oder Papiersubstrate aufgetragen werden können. Unter den verschiedenen Druckprozessen ist insbesondere der Tintenstrahldruck für zukünftige gedruckte Elektronikanwendungen interessant, da er eine Herstellung vor Ort und nach Bedarf ermöglicht auf Grund seines maskenlosen Druckprozesses. Da sich jedoch die Technologie der Tintenstrahl-druckbaren Elektronik in der Frühphasenentwicklung befindet, ist es fraglich ob Schaltungen für zukünftige Anwendungsfelder überhaupt entworfen werden können, beziehungsweise ob sie überhaupt herstellbar sind. Da die laterale Auflösung von Druckprozessen sich um mehrere Größenordnungen über siliziumbasierten Herstellungstechnologien befindet und des Weiteren entweder nur p- oder n-dotierte Transistoren verfügbar sind, können existierende Schaltungsentwürfe nicht direkt in die gedruckte Elektronik überführt werden. Dies führt zu der wissenschaftlichen Fragestellung, welche Rechenparadigmen überhaupt sinnvoll anwendbar sind im Bereich der gedruckten Elektronik. Die Beantwortung dieser Frage wird Schaltungsdesignern in der Zukunft helfen, erfolgreich gedruckte Schaltungen für den sich rasch entwickelnden Konsumgütermarkt zu entwerfen und zu produzieren. Aus diesem Anlass exploriert diese Arbeit verschiedene Rechenparadigmen und Schaltungsentwürfe, welche als essenziell für zukünftige, gedruckte Systeme betrachtet werden. Die erfolgte Analyse beruht auf der recht jungen "Electrolyte-gated Transistor" (EGT) Technologie, welche auf einem kostengünstigen Tintenstrahldruckverfahren basiert und sehr geringe Betriebsspannungen ermöglicht. Da bisher nur einfache Logik-Gatter in der EGT-Technologie realisiert wurden, wird in dieser Arbeit der Entwurfsraum weiter exploriert, durch die Entwicklung von gedruckten Speicherbausteinen, Lookup Tabellen, künstliche Neuronen und Entscheidungsbäume. Besonders bei dem künstlichen Neuron und den Entscheidungsbäumen wird Bezug auf Hardware-Implementierungen von Algorithmen des maschinellen Lernens gemacht und die Skalierung der Schaltungen auf die Anwendungsebene aufgezeigt. Die Rechenparadigmen, welche in dieser Arbeit evaluiert wurden, reichen von digitalen, analogen, neuromorphen Berechnungen bis zu stochastischen Verfahren. Zusätzlich wurden individuell anpassbare Schaltungsentwürfe untersucht, welche durch das Tintenstrahldruckverfahren ermöglicht werden und zu substanziellen Verbesserungen bezüglich des Flächenbedarfs, Leistungsverbrauch und Schaltungslatenzen führen, indem variable Entwurfsparameter in die Schaltung fest verdrahtet werden. Da die explorierten Schaltungen die Komplexität von bisher hergestellter, gedruckter Hardware weit übertreffen, ist es prinzipiell nicht automatisch garantiert, dass sie herstellbar sind, was insbesondere die nicht-digitalen Schaltungen betrifft. Aus diesem Grund wurden in dieser Arbeit EGT-basierte Hardware-Prototypen hergestellt und bezüglich Flächenbedarf, Leistungsverbrauch und Latenz charakterisiert. Die Messergebnisse können verwendet werden, um eine Extrapolation auf komplexere anwendungsbezogenere Schaltungsentwürfe durchzuführen. In diesem Zusammenhang wurden Validierungen von den entwickelten Hardware-Implementierungen von Algorithmen des maschinellen Lernens durchgeführt, um einen Wirksamkeitsnachweis zu erhalten. Die Ergebnisse dieser Thesis führen zu mehreren Schlussfolgerungen. Zum ersten kann gefolgert werden, dass die sequentielle Verarbeitung von Algorithmen in gedruckter EGT-basierter Hardware prinzipiell möglich ist, da, wie in dieser Arbeit dargestellt wird, neben kombinatorischen Schaltungen auch Speicherbausteine implementiert werden können. Letzteres wurde experimentell validiert. Des Weiteren können analoge und neuromorphe Rechenparadigmen sinnvoll eingesetzt werden, um gedruckte Hardware für maschinelles Lernen zu realisieren, um gegenüber konventionellen Methoden die Komplexität von Schaltungsentwürfen erheblich zu minimieren, welches schlussendlich zu einer höheren Produktionsausbeute im Herstellungsprozess führt. Ebenso können neuronale Netzwerkarchitekturen, welche auf Stochastic Computing basieren, zur Reduzierung des Hardwareumfangs gegenüber konventionellen Implementierungen verwendet werden. Letztlich kann geschlussfolgert werden, dass durch den Tintenstrahldruckprozess Schaltungsentwürfe bezüglich Kundenwünschen während der Herstellung individuell angepasst werden können, um die Anwendbarkeit von gedruckter Hardware generell zu erhöhen, da auch hier geringerer Hardwareaufwand im Vergleich zu konventionellen Schaltungsentwürfen erreicht wird. Es wird antizipiert, dass die in dieser Thesis vorgestellten Forschungsergebnisse relevant sind für Informatiker, Elektrotechniker und Materialwissenschaftler, welche aktiv im Bereich der druckbaren Elektronik arbeiten. Die untersuchten Rechenparadigmen und ihr Einfluss auf Verhalten und wichtige Charakteristiken gedruckter Hardware geben Einblicke darüber, wie gedruckte Schaltungen in der Zukunft effizient umgesetzt werden können, um neuartige auf Druckverfahren-basierte Produkte im Elektronikbereich zu ermöglichen

