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Summary

Wind turbines play a major role in the transformation from a fossil fuel based
energy production to a more sustainable production of energy. Total-cost-of-
ownership is an important parameter when investors decide in which energy
technology they should place their capital. Modern wind turbines are con-
trolled by pitching the blades and by controlling the electro-magnetic torque
of the generator, thus slowing the rotation of the blades. Improved control of
wind turbines, leading to reduced fatigue loads, can be exploited by using less
materials in the construction of the wind turbine or by reducing the need for
maintenance of the wind turbine. Either way, better total-cost-of-ownership for
wind turbine operators can be achieved by improved control of the wind tur-
bines. Wind turbine control can be improved in two ways, by improving the
model on which the controller bases its design or by improving the actual control
algorithm. Both possibilities have been investigated in this thesis.

The level of modeling detail has been expanded as dynamic inflow has been
incorporated into the control design model where state-of-the-art controllers
usually assume quasi-steady aerodynamics. Floating wind turbines have been
suggested as an alternative to ground-fixed wind turbines as they can be placed
at water depths usually thought outside the realm of wind turbine placement.
The special challenges posed by controlling a floating wind turbine have been
addressed in this thesis.

Model predictive control (MPC) has been the foundation on which the con-
trol algorithms have been build. Three controllers are presented in the thesis.
The first is based on four different linear model predictive controllers where ap-
propriate switching conditions determine which controller is active. Constraint
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handling of actuator states such as pitch angle, pitch rate and pitch acceleration
is the primary focus of this controller. The wind turbine is a highly nonlinear
plant and a gain scheduling or relinearizing model predictive controller forms
the next step to improve performance compared to a linear controller. Finally, a
nonlinear model predictive controller has been devised and tested under simpli-
fied conditions. At present, the nonlinear model predictive controller is however
not expected to be an realistic option for real world application as the compu-
tation burden is to heavy to achieve real-time performance.

This thesis is comprised of a collection scientific papers dealing with the various
topics presented in this summary.



Resumé

Vindmøller spiller en stor rolle i skiftet fra en fossil-brændstof-baseret energipro-
duktion til en mere bæredygtig produktion af energi. Total-cost-of-ownership er
en vigtig parameter, n̊ar investorer beslutter i hvilken energi-teknologi de skal
placere deres kapital. Moderne vindmøller styres bl.a. ved at pitche vingerne
og styre generatorens elektro-magnetiske modstand, som bremser vingernes ro-
tation. Forbedret styring af vindmøller, som reducerer udmattelseslaster, kan
udnyttes ved at bruge færre materialer i konstruktionen af vindmøller eller ved
at reducere behovet for vedligehold af vindmøllerne. Uanset hvad, forbedret
Total-cost-of-ownership for vindmølleejere kan opn̊as ved forbedret styring af
vindmøllerne. Styring af vindmøller kan forbedres p̊a to m̊ader: Ved at forbedre
den model som styringsalgoritmen baseres p̊a eller ved at forbedre den faktiske
styringsalgoritme. Begge muligheder er blevet undersøgt i denne afhandling.

Detaljegraden af modellen er blevet udvidet ved at inkludere dynamisk kølvand
i modellen brugt af styringsalgoritmen, hvor state-of-the-art styringer som regel
antager ”quasi-stationært kølvands”-aerodynamik. Flydende vindmøller er blevet
foresl̊aet som et alternativ til bund-placerede vindmøller, da de kan placeres
p̊a vanddybder normalt antaget udenfor vindmøllers placerings-rækkevidde. De
særlige udfordringer som styring af flydende vindmøller giver er blevet undersøgt
i denne afhandling.

Model Predictive Control (MPC) har været det fundament som styringsalgo-
ritmerne er blevet bygget p̊a. Tre styringer præsenteres i denne afhandling:
Den første er baseret p̊a fire forskellige lineære MPC-styringer, hvor passende
skifte-kriterier afgør hvilken styring er aktiv. H̊andtering af begrænsinger p̊a ak-
tuatorne, s̊asom pitch-vinkel, pitch-vinkelhastighed og pitch-vinkelacceleration
er det primære fokus for denne styring. Vindmøllen er et stærkt ulineært sys-
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tem og gain-scheduling eller re-lineærisering er det næste skridt mod forbedret
styringsydelse sammenlignet med den lineære styring. Sidst, er en ulineær MPC-
styring blevet udviklet og testet under forenklede forhold. For nuværende for-
ventes den ulineære MPC-styring dog ikke at være en realistisk mulighed da den
er for beregningstung til at opn̊a tids-tro ydelse.

Denne afhandling best̊ar af en samling af videnskabelige artikler, omhandlende
de forskellige emner diskuteret i dette resumé.
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Chapter 1

Introduction

The work presented in the thesis is threefold: wind turbine modeling details
(part 1), practical implementation of model predictive control (part 3) and the
application of model predictive control on wind turbines (part 2).

The thesis is a collection of papers written during the course of the PhD study.
The papers are attached as appendices and form the main matter of this thesis.

This chapter begins with an introduction to wind turbines and wind turbine
control. Then follows a list of contributions, which this thesis brings to the field
of wind turbine control. The chapter is ended with an outline of the thesis.

1.1 Introduction to wind turbines

Wind turbines exist in many different configurations and sizes: upwind or down-
wind and horizontal or vertical axis rotors. Upwind means that rotor is placed
in front of the tower and downwind means that rotor is placed behind the tower
relative to the wind direction. Horizontal or vertical axis refers to around which
axis the blades rotate.

A historical view [1, 2] on the field starts with wind mills dating several thousand
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years back in time. Wind mills have been used to harness the power of the
wind and perform some kind of mechanical work e.g. grinding grain to flour,
pumping water for irrigation of fields or pumping water in wet areas to claim
land. All these applications converted the mechanical energy from the wind to
mechanical energy useful to people. Electrification changed the world and also
wind mills. In stead of converting the mechanical energy of the wind to another
kind of mechanical energy, the energy was with the use of electrical generators
converted to electric energy and wind turbines came into being. The difference
between wind mills and wind turbines is that the former produces mechanical
energy and the latter produces electrical energy. The electrification of wind mills
a century ago was pioneered by the danish scientist, inventor and educationalist
Poul la Cour, who also studied the storage of energy using hydrogen, once again
a hot topic. Many different configurations with either vertical or horizontal axis
rotors have been tested through the years but the predominant configuration
today, known as the danish-type, is a horizontal axis rotor upwind configuration.
Fig. 1.1 depicts a danish-type wind turbine. Throughout this thesis it is implied
that wind turbine indicates danish-type wind turbine.

The fundamentals of the wind turbine can be described by only a few equations.
The power captured by the rotor of the wind turbine and transmitted to the
drive-shaft is given by

P =
1

2
ρπR2V 3CP (θ, V,Ω) (1.1)

where ρ is air mass density, R is rotor radius, V is wind speed, θ is blade
pitch angle, Ω is rotor speed and CP (·) is the power coefficient, describing how
much of the power available in the wind is captured by the rotor. The wind
turbine rotor speed depends on the aerodynamic torque Q = P/Ω in the rotor-
end of the drive-shaft and on the electro-magnetic generator torque Qg in the
generator-end of the drive-shaft

Ω̇ =
1

Jt
(Q−NgQg) (1.2)

where Jt is total inertial mass of the rotor, drive-shaft and generator. Ng is the
gear ratio, if a gear is present in the drive-train configuration. The electrical
power of the generator is given by

Pe = QgNgΩ (1.3)

This simple model can be extended by adding further degrees of freedom. The
drive-shaft, initially assumed rigid, is flexible and a torsional degree of freedom
could be added to the model to account for this. The tower on which the nacelle
is placed is also flexible and fore-aft and side-side displacement of the nacelle
due to tower flexibility could also be added to the model. This flexibility means
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Figure 1.1: Danish-type upwind horizontal axis rotor wind turbine. The three
blades are known as the rotor, which is connected to the generator through
a drive-shaft, all housed in the nacelle. The nacelle is mounted on top of the
tower with a yaw drive enabling the wind turbine to turn towards the wind when
the wind changes direction. (Photo by Dirk Ingo Franke and reprint permitted
under the CC-BY-SA license.)
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that the rotor moves and a relative wind speed, different from the free wind
speed, is felt by the rotor. The blades are also flexible and edgewise, flap-
wise and torsional degrees of freedom could also be included in the model to a
more realistic description of the wind turbine. Further degrees of freedom both
in structural and aerodynamic respect can be added to further heighten the
quality of the model. Dynamic inflow and dynamic stall, which describe how
the aerodynamic forces affect blades are also relevant degrees of freedom to add
to the model.

Many simulation environments being able to simulate the behavior of wind
turbines exist. FAST [3] by the National Renewable Energy Laboratory (NREL)
is freely available and is able to produce linearized models of the wind turbine,
which is useful for the synthesis of model-based controllers. For a comparison
of more aero-elastic codes Passon et al. [4] can be consulted. Throughout this
thesis the aero-elastic code HAWC2 [5] developed by Risø DTU has been used
to evaluate the performance of the developed controllers.

1.2 Introduction to wind turbine control

Control of wind turbines is not a new field. With the commercialization of
pitch controlled variable speed wind turbines in the 1990s, which gradually
replaced the predominant stall controlled fixed speed wind turbines, new control
challenges emerged. Academic work regarding the control of pitch controlled
variable speed wind turbines is discussed in the following section. The works
cited in the following are not the only works in existence but have been cited as
they represent some of the different methods to control a wind turbine. For a
more comprehensive overview of control methods applied to wind turbines Pao
and Johnson [6] and Laks et al. [7] can be consulted.

1.2.1 Classic control methods

The first approach to control a wind turbine is to consider it as a single-input-
single-output (SISO) system. Leithead and Connor [8] discuss different strate-
gies concerning the control of wind turbines in different operating regimes, where
emphasis is more on general concerns rather than the actual synthesis of a par-
ticular control method. For above rated wind speeds the pitch of the blades
regulate the rotational speed of the wind turbine, as the wind turbine dynamics
are nonlinear and change for different wind speeds a gain scheduling scheme can
used to achieve similar closed-loop performance for a range of wind speed, such
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a control method is described in e.g. Hansen et al. [9]. Dynamic filters might
be inserted in the closed-loop to avoid excitation of certain structural modes,
such as drive train flexibility or edgewise vibration of the blades. Typically
the generator power is controlled by the electro magnetic generator torque in
a separate loop. The pitching of blades introduce changes in the thrust force
affecting the wind turbine, leading to displacement of the tower top, which in
turn leads to changes in relative wind speed felt by the rotor, wind in turn
causes the to controller to change the blade pitch angle. Unless the closed-loop
poles of the system are placed below the first tower bend frequency unstable
behavior can be observed. Bossanyi [10] describes how this can be remedied
by adding a new loop to the controller where the tower top acceleration is fed
back to the controller and superimposed on the pitch control signal. Cyclic and
individual pitch can be used to alleviate the periodic loading caused by the wind
shear, tower shadow, turbulent wind field etc. Larsen et al. [11] describes how
to add yet another control loop to the controller feeding back pitot tube mea-
surements from the blades to enable individual pitch control. Ever more control
loops can be added to dampen the side-side motion of the tower etc. There are
no guarantees that the increasingly complicated web of loops in the controller
do not interact with each other in undeseriable ways, unless the different loops
are separable, indicating there is a potential in the implementation of modern
multiple-input-multiple-output (MIMO) control methods.

1.2.2 Modern control methods

The wind turbine is in effect a MIMO system and state space model-based
control algorithms are suited to handle such systems. Wright and Balas [12]
discuss how to obtain a linearized state space model of the system at a given
operating point, using the aero-elastic software FAST [3]. The linearized model
can be used to design a linear quadratic (LQ) controller, which is able to handle
conflicting control objectives by prioritizing them in a cost function. Selvam
et al. [13] uses a multi-blade coordinate transformation to enable individual pitch
control within the LQ framework. Stol and Balas [14] also use a LQ framework
where periodic disturbance accommodation is used to achieve individual pitch
control of the wind turbine. The operation at different wind speeds require some
kind of gain scheduling. A theoretically well founded method known as linear
parameter varying control (LPV) is seen in the works of Bianchi et al. [15] and
Østergaard et al. [16] and provide robust controllers suited for a wide wind speed
range. Different nonlinear approaches to the control of wind turbines have also
been investigated, among those are Kumar and Stol [17] and Boukhezzar et al.
[18]

The use of model predictive control (MPC) is often motivated by its inherent
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ability to handle constraints, but nonlinear model predictive control (NMPC)
is also useful because it is able to cope with the nonlinear dynamics of the wind
turbine. Trainelli et al. [19] explorers the performance of a NMPC algorithm
at the presence of an extreme operating gust. Another feature of the MPC and
NMPC is the ability to include information about the future into the prediction
horizon. Santos [20] explores the potential benefit of including the knowledge
of future wind speeds, obtained with e.g. a LIDAR, into the NMPC algorithm.

1.3 Contributions

The contributions and brief descriptions are listed in the following:

• A simplified model of dynamic inflow useful for implementation in model-
based control and state estimation algorithms. Presented in paper A and
used in papers B and D.

• Wave force inclusion in control design model for a floating wind turbine is
in paper B shown to be important for wind speed estimations. Also used
in paper D.

• Constraint handling of actuators using model predictive control is pre-
sented in paper C.

• Switching conditions for different wind speed regions, ensuring full wind
speed range control, is discussed in paper C.

• Relinearization of the model predictive controller to handle nonlinearities
of a wind turbine is shown in paper D and derivations of the underlying
equations are given in Paper F.

• Nonlinear model predictive control and the benefit of having knowledge of
future wind speeds using e.g. LIDARs is investigated in Paper E. Papers
F and G describe the underlying equations and methods.

1.4 Outline of thesis

Chapter 2, 3 and 4 summarizes the papers concerning wind turbine modeling,
the papers concerning implementation of model predictive control algorithms
and the papers concerning implemented wind turbine controllers, respectively.
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Chapter 5 draws conclusion regarding the work presented in this thesis.

Appendices A and B comprises the first part. The papers deal with different
aspects of wind turbine modeling used by model-based control algorithms.

Appendices C, D and E comprises the second part. These papers describe
different implementations of model predictive control applied on wind turbines.

