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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science, the Technical University of Denmark (DTU) in partial fulfill-
ment of the requirements for acquiring the PhD degree in engineering. The
work has been supervised by Associate Professor Niels Kjølstad Poulsen from
the Department of Applied Mathematics and Computer Science, the Techni-
cal University of Denmark and Associate Professor Hans Henrik Niemann from
the Department of Electrical Engineering, the Technical University of Denmark.
The project was funded by the Danish Agency for Science, Technology and In-
novation through the “Concurrent Aero-Servo-Elastic Analysis and Design of
Wind Turbines” project.

The thesis deals with model based and robust model based control of wind
turbines.

The thesis consists of a summary report and nine research papers, written during
the period August 2009 to August 2012. Six of the research papers are published
in international peer-reviewed scientific conferences and two are submitted to
international peer-reviewed scientific journals.

Lyngby, 24-September-2012

Mahmood Mirzaei
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Summary (English)

In the 1970s the oil price crisis encouraged investigation of non-petroleum en-
ergy sources of which wind energy was the most promising one. Lately global
warming concerns have even intensified the demand for green and sustainable
energy resources and opened up several lines of research in this area. Wind
turbines are the most common wind energy conversion systems and are hoped
to be able to compete economically with fossil fuel power plants in near future.
However this demands better technology to reduce the price of electricity pro-
duction. Control can play an essential part in this context. This is because, on
the one hand, control methods can decrease the cost of energy by keeping the
turbine close to its maximum efficiency. On the other hand, they can reduce
structural fatigue and therefore increase the lifetime of the wind turbine.

The power produced by a wind turbine is proportional to the square of its rotor
radius, therefore it seems reasonable to increase the size of the wind turbine in
order to capture more power. However as the size increases, the mass of the
blades increases by cube of the rotor size. This means in order to keep structural
feasibility and mass of the whole structure reasonable, the ratio of mass to size
should be reduced. This trend results in more flexible structures.

Control of the flexible structure of a wind turbine in a wind field with stochastic
nature is very challenging. In this thesis we are examining a number of robust
model based methods for wind turbine control. Firstly we examine potentials of
µ-synthesis methods and use µ-tools to analyze robustness of the resulting con-
trollers both in terms of robust stability and robust performance. Afterwards
we employ model predictive control (MPC) and show that the way MPC solves
control problems suits wind turbine control problems very well, especially when
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we have preview measurements of wind speed using LIDARs. For the control
problem with LIDAR measurements we have proposed a new MPC approach
which gives better results than linear MPC while it has almost the same com-
putational complexity. We have also tackled wind turbine control using robust
MPC. In general, robust MPC problems are very computationally demanding,
however we have shown that with some approximations the resulting robust
MPC problem can be specialized with reduced computational complexity.

After a short introduction on wind energy and wind turbines in chapter 1, we
briefly explain wind turbine modeling in chapter 2. Introductions to different
control design methods are given in chapter 3. The goal of this chapter is to show
how different control methods are chosen. The next eight chapters comprise the
body of the thesis and are scientific papers that are published or going to be
published. Control methods which were briefly introduced in chapter 3 are
explained in these chapters in details.



Summary (Danish)

Siden energikrisen i 1972 har der været en stigende interesse i at udnytte energi-
resourser, der ikke er baseret på olie. Vindenergi er en af de mest lovende. Senere
har bekymringen for global opvarmning øget interessen for grøn og vedvarende
energi. Dette har intensiveret forskningen indenfor dette område. Vindmøller er
klart de mest dominerende energisystemer indenfor vedvarende energi og håbet
er at de indenfor den nærmeste fremtid kan konkurrere økonomisk med kraftvær-
ker baseret på fossile brandstof. Dette kræver imidlertid en forbedret teknologi
for at reducere omkostningerne ved produktionen af elektrisk energi. Regulering
kan spille en central rolle i den forbindelse. Dette skyldes først og fremmest at
reguleringen kan reducere produktions omkostningerne ved at vindmøllerne kø-
res mere effektivt. Dernæst kan reguleringen reducere udmattelses af strukturen
såsom tårn og blade og derved forøge vindmøllers levetid.

En vindmølles effektproduktion er groft sagt proportional med kvadratet af
rotorens radius. Det virker derfor fornuftigt at øge størrelsen af vindmøllerne
for at øge effektproduktionen. Desværre bliver bladenes vægt også forøget og
med kubus af rotorradius. For at modvirke dette forhold må strukturen gøres
lettere og med det resultat at strukturen bliver mere fleksibel.

Regulering af vindmøllers fleksible struktur i et stokastisk vind felt er meget
udfordrende. I denne afhandling er der fokuseret på en række forskellige robu-
ste og modelbaseret metoder til regulering af vindmøller. Først er mu-syntese
metoder egenskaber undersøgt i forbindelse med robust stabilitet og robust per-
formance. Derefter er MPC regulatorer undersøgt i forbindelse med regulering
af vindmøller. Disse giver gode resultater, specielt når der indgår målinger af
vindhastigheden med LIDAR. En LIDAR baseret MPC regulering er bedre end
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en linear MPC, mens den ikke kræver væsentlig mere regnekraft. En tredje type
regulering er baseret på robust MPC regulering. Generelt er disse meget kræ-
vende mht. regnekraft. I afhandlingen er der undersøgt approksimationer, der
resulterer i robuste MPC regulatorer, som ikke er så krævende mht. regnekraft.

Efter en kort introduktion om vind energi og vindmøller i kapitel 1 er der i
kapitel 2 givet en kort beskrivelse af modeller for vindmøller. Kapitel 3 vedrører
forskellige metoder til design af regulatorer. Målsætningen med dette kapitel er
at give en kort indføring, hvordan forskellige reguleringsformer kan vælges. De
efterfølgende 9 kapitler udgør afhandlingens hoveddel og består af artikler, der
er publiceret eller vil blive publiceret. Metoder, der er introduceret i kapitel 3,
er gennemgået i detaljer her.
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2 Introduction

Figure 1.1: Early Persian wind mill

1.1 Wind Energy

Wind energy or kinetic energy in the wind is due to mass movement of the
air which itself is a result of temperature difference between two neighboring
regions. This temperature difference is caused by differential heating of the sun.
Wind energy has been used for hundreds of years in sailboats and sail ships. It
has also been used for milling grains and pumping water around the world. The
earliest proved historical records show that Persians were among the first people
who employed wind energy to mill grains. Figure 1.1 shows an illustration of
an early vertical axis Persian mill. This type of wind mill employs drag force
to extract power from wind. Later on in Europe more efficient wind mills were
invented which employed lift force instead. The concepts of lift and drag forces
will be explained shortly.

Using wind energy to produce electricity goes back to 1888 when Charles F.
Brush from Ohio, the United States, invented the first automatically operated
wind turbine. In the 1890s, the Danish scientist and inventor Poul la Cour
constructed wind turbines to generate electricity. He used the generated power
for electrolysis and stored the produced hydrogen and oxygen mixture to use
as a fuel. La Cour was the first to discover that fast rotating wind turbines
with fewer rotor blades are more efficient than other designs. However it was
in the 1970s when the oil price crisis encouraged investigation of non-petroleum
energy sources of which wind energy was the most promising one. Lately global
warming concerns have even intensified the demand for green and sustainable
energy resources and opened up several lines of research in this area. In the next
section we will give a short introduction to wind energy conversion systems.
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1.1.1 The Wind

In order to harvest the wind energy efficiently we need to understand its nature.
According to van der Hoven [vdH57], the concentration of energy around two
separated frequencies in wind power spectrum allows splitting the wind speed
signal into two main components:

v = vm + vt (1.1)

vm is quasi-steady and it is called mean wind speed and vt is the turbulent term
in the wind speed. vm could be found by averaging wind speed over a sufficiently
long period of time:

vm(t) =
1

T

∫ t+T/2

t−T/2
v(τ)dτ (1.2)

The probability distribution of the mean wind speed follows a Weibull distri-
bution and knowledge about this distribution determines economical viability
of wind energy projects at a specific site [Bur11]. The Weibull distribution of
mean wind speed is:

p(vm) =
k

C

(vm
C

)k−1

e(−vm/C)k (1.3)

In which k and C are the shape and scale coefficients, respectively. They are
adjusted such that the distribution matches data at a particular site [WJ97]. In
this work we assume the mean wind speed to be constant since the simulation
periods are at the scale of hundreds of seconds.

The turbulent term of the wind speed vt can be modeled as a complicated
nonlinear stochastic process. However for practical control purposes it could be
approximated by a linear model [JLSM06]. More details will be given in the
section for modeling the wind in 2.2.1.

The wind equation presented in 1.1 gives the model of a point wind speed,
however wind speed has different values over the rotor disc of a wind turbine.
The whole wind profile over the rotor disc could be considered as a set of point
wind speeds. The point wind speed has both spatial stochastic and deterministic
components. The deterministic changes of wind speed over the rotor disc is due
to wind shear and tower shadow. Skin friction of the Earth causes a decrease
in mean wind speed as the height decreases. This phenomena is known as wind
shear. Towers are obstacles in the wind inflow, therefore they reduce the inflow
normal to the rotor plane. This wind speed reduction is felt by blades when
passing the tower. This phenomena is called tower shadow.
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Figure 1.2: Illustration of lift and drag forces on an airfoil

Considering a full field wind speed makes controller design complicated. If
pitch of the blades are not adjusted individually, which is called individual pitch
control (IPC), there is no need for this level of complexity in wind modeling and
we can approximate the effect of the whole full field wind speed on the rotor with
a single wind speed called effective wind speed (ve). Hereafter we use effective
wind speed in our designs and simulations unless otherwise stated.

1.2 Wind Energy Conversion Systems

A system that transforms kinetic energy of the wind to useful work is a wind
energy conversion system (WECS). Different types of WECS have been invented
such as wind turbines, laddermills [Ock01] and power kites [CFM10] of which
only the technology of the wind turbines is mature enough to produce large
scale power.

When air is blowing past the surface of a body, it exerts a surface force on the
body. Lift is the component of this force that is perpendicular to the oncoming
flow direction and drag is the component which is parallel to it. Lift and drag
forces on an airfoil are shown in figure 1.2. Lift and drag forces are used in
WECS to convert kinetic energy in the wind to mechanical energy. Different
WECS employ these forces differently. For example in wind turbines these forces
are applied on blades which cause them to rotate around an axis and to produce
mechanical energy. Next section gives more details.
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Figure 1.3: A horizontal axis wind turbine (HAWT)

1.3 Introduction to Wind Turbines

As mentioned earlier nowadays wind turbine technology is the only mature tech-
nology which is being used to produce economical electricity from wind energy.
Based on the orientation of the rotation axis, wind turbines can be catego-
rized into vertical axis and horizontal axis machines. As the names suggest, the
blades of vertical axis and horizontal axis turbines rotate around the axes which
are place vertically and horizontally, respectively. Horizontal axis wind turbines
(HAWTs) have several advantages over vertical axis ones which make them more
common in practice [Bur11]. Among all types of HAWTs, Danish concept is the
most popular wind turbine. The Danish concept is a horizontal axis fixed speed
wind turbine with three blades. The turbine is connected directly to the utility
grid. The Danish concept was dominating the wind turbine industry until new
advances in power electronics made it possible to have variable rotor rotational
speeds. Different parts of a three bladed HAWT could be seen in figure 1.3.
Nacelle is a cubicle which holds the hub and houses the gearbox and the gen-
erator. It is placed on top of a tall and normally cylindrical tower where there
is more wind with less turbulence. In this type, blades are connected to the
low speed shaft through hub. In order to always stay facing the coming wind,
there is a mechanism called yawing system that rotates the nacelle on top of
the tower. Wind turbine blades have a specific aerodynamic design to produce
maximum power. In the next section we will give an overview of wind turbine
aerodynamics.
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1.3.1 Wind turbine aerodynamics

Wind turbines interact with wind and capture part of its kinetic energy and
convert it to mechanical work. The mechanical work is subsequently converted
to electrical power. Wind turbines are aerodynamically designed such that the
conversion from kinetic energy of wind to mechanical work is maximized. Aero-
dynamics of wind turbines explain how airflow develops forces on wind turbine
rotor. There are several methods to explain this phenomena [Bur11], however
we use two methods here which are the simplest ones and can explain aerody-
namics at an acceptable yet simple level for controller design. These methods
are the actuator disc model [Bur11] and the blade element momentum theory
[Han08].

1.3.1.1 Actuator disc model

In the actuator disc model, the turbine rotor is considered as an actuator disc,
which is a generic device that extracts energy from the wind. Here we skip the
mathematics which could be found in [Bur11] and [BBM06] and just mention
that using the actuator disc model we can get an upper bound on the wind
power conversion efficiency known as the Betz limit.

1.3.1.2 Blade element momentum theory

In order to find mathematical model of a wind turbine we need to calculate
aerodynamic torque (Qa) and thrust (Qt) as functions of the wind speed (ve),
the rotational speed of the rotor (ωr) and the pitch angle of the blades (β). The
aerodynamic torque is the result of the in-plane aerodynamic forces applied to
the rotor elements. The aerodynamic torque rotates the rotor and produces
power. The aerodynamic thrust is the normal force that is exerted on the
rotor plane and subsequently on the whole turbine structure. To calculate these
forces we divide a whole blade into infinitesimal length elements (see figure
1.4). Each element is an airfoil and having its characteristics (namely lift and
drag coefficients which for a specific airfoil are given as functions of angle of
attack), we are able to calculate lift and drag forces on the airfoil. Blade element
momentum (BEM) theory is used to calculate lift and drag forces as quasi-steady
functions of wind speed, pitch of the blades and rotational speed of the rotor.
The lift and drag forces subsequently could be used to calculate aerodynamic
torque and thrust on the rotor. After calculating torque and thrust of one
element, we integrate over all the blade elements from hub to the tip of the
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Figure 1.4: A blade element in BEM calculations

blades.

Qt =

∫ R

rh

qt(r)dr Aerodynamic thrust (1.4)

Qa =

∫ R

rh

qa(r)dr Aerodynamic torque (1.5)

In which qa(r) and qt(r) are torque and normal force to the blade elements,
respectively. rh and R are the hub and rotor radius. We skip the mathematics
here and refer the interested reader to [Han08]. Calculating these quantities
using BEM results in the following equations for aerodynamic torque and thrust:

Qt =
1

2
ρπR2Ct(λ, β)v2

e (1.6)

Qa =
1

2
ρπR3Cq(λ, β)v2

e (1.7)

Thereafter power is calculated as:

Pr = Cp(λ, β)Pv =
1

2
ρπR2Cq(λ, β)v3

e (1.8)

In which:

Cp(λ, β) = Cq(λ, β)λ =
Converted power

Available power in the wind (in πR2)
(1.9)
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Figure 1.5: Cp curve (left) and Ct curve (right)

Therefore aerodynamic torque in terms of Cp(λ, β) could be written as:

Qa =
1

2ω
ρπR2Cp(λ, β)v3

e (1.10)

where ρ is the air density, R is the rotor radius, Cq, Cp and Ct are torque, power
and thrust coefficients, respectively. These coefficients are calculated using BEM
and the results are stored in look-up tables which are functions of θ (collective
pitch of the blades) and λ (tip speed ratio). Tip speed ratio (TSR) is defined as
λ = Rω/ve in order to simplify mathematical formulations. A sample Cp and
Ct are shown in figure 1.5.

1.4 Wind Turbine Control

In this section we will review control of wind turbines. First we will give a
short description of what wind turbine control means and what our manipu-
lating variables are for controlling such system. Afterward, control objectives
will be discussed and we will explain how these objectives are mathematically
formulated in different control methods. Later on, we will explain wind tur-
bine control challenges (from a control engineer’s point of view) and discuss
limitations of performance in control systems and show how performance of
wind turbine control could be limited. Then, different modes of operation for
a turbine will be explained. Control variables and objectives are different for
these modes of operation. Finally, different wind turbine types (with respect to
control variables) are described in 1.4.4 and 1.4.5.



1.4 Wind Turbine Control 9

1.4.1 What does wind turbine control mean?

Wind turbines are essentially flexible structures in stochastic wind and we expect
them to produce maximum power as long as the wind speed is below the rated
value, and regulate their outputs, namely the rotational speed of the rotor and
the generated power, when the wind speed goes beyond rated value. Finally
they should shut down when wind speed passes a certain value called cut-out
wind speed. All these goals should be achieved while keeping dynamic loads on
the whole structure minimized. For variable speed-variable pitch wind turbines
we have the possibility of manipulating pitch of the blades (see figure 1.3) and
reaction torque of the generator in order to control the aforementioned outputs.

1.4.2 Objectives

Before we start to define control strategies and methods for wind turbines,
firstly we need to have a clear understanding of wind turbine control objectives.
Thereafter these objectives could be formulated differently for different control
methods. For example in H∞ and µ-synthesis methods they are defined as
frequency based weighting functions while in model predictive control and LQG
they are normally achieved by appropriate tuning of weighting matrices in the
objective functions.

The most basic control objective of a wind turbine is to maximize produced
power for the entire life time of the machine or minimizing cost per unit of pro-
duced power. This means maximizing captured power (up until rated power)
and prolonging life time of the turbine. The first objective is obtained by keeping
the operating point close to maximum efficiency point and the second objective
is achieved by minimizing the dynamic loads on the turbine. The maximum
efficiency point is an operating point for a wind turbine where the power coeffi-
cient (Cp) is as close to the Betz limit as possible. Generally, maximizing power
is considered in the partial load region and minimizing fatigue loads is mainly
considered in full load region.

In the partial load region (below rated wind speed), the speed of the rotor is
regulated by varying the reaction torque from the generator in order to stay
close to the maximum aerodynamic efficiency. This is done in response to a
measurement of the rotor speed and/or the generated power. In most cases
pitch of the blades are kept constant in this region.

In the full load region (above rated wind speed), pitch of the blades is regulated
to limit the power. As the wind speed increases, the amount of energy available
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in the wind increases at roughly the cube of the wind speed. High wind speed
is not encountered frequently enough to make it economic to extract the total
energy available and increase rated values of wind turbines. Therefore aerody-
namic power limiting is used. At the rated wind speed the limit on output power
of the wind turbine which is called rated power is reached. If the wind speed
increases beyond rated wind speed, in order to keep turbine in its operating
range, the excess power in the wind should be discarded. This is achieved by
pitching the blades and letting the wind pass through the rotor disc without
producing more torque on the rotor. In the full load region the rotational speed
and generated power regulations should be achieved while trying to minimize
dynamic loads on the wind turbine structure.

Apart from these basic objective, there are other control objectives for example
ensuring safe operation as well as acoustic emission and power quality standards.
However we are not going to cover them in this work.

1.4.3 Challenges

In this section we review the basic limits of performance for control systems
which prove to be challenges for the wind turbine control, too.

1.4.3.1 Input-output controllability

First we tackle the basic question of how well the turbine could be controlled.
The answer to this question is addressed by input-output controllability [SP01].
Due to economic benefits there is a tendency for big wind turbines. As wind
turbines become bigger, the structure becomes more flexible and input-output
controllability will be reduced. Reduced input-output controllability of large
wind turbines with flexible structures is a big challenge to the development
of multi Mega-Watt machines. However this challenge could be resolved by
introducing new sensors (e.g. pitot tubes [LMT05]) and new actuators (e.g.
trailing edge flaps [And10]).

1.4.3.2 Right-half plane zeros

Another point that should be considered is the presence of right-half plane
zeros. Right-half plane zeros impose bounds on the performance of a system.
Right-half plane zeros can emerge when in the dynamics of a system there



1.4 Wind Turbine Control 11

is a subtraction between a fast dynamic and a slow dynamic. For example
wind turbines dynamics from the pitch to the rotational speed of the rotor can
be modeled with two competing dynamics. When the controller pitches out
(increases pitch of the blades), the aerodynamic torque decreases and therefore
rotational speed (having kept generator torque constant) decreases. However,
pitching out results in reduced thrust force which causes the tower to move
temporarily forward. This movement subsequently increases relative wind speed
on the rotor and therefore results in a short increase in aerodynamic torque. The
counteract effect of these two dynamics from the pitch to the rotational speed
becomes prominent close to the rated wind speed, where the aerodynamics gain
from the blade pitch to the thrust force is big, and therefore it produces a
right-half plane zero in the dynamics of the wind turbine.

1.4.3.3 Limited actuator bandwidth

Perfect control in which we get perfect regulation or tracking might demand
big actuator bandwidth. However in reality actuator bandwidth is limited and
therefore real and economical actuators could limit achievable performance. For
example in wind turbines blade pitch actuators have limited pitch rate and
acceleration.

1.4.3.4 Model uncertainty

Uncertainty in the model is another factor that limits achievable performance.
Without uncertainty in the system under control we could use feedforward con-
trol and avoid instability concerns (for stable systems) which is a result of feed-
back control. Although feedback control counteracts the effect of uncertainty at
frequencies where the loop gain is large, uncertainty in the crossover frequency
region can result in poor performance and even instability [SP01]. Therefore,
it is important to take into account the effect of uncertainties and trade off
performance of the system in favor of robustness of the controlled system.

1.4.4 Wind turbine modes of operation

Wind turbines operate in different modes of operation for different wind speeds.
These modes are determined by minimum rotational speed, rated power and
rated rotational speed, as well as cut-in, cut-out and rated wind speeds. The
lowest wind speed at which the turbine starts to generate power is called the
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Regions Wind speed Rotational speed Power
Region I: Low region vcut in ≤ ve ≤ v1 ωmin Pmax(ve)
Region II: Mid region v1 ≤ ve ≤ v2 ωmin ≤ ω ≤ ωrated Pmax(ve)
Region III: High region v2 ≤ ve ≤ vrated ωrated Pmax(ve)
Region IV: Top region vrated ≤ ve ≤ vcut out ωrated Prated

Table 1.1: Different operating regions

Figure 1.6: Rotational speed and generated power as functions of wind speed
in different operating regions

cut-in wind speed. Cut-out wind speed is the speed at which the turbine is
designed to shut down in order to prevent damage to it and at rated wind
speed, wind turbine starts to produce rated power. Figure 1.6 shows rotational
speed and generated power of a wind turbine in steady states as functions of
wind speed and Table 1.1 shows different operating modes of a wind turbine.
The first three regions (regions I,II and III) are called partial load where the
machine is not operating at its rated values and the last region (region IV)
is called full load where wind speed is above rated value and the turbine is
producing its rated power while rotating at rated rotational speed. Control
objective are different for the partial load and the full load. In the partial load
the objective is to maximize captured power, while in the full load we try to
regulate the produced power and the rotational speed at their rated values while
minimizing the dynamic loads. The different control objectives need different
control strategies. In this work we mainly focus on full load operation of the
turbine.

1.4.5 Wind turbine types

Based on ability to pitch the blades and to have different rotational speed of
the rotor, wind turbines can be categorized as:
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• Fixed speed, fixed pitch

• Variable speed, fixed pitch

• Fixed speed, variable pitch

• Variable speed, variable pitch

In this work we consider a variable speed, variable pitch wind turbine in which in
partial load the speed is adjusted such that the machine is kept at its maximum
aerodynamic efficiency and in full load the blades pitch is adjusted such that
the captured power is regulated at its rated value.

1.5 Contributions

This thesis deals with robust model based control design of wind turbines. The
contributions are listed as follows:

• In Paper A an uncertain model of a wind turbine is obtained. The uncer-
tainties are considered to be in the parameters of the linearized model and
in the drivetrain damping and stiffness. A DK-iteration method is used
to design a robust controller.

• In Paper B the results of Paper A are extended and several controllers are
designed for different operating points. An extended Kalman filter is de-
signed to estimate wind speed and finally a procedure based on estimated
wind speed is formulated to calculate control inputs to the wind turbine.

• In Paper C a model predictive controller of a linear parameter varying
system is formulated. In this work the scheduling variable of the system is
considered to be known for the entire prediction horizon. The case study
is a wind turbine with LIDAR measurements.

• In Paper D a robust model predictive control approach is used to control
a wind turbine. In this paper it is shown that with some approximations
the uncertainty could be considered to be in the gain of the system. This
greatly reduces the computational complexity of the minimax optimization
problem of the robust MPC.

• In Paper E, the ideas in Paper C and Paper D are combined and a robust
model predictive control based on a linear parameter varying system with
uncertain gain is formulated. The case study is a wind turbine whose pitch
gain is considered to be uncertain due to uncertainties in its aerodynamics.
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• In Paper F, the method proposed in Paper C is used to design an individual
pitch controller.

• In Paper G the results of Paper B are extended, tower fore-aft dynam-
ics are included, a detailed robust stability and performance analysis are
presented and finally performance of the system is compared against a
standard PI controller.

• In Paper H, the results of Paper F are extended. In this work blade
dynamics are included and controller performance in terms of output reg-
ulations and damage equivalent loads are compared against a standard PI
individual (cyclic) pitch controller.

• In Paper I, uncertainty in the wind propagation time which results in lead-
lag error in the LIDAR measurements is addressed. This problem is solved
by estimating the lead-lag error. An Extended Kalman filter is employed
to estimate the effective wind speed and the results are compared against
the LIDAR measurements using some signal processing techniques to find
the temporal shift in the signal.

1.6 Outline of the thesis

This thesis is divided into two parts. The first part contains Chapters 1 to 4. It
provides a summary report in which a short overview of the modeling and control
design methods of wind turbines is given. The second part which contains
Chapters 5 to 12 is a collection of publications. Chapter 2 is a brief review of
wind turbine modeling. Subjects such as modeling wind speed for estimation,
aerodynamics of wind turbines, modeling flexible structures and linearization
of nonlinear dynamical systems are briefly reviewed. In Chapter 3 we turn our
attention to using the obtained model from Chapter 2 to design controllers.
In this chapter different model based and robust model based controller design
methods are reviewed. The control design methods presented in this chapter
are explained in details in Chapters 5 to 12.

In this thesis two different robust control design methods are employed. We
have used parametric uncertainties to model wind turbines. Uncertainties are
considered to be mainly in the parameters of the linear model. And the con-
trollers are designed to be robust with respect to uncertain variations in those
parameters. In Chapter 5 DK-iteration technique is used to design a robust
controller. The model contains two degrees of freedom, namely rotation of the
rotor and the drivetrain torsion. Only one linearized model is used to design the
controller, therefore the simulations are performed only around the linearization
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point. In Chapter 6 the results of the previous chapter are extended. In this
chapter different controllers are designed and a suitable switching strategy is
formulated to employ different controllers for different operating regions. Using
this approach we could cover the whole full load region. In Chapter 7 a spe-
cial model predictive control for nonlinear systems is presented. In this method
the scheduling variable that determines the operating point of the system is
assumed to be known for the entire prediction horizon. The method is used on
wind turbine control. We argue that LIDAR measurements could be used to find
effective wind speed. The effective wind speed determines the operating point of
wind turbines, and therefore using LIDARs we can have the scheduling variable
of the wind turbine for the entire prediction horizon of the model predictive
control. In Chapter 8 robust model predictive control is employed for wind tur-
bine control. In this chapter we show that with approximation the uncertainty
in the model could be considered to be in the gain of the system and therefore
using special minimax formulations, we can reduce computational complexity
of the controller. Chapter 9 basically combines the ideas presented in 7 and 8.
In Chapter 10 we use the method presented in 7 to design an individual pitch
controller. In Chapter 11, the idea presented in Chapter 6 is revisited, however
this time, tower fore-aft is included and a thorough robust stability and perfor-
mance analysis is presented and the results are compared against a standard PI
controller. Chapter 12 employs the method presented in Chapter 7 and extends
the results of Chapter 10 by including blade dynamics and giving performance
comparisons in stochastic wind field against a standard individual pitch control.
And finally Chapter 13 considers uncertainty in the wind propagation time and
therefore uncertainty in the LIDAR measurements (lead-lag error) and solves
the problem (compensates for the error) by estimating the effective wind speed
on the rotor and comparing it with LIDAR measurements.
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Chapter 2

Wind Turbine Modeling
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2.1 Introduction

Two different sets of models have been used in this work which will be explained
in this chapter. Simulation models and controller design models. The simulation
model contains most of the nonlinearities and degrees of freedom that we are
able to model for a wind turbine. We have used FAST [JJ05] as our simulation
model in the thesis. Simulation models are normally too complicated for control
design, therefore we need to develop a design model as well. Design model or
control oriented model has more trade offs, and the most important one is that
the model should only include essential dynamics of the wind turbine and should
be as simple as possible. This is because in many control design methods (such
as H∞ and µ-Synthesis) the order of the resulting controller is at least equal
to the order of the model and high order controllers become problematic in the
implementation phase. Therefore we try to keep the model as simple as possible.
There is always a trade off between simplicity and accuracy of the model. In
this work we have used several design models which are slightly different.

2.2 Modeling for control and estimation

For modeling purposes, the whole wind turbine can be divided into 4 subsys-
tems: aerodynamics subsystem, mechanical subsystem, electrical subsystem and
actuator subsystem. The aerodynamic subsystem converts wind forces into me-
chanical torque and thrust on the rotor. The mechanical subsystem consists of
the drivetrain, tower and blades. The drivetrain transfers rotor torque to the
electrical generator. The tower holds the nacelle and withstands the thrust force
and the blades transform wind forces into the aerodynamics torque and thrust.
The generator subsystem converts mechanical energy to electrical energy and
finally the blade-pitch and generator-torque actuator subsystems are part of the
control system. To model the whole wind turbine, models of these subsystems
are obtained and at the end they are connected together. A wind model is ob-
tained and augmented with the wind turbine model to be used for wind speed
estimation. Figure 2.1 shows the basic subsystems and their interactions.

The dominant dynamics of the wind turbine come from its flexible structure.
Although there are dynamics in the aerodynamics of wind turbines (e.g. dy-
namic inflow and dynamic stall), for the sake of simplicity we always consider
aerodynamics to be in the steady state. Several degrees of freedom could be
considered to model the flexible structure, but for control design purposes, usu-
ally just a few important degrees of freedom are considered. Mostly the degrees
of freedom whose eigen frequencies lie inside actuator bandwidth are considered
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Figure 2.1: Wind turbine subsystems

otherwise including them into the design model is useless and makes the design
model unnecessarily complicated. In figure 2.2, basic degrees of freedom which
are normally considered in the design model are shown. However in this work
we only consider three degrees of freedom, namely the rotation of the rotor, the
drivetrain torsion and the tower fore-aft. And in one case for individual pitch
we include a model of the blades. In individual pitch we have individual values
for pitch of the blades opposed to collective pitch which is having one value for
all the three blades.

2.2.1 Wind model

Wind has a stochastic nature both temporally (changes over time) and spatially
(changes in the space). Wind turbines experiences both variations besides some
variations which are the result of deterministic components in the wind profile.
One of the deterministic components is wind shear which could be both vertical
and horizontal. The vertical wind shear is the result of aerodynamic friction
on the ground which decreases wind speed close to the surface. This effect is
reduced by height. Wind shear could be described using an exponential law:

vm(z) = vm(zref )

(
z

zref

)α
(2.1)

Where α is called surface roughness exponent and has different values for dif-
ferent types of terrain. zref is reference height (e.g. 10m).

As it was explained in chapter 1, tower shadow is another deterministic compo-
nent.



20 Wind Turbine Modeling

Figure 2.2: Basic degrees of freedom

From the above argument we conclude that there is no such a thing as wind speed
for the wind turbine because different parts of the rotor swept area has different
wind speeds. But for the sake of simplicity (unless otherwise stated) we consider
the effect of the wind over the whole rotor swept area as a uniformly distributed
wind speed profile with one value representing the wind speed. This value is
called effective wind speed. Spatial distribution of wind is mainly considered
when designing individual pitch control. This is because spatially turbulent
wind smaller than rotor swept area causes unbalanced loadings on the structure
and increases fatigue loads, and using individual pitch can reduce these loads.

Effective wind speed can be modeled as a complicated nonlinear stochastic pro-
cess. However for practical control purposes it could be approximated by a
linear model [JLSM06]. In this model the wind has two elements, mean value
term (vm) and turbulent term (vt). The mean value term was explained in 1.1.1.
The turbulent term could be modeled by the following transfer function:

ve = vm + vt (2.2)

In which:

vm =
1

T

∫ t+T/2

t−T/2
v(τ)dτ (2.3)

vt =
k

(p1s+ 1)(p2s+ 1)
e; e ∈ N(0, 1) (2.4)
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Figure 2.3: Parameters of the stochastic term in the wind model

The turbulent term in the state space form could be written as:(
v̇t
v̈t

)
=

(
0 1

− 1
p1p2

−p1+p2
p1p2

)(
vt
v̇t

)
+

(
0
k

p1p2

)
e (2.5)

The parameters p1, p2 and k which depend on the mean wind speed vm could
be found by second order approximation of the wind power spectrum [JLSM06].
For the mean wind speed (vm) we either keep it constant or consider it as a first
order model with a big time constant.

2.2.2 Aerodynamics

If we consider behavior of the flexible structure of the turbine linear (most of the
time this assumption holds) the main source of nonlinearity in the wind turbine
modeling is its aerodynamics. Blade element momentum (BEM) theory [Han08]
is used to find the nonlinear aerodynamic relations in the model. BEM theory
explains the relation between wind speed, rotational speed and pitch angle of a
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wind turbine to the very important aerodynamic torque and thrust on the rotor.
More details on the BEM theory was given in the section 1.3.1.2. Based on this
theory torque and thrust on the rotor could be written as functions below:

Qa =
1

2

1

ωr
ρπR2v3

eCp(θ, ω, ve) Aerodynamic torque (2.6)

Qt =
1

2
ρπR2v2

eCt(θ, ω, ve) Aerodynamic thrust (2.7)

2.2.3 Flexible structure

If we assume aerodynamics to be in steady state (as explained earlier), the
dynamics of the wind turbine come from its flexible structure. In this section
we will give a short overview of different methods for modeling flexible structures
and afterward we will give models of the flexible components of wind turbines.

Analytical models of a structure can be derived from physical laws, such as New-
ton’s laws of motion, Lagrange’s equations of motion, or D’Alembert’s principle,
which collectively called first principle modeling. Another way is to derive them
from finite-element models or apply system identification methods on data from
the behavior of structures. The models can be represented either in the time
domain in the form of differential equations, or in the frequency domain in the
form of transfer functions.

In this work we use linear differential equations to represent structural models in
the time domain. The differential equations could be written either in the form
of second-order differential equations or in the form of first-order differential
equations (as a state-space representation).

Structural engineers normally use the second-order differential equations. The
state-space model, on the other hand, is a standard model used by control engi-
neers. This is because most linear control system analysis and design methods
are given based on the state-space models. Nevertheless, Transforming a model
from second order differential equation to state space representation and vice
versa can be easily done. In the following we show how to do the transformation



2.2 Modeling for control and estimation 23

for a simple mass-spring-damper system with an external force f as an input:

Second-order differential equation:
mẍ+ cẋ+ kx = f

State space representation:
ẋ1 = x2

ẋ2 = − c

m
x2 −

k

m
x1 + f

We use this transformation several times to represent structural models in the
state space form.