    Towards Stable Electrochemical Sensing for Wearable Wound Monitoring

    Get PDF
    Wearable biosensing has the tremendous advantage of providing point-of-care diagnosis and convenient therapy. In this research, methods to stabilize the electrochemical sensing response from detection of target biomolecules, Uric Acid (UA) and Xanthine, closely linked to wound healing, have been investigated. Different kinds of materials have been explored to address such detection from a wearable, healing platform. Electrochemical sensing modalities have been implemented in the detection of purine metabolites, UA and Xanthine, in the physiologically relevant ranges of the respective biomarkers. A correlation can be drawn between the concentrations of these bio-analytes and wound severity, thus offering probable quantitative insights on wound healing progression. These insights attempt to contribute in reducing some impacts of the financial structure on the healthcare economy associated with wound-care. An enzymatic electrochemical sensing system was designed to provide quick response at a cost-effective, miniaturized scale. Robust enzyme immobilization protocols have assisted in preserving enzyme activity to offer stable response under relevant variations of temperature and pH, from normal. Increased hydrophilicity of the sensor surface using corona plasma, has assisted in improving conductivity, thus allowing for increased electroactive functionalization and loading across the substrate’s surface. Superior sensor response was attained from higher loading of nanomaterials (MWCNT/AuNP) and enzymes (UOx/XO) employed in detection. Potentiometric analyses of the nanomaterial modified enzymatic biosensors were conducted using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) modalities. Under relevant physiological conditions, the biosensor was noted to offer a variation in response between 10 % and 30 % within a week. Stable, reproducible results were obtained from repeated use of the biosensor over multiple days, also offering promise for continuous monitoring. Shelf life of the biosensor was noted to be more than two days with response retained by about 80 % thereafter. Secondary analyses have been performed utilizing the enzymatic biosensor to explore the feasibility of target biomarker detection from clinical extracts of different biofluids for wound monitoring. Biosensor response evaluation from the extracts of human wound exudate, and those obtained from perilesional and healthy skin, provided an average recovery between 107 % and 110 % with a deviation within (+/-) 6 %. Gradual decrease in response (10-20 %) was noted in detection from extracts further away from injury site. Increased accumulation of biofluids on the sensor surface was studied to explore sensor response stability as a function of sample volume. With a broad linear range of detection (0.1 nM – 7.3 mM) and detection limits lower than the physiological concentrations, this study has assessed the viability of stable wound monitoring under physiologically relevant conditions on a wearable platform

    Development of Solution Blow Spun Nanofibers as Electrical and Whole Cell Biosensing Interfaces

    Get PDF
    Infectious pathogens place a huge burden on the US economy with more than $120 billion spent annually for direct and indirect costs for the treatment of infectious diseases. Rapid detection schemes continue to evolve in order to meet the demand of early diagnosis. In chronic wound infections, bacterial load is capable of impeding the healing process. Additionally, bacterial virulence production works coherently with bacterial load to produce toxins and molecules that prolongs the healing cycle. This work examines the use of nonwoven polymeric conductive and non-conductive nanofiber mats as synthetic biosensor scaffolds, drug delivery and biosensor interface constructs. A custom-made nanofiber platform was built to produce solution blow spun nanofibers of various polymer loading. Antimicrobial nanofiber mats were made with the use of an in-situ silver chemical reduction method. Ceria nanoparticles were incorporated to provide an additional antioxidative property. Conductivity properties were examined by using silver and multi-walled carbon nanotubes (MWCNT) as a filler material. SBS parameters were adjusted to analyze electrical conductivity properties. Nanofiber mats were used to detect bacteria concentrations in vitro. Protein adhesion to conductive nanofibers was studied using fluorescent antibodies and BCA assay. Anti-rabbit and streptavidin Alexa Flour 594 was used to examine the adsorption properties of SBS nanofiber mats. Enhancements were made to further improve interface design for specificity. SBS nanofiber electrodes were fabricated to serve as scaffold and detection site for spike protein detection. Bacteria virulence production was examined by the detection of pyocyanin and quorum sensing molecules. The opportunistic pathogen, Pseudomonas aeruginosa is a nosocomial iii pathogen found in immunocompromised patients with such as those with chronic wounds and cystic fibrosis. Pyocyanin is one of four quorum sensing molecules that the pathogen produces which can be detected electrochemically due to its inherent redox-active activity. SBS has been used to develop a sensing scheme to detect pyocyanin. This work also examines the use of a synthetic biosensor with a LasR based system capable of detecting homoserine lactone produced by P. aeruginosa and other common gram-negative pathogens. Genetic modifications were made to biosensor in order to replace a green, fluorescent reporter with a chromoprotein based reporter system for visual readout. Additionally, work related to community service and outreach regarding the encouragement of middle school students to pursue Science, Technology, Engineering and Math (STEM) was conducted. Results from outreach program showed an increase in the STEM interest among a group of middle school students. There was a general trend with STEM career knowledge, STEM self-efficacy and the level of interest in STEM careers and activities. Military research was also done with the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) to develop several assays for the detection of several highly infectious viruses and bacteria. Due to confidentiality, the work cannot be published in this manuscript
    corecore