Appendices F and G comprises the third part. The papers in this part describes
in detail the underlying methods of the model predictive control algorithms
presented in the second part.
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Chapter 2

Wind Turbine Modeling

Model-based control and state estimation algorithms require control design
model of sufficient quality both in the inclusion of all significant degrees of free-
dom and in the calculation/estimation of model parameters. With this in mind,
the Papers A and B examine what importance various degrees of freedom have
on the wind speed estimation. The investigations of wind speed estimation per-
formance are motivated by the näıve assumption that if wind speed estimation
is improved, then control performance also has a potential to be improved.

2.1 Paper A: The effect of dynamic inflow in
free mean wind speed estimation

An often neglected degree of freedom in terms of control design modeling is
dynamic inflow. The term dynamic inflow describes the phenomena that the
aerodynamic forces do not settle instantly to a new equilibrium when changes in
wind speed, rotor speed or blade pitch angle occur. Fig. 2.1 shows a cross section
of a blade, at radial distance r from the center of the rotor, and shows the local
aerodynamic forces at that point. The local induced velocities vn(r) = V an and
vt(r) = Ωr, in normal and tangential directions respectively, will under constant
conditions settle to an equilibrium over a period of time. The equilibrium points
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(Paper A).

for vn(r) and vt(r) can be determined offline, giving a CP curve used by (1.1)
which gives the quasi-steady aerodynamic torque

Q(V,Ω, θ) =
1
2ρπR

2V 3CP (V,Ω, θ)

Ω
(2.1)

A better description of the aerodynamic forces is to determine the instant in-
duced velocities online, where nB is the number of blades on the rotor. The
instant aerodynamic torque is given by

Q(V,Ω, θ, vn(r), vt(r)) = nB

∫ R

0

rFt(V,Ω, θ, vn(r), vt(r), r)dr (2.2)

where the induced velocities are calculated using one of the different models
describing dynamic inflow in the work of Snel and Schepers [21].

Although van Engelen and van der Hooft [22] have demonstrated dynamic inflow
to be of importance, quasi-steady aerodynamics are usually used in the control
design models. Paper A presents a simplified dynamic inflow model based on
a more detailed model by Øye [23]. The presented model assumes quasi-steady
tangential induced velocities and determines the induced axial velocities based
on the quasi-steady distribution of axial induction factors aqsn divided by the
quasi-steady distribution of axial induction factors āqsn averaged along the blade
span. The normalized quasi-steady distribution is then multiplied with an axial
induced wind speed v̄n averaged along the blade span, giving

vn(r) =
aqsn (V,Ω, θ, r)

āqsn (V,Ω, θ)
v̄n (2.3)
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The only state which should be added to the control design model is v̄n with
temporal dynamics given by

v̄n =
1

τs+ 1
V āqsn (V,Ω, θ) (2.4)

with the time constant

τ =
1

2

1.1R

V − 1.3v̄n
(2.5)

The presented model is suitable for inclusion in control design models and Fig.
2.2 shows how wind speed estimation is improved by the inclusion of the simpli-
fied dynamic inflow model compared to assuming quasi-steady aerodynamics.

2.2 Paper B: Wind speed and wave force esti-
mation for a floating wind turbine

Floating wind turbines in various configurations are discussed by e.g. Jonkman
[24]. The spar buoy concept, also examined by Skaare et al. [25], is investi-
gated in Paper B. The floating wind turbine concept is highly sensitive to the
aerodynamic thrust

T (Vrel,Ω, θ, v̄n) = nB

∫ R

0

Fn(Vrel,Ω, θ, vn(r), r)dr (2.6)

where the relative wind speed felt by the rotor is given by the difference between
the free wind speed and the fore-aft velocity of the tower top

Vrel = V − ẏtop (2.7)

Figure 2.3 shows that the pitch angle of the top of the wind turbine and the
pitch angle of the bottom of the wind turbine are in phase, but a closer look
best seen in the acceleration signal ÿ, shows that top and bottom bottom angles
also have an out of phase contribution due to the tower bend degree of freedom.

The structural model of the floating wind turbine in the fore-aft direction is
given by the interconnected two mass-damper-spring systems (Mtp, Dtp,Ktp)
and (Mtb, Dtb,Ktb), respectively describing tower pitch and tower bend degrees
of freedom.

Mtbÿrel +Dtbẏtb +Ktbytb = T (2.8a)

M̃tpÿtp +Dtpẏtp +Ktpytp = Fw +Dtbẏtb +Ktbytb (2.8b)
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Figure 2.2: Estimation of free mean wind speed and averaged axial induced
velocity and aerodynamic forces. The extended Kalman filter based on the
BEMqs model fails to predict the wind speed transient seen from time 5 s to
20 s, whereas the extended Kalman filter based on the BEMsimple model, which
takes the dynamic inflow into account, captures the behavior (Paper A).



2.2 Paper B: Wind speed and wave force estimation for a floating wind
turbine 13

(-) ytop (-) yrel (-) ytp

y
[m

]
ẏ
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Figure 2.3: Floating tower fore-aft motion - The first plot shows tower top
position shown with 3 different sensors: 1. absolute position in y direction,
2. position relative to position of bottom of floater in y direction, 3. absolute
pitch angle multiplied with height of wind turbine. The second plot depicts the
velocities of the 3 sensors. It can be seen that low frequency displacement of
the entire structure (surge) has little impact on the velocity measurements. The
third plot display the accelerations and it can be seen that the tower bending
mode causes the top and bottom sensors to differ (Paper B).
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where turbine pitch displacement is ytp = h sinα ≈ hα. Tower bend displace-
ment is given by ytb = yrel − ytp.

The term Fw in (2.8b) approximates the influence of wave forces on the on the
floating structure. Paper B shows that the influence of wave forces should be
included in the control design model to avoid that nacelle displacements are
solely ascribed to the aerodynamic thrust when in fact wave forces also play
a major role. If not dealt with, erroneous wind speed estimates are produced
by the state estimation algorithm. In Fig. 2.4 it can be seen that wave forces
(proportional to the water acceleration u̇) as well as tower bending are important
degrees of freedom that should be included in the control design model to achieve
good wind speed estimates. Furthermore, it can be speculated that wave forces
should also be included in control design models for offshore wind turbines with
ground-fixed foundations.
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presented in this work, including tower bending and wave force contribution.
The second model omits wave forces and the third model excludes tower bending
(Paper B).
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Chapter 3

Numerical methods

Papers C, D and E all use Model Predictive Control in different implementations.
Where Paper C represents a typical linear MPC implementation and Paper E
uses a nonlinear MPC, then Paper D is an intermediate step between Papers C
and E, as the controller in Paper D is relinearized in each sample, but assumes
the system to be linear within the prediction horizon.

A basic formulations of MPC, where e.g. soft constraints are not included, with
a time-discrete prediction horizon of length N is

minφN (xN ,uN ) +

N−1∑

k=0

φk(xk,uk) (3.1a)

subject to

x0 = x̄ (3.1b)

f(xk,uk)− xk+1 = 0, k = 0, . . . , N (3.1c)

c(xk,uk) ≤ 0, k = 0, . . . , N (3.1d)

where (3.1a) contains the stage-wise cost function φk(·) which should be mini-
mized. Terms of the cost function to be minimized, could in the case of a wind
turbine be weighted and squared terms containing blade pitch action, nacelle
movement and generator speed and power output deviations from nominal val-
ues etc.. The optimization problem is subject to the initial condition constraint
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(3.1b) where x̄ is the current measurement/estimate of the state vector. The
nonlinear state progress equation (3.1c) is a based on the control design model,
which should be an as-good-as-possible approximation of the real plant (wind
turbine). The control problem could be subject to constraints (3.1d) such as
pitch and generator torque rate limitations. Solving (3.1) yields the predicted
optimal sequences of states

~x = [xT0 x
T
1 . . . xTN ]T (3.2)

and control signals

~u = [uT0 u
T
1 . . . uTN−1]T (3.3)

where u0 is actuated. The total MPC problem (3.1) is then solved in each
sample with updated measurements/estimates of the current state x0.

The state progress equation (3.1c) can be assumed to be a constant linear model
within the prediction horizon to reduce the computational burden and to reduce
the overall complexity of the controller. Paper C approximates (3.1c) as a linear
system linearized around an equilibrium point (x∗ = f(x∗,u∗)) depending on
a specific wind speed

f(xk,uk) ≈ x∗ + A∗(xk − x∗) + B∗(uk − u∗) (3.4)

Paper D allows for more flexibility as (3.1c) can be linearized at arbitrarily
chosen points (x0,u0) and not only equilibrium points

f(xk,uk) ≈ f(x0,u0) + A0(xk − x0) + B0(uk − u0) (3.5)

Finally, Paper E makes no assumption of constant linear behavior within the
prediction horizon and uses stage-wise linearizations of the state progress equa-
tion in the optimization routine

f(∆xk + xk,∆uk + uk) ≈ f(xk,uk) + Ak∆xk + Bk∆uk (3.6)

where (∆xk,∆uk) are iterative steps within the nonlinear optimization algo-
rithm. For each iteration i the current variables are updated

(xi+1
k ,ui+1

k ) = (∆xk,∆uk) + (xik,u
i
k) (3.7)

until some specified convergence criteria are met.
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3.1 Paper F: An online re-linearization scheme
suited for Model Predictive and Linear Quadratic
Control

The total MPC problem (3.1) forms a nonlinear programming problem (NLP)
which is computationally heavy to solve. Solving techniques will typically ap-
proximate the NLP as a quadratic programming problem (QP) and the QP will
be updated in iterations towards the optimal nonlinear solution. The QP in its
full form is given by

min




x0

...
xN
u0

...
uN−1




T 


Q0 MT
0

. . .
. . .

QN

M0 R0

. . .
. . .

RN−1







x0

...
xN
u0

...
uN−1




+
[
qT0 . . . qTN rT0 . . . rTN−1

]




x0

...
xN
u0

...
uN−1




(3.8a)

s.t.




I . . . . . .
A0 −I . . . B0 . . .

A1 . . . B1 . . .
...

...
. . . −I . . . BN−1







x0
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...
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−b1

...
−bN−1




(3.8b)
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xN
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−d0

−d1

...
−dN−1


 (3.8c)

where Qk, Mk and Rk are Hessians of the stage-wise cost function and qk and
rk are gradients of the stage-wise cost function. Ak and Bk are Jacobians of
the stage progress equation and Ck and Dk are Jacobians of the inequality
constraint. The constant terms bk and dk stems from the linearization of the
state progress and inequality constraint equations, respectively.

The matrices of the MPC problem (3.8) are sparse, which should be exploited
to reduce the computational cost. Rao et al. [26] demonstrated that the QP
given by a MPC problem can be reformulated to a time-discrete Riccati equa-
tion rendering the computational burden dependant on the prediction horizon
length in linear way O(N) rather than cubic O(N3). This is of particular high
importance when long prediction horizons are used. Paper F documents the spe-
cific implementation exploiting the Riccati structure of the MPC problem. The
implemented solver presented in Paper F is used by the controllers in Papers C,
D and E.

3.2 Paper G: A Trust-region-based Sequential
Quadratic Programming Algorithm

Paper G, inspired by the work of Tenny et al. [27], describes how the nonlinear
model predictive control problem in Paper E is solved using a trust-region-based
sequential quadratic programming problem algorithm. The general NLP [28, 29]
is given by

min
x
f(x), s.t. c(x) = 0 and d(x) ≤= 0 (3.9)

which can be approximated as a quadratic programming problem

min
∆x

m(∆x), m(∆x) = 1
2∆xTH∆x+∇f(x)T∆x (3.10a)
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subject to

c(x) +∇c(x)T∆x = 0 (3.10b)

d(x) +∇d(x)T∆x ≤ 0 (3.10c)

‖D∆x‖p ≤ δ (3.10d)

where the optimization variables are updated in each iteration, if certain step ac-
ceptance criteria are met. The trust-region inequality constraint (3.10d) which
is tightened or loosened depending of the progress of iterations. If the approxi-
mated QP (3.10) is a good description of the original NLP (3.9) then the solution
obtained by solving the QP can be trusted and large steps can be taken in each
iteration and the trust-region radius should be large. If the NLP is not well
approximated by the QP then the solutions obtained by solving the QP are not
to be trusted and small steps should be taken and the trust-region radius should
be reduced. The QP and NLP are typically not in good agreement if the NLP
is highly nonlinear or if the optimization problem is not convex.

The trust-region scaling matrix D should somehow represent the optimization
problem such that the the dimensions of the trust-region reflect the sensitivity
of the cost function with regards to the optimization variable. A decomposition
of the Hessian of the cost function H can be used to form the scaling matrix
D and Paper G can be consulted for further details. Fig. 3.1 depicts examples
of ∞-norm and 2-norm trust regions based on the Hessian of the optimization
problem.

When applying the trust-region-based sequential quadratic programming prob-
lem algorithm to NMPC, the special structure of the NMPC should be exploited
to reduce the computational cost. The underlying QP is solved using the spe-
cialized QP solver from Paper F and calculations of Hessians, gradients, scaling
matrices for the trust-region etc. also exploit the sparse structure of the NMPC
optimization problem.
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Figure 3.1: Two trust regions are shown in this figure: The box is given by
the ∞-norm and the ellipsoid is given by the 2-norm. Both norms have scaling
matrices based on the Hessian of the cost function (Paper G).



Chapter 4

Implemented controllers

The simplified description of the wind turbine, given by (1.1) to (1.3), can
be used to illustrate the overall control objectives for the wind turbine. The
overall primary control objective of the wind turbine for a given wind speed can
be formulated as

min(Pe − Pnom)2 (4.1a)

subject to the steady state equality constraint

0 =
1

Jt
(Q−NgQg) (4.1b)

A requirement for the generator speed to be within a specified operating range
gives the following constraint

Ω ∈ (Ωmin,Ωnom) (4.1c)

where Pnom is the nominal/rated power of the generator and Ωnom is the
nominal/rated speed of the generator. For below rated wind speeds, where
Pe < Pnom, there is a unique solution for each wind speed. For above rated
wind speeds, where Pe = Pnom, multiple solutions exist and the cost function
(4.1a) should be extended to

min(Pe − Pnom)2 + (Ω− Ωnom)2 (4.1d)
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Figure 4.1: Sweep of wind speeds showing the steady state values of the pri-
mary variables of the wind turbine. Notice the pitch angle would normally have
slightly different values for wind speeds below rated wind speed. The pitch
angle in this case have been constrained and is thus different from its uncon-
strained value. This is however not expected to have significant influence on the
performance of the controller (Papers C and D).

to ensure the existence of a unique solution and to ensure that nominal rotational
speed is the control target.