Typically, the second-order models are represented either in the nodal coordi-
nates, and are called nodal models, or in the modal coordinates, and are called
modal models. The nodal models are derived in nodal coordinates, in terms of
nodal displacements, velocities, and accelerations. The model is characterized
by the mass, stiffness, and damping matrices, and by the sensors and actuators
locations. These models are typically obtained from the finite-element codes
or from other Computer-Aided-Design software [Gaw04]. For example HAWC2
[LH], which is a tool to design wind turbine simulation models, uses this ap-
proach to model flexible structure of wind turbines.

The second-order models could also be defined in modal coordinates. These
coordinates are often used in the dynamics analysis of complex structures mod-
eled by the finite elements to reduce the order of a system. It is also used in
the system identification procedures, where modal representation is a natural
outcome of the test. For more details on nodal models and modal models see
[Gaw04]. The order of a complex flexible structure can be reduced significantly
by using modal models while the accuracy of the model does not suffer too
much. Some wind turbine simulation codes such as FAST [JJ05] use modal
model approach. In modal models approach, behavior of a structure can be
represented as a combination of some fixed patterns of deformations. These
patterns are called mode shapes. In this work we have used the first (and the
most significant) mode shapes of a wind turbine tower, drive train and in one
case blades to model behavior of the flexible structure.

2.2.3.1 Model of the Drivetrain

A simple mass-spring-damper is used to model the torsional degree of freedom
in the drive train. Figure 2.4 shows the way two inertial objects, namely the
rotor and the generator, are connected through a flexible link which has torsion
stiffness of Kd and damping of Cd. Dynamics of the drivetrain could be written
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Figure 2.4: Modeling flexible tower (left) and drivetrain (right)

as:

ξ̇r = ωr (2.8)

ξ̇g = ωg (2.9)
Jrω̇r = Qa − Cd(ωr − ωg)−Kd(ξr − ξg) (2.10)
Jgω̇g = Cd(ωr − ωg) +Kd(ξr − ξg)−Qg (2.11)

Qa and Qg are aerodynamic and generator reaction torques. Jr and Jg are
the rotor and generator inertia translated to the low speed shaft. This means
in order to find Jg to be used in the above equation from the given generator
inertia, it should be multiplied by N2

g which Ng is the gearbox ratio. ωr and
ωg are the rotational speed of the rotor and generator and finally ξr and ξg are
their corresponding azimuth angles. We are not interested in the absolute value
of the azimuth angles, therefore we use their difference which we call φ = ξr−ξg.
With the new variable being introduced, dynamics of the drivetrain could be
written as:

φ̇r = ωr − ωg (2.12)
Jrω̇r = Qa − Cd(ωr − ωg)−Kdφ (2.13)
Jgω̇g = Cd(ωr − ωg) +Kdφ−Qg (2.14)

2.2.3.2 Model of the Tower

In order to model dynamics of the tower, which we have only considered the fore-
aft degree of freedom, we have used simple mass-spring-damper model. Figure
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2.2 shows movement of the tower in fore-aft direction. Figure 2.4 shows how the
tower dynamics are modeled. The dynamics can be written as:

ẋ1 = x2 (2.15)

ẋ2 = Qt −
Ct
Mt

x2 −
Kt

Mt
x1 (2.16)

in which x1 and x2 are tower top displacement and velocity respectively. Mt, Ct
and Kt are mass, damping and stiffness of the dynamics of the tower and Qt is
the aerodynamic thrust force.

2.2.4 Actuator dynamics

A first order and a second order model are used to model the generator reaction
torque actuator and the pitch actuators respectively. The transfer function
could be written as:

θ(s) =
1

s2 + 2ζθωθs+ ω2
θ

θi(s) ωθ = 1, ζθ = 0.7

Qg(s) =
1

τgs+ 1
Qi(s) τg = 0.1

In which ωθ, ζθ and τg determine dynamics of the actuators.

2.3 Simulation model

In order to close the loop and test performance of our controller we need a
simulation model. The simulation model behavior should be as close to behav-
ior of the real system as possible. We have used different simulation models
to verify closed loop behavior in different simulation scenarios. Normally the
simulation models include all degrees of freedom and the nonlinearities that
could be modeled mathematically. For wind turbines IEC [iec05] gives a list of
standard simulation scenarios. These simulation scenarios are to check different
load cases which are categorized as extreme and fatigue load cases. There are
several simulation models available. For example HAWC2 is a code intended
for calculating wind turbine response in the time domain. It has been devel-
oped within the years 2003-2006 at the aeroelastic design research program at
Risø, National Laboratory, Denmark [LH]. Another publicly available program
for simulating wind turbine behaviors is FAST [JJ05]. The FAST (Fatigue,
Aerodynamics, Structures, and Turbulence) Code is a comprehensive aeroelas-
tic simulator capable of predicting both the extreme and fatigue loads of two-
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and three-bladed horizontal-axis wind turbines. In this work FAST is used as
the simulation model and the 5MW reference wind turbine is used as the plant
[JBMS09]. In the simulation model 10 degrees of freedom are enabled which
are: generator, drivetrain torsion, 1st and 2nd tower fore-aft, 1st and 2nd tower
side-side, 1st and 2nd blade flapwise, 1st blade edgewise degrees of freedom.

2.4 Linearized models

There are different methods to derive linear model of a wind turbine for con-
troller design purposes. We will give a short summary of the methods we have
employed in this work.

2.4.1 First principle modeling

In the first principle modeling the whole system under study is divided into
different parts and sub-models based on basic equations of motions are found
for each part. At the end the obtained equations are linked together based on
the interaction of the parts in the whole system. Taylor series expansion is
used to find linear approximations of the nonlinear functions. To do this firstly
we need to determine the steady state operating points of the system, then
linearize the nonlinearities around the obtained points. The following equations
could be used to find linearized model of the aerodynamic torque and thrust,
and electrical power:

Qr = Q∗r +
[
∂Qr
∂θ

∂Qr
∂ωr

∂Qr
∂ve

]
(θ∗,ω∗r ,v

∗
e )

 ∆θ
∆ωr
∆ve

+ H.O.T.

Qt = Q∗t +
[
∂Qt
∂θ

∂Qt
∂ωr

∂Qt
∂ve

]
(θ∗,ω∗r ,v

∗
e )

 ∆θ
∆ωr
∆ve

+ H.O.T.

Pe = P ∗e +
[
∂Pe
∂Qg

∂Pe
∂ωg

]
(ω∗g ,Q

∗
g)

[
∆Qg
∆ωg

]
+ H.O.T.
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in which the linearized terms for aerodynamic torque are:

∂Qr
∂θ

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

=
1

2

1

ωr
ρπR2v3

e

∂Cp
∂θ

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

∂Qr
∂ωr

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

=
1

2
ρπR2v3

e(− 1

ω2
r

Cp +
1

ωr

∂Cp
∂ωr

)

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

∂Qr
∂ve

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

=
1

2

1

ωr
ρπR2(3v2

eCp + v3
e

∂Cp
∂ve

)

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

and for aerodynamic thrust are:

∂Qt
∂θ

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

=
1

2
ρπR2v2

e

∂Ct
∂θ

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

∂Qt
∂ωr

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

=
1

2
ρπR2v2

e

∂Ct
∂ωr

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

∂Qt
∂ve

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

=
1

2
ρπR2(2veCt + v2

e

∂Ct
∂ve

)

∣∣∣∣
(θ∗,ω∗r ,v

∗
e )

and for generated power are:

∂Pe
∂Qg

∣∣∣∣
(ω∗g ,Q

∗
g)

= ω∗g
∂Pe
∂ωg

∣∣∣∣
(ω∗g ,Q

∗
g)

= Q∗g

In the equations above, H.O.T. stands for higher order terms. For the sake of
simplicity in notations we use θ, ω and ve instead of ∆θ, ∆ω and ∆ve respectively
from now on.

2.4.2 System identification

Basically system identification uses different methods to build mathematical
models of dynamical systems from measured data. In this work we have used
greybox modeling and output error method to find linear design models. As
we did not have access to real measurements we used simulation models to
produce time series of wind turbine behavior and used system identification on
the obtained data to find appropriate models.

In greybox modeling the basic structure of the dynamical system is known,
however the parameters of the model are not known. After formulating the
model with unknown parameters, system identification techniques can be used
to estimate them. To clarify our method we explain our approach to identify
parameters of the tower fore-aft dynamics.
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The state space model of the tower fore-aft which is modeled as a mass-spring-
damper is: (

ẋ1

ẋ2

)
=

(
0 1

−ct/mt −kt/mt

)(
x1

x2

)
+

(
0

1/mt

)
Qt (2.17)

In which
(
x1 x2

)T are the states of the system, mt, ct and kt are tower mass,
damping and stiffness respectively and Qt is the thrust force that acts on the
tower in the fore-aft direction. Hypothetically we assume we have the thrust
force (we put a sensor in the FAST simulation model to measure the thrust
force) and tower fore-aft velocity. Having these measurements we can obtain
parameters of the mass-spring-damper model of the tower in the fore-aft direc-
tion.

2.4.3 Numerical linearization

In the numerical linearization method, the nonlinear model is perturbed at its
equilibrium point with small perturbations from the inputs. To do so, firstly the
equilibrium points of the nonlinear system is found, for example for a nonlinear
system of the form ẋ = f(x, u), the equilibrium is the set {x∗, u∗} for which
f(x∗, u∗) = 0. Thereafter we apply small perturbations to the nonlinear system
and we get:

ẋ = f(x∗ + ∆x, u∗ + ∆u) (2.18)

= f(x∗, u∗)︸ ︷︷ ︸
0

+
∂f

∂x

∣∣∣∣
∗

∆x+
∂f

∂u

∣∣∣∣
∗

∆u (2.19)

And as we are at the equilibrium point we get:

ẋ =
∂f

∂x

∣∣∣∣
∗

∆x+
∂f

∂u

∣∣∣∣
∗

∆u (2.20)

Therefore by measureing ∆x and ∆u we can calculate the derivatives ∂f
∂x

∣∣∣
∗
and

∂f
∂u

∣∣∣
∗
which give us the linear model parameters. This method is used in the

linearization procedure of FAST.



Chapter 3

Wind Turbine Control



30 Wind Turbine Control

3.1 Introduction

The power in the wind pass through rotor disc of a turbine is proportional to
the square of the rotor radius. Therefore in order to increase produced power by
a single turbine which means reduction in the cost of wind power production, it
seems reasonable to increase rotor radius as much as possible. This explains the
almost exponential growth in the size of wind turbines in the past two decades.
However this growth is limited by several factors of which control is a key factor.
Big wind turbines are aeroelastic structures in tempo-spatial stochastic wind.
Control of such a system introduces a challenging problem in control engineering.

Control can play an essential role in reducing power production costs. Because
control methods on one hand can decrease the cost of energy by keeping the
turbine close to its maximum efficiency and on the other hand reduce structural
fatigue and therefore increase lifetime of the wind turbine. Control methods can
also enable production of bigger turbines with more power generation capacity.
There are several methods for wind turbine control ranging from classical con-
trol methods [LC00] which are the most used methods in real applications, to
advanced control methods which have been the focus of research in the past
few years [LPW09]; gain scheduling [BBM06], adaptive control [JF08], MIMO
methods [GC08], nonlinear control [Tho06], robust control [Øst08], model pre-
dictive control [Hen07], µ-Synthesis design [MNP11] are just a few. Advanced
control methods are thought to be the future of wind turbine control as they can
employ new generations of sensors on wind turbines (e.g. LIDAR [HHW06]),
new generation of actuators (e.g. trailing edge flaps [And10]) and also conve-
niently treat the turbine as a MIMO system. The last feature seems to become
more important than before as wind turbines become bigger and more flexible
which make decoupling different modes and designing controller for each mode
more difficult.

In this chapter a brief introduction to different control methods will be given.
We start by introducing gain scheduled PI controller developed at the national
renewable energy laboratory (NREL), the United States, which is a standard
controller on reference baseline wind turbine [JBMS09]. We have used this con-
troller as a benchmark against some model based controllers we have designed.
Afterwards a brief introduction to different model based control methods will
be given. In the next chapters we will explain each controller in more details.
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3.2 Classical gain scheduled PI

The conventional approach for controlling a wind turbine using PI controllers
relies on the design of two basic control systems: a generator-torque controller
and a full-span rotor-collective blade-pitch controller. The two control systems
are designed to work independently. The goal of the generator-torque controller
is to maximize captured power below the rated operating point and regulate the
produced power above this point. The goal of the blade-pitch controller is to
regulate generator speed above the rated operation point [JBMS09]. Generator
rotational speed is used as the main measurement to control both power and
rotational speed. A low pass filter is designed to remove measurement noise and
then the filtered signal is fed to the generator torque and the collective pitch
controllers. In the top region (full load region) the generator torque is inversely
proportional to the generator speed.

Qg =
P0

ωg
(3.1)

Therefore the generator torque signal can be calculated as:

∆Qg =
P0

ωg,0
− P0

ω2
g,0

∆ωg (3.2)

And using a PI controller, the collective pitch signal is calculated as:

∆θ = KP (θ)∆ωg +KI(θ)

∫ t

0

∆ωgdτ (3.3)

In which KP (θ) and KI(θ) are proportional and integral gains which are sched-
uled based on pitch angle of the blades. We will not go into the details of how
these gains are calculated. For more details we refer the reader to [JBMS09].

3.3 Model Based Control

As it was mentioned earlier advanced model based control are thought to be the
future of wind turbine control. First we introduce some model based control
methods without considering uncertainty in the system. In this context H∞ and
model predictive control (MPC) are explained. Afterwards we take some steps
further and include uncertainties in the models and design robust controllers.
µ-synthesis and robust model predictive control are the two robust controllers
which we have employed. The wind turbine in this work is treated as a MIMO
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system with pitch (θi) and generator reaction torque (Qi) as inputs and ro-
tor rotational speed (ωr), generated power (Pe) and sometimes tower fore-aft
velocity (vt) as outputs.

3.3.1 H∞ control design

In the frequency domain we can formulate wind turbine controller design ob-
jectives in the form of minimizing some norm of the system from disturbances,
which are the wind speed fluctuations and measurement noises, to the system
outputs, which are rotational speed, generated power and tower fore-aft velocity.
If we do not account for the uncertainties in the model, the problem is called
nominal performance problem.

H∞ control theory [SP01] is used to solve the nominal performance problem. In
this problem the perturbation matrix (uncertainty in the model) is considered
to be zero and then in order to find the controller the following optimization
problem is solved:

K(s) = arg min
K∈K

‖ WoFl(P,K)Wi(jω) ‖H∞ (3.4)

Fl(P,K) is the lower linear fractional transformation (LFT) of the plant P and
the controller K (see figure 3.1). Wi andWo are frequency dependent weighting
matrices on disturbances and exogenous outputs respectively of the form:

Wo = diag(Wo1, . . . ,Wo6)

Wi = diag(Wi1, . . . ,Wi5)
(3.5)

Wi and Wo are our means to enforce our control objectives on the system. For
example a low pass filter is considered on the input of wind speed as a source of
disturbance with limited bandwidth and high pass filters are considered to show
precision of our measurement sensors in low frequencies and effect of noise in
high frequencies. For regulating power and rotational speed, Pe, ω are penalized
using low pass filters, as high frequency fluctuations on these outputs are out of
our actuator bandwidth and the controller should not overreact to them.

∫
ω

is introduced and penalized to achieve offset free regulation. For minimizing
fatigue loads on the tower ẋt is penalized again using low pass filters.

Figure 3.1 shows nominal performance configuration in which input disturbances
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Figure 3.1: Nominal performance configuration

(d) and exogenous outputs (z) are:

d = ve Wind Speed

z =


θ
Qg
ω
ẋt∫
ω
Pe


Pitch reference
Generator reaction torque reference
Error on the rotational speed
Tower fore-aft velocity
Integral of rotational speed error
Generated power error

By solving the optimization problem of 3.4, we are trying to find a controller
in the set of all stabilizing controllers that minimizes H∞-norm of the weighted
sensitivity function. This means we try to minimize the peak frequency of
WoSWi(jω). The resulting controller guarantees nominal performance if:

‖ WoFl(P,K)Wi(jω) ‖H∞< 1 (3.6)

Which means good attenuation of the effect of the disturbances on the outputs.
In chapter 5 we will give more details on this approach.

3.3.2 Model Predictive Control (MPC)

Model predictive control (MPC) has been an active area of research and has
been successfully applied on different applications in the last decades ([QB96]).
The reason for its success is its straightforward ability to handle constraints.
Moreover it can employ feedforward measurements in its formulation and can
easily be extended to MIMO systems. However the main drawback of MPC
was its on-line computational complexity which kept its applications to systems
with relatively slow dynamics for a while. Fortunately with the rapid progress of
fast computations, better optimization algorithms, off-line computations using
multi-parametric programming ([Bao05]) and dedicated algorithms and hard-
ware, its applications have been extended to even very fast dynamical systems
such as DC-DC converters ([Gey05]).
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Basically MPC uses a model of the plant to predict its future behavior in or-
der to compute appropriate control signals to control the outputs/states of the
plant. To do so, at each sample time MPC uses the current measurement of the
outputs/states and solves an optimization problem. The result of the optimiza-
tion problem is a sequence of control inputs of which only the first element is
applied to the plant and the procedure is repeated at the next sample time with
new measurements ([Mac02]). This approach is called receding horizon control.
Therefore basic elements of MPC are: a model of the plant to predict its fu-
ture, a cost function which reflects control objectives, constraints on inputs and
states/outputs, an optimization algorithm and the receding horizon principle.

MPC is an effective tool to deal with multivariable constrained control problems
[BM99]. As wind turbines are MIMO systems [GC08] with constraints on inputs
and outputs, using MPC seems to be effective. MPC proved to give satisfactory
results for offshore wind turbine control [Hen10] and trailing edge flap control
of wind turbines [CPBWH11].

3.3.3 MPC with known scheduling variable

Depending on the type of the model used for prediction in MPC, the control
problem is called linear MPC, hybrid MPC, nonlinear MPC, etc. As it was ex-
plained in 1.3.1 because of the nonlinearity in aerodynamics, wind turbines are
highly nonlinear systems. Using the obtained nonlinear model directly in MPC
formulation results in a formidable nonlinear MPC problem [HPH11]. Nonlin-
ear MPC is normally computationally very expensive and generally there is no
guarantee that the solution of the optimization problem is a global optimum.

In this work we extend the idea of linear MPC using linear parameter varying
(LPV) systems to formulate a tractable predictive control of nonlinear systems.
To do so, we use future values of a disturbance to the system (namely effective
wind speed) that acts as the scheduling variable in the model. We assume
that the scheduling variable is known for the entire prediction horizon and the
operating point of the system mainly depends on the scheduling variable. With
the advances in LIDAR technology ([HHW06]) it is possible to measure wind
speed ahead of the turbine and this enables us to have the scheduling variable of
the wind turbine for the entire prediction horizon. Chapter 7 gives more details
on this subject. We start by assuming perfect LIDAR measurements, however
LIDAR measurements could be uncertain. We have considered an important
uncertainty in the LIDAR measurements namely uncertainty in the the wind
propagation, which is the traveling time of wind from the LIDAR measurement
point to the rotor. We have used an Extended Kalman filter to estimate the
effective wind speed on the rotor and then estimated the propagation time and
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hence corrected the measurements. More details on this can be found in chapter
13.

3.4 Robust Model Based Control

In the previous section we introduced some control methods based on model of
the system. However there are always discrepancies between the model and the
real plant. A good controller should give satisfactory results (in terms of stability
and performance) in the presence of these discrepancies. Such a controller is
called to be robust with respect to model mismatches and the procedure to
design such a controller is called robust control design. A control system is
robust if it is insensitive to differences between the actual system and the model
of the system which was used to design the controller. The discrepancies between
the model and the real plant are referred to as model/plant mismatch or simply
model uncertainty.

Often robust stability is not the main goal of robust control design. In the case
of wind turbine design which wind speed fluctuations are considered as distur-
bances, we try to reduce the effect of these fluctuations on rotational speed and
generated power while keeping dynamical loads minimized. The dynamics from
the disturbances to the outputs are dependent on the uncertainties in the system
and it is the robust controllers’ task to reduce these effects on the performance
of the system. In our problem before instability occurs, the performance has
degraded to an unacceptable level. Therefore our main goal is to pursue robust
performance design rather than robust stability design.

Two methods are used to design robust controller, a µ-synthesis controller which
will be introduced in section 3.4.1 and explained in details in chapter 6 and a
robust model predictive controller which will be introduced in 3.4.2 and ex-
plained in details in chapter 8. In both methods we have considered parametric
uncertainties in the parameters of the linear model.

3.4.1 µ-Synthesis control design

Robust performance analysis examines if the performance objective is satisfied
for all possible plants in the uncertainty set. The robust performance condition
can be cast into a robust stability problem with an additional perturbation
block that defines H∞ performance specifications (see figure 3.2). Therefore the
perturbation matrix ∆′ of the system could be augmented with an additional
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M

[
∆′ 0
0 ∆p

]

u∆ y∆

Figure 3.2: M −∆ structure of the robust performance problem
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Figure 3.3: System setup for robust performance problem

perturbation block ∆p which specifies performance of the system:

∆ =

(
∆′ 0
0 ∆p

)
(3.7)

For a closed loop M −∆ structure robust stability condition is [SP01]:

‖M∆ ‖H∞< 1 (3.8)

When we have structure in the uncertainty block ∆ we can exploit it and reduce
conservativeness of the controller. Structured singular value (also known as
µ) is a tool that utilizes structure in the uncertainty block to analysis robust
stability of the system. Here we have used structured singular value to solve
the robust performance problem as explained above by transforming it into a
robust stability problem. The structured singular value of a complex matrix M
with respect to a class of perturbations ∆ is given by.

µ∆(M)
∆
=

1

inf{σmax(∆)|det(I −M∆) = 0} , ∆ ∈∆ (3.9)

The structured singular value µ is a very powerful tool for analysis of robust
performance with a given controller. However in order to design a controller, we
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need a synthesis tool. To that end, a scaled version of the upper bound of µ is
used for controller synthesis. The problem is formulated in the following form:

µ∆(N(K)) ≤ min
D∈D

σ(DN(K)D−1) (3.10)

Now, the synthesis problem can be cast into the following optimization problem
in which one tries to to find a controller that minimizes the peak value over
frequency of this upper bound:

min
K∈K

(min
D∈D

‖ DN(K)D−1 ‖∞) (3.11)

This problem is solved by an iterative approach called DK-iteration. For de-
tailed explanations on the method and notations the reader is referred to [SP01]
and details of the application of µ-synthesis method on robust control of wind
turbines are given in chapters 6 and 11.

3.4.2 Robust MPC

Nominal MPC proved to give satisfactory results for offshore wind turbine con-
trol [Hen10] and trailing edge flap control of wind turbines [CPBWH11]. How-
ever these works have not taken into account uncertainty in the design model
and this problem has been bypassed by trial-error and extensive simulations
to get the best performance from the controllers. Based on this argument ex-
tending nominal MPC of wind turbines to robust MPC and including model
uncertainties in the design seems to be natural. The robust MPC method acts
as a controller that is aware of system uncertainties and it becomes less de-
manding where it knows the model is uncertain. Wind turbines are complex
nonlinear systems and the nonlinearity mainly comes from the aerodynamics.
Quasi stationary calculations of the aerodynamics result in aerodynamic torque
and thrust as nonlinear functions of wind speed, blade pitch and rotational
speed. Linearization is normally used to solve the control problem and esti-
mated wind speed is used to find the operating point. However there is error in
this estimation. We have used a mapping of the confidence interval of the esti-
mated wind speed to the parameters of the linearized model, which has resulted
in uncertainties in these parameters. These uncertainties are dealt with using
robust MPC. The interesting fact that we have employed here to simplify the
optimization problem is that when we do the mapping of the confidence interval
in the uncertainties of the linearized model, we observe that uncertainties are
significant only in the gain matrix. This will provide us with a special structure
of the optimization problem that is much easier to deal with than the normal
robust MPC problems.
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MPC uses a model of the system (to be controlled) to predict its future behavior.
In nominal MPC the prediction of the output is a single value and it is calculated
based on one model. However in robust MPC because the model is uncertain,
this prediction is no longer a unique value but it is a set instead. An approach
to tackle the problem with an uncertain model in MPC is to try to consider the
most pessimistic situation with respect to uncertainties. This means maximizing
the cost function on the uncertainty set. After maximization, we minimize the
obtained cost function over control inputs as we do in nominal MPC. This
approach is called minimax MPC and it is a common solution to robust MPC
problems [L0̈3]. In chapter 8 we will give more details about this approach.

3.4.3 Robust MPC with known scheduling variable

In section 3.3.3 we introduced model predictive control of a system with known
scheduling variable. In that formulation we considered a nominal model of the
system. As we discussed earlier there are always discrepancies between plant
and controller, therefore we have formulated a robust model predictive control
problem of wind turbines when wind speed (as the scheduling variable) is known
for the entire prediction horizon and there are uncertainties in aerodynamic gains
of the pitch actuator. More details on this is given in chapter 9.

3.4.4 Kalman filter and extended Kalman filter

Throughout the thesis several times we have employed Kalman filters for state
estimation and extended Kalman filters for wind speed estimation. Here we give
a brief introduction to Kalman filtering and its nonlinear extension, extended
Kalman filtering [GA08].

The Kalman filter is a recursive estimator. This means that in order to estimate
the current state, only the current measurement and the estimated state from
the previous time step are needed. At each time step, the state of the filter
is represented by two variables, x̂k|k the a posteriori state estimate at time k
given observations up to and including at time k and Pk|k the a posteriori error
covariance matrix (a measure of the estimated accuracy of the state estimate).

For a better understanding, the Kalman filter can be divided into two basic
phases, predict phase and update phase. In the predict phase, the state es-
timate from the previous time step x̂k−1|k−1 with the system input uk−1 are
used to produce an estimate of the state at the current time step x̂k|k−1. The
predicted state estimate is also known as the a priori state estimate because it
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does not include the observation information yk from the current time step. In
the update phase, the current a priori predictions x̂k|k−1 and Pk|k−1 are com-
bined with the current observation information yk and the a posteriori state x̂k|k
and covariance Pk|k are estimated. These improved estimates are called the a
posteriori estimates.

Time update (prediction)
State update x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

Covariance update Pk|k−1 = APk−1|k−1A
T +R1

Data update (inference)
Innovation or measurement residual ỹ = zk − Ckx̂k|k−1

Innovation (or residual) covariance Sk = CkPk|k−1C
T
k +R2

Optimal Kalman gain Kk = Pk|k−1C
T
k S
−1
k

Updated (a posteriori) state estimate x̂k|k = x̂k|k−1 +Kkỹk

Updated (a posteriori) estimate covariance Pk|k = (I −KkCk)Pk|k−1

For nonlinear systems whose state transition f(xk, uk, vk) and observation model
g(xk, uk, wk) are nonlinear, extended Kalman filter is used for state estimation.
In the extended Kalman filtering, essentially we use the same formulas given
above for the Kalman filter with Â and Ĉ found by linearizing f and g at their
operating points and using f and g for state transition and observation model
instead of linear models in Kalman filter:

Time update (prediction)
State update x̂k|k−1 = f(x̂k−1|k−1, uk−1)

Covariance update Pk|k−1 = ÂPk−1|k−1Â
T +R1

Data update (inference)
Innovation or measurement residual ỹ = zk − g(x̂k|k−1, uk−1)

Innovation (or residual) covariance Sk = ĈkPk|k−1Ĉ
T
k +R2

Optimal Kalman gain Kk = Pk|k−1Ĉ
T
k S
−1
k

Updated (a posteriori) state estimate x̂k|k = x̂k|k−1 +Kkỹk

Updated (a posteriori) estimate covariance Pk|k = (I −KkĈk)Pk|k−1

3.4.5 Offset-free control

Persistent disturbances and modeling errors can cause an offset between mea-
sured outputs and desired outputs. To avoid this problem, we need to somehow
employ an offset free reference tracking approach. The controllers that we have
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designed in this work solve the regulation problem around operating points.
However we regulate around the operating points (x∗ and u∗) which might be
erroneous. Besides, the difference between linearized model and the nonlinear
model contributes to an offset from the desired outputs. To avoid these offsets,
in our control algorithms we have employed two methods. One natural way of
tackling the offset in the output is to use integrators which is the first method we
have employed. We have also used disturbance modeling to solve the problem.

3.4.5.1 Error integrator

In order to use integrators for offset free control, we simply include as many
integrator states as we have outputs with offsets. In the wind turbine case we
have only employed one integrator to regulate the rotational speed to its rated
value. After defining the integrator states, we extend the state space matrices
to include the new states (integrator states) and new measurement (integrators
value as outputs). Therefore for a state space system of the form (A,B,C,D)
we get the following augmented system:(

xk+1

xik+1

)
=

(
A 0
0 I

)(
xk
xik

)
+

(
B
0

)
uk +

(
0
I

)
ek (3.12)(

yk
yik

)
=

(
C 0
0 I

)(
xk
xik

)
+

(
D
0

)
uk (3.13)

ek = yk − rk (3.14)

In which ek is the error between the output yk and the reference rk.

3.4.5.2 Disturbance modeling

Another method to avoid offset in the outputs is to use disturbance modeling. In
this method the plant model is augmented with new states named disturbance
states to include constant step disturbance model. The unmeasured distur-
bances are estimated with an estimator and their undesired influence on the
plant is compensated by shifting either the origin of the controller to a new
operating point that ensures stable offset-free control of the plant or including
them in the feedback control (see [MB02] and [PR03]). State space model of
the augmented system is:

x̃k+1 = Ãx̃k + B̃uk (3.15)

yk = C̃x̃k +Duk (3.16)
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in which the augmented state and matrices are:

x̃k =

x̂k+1

d̂k+1

p̂k+1

 Ã =

A Bd 0
0 Ad 0
0 0 Ap

 (3.17)

B̃ =
(
B 0 0

)T
C̃ =

(
C 0 Cp

)
(3.18)

x̂k, d̂k and p̂k are system states, input/state and output disturbances respec-
tively. (A,B,C,D) are matrices of the linearized model, Bd and Cp show the
effect of disturbances on states and outputs respectively. Ad and Ap show dy-
namics of input/state and output disturbances. For more information and how
to choose these matrices, we refer to [MB02] and [PR03]. Since the distur-
bances are not measurable, an extended Kalman filter is designed to estimate
them. The estimated disturbances are used to remove any offset between the
desired outputs and the measured outputs. Based on this model and estimated
disturbances, usk which is the offset free steady state input, can be calculated:(

A− I B
C D

)(
xsk
usk

)
=

(
−Bdd̂k
−Cpp̂k

)
(3.19)
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Chapter 4

Conclusions and future
developments
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Wind turbines are essentially nonlinear systems but most of our model based
control methods require linear models. Therefore derivation of linear math-
ematical models with various complexities from nonlinear models enables an
investigation of the potentials of model based control methods in terms of im-
proved power production and life-time of wind turbines. The possibility of vary-
ing the model complexity enables an investigation of the relationships between
performance, model complexity and robustness of these controllers. Therefore
in relation to these goals, various model complexities were chosen and different
model based control methods such as H∞ and model predictive control and
different robust model based control methods such as µ-synthesis and robust
model predictive control were employed and compared against a standard PI
controller. In all the cases the model based controllers gave better performance
in terms of output regulation and dynamic loads reduction.

In all the papers presented in part II, firstly a nonlinear model of wind turbine
using blade element momentum theory (BEM) and first principle modeling of
the flexible structure is obtained. Different number of degrees of freedom are
used in different papers. For example in paper A we have included rotation of
the rotor and drivetrain torsion in the design model while in paper G we have
included tower fore-aft and in paper H we have included an approximate model
of the blades.

Our control methodology is based on linear models, therefore we have used
Taylor series expansion to linearize the obtained nonlinear model around system
operating points. The operating point is a direct function of the rotor rotational
speed, the pitch angle and the wind speed where the rotational speed and the
pitch angle are functions of the wind speed themselves. Therefore the wind speed
or rather the effective wind speed determines the operating point of the system.
In the papers B and D wind speed estimation is used to find the operating point,
while in the papers C and H, LIDAR measurements are used to calculate the
effective wind speed and find the operating points.

In the papers on robust model based control methods (paper B and paper G)
we have shown that uncertainty in the wind speed estimation/measurement will
result in an uncertain A and B matrices in our linear models. And in paper D we
have concluded that with an acceptable approximation, the uncertainty could
be considered to be only in the B matrix. A special minimax model predictive
control formulation was derived to take into account the assumed uncertainties.

For all the papers, the final controllers have been applied on a full complexity
FAST [JJ05] model and the results are compared against a standard PI controller
[JBMS09].
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In paper A DK-iteration technique is used to design a robust controller. How-
ever in this work only one linear model was obtained and consequently one
controller was designed. The simulations were performed around one specific
linearization point both for the nominal case and the perturbed case. In paper
B the method in paper A was extended further and several controllers were de-
signed and applied based on a switching strategy. The resulting controller was
performing satisfactorily, however tuning all the controllers in the controller
bank and choosing an appropriate switching strategy was cumbersome. Here it
is logical to come up with a better solution such as a gain-scheduled controller
which can take nonlinearities into account directly. The basic objective in these
papers were regulation of the outputs and dynamic load reduction however no
comparison was presented. The results were further extended and tower fore-aft
degree of freedom was included in paper G. Here the simulation results are com-
pared against a standard PI controller. The resulting controller shows better
performance both for the nominal case and the perturbed case.

Paper C and paper E are based on the idea that in certain cases we may have
scheduling variable of the nonlinear system in advance. We have employed this
idea in the wind turbine control and by formulating a suitable model predictive
control we have shown that the method gives superior performance both on out-
put regulation and low actuator activities. However it should be noted that this
performance is achieved while considering the LIDAR measurements could be
used to calculate effective wind speed precisely which is rather idealistic. In pa-
per I we have tried to make our assumptions about LIDAR measurements more
realistic and have considered uncertainties in the propagation time of the wind.
In this paper we have used an Extended Kalman filter to estimate the effective
wind speed and then compared this estimation with LIDAR measurements and
estimate the lead-lag error in the LIDAR measurements and compensated for
it. The results of these papers were extended to individual pitch control in
paper F. The idea of individual pitch control using LIDAR measurements was
further developed in paper H and the superior performance in terms of output
regulations, low actuator activity and low fatigue loads were observed. And
in the paper I an important problem with LIDAR measurements, namely the
uncertainty in the wind propagation time, was considered.
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DK-Iteration Robust Control Design of a Wind Turbine1

Mahmood Mirzaei2, Hand Henrik Niemann3 and Niels Kjølstad Poulsen2

Abstract

The problem of robust control of a wind turbine is considered in this paper.
A controller is designed based on a 2 degrees of freedom linearized model. An
extended Kalman filter is used to estimate effective wind speed and the esti-
mated wind speed is used to find the operating point of the wind turbine. Due
to imprecise wind speed estimation, uncertainty in the obtained linear model is
considered. Uncertainties in the drivetrain stiffness and damping parameters are
also considered as these values are lumped parameters of a distributed system
and therefore they include inherent uncertainties. We include these uncertain-
ties as parametric uncertainties in the model and design a robust controller using
DK-iteration method. The controller is applied on a full complexity simulation
model and simulations are performed for wind speed step changes.

