7,495 research outputs found

    Model-based Aeroservoelastic Design and Load Alleviation of Large Wind Turbine Blades

    No full text
    This paper presents an aeroservoelastic modeling approach for dynamic load alleviation in large wind turbines with trailing-edge aerodynamic surfaces. The tower, potentially on a moving base, and the rotating blades are modeled using geometrically non-linear composite beams, which are linearized around reference conditions with arbitrarily-large structural displacements. Time-domain aerodynamics are given by a linearized 3-D unsteady vortexlattice method and the resulting dynamic aeroelastic model is written in a state-space formulation suitable for model reductions and control synthesis. A linear model of a single blade is used to design a Linear-Quadratic-Gaussian regulator on its root-bending moments, which is finally shown to provide load reductions of about 20% in closed-loop on the full wind turbine non-linear aeroelastic model

    Bayesian spline method for assessing extreme loads on wind turbines

    Get PDF
    This study presents a Bayesian parametric model for the purpose of estimating the extreme load on a wind turbine. The extreme load is the highest stress level imposed on a turbine structure that the turbine would experience during its service lifetime. A wind turbine should be designed to resist such a high load to avoid catastrophic structural failures. To assess the extreme load, turbine structural responses are evaluated by conducting field measurement campaigns or performing aeroelastic simulation studies. In general, data obtained in either case are not sufficient to represent various loading responses under all possible weather conditions. An appropriate extrapolation is necessary to characterize the structural loads in a turbine's service life. This study devises a Bayesian spline method for this extrapolation purpose, using load data collected in a period much shorter than a turbine's service life. The spline method is applied to three sets of turbine's load response data to estimate the corresponding extreme loads at the roots of the turbine blades. Compared to the current industry practice, the spline method appears to provide better extreme load assessment.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS670 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Model predictive control of trailing edge flaps on a wind turbine blade

    Get PDF

    Microtab dynamic modelling for wind turbine blade load rejection

    Get PDF
    A dynamic model characterising the effect of microtab deployment on the aerodynamics of its base aerofoil is presented. The developed model predicts the transient aerodynamic coefficients consistent with the experimental and computational data reported in the literature. The proposed model is then used to carry out investigation on the effectiveness of microtabs in load alleviation and lifespan increase of wind turbine blades. Simulating a bang–bang controller, different load rejection scenarios are examined and their effect on blade lifespan is investigated. Results indicate that the range of frequencies targeted for rejection can significantly impact the blade fatigue life. Case studies are carried out to compare the predicted load alleviation amount and the blade lifespan using the developed model with those obtained by other researchers using the steady state model. It is shown that the assumption of an instantaneous aerodynamic response as used in the steady state model can lead to inaccurate results

    Hysteresis-based design of dynamic reference trajectories to avoid saturation in controlled wind turbines

    Get PDF
    The main objective of this paper is to design a dynamic reference trajectory based on hysteresis to avoid saturation in controlled wind turbines. Basically, the torque controller and pitch controller set-points are hysteretically manipulated to avoid saturation and drive the system with smooth dynamic changes. Simulation results obtained from a 5MW wind turbine benchmark model show that our proposed strategy has a clear added value with respect to the baseline controller (a well-known and accepted industrial wind turbine controller). Moreover, the proposed strategy has been tested in healthy conditions but also in the presence of a realistic fault where the baseline controller caused saturation to nally conduct to instability.Peer ReviewedPostprint (author's final draft

    Model Predictive Control of Wind Turbines

    Get PDF

    Real-time predictive maintenance for wind turbines using Big Data frameworks

    Full text link
    This work presents the evolution of a solution for predictive maintenance to a Big Data environment. The proposed adaptation aims for predicting failures on wind turbines using a data-driven solution deployed in the cloud and which is composed by three main modules. (i) A predictive model generator which generates predictive models for each monitored wind turbine by means of Random Forest algorithm. (ii) A monitoring agent that makes predictions every 10 minutes about failures in wind turbines during the next hour. Finally, (iii) a dashboard where given predictions can be visualized. To implement the solution Apache Spark, Apache Kafka, Apache Mesos and HDFS have been used. Therefore, we have improved the previous work in terms of data process speed, scalability and automation. In addition, we have provided fault-tolerant functionality with a centralized access point from where the status of all the wind turbines of a company localized all over the world can be monitored, reducing O&M costs

    Wind Turbine Control: Robust Model Based Approach

    Get PDF
    • 

    corecore