Solving (4.1) reveals that wind turbine controllers are hybrid in nature as they
operate under different wind speeds with different wind speed specific control
objectives. Fig. 4.1 shows how the regions of operation can be divided into
regions I to IV where regions I to III are known as partial load regions and
region IV is the full load region. Besides of having to achieve good control
performance within one of the regions, the controller should also be able to
switch between the different regions of operation in a smooth manner. The
Papers C, D and E form a development towards having integrated the full wind
speed range in a single control law.

Although the overall primary control objective is given by (4.1), Papers C and D
use a modified primary control objective in the partial load regions to cope with
the nonlinear dynamics of the wind turbine. The collective blade pitch angle is
kept at its optimal value and the optimal generator speed for a given below rated
wind speed is tracked with the generator torque. The NMPC formulation used
in Paper E cancels the need for a reformulation of the primary control objectives
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Figure 4.2: Setup of the hybrid controller. Regions I to III are only controlled
by the generator torque controllers KI to KIII . The pitch angle is kept constant
by a separate controller Kθ in these regions. In region IV both pitch angle and
generator torque are used in the same controller (Paper C).

in the partial load regions and (4.1) is used throughout the wind speed range.

4.1 Paper C: Wind Turbine Control with Con-
straint Handling: A Model Predictive Con-
trol Approach

Paper C presents a hybrid controller consisting of four different linear model
predictive controllers, one for each region of operation. A set of switching con-
ditions are designed to determine which of the four controllers that should be
active. The setup of the hybrid controller used in Paper C can be seen in Fig.
4.2.

The design of the model predictive controllers is heavily inspired by Pannocchia
et al. [30] and Pannocchia and Rawlings [31]. The control design model is
augmented with a disturbance model (E,F), with d and p as state and output
disturbances, respectively. The disturbance model is used to achieve offset-free
performance.
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yk =
[
C 0 F

]
︸ ︷︷ ︸

Ĉ



x
d
p



k

+ Duk + vk (4.2b)

where

v ∈ N(0,Ry) and



wx

wd

wp


 ∈ N(0,Rxdp)

This is achieved as a combined state and disturbance estimator ascribe the
discrepancies between the measured outputs y of the real plant (wind turbine)
and the predicted outputs of the of the model-based estimator to the augmented
disturbances. Steady state target state and inputs (x̄, ū) are calculated via
target calculation

[
A− I B
HC HD

] [
x̄
ū

]

k

=

[
−Ed̂

r −HFp̂

]

k

(4.3)

where r is the reference to reach in steady state and H is a matrix that maps
the measured outputs to the reference outputs. The calculated target values are
then used by the constrained linear quadratic regulator (CLQR) [30, 32] where
the origin shifted variables

x̃ = x− x̄ and ũ = u− ū
are introduced. The CLQR problem (Paper C should be consulted to see a
formulation with inclusion of soft constraints and terminal cost) is

min

N∑

k=0

1

2
(x̃TkQx̃k + ũTkRũk + 2x̃TkMũk) (4.4a)

subject to

x̃0 = x̂− x̄ (4.4b)

x̃k+1 = Ax̃k + Bũk k = (0, 1, . . . , N − 1) (4.4c)

Chx̃k + Dhũk ≤ h k = (0, 1, . . . , N) (4.4d)

A sequence of states and control signals are calculated when solving the QP
formed by the MPC problem. The first origin shifted control signal ũ0 in the
computed sequence is added to the target control signal ū and the sum gives the
actual control signal u. The setup of disturbance and state estimator, target
calculation and constrained linear quadratic regulator can be seen in Fig. 4.3.

Paper C explores the constraint handling capabilities of the CLQR during an
extreme operating gust where actuator rate limits have been set to more restric-
tive limits to ensure that limits where reached during the simulation in an effort
to challenge the controllers, results for the simulation can be seen in Fig. 4.4.
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Figure 4.3: Origin shifting model predictive controller setup. Notice that the
control signal given by the controller is not directly fed back to the estimator.
This is because only the control signal of the active controller in the hybrid
controller is fed back to the estimator (Paper C).

4.2 Paper D: Relinearized Model Predictive Con-
trol of a Floating Wind Turbine

Paper D represents the next step towards a single control law being able to
handle the full wind speed range. The number of regions of operation are
reduced from four to two as the partial load regions are combined to a single
region of operation aiming to increase power capture. Instead of having four
linearized controllers as in Paper C a single controller is relinearized in each
sample. Switching conditions then determine if that controller should use partial
or full load control objectives. The setup of the hybrid controller used in Paper
D can be seen in Fig. 4.5.

The relinearization in each sample enables the linearized control design model
used by the controller to be in better agreement with the actual dynamics of the
plant at the current operating point. The control design model is augmented
with a linear disturbance model (E,F) as in Paper C, but the control design
model is nonlinear
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yk = g(xk,uk) + Fpk︸ ︷︷ ︸
ĝ(xk,dk,pk,uk)

+vk (4.5b)



28 Implemented controllers
V
9
0
m

[m
/
s]

(Solid line) MPC (Dashed line) PI (Dotted line) Constraints

P
e
[M

W
]

Ω
g
[r
p
m
]

θ
[d
eg
]

θ̇
[d
eg
/
s]

Q
g
[k
N
m
]

Q̇
g
[k
N
m
/
s]

Time [sec]

0 5 10 15 20 25 30 35 40 45 50
-20

0

20

30

40

50

-1

0

1

0

10

20

800

1100

1400

3

4.5

6

10

15

20

Figure 4.4: Test case 4 with extreme operating gust at a mean wind speed of 12
m/s. Tower shadow and wind shear has been disabled to achieve clean results.
The pitch rate constraints has been drastically reduced from 8 deg/s to 0.5 deg/s
to challenge the controllers (Paper C).
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Figure 4.5: Setup of the hybrid controller. An extended Kalman filter provides
estimates of states used by other blocks in the diagram. Supervisor block pro-
vides partial or full load control objectives to controller depending on switching
conditions. Reference and reference filter blocks provide references for the con-
troller to track depending on whether partial or full load operation is active
(Paper D).

where


wx

wd

wp


 ∈ N(0,Rxdp), and v ∈ N(0,Ry)

and states and disturbances are estimated by an extended Kalman filter. The
target calculation and origin shifting setup of Paper C is also changed in Paper D
to a single formulation where reference tracking is incorporated into an extended
LQ/MPC formulation (Paper D should be consulted to see a formulation with
inclusion of soft constraints and terminal cost) giving

min

N∑

k=0

1

2
gz(xk,uk)TWzgz(xk,uk)

+
1

2
(r − gr(xk,uk))TWr(r − gr(xk,uk)) (4.6a)

subject to

x0 = x̄ (4.6b)

f(xk,uk)− xk+1 = 0 k = (0, 1, . . . , N − 1) (4.6c)

gh(xk,uk) ≤ h k = (0, 1, . . . , N) (4.6d)

the nonlinear equations are linearized as described in Papers D and F

f(xk,uk) ≈ Axk + Buk + δ (4.7)

gr(xk,uk) ≈ Crxk + Druk + γr (4.8)
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the output functions gz(·) and gh(·) are linearized in similar manner as gr(·).
The estimated disturbances are added to the constant contributions δ and γr
to achieve offset-free control.

For time-varying systems such as a rotating wind turbine where the individ-
ual blade pitch angles do not have a constant steady state value but rather a
periodic steady state value, the target calculation of Paper C is not suitable un-
less multiblade transformations [13] are used. The MPC formulation in Paper
D does not suffer from this and individual pitch control could be put into the
framework of this controller.

A floating wind turbine is controlled in this paper and the presented controller is
compared to a benchmark PI controller [24]. Fatigue load reductions compared
to the PI controller are observed in all regions of operation. Results from a
simulation with a mean wind speed of 12 m/s can be seen in Fig. 4.6 where the
PI controller is compared to two RLMPC controllers: The first assume quasi-
steady aerodynamics and the second included dynamic inflow in the control
design model. No significant differences between the two control design models
can be observed and further investigations are needed.

4.3 Paper E: Nonlinear Model Predictive Con-
trol of a Simplified Wind Turbine

Paper E discusses the next step towards a full wind speed range single con-
trol law. Nonlinear model predictive control is employed to achieve an even
better fit between the control design model and the nonlinear plant dynamics.
The formulation is the same as in Paper D, but the nonlinear model is relin-
earized in each stage of the prediction horizon and not assumed linear within
the prediction horizon as in Paper D. Papers F and G documents the under-
lying algorithms of the implementation linear and nonlinear model predictive
control algorithms. The computational burden has been reduced significantly
by exploiting the structure of the MPC problem and the long prediction hori-
zons used in Paper E would not have been practically implementable unless the
MPC specific algorithms had been implemented.

No state estimator and disturbance models are used in the paper, as plant and
control design model are identical in this simplified example and the states are
assumed to be measurable.

Model predictive control, linear and nonlinear, enables knowledge of future dis-
turbances, e.g. changes in wind speed, to be included in the prediction horizon
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Figure 4.6: Wave forces (proportional to water acceleration u̇) and turbulent
wind with a mean speed of 12 m/s. Also depicted are tower top velocity, gener-
ator power and generator speed (Paper D).
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of the model predictive controller. In Paper E two nonlinear model predictive
controllers are compared, one with knowledge of future wind speeds obtained
via a LIDAR and the other controller has no future knowledge of the wind speed
and assumes it to be constant within the prediction horizon. Fig. 4.7 shows that
the controller with future knowledge at hand is better equipped to reject the
sudden change in wind speed caused by an extreme operating gust. The poten-
tial benefit of LIDARs has also been investigated by Santos [20] but a different
implementation of the NMPC algorithm meant that Santos was unable to use
long control horizons due to the computational burden of the NMPC problem
and could thus not exploit the full potential NMPC.

Papers C and D use a modified primary control objective for partial load op-
eration, by keeping the collective blade pitch constant control and tracking the
optimal generator speed with generator torque control action. In paper E this is
not needed, Figure 4.8 depicts the prediction horizon of the optimal computed
sequence of control inputs based on the cost function with primary control ob-
jective given as (4.1a). The primary control objective dictates that the produced
generator power should be driven towards the nominal power value. For below
rated wind speed operation this cannot be achieved and as a consequence the
generator power production is maximized to get as close to nominal power as
possible. At the end of the prediction horizon this leads to undesirable behavior
as generator power is increased at the expense of generator speed. The opti-
mization is repeated in every sample and the undesirable behavior observed in
the end of the prediction horizon is not observed in simulations as the end of the
prediction horizon is pushed one sample further back in each sample, also known
as receding horizon control. The prediction horizon should be long enough to
ensure that the behavior observed in the end of the prediction horizon does not
affect the behavior in the beginning of the prediction horizon. The need for a
long prediction horizon in partial load operation along the with computational
cost of solving the QP several times within the nonlinear optimization algorithm
renders the NMPC controller slow and not suitable for real world application,
unless dedicated hardware and optimized numerical libraries are used. This has
however not been investigated in this work.
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Figure 4.7: Above rated wind speed: Simulations where an extreme operating
gust occurs. Two nonlinear model predictive controllers are compared: The first,
NMPClidar, includes knowledge of future wind speeds in the prediction horizon.
The second, NMPCnormal, assumes that the current wind speed remains constant
throughout the prediction horizon (Paper E).
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Figure 4.8: Partial load operation: Prediction horizon of NMPC with no termi-
nal cost. The plots show the predictions made by the controller at a given point
in time (Paper E).



Chapter 5

Conclusion and future
development

The papers presented in this thesis are divided into three parts: Wind turbine
modeling, wind turbine control and model predictive control implementational
issues and this conclusion will be divided in a similar manner.

Under the näıve assumption that wind speed estimation is a measure for the
potential fatigue load reduction of the model based controller Papers A and B
have investigated which degrees of freedom that should be included in the control
design model used by the model-based control and state estimation algorithms.

Paper A showed that dynamic inflow should be included the control design
model to improve wind speed estimation. Paper B investigated a floating wind
turbine and concluded that wave forces, tower bend and tower pitch are im-
portant degrees of freedom when estimating the wind speed for a floating wind
turbine.

Papers C, D and E form a development towards having single control law for
the entire wind speed range. The controllers of all three papers are shown to
cover the entire wind speed range. The papers also form a development going
from linear MPC to nonlinear MPC. The controllers in Papers C and D both use
state estimators and are rely solely on realistic sensors, whereas the controller
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in Paper E use a LIDAR as sensor, which currently is not a standard sensor.

Paper C, consisting of four linear model predictive controllers demonstrated
the controllers ability to handle constraint on actuator states during a extreme
operating gust, an event that can cause unstable behavior unless constraint
handling of actuator position, rates and accelerations is implemented in the
controller. The benchmark PI controller that was used to compare the perfor-
mance of the MPC controller had to be modified from the standard configuration
to handle such constraints. The original configuration of the PI controller en-
tered an unstable limit-cycle-like behavior when constraints where met due to
integrator-windup. Furthermore, switching conditions and other measures en-
sures a smooth switching was presented in Paper C giving a full wind speed
range controller.

Paper D, consisting of single controller which can switch between partial and full
load objectives showed how a floating wind turbine was controlled for the full
wind speed range. Fatigue load reductions were observed when compared to a
benchmark PI controller. Relinearization of the controller in each sample as well
as reference tracking and disturbance rejection gathered in a single formulation
was a novel development compared to the controller of Paper C simplifying
the setup of the controller. The paper also investigated whether or not the
inclusion dynamic inflow in the control design model has any significant impact
on control performance. Results were not clear but suggested that the inclusion
of dynamic inflow in the control design model is beneficial, especially around
rated wind speed.

Paper E, representing the early steps in the implementation of a nonlinear model
predictive controller, showed results for a simplified wind turbine. It was showed
how the knowledge of future wind speed obtained with e.g. a LIDAR could
be incorporated into the framework of NMPC and included in the prediction
horizon to reject an incoming extreme operating gust. Fast algorithms to handle
the computational burden posed by a NMPC algorithm have been implemented
and presented in Papers F and G. The algorithms exploit the special structure
of the NMPC problem to reduce the computational burden.