5.1 Introduction

There is an increasing interest in wind energy and wind turbines are the most
common wind energy conversion systems (WECS). Control is an essential part
of the wind turbine system because control methods can decrease the cost of
energy by increasing the power capture by keeping the turbine close to its maxi-
mum efficiency and also by reducing structural loadings and therefore increasing
lifetime of the wind turbine. Wind turbines essentially have two regions of oper-
ation, partial load and full load. In the partial load wind speed is not fast enough
to produce rated power. In this region the main control objective is to track
the maximum power coefficient(CPmax) and extract as much power as possible.
Pitch is mostly fixed in this region and generator reaction torque is adjusted to
control rotational speed and keep the operating point close to CPmax. In the full
load region wind speed is above rated and wind power exceeds rated power of the
generator, therefore by decreasing aerodynamics efficiency of the rotor we try to

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,
Building 349, DK-2800 Kgs. Lyngby, Denmark
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control the captured power and this is done by pitching the blades. There are
several methods for wind turbine control ranging from classical control methods
[LC00] which are the most used method in real applications to advanced and
model based control methods which have been the focus of research in the past
few years[LPW09]. Gain scheduling[BBM06], adaptive control[JF08], time in-
variant MIMO methods[GC08], nonlinear control[Tho06], robust control[Øst08],
model predictive control [Hen07] are to mention a few. Advanced control meth-
ods are thought to be the future of wind turbine control as they can employ
new generations of sensors on wind turbines (e.g. LIDAR[HHW06]), new gener-
ation of actuators (e.g. trailing edge flaps[And10]) and also conveniently treat
the turbine as a MIMO system. The last feature seems to become more im-
portant than before as wind turbines become bigger and more flexible which
make decoupling different modes and designing controller for each mode more
difficult. The wind turbine in this paper is treated as a MIMO system with
pitch reference(θref ) and generator reaction torque(Qref ) as inputs and rotor
rotational speed(ωr), generator rotational speed(ωg) and generated power(Pe)
as outputs. This paper is organized as follows: In the section 5.2 modeling of
the wind turbine including modeling for wind speed estimation, linearization
and uncertainty modeling is addressed. In the section 5.3.1 controller design is
explain and in the section 5.4 robust performance problems is addressed. And
finally in the section 5.5 simulation results are presented.

5.2 Modeling of the Wind Turbine

For modeling purposes, the whole wind turbine can be divided into 4 subsys-
tems: Aerodynamics subsystem, structural subsystem, electrical subsystem and
actuator subsystem. Figure 5.1 shows the basic subsystems and their inter-
actions. The dominant dynamics of the wind turbine come from its flexible
structure. Several degrees of freedom could be considered to model the flexible
structure, but for control design mostly just a few important degrees of freedom
are considered. Mostly the degrees of freedom whose eigen frequencies lie inside
actuator bandwidth are considered otherwise including them into the design
model is useless and makes the design model unnecessarily complicated. In this
work we only consider two degrees of freedom, namely the rotational degree
of freedom(DOF) and drivetrain torsion. The aerodynamics subsystem in the
model gets effective wind speed(ve), pitch angle(θ) and rotational speed of the
rotor(ωr) and returns aerodynamic torque (Tr) and thrust(FT ). This subsystem
is responsible for the nonlinearity in the wind turbine model. More details are
presented in the section 5.2.2.
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Figure 5.1: Wind turbine subsystems

5.2.1 Wind Model

Wind model can be modeled as a complicated nonlinear stochastic process,
however for practical purposes it could be approximated based on a linear model.
In this model the wind has two elements, mean value term(vm) and turbulent
term(vt):

ve = vm + vt

The turbulent term could be modeled by the following state space model:(
v̇t
v̈t

)
=

(
0 1

− 1
p1(vm)p2(vm) −p1(vm)+p2(vm)

p1(vm)p2(vm)

)(
vt
v̇t

)
+(

0
k(vm)

p1(vm)p2(vm)

)
e, e ∈ N(0, 1)

(5.1)

The parameters k(vm), p1(vm) and p2(vm) are estimated by approximating wind
power distribution and as it is indicated, they are dependent on the mean wind
speed (vm).

5.2.2 Nonlinear Model

Blade element momentum(BEM) theory [Han08] is used to calculate aerody-
namic torque and thrust on the wind turbine. This theory explains how torque
and thrust are related to wind speed, blade pitch angle and rotational speed of
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the rotor with the following formulas:

Qr =
1

2

1

ωr
ρπR2v3

eCP (θ, ω, ve)

Qt =
1

2
ρπR2v2

eCT (θ, ω, ve)

In which Qr and Qt are aerodynamic torque and thrust, ρ is air density, ωr is
rotor rotational speed, ve is effective wind speed, CP is the power coefficient
and CT is the thrust force coefficient. For the sake of simplicity, instead of
presenting these two coefficients as functions of three variables ω, ve and θ, they
are presented as a function of two variables λ and θ in which λ = Rω

ve
and it is

called tip speed ratio. As we have not used individual pitch in this work absolute
angular position of the rotor and generator are of no interest to us, therefore
we use ψ = θr− θg instead which is the drivetrain torsion. Having aerodynamic
torque the whole system equation with 2 degrees of freedom becomes:

Jrω̇r = Qr − c(ωr −
ωg
Ng

)− kψ

(NgJg)ω̇g = c(ωr −
ωg
Ng

) + kψ −NgQg
(5.2)

In which Jr and Jg are rotor and generator moments of inertia, ψ is the drivetrain
torsion, c and k are the drivetrain damping and stiffness factors respectively
lumped in the low speed side of the shaft. For numerical values of these param-
eters and other parameters given in this paper, we refer the reader to [JBMS09].
These equations give us a nonlinear model however our control design method
is based on linear models, therefore we need to linearize the nonlinear model of
the system which could be easily achieve using Taylor expansions around the
operating points.

5.2.3 Uncertain Model

As it was mentioned, for control design we need to have a linear model of the
system and the following model of the wind turbine is used: ẋ

y∆

y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x
u∆

u


In which states, inputs and outputs are:

x =
(
ωr ωg ψ θ Qg ve v̇e

)T
u =

(
θref Qref

)T
y =

(
ωr ωg Pe

)T
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ωr is rotational speed of the rotor, ωg is rotational speed of the generator, ψ is
drivetrain deflection, θ pitch of the blade, Qg is the generator reaction torque, ve
and v̇e are wind model states, θref is the reference value for pitch angle and Qref
is the reference value for the generator reaction torque and Pe is the electrical
power. System equations are:

ω̇r =
a− c
Jr

ωr +
c

Jr
ωg −

k

Jr
ψ + b1θ + b2ve

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg

ψ̇ = ωr −
ωg
Ng

θ̇ = − 1

τθ
θ +

1

τθ
θref

Q̇g = − 1

τg
Qg +

1

τg
Qref

Pe = Qg0ωg + ωg0Qg

v̈e = − 1

p1p2
ve −

p1 + p2

p1p2
v̇e +

k

p1p2
e

There are always discrepancies between real system and mathematical models,
which lead to uncertain models. In this work, sources of uncertainties are taken
to be:

• Uncertainty in the drivetrain stiffness and damping parameters.

• Uncertainty in the linearized model.

Uncertainty in the linearized model could be a result of approximate CP curve
calculations, wrong wind speed estimation which results in picking the wrong
operating point or aerodynamic changes due to blade flexibility or ice coatings
on the blades. Multiplicative uncertainty is used to represent the uncertain
parameters. The uncertainty matrix becomes:

ua
ub1
uk
uc

 =


δa 0 0 0
0 δb1 0 0
0 0 δk 0
0 0 0 δc



ya
yb1
yk
yc


y∆ =

(
ya yb1 yk yc

)T is the uncertainty output, y is the output, u∆ =(
ua ub1 uk uc

)T is the uncertainty input and u is the input. Now having
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 A B1 B2

C1 D11 D12

C2 D21 D22


∫
∫

ωr
ωg

y∆
u∆

ve

ω∗g
θref
Tref

Pe

P ∗e

P

Figure 5.2: System interconnections

system equations, we can make the interconnection matrix P (see figure 5.2):

y∆

z
y

 = P

u∆

d
u



5.2.4 Simulation Model

The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code [JJ05] is
used as the simulation model and the 5MW reference wind turbine is used as
the plant [JBMS09]. In the simulation model 10 degrees of freedom are enabled
which are: generator, drivetrain torsion, 1st and 2nd tower fore-aft, 1st and
2nd tower side-side, 1st and 2nd blade flapwise, 1st blade edgewise degrees of
freedom.

5.2.5 Wind Speed Estimation

Based on the nonlinear model given in (5.2) and the wind model given in (5.1)
an extended Kalman filter is designed to estimate the effective wind speed. This
wind speed is used to find the operating point of the wind turbine (θ∗, λ∗ and
C∗p ) and linearize the nonlinear model.
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5.3 Controller Design

5.3.1 Control Objectives

The most basic control objective of a wind turbine is to maximize power capture
in the turbine life time, which this in turn means maximizing power captured
from the wind and prolonging life time of the wind turbine by minimizing the
fatigue loads. Generally maximizing power capture is considered in the partial
load and minimizing fatigue loads is mainly considered above rated. As we are
operating in the full load region in this work, we have considered the second
objective. Control objectives are formulated in the form of weighting functions
on input disturbances(d) and exogenous outputs(z). In order to avoid high
frequency activity of the actuators, we have put high pass filter on control
signals to punish high frequency actions. Also we have setup low pass filters to
punish low frequency of the system outputs as their high frequency dynamics
are outside of our actuator bandwidth and we can not control them anyway. For
regulating power and rotational speed, Pe−P ∗e and

∫
ωg − ω∗g and for minimizing

fatigue loads on the drivetrain ωg−Ngωr are punished. The resulting controller
is a dynamical system with measurements y as its inputs and control signals u
as its outputs:

ẋc = Acxc +Bcy

u = Ccxc

5.4 Robust Performance Problem

5.4.1 Theory

Robust performance means that the performance objective is satisfied for all
possible plants in the uncertainty set. The robust performance condition can be
cast into a robust stability problem with an additional perturbation block that
defines H∞ performance specifications [SP01]. The structured singular value
µ is a very powerful tool for the analysis of robust performance with a given
controller. However this is an analysis tool, in order to design a controller, we
need a synthesis tool. A scaled version of the upper bound of µ is used for
controller synthesis. The problem is formulated in the following form:

µ∆(N(K)) ≤ min
D∈D

σ(DN(K)D−1)
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PWi Wo

K

∆ W∆

∆P

z′d′
u∆ y∆

yu

N(K)

Figure 5.3: System setup for robust performance problem

Now, the synthesis problem can be cast into the following optimization problem
in which one tries to to find a controller that minimizes the peak value over
frequency of this upper bound:

min
K∈K

(min
D∈D

‖ DN(K)D−1 ‖∞)

This problem is solved by an iterative approach which is called DK-iteration.
For detailed explanations on the method and notations the reader is referred to
[SP01].

5.4.2 Implementation

We have used µ-Synthesis toolbox [Mat] to implement the DK-Iteration algo-
rithm. W∆ is used to scale the ∆ matrix. We have taken uncertainty of 10% of
the nominal values for drivetrain stiffness and damping coefficients and 20% for
the linearization parameters therefore the weighting matrix becomes:

W∆ = diag(0.2, 0.2, 0.1, 0.1)

∆P (scaled by Wi and Wo matrices) defines performance of the system in the
form of a complex perturbation matrix. Wi and Wo are frequency dependent
weight matrices on disturbances and exogenous outputs respectively of the form:

Wo = diag(Wo1, . . . ,Wo5)

Wi = diag(Wi1,Wi2)
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Figure 5.4: Bode plots for performance specifications(y-axis is in dB and x-
axis is in rad/s)
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Bode plots of the weighting functions are given in the figure 5.4. Figure 5.4
shows bode plots of weighting functions. Input disturbances (d) to the system
are:

d =

(
ve
ω∗g

)
Wind Speed
Rotor rotation reference

And exogenous outputs (z) are:

z =


θref
Qref

ω∗r − ωg
Ng∫

ω∗g − ωg∫
P ∗e − Pe


Pitch reference
Generator reaction torque reference
Deflection of the drivetrain
Integral on rotational speed error
Integral on generated power error

These weightings are used to specify performance of the system. As we have
parametric uncertainties in the plant and complex perturbation for performancs,
mixed µ is used to design the controller. The resulting mixed-µ is given in
figure 5.5 and the iteration summery is given in the table 5.1. The obtained
controller is of the order 19, and has maximum gain of 15.86dB. As high order
controllers are problematic in the real implementations, we have used balanced
order reduction [Var91] to reduce its order to 10. Hankel singular values of the
controller are shown in figure 5.6 and the jump from order 10 to 11 is found a
reasonable place for controller order reduction.

5.5 Simulation Results

In this section simulation results for the obtained controller are presented. The
controller is implemented in MATLAB and tested on full complexity FAST



64 DK-Iteration robust control design of a wind turbine

Iteration number 1 2 3
Controller Order 19 19 19
γ Acheived 9682006.84 45.289 7.347
Peak µ-Value 2482.23 0.865 0.808

Table 5.1: DK-iteration summery

0 5 10 15 20
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−10

10
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10
0

10
5

Figure 5.6: Hankel singular values of the controller, order of the controller on
the x-axis

model of the reference wind turbine [JBMS09]. As it is mentioned in section
5.2.5 we have augmented model of wind turbine with a stochastic wind model,
however in order to make evaluation of the controller on nominal and worst case,
we have used simulations with step changes in the wind speed.

5.5.1 Robust performance simulations

In this section simulation results of a step change in wind speed is presented.
Control inputs which are pitch reference θref and generator reaction torque
reference Tref along with system outputs which are rotor rotational speed ωr
and electrical power Pe are plotted in figues 5.7a-5.7e.

5.5.2 Simulation for the worst case

In this section worst case scenarios, in which all the uncertainties are taken to
be the maximum values, are presented. To do so, wind speed is taken to be
2m/s away from the linearization point and nominal values of the drivetrain
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stiffness and damping are replaced by the following values:

k = k̄(1 + Pkδk) for δk = ±1 & Pk = 0.1

c = c̄(1 + Pcδc) for δc = ±1 & Pc = 0.1

As it is seen in figures 5.8 and 5.9, in the worst cases the system becomes
oscillatory but it maintains a reasonable performance.

5.6 CONCLUSION

In this paper we solved the problem of robust control of a wind turbine using
DK-iteration technique. The controller is designed for the full load region,
and an extension of this work would be to solve the problem for partial load
too. Parametric uncertainty is considered in the uncertain model and then we
have used µ-synthesis method to design the controller. The full model with
augmented wind model is of the order 8 and the resulting controller is of the
order 19, however balanced truncation model order reduction is used to reduce
order of the controller to 10. The final controller is implemented on a FAST
simulation model with 10 degrees of freedom and simulations with wind speed
step changes are done for nominal plant and worst case plant. The results
suggest that the controller can handle nominal case pretty well and the worst
case with a little loss of performance.
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Figure 5.7: Simulation results
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Figure 5.8: Worst case scenario with +2m/s wind speed estimation error
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Paper A References

[And10] Peter Bjørn Andersen. Advanced Load Alleviation for Wind Turbines
using Adaptive Trailing Edge Flaps: Sensoring and Control. PhD
thesis, Technical University of Denmark, Denmark, 2010.

[BBM06] Fernando D. Bianchi, Hernan De Battista, and Ricardo J. Mantz.
Wind Turbine Control Systems: Principles, Modelling and Gain
Scheduling Design. Springer, 2006.

[GC08] M. Geyler and P. Caselitz. Robust multivariable pitch control design
for load reduction on large wind turbines. Journal of solar energy
engineering, 130(3):–, 2008.

[Han08] Martin O. L. Hansen. Aerodynamics of Wind Turbines. Earthscan,
2008.

[Hen07] Lars Christian Henriksen. Model predictive control of a wind turbine.
Master’s thesis, Technical University of Denmark, Informatics and
Mathematical Modelling, 2007.

[HHW06] M. Harris, M. Hand, and A. Wright. LIDAR for turbine control.
Technical report, National Renewable Energy Laboratory, 2006.

[JBMS09] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition
of a 5MW reference wind turbine for offshore system development.
Technical report, National Renewable Energy Laboratory„ 1617 Cole
Boulevard, Golden, Colorado 80401-3393 303-275-3000, 2009.

[JF08] Johnson and Fingersh. Adaptive pitch control of variable-speed wind
turbines. J. Sol. Energy Eng. (USA), 130(3):031012–1–7, 2008.

[JJ05] Jason M. Jonkman and Marshall L. Buhl Jr. Fast user’s guide. Tech-
nical Report NREL/EL-500-38230, National Renewable Energy Lab-
oratory, Golden, CO, August 2005.

[LC00] W.E. Leithead and Bill Connor. Control of variable speed wind tur-
bines: Design task. Int J Control, 73(13):1189–1212, 2000.

[LPW09] J.H. Laks, L.Y. Pao, and A.D. Wright. Control of wind turbines:
Past, present, and future. Proceedings of the American Control Con-
ference, pages 2096–2103, 2009.

[Mat] The MathWorks, Inc. Robust Control Toolbox.

[Øst08] Kasper Zinck Østergaard. Robust, Gain-Scheduled Control of Wind
Turbines. PhD thesis, Automation and Control Department of Elec-
tronic Systems, Aalborg University, 2008.



70 PAPER A REFERENCES

[SP01] Sigurd Skogestad and Ian Postlethwaite. Multivariable Feedback Con-
trol Analysis and design. JOHN WILEY & SONS, Second Edition,
2001.

[Tho06] Sven Creutz Thomsen. Nonlinear control of a wind turbine. Master’s
thesis, Technical University of Denmark, Informatics and Mathemat-
ical Modelling, Lyngby, Denmark, 2006.

[Var91] A. Varga. Balancing free square-root algorithm for computing sin-
gular perturbation approximations. Proc IEEE Conf Decis Control,
2:1062–1065, 1991.



Paper B

A µ-synthesis approach to
robust control of a wind

turbine

Authors:
M. Mirzaei, N. K. Poulsen and H. H. Niemann

Presented in:
The 50th IEEE Conference on Decision and Control and European Control
Conference, 2011.



72 A µ-synthesis approach to robust control of a wind turbine

A µ-Synthesis Approach to Robust Control of a Wind Turbine1

Mahmood Mirzaei2, Hand Henrik Niemann3 and Niels Kjølstad Poulsen2

Abstract

The problem of robust control of a wind turbine is considered in this paper. A
set of controllers are designed based on a 2 degrees of freedom linearized model
of a wind turbine. An extended Kalman filter is used to estimate effective
wind speed and the estimated wind speed is used to find the operating point of
the wind turbine. Due to imprecise wind speed estimation, uncertainty in the
obtained linear model is considered. Uncertainties in the drivetrain stiffness and
damping parameters are also considered as these values are lumped parameters
of a distributed system and therefore they include inherent uncertainties. we
include these uncertainties as parametric uncertainties in the model and design
robust controllers using the DK-iteration method. Based on estimated wind
speed a pair of controllers are chosen and convex combination of their outputs
is applied to the plant. The resulting set of controllers is applied on a full
complexity simulation model and simulations are performed for stochastic wind
speed according to relevant IEC standard.

6.1 Introduction

In the recent decades there has been an increasing interest in green energies
of which wind energy is one of the most important ones. Wind turbines are
the most common wind energy conversion systems (weCS) and are hoped to be
able to compete with fossil fuel power plants on the energy price in near fu-
ture. However this demands better technology to reduce electricity production
price. Control can play an essential part in this context because control meth-
ods on one hand can decrease the cost of energy by keeping the turbine close
to its maximum efficiency. On the other hand reduce structural fatigue and
therefore increase lifetime of the wind turbine. There are several methods for
wind turbine control ranging from classical control methods [LC00] which are

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,
Building 349, DK-2800 Kgs. Lyngby, Denmark
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the most used methods in real applications to advanced control methods which
have been the focus of research recently [LPW09]. Gain scheduling [BBM06],
adaptive control [JF08], MIMO methods [GC08], nonlinear control [Tho06], ro-
bust control [Øst08], model predictive control [Hen07], DK-iteration [MNP11]
just to mention a few. Advanced control methods are thought to be the future
of wind turbine control as they can employ new generations of sensors on wind
turbines (e.g. LIDAR [HHW06]), new generation of actuators (e.g. trailing
edge flaps [And10]) and also conveniently treat the turbine as a MIMO system.
The last feature seems to become more important than before as wind turbines
become bigger and more flexible which make decoupling different modes and
designing controller for each mode more difficult. The wind turbine in this pa-
per is treated as a MIMO system with pitch (θin) and generator reaction torque
(Qin) as inputs and rotor rotational speed (ωr), generator rotational speed (ωg)
and generated power (Pe) as outputs. Parametric uncertainties considered and
DK-iteration method [SP01] is used to solve the control problem. DK-iteration
is a method that takes structured uncertainty into account in order to reduce
conservativeness of the H∞ procedure. A set of controllers each of which respon-
sible for a specific region of the operation range are designed. we use wind speed
estimation to choose pair of controllers and also to calculate convex combina-
tion of controller pair outputs to apply to the plant. This paper is organized as
follows: In section 6.2 modeling of the wind turbine including modeling for wind
speed estimation, linearization and uncertainty modeling is addressed. In sec-
tion 6.3 controller design is explained. Finally in section 6.4 simulation results
are presented.

6.2 Modeling of the Wind Turbine

For modeling purposes, the whole wind turbine can be divided into 4 subsys-
tems: Structural subsystem, aerodynamics subsystem, electrical subsystem and
actuator subsystem. The dominant dynamics of the wind turbine come from its
structure which includes drivetrain, tower and blades. Several degrees of free-
dom could be considered to model the structure, but for control design mostly
just a few important degrees of freedom are considered. In this work we only
consider two degrees of freedom, namely the rotational degree of freedom (DOF)
and drivetrain torsion. The aerodynamics subsystem gets effective wind speed
(ve), pitch angle (θ) and rotational speed of the rotor (ωr) and returns aerody-
namic torque (Qr) and thrust (QT ). The aerodynamic subsystem is responsible
for the nonlinearity in the wind turbine model. More details are presented in
section 6.2.2.
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Figure 6.1: Wind turbine subsystems

6.2.1 Modeling for Estimation

Wind can be modeled as a complicated nonlinear stochastic process, however
for practical purposes it could be approximated by a linear model [JLSM06].
In this model the wind has two elements, mean value term (vm) and turbulent
term (vt):

ve = vm + vt

The turbulent term is modeled by the following transfer function:

vt =
k(vm)

(p1(vm)s+ 1)(p2(vm)s+ 1)
e; e ∈ N(0, 1)

And in the state space form:(
v̇t
v̈t

)
=

(
0 1

− 1
p1(vm)p2(vm) −p1(vm)+p2(vm)

p1(vm)p2(vm)

)
(
vt
v̇t

)
+

(
0

k(vm)
p1(vm)p2(vm)

)
e

(6.1)

This is a second order approximation of the wind power spectrum [JLSM06].
For wind speed estimation, a one DOF nonlinear model of the wind turbine is
augmented with the wind model given above. An extended Kalman filter uses
this model to estimate the effective wind speed. This wind speed is used to find
the operating point of the wind turbine and to calculate appropriate control
signals.
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6.2.2 Nonlinear Model

Blade element momentum (BEM) theory [Han08] is used to calculate aerody-
namic torque and thrust on the wind turbine. BEM theory explains how torque
and thrust are related to wind speed, blade pitch angle and rotational speed of
the rotor with the following formulas:

Qr =
1

2

1

ωr
ρπR2v3

eCP (θ, ω, ve)

Qt =
1

2
ρπR2v2

eCT (θ, ω, ve)

(6.2)

In which Qr and Qt are aerodynamic torque and thrust, ρ is air density, ωr is
rotor rotational speed, ve is effective wind speed, CP is the power coefficient
and CT is the thrust force coefficient. Absolute angular position of the rotor
and generator are of no interest to us, therefore we use the drivetrain torsion
ψ = θr − θg instead. Having aerodynamic torque the whole system equation
with 2 degrees of freedom becomes:

Jrω̇r = Qr − c(ωr −
ωg
Ng

)− kψ

(NgJg)ω̇g = c(ωr −
ωg
Ng

) + kψ −NgQg

Pe = Qgωg

(6.3)

In which Jr and Jg are rotor and generator moments of inertia, ψ is the driv-
etrain torsion, c and k are the drivetrain damping and stiffness factors respec-
tively lumped in the low speed side of the shaft and Pe is the generated power.
For numerical values of these parameters and other parameters given in this pa-
per, we refer the reader to [JBMS09]. These equations give a nonlinear model.
However we need to linearize the nonlinear model of the system. This could be
easily achieved using Taylor expansions around the operating points:

∆Qr = a∆ωr + b1∆θ + b2∆ve

∆Pe = Q∗g∆ωg + ω∗g∆Qg
(6.4)

Q∗g and ω∗g are the nominal values of torque and generator speed. For the sake
of simplicity in notations we use variables without ∆ from now on.
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6.2.3 Uncertain model

As it was mentioned, for control design we need to have a linear model of the
system and the following model of the wind turbine is used: ẋ

y∆

y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x
u∆

u

 (6.5)

In which states, inputs and outputs are:

x =
(
ωr ωg ψ θ Qg ve v̇e

)T
u =

(
θin Qin

)T
y =

(
ωr ωg Pe

)T (6.6)

ωr is rotational speed of the rotor, ωg is rotational speed of the generator, ψ is
drivetrain deflection, θ pitch of the blade, Qg is the generator reaction torque, ve
and v̇e are wind model states, θin is the reference value for pitch actuatorm, Qin
is the reference value for the generator torque actuator and Pe is the electrical
power. Having all the equations, system equations become:

ω̇r =
a− c
Jr

ωr +
c

Jr
ωg −

k

Jr
ψ + b1θ + b2ve (6.7)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(6.8)

ψ̇ = ωr −
ωg
Ng

(6.9)

θ̇ = − 1

τθ
θ +

1

τθ
θin (6.10)

Q̇g = − 1

τg
Qg +

1

τg
Qin (6.11)

Pe = Qg0ωg + ωg0Qg (6.12)

v̈e = − 1

p1p2
ve −

p1 + p2

p1p2
v̇e +

k

p1p2
e (6.13)

τθ and τg are time constants of the first order actuator models (see equ. 6.10).
Uncertainties for the parameters of the equations 6.7-6.8 are:

a = ā(1 + paδa) Linearized model
b1 = b̄1(1 + pb1δb1) Linearized model
k = k̄(1 + pkδk) Drivetrain stiffness
c = c̄(1 + pcδc) Drivetrain damping

(6.14)
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 A B1 B2

C1 D11 D12

C2 D21 D22


∫
∫

ωr
ωg

y∆
u∆

ve

ω∗g
θref
Tref

Pe

P ∗e

P

Figure 6.2: System interconnections

In which:

|δa| ≤ 1, |δb1 | ≤ 1, |δk| ≤ 1, |δc| ≤ 1 (6.15)

And ā, b̄1, k̄ and c̄ are the nominal values and pa, pb1 , pk and pc represent the
relative perturbations. Uncertainty in the linearized model could be a result
of approximate CP curve calculations, wrong wind speed estimation which re-
sults in picking the wrong operating point or aerodynamic changes due to blade
flexibility or ice coatings on the blades. Using the equation 6.14 to represent
uncertainties, the uncertainty matrix (∆) becomes a diagonal matrix which con-
nects y∆ and u∆:

u∆ = diag(δa, δb1 , δk, δc)y∆

y∆ =
(
ya yb1 yk yc

)T
u∆ =

(
ua ub1 uk uc

)T (6.16)

6.2.4 Simulation Model

The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code [JJ05] is
used as the simulation model and the 5MW reference wind turbine is used as
the plant [JBMS09]. In the simulation model 10 degrees of freedom are enabled
which are: generator, drivetrain torsion, 1st and 2nd tower fore-aft, 1st and
2nd tower side-side, 1st and 2nd blade flapwise, 1st blade edgewise degrees of
freedom.
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Figure 6.3: Bode plots for performance specifications(y-axis is in dB and x-
axis is in rad/s)

6.3 Controller Design

6.3.1 Control Objectives

The most basic control objective of a wind turbine is to maximize captured
power and prolong life time of the wind turbine. The second objective is achieved
by minimizing the fatigue loads. Generally maximizing power capture is con-
sidered in the partial load and minimizing fatigue loads is mainly considered
above rated. As we are operating in the full load region in this work, we have
considered the second objective. Control objectives are formulated in the form
of weighting functions on input disturbances (d) and exogenous outputs (z). In
order to avoid high frequency activity of the actuators, we have put high pass
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filter on control signals to penalize high frequency actions. Also we have setup
low pass filters to penalize only low frequency of some of the system outputs as
their high frequency dynamics are outside of our actuator bandwidth and we
can not control them. For regulating power and rotational speed,

∫
Pe − P ∗e

and
∫
ωg − ω∗g and for minimizing fatigue loads on the drivetrain ωg−Ngωr are

penalized.

6.3.2 Nominal Performance Problem

6.3.2.1 Theory

H∞ control theory [SP01] is used to solve the nominal performance problem. In
this problem the ∆ matrix is considered zero (no perturbation) and the following
problem is solved:

K(s) = arg min
K∈K

‖WoFl(P,K)Wi(jω) ‖H∞ (6.17)

In which Fl(P,K) is the lower LFT of plant P (figure 6.2) and controller K.
Wi and Wo are frequency dependent weighting matrices on disturbances and
exogenous outputs respectively of the form:

Wo = diag(Wo1, . . . ,Wo5)

Wi = diag(Wi1,Wi2)
(6.18)

Bode plots of the weighting functions are given in the figure 6.3. Input distur-
bances (d) and exogenous outputs (z) are (see figure 6.2)

d =

(
ve
ω∗g

)
Wind Speed
Rotor rotation reference

z =


θin
Qin

ω∗r − ωg
Ng∫

ω∗g − ωg∫
P ∗e − Pe


Pitch reference
Generator reaction torque reference
Deflection of the drivetrain
Integral of rotational speed error
Integral of generated power error

The optimization problem suggests that we are trying to find a controller in the
set of stabilizing controllers that minimizes H∞-norm of weighted sensitivity
function. This means we try to minimize the peak frequency of WoSWi(jω).
The resulting controller guarantees nominal performance if:

‖WoFl(P,K)Wi(jω) ‖H∞< 1 (6.19)
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6.3.2.2 Implementation

The robust control toolbox [BDG+01] is used to solve the above problem. The
controller is found trying to minimize transfer function from the disturbances
(vector d) to the exogenous outputs (vector z). The controller that is designed
here is used in Simulink on the full complexity FAST model of the 5MW refer-
ence wind turbine [JBMS09] (explained in section 6.2.4) .

6.3.3 Robust Performance Problem

6.3.3.1 Theory

Robust performance means that the performance objective is satisfied for all
possible plants in the uncertainty set. The robust performance condition can be
cast into a robust stability problem with an additional perturbation block that
defines H∞ performance specifications[SP01]. The structured singular value
µ is a very powerful tool for the analysis of robust performance with a given
controller. However this is an analysis tool, in order to design a controller, we
need a synthesis tool. A scaled version of the upper bound of µ is used for
controller synthesis. The problem is formulated in the following form:

µ∆(N(K)) ≤ min
D∈D

σ(DN(K)D−1) (6.20)

Now, the synthesis problem can be cast into the following optimization problem
in which one tries to to find a controller that minimizes the peak value over
frequency of this upper bound:

min
K∈K

(min
D∈D

‖ DN(K)D−1 ‖∞) (6.21)

This problem is solved by an iterative approach called DK-iteration. For de-
tailed explanations on the method and notations the reader is referred to[SP01].

6.3.3.2 Implementation

we have used the DK-Iteration algorithm of the µ-Synthesis toolbox[Mat] to
design controllers. Figure 6.4 shows robust performance problem setup. W∆ is
used to scale the ∆ matrix. we have taken uncertainty of 10% of the nominal
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Figure 6.4: System setup for robust performance problem

values for the drivetrain stiffness and damping coefficients and 20% for the
linearization parameters therefore the weighting matrix becomes:

W∆ = diag(0.2, 0.2, 0.1, 0.1) (6.22)

∆P scaled by Wi and Wo matrices defines performance of the system in the
form of a complex perturbation matrix. The resulting mixed-µ for one of the
controllers is given in figure 6.5 and the iteration summery in table 6.1. Order of
the resulting controllers (only one is shown in the table 6.1) are between 21 to 27,
and since high order controllers are problematic in the implementation phase,
we have used balanced order reduction to reduce order of all the controllers to
15.

6.3.4 Control Signal Calculation

Wind turbines are highly nonlinear plants and one single controller which is
designed based on a linear model of an operating point is not able to handle the

Iteration number 1 2 3
Controller Order 21 23 25
γ Acheived 9682006.84 24.327 4.726
Peak µ-Value 1355.81 0.527 0.475

Table 6.1: DK-iteration summery for one of the controllers
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Figure 6.6: Control configuration for the whole region

whole operating region unless we give away too much performance in favor of
robustness of the controller. One way to avoid this problem is to design a set
of controllers each of which is responsible for a specific range of operation. we
employ the estimated wind speed to choose a pair of controllers that are closest
to the operating point and then use a convex combination of their outputs to
calculate control signals to the plant. The following formula is used to calculate
the control signal:

α(v̂e) = v̂e − vk vk ≤ v̂e < vk+1

u = (1− α(v̂e))ξk + α(v̂e)ξk+1

(6.23)

v̂e is the estimated wind speed, vk ∈ V which:

V =
{

12, 13, . . . , 25
}

(6.24)
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And ξk’s are defined as:

ξ1,2 = C1 ξ3,4 = C2

ξ5,6 = C3 ξ7,8,9 = C4

ξ10,11,12 = C5 ξ13,14 = C6

(6.25)

In which Ci’s are controllers outputs. In order to reduce the number of con-
trollers, controllers are designed only for wind speeds of 12, 14, 16, 18, 21, 24(m/s).
As the aerodynamic gains do not change much in the high wind speeds and one
controller can cover a bigger range of operating points, we have made the control
grid larger in that area. Figure 6.6 shows the diagram of control signal calcula-
tion. In this figure, the block Σ gets control signals from all the controllers and
based on the estimated wind speed v̂e calculates control signal u. Figure 6.12
shows the controller selection sequence (uk).

6.4 Simulation Results

In this section simulation results for the obtained controllers are presented. The
controllers are implemented in MATLAB and are tested on the full complexity
FAST model of the reference wind turbine[JBMS09]. Kaimal model is used as
the turbulence model and in order to stay in the above rated region, a realization
of turbulent wind speed from category C of the IEC turbulence categories with
18m/s as the mean wind speed is used.

6.4.1 Wind Speed Estimation

An extended Kalman filter is used to estimate the wind speed. Figure 6.7 shows
the effective and the estimated wind speeds.