At present the MPC formulation of Paper D is the most promising because
implementation of a real-time version should not be to difficult a task and the
control design model relinearizes in each sample. The NMPC algorithm of
Paper E should be implemented on dedicated hardware with hardware specific
algorithms if real-time performance should be achieved.

The setup in Paper D is also prepared for individual pitch control, but further
development of the control design model should be performed before individual
blade pitch works in practice. In particular blade dynamics are expected to
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be included in the control design model to achieve better individual blade pitch
control. The inclusion of blades in the control design model would both improve
wind speed estimation performance and give a better description of the blade
root loads which are the sum of the aerodynamic forces and the kinematic forces
of the dynamic blade structure. Fatigue loads of the tower side-side degree of
freedom can not be targeted at present and the interaction between tower side-
side movement and rotor and generator torque could be added to the control
design model if tower side-side fatigue load reduction was to be targeted by the
controller.
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ABSTRACT

Model-based state space controllers require knowlegde of states, both measureable and unmeasureable, and state estimation
algorithms are typically employed to obtain estimates of the unmeasureable states. For the control of wind turbines, a good
estimate of the free mean wind speed is important for the closed-loop dynamics of the system and an appropiate level of
modeling detail is required to obtain good estimates of the free mean wind speed. In this work three aerodynamic models
based on blade element momentum theory are presented and comparedto the aero-servo-elastic code HAWC2. The first
model known as quasi-steady aerodynamics assumes instant equilibrium of the wind turbine wake, a modeling approach
often used by model-based control algorithms. The second model includes the dynamic wake also known as dynamic inflow
and gives a more correct description of the actual physics of the wind turbine wake. The dynamic inflow model includes
a number of dynamic states proportional to the number of radial points in the spatially discretized blade formulation.
The large number of dynamic states inhibits the use of this model in model-based control and estimation algorithms. The
lack of dynamic inflow the first model and large number of dynamic statesin the second model leads to a third model.
A simplified dynamic inflow model, which with only a single dynamic state is still ableto capture the most significant
dynamics of the more advanced dynamic inflow model. Simulations in the aero-servo-elastic code HAWC2 compare the
ability to estimate the free mean wind speed when either the first or third modelis included in the estimation algorithm. The
degrees of freedom for the wind turbine used in the simulations, have been reduced to achieve more transparent results and
the simulations clearly show that the inclusion of the dynamic inflow model in thefree wind speed estimation algorithm is
important for good free mean wind speed estimates. Copyrightc© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Dynamic wake or dynamic inflow describes the lag with which the wake induced by a wind turbine settles to a new
equilibrium when operating conditions of the wind turbine are changed, e.g. a sudden change in pitch angle. Dynamic
inflow has long been regocnized as a significant phenomonon which should be taken into account when modelling wind
turbines in e.g. aero-servo-elastic codes [1, 2, 3]. The importance of dynamic inflow is not new knowlegde for the wind
energy community in general as the cited works are dated to the late 1980s and early 1990s. It has already been established
that taking the dynamic inflow into account when designing a controller leadsto reduced loads [4] and classic proptional-
integral controllers have been tuned to achieve certain closed-loop properties by taking the dynamic inflow into account
[5]. But for model-based control and state estimation methods applied to windturbines the quasi-steady power and thrust
coffecients, usualy denotedCP andCT , are most often used [6, 7].

Copyright c© 2010 John Wiley & Sons, Ltd. 1
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Model-based control and state estimation require a simple aerodynamic model which is usually based on blade element
momentum theory (BEM). In reality temporal dynamics on several time scales occur, giving rise to dynamic inflow on the
slow end of the time scale and dynamic stall on the fast end of the time scale. In this work a simple dynamic inflow model
inspired by the model proposed by Ref. [1] and also described in Ref. [8] and Ref. [3] has led to the development
of an even simpler dynamic inflow model suited for model-based controland state estimation purposes. The two dynamic
inflow models along with a quasi-steady aerodynamic model are compared to aerodynamic model implemented in the aero-
servo-elastic code HAWC2 [9, 10]. Many degrees of freedom have been disabled in the simulations to enable a clearer
visualization of the effects of dynamic inflow.

If model-based controllers are to take dynamic inflow into account, they are dependant on state estimation methods able
to estimate the states of the dynamic inflow model, e.g. the free mean wind speed and induced velocities. In the present
work estimations based on extended Kalman filter theory compare the ability toestimate the free mean wind speed and the
induced velocities when using either the developed dynamic inflow model orthe quasi-steady aerodynamic model in the
extended Kalman filter. Results are clear and show that dynamic inflow should be taken into account, if the free mean wind
speed and induced velocities are to be estimated correctly during changesin operating conditions for the wind turbine.

This paper is structured as follows: In the first section blade element momentum theory is revisited to form the basis
of the next section which describes the quasi-steady and and dynamic inflow models. After that a section presenting
comparisons between the different BEM models and HAWC2. Finally the results for the free wind speed estimation are
presented and discussed and conclusions are made.

2. BLADE ELEMENT MOMENTUM THEORY

Blade element theory describes the aerodynamic forces at a finite number of blade elements along the blade span. The
aerodynamic forces cause a blockage of the air flow and induce an air flow in the oposite direction of the free wind speed.
Fig. 1 gives an overview of the local forces and flow velocities in a single blade element. Momentum theory is used to
determine the equilibrial conditions for the free and induced wind speeds.In this section basic blade element momentum
theory (BEM) is outlined for the blade elements and in the last part of the section the aerodynamic forces along the blade
span are integrated to give rotor-wide forces.

W
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√ V
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n
+
V
2
t

Vt = Ωr(1 + at)
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n
=

V
(1

−
a
n
)

D
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chord
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Figure 1. Cross section of blade in the span wise direction along the blade.

The induced velocities tangentialvt and normalvn to the rotor plane are described by the induction factorsat andan,
the resulting inflow velocity in the normal and tangential directions is

Vn = V − vn = V (1− an), vn = V an (1)

Vt = Vr + vt = Ωr(1 + at), vt = Ωrat (2)

The absolute value of the inflow velocity seen by the blade and the inflow angleare

W =
√

V 2
n + V 2

t (3a)

φ = arctan ǫ, ǫ =
Vn

Vt
(3b)
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The angle of attack is the difference between the inflow angle and the pitch ofthe blade element

α = φ− θ (4)

The inflow triangle displayed in Fig.1 gives the aerodynamic forces where dragD is parallel to the inflow velocity and
lift L is normal to the inflow velocity

L =
1

2
ρW 2CL(α)c (5)

D =
1

2
ρW 2CD(α)c (6)

Lift and drag can be projected into forces tangentialFt and normalFn to the rotor plane

Fn(r) = L cosφ+D sinφ (7)

Ft(r) = L sinφ−D cosφ (8)

The aerodynamic torqueQi and thrustTi for each blade multiplied with the number of bladesnB gives the rotor-wide
aerodynamic torque and thrust

Q = nB

∫ R

0

rFt(r) dr (9)

T = nB

∫ R

0

Fn(r) dr (10)

Quasi-steady values for the induction factors along the blade spanaqs
n andaqs

t can be computed with the BEM algorithm
given in [8] where Prandtl’s tiploss correction and Glaurt’s axial induction correction are also used. There are several
versions of Glaurt’s axial induction correction for high induction factorsand depending on which model is used slightly
different quasi-steady axial induction factors are found. The axial indution factor correction for high axial induction factors
used in this work is the same as the one used in HAWC2 [11].

In steady state the aerodynamic coefficientsCP andCT can be determined and are given by

CP (λ, θ) =
nBΩQ

1
2
ρπR2V 3

(11)

CT (λ, θ) =
nBT

1
2
ρπR2V 2

(12)

where the tip-speed-ratio

λ =
ΩR

V
(13)

enables a two-dimensional(λ, θ) decription of the steady state aerodynamic forces rather than a three-dimensional
(V,Ω, θ).

3. AERODYNAMIC MODELS

In the following three different aerodynamic models are presented: The quasi-steady model (BEMqs) assumes instant
equilibrium of the wake when conditions change. The full state dynamic inflow model (BEMfull ) includes as many
tangential and normal induced wind speeds as there are radial points in the spatial discretized blade description. The
simplified dynamic inflow model (BEMsimple) assumes that the tangential induced wind speeds are quasi-steady andthe
normal induced wind speeds are described by one average axial induction wind speed as will be explained in the following.

3.1. Quasi-steady aerodynamic model

Under the assumption of a quasi-steady wake the induced velocities are assumed to settle to their stationary values instantly.
This means that the induced velocities are

vn(r) = V aqs
n (λ, θ, r) (14)

vt(r) = Ωraqs
t (λ, θ, r) (15)
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These induced velocities can be inserted in the BEM equations of the previous section to compute the aerodynamic forces.
A computationally faster approach is to calculate the aerodynamic forces via precalculated look-up tables for the power
and thrust coefficentsCP andCT

Q =
1
2
ρπR2V 3CP (λ, θ)

Ω
(16)

T =
1

2
ρπR2V 2CT (λ, θ) (17)

an approach typically used by model-based control and state estimation algorithms.

3.2. Full state dynamic inflow aerodynamic model

The dynamic inflow describes the slow time scale of the aerodynamics of a wind turbine. The model captures the behavior
of the wake which needs to settle to a new equilibrium before the aerodynamicforces have settled to their new steady state
values whenever changes in operating conditions occur. Time constantsof the dynamic inflow are in the order rotor radius
divided by free wind speed. Different dynamic inflow models have slightly different formulations of the time constants and
filter configurations [3] . The dynamic inflow model chosen in this work is a simplfied version of one orginally suggested
by Ref. [1] and documented in several later works [3, 8] . The orignal model consist of a first order filter with a time
constant determined by rotor-wide considerations. The output of this filter is fed into a filter with a radial dependant time
constant. In this work only the first filter is included in the model

τ1v̇n(r) + vn(r) = V aqs
n (λ, θ, r) (18)

τ1v̇t(r) + vt(r) = rΩaqs
t (λ, θ, r) (19)

where the time constant is

τØye
1 =

1.1R

V − 1.3v̄n
, v̄n =

1

R

∫ R

0

vn(r)dr (20)

and the radial dependant temporal dynamics have been omitted from thiswork. In the original model, the input to the filter
includes, apart from the quasi-steady induced inflow velocities, also a term with the rate of change of the quasi-steady
induced inflow velocities. This term has also been omitted from the BEMfull and comparisons between the models in the
next section has resulted in an adjusted time constant

τ1 =
1

2
τØye
1 (21)

which as a results has been used in both the full and simplified dynamic inflowmodels throughout this work.

3.3. Simplified dynamic inflow aerodynamic model

The full state dynamic inflow model can be simplified and reduced to havingonly a single state at the expense of
the modeling detail level. This simplication can be justied by the fact that it will result in a pratical model which is
implementable in model-based control and state estimation algorithms. The tangential induced wind speeds are assumed
to be quasi-steady as in the BEMqs model and the induced axial wind speed states of the BEMfull model are gathered in a
single averaged induced axial wind speed state with the temporal dynamics

τ1 ˙̄vn + v̄n = V āqs
n (λ, θ) (22)

with the same time constant as in the previous subsection

τ1 =
1

2

1.1R

V − 1.3v̄n
(23)

Notice that v̄n is a function of the statesvn(r1), . . . , vn(rnr) in the BEMfull , whereas in the BEMsimple model
vn(r1), . . . , vn(rnr) are outputs dependant of the statev̄n. In the BEMsimple, the radial dependant induced axial wind
speeds are distributed along the blade span with the quasi-steady distribution

vn(r) =
aqs
n (λ, θ, r)

āqs
n (λ, θ)

v̄n, āqs
n (λ, θ) > 0 (24)
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Figure 2. Quasi-steady power coefficent curve - Fig. 2(a) Shows the quasi-steady power coefficient curve, two points of interest, each
with four neighbouring points are plotted on the figure. The radial distribution of the axial induction factors for the two points and their

neighbouring points are shown in Fig. 2(b).

where the average axial induction factor can be calculated offline

āqs
n (λ, θ) =

1

R

∫ R

0

aqs
n (λ, θ, r)dr (25)

This assumption is valid if the dynamic and quasi-steady distributions along theblade are not too different. Figure2 shows
the quasi-steady distribution of axial induction factors for two main points each with four neighbouring points and here it
is seen that the distributions for neighbouring points are quite similar, as will be demonstrated in the next section where
the different models are compared with each other and with the more complex model implemented in HAWC2.

4. COMPARISON OF AERODYNAMIC MODELS

In this section the different BEM models presented in the previous section are compared to each other and to the aero-
servo-elastic code HAWC2 [9] . The wind turbine used in this work is based on the NREL 5MW reference wind turbine
[12] .

Simulations have been run where the rotor speed is controlled by a PI controller that via the generator torque controls
the rotor speed towards its chosen setpoint. At time 25 s the rotor speed setpoint is changed and the PI controller regulates
the rotor speed to its new setpoint. At time 50 s the pitch angle is increased and at time 75 s the wind speed is ramped to
a higher wind speed. These changes of operating conditions happen quite fast to better visualize the differences between
the presented aerodynamic models. The PI controller used in this section isnot to be confused with the controller used for
normal operation of the wind turbine. The sole puporse of this sections PIcontroller is to control the generator speed via
the generator torque.

A simulation, around rated wind speed operational conditions, has been run where the wind turbine has been simplified
by stiffening the structural properties of the blades, tower and drive-shaft. Furthermore, rotor tilt, coning and dynamic
stall have all been disabled. Tower shadow and wind shear also have been disabled. All these simplifications are done to
make comparison between the BEM code and HAWC2 easier. The outcomeis shown in Fig.3 where it is clear that the
BEMfull and BEMsimple capture the dynamics of the HAWC2 output far better than the BEMqs model. Although the outputs
of HAWC2, BEMfull and BEMsimple are not identical they are quite similar and it is concluded that the BEMsimple is suitable
for model-based control design and state estimation purposes.
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Figure 3. Simulations in HAWC2 with stiffened turbine with no wind shear, tower shadow etc. Fig. 3(b) shows that the variuos BEM
codes model the behavior of HAWC2
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5. ESTIMATION OF THE WIND SPEED

In this section an extended Kalman filter (EKF) [13] will be used to estimate the mean wind speed affecting the rotor.
The performance of two EKFs based on two different models, namely the BEMsimple and BEMqs, will be compared to
investigate the effect of dynamic inflow in wind speed estimation.

5.1. Extended Kalman Filter

Both models used by the EKFs share the rotor acceleration model

Ω̇ =
1

Jt
(Q−Qg), Jt = Jr +N2

gJg (26)

where the total inertial mass of the wind turbine is the sum of the rotor inertial massJr and the generator inertial massJg

felt through a gear with a gear ratioNg. Both models used by the EKFs also share the free mean wind speed model, which
is assumed to be a random walk process driven by zero-mean white noise

V̇ = w, w ∈ N (0, σ2
w) (27)

The models differ in the aerodynamic modelling where one model assumes quasi-steady aerodynamic forces and the other
assumes dynamic inflow with temporal dynamics for the mean axial induced velocity given by eq. (22).

The state space ordinary differential equation for the model assuming quasi-steady aerodynamic is

[
Ω̇

V̇

]
=

[
1
Jt

(Q(V,Ω, θ)−Qg)

0

]
+Gw (28)

where the process noise input matrix isG = [0 1]T . The state space ordinary differential equation for the model containing
the simplified dynamic inflow model is



Ω̇

V̇
˙̄vn


 =




1
Jt

(Q(V,Ω, θ, v̄n)−Qg)

0
1

τ1(V,v̄n)
(V āqs

n (V,Ω, θ)− v̄n)


+Gw (29)

where the process noise input matrix isG = [0 1 0]T . The inputs to both models used by the EKFs are generator torque,
denotedQg, and collective pitch angle, and the measurements available to the EKFs arerotor speed and acceleration

u = [θ Qg]
T andy = [Ω Ω̇]T

the measurement ouput state space equation for the quasi-steady aredynamic models is

[
Ω

Ω̇

]
=

[
Ω

1
Jt

(Q(V,Ω, θ)−Qg)

]
(30)

and for the dynamic inflow model

[
Ω

Ω̇

]
=

[
Ω

1
Jt

(Q(V,Ω, θ, v̄n)−Qg)

]
(31)

Another output vector containing the variables which cannot be measured, but are used to compare the performance of the
EKFs is

z = [V v̄n Q T ]T

which has the state space output equation for the quasi-steady aerodynamic model




V
v̄n
Q
T


 =




V
V āqs

n (V,Ω, θ)
Q(V,Ω, θ)
T (V,Ω, θ)


 (32)
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and for the dynamic inflow model



V
v̄n
Q
T


 =




V
v̄n

Q(V,Ω, θ, v̄n)
T (V,Ω, θ, v̄n)


 (33)

The states for the BEMqs model are

x = [Ω V ]T

and the states for the BEMsimple model are

x = [Ω V v̄n]
T

The equations given above, constituting the model of the wind turbine, canbe formulated in more general terms as a state
space ordinary differential equationf and an output equationg

ẋ(t) = f(x(t),u(t)) +w(t) (34a)

y(t) = g(x(t),u(t)) + v(t) (34b)

wherew is zero-mean white process noise with the covariance matrixRx andv is zero-mean white measurement noise
with the covariance matrixRy. From (34a) the state progress equationf , describing the progress of states from the discrete
point in timetk to tk+1,

x(tk+1) = f(x(tk),u(tk)) +w(tk) (35)

can be determined using e.g. Runge-Kutta time integration schemes. In theremainder of this paper, the time-discrete
temporal argumentx(tk) will be shortened toxk to ease notation. The total process noise of the systemw is the sum of
the process noise of the random walk wind modelGw and a zero-mean white noise vectorwx with the covariance matrix
rxI. For both the EKF based on the quasi-steady aerodynamic model and for the EKF based on the simplified dynamic
inflow model the total process noise covariance matrix has the structure

Rx = WT [GTσ2
wG+ rxI]W (36)

where therxI term indicates the overall confidence in how well the state progress equation predicts the future states of the
plant. A highrx indicates high uncertainty due to stochastic disturbances or a mismatch between the model and plant. The
scalarrx has been chosen to be10−4 suggesting that the model is to be trusted. The variance of the random walkwind
modelσ2

w has been chosen to be 1 suggesting that the free wind speed wind can change quite a lot from one time-discrete
point to the next. The covariance matrix is also scaled with the scaling matrixW which is diag([ 1

Ωnom

1
Vnom

]) for the

quasi-steady aerodynamic model and diag([ 1
Ωnom

1
Vnom

1
v̄n,nom

]) for the dynamic inflow model and the nominal values
areΩnom = 1.267 rad/s,Vnom = 25 m/s and̄vn,nom = 10 m/s. The measurement noise covariance matrix displays high
confidence in the measurements

Ry = diag

([
10−4

Ω2
nom

10−4

Ω2
nom

])
(37)

as no real measurement noise is assumed in this simplified experiment. Withthe formulation of state progress and
measurement equations in place, the extended Kalman filter can be constructed. The estimated states are denotedx̂k|k−1,
wherek|k − 1 means the estimation at timek given by the information at timek − 1. Thea-posterioriestimation of the
states is given by

x̂k|k = x̂k|k−1 + Lk[yk − g(x̂k|k−1,uk)] (38)

Enabling ana-prioriestimation of the one-step-ahead prediction of the states

x̂k+1|k = f(x̂k|k,uk) (39)

where the Kalman gainLk and output error covarianceΨk

Lk = Pk|k−1C
T
k|k−1Ψ

−1
k (40a)

Ψk = Ck|k−1Pk|k−1C
T
k|k−1 +Ry (40b)
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Figure 4. Estimation of free mean wind speed and averaged axial induced velocity and aerodynamic forces. The extended Kalman
filter based on the BEMqs model fails to predict the wind speed transient seen from time 5 s to 20 s, whereas the extended Kalman

filter based on the BEMsimple model, which takes the dynamic inflow into account, captures the behavior.

are updated by the discrete time recursive Riccati equation

Pk|k = Pk|k−1 − LkCk|k−1Pk|k−1 (40c)

Pk+1|k = Ak|kPk|kA
T
k|k +Rx (40d)

The EKF is based on an extension of the Kalman filter, which is the optimal estimator for linear systems. Consequently the
time discrete model consisting of (35) and (34b) is linearized w.r.t.x using first order Taylor series approximation giving
Ak|k, which is the Jacobian of the state progress equation linearized at(x̂k|k,uk) andCk|k−1, which is the Jacobian of
the output equation linearized at(x̂k|k−1,uk).

5.2. Results of the extended Kalman filter

A new simulation is executed where the stiffened turbine from the previous section is controlled around rated wind speed
by a PI controller similar to the controller by Jonkman [12]. The performance of the two EKFs can be seen in Fig.4 based
on the inputs and outputs seen in Fig.5. At time 5 s the wind speed changes from below rated wind speed to above rated
wind speed causing the controller to react and pitch the blades.

From Fig.4 it can be seen that both EKFs are able to capture the aerodynamic forceswithout being able to measure
them, but the EKFs disagree about which wind speeds are causing the aerodynamic forces to be as they are. The key to
understand how both EKFs can predict similar aerodynamic forces butdissimilar wind speeds is in the difference between
the two aerodynamic models used by the EKFs.
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Figure 5. The inputs and measurements available to the two extended Kalman filters.

First it has to be explained that with the available sensors, rotor speed andacceleration, the Kalman filters have no direct
information about the wind speed. From the rotor acceleration equation (26) it can be seen that with the knowlegde of
generator torque and rotor acceleration, the aerodynamic torque can be determined correctly regardless of the aerodynamic
model. Because the aerodynamic torque and thrust are both functions of the same inflow triangle, seen in Fig.1, a correct
estimation of the aerodynamic torque leads to correct estimations of the inflow conditions (3), which in turn leads to
correct estimation of the aerodynamic thrust for both aerodynamic models even though no measurements give any direct
information about the aerodynamic thrust.

It remains to be determined why the wind speed estimates of the two Kalman filters are different. The wind speed
estimate of the EKF based on the dynamic inflow model is almost correct, because the BEMsimple, as established in
the previous section, provides a good describtion of the aerodynamic model implemented in HAWC2. The wind speed
estimate based on the quasi-steady aerodynamic model is not as good because the aerodynamic model only resembles that
of HAWC2 during steady state. It can be seen from the Figures4 and5 that the transient of the wind speed estimate for the
quasi-steady model is highly correlated with the transient of the measuredrotor speed and acceleration as that is the only
information available to the quasi-steady aerodynamic based EKF.

It could seem puzzling that the EKF based on the quasi-steady aerodynamic model is able to capture the steep gradient
of the wind speed at time 5 s and that the estimated induced mean axial velocitydoes not change instanly to the new
equilibrium perscribed by the quasi-steady aerodynamic model. It should be understood that an estimation based on a
particular model is not the same as a simulation based on the same model. The estimation algorithm will at each sample
update its estimates based on measurements from the plant, so it is the physics of the plant and measurement updates
thereof, which are driving the estimates and not the actual model used by the estimation algorithm. The model used by
the estimation algorithm is simply responsible for how well the measurements are interpreted and used to form estimates
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of the states. Which is why the EKF based on the quasi-steady aerodynamicmodel is unable to estimate the wind speed
correct during the transient seen from 5 s to 20 s.

From the results presented in Figure4 it has been demonstrated that to estimate the free mean wind speed a dynamic
inflow model should be included in the model-based state estimation algorithm as transients are not captured by the quasi-
steady aerodynamic model.

6. CONCLUSION

Three aerodynamic models based on blade element momentum theory have been compared to the aerodynamic model of
the aero-servo-elastic code HAWC2. The first model assumes quasi-steady aerodynamics. The second model describes
the dynamic inflow in a manner which resembles typical engineering modelsof dynamic inflow and which includes many
dynamic states. The third model has been developed for the specific purpose of being suitable for model-based control and
state estimation methods. The developed dynamic inflow model, described by only a single dynamic state has proved its
ability to model the dynamic inflow in a manner compareable to that of the moreadvanced models.

It has also been shown that dynamic inflow should be taken into account when estimating the free mean wind speed and
the induced velocities. A fact often overlooked or neglected in model-based control and estimation algorithms where the
phenomenon is not clearly visible when non-rigid blades, tower, driveshaft as well as tower shadow, wind shear, dynamic
stall etc. are included in the simulation. But the phenomenon of dynamic inflow does not dissapear merely because it is not
easily identified by visual inspection and as it is a significant physical phenomenon of the wind turbine physics it should
be included in the models used for model-based control and state estimationmethods.
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ABSTRACT

Offshore wind turbines has so far been limited to shallow waters enabling thefoundations to be placed on the seabed.
Floating wind turbines offer an alternative, as they can be placed at greater water-depths than the conventional offshore
wind turbines and are thus more versatile with regards to placement when new wind farms are planned. The added degrees
of freedom of a floating structure compared to a fixed structure pose new challenges for model-based control algorithms.
In this work a conventional wind turbine model used by model-based control and estimation algorithms is extended to
describe the phenomena observed on a floating wind turbine. The work documents the importance of including wave
forces in the model used by model-based control and estimation algorithms. Fore-aft tower bending and tower pitch are
also shown to be key features that should be included in the model to obtain satisfactory wind speed and wave force
estimates. Copyrightc© 2010 John Wiley & Sons, Ltd.

KEYWORDS

extended kalman filter; hydrodynamic forces; floating horizontal axis wind turbine

Correspondence
L. C. Henriksen, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000
Roskilde, Denmark.

E-mail: larh@risoe.dtu.dk

Received . . .

1. INTRODUCTION

Floating wind turbines have become an area increasing interest in the pastcouple of years. The need to place wind turbines
at ever deeper water depths as the existing off-shore sites are filled haspushed the development of novel floating wind
turbine concepts. Ref. [1] describes several concepts: a spar buoy, a tension leg platform anda barge platform. The
novel concepts has necessitated the need for new control methods adapted to the special challenges posed by floating wind
turbines. Among those challenges is the low frequency pitch of the floating structure. Ref. [2] investigated control of the
spar buoy concept, originally suggested by Ref. [3] , and concluded that detuning of the blade pitch controller gains gave
stable closed-loop performance, as the closed-loop poles was below thetower pitch frequency. Ref. [4] use model-based
control of a floating wind turbine based on the barge platform concept, but assume full state information. The assumption
of full state information is however not realistic, as the turbulent wind field and waves, resulting in aerodynamic and
hydrodynamic forces on the floating wind turbine, cannot easily be measured.

In this work, the basic model for a floating wind turbine is presented and results concerning wind speed and wave force
estimations are shown. The presented model utilizes the dynamic inflow model proposed in Ref. [5] and has further
extended it to accommodate individual pitch control by estimating the individual wind speeds of each blade. Wind speed
estimation on a floating wind turbines is not a novelty as Ref. [6] used an wind speed observer to reduce tower fatigue.
The observer presented in this paper differs from that of Ref. [6] by the inclusion of more states, making it suitable for
model-based control, and the fact that it is prepared for model-basedcontrol with individual pitching of blades.

The paper is organized as follows: The first section describes the model of the floating wind turbine. The next section
describes extended Kalman filter theory, which is the underlying method used by the state estimation algorithm. Then
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results for different simulations are presented and the ability to estimate the blade specific wind speeds and the wave force
are presented and discussed.

2. MODEL

In this section, the different submodels, constituting the floating wind turbinemodel are introduced. The model contains
aerodynamic and hydrodynamic submodels as well as structural models for the tower in the fore-aft direction and drive-
shaft. Structural parameters for the tower fore-aft and drive-shaft degrees of freedom have been obtained via a system
identifaction method known as prediction error method[7] (PEM). Actuator dynamics have been omitted in this work.

2.1. Aerodynamic model

The aerodynamic model used in this work is based on the single-state dynamic inflow model proposed in Ref. [5] with the
extension that the effective wind speed of the individual blades rather than a rotor-wide effective wind speed are included.
This extension of the model enables individual pitch control in future work.