6.4.2 Stochastic Simulations

In this section simulation results for a stochastic wind speed is presented. Con-
trol inputs which are pitch reference θin and generator reaction torque reference
Qin along with system outputs which are rotor rotational speed ωr and electri-
cal power Pe are plotted in figures 6.8-6.11. As it could be seen in figure 6.7
the estimated wind speed is inaccurate and the controller is designed such that
it can handle the uncertainties which arise from this inaccuracy. Simulation
results show good regulations of generated power and rotational speed, however
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one can get an even better regulation by making the controllers more aggressive
which results in higher fatigue loads on the actuators and the drivetrain.

6.5 CONCLUSION

In this paper we solved the problem of robust control of a wind turbine using
DK-iteration technique. Parametric uncertainties are considered in the un-
certain model and then we have used µ-synthesis toolbox to design a set of
controllers. Estimated wind speed is used to calculate control signal from out-
puts of controllers. The final controller is implemented on a FAST simulation
model with 10 degrees of freedom and simulation with stochastic wind speed
based on IEC standard is done. The results show good regulation of generated
power and rotational speed for a big range of wind speed changes.
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Model Predictive Control of a Nonlinear System with Known
Scheduling Variable1

Mahmood Mirzaei2, Niels Kjølstad Poulsen2 and Hand Henrik Niemann3

Abstract

Model predictive control (MPC) of a class of nonlinear systems is considered in
this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear
system. By taking the advantage of having future values of the scheduling
variable, we will simplify state prediction. Consequently the control problem of
the nonlinear system is simplified into a quadratic programming. Wind turbine
is chosen as the case study and we choose wind speed as the scheduling variable.
Wind speed is measurable ahead of the turbine, therefore the scheduling variable
is known for the entire prediction horizon.

7.1 Introduction

Model predictive control (MPC) has been an active area of research and has
been successfully applied on different applications in the last decades ([QB96]).
The reason for its success is its straightforward ability to handle constraints.
Moreover it can employ feedforward measurements in its formulation and can
easily be extended to MIMO systems. However the main drawback of MPC was
its on-line computational complexity which kept its application to systems with
relatively slow dynamics for a while. Fortunately with the rapid progress of
fast computations, better optimization algorithms, off-line computations using
multi-parametric programming ([Bao05]) and dedicated algorithms and hard-
ware, its applications have been extended to even very fast dynamical systems
such as DC-DC converters ([Gey05]). Basically MPC uses a model of the plant
to predict its future behavior in order to compute appropriate control signals to
control outputs/states of the plant. To do so, at each sample time MPC uses
the current measurement of outputs/states and solves an optimization problem.
The result of the optimization problem is a sequence of control inputs of which

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,
Building 349, DK-2800 Kgs. Lyngby, Denmark
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only the first element is applied to the plant and the procedure is repeated
at the next sample time with new measurements ([Mac02]). This approach is
called receding horizon control. Therefore basic elements of MPC are: a model
of the plant to predict its future, a cost function which reflects control objec-
tives, constraints on inputs and states/outputs, an optimization algorithm and
the receding horizon principle. Depending on the type of the model, the control
problem is called linear MPC, hybrid MPC, nonlinear MPC etc. Nonlinear MPC
is normally computationally very expensive and generally there is no guaran-
tee that the solution of the optimization problem is a global optimum. In this
work we extend the idea of linear MPC using linear parameter varying (LPV)
systems to formulate a tractable predictive control of nonlinear systems. To do
so, we use future values of a disturbance to the system that acts as a scheduling
variable in the model. However there are some assumptions that restrict our
solution to a specific class of problems. The scheduling variable is assumed to be
known for the entire prediction horizon. And the operating point of the system
mainly depends on the scheduling variable.

7.2 Proposed method

Generally the nonlinear dynamics of a plant could be modeled as the following
difference equation:

xk+1 = f(xk, uk, dk) (7.1)

With xk, uk and dk as states, inputs and disturbances respectively. Using the
nonlinear model, the nonlinear MPC problem could be formulated as:

min
u

`(xN ) +

N−1∑
i=0

`(xk+i|k, uk+i|k) (7.2)

Subject to xk+1 = f(xk, uk, dk) (7.3)
uk+i|k ∈ U (7.4)
x̂k+i|k ∈ X (7.5)

Where ` denotes some arbitrary norm and U and X show the set of accept-
able inputs and states. As it was mentioned because of the nonlinear model,
this problem is computationally too expensive. One way to avoid this prob-
lem is to linearize around an equilibrium point of the system and use linearized
model instead of the nonlinear model. However for some plants assumption of
linear model does not hold for long prediction horizons as the plant operating
point changes, for example based on some disturbances that act as a scheduling
variable. An example could be a wind turbine for which wind speed acts as a
scheduling variable and changes the operating point of the system.
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7.2.1 Linear MPC formulation

The problem of linear MPC could be formulated as:

min
u0,u1,...,uN−1

‖xN‖Qf +

N−1∑
i=0

‖xk+i|k‖Q + ‖uk+i|k‖R (7.6)

Subject to xk+1 = Axk +Buk (7.7)
uk+i|k ∈ U (7.8)
x̂k+i|k ∈ X (7.9)

Assuming that we use norms 1, 2 and∞ the optimization problem becomes con-
vex providing that the sets U and X are convex. Convexity of the optimization
problem makes it tractable and guarantees that the solution is the global opti-
mum. The problem above is based on a single linear model of the plant around
one operating point. However below we formulate our problem using linear pa-
rameter varying systems (LPV) in which the scheduling variable is known for
the entire prediction horizon.

7.2.2 Linear Parameter Varying systems

Linear Parameter Varying (LPV) systems are a class of linear systems whose pa-
rameters change based on a scheduling variable. Study of LPV systems was mo-
tivated by their use in gain-scheduling control of nonlinear systems ([AGB95]).
LPV systems are able to handle changes in the dynamics of the system by
parameter varying matrices.

Definition 7.1 (LPV systems) let k ∈ Z denote discrete time. We define
the following LPV systems:

xk+1 = A(γk)xk +B(γk)uk (7.10)

A(γk) =

nγ∑
j=1

Ajγk,j B(γk) =

nγ∑
j=1

Bjγk,j (7.11)

Which A(γk) and B(γk) are functions of the scheduling variable γk. The vari-
ables xk ∈ Rnx , uk ∈ Rnu , and γk ∈ Rnγ are the state, the control input and
the scheduling variable respectively.
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7.2.3 Problem formulation

Using the above definition, the linear parameter varying (LPV) model of the
nonlinear system with disturbances is of the following form:

x̃k+1 = A(γk)x̃k +B(γk)ũk +Bd(γk)d̃k (7.12)

This model is formulated based on deviations from the operating point. How-
ever we need the model to be formulated in absolute values of inputs, states
and disturbances. Because in our problem the steady state point changes as
a function of the scheduling variable and we need to introduce a variable to
capture its bahavior. In order to rewrite the state space model in the absolute
form we use:

x̃k = xk − x∗k (7.13)
ũk = uk − u∗k (7.14)

d̃k = dk − d∗k (7.15)

x∗k, u
∗
k and d∗k are values of states, inputs and disturbances at the operating

point. Therefore the LPV model becomes:

xk+1 = A(γk)(xk − x∗k) +B(γk)(uk − u∗k)

+Bd(γk)(dk − d∗k) + x∗k+1

(7.16)

Which could be written as:

xk+1 = A(γk)xk +B(γk)uk +Bd(γk)dk + λk (7.17)

with

λk = x∗k+1 −A(γk)x∗k −B(γk)u∗k −Bd(γk)d∗k (7.18)

Now having the LPV model of the system we proceed to compute state predic-
tions. In linear MPC predicted states at step n is:

xk+n = Anxk +

n−1∑
i=0

AiBuk+(n−1)−i

for n = 1, 2, . . . , N

(7.19)

However in our method the predicted state is also a function of scheduling
variable Γn =

(
γk+1, γk+2, . . . γk+n

)T for n = 1, 2, . . . , N − 1 and we assume
that the scheduling variable is known for the entire prediction. Therefore the
predicted state could be written as:

xk+1(γk) = A(γk)xk +B(γk)uk +Bd(γk)dk + λk (7.20)
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And for n ∈ Z, n ≥ 1:

xk+n+1(Γn) =

0∏
i=n

A(γk+i)xk

+

n−1∑
j=0

(∏1
i=n−j A(γk+i)

)
B(γk+j)uk+j

+

n−1∑
j=0

(∏1
i=n−j A(γk+i)

)
Bd(γk+j)dk+j

+

n−1∑
j=0

(∏0
i=n−j A(γk+i)

)
λk+(n−1)−j

+B(γk+n)uk+n +Bd(γk+n)dk+n + λk+n

(7.21)

Using the above formulas we write down the stacked predicted states which
becomes:

X = Φ(Γ)xk +Hu(Γ)U +Hd(Γ)D + Φλ(Γ)Λ (7.22)

with

X =
(
xk+1 xk+2 . . . xk+N

)T (7.23)

U =
(
uk uk+1 . . . uk+N−1

)T (7.24)

D =
(
dk dk+1 . . . dk+N−1

)T (7.25)

Γ =
(
γk γk+1 . . . γk+N−1

)T (7.26)

Λ =
(
λk λk+1 . . . λk+N−1

)T (7.27)

In order to summarize formulas for matrices Φ,Φλ,Hu and Hd, we define a new
function as:

ψ(m,n) =

n∏
i=m

A(γk+i) (7.28)

Therefore the matrices become:

Φ(Γ) =


ψ(1, 1)
ψ(2, 1)
ψ(3, 1)

...
ψ(N, 1)
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Φλ(Γ) =


I 0 0 . . . 0

ψ(1, 1) I 0 . . . 0
ψ(2, 1) ψ(2, 2) I . . . 0

...
...

...
. . .

...
ψ(N − 1, 1) ψ(N − 1, 2) ψ(N − 1, 3) . . . I



Hu(Γ) =


B(γk) 0 . . . 0

ψ(1, 1)B(γk) B(γk+1) . . . 0
ψ(2, 1)B(γk) ψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)B(γk) ψ(N − 1, 2)B(γk+1) . . . B(γN−1)



Hd(Γ) =


Bd(γk) 0 . . . 0

ψ(1, 1)Bd(γk) Bd(γk+1) . . . 0
ψ(2, 1)Bd(γk) ψ(2, 2)Bd(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)Bd(γk) ψ(N − 1, 2)Bd(γk+1) . . . Bd(γN−1)



After computing the state predictions as functions of control inputs (7.22), we
can write down the optimization problem similar to a linear MPC problem as a
quadratic program:

min
U

XTQX + UTRU

Subject to: U ∈ U
X ∈ X

(7.29)

7.3 Case study

The case study here is a wind turbine. Wind turbine control is a challenging
problem as the dynamics of the system changes based on wind speed which has
a stochastic nature. The method that we propose here is to use wind speed as
a scheduling variable. With the advances in LIDAR technology ([HHW06]) it
is possible to measure wind speed ahead of the turbine and this enables us to
have the scheduling variable of the plant for the entire prediction horizon.
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Figure 7.1: Wind turbine subsystems

7.3.1 Modeling

7.3.1.1 Nonlinear model

For modeling purposes, the whole wind turbine can be divided into 4 subsys-
tems: Aerodynamics subsystem, mechanical subsystem, electrical subsystem
and actuator subsystem. The aerodynamic subsystem converts wind forces into
mechanical torque and thrust on the rotor. The mechanical subsystem consists
of drivetrain, tower and blades. Drivetrain transfers rotor torque to electri-
cal generator. Tower holds the nacelle and withstands the thrust force. And
blades transform wind forces into toque and thrust. The generator subsystem
converts mechanical energy to electrical energy and finally the blade-pitch and
generator-torque actuator subsystems are part of the control system. To model
the whole wind turbine, models of these subsystems are obtained and at the end
they are connected together. A wind model is obtained and augmented with the
wind turbine model to be used for wind speed estimation. Figure 7.1 shows the
basic subsystems and their interactions. The dominant dynamics of the wind
turbine come from its flexible structure. Several degrees of freedom could be
considered to model the flexible structure, but for control design mostly just a
few important degrees of freedom are considered. In figure 7.2 basic degrees of
freedom which are normally being considered in the design model are shown.
However in this work we only consider two degrees of freedom, namely the ro-
tational degree of freedom (DOF) and drivetrain torsion. Nonlinearity of the
wind turbines mostly comes from its aerodynamics. Blade element momentum
(BEM) theory ([Han08]) is used to numerically calculate aerodynamic torque
and thrust on the wind turbine. This theory explains how torque and thrust
are related to wind speed, blade pitch angle and rotational speed of the rotor.
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In steady state, i.e. disregarding dynamic inflow, the following formulas can be
used to calculate aerodynamic torque and thrust.

Qr =
1

2

1

ωr
ρπR2v3

eCp(θ, ω, ve) (7.30)

Qt =
1

2
ρπR2v2

eCt(θ, ω, ve) (7.31)

In which Qr and Qt are aerodynamic torque and thrust, ρ is the air density,
ωr is the rotor rotational speed, ve is the effective wind speed, Cp is the power
coefficient and Ct is the thrust force coefficient. The absolute angular position
of the rotor and generator are of no interest to us, therefore we use ψ = θr − θg
instead which is the drivetrain torsion. Having aerodynamic torque and mod-
eling drivetrain with a simple mass-spring-damper, the whole system equation
with 2 degrees of freedom becomes:

Jrω̇r = Qr − c(ωr −
ωg
Ng

)− kψ (7.32)

(NgJg)ω̇g = c(ωr −
ωg
Ng

) + kψ −NgQg (7.33)

ψ̇ = ωr −
ωg
Ng

(7.34)

Pe = Qgωg (7.35)

In which Jr and Jg are rotor and generator moments of inertia, ψ is the
drivetrain torsion, c and k are the drivetrain damping and stiffness factors re-
spectively lumped in the low speed side of the shaft and Pe is the generated
electrical power. For numerical values of these parameters and other parame-
ters given in this paper, we refer to ([JBMS09]).

7.3.1.2 Linearized model

As it was mentioned in the previous section, wind turbines are nonlinear systems.
A basic approach to design controllers for nonlinear systems is to linearize them
around some operating points. For a wind turbine, the operating points on the
quasi-steady Cp and Ct curves are nonlinear functions of rotational speed ωr,
blade pitch θ and wind speed v. To get a linear model of the system we need
to linearize around these operating points. Rotational speed and blade pitch
are measurable with enough accuracy, however this is not the case for the effect
of wind on the rotor. Wind speed changes along the blades and with azimuth
angle (angular position) of the rotor. This is because of wind shear and tower
shadow and stochastic spatial distribution of the wind field. Therefore a single
wind speed does not exist to be used and measured for finding the operating
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Figure 7.2: Basic degrees of freedom

point. We bypass this problem by defining a fictitious variable called effective
wind speed (ve) which shows the effect of wind in the rotor disc on the wind
turbine. In our two DOFs model only the aerodynamic torque (Qr) and electric
power (Pe) are nonlinear. Taylor expansion is used to linearize them.

∆Qr(ω, θ, ve) =
∂Qr
∂ω︸︷︷︸
a

∆ω +
∂Qr
∂θ︸︷︷︸
b1

∆θ +
∂Qr
∂ve︸︷︷︸
b2

∆ve (7.36)

∆Pe =
∂Pe
∂ωg︸︷︷︸
Qg0

∆ωg +
∂Pe
∂Qg︸ ︷︷ ︸
ωg0

∆Qg (7.37)

For the sake of simplicity in notations we use Qr, Pe, θ, ω and ve instead of
∆Qr, ∆Pe, ∆θ, ∆ω and ∆ve around the operating points from now on. Using
the linearized aerodynamic torque, the 2 DOFs linearized model becomes:

ω̇r =
a− c
Jr

ωr +
c

Jr
ωg −

k

Jr
ψ + b1θ + b2ve (7.38)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(7.39)

ψ̇ = ωr −
ωg
Ng

(7.40)

Pe = Qg0ωg + ωg0Qg (7.41)
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Amore detailed description of the model and linearization is given in ([MNP11]).

7.3.1.3 LPV model

Collecting all the discussed models, matrices of the state space model become:

A(γ) =


a(γ)−c
Jr

c
Jr

− k
Jr

c
NgJg

− c
N2
gJg

k
NgJg

1 −1 0

 C =

1 0 0
0 1 0
0 Qg0 0

 (7.42)

B(γ) =

b1(γ) 0
0 − 1

Jg

0 0

 D =

0 0
0 0
0 ωg0

 (7.43)

In which x =
(
ωr ωg ψ

)T , u =
(
θ Qg

)T and y =
(
ωr ωg Pe

)T are states,
inputs and outputs respectively. In the matrix B, parameter b1 is uncertain.
Therefore the uncertain linear state space model becomes:

ẋ = A(γ)x+B(γ)u

y = Cx+Du

7.3.2 Control objectives

The most basic control objective of a wind turbine is to maximize captured
power during the life time of the wind turbine. This means trying to maxi-
mize captured power when wind speed is below its rated value. This is also
called maximum power point tracking (MPPT). However when wind speed is
above rated, control objective becomes regulation of the outputs around their
rated values while trying to minimize dynamic loads on the structure. These
objectives should be achieved against fluctuations in wind speed which acts as
a disturbance to the system. In this work we have considered operation of the
wind turbine in above rated (full load region). Therefore we try to regulate
rotational speed and generated power around their rated values and remove the
effect of wind speed fluctuations.

7.3.3 Offset free control

Persistent disturbances and modeling error can cause an offset between mea-
sured outputs and desired outputs. To avoid this problem we have employed an
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offset free reference tracking approach (see [MB02] and [PR03]). Our RMPC
solves the regulation problem around the operating point. However we regulate
around the operating point (x∗k and u∗k) which results in offset from desired
outputs. To avoid this problem in our control algorithm we shift origin in our
regulation problem to x0

k and u0
k instead. In order to find new origins, we have

augmented linear model of the plant with a disturbance model that adds fic-
titious disturbances to the system. The fictitious disturbances compensate the
difference between measured outputs and desired outputs. State space model of
the augmented system is:

x̃k+1 = Ãx̃k + B̃uk (7.44)

yk = C̃x̃k +Duk (7.45)

in which the augmented state and matrices are:

x̃k =

x̂k+1

d̂k+1

p̂k+1

 Ã =

A Bd 0
0 Ad 0
0 0 Ap

 (7.46)

B̃ =
(
B 0 0

)T
C̃ =

(
C 0 Cp

)
(7.47)

x̂k, d̂k and p̂k are system states, input/state and output disturbances respec-
tively. (A,B,C,D) are matrices of the linearized model, Bd and Cp show effect
of disturbances on states and outputs respectively. Ad and Ap show dynamics of
input/state and output disturbances. For more information and how to choose
these matrices we refer to ([MB02]) and ([PR03]). Since the disturbances are
not measurable, an extended Kalman filter is designed to estimate them. The
estimated disturbances are used to remove any offset between desired outputs
and measured outputs. Based on this model and estimated disturbances, x0

k

and u0
k which are offset free steady state input and states can be calculated:(

A− I B
C D

)(
x0
k

u0
k

)
=

(
−Bdd̂k
−Cpp̂k

)
(7.48)

After calculating these values, we simply replace x∗k and u∗k in (7.18) with x0
k

and u0
k which results in:

λk = x0
k+1 −A(γk)x0

k −B(γk)u0
k −Bd(γk)d∗k (7.49)

7.4 Simulations

In this section simulation results for the obtained controller are presented. The
controller is implemented in MATLAB and is tested on a full complexity FAST
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Table 7.1: Performance comparison between gain scheduling approach and lin-
ear MPC

Parameters Proposed approach Linear MPC
SD of ωr (RPM) 0.111 0.212
SD of Pe (Watts) 4.686× 104 8.048× 104

Mean value of Pe (Watts) 4.998× 106 4.998× 106

SD of pitch (degrees) 2.67 2.95
SD of shaft moment (N.M.) 256 293

([JJ05]) model of the reference wind turbine ([JBMS09]). Simulations are done
with realistic turbulent wind speed, with Kaimal model ([iec05]) as the turbu-
lence model and TurbSim ([Jon09]) is used to generate wind profile. In order to
stay in the full load region, a realization of turbulent wind speed is used from
category C of the turbulence categories of the IEC 61400-1 ([iec05]) with 18m/s
as the mean wind speed.

7.4.1 Stochastic simulations

In this section simulation results for a stochastic wind speed is presented. Con-
trol inputs which are pitch reference θin and generator reaction torque reference
Qin along with system outputs which are rotor rotational speed ωr and electri-
cal power Pe are plotted in figures 7.3-7.6 (red-dashed lines are results of linear
MPC and solid blue lines show the results of the proposed approach.) Simulation
results show good regulations of generated power and rotational speed. Table
7.1 shows a comparison of the results between the proposed approach and MPC
approach based on linearization at each sample point ([Hen07]). As it could be
seen from the table and figures, the proposed approach gives better regulation
on rotational speed and generated power (smaller standard deviations) while
maintaining a smaller shaft moment and pitch activity.
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Figure 7.3: Blade-pitch reference (degrees, red-dashed line is linear MPC and
solid blue line is the proposed approach)
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Figure 7.4: Generator-torque reference (kNM, red-dashed line is linear MPC
and solid blue line is the proposed approach)
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Figure 7.5: Rotor rotational speed (ωr, rpm, red-dashed line is linear MPC
and solid blue line is the proposed approach)
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Figure 7.6: Electrical power (mega watts, red-dashed line is linear MPC and
solid blue line is the proposed approach)
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Robust Model Predictive Control of a Wind Turbine1

Mahmood Mirzaei2, Niels Kjølstad Poulsen2 and Hand Henrik Niemann3

Abstract

In this work the problem of robust model predictive control (robust MPC) of
a wind turbine in the full load region is considered. A minimax robust MPC
approach is used to tackle the problem. Nonlinear dynamics of the wind turbine
are derived by combining blade element momentum (BEM) theory and first prin-
ciple modeling of the turbine flexible structure. Thereafter the nonlinear model
is linearized using Taylor series expansion around system operating points. Op-
erating points are determined by effective wind speed and an extended Kalman
filter (EKF) is employed to estimate this. In addition, a new sensor is intro-
duced in the EKF to give faster estimations. Wind speed estimation error is
used to assess uncertainties in the linearized model. Significant uncertainties
are considered to be in the gain of the system (B matrix of the state space
model). Therefore this special structure of the uncertain system is employed
and a norm-bounded uncertainty model is used to formulate a minimax model
predictive control. The resulting optimization problem is simplified by semidef-
inite relaxation and the controller obtained is applied on a full complexity, high
fidelity wind turbine model. Finally simulation results are presented. First a
comparison between PI and robust MPC is given. Afterwards simulations are
done for a realization of turbulent wind with uniform profile based on the IEC
standard.

8.1 Introduction

8.1.1 Wind turbine control

In recent decades there has been an increasing interest in green energies, of
which wind energy is one of the most important. Wind turbines are the most

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,
Building 349, DK-2800 Kgs. Lyngby, Denmark



8.1 Introduction 109

common wind energy conversion systems (WECS) and are hoped to be able to
compete economically with fossil fuel power plants in near future. However this
demands better technology to reduce the price of electricity production. Con-
trol can play an essential part in this context because, on the one hand, control
methods can decrease the cost of energy by keeping the turbine close to its
maximum efficiency. On the other hand, they can reduce structural fatigue and
therefore increase the lifetime of the wind turbine. There are several methods
for wind turbine control ranging from classical control methods [LC00] which are
the most used methods in real applications, to advanced control methods which
have been the focus of research in the past few years [LPW09]; gain scheduling
[BBM06], adaptive control [JF08], MIMO methods [GC08], nonlinear control
[Tho06], robust control [Øst08], model predictive control [Hen07], µ-Synthesis
design [MNP11] are just a few. Advanced model based control methods are
thought to be the future of wind turbine control as they can conveniently em-
ploy new generations of sensors on wind turbines (e.g. LIDAR [HHW06]), new
generation of actuators (e.g. trailing edge flaps [And10]) and also treat the tur-
bine as a MIMO system. The last feature seems to be becoming more important
than before, as wind turbines are becoming bigger and more flexible. This trend
makes decoupling different modes, specifying different objectives and designing
controllers based on paired input/output channels more difficult. Model predic-
tive control (MPC) has proved to be an effective tool to deal with multivariable
constrained control problems [BM99]. As wind turbines are MIMO systems
[GC08] with constraints on inputs and outputs, using MPC seems to be effec-
tive. Nominal MPC proved to give satisfactory results for offshore wind turbine
control [Hen10] and trailing edge flap control [CPBWH11]. However these works
have not taken into account uncertainty in the design model and this problem
has been bypassed by trial-error and extensive simulations to get the best per-
formance from the controllers. Based on this argument extending nominal MPC
of wind turbines to robust MPC and including model uncertainties in the de-
sign seems to be natural. The wind turbine in this paper is treated as a MIMO
system with pitch (θin) and generator reaction torque (Qin) as inputs and ro-
tor rotational speed (ωr), generator rotational speed (ωg) and generated power
(Pe) as outputs. This paper is organized as follows: In section 8.2 modeling
of the wind turbine including modeling for wind speed estimation, linearization
and uncertainty modeling are addressed. In section 8.3 robust MPC design is
explained. Finally in section 8.4 simulation results are presented.
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8.2 Modeling

8.2.1 Wind model

Wind can be modeled as a complicated nonlinear stochastic process. However for
practical control purposes it could be approximated by a linear model [JLSM06].
In this model the wind has two elements, mean value term (vm) and turbulent
term (vt): ve = vm + vt. The turbulent term could be modeled by the following
transfer function:

vt =
k

(p1s+ 1)(p2s+ 1)
e; e ∈ N(0, 1)

And in the state space form:(
v̇t
v̈t

)
=

(
0 1

− 1
p1p2

−p1+p2
p1p2

)(
vt
v̇t

)
+

(
0
k

p1p2

)
e (8.1)

The parameters p1, p2 and k are found by second order approximation of the
wind power spectrum [JLSM06] and they depend on the mean wind speed vm.
For wind speed estimation, a one degree of freedom (DOF) nonlinear model of
the wind turbine is augmented with the wind model given above. An extended
Kalman filter uses this model to estimate the effective wind speed. This wind
speed is used to find the operating point of the wind turbine and consequently
calculate appropriate control signals.

8.2.2 Nonlinear model

For modeling purposes, the whole wind turbine can be divided into 4 subsys-
tems: aerodynamics subsystem, mechanical subsystem, electrical subsystem and
actuator subsystem. The aerodynamic subsystem converts wind forces into me-
chanical torque and thrust on the rotor. The mechanical subsystem consists of
the drivetrain, tower and blades. The drivetrain transfers rotor torque to the
electrical generator. The ower holds the nacelle and withstands the thrust force
and the aerodynamically shaped blades transform wind speed into torque and
thrust. The generator subsystem converts mechanical energy to electrical en-
ergy and finally the blade-pitch and generator-torque actuator subsystems are
part of the control system. To model the whole wind turbine, models of these
subsystems are obtained and at the end they are connected together. A wind
model is obtained and augmented with the wind turbine model to be used for
wind speed estimation. The dominant dynamics of the wind turbine come from
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its flexible structure. Several degrees of freedom could be considered to model
the flexible structure, but for control design just a few important degrees of
freedom are usually considered.

In this work we only consider two degrees of freedom, namely the rotational
DOF and the drivetrain torsion.

Nonlinearity of the wind turbine mostly comes from its aerodynamics. Blade
element momentum (BEM) theory [Han08] is used to calculate aerodynamic
torque and thrust on the wind turbine. This theory explains how torque and
thrust are related to wind speed, blade pitch angle and rotational speed of the
rotor. In steady state, i.e. disregarding dynamic inflow, the following formulas
can be used to calculate aerodynamic torque and thrust.

Qr =
1

2

1

ωr
ρπR2v3

eCp(θ, ω, ve) (8.2)

Qt =
1

2
ρπR2v2

eCt(θ, ω, ve) (8.3)

In which Qr and Qt are aerodynamic torque and thrust, ρ is the air density,
ωr is the rotor rotational speed, ve is the effective wind speed, Cp is the power
coefficient and Ct is the thrust force coefficient.

The absolute angular position of the rotor and generator are of no interest to
us, therefore we use ψ = θr − θg instead which is the drivetrain torsion. Having
aerodynamic torque and modeling the drivetrain with a simple mass-spring-
damper, the whole system equation with two DOFs becomes:

Jrω̇r = Qr − c(ωr −
ωg
Ng

)− kψ (8.4)

(NgJg)ω̇g = c(ωr −
ωg
Ng

) + kψ −NgQg (8.5)

ψ̇ = ωr −
ωg
Ng

(8.6)

Pe = Qgωg (8.7)

In which Jr and Jg are rotor and generator moments of inertia, ψ is the drivetrain
torsion, c and k are the drivetrain damping and stiffness factors, respectively
lumped in the low speed side of the shaft, and Pe is the electrical power gener-
ated. For numerical values of these parameters and other parameters given in
this paper, refer to [JBMS09].
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8.2.3 Uncertain Linear Model

8.2.3.1 Linearized model

As mentioned in the previous section, wind turbines are nonlinear systems. A
basic approach to design controllers for nonlinear systems is to linearize them
around some operating points. For a wind turbine, the operating points on the
quasi-steady Cp and Ct curves are nonlinear functions of rotational speed ωr,
blade pitch θ and wind speed v. To get a linear model of the system we need to
linearize around these operating points. Rotational speed and blade pitch are
measurable with enough accuracy, however this is not the case for the effect of
wind on the rotor. Wind speed changes along the blades and with the azimuth
angle (angular position) of the rotor. This is because of wind shear and tower
shadow as well as the stochastic spatial distribution of the wind field. Therefore
a single wind speed does not exist which can be used and measured for finding
the operating point. We bypass this problem by defining a fictitious variable
called effective wind speed (ve), which shows the effect of wind in the rotor disc
on the wind turbine.

In our two DOFs model only the aerodynamic torque (Qr) and electric power
(Pe) are nonlinear and Taylor expansion is used to linearize them. For the sake
of simplicity in notations we will use Qr, Pe, θ, ω and ve instead of ∆Qr, ∆Pe,
∆θ, ∆ω and ∆ve around the operating points from now on. Using the linearized
aerodynamic torque, the two DOFs linearized model becomes:

ω̇r =
a− c
Jr

ωr +
c

Jr
ωg −

k

Jr
ψ +

b1
Jr
θ +

b2
Jr
ve (8.8)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(8.9)

ψ̇ = ωr −
ωg
Ng

(8.10)

Pe = Qg0ωg + ωg0Qg (8.11)

8.2.3.2 The uncertain model

As mentioned previously, effective wind speed is not measurable and we need
to use an estimation of it instead. An extended Kalman filter (EKF) is used to
estimate the wind speed, for more details see section 8.4.1. The estimated ve
has uncertainties and as we use this estimation to linearize the aerodynamics of
the wind turbine, we end up with an uncertain linear model. The uncertainty
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is only in the equation (8.8). The uncertain linear model could be written as:

ω̇r = α(δ1)ωr +
c

Jr
ωg −

k

Jr
ψ + β1(δ2)θ + β2(δ3)ve

In which α(δ1), β1(δ2) and β2(δ3) could be written as:

α(δ1) = ᾱ(1 + p1δ1) |δ1| ≤ 1 (8.12)
β1(δ2) = β̄1(1 + p2δ2) |δ2| ≤ 1 (8.13)
β2(δ3) = β̄2(1 + p3δ3) |δ3| ≤ 1 (8.14)

ᾱ, β̄1 and β̄2 are nominal values and p’s show relative uncertainties. To get nu-
merical values for relative uncertainty variables (p1, p2 and p3) we have assumed
1m/s wind speed estimation error. Figure 8.1 shows a mapping from this esti-
mation error to errors in the parameters of the linearized model (α and β1) for
different wind speeds. It can be seen in figures 8.1 that wind speed estimation
error gives less than 5% error in α, however this value is more than 20% for
β1. Using this argument and in order to simplify the optimization problem we
neglect uncertainty in the dynamics of the system (which is determined by α)
and consider the uncertainty only to be in the gain of the system. Collecting all
the discussed models, matrices of the state space model become:

A =


a−c
Jr

c
Jr

− k
Jr

c
NgJg

− c
N2
gJg

k
NgJg

1 −1 0

 B =

 b1(δ2)
Jr

0

0 − 1
Jg

0 0

 (8.15)

C =

1 0 0
0 1 0
0 Qg0 0

 D =

0 0
0 0
0 ωg0

 (8.16)

In which x =
(
ωr ωg ψ

)T , u =
(
θ Qg

)T and y =
(
ωr ωg Pe

)T are states,
inputs and outputs respectively. In the matrix B, parameter b1 is uncertain.

8.3 Control

8.3.1 Control objectives

The most basic control objective of a wind turbine is to maximize captured
power during the life time of the machine. This means trying to maximize cap-
tured power when wind speed is below its rated value which is called maximum
power point tracking (MPPT). Rated wind speed is a value where the turbine
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Figure 8.1: Relative uncertainties of the parameters (percent), β1 solid-blue
and α red-dashed

starts to operate at its rated speed and power. When the wind speed is above
rated, the control objectives become regulation of the outputs around their
rated values while trying to minimize dynamic loads on the structure. These
objectives should be achieved against fluctuations in wind speed which acts as
a disturbance to the system. In this work we have considered operation of the
wind turbine in the above rated wind speed (full load region). Therefore we try
to regulate rotational speed and generated power around their rated values and
remove the effect of wind speed fluctuations.

8.3.2 Minimax MPC formulation

MPC uses a model of the system (to be controlled) to predict its future behavior.
In nominal MPC the prediction of the output (ŷk+N |k) is a single value and it is
calculated based on one model. However in robust MPC because the model is
uncertain, this prediction is no longer a unique value but it is a set instead. An
approach to tackle the problem with an uncertain model is to try to consider the
most pessimistic situation with respect to uncertainties. This means maximizing
the cost function on the uncertainty set. After maximization, we minimize the
obtained cost function over control inputs as we do in nominal MPC. This
approach is called minimax MPC and it is a common solution to robust MPC
problems [L0̈3]. As explained in 8.2.3.2 the model obtained from our system
only has uncertainties in the B matrix. The special structure of our problem can
help us in simplification of the minimax MPC problem. Therefore we formulate
robust MPC of the wind turbine in the form of minimax MPC of a system with
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uncertain gain [L0̈3]:

xk+1 = Axk +B(∆k)uk (8.17)
yk = Cxk +Duk (8.18)

Polytopic uncertainty and additive disturbances are common ways to include
uncertainties in robust MPC formulation [BM99]. However here we have em-
ployed norm-bounded uncertainty to model our system [BEGFB94]:

B(∆k) = B0 +Bp∆kCp, ∆k ∈∆ (8.19)
∆ = {∆ : ‖∆‖ ≤ 1} (8.20)

With norm-bounded uncertain model of the system, we formulate the minimax
MPC with quadratic performance and soft constraints. In order to simplify
notations, we use stacked variables from now on and we define the following
matrices:

Φx =
(
CA CA2 . . . CAN−1

)T (8.21)

Γ =


CB(∆1) D . . . 0
CAB(∆2) CB(∆1) . . . 0

...
...

. . .
...