For the bladesi = 1, . . . , nb, the aerodynamic torqueQi and thrust forceTi are the integrated aerodynamic forces over
the blade span

Ti(Vrel,i,Ω, θi, v̄n,i) =

∫ R

0

Fn(Vrel,i,Ω, θi, vn,i(r), r)dr (1)

Qi(Vrel,i,Ω, θi, v̄n,i) =

∫ R

0

rFt(Vrel,i,Ω, θi, vn,i(r), r)dr (2)

whereFn(·) andFt(·) are local blade forces normal and tangential to rotor-plane. The localtangential induced velocities
are assumed quasi-steady and the local axial induced wind speedsvn,i(r) are given by the averaged induced axial wind
speed̄vn,i and the quasi-steady distribution of the axial induction factor

vn,i(r) =
aqs
n (λi, θi, r)

āqs
n (λi, θi)

v̄n,i (3)

where

āqs
n (λi, θi) =

1

R

∫ R

0

aqs
n (λi, θi, r)dr (4)

The temporal dynamics of the averaged axial induced velocity is governed by a first order ordinary differential equation

v̄n,i =
1

τis+ 1
Vrel,iā

qs
n (λi, θi) (5)

with the time constant

τi =
1

2

1.1R

Vrel,i − 1.3v̄n,i
(6)

based on the same assumption as in Ref. [5] .
The aerodynamic torque and thrust of each blade comprises the rotor-wide entities

Q =

nb∑

i

Qi andT =

nb∑

i

Ti (7)

Strain gauges (SG) are placed at root of the blade at the radial distancerSG and projected into the normal and tangential
directions of the rotor plane. If the blades where assumed rigid and massless the aerodynamic bending moments

Qn,i(Vrel,i,Ω, θi, v̄n,i) =

∫ R

rSG

rFn(Vrel,i,Ω, θi, vn,i(r), r)dr (8)

Qt,i(Vrel,i,Ω, θi, v̄n,i) =

∫ R

rSG

rFt(Vrel,i,Ω, θi, vn,i(r), r)dr (9)
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could directly be obtained from the strain gauges and used to estimate blade specific wind speeds. However, the measured
out-of-plane root bending momentQSG

n,i is affected by the centrifugal loading of the blades and is thus lower than the
solely aerodynamic out-of-plane root bending moment. Several methods exist to make the out-of-plane sensor usable
in the estimation algorithm: The model can be extended to include the structural properties of the blade or the estimation
algorithm can assign smaller importance of the sensor by increasing the expected output variance of the sensor used to tune
the estimation algorithm. The measured in-rotor-plane root bending momentQSG

t,i is heavily influenced by the gravitational
loading of the blades varying with the azimuth angle of the blades. The aerodynamic moments are approximated by the
blade root bending moments in the following way

Qn,i(Vrel,i,Ω, θi, v̄n,i) ≈ QSG
n,i + νqn,i, νqn,i ∈ N(0, σ2

qn) (10)

Qt,i(Vrel,i,Ω, θi, v̄n,i) ≈ QSG
t,i − Fg,blade sinφb,i + νqt,i, νtn,i ∈ N(0, σ2

qt) (11)

whereFg,blade is the gravitational loading on the individual blades andφb,i is the azimuth angle of the individual blades
and the zero-mean Gaussian distributed noise contributionsνqn,i andνqt,i represent the uncertainties caused by blade
dynamics, blade deformation, centrifugal stiffening etc.

2.2. Wind spectra

For rotor-wide wind speed spatially averaged models, based on e.g. theturbulence model of Ref. [8] , are suitable. But for
the individual wind speeds of each blade, the strongest source of windspeed variation is the periodic contribution caused
by wind shear, tower shadow and the spatial structure of the turbulent field [9]. As a result the wind variation is modeled
as a periodically varying wind speed depending on the rotation speed of rotor. The total wind speed for bladei is the sum
of a rotor-wide mean wind speedVm and a blade specific turbulent wind speedVt,i

Vi = Vm + Vt,i (12)

where the turbulent wind speed spectrum is given by the rotational speedof the rotor

Vt,i =
ω2
n,v

s2 + 2ωn,vζv,is+ ω2
n,v

ξv,i, ξv,i ∈ N(0, σ2
v) (13)

The damped frequency of the turbulent wind field is equal to the rotationalspeed of the rotorωd,v = Ω. Giving a natural
frequency dependent of damped frequency and damping ratioωn,v = ωd,v/

√
1− ζ2v . For a constant periodic wind speed

the damping ratio should ideally be zero, numerical conditioning especially with regards to the synthesis of model-based
controllers, e.g. LQ, is however eased by adding a little damping in the model and ζv = 0.01 is chosen. The rotor-wide
mean wind speed is modeled as a parameter rather than a state and a first order filter driven by the mean of the individual
wind speed estimates of the current sample determines the mean wind speed in the next sample

Vm =
1

τs+ 1
V, V =

1

nb

nb∑

i

Vi (14)

where a time constantτ = 1/(Ω rad/s) has shown good performance with regards to the estimation of the blade specific
wind speeds.

2.3. Hydrodynamic forces

The offshore tower either in a floating or fixed configuration is subjected towave forces. If these forces are not taken into
account, the tower top displacement will be ascribed solely to the aerodynamic thrust resulting in a erroneous estimation
of wind speed. The hydrodynamic forces on a moving body with velocityv in a fluid with the oscillating flow velocityu
can be described by the semi-empirical Morrison equation [1] .

Fh = ρwVbu̇+ ρ(Cm − 1)Vb(u̇− v̇) +
1

2
ρwCdAb(u− v)|u− v| (15)

whereCm andCd are the inertia and drag coefficients of the floating body,ρw is the mass density of the fluid andVb and
Ab are volume and area of the body submerged in the fluid. The Morrison equation can be simplified to

Fh = κ1u̇+ κ2v̇ + κ3(u− v)|u− v| (16)

where the constantsκ1,κ2 andκ3 contain the aforementioned coefficients, volume etc. The third term describing the drag
force, is assumed to be negligible, leading toκ3 = 0. The first term is rewritten to a wave forceFw = κ1u̇. The modeled
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spectrum of the stochastic oscillating wave force is fitted to the measured spectrum of the water acceleration

Fw =
kω2

n,w

s2 + 2ωn,wζws+ ω2
n,w

ξw, ξw ∈ N(0, σ2
w) (17)

giving a damped frequencyωd,w = 2π
Tp

defined by the peak spectral periodTp. In the work of Ref. [10] values for the
peak spectral period and significant wave height are given asTp = 10 s andHs = 6 m and crude fitting of the water
acceleration power spectral density function to the model (17) gives a damping ratioζw = 0.125 and a steady state gaink
of 0.2. The natural frequency can then be determined asωn,w = ωd,w/

√
1− ζ2w. The stochastic inputww is assumed to be

zero-mean Gaussian distributed white noise. Simulations (not presented here) have shown that the wave force estimation is
not sensitive to whether or not the correct peak spectral period is known, correct information about the peak spectral period
is of higher importance when used in a model-based control algorithm. The correct peak spectral period can be estimated
online via the estimated wave force. The peak of the power spectral density can by computed using various algorithms e.g.
Fast Fourier Transform (FFT) algorithms. The peak spectral periodcan then be updated, e.g. through a first order dynamic
filter with a time constant in the range of tens of minutes.

2.4. Tower and spar buoy

The fore-aft motion of the wind turbine can be comprised of three degrees of freedom: Tower bending and pitch and surge
of the entire wind turbine. Pitch describes the angle which the turbine is rotatedwith regards to the vertical axis and surge
indicates the displacement of the wind turbine in the wind direction, see also Fig. 1 for a depiction of the mentioned degrees
of freedom. In this work, the wind turbine pitch (tp) angle is defined as the pitch angle of the wind turbine at the bottom,
denotedα. For a rigid tower and spar buoy, the wind turbine pitch angle is related to the relative displacement of the top
and bottom of the wind turbine by a simple trigonometric relation

ytp = h sinα (18)

whereh is the height of the wind turbine. For small variations ofα, the pitch displacement be approximated as

ytp ≈ hα (19)

In this work, the surge displacementysurge is defined as the displacement of the bottom of the floating wind turbine
relative to point where the turbine would be if no wind or waves where affecting it. The relative displacement of the tower
top, where turbine pitchytp and tower bending (tb) ytb are included, is denotedyrel and is given as

yrel = ytop − ysurge = ytp + ytb (20)

The effects of bending, pitch and surge can be observed in Fig.2, which depicts the results of a simulation. Simulation
details can be found in the Results section of this paper. In the first plot it is seen that the difference betweenyrel andytp
is small compared to the absolute variations ofyrel andytp. The second plot shows that the pitch degree of freedom given
by ẏrel andẏtp is approximately within a±2 m/s operating range. The surge degree of freedom, which is the difference
betweenẏtop and ẏrel, has an approximately 10 times smaller contribution to the fore-aft velocity of the wind turbine
compared to the pitch degree of freedom and is omitted from the model as itis considered negligible. The third plot shows
a significant opposite phase between top and bottom measurements and is caused by bending of the tower, as the tower is
not rigid but flexible.

The tower bending and pitch of the floating wind turbine can be described bytwo interconnected mass-damper-spring
systems (Mtp, Dtp,Ktp) and (Mtb, Dtb,Ktb) where the first system models the pitch motion of the wind turbine and
the second system models the bending of the tower. The top of the wind turbine is affected by the aerodynamic thrust
forces of each bladeTi, which are functions of the relative wind speed seen from the wind turbinetopVrel,i = Vi − ẏrel.
The bottom of the wind turbine is affected by the hydrodynamic forces (16) consisting of a wave force and a turbine
acceleration term. A turbine acceleration termκ2ÿα can be added to the inertial mass of the turbine pitch resulting in a
new massM̃tp = Mtp + κ2 and the resulting system

Mtbÿrel +Dtbẏtb +Ktbytb = T (21a)

M̃tpÿtp +Dtpẏtp +Ktpytp = Fw +Dtbẏtb +Ktbytb (21b)

describes the fore-aft degrees of freedom of the floating wind turbine, see Fig.1 for a depiction of the two interconnected
mass-damper-spring systems. It is expected that an acceleration sensor in the tower top and an angle measurement in
the bottom are realistic assumptions of available sensors. The velocity and acceleration of the bottom angles can then be
calculated via numerical difference.
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Figure 1. Degrees of freedom of tower in fore-aft direction. (a) Degrees of freedom: tower bend, pitch and surge, only tower bend
and pitch are included in the model. (b) The relative position yrel is the difference between the position of the tower top ytop and the
floater bottom ysurge. The sum of turbine pitch displacement ytp and tower bending displacement ytb equals yrel. (c) The floating

tower modeled as two interconnected mass-damper-spring systems.

2.5. Drive-train

The drive-train connects the rotor to the generator through a low speed shaft, a gearbox and a high speed shaft. The
drive-train flexibility is a modeled in the low speed shaft coordinate system

Irφ̈r +Dsφ̇∆ +Ksφ∆ = Q (22)

IgN
2
g
φ̈g

Ng
−Dsφ̇∆ −Ksφ∆ = −QgNg (23)

whereNg is the gear ratio,Ir andIg are the moments of inertia of the rotor and generator,Ks andDs are the spring
and damping constants. It should also be mentioned that the following definitions are introduced:̇φr ≡ Ω is rotor speed,
φ̇g ≡ Ωg is generator speed andφ∆ ≡ φr − φg

Ng
is the angular torsion of the drive-shaft in the low speed shaft coordinate

system.

3. EXTENDED KALMAN FILTER

The ordinary differential equations of the previous section can be gathered in an ordinary differential state space equation
and an output equation

ẋ(t) = f(x(t),u(t)) +w(t) (24a)

y(t) = g(x(t),u(t)) + v(t) (24b)

The ordinary differential state space equation can be time-discretized giving the state progress equation

x(tk+1) = f(x(tk),u(tk)) +w(tk) (25)

States, outputs and inputs are

x = [Ω Ωg φ∆ ytp ẏtp ytb ẏtb Vt,i V̇t,i v̄n,i Fw Ḟw]
T (26)
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Figure 2. Floating tower fore-aft motion - The first plot shows tower top position shown with 3 different sensors: 1. absolute position
in y direction, 2. position relative to position of bottom of floater in y direction, 3. absolute pitch angle multiplied with height of wind
turbine. The second plot depicts the velocities of the 3 sensors. It can be seen that low frequency displacement of the entire structure
(surge) has little impact on the velocity measurements. The third plot display the accelerations and it can be seen that the tower

bending mode causes the top and bottom sensors to differ, as they are in opposite phase.

y = [Ω Ωg φ∆ α α̇ α̈ ÿtop Pe Q
SG
n,i QSG

t,i ]
T (27)

u = [θi Qg]
T (28)

wherei = 1, . . . , nb. The process and measurement noise vectorsw andv are zero-mean Gaussian distributed with the
covariance matricesRx andRy, respectively. The process and measurement noise vectors are given as

w = w0 +Gww1 andv = v0 +Gvv1 (29)

wherew0 andv0 are background low-level zero-mean Gaussian distributed noise with thecovariance matricesRx,0 and
Ry,0, respectively. The additional process and measurement noise vectorsw1 = [ξv,i ξw]

T andv1 = [νqn,i νqt,i]
T are

added to the general noise vectorsw andv through the noise gain matricesGw andGv, respectively. The general noise
covariance matrices are given as

Rx = Rx,0 +Gwdiag([σ2
v . . . σ2

v σ2
w])Gw

T (30)

Rv = Rv,0 +Gvdiag([σ2
qn . . . σ2

qn σ2
qt . . . σ2

qt])Gv
T (31)

An extended Kalman filter [11] has been employed to estimate the states of the model presented in the previous section,
among those states are the effective wind speeds at each blade and the wave force state. The estimated states are denoted
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x̂ka|kb
, whereka|kb means the estimation at timeka given by the information available at timekb. The a-posteriori

estimation of the states is given by

x̂k|k = x̂k|k−1 + Lk[yk − g(x̂k|k−1,uk)] (32)

Enabling ana-prioriestimation of the one-step-ahead prediction of the states

x̂k+1|k = f(x̂k|k,uk) (33)

where the Kalman gainLk and output error covarianceΨk

Lk = Pk|k−1C
T
k|k−1Ψ

−1
k (34a)

Ψk = Ck|k−1Pk|k−1C
T
k|k−1 +Ry (34b)

are updated by the discrete time recursive Riccati equation

Pk|k = Pk|k−1 − LkCk|k−1Pk|k−1 (34c)

Pk+1|k = Ak|kPk|kA
T
k|k +Rx (34d)

The EKF is based on an extension of the Kalman filter, which is the optimal estimator for linear systems. Consequently the
time discrete model consisting of (25) and (24b) is linearized w.r.t.x using first order Taylor series approximation giving
Ak|k, which is the Jacobian of the state progress equationf(·) linearized at(x̂k|k,uk) andCk|k−1, which is the Jacobian
of the output equationg(·) linearized at(x̂k|k−1,uk).

4. RESULTS

A simulation is performed with a turbulent wind field [8] with turbulence intensity 0.14, power law wind shear with a
exponent of 0.14 and potential flow tower shadow. Linear irregular wave kinematics based on composition of Airy waves
with Wheeler stretching, with a significant wave heightHs = 6 m and peak spectral periodTp = 10 s, are used. The chosen
parameters for the hydrodynamic loads are based on Ref. [10] . A collective blade pitch gain scheduled PI controller
similar to the one of Ref. [1] has been used to control the floating wind turbine. The simulation is performed with the
hydro-aero-servo-elastic simulations software HAWC2[12] developed by Risø DTU.

The wind speed and wave force estimation performance of the extendedKalman filter based on the model presented in
this paper can be seen in Fig.3. The first subplot in Fig.3 depicts the wind speedV , which is the average of the blade
specific rotationally sampled wind speeds as the blades pass through towershadow, wind shear and the turbulent features
of the wind field. It can be seen that the real wind speed and the estimated wind speed are in good agreement, except for
an offset largely caused by blade deformations, blade cone and rotortilt, all of which are not included in the BEM model
used by the extended Kalman filter. The estimated wind speed lags behind thereal wind speed with a few seconds, the
estimation lag is caused by the fact that the Kalman filter can not be tuned to hard due to model uncertainties etc. The better
that model and plant are in agreement, the harder the Kalman filter can betuned and the estimation lag would be reduced as
a result. The second subplot shows the relative wind speedVrel given asV − ẏβ , the wind speed and its estimated counter
part are in good agreement apart from the phase lag and offset. A scaled estimation of the wave forceFw is compared to
the water acceleratioṅu at 10 m depth below the mean sea level in the third subplot. The water acceleration and estimated
wave force a in general in good agreement. From approximately 50 s to 65 s a significant high frequency contribution on
the wave force estimation is observed, this coincides with significant tower bending as observed in Fig.2, indicating that
the aerodynamic thrust and wave forces are not fully separable by theextended Kalman filter in its current configuration.
The inability to separate the aerodynamic thrust and wave forces are likelydue to model uncertainties e.g. unmodeled
phenomena such as blade deformations which are exited by the significant tower bending occuring at the same time.

In Fig. 4 the wind speed signal has been binned with regards to the azimuth angle of the blades and it can be seen once
more that the estimations have a slight offset and phase lag compared to the real signals. The phase lag of the estimated
wind is approximately 35 degrees and individual pitch control would probably not achieve good results in terms of load
reduction with a phase lag of that size. Preliminary investigations, not presented in this paper, suggest that the wind speed
estimation performance could be improved by the inclusion of blade structural degrees of freedom in the model used by
the Kalman filter. The improvement would increase chances of a successful implementation of individual pitch control in
future work.

Depending of which sensors are used and depending on how much the particular sensors are trusted, different wind
speed estimation performance is observed in the simulations, the same applies for different levels of modeling detail. Fig.
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Figure 3. The first subplot depicts the wind speed observed by the rotating blades. The second subplot shows the relative wind speed.
The third subplot displays the scaled wave force estimates and the acceleration of the water at 10 m depth.
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Figure 4. Individual wind speeds for each blade and estimations thereof binned with regards to the azimuth angle of the individual
blades.

5 illustrates the importance of including significant phenomena in the model used by the extended Kalman filter. Three
different models are used by the extended Kalman filter: The first model is the same model as used in Fig.3 including
tower bending and wave forces. The second model differs from the first by excluding the wave force contribution in the
model. The third model differs from the first by omitting tower bending in themodel. The wave forces are clearly seen to
influence the wind speed estimations of the extended Kalman filter based on the second model and the tower bending is
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Figure 5. Wind speed and wave force estimation by extended Kalman filters based on three different models: The first model includes
all the submodels presented in this work, including tower bending and wave force contribution. The second model omits wave forces

and the third model excludes tower bending.

clearly seen to disturb the wave force estimation of the extended Kalman filterbased on the third model. All three Kalman
filters are tuned with similar covariance matrices and the tuning is quite ”aggressive” making the estimations sensitive to
modeling errors. A detuning of the Kalman filters rendering them less aggressive would somewhat dampen the obvious
poor performance of the Kalman filters based on the second and third models, but the problem remains: The second and
third model does not the describe the floating wind turbine adequately.

5. CONCLUSION

In the present work the significant phenomena of a floating wind turbine inthe fore-aft direction have been identified and
an extended Kalman filter based on the presented model has been used toestimate wind speed and wave forces. Wave
force contribution as well as tower pitch and tower bending has been identified as important submodels, which should all
be included in the model in order to achieve good wind speed and wave force estimation performance. Furthermore, the
presented model enables blade specific wind speed estimates, which in turn enable individual pitch control when used in
a model-based control algorithm. Blade deformations has not been included in the presented model and it remains to be
seen if further improvements regarding wind speed and wave force estimations could be obtained by extending the model
to include blade structural degrees of freedom.
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ABSTRACT

This paper presents a wind turbine controller able to handle both hard and soft constraints, typically on actuators but also
on other components of the wind turbine, if needed. An issue especially relevant during extreme events or for under-
dimensioned actuators. The presented controller is based on model predictive control, a control method well suited for
constraint handling. The performance of the presented controller during an extreme operating gust is compared to that of a
proportional-integral controller with integrator anti-windup. Furthermore, the presented controller’s capability to operate
in the full wind speed range is demonstrated by additional test cases. Copyright c© 2010 John Wiley & Sons, Ltd.

KEYWORDS

model predictive control; constraint handling; horizontal axis wind turbine

Correspondence
L. C. Henriksen, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000
Roskilde, Denmark.

E-mail: larh@risoe.dtu.dk

Received . . .

1. INTRODUCTION

In the pursuit of lowering the cost-to-power ratio of wind turbines, advanced control algorithms play an important role.
Model based control algorithms such as LQG,H∞, LPV, nonlinear controllers etc. and their application to wind turbines
have all been covered thoroughly e.g. [1, 2, 3]. These methods are attractive because the control objectives can beprioritized
such as power production and load reduction of key components. Via observers, the unmeasured states can be estimated
and the integration of new types of sensors in conjunction with well known sensors can be handled reasonably easy within
the model based framework.

The algorithms mentioned above have however usually one shortcoming:The ability to handle constraints in a
systematic way, the solution is typically to make the controller robust and thus decrease the potential performance of the
controller. Constraints can be either physical limitations of e.g. the actuators, such as limits of the pitch angle [4] or artificial
constraints, such as the rate of change of the pitch angle which should be within some limits to prevent excessive fatigue
damage [5]. Other types of artificial constraints, such as simplified fatigue models ofselected key components [6, 5], could
be included in the control design model and effort could be put to keeping the approximated fatigue expressions within
some predefined limits.

Model predictive control (MPC) offers the ability to handle constraints. The application of MPC on wind turbines have
previously been investigated in [7, 5]. The ability to handle the nonlinear physics of wind turbines is investigated in [7] but
no special attention is given to constraints. Damage mitigation control is investigated in [5] however only operation above
rated wind speed is considered.

The present work uses MPC to respect the constraints on the actuators,i.e. pitch angle and -rate and generator torque
and -rate, which in this case are considered to be real and hard constraints. It is beyond the scope of this paper to investigate
the fatigue of key mechanical structures such as drive-shaft torsionor tower bending. The primary focus is on constraint
handling and effort will thus not be put into comparing fatigue loads with different controllers but simply verify the ability
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to control a wind turbine subjected to constraints, both physical and artificial. To give a simplified example, artificial
constraints on the generator speed and -power are added to the controlalgorithm and investigated during an extreme
operating gust. The artificial constraints will be at selected percentages above the rated values of the generator power and
speed. During extreme events, the violation of these artificial constraints can be prioritized such that the violation of one
constraint is allowed if it decreases the violation of another more importantconstraint. Although the given example might
not apply for real wind turbines, the presented principle can be applied tomore useful objectives such as damage mitigation
control [5].

In this paper, MPC within a hybrid controller framework is presented. Thehybrid controller framework ensures
switching between the different regions of operation and enables operation over the entire wind speed range. State and
disturbance observers are used by the MPC to estimate the states and the unmeasurable disturbances. The inherent use
of observers to estimate the disturbances also handles the problem of notbeing able to measure all the states used by the
MPC.

The wind turbine in this paper is inspired by the National Renewable Energy Laboratory (NREL) 5MW reference wind
turbine [8], which is a variable speed and pitch controlled wind turbine. The MPC is compared to a PI controller, also
presented in [8]. The PI in this paper has however been to modified to be able to handle saturations of the pitch rate
such that a fair comparison between the MPC and PI can be performed.The control methods presented in this paper are
applicable for the class of wind turbines equipped with variable speed generators and controlled by the pitch of the rotor
blades, the electromagnetic torque of the generator and the yaw drive ofthe nacelle. The latter is however not addressed in
this work, as perfect yaw alignment is presumed.

This paper is organized in the following manner: The first section introduces the governing equations of the wind
turbine model, necessary for the synthesis of model-based control algorithms. The second section presents the concept
of the hybrid controller setup which covers the handling of the different regions of operation depending on the mean
wind speed. The third section describes model predictive control whichis the underlying methodology in the individual
controllers of the hybrid controller. Finally, results of simulation are shownand discussed.

2. MODEL FOR CONTROLLER DESIGN

The control design model is given by a number of algebraic and differential equations. The primary algebraic equation is
the aerodynamic power transferred from wind to rotor

Pr = 1
2
ρπR2V 3CP (θ, λ) (1)

whereρ is the mass density of air,R is the rotor disc radius,V is the relative effective mean speed over the entire rotor
disc. The aerodynamic power coefficientCP determining how much of the total amount of available power in the rotor
disc is transferred from the wind to the rotor.CP is a function of the blade pitch angleθ and the tip-speed-ratioλ, which
is the ratio between the speed of the blade at the tip and the wind speed

λ =
ΩrR

V
(2)

The wake is assumed to be in equilibrium, i.e., the dynamic inflow effects ofthe induced velocities from the wake are
neglected. The aerodynamic powerPr relates to the aerodynamic torqueQr and rotor speedΩr

Pr = ΩrQr (3)

The aerodynamic thrust forceQt induced by the mass flow of air around rotor blades and tower in the wind direction is
given by

Qt =
1
2
ρπR2V 2CT (θ, λ) (4)

where the aerodynamic thrust coefficientCT is a function of the blade pitch and tip-speed-ratio. The mechanical powerPg

transferred from the high speed drive-shaft to the generator relatesto the generator speedΩg and the generator torqueQg

Pg = ΩgQg (5)

All losses in drive-shaft, gearbox, bearings, generator etc. are lumped into a parameter and transferred into the conversion
from mechanical power to electrical powerPe in the generator with a efficiencyη

Pe = ηPg (6)
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The relative wind speed average over the rotor disc due to the velocity of nacelle displacemenṫψt is given by

V = Veff − ψ̇t (7)

where the effective wind speedVeff is the sum of the mean wind speedVm and a spatial averaged stochastic turbulent
wind speedVt

Veff = Vm + Vt (8)

To have a simple turbulence model, for the rotor disc, the spectrum of a spatial averaged Mann turbulence [9, 10] is fitted
to a second order linear filter, with the time constantsτ1 andτ2, for different mean wind speeds

Vt =
k

(τ1s+ 1)(τ2s+ 1)
e, e ∈ N(0, 1) (9)

wheree is zero-mean Gaussian distributed white noise. The steady state gain of the linear turbulence model is given by
k = σk

√
2Lk/Vm whereLk is the roughness length andσk is the standard deviation, in the main wind direction, of the

Kaimal turbulence model, both given in IEC 61400-1 [11].
The following differential equations constitutes the structural part of the design model. The first component is a flexible

slow speed drive-shaft and an assumed rigid high speed drive-shaft

Irφ̈r +Dsφ̇+Ksφ = Qr (10)

IgN
2
g
φ̈g

Ng
−Dsφ̇−Ksφ = −QgNg (11)

whereNg is the gear ratio,Ir andIg are the moments of inertia of the rotor and generator, respectively.Ks andDs are the
spring and damping constants of the low speed drive-shaft. It should also be mentioned that the following definitions are
introduced:φ̇r ≡ Ωr is rotor speed,̇φg ≡ Ωg is generator speed andφ ≡ φr − φg

Ng
is the slow speed shaft angular torsion.

Another significant model component is the fore-aft motion of the tower

Mtψ̈t +Dtψ̇t +Ktψt = Qt (12)

whereψt denotes the nacelle displacement in the fore-aft direction and is positive inthe wind direction,Mt denotes the
tower, rotor and nacelle equivalent mass andKt andDt denotes the tower spring and damping constants.

The actuators are assumed linear under the assumption that a low level controller, e.g. PID or some type of nonlinear
controller e.g. [12], is operating in closed loop with the actuator mechanics. The pitch actuator dynamics, including local
low level controller, are described by a second order ordinary differential equation, an approximation which under the
proper conditions can be justified [13]

θ̈ + 2ζθωθ θ̇ + ω2
θθ = ω2

θθref (13a)

subject to
[
θmin

θ̇min

]
≤

[
θ

θ̇

]
≤

[
θmax

θ̇max

]
(13b)

whereωθ andζθ are the natural frequency and damping ratio of the actuator andθref is the reference signal from the
controller. The generator torque actuator is described by a first orderordinary differential equation [14]

Q̇g + τ−1
g Qg = τ−1

g Qgref (14a)

subject to
[
Qg,min

Q̇g,min

]
≤

[
Qg

Q̇g

]
≤

[
Qg,max

Q̇g,max

]
(14b)

whereτg is the time constant of the generator torque actuator andQgref is the reference signal from the controller.
The components can be gathered into a nonlinear model composed of a nonlinear ordinary differential equation

f : Rn+nu → Rn, a state noise matrixG ∈ Rn×ne and a measurement equationg : Rn+nu → Rny

ẋ(t) = f(x(t),u(t)) +Gw(t) (15a)

y(t) = g(x(t),u(t)) + v(t) (15b)
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that describes the relationship between the state vectorx ∈ Rnx , the input vectoru ∈ Rnu , the output vectory ∈ Rny

and the state and measurement noise vectorsw ∈ Rnw andv ∈ Rny , respectively, of the complete design model. These
vectors contain the following variables

x = [Ωr Ωg φ ψt ψ̇t Veff V̇eff θ θ̇ Qg]
T

u = [θref Qg,ref ]
T

w = [e]T

y = [Ωr Ωg ψ̈t θ θ̇ θ̈ Qg Q̇g Pe]
T

The nonlinear model can be linearized using first order Taylor series approximation whereδ denotes small variations away
from the linearization point, which in this case is equivalent with equilibrium points for a given wind speed. The linearized
model is time-discretized by the zero-order-hold method [15] into the form

δxk+1 = Aδxk +Bδuk +Gwk, w ∈ N(0,Rw) (16a)

δyk = Cδxk +Dδuk + vk, v ∈ N(0,Rv) (16b)

where the subscriptk refers to the discrete points in timetk. The state, input and output vectors are related in a linear way
via the matricesA ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nu andD ∈ Rny×nu . Notice the small variations symbolδ has
been omitted from the remainder of this paper to simplify notation.