CAN−1B(∆N ) CAN−2B(∆N−1) . . . D

 (8.22)

By using these matrices, the predicted output vector could be written as:

Y = Φxx̂k|k−1 + ΓU (8.23)

Γ = Γ0 + Γ∆(∆N ) (8.24)

∆N =
(
∆1 ∆2 . . . ∆N

)T (8.25)

And the minimax optimization problem becomes:

min
U

max
∆N

Y TQY+UTRU + ΥTS1Υ + ΞTS2Ξ (8.26)

subject to U ≤ Umax + Υ (8.27)
U ≥ Umin −Υ (8.28)

∆U ≤ ∆Umax + Ξ (8.29)
∆U ≥ ∆Umin − Ξ (8.30)

Υ ≥ 0 (8.31)
Ξ ≥ 0 (8.32)
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We use ∆U = ΨU − I0uk−1 to rewrite constraints on ∆U in the form of con-
straints on U in which:

Ψ =


1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 I0 =


1
0
0
...
0

 (8.33)

Now we use semidefinite relaxation and apply the Schur complement to the
optimization problem to get the following optimization problem with LMI con-
straints:

min
t,U

t (8.34)

s.t.


t Y T UT ΥT ΞT

? Q−1 0 0 0
? ? R−1 0 0
? ? ? S−1

1 0
? ? ? ? S−1

2

 � 0 (8.35)


I
−I
Ψ
−Ψ

U −


Umax + Υ
−Umin + Υ

∆Umax + I0uk−1 + Ξ
−∆Umin − I0uk−1 + Ξ

 ≤ 0 (8.36)

Υ ≥ 0 Ξ ≥ 0 (8.37)

However in the above formulation Y is of the form:

Y =Φxx̂k|k−1 + Γ0U +
∑N

j=1
Vj∆jWjU, ∆j ∈∆

V1 =
(
Bp ABp . . . AN−1Bp

)T
V2 =

(
0 Bp ABp . . . AN−2Bp

)T
...

VN =
(
0 0 0 . . . Bp

)T
W1 =

(
Cp 0 . . . 0

)
W2 =

(
0 Cp . . . 0

)
...

WN =
(
0 0 . . . Cp

)
and it contains uncertain elements. Based on results from [L0̈3], we use the
following theorem to eliminate uncertainties [EGL97].
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Theorem 1: Robust satisfaction of the uncertain LMI

F + L∆(I −D∆)−1R+RT (I −∆TDT )−1∆TLT � 0

is equivalent to the LMI[
F L
LT 0

]
�
[
R D
0 I

]T [
τI 0
0 −τI

] [
R D
0 I

]
τ ≥ 0

Now we pull out the first uncertain element (∆1) from Y in the LMI constraint.
To do so we define the following variable:

γi = Φxx̂k|k−1 + Γ0U +
∑N

j=i
Vj∆jWjU, i = 1, . . . , N (8.38)

Using theorem 1, and collecting the matrices on the left hand side we get the
following LMI:

t γT2 UT UTWT
1 ΥT ΞT

? Q−1 − τ1V1V
T
1 0 0 0 0

? ? R−1 0 0 0
? ? ? τ1I 0 0
? ? ? ? S−1

1 0
? ? ? ? ? S−1

2

 � 0 (8.39)

We pulled out ∆1, and now we repeat the same procedure until we pull out all the
uncertainties ∆i for i = 2, . . . , N . Afterwards we apply the Schur complement
to write the final LMI in the form of smaller LMIs. Finally the optimization
problem can be written in the following form:

min
t,τ,U

tx + tu + tυ +
∑N−1

j=0
tj (8.40)

subject to

(
tx x̂Tk|k−1ΦTx + UTΓT0
? Q−1 −∑N−1

j=0 τjVjV
T
j

)
� 0 (8.41)(

tu UT

? R−1

)
� 0

(
tυ ΥT

? S−1

)
� 0

(
tj UTWT

j

? τjI

)
� 0 (8.42)

I
−I
Ψ
−Ψ

U −


Umax + Υ
−Umin + Υ

∆Umax + I0uk−1 + Ξ
−∆Umin − I0uk−1 + Ξ

 ≤ 0 (8.43)

τj ≥ 0 Υ ≥ 0 Ξ ≥ 0 (8.44)

We have used SeDuMi [Stu99] to solve this optimization problem. SeDuMi is a
program that solves optimization problems with linear, quadratic and semidef-
inite constraints.
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8.3.3 Offset free reference tracking and constraint han-
dling

Persistent disturbances and modeling error can cause an offset between mea-
sured outputs and desired outputs. To avoid this problem, we have employed
an offset free reference tracking approach (see [MB02] and [PR03]). Our RMPC
solves the regulation problem around the operating point. However we regulate
around the operating points extracted from wind speed estimation which might
be erroneous and results in offset from desired outputs. Besides, the difference
between linear model and nonlinear model accounts for some of the differences
between the measured outputs and the desired outputs as well. To avoid this
problem, in our control algorithm we shift origin in our regulation problem to
new operating points which ensures offset free reference tracking. It is clear that
they should be included in the constraints of the robust MPC formulation.

8.4 Simulations

In this section firstly wind speed estimation is explained. Afterwards simulation
results for the obtained controllers are presented. The controllers are imple-
mented in MATLAB and are tested on a full complexity FAST [JJ05] model of
the reference wind turbine [JBMS09]. Simulations are done with realistic tur-
bulent wind speed using the Kaimal turbulence model [iec05]. TurbSim [Jon09]
is used to generate a time marching hub-height wind profile. In order to stay in
the full load region, a realization of turbulent wind speed is used from category
C of the turbulence categories of the IEC 61400-1 [iec05], with 18m/s as the
mean wind speed.

8.4.1 Wind speed estimation

Wind speed estimation is essential in our control algorithm and in order to get
a faster estimator we have introduced a sensor that measures rotor acceleration.
This could be done using rotor speed and generator speed measurements [LD05].
A one DOF model of the wind turbine, including only rotor rotational degree of
freedom is used for wind speed estimation. The first order nonlinear equations
used in the extended Kalman filter are:

ω̇ =
1

Jr
Qr(ω, θ, ve)−

1

Jr
Qg (8.45)

y =
(
ω Pe Qr −Qg

)T (8.46)
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Parameters RMPC PI
ωr standard deviation (RMP) 0.389 0.728
Pe standard deviation (Watts) 6.598× 104 9.050× 104

Pe mean value(Watts) 4.997× 106 4.999× 106

Pitch standard deviation (degrees) 10.261 8.623
Shaft moment standard deviation (N.M.) 0.840× 103 2.376× 103

Table 8.1: RMPC and PI performance comparison

Using the nonlinear equations above and wind model (8.1) an extended Kalman
filter is designed to estimate the effective wind speed. Figure 8.2 shows wind
speed and its estimation.

8.4.2 Stochastic simulations

In this section simulation results for a stochastic wind speed are presented.
Control inputs, which are pitch reference θin and generator reaction torque
referenceQin along with system outputs, which are rotor rotational speed ωr and
electrical power Pe, are plotted in figures 8.3-8.6. The estimated wind speed is
inaccurate and the controller is designed such that it can handle the uncertainties
which arise from this inaccuracy. Simulation results show good regulations
of generated power and rotational speed. Table 8.1 shows a comparison of
the results between RMPC and a standard PI controller. The PI controller
configuration and parameter values are taken from [JBMS09]. As could be seen
from the table, the RMPC controller gives better regulation on rotational speed
and generated power (smaller standard deviations) than the PI controller, while
keeping the shaft moment less. However when it comes to pitch activity (here
we have used pitch standard deviation), it has more pitch activity.

8.5 Conclusions

In this paper we found a second order nonlinear model of a wind turbine, using
blade element momentum theory (BEM) and first principle modeling of the
drivetrain. Our control methodology is based on linear models, therefore we
have used Taylor series expansion to linearize the obtained nonlinear model
around system operating point. The operating point is a direct function of
rotor rotational speed, pitch angle and wind speed. Wind speed estimation
is used to find the operating point and we showed that this will result in an
uncertain B matrix in our linear model. Special minimax model predictive
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Figure 8.3: Blade-pitch reference (degrees)

control formulation was derived to take into account the assumed uncertainties.
The final controller was applied on a full complexity FAST [JJ05] model and
compared with a standard PI controller.
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Figure 8.4: Generator-torque reference (kilo N.M.)
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Figure 8.5: Rotor rotational speed (ωr) (rpm)

0 200 400 600 800
4.85

4.9

4.95

5

5.05

5.1

5.15
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Robust Model Predictive Control of a Nonlinear System with
Known Scheduling Variable and Uncertain Gain1

Mahmood Mirzaei2, Niels Kjølstad Poulsen2 and Hand Henrik Niemann3

Abstract

Robust model predictive control (RMPC) of a class of nonlinear systems is
considered in this paper. We will use Linear Parameter Varying (LPV) model
of the nonlinear system. By taking the advantage of having future values of
the scheduling variable, we will simplify state prediction. Because of the special
structure of the problem, uncertainty is only in the B matrix (gain) of the state
space model. Therefore by taking advantage of this structure, we formulate a
tractable minimax optimization problem to solve robust model predictive control
problem. Wind turbine is chosen as the case study and we choose wind speed
as the scheduling variable. Wind speed is measurable ahead of the turbine,
therefore the scheduling variable is known for the entire prediction horizon.

9.1 Introduction

Model predictive control (MPC) has been an active area of research and has
been successfully applied on different applications in the last decades ([QB96]).
The reason for its success is its straightforward ability to handle constraints.
Moreover it can employ feedforward measurements in its formulation and can
easily be extended to MIMO systems. However the main drawback of MPC
was its on-line computational complexity which kept its application to systems
with relatively slow dynamics for a while. Fortunately with the rapid progress
of fast computations, off-line computations using multi-parametric program-
ming ([Bao05]) and dedicated algorithms and hardware, its applications have
been extended to even very fast dynamical systems such as DC-DC converters
([Gey05]). Basically MPC uses a model of the plant to predict its future behav-
ior in order to compute appropriate control signals to control outputs/states of
the plant. To do so, at each sample time MPC uses the current measurement

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,
Building 349, DK-2800 Kgs. Lyngby, Denmark
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of outputs and solves an optimization problem. The result of the optimization
problem is a sequence of control inputs of which only the first element is ap-
plied to the plant and the procedure is repeated at the next sample time with
new measurements ([Mac02]). This approach is called receding horizon control.
Therefore basic elements of MPC are: a model of the plant to predict its fu-
ture, a cost function which reflects control objectives, constraints on inputs and
states/outputs, an optimization algorithm and the receding horizon principle.
Depending on the type of the model, the control problem is called linear MPC,
hybrid MPC, nonlinear MPC etc. Nonlinear MPC is normally computation-
ally very expensive and generally there is no guarantee that the solution of the
optimization problem is a global optimum. In this work we extend the idea
of linear MPC using linear parameter varying (LPV) systems to formulate a
tractable predictive control of nonlinear systems. MPC problem of LPV sys-
tems has been considered in ([CGM99]) and min-max MPC of LPV systems
has been addressed in ([CFF03]), however in this work we use future values of
the scheduling variable to simplify the optimization problem. To do so, we use
future values of a disturbance to the system that acts as a scheduling variable
in the model. However there are some assumptions that restrict our solution to
a specific class of problems. The scheduling variable is assumed to be known
for the entire prediction horizon. And the nonlinear dynamics of the system is
determined by the scheduling variable.

9.2 Proposed method

Generally the nonlinear dynamics of a plant could be modeled as the following
difference equation:

xk+1 = f(xk, uk) (9.1)

With xk and uk as states and inputs respectively. Using the nonlinear model,
the nonlinear MPC problem could be formulated as:

min
u

p(xN ) +

N−1∑
i=0

q(xk+i|k, uk+i|k) (9.2)

Subject to xk+1 = f(xk, uk) (9.3)
uk+i|k ∈ U (9.4)
x̂k+i|k ∈ X (9.5)

Where p(xN ) and q(xk+i|k, uk+i|k) are called terminal cost and stage cost re-
spectively and are assumed to be positive definite. U and X show the set of ac-
ceptable inputs and states. As it was mentioned because of the nonlinear model,
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this problem is computationally too expensive. One way to avoid this problem is
to linearize around an equilibrium point of the system and use linearized model
instead of the nonlinear model. However for some plants assumption of linear
model does not hold for long prediction horizons. Because the plant operating
point changes for example based on some disturbances that act as a scheduling
variable. An example could be a wind turbine for which wind speed acts as a
scheduling variable and changes the operating point of the system.

9.2.1 Linear MPC formulation

The problem of linear MPC could be formulated as:

min
u0,u1,...,uN−1

‖xN‖Qf +

N−1∑
i=0

‖xk+i|k‖Q + ‖uk+i|k‖R (9.6)

Subject to xk+1 = Axk +Buk (9.7)
uk+i|k ∈ U (9.8)
x̂k+i|k ∈ X (9.9)

Assuming that we use norms 1, 2 and∞ the optimization problem becomes con-
vex providing that the sets U and X are convex. Convexity of the optimization
problem makes it tractable and guarantees that the solution is the global opti-
mum. The problem above is based on a single linear model of the plant around
one operating point. However below we formulate our problem using linear pa-
rameter varying systems (LPV) in which the scheduling variable is known for
the entire prediction horizon.

9.2.2 Linear Parameter Varying systems

Linear Parameter Varying (LPV) systems are a class of linear systems whose pa-
rameters change based on a scheduling variable. Study of LPV systems was mo-
tivated by their use in gain-scheduling control of nonlinear systems ([AGB95]).
LPV systems are able to handle changes in the dynamics of the system by
parameter varying matrices.
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Definition 9.1 (LPV systems) let k ∈ Z denote discrete time. We define
the following LPV systems:

xk+1 = A(γk)xk +B(γk)uk (9.10)

A(γk) =

nγ∑
j=1

Ajγk,j B(γk) =

nγ∑
j=1

Bjγk,j (9.11)

Which A(γk) and B(γk) are functions of the scheduling variable γk. The vari-
ables xk ∈ Rnx , uk ∈ Rnu , and γk ∈ Rnγ are the state, the control input and
the scheduling variable respectively.

9.2.3 Problem formulation

Using the above definition, the linear parameter varying (LPV) model of the
nonlinear system is of the following form:

x̃k+1 = A(γk)x̃k +B(γk)ũk (9.12)

This model is formulated based on deviations from the operating point. However
we need the model to be formulated in absolute values of inputs and states.
Because in our problem the steady state point changes as a function of the
scheduling variable, we need to introduce a variable to capture its bahavior. In
order to rewrite the state space model in the absolute form we use:

x̃k = xk − x∗k (9.13)
ũk = uk − u∗k (9.14)

x∗k and u∗k are values of states and inputs at the operating point. Therefore the
LPV model becomes:

xk+1 = A(γk)(xk − x∗k) +B(γk)(uk − u∗k) + x∗k+1 (9.15)

Which could be written as:

xk+1 = A(γk)xk +B(γk)uk + λk (9.16)

with

λk = x∗k+1 −A(γk)x∗k −B(γk)u∗k (9.17)

Now having the LPV model of the system we proceed to compute state predic-
tions. In linear MPC predicted states at step n is:

xk+n = Anxk +

n−1∑
i=0

AiBuk+(n−1)−i

for n = 1, 2, . . . , N

(9.18)
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However in our method the predicted state is also a function of scheduling
variable Γn =

(
γk+1, γk+2, . . . γk+n

)T for n = 1, 2, . . . , N − 1 and we assume
that the scheduling variable is known for the entire prediction. Therefore the
predicted state could be written as:

xk+1(γk) = A(γk)xk +B(γk)uk + λk (9.19)

And for n ∈ Z, n ≥ 1:

xk+n+1(Γn) =
(∏n

i=0A
T (γk+i)xk

)T
+

n−1∑
j=0

(∏n−j
i=1 A

T (γk+i)
)T
B(γk+j)uk+j

+

n−1∑
j=0

(∏n−j
i=0 A

T (γk+i)
)T
λk+(n−1)−j

+B(γk+n)uk+n + λk+n

(9.20)

Using the above formulas we write down the stacked predicted states which
becomes:

X = Φ(Γ)xk +Hu(Γ)U + Φλ(Γ)Λ (9.21)

with

X =
(
xk+1 xk+2 . . . xk+N

)T (9.22)

U =
(
uk uk+1 . . . uk+N−1

)T (9.23)

Γ =
(
γk γk+1 . . . γk+N−1

)T (9.24)

Λ =
(
λk λk+1 . . . λk+N−1

)T (9.25)

In order to summarize formulas for matrices Φ,Φλ and Hu, we define a new
function as:

ψ(m,n) =
(∏m

i=nA
T (γk+i)

)T (9.26)
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Therefore the matrices become:

Φ(Γ) =


ψ(1, 1)
ψ(2, 1)
ψ(3, 1)

...
ψ(N, 1)



Φλ(Γ) =


I 0 0 . . . 0

ψ(1, 1) I 0 . . . 0
ψ(2, 1) ψ(2, 2) I . . . 0

...
...

...
. . .

...
ψ(N − 1, 1) ψ(N − 1, 2) ψ(N − 1, 3) . . . I



Hu(Γ) =


B(γk) 0 . . . 0

ψ(1, 1)B(γk) B(γk+1) . . . 0
ψ(2, 1)B(γk) ψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)B(γk) ψ(N − 1, 2)B(γk+1) . . . B(γN−1)


After computing the state predictions as functions of control inputs, we can
write down the optimization problem similar to a linear MPC problem as a
quadratic program.

9.3 Minimax Problem

9.3.1 Minimax for Linear Model

MPC uses a model of the system (to be controlled) to predict its future behavior.
In nominal MPC the prediction of the state (x̂k+N |k) is a single value and it
is calculated based on one model. However in robust MPC where the model is
uncertain, this prediction is no longer a unique value, but it is a set instead. An
approach to tackle the problem with uncertain model is to try to optimize the
most pessimistic situation with respect to uncertainties. This means maximizing
cost function on the uncertainty set. After maximization, we minimize the
obtained cost function over control inputs as we do in nominal MPC. This
approach is called minimax MPC which is a common solution to robust MPC
problems ([L0̈3]). The special structure of our problem (having uncertainty only
in the gain of the system) can help us simplifying the minimax MPC problem.
Therefore we formulate robust MPC of our system in the form of minimax MPC
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of a system with uncertain gain ([L0̈3]):

xk+1 = Axk +B(∆k)uk (9.27)
yk = Cxk +Duk (9.28)

We have employed norm-bounded uncertainty ([BEGFB94]) to model our sys-
tem:

B(∆k) = B0 +Bp∆kCp, ∆k ∈∆ (9.29)
∆ = {∆ : ‖∆‖ ≤ 1} (9.30)

And as the B matrices are dependent on γ, we have:

B(γk,∆k) = B0(γk) +Bp(γk)∆kCp(γk), ∆k ∈∆ (9.31)
∆ = {∆ : ‖∆‖ ≤ 1} (9.32)

With norm-bounded uncertain model of the system, we can formulate the min-
imax MPC with quadratic performance and soft constraints on inputs in the
following form:

min
u

max
∆

∑N−1

j=0
‖yk+j|k‖2Q + ‖uk+j|k‖2R+

‖υk+j|k‖2S1
+ ‖ξk+j|k‖2S2

subject to x̂k+1|k = Ax̂k|k +B(∆k)uk

ŷk|k = Cx̂k|k +Duk

uk+j|k ≤ Umax + υk+j|k
uk+j|k ≥ Umin − υk+j|k

∆uk+j|k ≤ ∆Umax + ξk+j|k
∆uk+j|k ≥ ∆Umin − ξk+j|k
ηk+j|k ≥ 0

ξk+j|k ≥ 0

In order to simplify notations, we use stacked variables. The stacked output
predictions, control sequences and auxiliary variables become:

U =
(
uk|k uk+1|k . . . uk+N−1|k

)T (9.33)

∆U =
(
∆uk|k ∆uk+1|k . . . ∆uk+N−1|k

)T (9.34)

Y =
(
ŷk|k ŷk+1|k . . . ŷk+N−1|k

)T (9.35)

Ξ =
(
ξk|k ξk+1|k . . . ξk+N−1|k

)T (9.36)

Υ =
(
υk|k υk+1|k . . . υk+N−1|k

)T (9.37)

Φx(Γ) =
(
Cψ(1, 0) Cψ(1, 1) . . . Cψ(1, N − 1)

)T (9.38)
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Which gives:

min
U

max
∆N

Y TQY+UTRU + ΥTS1Υ + ΞTS2Ξ (9.39)

subject to U ≤ Umax + Υ (9.40)
U ≥ Umin −Υ (9.41)

∆U ≤ ∆Umax + Ξ (9.42)
∆U ≥ ∆Umin − Ξ (9.43)

Υ ≥ 0 (9.44)
Ξ ≥ 0 (9.45)

Where:

Y = Φx(Γ)x̂k|k−1 +Hu(Γ)U + Φλ(Γ)Λ (9.46)

Hu(Γ) = H0
u(Γ) +H∆

u (Γ,∆N ) (9.47)

∆N =
(
∆1 ∆2 . . . ∆N

)T (9.48)

And

H0
u(Γ) =

CB(γk) 0 . . . 0
Cψ(1, 1)B(γk) CB(γk+1) . . . 0
Cψ(2, 1)B(γk) Cψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

Cψ(N − 1, 1)B(γk) Cψ(N − 1, 2)B(γk+1) . . . CB(γN−1)


(9.49)

In above, Y is uncertain and depend on ∆N . Our next task is to eliminate
uncertainties from our optimization problem. To do so, we pull out the ∆
variables. We start by writing the stacked output vector Y in the following
form and then use theorem 1 to pull out the uncertainties:

Y =Φx(Γ)x̂k|k−1 + Φλ(Γ)Λ +H0
u(Γ)U

+
∑N

j=1
Vj∆jWjU, ∆j ∈∆

(9.50)
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V1 =
(
CBp(γk) Cψ(1, 1)Bp(γk) . . . Cψ(N − 1, 1)Bp(γk)

)T
V2 =

(
0 CBp(γk+1) . . . Cψ(N − 2, 2)Bp(γk+1)

)T
...

VN =
(
0 0 0 . . . CBp(γk+N−1)

)T
W1 =

(
Cp(γk+1) 0 . . . 0

)T
W2 =

(
0 Cp(γk+1) . . . 0

)T
...

WN =
(
0 0 . . . Cp(γk+1)

)T
Now we pull out the first uncertain element (∆1) from Y in the LMI constraint.
To do so we define the following variable:

γi = Φx(Γ)x̂k|k−1 + Φλ(Γ)Λ +H0
u(Γ)U

+
∑N

j=i
Vj∆jWjU, i = 1, . . . , N

(9.51)

And afterwards we have:
t γT2 UT ΥT ΞT

? Q−1 0 0 0
? ? R−1 0 0
? ? ? S−1

1 0
? ? ? ? S−1

2

+


UTWT

1

0
0
0
0

∆T
1


0
V1

0
0
0


T

+


0
V1

0
0
0

∆1


UTWT

1

0
0
0
0


T

� 0

(9.52)

After pulling out the first uncertain element, we use the following theorem to
find its equivalent certain LMI:

Theorem 1: Robust satisfaction of the uncertain LMI:

F + L∆(I −D∆)−1R+RT (I −∆TDT )−1∆TLT � 0

is equivalent to the LMI[
F L
LT 0

]
�
[
R D
0 I

]T [
τI 0
0 −τI

] [
R D
0 I

]
τ ≥ 0
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Using theorem 1, it could be seen that the above LMI is equivalent to the
following LMI: 

t γT2 UT UTWT
1 ΥT ΞT

? Q−1 0 0 0 0
? ? R−1 0 0 0
? ? ? 0 0 0
? ? ? ? S−1

1 0
? ? ? ? ? S−1

2



�


0 0
V1 0
0 0
0 I
0 0
0 0


(
τ1I 0
0 −τ1I

)


0 0
V1 0
0 0
0 I
0 0
0 0



T
(9.53)

Which is equivalent to:
t γT2 UT UTWT

1 ΥT ΞT

? Q−1 − τ1V1V
T
1 0 0 0 0

? ? R−1 0 0 0
? ? ? τ1I 0 0
? ? ? ? S−1

1 0
? ? ? ? ? S−1

2

 � 0 (9.54)

We pulled out ∆1, and now we repeat the same procedure until we pull out all
the uncertainties ∆i for i = 2, . . . , N . Afterwards we apply Schur complement
to write the final LMI in the form of smaller LMIs. Finally the optimization
problem can be written in the following form:

min
t,τ,U

tx + tu + tυ +
∑N−1

j=0
tj

subject to(
tx x̂Tk|k−1Φx(Γ)T + Φλ(Γ)Λ + UTH0

u(Γ)T

? Q−1 −∑N−1
j=0 τjVjV

T
j

)
� 0(

tu UT

? R−1

)
� 0

(
tυ ΥT

? S−1

)
� 0

(
tj UTWT

j

? τjI

)
� 0

I
−I
Ψ
−Ψ

U −


Umax + Υ
−Umin + Υ

∆Umax + I0uk−1 + Ξ
−∆Umin − I0uk−1 + Ξ

 ≤ 0

τj ≥ 0 Υ ≥ 0 Ξ ≥ 0

(9.55)
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We have used SeDuMi ([Stu99]) to solve this optimization problem. SeDuMi is a
program that solves optimization problems with linear, quadratic and semidef-
inite constraints.

9.4 Case study

The case study here is a wind turbine. Wind turbine control is a challenging
problem as the dynamics of the system change based on wind speed which has
a stochastic nature. The method that we propose here is to use wind speed as
a scheduling variable. With the advances in LIDAR technology ([HHW06]) it
is possible to measure wind speed ahead of the turbine and this enables us to
have the scheduling variable of the plant for the entire prediction horizon.

9.4.1 Modeling

In this section modeling of a wind turbine is explained. For detailed explanation
on the modeling see ([MPN12a]).

9.4.1.1 Nonlinear model

For modeling purposes, the whole wind turbine can be divided into 4 subsys-
tems: Aerodynamics subsystem, mechanical subsystem, electrical subsystem
and actuator subsystem. To model the whole wind turbine, models of these
subsystems are obtained and at the end they are connected together. The dom-
inant dynamics of the wind turbine come from its flexible structure. Several
degrees of freedom could be considered to model the flexible structure, but for
control design mostly just a few important degrees of freedom are considered. In
this work we only consider two degrees of freedom, namely the rotational degree
of freedom (DOF) and drivetrain torsion. Nonlinearity of the wind turbines
mostly comes from its aerodynamics. Blade element momentum (BEM) theory
([Han08]) is used to numerically calculate aerodynamic torque and thrust on the
wind turbine. This theory explains how torque and thrust are related to wind
speed, blade pitch angle and rotational speed of the rotor. Having aerodynamic
torque and modeling drivetrain with a simple mass-spring-damper, the whole
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system equation with 2 degrees of freedom becomes:

Jrω̇r = Qr − c(ωr −
ωg
Ng

)− kψ (9.56)

(NgJg)ω̇g = c(ωr −
ωg
Ng

) + kψ −NgQg (9.57)

ψ̇ = ωr −
ωg
Ng

(9.58)

Pe = Qgωg (9.59)

In which Qr is aerodynamic torque, Jr and Jg are rotor and generator moments
of inertia, ψ is the drivetrain torsion, c and k are the drivetrain damping and
stiffness factors respectively lumped in the low speed side of the shaft and Pe
is the generated electrical power. For numerical values of these parameters and
other parameters given in this paper, we refer to ([JBMS09]).

9.4.1.2 Linearized model

To get a linear model of the system we need to linearize around some oper-
ating points. In our two DOFs model only the aerodynamic torque (Qr) and
electric power (Pe) are nonlinear. Taylor expansion is used to linearize them.
Uncertainty in the measured wind speed and also in pitch actuator leads to
uncertainty in the B matrix, yet the A matrix is known with enough accuracy.
For more details on the uncertain state space model see ([MPN12b]). Collecting
all the discussed models, matrices of the state space model become:

A(γ) =


a(γ)−c
Jr

c
Jr

− k
Jr

c
NgJg

− c
N2
gJg

k
NgJg

1 −1 0

 C =

1 0 0
0 1 0
0 Qg0 0

 (9.60)

B(γ, δ) =

b1(γ, δ) 0
0 − 1

Jg

0 0

 D =

0 0
0 0
0 ωg0

 (9.61)

In which x =
(
ωr ωg ψ

)T , u =
(
θ Qg

)T and y =
(
ωr ωg Pe

)T are states,
inputs and outputs respectively. In the matrix B, parameter b1 is uncertain.
Therefore the uncertain linear state space model becomes:

ẋ = A(γ)x+B(γ,∆)u

y = Cx+Du
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9.4.2 Control objectives

The most basic control objective of a wind turbine is to maximize captured
power during the life time of the wind turbine. This means trying to maxi-
mize captured power when wind speed is below its rated value. This is also
called maximum power point tracking (MPPT). However when wind speed is
above rated, control objective becomes regulation of the outputs around their
rated values while trying to minimize dynamic loads on the structure. These
objectives should be achieved against fluctuations in wind speed which acts as
a disturbance to the system. In this work we have considered operation of the
wind turbine in above rated (full load region). Therefore we try to regulate
rotational speed and generated power around their rated values and remove the
effect of wind speed fluctuations.

9.5 Simulations

In this section simulation results for the obtained controllers are presented. The
controllers are implemented in MATLAB and are tested on a full complexity
FAST ([JJ05]) model of the reference wind turbine ([JBMS09]). Simulations
are done with realistic turbulent wind speed, with Kaimal model ([iec05]) as
the turbulence model and TurbSim ([Jon09]) is used to generate wind profile.
In order to stay in the full load region, a realization of turbulent wind speed is
used from category C of the turbulence categories of the IEC 61400-1 ([iec05])
with 18m/s as the mean wind speed. Control inputs which are pitch refer-
ence θin and generator reaction torque reference Qin along with system outputs
which are rotor rotational speed ωr and electrical power Pe are shown in figures
9.1-9.4. Sampling time and prediction horizon are chosen to be 0.1 and 10 re-
spectively. Uncertainty is multiplicative and chosen to be %20 of the nominal
value. Simulation results show good regulations of generated power and rota-
tional speed. Table 9.1 shows a comparison of the results between the proposed
approach and MPC with linearization at each sample point ([Hen07]). As it
could be seen from the table, the proposed approach gives better regulation on
rotational speed and generated power (smaller standard deviations) than MPC,
while keeping the shaft moment and pitch activity less. In all the figures 9.1-9.4
x-axis is time in seconds.
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Table 9.1: Performance comparison between gain scheduling approach and lin-
ear MPC

Parameters Proposed approach Linear MPC
SD of ωr (RPM) 0.042 0.103
SD of Pe (Watts) 4.158× 104 9.975× 104

Mean value of Pe (Watts) 4.998× 106 4.998× 106

SD of pitch (degrees) 2.781 3.005
SD of shaft moment (kNM) 295.26 482.49

time(seconds)

0 200 400 600
0

10

20

30

Figure 9.1: Blade-pitch reference (degrees, red-dashed line is linear MPC and
solid-blue line is the proposed approach)

9.6 Conclusions

A method for dealing with robust MPC of nonlinear systems whose scheduling
variable is known for the entire prediction horizon is proposed. The method is
used for wind turbine control and the results are compared with a linear MPC
that uses linearized model of the system at each sample time. Stability of the
closed loop and recursive feasibility of the optimization problem are important
issues that will be dealt with in future.
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Figure 9.2: Generator-torque reference (kNM, red-dashed line is linear MPC
and solid-blue line is the proposed approach)
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Figure 9.3: Rotor rotational speed (ωr, rpm, red-dashed line is linear MPC
and solid-blue line is the proposed approach)
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Figure 9.4: Electrical power (mega watts, red-dashed line is linear MPC and
solid-blue line is the proposed approach)
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Individual Pitch Control Using LIDAR Measurements1

Mahmood Mirzaei2, Lars C. Henriksen3, Niels K. Poulsen2, Hand H.
Niemann4 and Morten H. Hansen3

Abstract

In this work the problem of individual pitch control of a variable-speed variable-
pitch wind turbine in the full load region is considered. Model predictive control
(MPC) is used to solve the problem. However as the plant is nonlinear and
time varying, a new approach is proposed to simplify the optimization problem.
Nonlinear dynamics of the wind turbine is derived by combining blade element
momentum (BEM) theory and first principle modeling of the flexible structure.
Then the nonlinear model of the system is linearized using Taylor series expan-
sion around its operating points and a family of linear models are obtained. The
operating points are determined by LIDAR measurements both for the current
and predicted future operating points. The obtained controller is applied on
a full complexity, high fidelity wind turbine model. Finally simulation results
show improved load reduction on out-of-plane blade root bending moments and
a better transient response compared to a benchmark PI individual pitch con-
troller.

10.1 Introduction

10.1.1 Wind turbine control

In the recent decades there has been an increasing interest in green energies of
which wind energy is one of the most important ones. Wind turbines are the
most common wind energy conversion systems (WECS) and are hoped to be
able to compete with fossil fuel power plants on the energy price in near future.
However this demands better technology to reduce electricity production price.
Control can play an essential part in this context. Because, on the one hand

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
4Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,

Building 349, DK-2800 Kgs. Lyngby, Denmark
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control methods can decrease the cost of energy by keeping the turbine close to
its maximum efficiency. On the other hand they can reduce structural fatigue
and therefore increase lifetime of the wind turbine. There are several methods
for wind turbine control ranging from classical control methods [LC00] which
are the most used methods in real applications to advanced control methods
which have been the focus of research in the past few years [LPW09]. Gain
scheduling [BBM06], adaptive control [JF08], MIMO methods [GC08], nonlinear
control [Tho06], robust control [Øst08], model predictive control [Hen07], µ-
Synthesis design [MNP11] are just to mention a few. Advanced model based
control methods are thought to be the future of wind turbine control as they can
conveniently employ new generations of sensors on wind turbines (e.g. LIDAR
[HHW06]), new generation of actuators (e.g. trailing edge flaps [And10]) and
also treat the turbine as a MIMO system. The last feature seems to become more
important than before as wind turbines are becoming bigger and more flexible.
This trend makes decoupling different modes, specifying different objectives
and designing controllers based on paired input/output channels more difficult.
Model predictive control (MPC) has proved to be an effective tool to deal with
multivariable constrained control problems [BM99]. As wind turbines are MIMO
systems [GC08] with constraints on inputs and outputs, using MPC seems to be
effective. Individual pitch control in which each blade is given a specific pitch
reference versus collective pitch in which all the blades receive the same pitch
reference has given promising results in reducing fatigue loads [Bos03]. There
have been a number of works addressing individual pitch control using LIDAR
measurements [SK08], [SSG+10] and [LPS+11].

10.1.2 Model predictive control approach

Model predictive control (MPC) has been an active area of research and has been
successfully applied on different applications in the last decades [QB96]. Basic
elements of MPC are: a model of the plant to predict its future, a cost func-
tion which reflects control objectives, constraints on inputs and states/outputs,
an optimization algorithm and the receding horizon principle. Depending on
the type of the model, the control problem is called linear MPC, hybrid MPC,
nonlinear MPC etc. Nonlinear MPC is normally computationally very expen-
sive and generally there is no guarantee that the solution of the optimization
problem is a global optimum. In this work we extend the idea of linear MPC us-
ing linear parameter varying (LPV) systems to formulate a tractable predictive
control of nonlinear systems. MPC problem of LPV systems has been consid-
ered in [CGM99], however the difference here is that we use future values of
the scheduling variable to simplify the optimization problem. To do so, we use
future values of an input to the system that acts as a scheduling variable in
the model. However there are some assumptions that restrict our solution to
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a specific class of problems. The scheduling variable is assumed to be known
for the entire prediction horizon. And the operating point of the system mainly
depends on the scheduling variable. The paper is organized as follows. In 10.2
modeling of the wind turbine is explained, the nonlinear model is derived and
linear parameter varying model is given. In 10.3 our proposed method for solv-
ing model predictive control of the system is presented. In 10.4 control design
is explained. Firstly control objectives are discussed and afterwards collective
and individual pitch controllers are presented. In this section appropriate ref-
erences are given for the benchmark individual pitch controller. Finally in 10.5
simulation results are given.

10.2 Modeling

10.2.1 Nonlinear model

For modeling purposes, the whole wind turbine can be divided into 4 subsys-
tems: Aerodynamics subsystem, mechanical subsystem, electrical subsystem
and actuator subsystem. The aerodynamic subsystem converts wind forces into
mechanical torque and thrust on the rotor. The mechanical subsystem consists
of drivetrain, tower and blades. Drivetrain transfers rotor torque to electri-
cal generator. Tower holds the nacelle and withstands the thrust force. And
blades transform wind forces into toque and thrust. The generator subsystem
converts mechanical energy to electrical energy and finally the blade-pitch and
generator-torque actuator subsystems are part of the control system. To model
the whole wind turbine, models of these subsystems are obtained and at the end
they are connected together. Figure 10.1 shows the basic subsystems and their
interactions. The dominant dynamics of the wind turbine come from its flexible
structure. Several degrees of freedom could be considered to model the flexible
structure, but for control design mostly just a few important degrees of free-
dom are considered. In figure 10.2 basic degrees of freedom which are normally
being considered in the design model are shown. In this work we have consid-
ered three degrees of freedom, namely the rotational degree of freedom (DOF),
drivetrain torsion and tower fore-aft motion. Nonlinearity of the wind turbines
mostly comes from its aerodynamics. Blade element momentum (BEM) theory
[Han08] is used to numerically calculate aerodynamic torque and thrust on the
wind turbine. This theory explains how torque and thrust are related to wind
speed, blade pitch angle and rotational speed of the rotor. In steady state, i.e.
disregarding dynamic inflow, the following formulas can be used to calculate
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Figure 10.1: Wind turbine subsystems

aerodynamic torque and thrust.

Qr =
1

2

1

ωr
ρπR2v3

eCp(θ, ω, ve) (10.1)

Qt =
1

2
ρπR2v2

eCt(θ, ω, ve) (10.2)

In which Qr and Qt are aerodynamic torque and thrust, ρ is the air density,
ωr is the rotor rotational speed, ve is the effective wind speed, Cp is the power
coefficient and Ct is the thrust force coefficient. The absolute angular position
of the rotor and generator are of no interest to us, therefore we use ψ = θr − θg
instead which is the drivetrain torsion. Having aerodynamic torque and mod-
eling drivetrain and tower with simple mass-spring-damper, the whole system
equation with 3 degrees of freedom becomes:

Jrω̇r = Qr − Cd(ωr −
ωg
Ng

)−Kdψ (10.3)

(NgJg)ω̇g = Cd(ωr −
ωg
Ng

) +Kdψ −NgQg (10.4)

ψ̇ = ωr −
ωg
Ng

(10.5)

Mẍt = Qt − Ctẋt −Ktxt (10.6)
Pe = Qgωg (10.7)

In which Jr and Jg are rotor and generator moments of inertia, ψ is the drivetrain
torsion, Cd and Kd are the drivetrain damping and stiffness factors respectively
lumped in the low speed side of the shaft. Ct and Kt are the tower damping
and stiffness factors respectively. xt and Pe are the generated electrical power
and tower displacement respectively. For numerical values of these parameters
and other parameters given in this paper, we refer to [JBMS09].
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Figure 10.2: Basic degrees of freedom

10.2.2 Linearized model

To get a linear model of the system we need to linearize around its operating
points which are determined by wind speed on the rotor area. Wind speed
changes along the blades and with azimuth angle (angular position) of the rotor.
This is because of wind shear, tower shadow and stochastic spatial distribution
of the wind field. Therefore a single wind speed does not exist to be used and
measured for finding the operating point. We bypass this problem by defining a
fictitious variable called effective wind speed (ve) which shows the effect of wind
in the rotor disc on the wind turbine. Using the linearized aerodynamic torque
and thrust, state space matrices for the 3 DOFs linearized model becomes:

ω̇r =
α1(ve)− c

Jr
ωr +

c

Jr
ωg −

k

Jr
ψ (10.8)

+ β11(ve)θ + β12(ve)ve (10.9)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(10.10)

ψ̇ = ωr −
ωg
Ng

(10.11)

Mẍt = α2(ve) + β21(ve)θ + β22(ve)ve (10.12)
− Ctẋt −Ktxt (10.13)

Pe = Qg0ωg + ωg0Qg (10.14)
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And as it could be seen the parameters of the linearzied model are functions of
wind speed which in our approach acts as a scheduling variable. A more detailed
description of the model and linearization is given in ([MNP11]).

10.3 MPC of a LPV System with Known Schedul-
ing Variable

Generally the nonlinear dynamics of a plant could be modeled as the following
difference equation:

xk+1 = f(xk, uk, dk) (10.15)

With xk, uk and dk as states, inputs and disturbances respectively. Using the
nonlinear model, the nonlinear MPC problem could be formulated as:

min
u

`(xN ) +

N−1∑
i=0

`(xk+i|k, uk+i|k) (10.16)

Subject to xk+1 = f(xk, uk, dk) (10.17)
uk+i|k ∈ U (10.18)
x̂k+i|k ∈ X (10.19)

Where ` denotes some arbitrary norm and U and X show the set of acceptable
inputs and states. As it was mentioned because of the nonlinear model, this
problem is computationally too expensive. One way to avoid this problem is to
linearize around an equilibrium point of the system and use linearized model
instead of the nonlinear model. However for some plants assumption of linear
model does not hold for long prediction horizons as the plant operating point
changes, for example based on some inputs to the system that act as a scheduling
variable. An example could be a wind turbine for which wind speed acts as a
scheduling variable and changes the operating point of the system.
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10.3.1 Linear MPC formulation

The problem of linear MPC could be formulated as:

min
u0,u1,...,uN−1

‖xN‖Qf +

N−1∑
i=0

‖xk+i|k‖Q + ‖uk+i|k‖R (10.20)

Subject to xk+1 = Axk +Buk (10.21)
uk+i|k ∈ U (10.22)
x̂k+i|k ∈ X (10.23)

Assuming that we use norms 1, 2 and∞ the optimization problem becomes con-
vex providing that the sets U and X are convex. Convexity of the optimization
problem makes it tractable and guarantees that the solution is the global opti-
mum. The problem above is based on a single linear model of the plant around
one operating point. However below we formulate our problem using linear pa-
rameter varying systems (LPV) in which the scheduling variable is known for
the entire prediction horizon.

10.3.2 Linear Parameter Varying systems

Linear Parameter Varying (LPV) systems are a class of linear systems whose pa-
rameters change based on a scheduling variable. Study of LPV systems was mo-
tivated by their use in gain-scheduling control of nonlinear systems ([AGB95]).
LPV systems are able to handle changes in the dynamics of the system by
parameter varying matrices.

(LPV systems) let k ∈ Z denote discrete time. We define the following LPV
systems:

xk+1 = A(γk)xk +B(γk)uk (10.24)

A(γk) =

nγ∑
j=1

Ajγk,j B(γk) =

nγ∑
j=1

Bjγk,j (10.25)

Which A(γk) and B(γk) are functions of the scheduling variable γk. The vari-
ables xk ∈ Rnx , uk ∈ Rnu , and γk ∈ Rnγ are the state, the control input and
the scheduling variable respectively.
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10.3.3 Problem formulation

Using the above definition, the linear parameter varying (LPV) model of the
nonlinear system with disturbances is of the following form:

x̃k+1 = A(γk)x̃k +B(γk)ũk +Bd(γk)d̃k (10.26)

This model is formulated based on deviations from the operating point. However
we need the model to be formulated in absolute values of inputs, states and
disturbances. Therefore the LPV model becomes:

xk+1 = A(γk)(xk − x∗k) +B(γk)(uk − u∗k)

+Bd(γk)(dk − d∗k) + x∗k+1

(10.27)

which x∗k, u
∗
k and d

∗
k are values of states, inputs and disturbances at the operating

point. Which could be written as:

xk+1 = A(γk)xk +B(γk)uk +Bd(γk)dk + λk (10.28)

with

λk = x∗k+1 −A(γk)x∗k −B(γk)u∗k −Bd(γk)d∗k (10.29)

Now having the LPV model of the system we proceed to compute state predic-
tions. In linear MPC predicted states at step n is:

xk+n = Anxk +

n−1∑
i=0

AiBuk+(n−1)−i

for n = 1, 2, . . . , N

(10.30)

However in our method the predicted state is also a function of scheduling
variable Γn =

(
γk+1, γk+2, . . . γk+n

)T for n = 1, 2, . . . , N − 1 and we assume
that the scheduling variable is known for the entire prediction. Therefore the
predicted state could be written as:

xk+1(γk) = A(γk)xk +B(γk)uk +Bd(γk)dk + λk (10.31)
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And for n ∈ Z, n ≥ 1:

xk+n+1(Γn) =
(∏n

i=0A
T (γk+i)xk

)T
+

n−1∑
j=0

(∏n−j
i=1 A

T (γk+i)
)T
B(γk+j)uk+j

+

n−1∑
j=0

(∏n−j
i=1 A

T (γk+i)
)T
Bd(γk+j)dk+j

+

n−1∑
j=0

(∏n−j
i=1 A

T (γk+i)
)T
λk+(n−1)−j

+B(γk+n)uk+n +Bd(γk+n)dk+n + λk+n

(10.32)

Using the above formulas we write down the stacked predicted states which
becomes:

X(Γ) = Φ(Γ)xk +Hu(Γ)U +Hd(Γ)D + Φλ(Γ)Λ (10.33)

with

X =
(
xk+1 xk+2 . . . xk+N

)T (10.34)

U =
(
uk uk+1 . . . uk+N−1

)T (10.35)

D =
(
dk dk+1 . . . dk+N−1

)T (10.36)

Γ =
(
γk γk+1 . . . γk+N−1

)T (10.37)

Λ =
(
λk λk+1 . . . λk+N−1

)T (10.38)

In order to summarize formulas for matrices Φ,Φλ,Hu and Hd, we define a new
function as:

ψ(m,n) =
(∏n

i=mA
T (γk+i)

)T (10.39)
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Therefore the matrices become:

Φ(Γ) =


ψ(1, 1)
ψ(2, 1)
ψ(3, 1)

...
ψ(N, 1)



Φλ(Γ) =


I 0 0 . . . 0

ψ(1, 1) I 0 . . . 0
ψ(2, 1) ψ(2, 2) I . . . 0

...
...

...
. . .

...
ψ(N − 1, 1) ψ(N − 1, 2) ψ(N − 1, 3) . . . I



Hu(Γ) =


B(γk) 0 . . . 0

ψ(1, 1)B(γk) B(γk+1) . . . 0
ψ(2, 1)B(γk) ψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)B(γk) ψ(N − 1, 2)B(γk+1) . . . B(γN−1)



Hd(Γ) =


Bd(γk) 0 . . . 0

ψ(1, 1)Bd(γk) Bd(γk+1) . . . 0
ψ(2, 1)Bd(γk) ψ(2, 2)Bd(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)Bd(γk) ψ(N − 1, 2)Bd(γk+1) . . . Bd(γN−1)


After computing the state predictions as functions of control inputs (10.33), we
can write down the optimization problem similar to a linear MPC problem as a
quadratic program:

min
U

XT (Γ)QX(Γ) + UTRU (10.40)

10.4 Control

10.4.1 Control objectives

The most basic control objective of a wind turbine is to maximize captured
power during the life time of the wind turbine. Which is producing electricity as
close to the rated value as possible and reducing fatigue loads in order to increase
life time of the turbine. To achieve these objectives wind turbine operations
can be divided into two basic regions, partial load region and full load region.



156 Individual Pitch Control Using LIDAR Measurements

In partial load region the objective is to maximize captured power when wind
speed is below its rated value. This is also called maximum power point tracking
(MPPT). However in full load region in which wind speed is above rated, control
objective becomes regulation of the outputs around their rated values while
trying to minimize dynamic loads on the structure. These objectives should
be achieved against fluctuations in wind speed which act as a disturbance to
the system. In this work we have considered operation of the wind turbine in
above rated (full load region). Therefore we try to regulate rotational speed and
generated power around their rated values and remove the effect of wind speed
fluctuations.

10.4.2 Implementation

Two controllers are implemented in this work. One controller produces the
collective pitch and regulates power and rotational speed and the other controller
produces ∆θi, i = 1, 2, 3 for fatigue load reduction by adjusting individual blade
pitch based on wind speed measurements. Both of the controllers take the
advantage of having wind speed for the entire prediction horizon. These are fed
to the controllers through 4 vectors, Vhh, V1, V2 and V3 which are vector of wind
speeds at hub height and 75% of the blades 1, 2 and 3 respectively.

10.4.2.1 Collective pitch controller

The first controller uses the linearized model which was explained in section
10.2.2 augmented with a second order system modeling actuator dynamics.
Measured outputs that are fed to this controller are:

ωr
ωg
Pe
at
θc
Vhh


Rotor rotational speed
Generator rotational speed
Generated power
Tower top acceleration
Measured collective pitch
Hub height wind speed vector

(10.41)

10.4.2.2 Individual pitch controller

Objective of this controller is to reduce fluctuations on blade root bending mo-
ments by adjusting pitch angle based on measured wind speeds. This will reduce
1P fluctuations of bending moments on the blade roots. Taking into account
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blade dynamics, the out-of-plane root bending moments can be modeled as a
second order system with pitch and wind speed as their inputs:

M̃i(s) = H1(s)θ̃i(s) +H2(s)ṽi(s) (10.42)

The fluctuations in the blade root bending moments are considered to be from
Mhh which is the bending moment produced by hub height wind speed. H1(s)
and H2(s) are found using system identification on FAST [JJ05] simulation
results. In steady state M̃ should be zero, therefore we can find steady state
values for θ̃ having ṽ. This steady state value is taken to be reference value of
the pitch actuator which was modeled as a second order system. This model
is used in the controller design, therefore at this stage we have disregarded
blade dynamics and only used pitch actuator dynamics. The objective of the
individual pitch controller is to follow a reference point which is changing as a
function of wind speed. Measurements that are fed to this controller are:

θ1

θ2

θ3

V1

V2

V3


Measured pitch on blade 1
Measured pitch on blade 2
Measured pitch on blade 3
Wind speed vector for blade 1
Wind speed vector for blade 2
Wind speed vector for blade 3

(10.43)

10.4.3 Benchmark controller

The benchmark controller used in this work is a collective pitch controller based
on the one found in [JBMS09]. The controller has a gain scheduled feedback
from rotor speed to collective pitch angle and controls the generator torque to
achieve constant power. The collective pitch controller is augmented with an
individual pitch control (IPC) system that uses the flapwise blade root bending
moments via the Coleman transform to determine cyclic behavior of the pitch
angles. The cyclic pitch terms are then added to the collective pitch angle.
Details regarding the tuning and implementation of the IPC can be found in
[bMHHZ11].

10.5 Simulations

In this section simulation results for the obtained controllers which are denoted
as MPC IPC (the proposed approach) and PI IPC (the benchmark controller)
are presented. The controllers are implemented in MATLAB and are tested on
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Figure 10.3: Pitch of one of the blades, (MPC IPC is solid-blue and PI IPC
is red-dashed, degrees)

a full complexity FAST [JJ05] model of the reference wind turbine [JBMS09].
MPC IPC and PI IPC performed almost equally well in stochastic wind speeds
and also step up and down with wind shear. However the advantage of using
MPC IPC based on LIDAR measurements expressed itself in the transition
situations. To show the advantage we have done a comparison of the simulation
results of the two controllers for the extreme wind shear (EWS). The EWS
simulation is inspired from the IEC standard [iec05].

10.5.1 Extreme wind shear simulations

In this section simulation results for a vertical extreme wind shear (EWS) event
are presented. Power law wind profile is used to demonstrate wind shear. In
the vertical EWS event, the power law exponent ramps up from a normal value
of 0.2 to an extreme value of 0.3 in 2 seconds and after 10 seconds ramps down
to the normal situation. Controller performance for the MPC IPC and PI IPC
are compared for this event. A comparison of blade pitch are given in 10.3 as
it could be seen, the MPC IPC gives a smoother increase in blade pitch while
PI IPC has an overshoot. Out-of-plane blade root bending moments of one of
the blades are given in 10.4. Clearly the MPC IPC gives better performance
in reducing both steady state and transient fluctuations. In order to simplify
comparison of the signals, Coleman transformation [CF61] of the three out-of-
plane blade root bending moments are calculated and the results, namely yaw
and tilt signals, for both controllers are given in 10.5 and 10.6 respectively.
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Figure 10.4: Out-of-plane blade root bending moment, (MPC IPC is solid-
blue and PI IPC is red-dashed, Mega N.m)

10.6 Conclusions

In this paper firstly nonlinear model of a wind turbine, using blade element
momentum theory (BEM) and first principle modeling of the flexible drive train
and tower was found. Our control methodology is based on a family of linear
models, therefore we have used Taylor series expansion to linearize the obtained
nonlinear model around system operating points. Operating points are functions
of wind speed, therefore wind speed is used as a scheduling variable. A model
predictive control approach for the parameter varying systems was suggested.
The approach employs known scheduling variable which is the effective wind
speed. The effective wind speed is calculated by measuring and processing wind
speed profile ahead of the wind turbine. The final controller was applied on a full
complexity FAST [JJ05] model and was compared with a benchmark controller.
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Figure 10.5: Tilt signal, (MPC IPC is solid-blue and PI IPC is red-dashed,
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Robust Control Design of Wind Turbines using µ-Synthesis1

Mahmood Mirzaei2, Hand Henrik Niemann3 and Niels Kjølstad Poulsen2

Abstract

The problem of robust control of a wind turbine is considered in this paper. A
controller is designed based on a 2 degrees of freedom linearized model of a wind
turbine. Due to approximate aerodynamics calculations and linearization of the
nonlinear model, uncertainty in the obtained linear model is considered. We
include these uncertainties as parametric uncertainties in the model and design
a robust controller using the µ-synthesis method. The resulting controller is
applied on a high fidelity simulation model and simulations are performed with
stochastic wind speeds.

11.1 Introduction

In recent decades there has been increasing interest in green energies of which
wind energy is one of the most important. Wind turbines are the most common
wind energy conversion systems (WECS) and are hoped to be able to compete
with fossil fuel power plants on energy price in the near future. However this
demands better technology to reduce the electricity production price. Control
can play an essential part in this context, because on the one hand control
methods can decrease the cost of energy by keeping the turbine close to its
maximum efficiency. On the other hand they can reduce structural fatigue and
therefore increase the lifetime of the wind turbine. There are several methods
of wind turbine control ranging from classical control methods [LC00] which
are the most commonly used methods in real applications, to advanced con-
trol methods, which have been the focus of research recently [LPW09]. Gain
scheduling [BBM06], adaptive control [JF08], MIMO methods [GC08], nonlin-
ear control [Tho06], robust control [Øst08], model predictive control [Hen07]
and DK-iteration [MNP11] to mention a just few. Advanced control methods
are thought to be the future of wind turbine control as they can employ new

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,
Building 349, DK-2800 Kgs. Lyngby, Denmark
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generations of sensors on wind turbines (e.g. LIDAR [HHW06]), new generation
of actuators (e.g. trailing edge flaps [And10]) and also conveniently treat the
turbine as a MIMO system. The last feature seems to be becoming more impor-
tant than before, as wind turbines are becoming bigger and more flexible, which
makes decoupling different modes and designing a controller for each mode more
difficult. The wind turbine in this paper is treated as a MIMO system with pitch
(Θ) and generator reaction torque (Q) as inputs and rotor rotational speed (Ω),
generated power (Pe) and tower fore-aft rate (Vt) as outputs. Parametric uncer-
tainties are considered and the µ-synthesis method [SP01] is used to solve the
control problem. µ-synthesis is a method that takes structured uncertainty into
account in order to reduce the conservativeness of theH∞ procedure. This paper
is organized as follows: In section 11.2 modeling of the wind turbine including
linearization and uncertainty modeling is addressed. In section 11.3 controller
design is explained. Finally in section 11.4 simulation results are presented.

11.2 Modeling of the Wind Turbine

For modeling purposes, the whole wind turbine can be divided into four subsys-
tems: Structural subsystem, aerodynamics subsystem, electrical subsystem and
actuator subsystem. The dominant dynamics of the wind turbine come from
its structure, which includes the drivetrain, tower and blades. Several degrees
of freedom could be considered to model the structure, but for control design
just a few important degrees of freedom are usually considered. In this work we
only consider two degrees of freedom, namely the rotational degree of freedom
(DOF) and tower fore-aft movement. The aerodynamics subsystem gets effec-
tive wind speed (Ve), pitch angle (Θ) and rotational speed of the rotor (Ω) and
returns aerodynamic torque (Qr) and thrust (Qt). The aerodynamic subsystem
is responsible for the nonlinearity in the wind turbine model. More details are
presented in section 11.2.1.

11.2.1 Nonlinear Model

As mentioned earlier, for modeling purposes, the whole wind turbine can be
divided into four subsystems (see figure 11.1). The aerodynamic subsystem
converts wind forces into mechanical torque and thrust on the rotor. The me-
chanical subsystem consists of the drivetrain, tower and blades. The drivetrain
transfers rotor torque to the electrical generator. The tower holds the nacelle and
withstands the thrust force. Finally blades transform wind forces into torque
and thrust. The generator subsystem converts mechanical energy to electrical
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Figure 11.1: Wind turbine subsystems

energy and finally the blade-pitch and generator-torque actuator subsystems are
part of the control system. To model the whole wind turbine, models of these
subsystems are obtained and at the end they are connected together. Figure
11.1 shows the basic subsystems and their interactions. The dominant dynamics
of the wind turbine comes from its flexible structure. Several degrees of free-
dom could be considered to model the flexible structure, but for control design,
mostly just a few important degrees of freedom are considered. In figure 11.2
basic degrees of freedom which are normally being considered in a wind tur-
bine model are shown. However in this work we only consider two degrees of
freedom, namely the rotation of the rotor and fore-aft movement of the tower.
Nonlinearity of a wind turbine mostly comes from its aerodynamics. Blade ele-
ment momentum (BEM) theory [Han08] is used to numerically calculate aerody-
namic torque and thrust on the wind turbine. This theory explains how torque
and thrust are related to wind speed, blade pitch angle and rotational speed
of the rotor. In the quasi-steady state, i.e. disregarding unsteady aerodynamic
effects, the following formulas can be used to calculate aerodynamic torque and
thrust.

Qr =
1

2

1

Ω
ρπR2V3

eCp(Θ,Ω,Ve) (11.1)

Qt =
1

2
ρπR2V2

eCt(Θ,Ω,Ve) (11.2)

In which Qr and Qt are aerodynamic torque and thrust, ρ is the air density,
R is the rotor radius, ω is the rotor rotational speed, Ve is the effective wind
speed, Cp is the power coefficient and Ct is the thrust force coefficient. Cp and
Ct are found using BEM algorithm and stored as look-up tables. Figure 11.3
shows Cp and Ct curves. Having aerodynamic torque and thrust, and modeling
tower fore-aft dynamics with a simple mass-spring-damper, the whole system
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Figure 11.2: Basic degrees of freedom

equation with 2 degrees of freedom becomes:

JtΩ̇ = Qr(Θ,Ω,Ve)−NgQg (11.3)

MtẌt = Qt(Θ,Ω,Ve)− ctẊt + ktXt (11.4)
Pe = QgNgΩ (11.5)

In which Jt is the rotor moments of inertia, ct and kt are the tower fore-aft
damping and stiffness factors, Xt is the tower fore-aft displacement and Pe is
the generated electrical power. For numerical values of these parameters and
other parameters given in this paper, we refer to [JBMS09].

11.2.2 Linearization

Our control design method is based on linear models, therefore we need to lin-
earize the nonlinear model of the system obtained in the previous section. This
is done by first finding the operating point, which is a function of effective wind
speed (Ve). Thereafter Taylor series expansion is used to find aerodynamic
torque (Qr), aerodynamic thrust (Qt) and generated power (Pe) as linear func-
tions of θ, ω and ve which are deviations from the operating points.
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Figure 11.3: Cp curve (left) and Ct curve (right)

11.2.3 Uncertain model

As mentioned previously, for control design we need to have a linear model of
the system and the following model of the wind turbine is used: ẋ

y∆

y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x
u∆

u

 (11.6)

In which states, inputs and outputs are:

x =
(
ω xt ẋt

)T
u =

(
θ Qg

)T
y =

(
ω ẋt

)T (11.7)

ω is the rotational speed of the rotor, xt and ẋt are the tower fore-aft displace-
ment and velocity, respectively, θ is the pitch of the blade, Qg is the generator
reaction torque and Pe is the electrical power. Having all the equations, system
equations become:

ω̇ =
a1

Jt
ω +

b11

Jt
θ +

b12

Jt
(ve − ẋt)−

Ng
Jt
Qg (11.8)

ẍt =
a2

Mt
ω +

b21

Mt
θ +

b22

Mt
(ve − ẋt)−

ct
Mt

ẋt −
kt
Mt

xt (11.9)

Pe = Qg0Ngω +Ngω0Qg (11.10)

In the equation (11.3) we consider Qg to be approximately constant in compari-
son to the disturbances of the aerodynamic torque Qr. Qg is mainly used in the



11.2 Modeling of the Wind Turbine 171

equation (11.10) for trimming the output power. By neglecting the effect of Qg
in the equation (11.8), we basically use the pitch of the blades for regulating the
rotation of the rotor and damping tower fore-aft oscillations in the equations
(11.8) and (11.9), and the torque of the generator for regulating the generated
power in the equation (11.10). Using the blade pitch (θ) for regulating the
rotational speed and damping the tower fore aft oscillations is inspired by the
standard PI controller [JBMS09]. Based on this argument, we can consider the
wind turbine both a SIMO (Single Input, Multi Output) and a MIMO (Multi
Input, Multi Output) system. In the SIMO case, we only use blade pitch in the
equation (11.10) to control rotation of the rotor, and neglect the effect of gen-
erator torque. Then another controller is designed which uses generator torque
Qg to control generated power. In the MIMO case (presented in this work), one
controller is designed to control both the rotation of the rotor and the generated
power using blade pitch (θ) and generator torque (Qg). Uncertainties for the
parameters of the equations (11.8)-(11.10) are:

a1 = ā1(1 + pa2δa1) Linearized model
b11 = b̄11(1 + p11δb11) Linearized model
a2 = ā2(1 + pa1δa2) Linearized model
b21 = b̄21(1 + p21δb21) Linearized model

(11.11)

In which:
|δa1| ≤ 1, |δb11| ≤ 1, |δa2| ≤ 1, |δb21| ≤ 1, (11.12)

ā1, b̄11, ā2 and b̄21, are the nominal values and pa1, pb11, pa2 and pb21 represent the
relative perturbations. Uncertainty in the linearized model could be a result of
approximate CP curve calculations, wrong wind speed estimation, which results
in picking the wrong operating point, or aerodynamic changes due to blade
flexibility or ice coatings on the blades. Using equation (11.11) to represent
uncertainties, the uncertainty matrix (∆) becomes a diagonal matrix which
connects y∆ and u∆:

u∆ = diag(δa1, δb11, δa2, δb21)y∆

y∆ =
(
ya1 yb11 ya2 yb21

)T
u∆ =

(
ua1 ub11 ua2 ub21

)T (11.13)

11.2.4 Simulation Model

The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code [JJ05] is
used as the simulation model and the 5MW reference wind turbine is used as
the plant [JBMS09]. In the simulation model 10 degrees of freedom are enabled
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Figure 11.4: System interconnections

which are: generator, drivetrain torsion, 1st and 2nd tower fore-aft, 1st and
2nd tower side-side, 1st and 2nd blade flapwise, 1st blade edgewise degrees of
freedom.

11.3 Controller Design

In this section we first explain basic wind turbine control objectives. Thereafter
we show how to express the control objectives in the form of weighting functions
of frequency on input disturbances and exogenous outputs. Afterwards we de-
sign two controllers, one based on H∞ controller design procedure which results
in a controller for the nominal performance problem and one using DK-iteration
which results in a controller for the robust performance problem. At the end of
the section we present some analysis on robust stability and robust performance
of the controllers.

11.3.1 Control Objectives

The most basic control objective of a wind turbine is to maximize produced
power for the entire life time of the machine which means maximizing captured
power (up until rated power) and prolonging its life time. The second objec-
tive is achieved by minimizing the dynamics loads on the turbine. Generally
maximizing power is considered in the partial load and minimizing fatigue loads
is mainly considered above rated. As we are operating in the full load region
in this work, we have considered the second objective. Control objectives are
formulated in the form of weighting functions on input disturbances (d) and
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exogenous outputs (z). In order to avoid high frequency activity of the actua-
tors, we have put high pass filters on control signals to penalize high frequency
activity, see figures 11.5c and 11.5d. Also we have setup low pass filters to pe-
nalize only low frequency of some of the system outputs as their high frequency
dynamics are outside our actuator bandwidth and we can not control them, see
figures 11.6a and 11.6b. A low pass filter is considered for the input of wind
speed as a source of disturbance with limited bandwidth (see figure 11.5a) and
high pass filters are considered to show the precision of our measurement sensors
in low frequencies and the effect of noise in high frequencies, see figure 11.5b.
For regulating power and rotational speed, Pe, ω are penalized using low pass
filters.

∫
ω is introduced and penalized to achieve offset free regulation. For

minimizing fatigue loads on the tower, ẋt is penalized using low pass filters.
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Figure 11.5: Bode plots of weighting functions (y-axis is in dB and x-axis is
in rad/s)
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11.3.2 Nominal Performance Problem

11.3.2.1 Theory

H∞ control theory [SP01] is used to solve the nominal performance problem. In
this problem the ∆ matrix is considered zero (no perturbation) and the following
problem is solved:

K(s) = arg min
K∈K

‖ WoFl(P,K)Wi(jω) ‖H∞ (11.14)

In which Fl(P,K) is the lower LFT of plant P (figure 11.4) and controller K.
Wi and Wo are frequency-dependent weighting matrices on disturbances and
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exogenous outputs, respectively, of the form:

Wo = diag(Wo1, . . . ,Wo6)

Wi = diag(Wi1, . . . ,Wi5)
(11.15)

Bode plots of the weighting functions are given in the figure 11.5. Input distur-
bance (d) and exogenous outputs (z) are (see figure 11.4):

d = ve Wind Speed

z =


θ
Qg
ω
ẋt∫
ω
Pe


Pitch reference
Generator reaction torque reference
Error on the rotational speed
Tower fore-aft velocity
Integral of rotational speed error
Generated power error

By the optimization problem we are trying to find a controller in the set of
all stabilizing controllers that minimizes the H∞-norm of weighted sensitivity
function. This means we try to minimize the peak frequency of WoSWi(jω).
The resulting controller guarantees nominal performance if:

‖ WoFl(P,K)Wi(jω) ‖H∞< 1 (11.16)

11.3.2.2 Implementation

The robust control toolbox [BDG+01] is used to solve the above optimization
problem. The controller is found by trying to minimize the transfer function
from the disturbances (vector d) to the exogenous outputs (vector z).
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11.3.3 Robust Performance Problem

11.3.3.1 Theory

Robust performance means that the performance objective is satisfied for all
possible plants in the uncertainty set. The robust performance condition can be
cast into a robust stability problem, with an additional perturbation block that
defines H∞ performance specifications. For a closed loop M −∆ structure, the
robust stability condition is [SP01]:

‖M∆ ‖H∞< 1 (11.17)

However when we have a structure in the uncertainty block ∆, we can exploit
it and reduce the conservativeness of the controller. Structured singular value
(also known as µ) is a tool that utilizes structures in the uncertainty block to
analyze the robust stability of the system. Here we have used the structured
singular value to solve the robust performance problem, as explained above, by
transforming it into a robust stability problem. The structured singular value
of a complex matrix M with respect to a class of perturbations ∆ is given by.

µ∆(M)
∆
=

1

inf{σmax(∆)|det(I −M∆) = 0} , ∆ ∈∆ (11.18)

The structured singular value µ is a very powerful tool for analysis of robust
performance with a given controller. However in order to design a controller, we
need a synthesis tool. To that end, a scaled version of the upper bound of µ is
used for controller synthesis. The problem is formulated in the following form:

µ∆(N(K)) ≤ min
D∈D

σ(DN(K)D−1) (11.19)

Now, the synthesis problem can be cast into the following optimization problem
in which one tries to find a controller that minimizes the peak value over the
frequency of this upper bound:

min
K∈K

(min
D∈D

‖ DN(K)D−1 ‖∞) (11.20)

This problem is solved by an iterative approach called DK-iteration. For
detailed explanations of the method and notations, the reader is referred to
[SP01].

11.3.3.2 Implementation

We have used the DK-Iteration algorithm of the robust control toolbox [Mat]
to design controllers. Figure 11.7 shows the robust performance problem setup.
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Figure 11.7: System setup for robust performance problem

Iteration number 1 2 3
Controller Order 32 32 32
γ Acheived 78125.50 0.535 0.535
Peak µ-Value 2.598 0.473 0.473

Table 11.1: DK-iteration summary for one of the controllers

W∆ is used to scale the ∆ matrix. We have taken uncertainty of 20% for the
uncertain parameters, therefore the weighting matrix becomes:

W∆ = diag(0.2, 0.2, 0.2, 0.2) (11.21)

∆P scaled by Wi and Wo matrices defines performance of the system in the
form of a complex perturbation matrix. The resulting µ for the controller is
given in figure 11.8 and the iteration summary in table 11.1. The order of the
resulting controller is 32, and since high order controllers are problematic in the
implementation phase, we have used balanced model reduction to reduce the
order of the controller to 15. Table 11.1 shows the DK-iteration summary for
obtaining the controller after the second iteration µ value does not improve.

11.3.4 Robust Stability Analysis

In this section we determine whether the system remains stable for all the uncer-
tainties we have considered in the plant. To do so we calculate upper and lower
bounds on the robust stability margins. Stability margins give us a measure
of how much uncertainty the system can tolerate before it becomes unstable.
Here we compare the H∞ and µ controllers. The system with the µ controller
can tolerate up to 955% of the modeled uncertainty, while the H∞ controller
can tolerate up to 878% of the modeled uncertainty. In the robust stability
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analysis it was also noted that uncertainty in the linearized parameters of the
thrust force (for the specific wind speed of 18m/s) does not affect the stability
of the system. However increasing a1 (aerodynamic damping of the rotational
speed) by 25% leads to a 33% decrease in the margin, and increasing b11 (aero-
dynamic gain from pitch to rotational speed) by 25% leads to a 5% decrease in
the margin. Figure 11.8 shows the µ plot for robust stability margins for the µ
controller.

11.3.5 Robust Performance Analysis

Often robust stability is not the main goal of robust control design. In the
case of wind turbine design, in which wind speed fluctuations are considered
as disturbances, we try to reduce the effect of these fluctuations on rotational
speed and generated power, while keeping dynamical loads at their minimum.
The dynamics from the disturbances to rotational speed, generated power and
tower fore-aft velocity are dependent on the uncertainties in the system and it
is the robust controller’s task to reduce the effect of the uncertainties on the
performance of the system. In our problem, before instability occurs the perfor-
mance has degraded to the level of unacceptable. Therefore robust performance
tests are even more important than robust stability tests. The system with the
µ controller can tolerate up to 225% of the modeled uncertainty while the H∞
controller can tolerate up to 200% of the modeled uncertainty before it loses the
required performance specifications. In the robust stability analysis it was also
noted that uncertainty in the linearized parameters of the thrust force (for the
specific wind speed of 15m/s) does not affect performance of the system. How-
ever increasing a1 by 25% leads to a 4% decrease in the margin and increasing
b11 by 25% leads to a 4% decrease in the margin.
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11.4 Simulation Results

In this section simulation results for a stochastic wind speed with the obtained
controller are presented and compared against a standard PI controller. The
controllers are implemented in MATLAB and are tested on the full complexity
FAST model of the reference wind turbine [JBMS09]. The Kaimal model is
used as the turbulence model and in order to stay close to the linearization
point, the turbulence intensity has been decreased. Simulation results compare
the robust µ controller with the standard PI controller. The simulations show
that the µ controller achieves better regulation of rotational speed and power
and reduced tower fore-aft oscillations, while keeping less generator reaction
torque and almost the same pitch activity. Simulations are done both for the
nominal plant and the perturbed plant. For the nominal plant, the high fidelity
FAST model of the NREL reference wind turbine [JBMS09] is used and for the
perturbed system we have increased pitch gain to the system by 20%. Control
inputs, which are collective pitch of the blades θ and generator reaction torque
Q, along with system outputs, which are rotor rotational speed ω, tower fore-aft
velocity ẋt and electrical power Pe, are plotted in figures 11.11a-11.11e for the
nominal case and in 11.10a-11.10e for the perturbed case. Table 11.2 shows
comparison between the µ-controller and the standard PI for the nominal case
and 11.3 shows the result for the perturbed case.
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Figure 11.10: Simulation results for perturbed system, solid-blue µ-controller,
red-dashed standard PI controller
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Figure 11.11: Simulation results for nominal system, solid-blue µ-controller,
red-dashed standard PI controller
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Parameters µ-controller PI Improvement
SD of ω (RMP) 0.1067 0.1564 31.77%
SD of Pe (kWatts) 22.25 26.29 15.36%
Pitch travel (degrees) 0.6028 0.5862 -2.83%
SD of Shaft moment (kN.M.) 0.2754 0.5042 45.37%
SD of Tower fore-aft (m/s) 0.0322 0.0334 3.59%

Table 11.2: µ-controller and PI performance comparison for the nominal case
(SD stands for standard deviation and DEL stands for damage
equivalent load)

Parameters µ-controller PI Improvement
SD of ω (RMP) 0.0934 0.1322 29.34%
SD of Pe (kWatts) 20.630 25.367 18.67%
Pitch travel (degrees) 0.6068 0.6092 0.393%
SD of Shaft moment (kN.M.) 0.2345 0.4206 44.24%
SD of Tower fore-aft (m/s) 0.0328 0.0354 7.34%

Table 11.3: µ-controller and PI performance comparison for the perturbed
case (SD stands for standard deviation and DEL stands for dam-
age equivalent load)

11.5 CONCLUSION

In this paper we solved the problem of robust control of a wind turbine using
the DK-iteration technique. Parametric uncertainties are considered in the
uncertain model and then we have used a µ-synthesis tool to design a robust
controller. The final controller is implemented on a FAST simulation model with
10 degrees of freedom and simulation with stochastic wind speed is done. The
results show improvement in regulation of generated power and rotational speed
over the standard PI controller [JBMS09] with less generator torque activity and
almost the same pitch activity, both for a nominal and perturbed system.
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Model Predictive Individual Pitch Control of Wind Turbines Using
LIDAR Measurements1

Mahmood Mirzaei2, Lars C. Henriksen3, Niels K. Poulsen2, Hand H.
Niemann4 and Morten H. Hansen3

Abstract

Spatial distribution of the wind field contributes to imbalance loads on wind
turbine structures and it is shown these loads could be mitigated by controlling
each blade’s angle individually (individual pitch control). In this work the prob-
lem of individual pitch control of a variable-speed variable-pitch wind turbine
in the full load region is considered. Model predictive control (MPC) is used
to solve the problem. However as the turbine is nonlinear and time varying, a
new approach is proposed to simplify the optimization problem of the control
problem. Nonlinear dynamics of the wind turbine is derived by combining blade
element momentum (BEM) theory and first principle modeling of the flexible
structure and system identification. Then the nonlinear model of the system is
linearized using Taylor series expansion around its operating points and a family
of linear models is obtained. The operating points are determined by LIDAR
measurements both for the current and predicted future operating points. The
obtained controller is applied on a full complexity, high fidelity wind turbine
model. Finally simulation results show improved load reduction on out-of-plane
blade root bending moments and a better transient response compared to a
benchmark PI individual pitch controller.

12.1 Introduction

12.1.1 Wind turbine control

In recent decades there has been increasing interest in green energies, of which
wind energy is one of the most important. Wind turbines are the most com-
mon wind energy conversion systems (WECS) and are hoped to be able to

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
4Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,

Building 349, DK-2800 Kgs. Lyngby, Denmark
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compete with fossil fuel power plants on energy price in near future. However
this demands better technology to reduce the electricity production price. Con-
trol can play an essential part in this context. This is because, on the one
hand control methods can decrease the cost of energy by keeping the turbine
close to its maximum efficiency. On the other hand they can reduce structural
fatigue and therefore increase the lifetime of the wind turbine. There are sev-
eral methods of wind turbine control, ranging from classical control methods,
[LC00] which are the most commonly used methods in real applications, to
advanced control methods, which have been the focus of research in the past
few years [LPW09]. Gain scheduling [BBM06], adaptive control [JF08], MIMO
methods [GC08], nonlinear control [Tho06], robust control [Øst08], model pre-
dictive control [Hen07] and µ-Synthesis design [MNP11] are just to mention a
few. Advanced model-based control methods are thought to be the future of
wind turbine control, as they can conveniently employ new generations of sen-
sors on wind turbines (e.g. LIDAR [HHW06]), new generation, of actuators
(e.g. trailing edge flaps [And10]) and they also treat the turbine as a MIMO
system. The last feature seems to have become more important than before, as
wind turbines are becoming bigger and more flexible. This trend makes decou-
pling different modes, specifying different objectives and designing controllers
based on paired input/output channels more difficult. Model predictive control
(MPC) has proved to be an effective tool to deal with multivariable constrained
control problems [BM99]. As wind turbines are MIMO systems [GC08] with
constraints on inputs and outputs, using MPC seems to be effective. Individual
pitch control, in which each blade is given a specific pitch reference, instead of
collective pitch in which all the blades receive the same pitch reference, has given
promising results in reducing fatigue loads caused by spatial distribution of the
wind field [Bos03]. There have been a number of works addressing individual
pitch control using LIDAR measurements [SK08], [SSG+10] and [LPS+11].

12.1.2 Model Predictive Control Approach

Model predictive control (MPC) has been an active area of research and has been
successfully applied on different applications in the last decades ([QB96]). Basic
elements of MPC are: a model of the plant to predict its future, a cost function
which reflects control objectives, constraints on inputs and states/outputs, an
optimization algorithm and the receding horizon principle. Depending on the
type of the model, the control problem is called linear MPC, hybrid MPC, non-
linear MPC etc. Nonlinear MPC is normally computationally very expensive
and generally there is no guarantee that the solution to its optimization problem
is a global optimum. In this work we extend the idea of linear MPC using linear
parameter varying (LPV) systems to formulate a tractable predictive control of
nonlinear systems. To do so, we use future values of an input to the system that
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Figure 12.1: Wind turbine subsystems

acts as a scheduling variable in the model. However there are some assumptions
that restrict our solution to a specific class of problems. The scheduling variable
is assumed to be known for the entire prediction horizon. And the operating
point of the system mainly depends on the scheduling variable. The paper is
organized as follows. In 12.2 modeling of the wind turbine is explained, the
nonlinear model is derived and the linear parameter varying model is given. In
12.3 our proposed method for solving model predictive control of the system is
presented. In 12.4 control design is explained. Firstly control objectives are dis-
cussed and afterwards collective and individual pitch controllers are presented.
In this section appropriate references are given for the benchmark individual
pitch controller. Finally in 12.5 simulation results are given.

12.2 Modeling

12.2.1 Nonlinear model

For modeling purposes, the whole wind turbine can be divided into four sub-
systems: Aerodynamics subsystem, mechanical subsystem, electrical subsystem
and actuator subsystem. The aerodynamic subsystem converts wind forces into
mechanical torque and thrust on the rotor. The mechanical subsystem consists
of the drivetrain, tower and blades. Drivetrain transfers rotor torque to the elec-
trical generator. The tower holds the nacelle and withstands the thrust force.
Blades transform wind forces into toque and thrust. The generator subsystem
converts mechanical energy to electrical energy and finally the blade-pitch and
generator-torque actuator subsystems are part of the control system. To model
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Figure 12.2: Basic degrees of freedom

the whole wind turbine, models of these subsystems are obtained and at the
end they are connected together. Figure 12.1 shows the basic subsystems and
their interactions. The dominant dynamics of the wind turbine come from its
flexible structure. Several degrees of freedom could be considered to model the
flexible structure, but for control design, just a few important degrees of free-
dom are usually considered. In figure 12.2 basic degrees of freedom, which are
normally being considered in the design model, are shown. In this work we have
considered three degrees of freedom, namely the rotational degree of freedom
(DOF), drivetrain torsion and tower fore-aft motion. Nonlinearity of a wind
turbine mostly comes from its aerodynamics. Blade element momentum (BEM)
theory [Han08] is used to numerically calculate aerodynamic torque and thrust
on the wind turbine. This theory explains how torque and thrust are related
to wind speed, blade pitch angle and rotational speed of the rotor. In steady
state, i.e. disregarding dynamic inflow, the following formulas can be used to
calculate aerodynamic torque and thrust.

Qr =
1

2

1

Ωr
ρπR2V3

eCp(Θ,Ωr,Ve) (12.1)

Qt =
1

2
ρπR2V2

eCt(Θ,Ωr,Ve) (12.2)

In which Qr and Qt are aerodynamic torque and thrust, R is the rotor radius,
ρ is the air density, Ωr is the rotor rotational speed, Ve is the effective wind
speed, Cp is the power coefficient and Ct is the thrust force coefficient. The Cp
and Ct are found using BEM algorithm and stored as look-up tables. Figure
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Figure 12.3: Cp curve (left) and Ct curve (right)

12.3 shows the Cp and Ct curves. The absolute angular position of the rotor
and generator are of no interest to us, therefore we use ψ instead, which is
the drivetrain torsion. Having aerodynamic torque and modeling drivetrain
and tower with simple mass-spring-damper, the whole system equation with 3
degrees of freedom becomes:

JrΩ̇r = Qr − Cd(Ωr −
Ωg
Ng

)−Kdψ (12.3)

(NgJg)Ω̇g = Cd(Ωr −
Ωg
Ng

) +Kdψ −NgQg (12.4)

ψ̇ = Ωr −
Ωg
Ng

(12.5)

M Ẍt = Qt − CtẊt −KtXt (12.6)
Pe = QgΩg (12.7)

In which Jr and Jg are rotor and generator moments of inertia, ψ is the drivetrain
torsion, Cd andKd are the drivetrain damping and stiffness factors, respectively,
lumped in the low speed side of the shaft. Ct and Kt are the tower damping
and stiffness factors, respectively. Pe and Xt are the generated electrical power
and tower displacement, respectively. For numerical values of these parameters
and other parameters given in this paper, we refer to [JBMS09].

12.2.2 Linearized model

To get a linear model of the system we need to linearize around its operating
points, which are determined by wind speed on the rotor area. Wind speed
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changes along the blades and with the azimuth angle (angular position) of the
rotor. This is because of wind shear, tower shadow and stochastic spatial distri-
bution of the wind field. Therefore a single wind speed does not exist to be used
and measured in order to find the operating point. We bypass this problem
by defining a fictitious variable called effective wind speed (Ve), which shows
the effect of wind in the rotor disc on the wind turbine. Using the linearized
aerodynamic torque and thrust, state space matrices for the 3 DOFs linearized
model become:

ω̇r =
α1(ve)− c

Jr
ωr +

c

Jr
ωg −

k

Jr
ψ (12.8)

+ β11(ve)θ + β12(ve)(ve − vt) (12.9)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(12.10)

ψ̇ = ωr −
ωg
Ng

(12.11)

ẋt = vt (12.12)

v̇t =
α2(ve)

M
ωr +

β21(ve)

M
θ +

β22(ve)

M
(ve − vt) (12.13)

− Ct
M
vt −

Kt

M
xt (12.14)

Pe = Qg0ωg + ωg0Qg (12.15)

n which the lower-case variables are deviations away from steady state of the
upper-case variables given in the equations (12.3-12.7). And as could be seen,
the parameters of the linearized model are functions of wind speed, which in
our approach acts as a scheduling variable. A more detailed description of the
model and linearization is given in [MNP11].

12.2.3 Pitch actuator

A second order model is used to model pitch actuator:

θ̇1 = θ2 (12.16)

θ̇2 = −2ζθωθθ2 − ω2
θθ1 + ω2

θθi (12.17)

In which θi is the input to the actuator, and ωθ and ζθ are natural frequency
and damping of the actuator, respectively.
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12.2.4 Dynamics of the blades

Blade dynamics is simplified as a parameter varying second order dynamical
system with two inputs, which are wind speed and pitch angle, and one output,
which is out of plane blade root bending moment. The model is considered to
be:

M̃i(s) = H1,i(γ, s)θ̃i(s) +H2,i(γ, s)ṽi(s), i = 1, 2, 3 (12.18)

For which the state space matrices become:

A(γ) =

(
0 1

−ωn(γ)2 −2ζ(γ)ωn(γ)

)
B(γ) =

(
0 0

b1(γ) b2(γ)

)
(12.19)

C =
(
1 0

)
D =

(
0 0

)
(12.20)

The argument γ signifies that the linearized model depends on the operating
point. Different wind speeds, which result in different operating points are
used to identify the system. Prediction error [Lju99] method is used on the
above greybox model of the blade and parameters of the state space model are
identified. It was observed that ωn and ζ take almost constant values of 6 (rad/s)
and 0.6 (Ns/m) respectively. Therefore, for the three blades, the dynamics of
the whole system could be written as:

A =

3⊕
i=1

A B(γ1, γ2, γ3) =

3⊕
i=1

B(γi) C =

3⊕
i=1

C D =

3⊕
i=1

D (12.21)

In B(γ1, γ2, γ3), the three variables γ1, γ2 and γ3 are determined by the effective
wind speed on the corresponding blade.

12.3 MPC of a LPV System with Known Schedul-
ing Variable

Generally nonlinear dynamics of a plant could be modeled as the following
difference equation:

xk+1 = f(xk, uk) (12.22)
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With xk and uk as states and inputs respectively. Using the nonlinear model,
the nonlinear MPC problem could be formulated as:

min
u

p(xN ) +

N−1∑
i=0

q(xk+i|k, uk+i|k) (12.23)

Subject to xk+1 = f(xk, uk) (12.24)
uk+i|k ∈ U (12.25)
x̂k+i|k ∈ X (12.26)

Where p(xN ) and q(xk+i|k, uk+i|k) are called terminal cost and stage cost re-
spectively and are assumed to be positive definite. U and X show the set of
acceptable inputs and states. As mentioned above, because of the nonlinear
model, this problem is computationally too expensive. One way to avoid this
problem is to linearize around an equilibrium point of the system and use a
linearized model instead of the nonlinear model. However, for some plants as-
sumption of a linear model does not hold for long prediction horizons. This is
because the plant operating point changes, for example on the basis of distur-
bances that act as a scheduling variable. An example could be a wind turbine
for which wind speed acts as a scheduling variable and changes the operating
point of the system.

12.3.1 Linear MPC formulation

The problem of linear MPC could be formulated as:

min
u0,u1,...,uN−1

‖xN‖Qf +

N−1∑
i=0

‖xk+i|k‖Q + ‖uk+i|k‖R (12.27)

Subject to xk+1 = Axk +Buk (12.28)
uk+i|k ∈ U (12.29)
x̂k+i|k ∈ X (12.30)

Assuming that we use norms 1, 2 and ∞, the optimization problem becomes
convex providing that the sets U and X are convex. Convexity of the opti-
mization problem makes it tractable and guarantees that the solution is the
global optimum. The problem above is based on a single linear model of the
plant around one operating point. However below we formulate our problem
using linear parameter varying systems (LPV) in which the scheduling variable
is known for the entire prediction horizon.
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12.3.2 Linear Parameter Varying systems

Linear Parameter Varying (LPV) systems are a class of linear systems whose
parameters change on the basis of a scheduling variable. Study of LPV sys-
tems was motivated by their use in gain-scheduling control of nonlinear systems
([AGB95]). LPV systems are able to handle changes in the dynamics of the sys-
tem by parameter varying matrices. (LPV systems) let k ∈ Z denote discrete
time. We define the following LPV systems:

xk+1 = A(γk)xk +B(γk)uk (12.31)

A(γk) =

nγ∑
j=1

Ajγk,j B(γk) =

nγ∑
j=1

Bjγk,j (12.32)

Where A(γk) and B(γk) are functions of the scheduling variable γk. The vari-
ables xk ∈ Rnx , uk ∈ Rnu , and γk ∈ Rnγ are the state, the control input and
the scheduling variable respectively.

12.3.3 Problem formulation

Using the above definition, the linear parameter varying (LPV) model of the
nonlinear system is of the following form:

x̃k+1 = A(γk)x̃k +B(γk)ũk (12.33)

This model is formulated based on deviations from the operating point. However
we need the model to be formulated in absolute values of inputs and states.
Because in our problem the steady state point changes as a function of the
scheduling variable, we need to introduce a variable to capture its behavior. In
order to rewrite the state space model in the absolute form we use:

x̃k = xk − x∗k (12.34)
ũk = uk − u∗k (12.35)

Where x∗k and u∗k are values of states and inputs at the operating point. There-
fore the LPV model becomes:

xk+1 = A(γk)(xk − x∗k) +B(γk)(uk − u∗k) + x∗k+1 (12.36)

Which could be written as:

xk+1 = A(γk)xk +B(γk)uk + λk (12.37)
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with

λk = x∗k+1 −A(γk)x∗k −B(γk)u∗k (12.38)

Now having the LPV model of the system we proceed to compute state predic-
tions. In linear MPC predicted state at step n is:

xk+n = Anxk +

n−1∑
i=0

AiBuk+(n−1)−i

for n = 1, 2, . . . , N

(12.39)

However in our method the predicted state is also a function of the scheduling
variable Γn =

(
γk+1, γk+2, . . . γk+n

)T for n = 1, 2, . . . , N − 1 and we assume
that the scheduling variable is known for the entire prediction. Therefore the
predicted state could be written as:

xk+1(γk) = A(γk)xk +B(γk)uk + λk (12.40)

And for n ∈ Z, n ≥ 1:

xk+n+1(Γn) =
(∏n

i=0A
T (γk+i)xk

)T
+

n−1∑
j=0

(∏n−j
i=1 A

T (γk+i)
)T
B(γk+j)uk+j

+

n−1∑
j=0

(∏n−j
i=0 A

T (γk+i)
)T
λk+(n−1)−j

+B(γk+n)uk+n + λk+n

(12.41)

Using the above formulas we write down the stacked predicted state which
becomes:

X = Φ(Γ)xk +Hu(Γ)U + Φλ(Γ)Λ (12.42)

with

X =
(
xk+1 xk+2 . . . xk+N

)T (12.43)

U =
(
uk uk+1 . . . uk+N−1

)T (12.44)

Γ =
(
γk γk+1 . . . γk+N−1

)T (12.45)

Λ =
(
λk λk+1 . . . λk+N−1

)T (12.46)

In order to summarize formulas for matrices Φ,Φλ and Hu, we define a new
function as:

ψ(m,n) =
(∏m

i=nA
T (γk+i)

)T (12.47)
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Therefore the matrices become:

Φ(Γ) =


ψ(1, 1)
ψ(2, 1)
ψ(3, 1)

...
ψ(N, 1)



Φλ(Γ) =


I 0 0 . . . 0

ψ(1, 1) I 0 . . . 0
ψ(2, 1) ψ(2, 2) I . . . 0

...
...

...
. . .

...
ψ(N − 1, 1) ψ(N − 1, 2) ψ(N − 1, 3) . . . I



Hu(Γ) =


B(γk) 0 . . . 0

ψ(1, 1)B(γk) B(γk+1) . . . 0
ψ(2, 1)B(γk) ψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)B(γk) ψ(N − 1, 2)B(γk+1) . . . B(γN−1)



Hd(Γ) =


Bd(γk) 0 . . . 0

ψ(1, 1)Bd(γk) Bd(γk+1) . . . 0
ψ(2, 1)Bd(γk) ψ(2, 2)Bd(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)Bd(γk) ψ(N − 1, 2)Bd(γk+1) . . . Bd(γN−1)


After computing the state predictions as functions of control inputs, we can
write down the optimization problem similar to a linear MPC problem as a
quadratic program.

12.4 Control

12.4.1 Control objectives

The most basic control objective of a wind turbine is to maximize captured
power during the life time of the wind turbine. This means producing electricity
as close to the rated value as possible and reducing fatigue loads in order to
increase the life-time of the turbine. To achieve these objectives wind turbine
operations can be divided into two basic regions, the partial load region and
the full load region. In the partial load region, the objective is to maximize
captured power when wind speed is below its rated value. This is also called
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maximum power point tracking (MPPT). However in the full load region in
which wind speed is above rated, the control objective becomes regulation of
the outputs around their rated values while trying to minimize dynamic loads
on the structure. These objectives should be achieved against fluctuations in
wind speed which act as a disturbance to the system. In this work we have
considered operation of the wind turbine in the above rated (full load region).
Therefore we try to regulate rotational speed and generated power around their
rated values and remove the effect of wind speed fluctuations.

12.4.2 Implementation

Two controllers are implemented in this work. One controller determines the
collective pitch and generator reaction torque and regulates power and rota-
tional speed. The second controller determines ∆θi, i = 1, 2, 3 for fatigue load
reduction by adjusting individual blade pitch based on the individual blade’s ef-
fective wind speed calculations. Both of the controllers take advantage of having
the wind speed for the entire prediction horizon. These are fed to the controllers
through four vectors, Vhh, V1, V2 and V3, which are vector of wind speeds at hub
height and 75% of blades 1, 2 and 3 respectively.

12.4.2.1 Collective pitch controller

The first controller uses the linearized model which was explained in section
12.2.2 augmented with a second order system modeling actuator dynamics.
Measured outputs that are fed to this controller are:

ωr
Pe
at
θc
Vhh


Rotor rotational speed
Generated power
Tower top acceleration
Measured collective pitch
Hub height wind speed vector

(12.48)

12.4.2.2 Individual pitch controller

The objective of this controller is to reduce fluctuations on blade root bend-
ing moments by adjusting pitch angle based on calculated effective wind speeds
and blade root bending moment measurements for each blade individually. The
controller will reduce 1P fluctuations of bending moments on the blade roots.
The fluctuations in the blade root bending moments are considered to be from
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Mhh which is the bending moment produced by the hub height wind speed. In
steady state, M̃ in equation 12.18 should be zero, therefore we can find steady
state values for θ̃ having ṽ. This steady state value is taken to be the reference
value of the pitch actuator which was modeled as a second order system. Mea-
surements that are fed to the individual pitch controller are out-of-plane blade
root bending moments and calculated effective wind speeds:


M̃1

M̃2

M̃3

V1

V2

V3


Out-of-plane blade root bending moment of blade 1
Out-of-plane blade root bending moment of blade 2
Out-of-plane blade root bending moment of blade 3
Wind speed vector for blade 1
Wind speed vector for blade 2
Wind speed vector for blade 3

(12.49)

12.4.3 Benchmark controller

The benchmark controller used in this work is a collective pitch controller based
on the one found in [JBMS09]. The controller has a gain-scheduled feedback
from rotor speed to collective pitch angle and controls the generator torque to
achieve constant power. The collective pitch controller is augmented with an
individual pitch control (IPC) system that uses the flapwise blade root bending
moments via the Coleman transform to determine cyclic behavior of the pitch
angles. The cyclic pitch terms are then added to the collective pitch angle.
Details regarding the tuning and implementation of the IPC can be found in
[bMHHZ11].

12.5 Simulations

In this section simulation results for the obtained controllers which are denoted
as MPC IPC (the proposed approach) and PI IPC (the benchmark controller)
are presented. The controllers are implemented in MATLAB and are tested on
a full complexity FAST [JJ05] model of the reference wind turbine [JBMS09].
Simulation results are shown for two scenarios, one stochastic hub height wind
speed with wind shear, and one with extreme wind shear. Both scenarios are
taken from the IEC standard [iec05].
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Parameters MPC-IPC PI-IPC Improvement
SD of ωr (RMP) 0.2185 0.6802 67.87%
SD of Pe (KWatts) 10.402 86.826 88.01%
Pitch travel (degrees) 886.9 829.3 6.49%
SD of shaft moment (KN.M.) 0.7237 2.2144 67.31%
Tower base DEL (fore-aft) 6.063× 102 1.431× 103 57.63%
Blade root DEL (flapwise) 2.538× 103 2.873× 105 99.1%

Table 12.1: MPC and PI performance comparison for stochastic wind (SD
stands for standard deviation and DEL stands for damage equiv-
alent load)
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Figure 12.4: Wind speed

12.5.1 Stochastic wind

In this scenario, simulations are done with realistic hub height turbulent wind.
The Kaimal model [iec05] is chosen as the turbulence model and TurbSim [Jon09]
is used to generate the wind profile. Wind shear is included with 0.2 as the
value for the power-law exponent. In order to stay in the full load region, a
realization of turbulent wind speed is used from category C of the turbulence
categories of the IEC 61400-1 [iec05] with 18m/s as the mean wind speed. Table
12.1 compares simulation results for MPC IPC and PI IPC and the results are
shown in figures 12.4-12.9. Damage equivalent loads (DELs) are calculated for
out-of-plane blade roots and tower base in the fore-aft direction. As can be seen
in the table in which short-term DELs at fixed mean are given, we get good
regulation of rotational speed and generated power, while dynamic loads on
the blade root and tower-base are less. Low generator reaction torque activity
results in less dynamic loads on the drivetrain compared to the PI controller.
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Figure 12.5: Blade-pitch reference, MPC IPC (blue-solid), PI IPC (red-
dashed)
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Figure 12.6: Generator-torque reference, MPC IPC (blue-solid), PI IPC (red-
dashed)

12.5.2 Extreme wind shear

In this section simulation results for a vertical extreme wind shear (EWS) event
are presented. A power law wind profile is used to demonstrate wind shear. In
the vertical EWS event, the power law exponent ramps up from a normal value
of 0.2 to an extreme value of 0.3 in 2 seconds and after 10 seconds ramps down
to the normal situation. Controller performance for the MPC IPC and PI IPC
are compared for this event. A comparison of blade pitch is given in 12.10, as it
can be seen, the MPC IPC gives a smoother increase in blade pitch while PI IPC
has an overshoot. Out-of-plane blade root bending moments of one of the blades
are given in 12.11. Clearly the MPC IPC gives better performance in reducing
both steady state and transient fluctuations. In order to simplify comparison of
the signals, Coleman transformation [CF61] of the three out-of-plane blade root
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Figure 12.7: Rotor rotational speed (ωr), MPC IPC (blue-solid), PI IPC (red-
dashed)
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Figure 12.8: Electrical power, MPC IPC (blue-solid), PI IPC (red-dashed)

bending moments are calculated and the results, namely yaw and tilt signals,
for both controllers are given in 12.12 and 12.13 respectively.

12.6 Conclusions

In this paper firstly we found a nonlinear model of a wind turbine, using blade
element momentum theory (BEM) and first principle modeling of the flexible
drive train and tower. Our control methodology is based on a family of linear
models, therefore we have used Taylor series expansion to linearize the obtained
nonlinear model around system operating points. Operating points are functions
of wind speed, therefore wind speed is used as a scheduling variable. Model
predictive control of LPV systems with known scheduling variable is used to
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Figure 12.9: Tower top acceleration, MPC IPC (blue-solid), PI IPC (red-
dashed)
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Figure 12.10: Pitch of one of the blades, (MPC IPC is solid-blue and PI IPC
is red-dashed, degrees)

solve the control problem. The final controller was applied on a full complexity
FAST [JJ05] model and was compared with a benchmark controller.
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Figure 12.11: Out-of-plane blade root bending moment, (MPC IPC is solid-
blue and PI IPC is red-dashed, Mega N.m)
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Figure 12.12: Tilt signal, (MPC IPC is solid-blue and PI IPC is red-dashed,
Mega N.m)
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Model Predictive Individual Pitch Control of Wind Turbines Using
LIDAR Measurements1

Mahmood Mirzaei2, Mohsen Soltani 3, Niels K. Poulsen2 and Hans H.
Niemann4

Abstract

The problem of Model predictive control (MPC) of wind turbines using uncer-
tain LIDAR measurements is considered. A nonlinear dynamical model of the
wind turbine is obtained. We linearize the obtained nonlinear model for different
operating points which are determined by the effective wind speed on the rotor
disc. We take the wind speed as a scheduling variable. The wind speed is mea-
surable ahead of the turbine using LIDARs, therefore the scheduling variable
is known for the entire prediction horizon. By taking the advantage of having
future values of the scheduling variable, we will simplify state prediction for the
MPC. Consequently the control problem of the nonlinear system is simplified
into a quadratic programming. We consider uncertainty in the wind propaga-
tion, which is the traveling time of wind from the LIDAR measurement point
to the rotor. An algorithm based on wind speed estimation and measurements
form the LIDAR is devised to find an estimate of the delay and compensate for
it before it is used in the controller. Comparisons between the MPC with error
compensation, without error compensation and an MPC with re-linearization
at each sample point based on wind speed estimation are given. It is shown that
with appropriate signal processing techniques, LIDAR measurements improve
the performance of the wind turbine controller.

13.1 Introduction

In recent decades there has been increasing interest in green energies, of which
wind energy is one of the most important. Horizontal axis wind turbines are
the most common wind energy conversion systems (WECS) and are hoped to

1This work is supported by the CASED Project funded by grant DSF-09- 063197 of the
Danish Council for Strategic Research.

2DTU Informatics, Technical University of Denmark, Asmussens Alle, building 305, DK-
2800 Kgs. Lyngby, Denmark

3department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark
4Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads,

Building 349, DK-2800 Kgs. Lyngby, Denmark
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be able to compete with fossil fuel power plants on energy price in near future.
However, this demands better technology to reduce the electricity production
price. Control can play an essential part in this context. This is because, on the
one hand improved control methods can decrease the cost of energy by keeping
the turbine close to its maximum efficiency. On the other hand, they can reduce
structural fatigue and increase the lifetime of the wind turbine. There are several
methods of wind turbine control, ranging from classical control methods, which
are the most commonly used methods in real applications [LC00], to advanced
control methods, which have been the focus of research in the past few years
[LPW09]. Gain scheduling [BBM06], adaptive control [JF08], MIMO methods
[GC08], nonlinear control [Tho06], robust control [Øst08], model predictive con-
trol [Hen07], µ-Synthesis design [MNP11] and robust MPC [MPN12b] are just
to mention a few. Advanced model-based control methods are thought to be the
future of wind turbine control, as they can conveniently employ new generations
of sensors on wind turbines (e.g. LIDAR [HHW06]), new generation, of actua-
tors (e.g. trailing edge flaps [And10]) and they also treat the turbine as a MIMO
system. The last feature seems to have become more important than before, as
wind turbines are becoming bigger and more flexible. This trend makes decou-
pling different modes, specifying different objectives and designing controllers
based on paired input/output channels more difficult. Model predictive control
(MPC) has proved to be an effective tool to deal with multivariable constrained
control problems [Mac02]. As wind turbines are MIMO systems [GC08] with
constraints on inputs and outputs, using MPC is reasonable. MPC has been
an active area of research and has been successfully applied on different appli-
cations in the last decades [QB96]. In this work, we extend the idea of linear
MPC to formulate a tractable predictive control of the nonlinear system of wind
turbines. To do so, we use future values of the effective wind speed that acts
as a scheduling variable in the model. LIDAR measurements are used to calcu-
late the effective wind speed ahead of wind turbines [HHW06]. Several works
have considered wind turbine control using LIDAR measurements [SWBB11],
[LPS+11] and [MPN12a]. However it is also important to take uncertainty in
the measurements into account as small errors in the calculations of the wind
propagation time can severely reduce performance of the controller. The pa-
per is organized as follows. In section 13.2, modeling of the wind turbine is
explained, the nonlinear model is derived and a linear model is given whose pa-
rameters vary as a function of effective wind speed. In section 13.3, our proposed
method for solving model predictive control of the system is presented. Then,
the control design is explained, and control objectives are discussed. In section
13.4, uncertainty in the LIDAR measurements are explained, and a method is
proposed to reduce the most severe source of uncertainty. Finally, in section
13.5, simulation results are given.
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Figure 13.1: Wind turbine subsystems

13.2 Wind Turbine Modeling

In this section the nonlinear model and important degrees of freedom are ex-
plained. Afterwards the linearization procedure is described and the linear pa-
rameter varying model is given.

13.2.1 Nonlinear model

For modeling purposes, the wind turbine can be divided into 4 subsystems:
Aerodynamics, mechanical, electrical and actuator subsystems. The aerody-
namic subsystem converts wind forces into mechanical torque and thrust on
the rotor. The mechanical subsystem consists of drivetrain, tower and blades.
Drivetrain transfers rotor torque to electrical generator. Tower holds the nacelle
and withstands the thrust force. And blades transform wind forces into toque
and thrust. The generator subsystem converts mechanical energy to electrical
energy and finally the blade-pitch and generator-torque are the actuators of the
control system. To model the wind turbine, models of these subsystems are
obtained and connected together. A wind model is obtained and augmented
with the wind turbine model to be used for wind speed estimation. Figure 13.1
shows the basic subsystems and their interactions. The dominant dynamics of
the wind turbine come from its flexible structure. Several degrees of freedom
could be considered to model the flexible structure, but for control design a few
important degrees of freedom are considered. In figure 13.2, basic degrees of
freedom, which are normally being considered in the design model are shown.
However, in this work we only consider three degrees of freedom, namely the



13.2 Wind Turbine Modeling 213

Figure 13.2: Basic degrees of freedom

rotational degree of freedom (DOF), the drivetrain torsion and the tower fore-
aft displacement. Nonlinearity of the wind turbine model mostly comes from
its aerodynamics. Blade element momentum (BEM) theory [Han08] is used
to numerically calculate aerodynamic torque and thrust on the wind turbine.
This theory explains how torque and thrust are related to wind speed, blade
pitch angle and rotational speed of the rotor. In steady state, i.e. disregarding
unsteady aerodynamics, the following formulas can be used to calculate aerody-
namic torque and thrust.

Qr =
1

2

1

Ωr
ρπR2V3

eCp(Θ,Ω,Ve) (13.1)

Qt =
1

2
ρπR2V2

eCt(Θ,Ω,Ve) (13.2)

In which Qr and Qt are aerodynamic torque and thrust, ρ is the air density, Ωr
is the rotor rotational speed, Θ is the collective pitch of the blades, Ve is the
effective wind speed, Cp is the power coefficient and Ct is the thrust coefficient.
The absolute angular position of the rotor and generator is not needed in our
work, therefore we use the drivetrain torsion ψ instead. Having aerodynamic
torque and modeling the drivetrain and the tower fore-aft degrees of freedom
with simple mass-spring-damper, the whole system equation with 3 degrees of
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freedom becomes:

JrΩ̇r = Qr − Cd(Ωr −
Ωg
Ng

)−Kdψ (13.3)

(NgJg)Ω̇g = Cd(Ωr −
Ωg
Ng

) +Kdψ −NgQg (13.4)

ψ̇ = Ωr −
Ωg
Ng

(13.5)

Mẍt = Qt − Ctẋt −Ktxt (13.6)
Pe = QgΩg (13.7)

In which Jr and Jg are rotor and generator moments of inertia, ψ is the drivetrain
torsion, Qg and Ωg are the generator torque and rotational speed, Ng is the
gearbox ration, Cd and Kd are the drivetrain damping and stiffness factors,
respectively, lumped in the low speed side of the shaft. The tower mass, damping
and stiffness factors are represented by M , Ct and Kt, respectively, and Pe
and xt are the generated electrical power and tower displacement, respectively.
Values of the parameters can be found in [JBMS09].

13.2.2 Linearized model

To get a linear model of the system we need to linearize the model (13.3-13.7)
around its operating points, which are determined by wind speed averaged on
the rotor area. Wind speed changes along the blades and with the azimuth angle
(angular position) of the rotor. This is because of wind shear, tower shadow and
stochastic spatial distribution of the wind field. Therefore a single wind speed
does not exist to be used and measured in order to find the operating point.
We bypass this problem by defining a fictitious variable called effective wind
speed (Ve), which shows the effect of wind on the rotor disc of the wind turbine.
Using the linearized aerodynamic torque and thrust, state space matrices for
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the 3 DOFs linearized model become:

ω̇r =
α1(ve)− c

Jr
ωr +

c

Jr
ωg −

k

Jr
ψ (13.8)

+ β11(ve)θ + β12(ve)(ve − vt) (13.9)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(13.10)

ψ̇ = ωr −
ωg
Ng

(13.11)

ẋt = vt (13.12)

v̇t =
α2(ve)

M
ωr +

β21(ve)

M
θ +

β22(ve)

M
(ve − vt) (13.13)

− Ct
M
vt −

Kt

M
xt (13.14)

Pe = Qg0ωg + ωg0Qg (13.15)

In which the lower-case variables are deviations away from steady state of the
upper-case variables given in the equations (13.1-13.7). Consequently, the pa-
rameters of the linearized model are functions of wind speed, which in our
approach acts as a scheduling variable. A detailed description of the model and
linearization is given in [MNP11].

13.2.3 Linear parameter varying model

According to the model given in the equations (13.8-13.15), matrices of the state
space model become:

A(γ) =


α1(γ)−c

Jr
c
Jr

− k
Jr

0 −β12(γ)
Jr

c
NgJg

− c
N2
gJg

k
NgJg

0 0

1 −1 0 0 0
0 0 0 0 1

α2(γ)
Mt

0 0 −Kt
Mt

−Ct+β22(γ)
Mt

 (13.16)

C(γ) =

 1 0 0 0 0
0 Qg0 0 0 0

α2(γ)
Mt

0 0 −Kt
Mt

−Ct+β22(γ)
Mt

 (13.17)

B(γ) =


β11(γ)
Jr

0

0 − 1
Jg

0 0
0 0

β21(γ)
Mt

0

 D(γ) =

 0 0
0 ωg0

β21(γ)
Mt

0

 (13.18)
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in which x =
(
ωr ωg ψ xt ẋt

)T , u =
(
θ Qg

)T and y =
(
ωr Pe v̇t

)T
are states, inputs and outputs respectively.

13.3 Controller Design

Wind turbine control is a challenging problem as the dynamics of the system
changes based on wind speed which has a stochastic nature. In this paper,
we use the wind speed as the scheduling variable. With the advances in the
LIDAR technology [HHW06] it is possible to measure wind speed ahead of the
turbine and this enables us to have the scheduling variable of the plant for the
entire prediction horizon. As it was mentioned in section 13.2, wind turbines are
nonlinear dynamical systems and if we use the nonlinear model directly in the
MPC formulation, the optimization problem associated with the MPC becomes
non-convex. In general, non-convex optimization problems are very complicated
to solve and there is no guarantee that we could achieve a global optimum. One
way to avoid complex and non-convex optimization problems is to linearize the
system around an equilibrium point and use the obtained linearized model as an
approximation of the nonlinear model. However, for wind turbines, assumption
of the approximate linear model does not hold for long prediction horizons. This
is because the operating point of the system changes as a function of wind speed
which, as mentioned, has a stochastic nature.

13.3.1 Linear MPC formulation

The problem of linear MPC could be formulated as:

min
uk,uk+1,...,uk+N−1

‖xN‖Qf +

N−1∑
i=1

‖xk+i|k‖Q + ‖uk+i|k‖R (13.19)

Subject to xk+1 = Axk +Buk (13.20)
uk+i|k ∈ U (13.21)
x̂k+i|k ∈ X (13.22)

Convexity of the optimization problem given above, makes the problem tractable
and guarantees that the solution is the global optimum. The problem above is
based on a single linear model of the plant around one operating point. However
we formulate our problem using different linear models in which different models
are obtained based on a scheduling variable and the scheduling variable is known
for the entire prediction horizon. We linearize the nonlinear dynamics of the
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system for different operating points and since the operating points depend on
a single parameter (in our case effective wind speed), we can write the linear
model as a function of one scheduling variable γ as follows:

xk+1 = A(γk)xk +B(γk)uk (13.23)

which A(γk) and B(γk) are functions of the scheduling variable γk at instant
k. The variables xk ∈ Rnx , uk ∈ Rnu , and γk ∈ Rnγ are the state, the control
input and the scheduling variable respectively. This is the well known Linear
Parameter Varying (LPV) system.

13.3.2 Problem formulation

The linear parameter varying (LPV) model of the nonlinear system is of the
following form:

x̃k+1 = A(γk)x̃k +B(γk)ũk (13.24)

This model is formulated based on deviations from the operating point. How-
ever we need the model to be formulated in absolute values of inputs and states.
Because in our problem the operating point changes as a function of the schedul-
ing variable, we need to introduce a variable to capture its behavior. In order
to rewrite the state space model in the absolute form we use:

x̃k = xk − x∗k (13.25)
ũk = uk − u∗k (13.26)

where x∗k and u∗k are values of states and inputs at the operating point. There-
fore, the LPV model becomes:

xk+1 = A(γk)(xk − x∗k) +B(γk)(uk − u∗k) + x∗k+1 (13.27)

which could be written as:

xk+1 = A(γk)xk +B(γk)uk + λk (13.28)

with

λk = x∗k+1 −A(γk)x∗k −B(γk)u∗k (13.29)

Now having the LPV model of the system we proceed to compute state predic-
tions. In linear MPC, predicted state at step n is:

xk+n = Anxk +

n−1∑
i=0

AiBuk+(n−1)−i

for n = 1, 2, . . . , N

(13.30)
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However in our method the predicted state is also a function of the scheduling
variable Γn =

(
γk+1, γk+2, . . . γk+n

)T for n = 1, 2, . . . , N − 1 and we assume
that the scheduling variable is known for the entire prediction. Therefore, the
predicted state could be written as:

xk+1(γk) = A(γk)xk +B(γk)uk + λk (13.31)

and for n ∈ Z, n ≥ 1:

xk+n+1(Γn) =
(∏n

i=0A
T (γk+i)xk

)T
+

n−1∑
j=0

(∏n−j
i=1 A

T (γk+i)
)T
B(γk+j)uk+j

+

n−1∑
j=0

(∏n−j
i=0 A

T (γk+i)
)T
λk+(n−1)−j

+B(γk+n)uk+n + λk+n

(13.32)

Using the above equations we write down the stacked predicted state as:

X = Φ(Γ)xk +Hu(Γ)U + Φλ(Γ)Λ (13.33)

with

X =
(
xk+1 xk+2 . . . xk+N

)T (13.34)

U =
(
uk uk+1 . . . uk+N−1

)T (13.35)

Γ =
(
γk γk+1 . . . γk+N−1

)T (13.36)

Λ =
(
λk λk+1 . . . λk+N−1

)T (13.37)

In order to summarize formulas for matrices Φ,Φλ and Hu, we define a new
function as:

ψ(m,n) =
(∏m

i=nA
T (γk+i)

)T (13.38)



13.3 Controller Design 219

Therefore the matrices become:

Φ(Γ) =


ψ(1, 1)
ψ(2, 1)
ψ(3, 1)

...
ψ(N, 1)



Φλ(Γ) =


I 0 0 . . . 0

ψ(1, 1) I 0 . . . 0
ψ(2, 1) ψ(2, 2) I . . . 0

...
...

...
. . .

...
ψ(N − 1, 1) ψ(N − 1, 2) ψ(N − 1, 3) . . . I



Hu(Γ) =


B(γk) 0 . . . 0

ψ(1, 1)B(γk) B(γk+1) . . . 0
ψ(2, 1)B(γk) ψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)B(γk) ψ(N − 1, 2)B(γk+1) . . . B(γN−1)



Hd(Γ) =


Bd(γk) 0 . . . 0

ψ(1, 1)Bd(γk) Bd(γk+1) . . . 0
ψ(2, 1)Bd(γk) ψ(2, 2)Bd(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)Bd(γk) ψ(N − 1, 2)Bd(γk+1) . . . Bd(γN−1)


After computing the state predictions as functions of control inputs, we can
write down the optimization problem similar to a linear MPC problem as a
quadratic program.

13.3.3 Control objectives

The most basic control objective of a wind turbine is to maximize captured
power during the life time of the wind turbine that is to to maximize captured
power when wind speed is below its rated value. This is also called maximum
power point tracking (MPPT). However when wind speed is above rated, control
objective becomes regulation of the outputs around their rated values while
trying to minimize dynamic loads on the structure. These objectives should
be achieved against fluctuations in wind speed which acts as a disturbance to
the system. In this work we have considered operation of the wind turbine in
above rated (full load region). Therefore, we try to regulate rotational speed
and generated power around their rated values and remove the effect of wind
speed fluctuations.



220
Model Predictive Control of Wind Turbines using Uncertain LIDAR

Measurements

13.3.4 Offset free control

Persistent disturbances and modeling error can cause an offset between mea-
sured outputs and desired outputs. To avoid this problem we have employed
an offset free reference tracking approach see [MB02] and [PR03]. Our RMPC
solves the regulation problem around the operating point. However we regulate
around the operating point (x∗k and u∗k) which results in offset from desired
outputs. To avoid this problem in our control algorithm we shift origin in our
regulation problem to x0

k and u0
k instead. In order to find new origins, we have

augmented linear model of the plant with a disturbance model that adds fic-
titious disturbances to the system. The fictitious disturbances compensate the
difference between measured outputs and desired outputs. State space model of
the augmented system is:

x̃k+1 = Ãx̃k + B̃uk (13.39)

yk = C̃x̃k +Duk (13.40)

in which the augmented state and matrices are:

x̃k =

x̂k+1

d̂k+1

p̂k+1

 Ã =

A Bd 0
0 Ad 0
0 0 Ap

 (13.41)

B̃ =
(
B 0 0

)T
C̃ =

(
C 0 Cp

)
(13.42)

x̂k, d̂k and p̂k are system states, input/state and output disturbances respec-
tively. (A,B,C,D) are matrices of the linearized model, Bd and Cp show effect
of disturbances on states and outputs respectively. Ad and Ap show dynamics of
input/state and output disturbances. For more information and how to choose
these matrices we refer to [MB02] and [PR03]. Since the disturbances are not
measurable, an extended Kalman filter is designed to estimate them. The esti-
mated disturbances are used to remove any offset between desired outputs and
measured outputs. Based on this model and estimated disturbances, x0

k and u0
k

which are offset free steady state input and states can be calculated:(
A− I B
C D

)(
x0
k

u0
k

)
=

(
−Bdd̂k
−Cpp̂k

)
(13.43)

After calculating these values, we simply replace x∗k and u∗k in (13.29) with x0
k

and u0
k which results in:

λk = x0
k+1 −A(γk)x0

k −B(γk)u0
k (13.44)
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13.4 Uncertain LIDAR measurements

LIDAR measurements are used to have a preview of the wind speed [HHW06],
however these measurements are erroneous and uncertain. In this work, we have
considered the uncertainties to be the measurement noise and uncertainty in the
estimation of the wind propagation time. The propagation time is the time that
the wind travels between the LIDAR measurement point to the rotor disc. The
unknown delay is the most important uncertainty in the wind propagation time
estimation. Lead or lag errors in the wind speed measurement, which is fed
to the controller, severely reduce the performance of the controller. In order
to bypass this problem, in this work, we have designed an Extended Kalman
filter which estimates the effective wind speed on the rotor plane. Then this
estimate is compared against the filtered information that comes from LIDAR
measurements. Cross-covariance of the estimated wind speed and LIDAR mea-
surements are used to get an estimate of the delay between the two signals.
Subsequently, the estimated delay is compensated for in LIDAR measurements
and the resulting wind speed information is fed to the controller.

13.4.1 Wind speed estimation

Wind speed estimation is essential in our control algorithm. A one DOF model
of the wind turbine, including only rotor rotational degree of freedom is used
for wind speed estimation. This model is augmented with a linear model of the
effective wind speed. The effective wind speed can be modeled as a complicated
nonlinear stochastic process. However, for practical control purposes, it could
be approximated by a linear model [JLSM06]. In this model, the wind has two
elements, mean value term (vm) and turbulent term (vt). The mean wind speed
varies relatively slowly and could be considered constant during one simulation.
The turbulent term could be modeled by the following transfer function:

vt =
k

(p1s+ 1)(p2s+ 1)
e; e ∈ N(0, 1) (13.45)

Which in the state space form could be written as:(
v̇t
v̈t

)
=

(
0 1

− 1
p1p2

−p1+p2
p1p2

)(
vt
v̇t

)
+

(
0
k

p1p2

)
e (13.46)

The parameters p1, p2 and k which depend on the mean wind speed vm could
be found by second order approximation of the wind power spectrum [JLSM06].
This state space model is augmented with the following model to be used in the
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Figure 13.3: Wind speed estimation (red-dashed line is the estimated wind
speed and solid-blue line is the effective wind speed)

extended Kalman filter:

Ω̇ =
1

Jr
Qr(Ω,Θ,Ve)−

1

Jr
Qg (13.47)

y =
(
Ω Pe

)T (13.48)

Figure 13.3 shows wind speed and its estimate.

13.4.2 LIDAR measurements

The high frequency content of the LIDAR measurement is filtered before it is
used. Therefore, the cut-off frequency of the low-pass filter has to be determined.
Assume that the turbulent content of the wind can be modeled by a first order
low-pass filter whose time constant (a(vm)) is a function of the mean wind speed.
The aim is to obtain an approximation for this time constant.The approximation
is achieved using the spectral models for turbulence. Turbulence with the length
scale of less than 1000m is described by spectral models such as Kaimal, Von
Karman, Harris and Højstrup [PD83]. All models have similar frequency decay
of f−5/3, and they are all parameterized and normalized in similar way. In this
work, we use the Kaimal spectrum that is widely used in wind energy sector.
Kaimal spectrum is explained by

SU (f) = σ2
U

4 L
U10(

1 + 6f L
U10

) 5
3

, (13.49)
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where σU is the standard deviation, U10 is the average wind speed (over 10
minutes), and L is the turbulence length scale. As indicated in [KBS11], the
time constant of the filter is determined by demanding similar peak frequencies
for the filter and fSU (f) which is given by:

a(vm) =
πvm
2L

. (13.50)

13.4.3 Lead-Lag error estimation and compensation

For lead-lag error estimation, cross covariance of the estimated wind speed and
measurements from the LIDAR for a window of size m-seconds is found. The
result is a sequence which has 2m−1 elements. By finding the maximum of the
cross covariance, an estimate of the lead-lag error can be found. The window
size is important as it should be long enough to avoid erroneous results. The
errors especially emerge when the window of effective wind speed signal has
big autocorrelation values. By choosing a window with sufficiently large size
this problem could be avoided. However, choosing a too big window size will
result in slow delay detection which reduces performance of the controller. Cross
covariance of the estimated wind speed and LIDAR measurements, can be found
using the following formula:

φv̂v(t) = E{(v̂n+t − µv̂)(vn − µv)T } (13.51)

in which v̂ is the estimated wind speed and v is the LIDAR measurements.
Having the sequence of φv̂v(t), one can calculate lead-lag error by the following
formula:

te = arg max
t
φv̂v(t) (13.52)

in which te = tmeasurment− tactual wind speed. te is then passed through a low pass
filter to remove fluctuations due to numerical errors and possible autocorrela-
tions. Then it is used to shift LIDAR measurements. Afterwards the shifted
signal is used in the controller. Figure 13.4 shows a comparison of the effective
wind speed and the wind speed measured by LIDAR. There is a 4 seconds lead
error at time 100s (in which the measurement is lead) and then at time 300s
the same amount of lag error. Figure 13.5 shows a comparison between the
introduced delay in the measurements and its estimation. The lead-lag error
estimation is delayed, however it follows the shape of the actual delay. In the
worst cases, when the LIDAR measurements does not give a good correlation
with the wind speed estimation on the turbine, the measurements could be
discarded and the turbine can operate without LIDAR measurements.
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Figure 13.4: Effective wind speed and LIDAR measurement with lead-lag er-
rors (solid-blue is the effective wind speed, dotted-red is the LI-
DAR measurement)

Table 13.1: Performance comparison (SD stands for standard deviation)

Parameters MPC+LIDAR+ MPC+ Linear
Compensation LIDAR MPC

SD of ωr (RPM) 0.198 0.264 0.431
SD of Pe (M Watts) 0.108 0.123 0.179
Pitch travel (degrees) 554.8 606.5 842.9
SD of shaft moment (k N.M.) 0.702 0.812 1.159
SD of tower fore-aft acc.(m/s2) 0.233 0.240 0.311

13.5 Simulations

In this section, simulation results for the obtained controllers are presented.
The controllers are implemented in MATLAB and tested on a high fidelity wind
turbine simulation software FAST [JJ05] using the model of the reference wind
turbine [JBMS09]. The results of the proposed approach with lead-lag error
estimation are compared against two controllers with the same tunings. An
MPC with the same LIDAR measurements but without error compensation
and an MPC with re-linearization at each sample point based on estimated
wind speed. Simulations are done using turbulent wind speed, with Kaimal
model [iec05]. And TurbSim [Jon09] is used to generate the wind profile. In
order to stay in the full load region, a realization of turbulent wind speed is
used from category C of the turbulence categories of the IEC 61400-1 [iec05]
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Figure 13.5: Comparison of introduced delay and its estimation (solid-blue is
the estimated delay, dashed-red is the introduced delay)

with the mean wind speed of 18m/s. Control inputs are collective pitch
of the blades θ and generator reaction torque Qg. System outputs are rotor
rotational speed ωr, electrical power Pe and tower fore-aft acceleration ẍt that
are plotted in figures 13.7-13.15. Table 13.1 shows a comparison of the results
between the proposed approach with lead-lag error estimation, the linear MPC
based on estimated wind speed, the linear MPC with LIDAR measurements
and without compensation. For comparisons, we have used pitch travel to take
into account an approximation of the damage on the pitch actuator. Standard
deviations (SD) of the rotational speed and generated power are also compared.
As it in the table 13.1 and figures 13.7-13.15, the proposed approach gives
better regulation on rotational speed and generated power (smaller standard
deviations) while maintaining a smaller pitch activity and less deviations on
tower fore-aft acceleration and drivetrain torsion.

13.6 Conclusions

LIDAR measurements are improve performance of wind turbines. However,
errors in the calculation of the wind propagation time severely degrade the per-
formance of the controller. In this work, we have shown that using appropriate
signal processing techniques, these errors can be removed form the measure-
ments and even in the worst cases, when LIDAR measurements are not reliable,
the turbine can operate without using the data from the LIDAR.
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Figure 13.6: Blade-pitch (degrees, solid-blue line is MPC with LIDAR mea-
surements and delay compensation and dashed-red line is MPC
with LIDAR measurements without delay compensation)
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Figure 13.7: Blade-pitch (degrees, solid-blue line is MPC with LIDAR mea-
surements and delay compensation and dashed-green line is MPC
using estimated effective wind speed)
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Figure 13.8: Generator-torque (k NM, solid-blue line is MPC with LIDAR
measurements and delay compensation and dashed-red line is
MPC with LIDAR measurements without delay compensation)
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Figure 13.9: Generator-torque (k NM, solid-blue line is MPC with LIDAR
measurements and delay compensation and dashed-green line is
MPC using estimated effective wind speed)



228
Model Predictive Control of Wind Turbines using Uncertain LIDAR

Measurements

Time [s]

R
o
ta
ti
o
n
a
l
sp
ee
d
[r
p
m
]

0 50 100 150 200 250 300 350 400
11

11.5

12

12.5

13

13.5

Figure 13.10: Rotor rotational speed (RPM, , solid-blue line is MPC with
LIDAR measurements and delay compensation and dashed-red
line is MPC with LIDAR measurements without delay compen-
sation)
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Figure 13.11: Rotor rotational speed (RPM, solid-blue line is MPC with LI-
DAR measurements and delay compensation and dashed-green
line is MPC using estimated effective wind speed)
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Figure 13.12: Electrical power (M Watts, solid-blue line is MPC with LIDAR
measurements and delay compensation and dashed-red line is
MPC with LIDAR measurements without delay compensation)
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Figure 13.13: Electrical power (M Watts, solid-blue line is MPC with LIDAR
measurements and delay compensation and dashed-green line is
MPC using estimated effective wind speed)
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Figure 13.14: Tower top velocity (m/s2, solid-blue line is MPC with LIDAR
measurements and delay compensation and dashed-red line is
MPC with LIDAR measurements without delay compensation)
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Figure 13.15: Tower top velocity (m/s2, solid-blue line is MPC with LIDAR
measurements and delay compensation and dashed-green line is
MPC using estimated effective wind speed)



Paper I References

[And10] Peter Bjørn Andersen. Advanced Load Alleviation for Wind Turbines
using Adaptive Trailing Edge Flaps: Sensoring and Control. PhD
thesis, Technical University of Denmark, Denmark, 2010.

[BBM06] Fernando D. Bianchi, Hernan De Battista, and Ricardo J. Mantz.
Wind Turbine Control Systems: Principles, Modelling and Gain
Scheduling Design. Springer, 2006.

[GC08] M. Geyler and P. Caselitz. Robust multivariable pitch control design
for load reduction on large wind turbines. Journal of solar energy
engineering, 130(3):–, 2008.

[Han08] Martin O. L. Hansen. Aerodynamics of Wind Turbines. Earthscan,
2008.

[Hen07] Lars Christian Henriksen. Model predictive control of a wind tur-
bine. Master’s thesis, Technical University of Denmark, Informatics
and Mathematical Modelling, 2007.

[HHW06] M. Harris, M. Hand, and A. Wright. LIDAR for turbine control.
Technical report, National Renewable Energy Laboratory, 2006.

[iec05] IEC 61400-1 wind turbines-part 1: Design requirements., August
2005.

[JBMS09] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition
of a 5MW reference wind turbine for offshore system development.
Technical report, National Renewable Energy Laboratory„ 1617 Cole
Boulevard, Golden, Colorado 80401-3393 303-275-3000, 2009.

[JF08] Johnson and Fingersh. Adaptive pitch control of variable-speed wind
turbines. J. Sol. Energy Eng. (USA), 130(3):031012–1–7, 2008.

[JJ05] Jason M. Jonkman and Marshall L. Buhl Jr. Fast user’s guide.
Technical Report NREL/EL-500-38230, National Renewable Energy
Laboratory, Golden, CO, August 2005.

[JLSM06] Allan Juul Larsen and Thomas Stampe Mogensen. Individuel
pitchregulering af vindmølle. Master’s thesis, Technical University of
Denmark, Informatics and Mathematical Modelling, Lyngby, Den-
mark, 2006.

[Jon09] B.J. Jonkman. Turbsim user’s guide: Version 1.50. Technical re-
port, National Renewable Energy Laboratory, 1617 Cole Boulevard,
Golden, Colorado 80401-3393 303-275-3000, 2009.



232 PAPER I REFERENCES

[KBS11] Torben Knudsen, Thomas Bak, and Mohsen Soltani. Prediction
models for wind speed at turbine locations in a wind farm. Wind
Energ., 14(7):877–894, 2011.

[LC00] W.E. Leithead and Bill Connor. Control of variable speed wind
turbines: Design task. Int J Control, 73(13):1189–1212, 2000.

[LPS+11] Jason Laks, Lucy Y. Pao, Eric Simley, Alan Wright, Neil Kelley,
and Bonnie Jonkman. Model predictive control using preview mea-
surements from lidar. In 49th AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition, Or-
lando, Florida, January 2011.

[LPW09] J.H. Laks, L.Y. Pao, and A.D. Wright. Control of wind turbines:
Past, present, and future. Proceedings of the American Control Con-
ference, pages 2096–2103, 2009.

[Mac02] J.M. Maciejowski. Predictive control with constraints. Pearson Ed-
ucation Lim., Essex, 2002.

[MB02] Kenneth R. Muske and Thomas A. Badgwell. Disturbance modeling
for offset-free linear model predictive control. Journal of Process
Control, 12(5):617–632, 2002.

[MNP11] Mahmood Mirzaei, Hans Henrik Niemann, and Niels Kjølstad
Poulsen. A µ-synthesis approach to robust control of a wind turbine.
In the 50th IEEE Conference on Decision and Control and European
Control Conference, pages 645–650, Orlando, Florida, United States,
2011.

[MPN12a] Mahmood Mirzaei, Niels Kjølstad Poulsen, and Hans Henrik Nie-
mann. Individual pitch control using lidar measurements. In IEEE
Multiconference on Systems and Control, Dubrovnik, Croatia, 2012.

[MPN12b] Mahmood Mirzaei, Niels Kjølstad Poulsen, and Hans Henrik Nie-
mann. Robust model predictive control of a wind turbine. In Amer-
ican Control Conference, Montr, Canada, 2012.

[Øst08] Kasper Zinck Østergaard. Robust, Gain-Scheduled Control of Wind
Turbines. PhD thesis, Automation and Control Department of Elec-
tronic Systems, Aalborg University, 2008.

[PD83] H. A. Panofsky and John A. Dutton. Atmospheric Turbulence. 1983.

[PR03] Gabriele Pannocchia and James B. Rawlings. Disturbance models
for offset-free model-predictive control. AIChE Journal, 49(2):426–
437, 2003.



PAPER I REFERENCES 233

[QB96] S. Joe Qin and Thomas A. Badgwell. An overview of industrial
model predictive control technology. pages –, 1996.

[SWBB11] M. Soltani, R. Wisniewski, P. Brath, and S. Boyd. Load reduction
of wind turbines using receding horizon control. The proceedings of
the IEEE Conference on Control Applications, pages 852–857, 2011.

[Tho06] Sven Creutz Thomsen. Nonlinear control of a wind turbine. Master’s
thesis, Technical University of Denmark, Informatics and Mathemat-
ical Modelling, Lyngby, Denmark, 2006.



234 PAPER I REFERENCES


	Preface
	Acknowledgements
	Summary (English)
	Summary (Danish)
	List of publiations
	I Summary report
	1 Introduction
	1.1 Wind Energy
	1.1.1 The Wind

	1.2 Wind Energy Conversion Systems
	1.3 Introduction to Wind Turbines
	1.3.1 Wind turbine aerodynamics

	1.4 Wind Turbine Control
	1.4.1 What does wind turbine control mean?
	1.4.2 Objectives
	1.4.3 Challenges
	1.4.4 Wind turbine modes of operation
	1.4.5 Wind turbine types

	1.5 Contributions
	1.6 Outline of the thesis

	2 Wind Turbine Modeling
	2.1 Introduction
	2.2 Modeling for control and estimation
	2.2.1 Wind model
	2.2.2 Aerodynamics
	2.2.3 Flexible structure
	2.2.4 Actuator dynamics

	2.3 Simulation model
	2.4 Linearized models
	2.4.1 First principle modeling
	2.4.2 System identification
	2.4.3 Numerical linearization


	3 Wind Turbine Control
	3.1 Introduction
	3.2 Classical gain scheduled PI
	3.3 Model Based Control
	3.3.1 H control design
	3.3.2 Model Predictive Control (MPC)
	3.3.3 MPC with known scheduling variable

	3.4 Robust Model Based Control
	3.4.1 -Synthesis control design
	3.4.2 Robust MPC
	3.4.3 Robust MPC with known scheduling variable
	3.4.4 Kalman filter and extended Kalman filter
	3.4.5 Offset-free control


	4 Conclusions and future developments

	II Papers
	5 DK-Iteration robust control design of a wind turbine
	5.1 Introduction
	5.2 Modeling of the Wind Turbine
	5.2.1 Wind Model
	5.2.2 Nonlinear Model
	5.2.3 Uncertain Model
	5.2.4 Simulation Model
	5.2.5 Wind Speed Estimation

	5.3 Controller Design
	5.3.1 Control Objectives

	5.4 Robust Performance Problem
	5.4.1 Theory
	5.4.2 Implementation

	5.5 Simulation Results
	5.5.1 Robust performance simulations
	5.5.2 Simulation for the worst case

	5.6 CONCLUSION

	6 A -synthesis approach to robust control of a wind turbine
	6.1 Introduction
	6.2 Modeling of the Wind Turbine
	6.2.1 Modeling for Estimation
	6.2.2 Nonlinear Model
	6.2.3 Uncertain model
	6.2.4 Simulation Model

	6.3 Controller Design
	6.3.1 Control Objectives
	6.3.2 Nominal Performance Problem
	6.3.3 Robust Performance Problem
	6.3.4 Control Signal Calculation

	6.4 Simulation Results
	6.4.1 Wind Speed Estimation
	6.4.2 Stochastic Simulations

	6.5 CONCLUSION
	6.6 ACKNOWLEDGMENTS

	7 Model Predictive Control of a Nonlinear System with Known Scheduling Variable
	7.1 Introduction
	7.2 Proposed method
	7.2.1 Linear MPC formulation
	7.2.2 Linear Parameter Varying systems
	7.2.3 Problem formulation

	7.3 Case study
	7.3.1 Modeling
	7.3.2 Control objectives
	7.3.3 Offset free control

	7.4 Simulations
	7.4.1 Stochastic simulations


	8 Robust Model Predictive Control of a Wind Turbine
	8.1 Introduction
	8.1.1 Wind turbine control

	8.2 Modeling
	8.2.1 Wind model
	8.2.2 Nonlinear model
	8.2.3 Uncertain Linear Model

	8.3 Control
	8.3.1 Control objectives
	8.3.2 Minimax MPC formulation
	8.3.3 Offset free reference tracking and constraint handling

	8.4 Simulations
	8.4.1 Wind speed estimation
	8.4.2 Stochastic simulations

	8.5 Conclusions

	9 Robust Model Predictive Control of a Nonlinear System with Known Scheduling Variable and Uncertain Gain
	9.1 Introduction
	9.2 Proposed method
	9.2.1 Linear MPC formulation
	9.2.2 Linear Parameter Varying systems
	9.2.3 Problem formulation

	9.3 Minimax Problem
	9.3.1 Minimax for Linear Model

	9.4 Case study
	9.4.1 Modeling
	9.4.2 Control objectives

	9.5 Simulations
	9.6 Conclusions

	10 Individual Pitch Control Using LIDAR Measurements
	10.1 Introduction
	10.1.1 Wind turbine control
	10.1.2 Model predictive control approach

	10.2 Modeling
	10.2.1 Nonlinear model
	10.2.2 Linearized model

	10.3 MPC of a LPV System with Known Scheduling Variable
	10.3.1 Linear MPC formulation
	10.3.2 Linear Parameter Varying systems
	10.3.3 Problem formulation

	10.4 Control
	10.4.1 Control objectives
	10.4.2 Implementation
	10.4.3 Benchmark controller

	10.5 Simulations
	10.5.1 Extreme wind shear simulations

	10.6 Conclusions

	11 Robust Control Design of Wind Turbines using -Synthesis
	11.1 Introduction
	11.2 Modeling of the Wind Turbine
	11.2.1 Nonlinear Model
	11.2.2 Linearization
	11.2.3 Uncertain model
	11.2.4 Simulation Model

	11.3 Controller Design
	11.3.1 Control Objectives
	11.3.2 Nominal Performance Problem
	11.3.3 Robust Performance Problem
	11.3.4 Robust Stability Analysis
	11.3.5 Robust Performance Analysis

	11.4 Simulation Results
	11.5 CONCLUSION

	12 Model Predictive Individual Pitch Control of Wind Turbines Using LIDAR Measurements
	12.1 Introduction
	12.1.1 Wind turbine control
	12.1.2 Model Predictive Control Approach

	12.2 Modeling
	12.2.1 Nonlinear model
	12.2.2 Linearized model
	12.2.3 Pitch actuator
	12.2.4 Dynamics of the blades

	12.3 MPC of a LPV System with Known Scheduling Variable
	12.3.1 Linear MPC formulation
	12.3.2 Linear Parameter Varying systems
	12.3.3 Problem formulation

	12.4 Control
	12.4.1 Control objectives
	12.4.2 Implementation
	12.4.3 Benchmark controller

	12.5 Simulations
	12.5.1 Stochastic wind
	12.5.2 Extreme wind shear

	12.6 Conclusions

	13 Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements
	13.1 Introduction
	13.2 Wind Turbine Modeling
	13.2.1 Nonlinear model
	13.2.2 Linearized model
	13.2.3 Linear parameter varying model

	13.3 Controller Design
	13.3.1 Linear MPC formulation
	13.3.2 Problem formulation
	13.3.3 Control objectives
	13.3.4 Offset free control

	13.4 Uncertain LIDAR measurements
	13.4.1 Wind speed estimation
	13.4.2 LIDAR measurements
	13.4.3 Lead-Lag error estimation and compensation

	13.5 Simulations
	13.6 Conclusions