3. HYBRID CONTROLLER SETUP

The term hybrid controller relates to the fact that four controllers, namedKI toKIV , are active under different operating
conditions governed by a switching mechanism.

The primary static objective of the wind turbine control system is to optimize power production for the given wind
speed. Load reduction is a typical secondary objective, which shall however not be discussed further in this section. The
primary objective for a given wind speed can be formulated as the constrained minimization of nonlinear quadratic cost
function concerning generator power. An additional term concerning generator speed is included in the cost function, this
term is only active when the first term concerning power is zero. The steady state constrained optimization problem for a
given wind speed is

min
Ωg ,θ

(Pe − Pnom)2 + w(Ωg − Ωg,nom)2 (17a)

Wind speed [m/s]

(Dotted line) Pe (Dashed line) Ωg (Solid line) θ
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Figure 1. Sweep of wind speeds showing the steady state values of the primary variables of the wind turbine. Notice the pitch
angle would normally have slightly different values for wind speeds below rated wind speed. The pitch angle in this case have been
constrained and is thus different from its unconstrained value. This is however not expected to have significant influence on the

performance of the controller.
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HAWT

Supervisor yk

Switch
uk

KI , Kθ

KIV

Ok
...ru

k

rk

Reference

Ref. filter

Pred. filter

Figure 2. Setup of the hybrid controller. Regions I to III are only controlled by the generator torque controllers KI to KIII . The
pitch angle is kept constant by a separate controller Kθ in these regions. In region IV both pitch angle and generator torque are used

in the same controller.

where

w =

{
0 for Pe 6= Pnom

1 for Pe = Pnom

subject to

0 = f(x,u) (17b)

Ωg ∈ [Ωg,low,Ωg,nom] (17c)

θ ∈ [θmin, θmax] (17d)

where the equality constraint (17b) ensures steady state operation. The generator speed and pitch angle are limited to a
certain ranges (17c) and (17d). The termsmin/max indicate constraints to be respected, whereaslow/nom indicate
lower and upper set points that should be tracked. As explained later in thissection the actual set point depends on the
given wind speed: For low wind speed thelow set point is tracked, for mid-range wind speeds the set point is between
low andnom and for high wind speeds the set point isnom. Set points are not respected in the same way as constraints
and e.g. generator speed is allowed to vary around its given set point, whereas e.g. the pitch angle cannot go beyond its
min/max limits. The distinction betweenmin/max andlow/nom is maintained throughout this paper. There are also
other constraints such as pitch rate and acceleration limits etc. but these velocity constraints are not active during the
present steady state optimization sweep, as velocities and accelerations are zero at steady state. Above rated wind speeds,
where the generator power is at its nominal value, there is no unique solution for the optimization problem. The pitch
angle and generator speed could have any number of solutions as long as they are on the appropriate contour line of the
CP curve. The generator speed weightw ensures that for above rated wind speed there is a unique solution with generator
speed at its nominal value.

The optimization gives the characteristic diagrams for generator power,generator speed and pitch angle versus wind
speed as seen in Figure1. Four regions of operationO ∈ (I, . . . , IV ) also denoted(OI , . . . , OIV ) respectively, are
derived from (17). The regions and their respective primary control objectives are:

• OI - Optimize power. Generator speed at lower level. Pitch angle fixed at its minimum value.
• OII - Optimize power. Variable generator speed, i.e. at global maximum of aerodynamic power coefficientCP .

Pitch angle fixed at its minimum value.
• OIII - Optimize power. Generator speed at nominal level. Pitch angle fixed at itsminimum value.
• OIV - Regulate power and generator speed to nominal levels. Variable pitch.

The resulting hybrid controller has a setup as shown in Figure2. The pitch angle should should ideally be at its optimum
in for a given wind speed inOI -OIII . Instead, the pitch angle is chosen to be at its minimum value in these regions to
simplify the control problem. The choice of fixating the pitch angle at lower wind speeds means that only the generator
torque is used as a control variable in the controllersKI toKIII . In these regions the pitch angle is controlled by a separate
controllerKθ which simply aims to keep the pitch angle constant at the prescribed value. The constant pitch angle inOI

toOIII has little impact of the aerodynamic efficiency due to the flatness of theCP curve. InOII the aerodynamic power
coefficient is assumed to be maximum

CP opt = CP (θopt, λopt) (18)
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the tracking of the optimal aerodynamic coefficient in this region can be obtained by

Popt(V ) ≈ Popt(Ωg) = koptΩ
3
g (19)

where

kopt = η 1
2
πρR5λ−3

optN
−3
g CP opt (20)

and whereV = λ−1
optΩrR is presumed [16, 17]. One method for controlling the wind turbine inOII is to determine either

the desired optimal power or generator torque as function of generatorspeed as seen above. In this case, the combined
mass moment of inertia of the rotor and generator will act as a low pass filter. The approach of tracking the generator power
as function of generator speed can be referred to asPΩ control. The relationship can be reversed such that the generator
speed is tracked as function of generator power (ΩP control)

Ωg,opt(V ) ≈ Ωg,opt(Pe) =
3

√
Pek

−1
opt (21)

The tracking of generator speed could potentially lead to undesirable behavior of the closed loop since the control signal
(Qg,ref ) is also a factor in the reference signal (Pe = QgΩgη) only filtered by the relatively fast dynamics of the generator
torque actuator and controller gains. Although theΩP control could be potentially be problematic, it has been chosen in
the present work to ensure a similar structure of the controllerKI ,KII andKIII . No major problems regarding the almost
direct coupling between control and reference has been observed inthe present work. If problems did occur an additional
low pass filter could be inserted. In the other regions of operation, the setpoints have fixed values as listed in TableI.

The supervisor block in Figure2 follows the switching conditions listed in TableII to determine which controller is
active. The conditionsS12 andS32 ensure switching from the fixed speed regionsOI andOIII to the variable speed
regionOII . Apart from the condition that the supervisor should switch toOII if the generator speed deviates from the
fixed speed reference an additional condition concerning generator power is included inS12 andS32. The assumption of
an optimal power coefficient can be used to calculate the power levels at the critical wind speeds at the borders of region
OII

PL = koptΩ
3
g,low (22)

PH = koptΩ
3
g,nom (23)

The added generator power condition inS12 andS32 alleviates the problem of erratic switching between the fixed speed
regions and the variable speed region. If the controller is already in the variable speed region and the generator speed
exceeds its limits thenS21 andS23 ensures switching to the fixed speed regions.

If the controller is in nominal speed regionOIII and the generator power exceeds its nominal value thenS34 switches
to the nominal power and speed regionOIV . A shortcut conditionS24 from the variable speed region switches directly
fromOII toOIV if extreme wind conditions occur and disturbs normal operation. The lastconditionS43 switches from
OIV toOIII if the pitch angle approaches its minimum limit and the generator power and speed are below their nominal
values. The factorsǫ− andǫ+ prohibits the switching mechanism from continuously switching between two neighboring
operating regions, when the wind turbine operates on the boundaries between the respective regions. In this workǫ− and
ǫ+ have been chosen to be0.99 and1.01 respectively.

Kx yr r(u) u

I [Ωg] [Ωg,low] [Qg,ref ]
II [Ωg] [Ωg,opt(Pe)] [Qg,ref ]
III [Ωg] [Ωg,nom] [Qg,ref ]
θ [θ] [θopt] [θref ]

IV

[
Ωg

Pe

] [
Ωg,nom

Pnom

] [
Qg,ref

θref ]

]

Table I. Controlled outputs yr , (undamped) set points r(u) and
control signals u for the underlying controllers Kx of the hybrid

controller.

S Switching conditions
12 (Ωg ≥ Ωg,low) ∧ (Pe ≥ PL)
21 (Ωg ≤ Ωg,lowǫ

−)
23 (Ωg ≥ Ωg,nom)
24 (Pe ≥ Pnom)
32 (Ωg ≤ Ωg,nomǫ

−) ∧ (Pe ≤ PHǫ
−)

34 (Pe ≥ Pnom)

(Ωg < Ωg,nomǫ
−) ∧ (Ω̇g < 0)

43 ∧ (Pe < Pnomǫ
−) ∧ (θ < θminǫ

+)

Table II. Switching conditions S of supervisor block in hybrid
controller. The first integer in S denotes the current operating
region and the second integer indicates the operating region to

be switched to.
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3.1. Reference filter

To avoid violent transitions between different operating regions, a filter isinserted between the individual controllers and
the reference block. At times of switching, whenOk−1 6= Ok, the reference filter ensures that the reference sent to the
controllers is initially the measured controlled output and that the referencesent to the controllers approaches the real
reference at a rate specified by the reference filter. The referenceto trackr is damped by a first order filter

r = yr
ks

+
1

sτr + 1
(ru − yr

ks
) (24)

whereyr
ks

is the measured value of the controlled variable at the time of switch andru is the undamped reference. At
the occurrence of a switch of operating region, the states of the filter are reset. In this work the time constantτr has been
chosen to be 0.1 s.

3.2. Predictive filter

As it will be explained in the next section about predictive Kalman filters, thecontrollers rely not on the current
measurement but solely on the previous one. This means that the Supervisor, Reference and Reference filter blocks in
Figure2 should also predict one sample ahead and determine which controller is active and what reference the active
controller should track. A number of predictive filters could be used, including either of the Kalman filters of the controllers
KI toKIV , in the present work the the state predictions from the estimator inKII are used by the Supervisor, Reference
and Reference filter blocks rather than the direct measurement.

4. MODEL PREDICTIVE CONTROL

The generic setup for the origin shifting controller is now explained. The controllersKI to KIV andKθ are all set up
as depicted in Figure3. The implemented model predictive controller consists of two components: The first component
ensures offset-free performance at steady state (Section4.1) which is based on a general method that can also be used with
other types of state space controllers such as pole placement and linear quadratic controllers. The second component of
the controller is the constrained linear quadratic regulator (Section4.2) which is similar to a standard LQ controller but
has the ability handle hard and soft constraints.

4.1. Offset-free reference tracking in steady state, state est imation and origin shifting

Methods ensuring offset-free control such as the use of the disturbance model used in this paper or the error-integral-term
used by a PI controller, handle the unmodeled effects caused by parametric uncertainties or unknown disturbances. Offset-
free control ensures, for a constant referencer ∈ Rnr , that the tracked outputsyr ∈ Rnr of the plant have zero offset
with regards tor in steady state. In time-discrete formulation, offset-free control can bewritten as

lim
N→∞

1

N

N∑

k=0

(yr
k − rk) = 0 (25)

The origin shifting controller presented in this section aims to track the reference or set point signalr

rk = yr
k, yr

k ≡ Hyk (26)

Estimator

CLQR

Target
rk ūk

[x̄ ū]Tk Σ

ũk [u y]Tk
[d̂ p̂]Tk|k−1

[x̂ p̂]Tk|k−1

uk

Figure 3. Origin shifting model predictive controller setup. Notice that the control signal given by the controller is not directly fed back
to the estimator. This is because only the control signal of the active controller in the hybrid controller is fed back to the estimator.
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whereH ∈ Rnr×ny gives a linear combination or subset of the outputs andyr is called the controlled or tracked outputs.
In the case of a wind turbine, this could be desired generator speed and desired generator power.

If some sort of offset-free method is not used, then (25) cannot be ensured. To ensure offset-free performance, the
control design model (16) can be augmented with a disturbance model [18, 19], which is used to compensate for actual
disturbances and for any plant/model mismatch.
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(27a)

yk =
[
C 0 F

]
︸ ︷︷ ︸

Ĉ



x
d
p




k

+Duk + vk (27b)

where

v ∈ N(0,Ry) and



wx

wd

wp


 ∈ N(0,Rxdp)

and whered ∈ Rnd are the state disturbances andp ∈ Rnp are the output disturbances and whereRxdp ∈
R(nx+nd+np)×(nx+nd+np) is variance of the states and disturbances andRy ∈ Rny×ny is the variance of the output.
The clear distinction between output and state disturbances eases the design of an estimator with regards to tuning as
discussed later in this section.

Because the disturbances cannot be measured they have to be estimated. A discrete time predictive Kalman filter is
designed to estimate states and disturbances. The predictive Kalman filter,which only bases its estimation on the previous
sample, is chosen instead of the ordinary Kalman filter, which bases its estimation on the previous and current sample. For
a full state feedback control law, with feedback gainK, the difference between using either a predictive or an ordinary
Kalman filter would beuk = −Kx̂k|k−1 anduk = −Kx̂k|k, respectively. The choice of the predictive Kalman filter is
necessary since some measurements include a direct term from input tooutput, e.g. pitch acceleration and generator torque
rate, and the problem of causality would arise if an ordinary Kalman filter was implemented. Furthermore the predictive
Kalman filter gives the computationally expensive MPC algorithm an entire sample time period to compute the control
signal.

The estimated states and disturbances are denoted[x̂ d̂ p̂]Tk|k−1, wherek|k − 1 means the estimation at timek given
by the information at timek − 1. The predictive Kalman filter is given by



x̂

d̂
p̂




k+1|k

= Â



x̂

d̂
p̂




k|k−1

+ B̂uk

+ L[yk − Ĉ



x̂

d̂
p̂




k|k−1

−Duk] (28)

where the predictive Kalman gainL ∈ R(nx+nd+np)×ny is determined by the discrete time steady state algebraic Riccati
equation

L = ÂPĈT [ĈPĈT +Ry]
−1 (29a)

P = Rxdp + ÂPÂ
T − LĈPÂ

T
(29b)

The state and output variance can be considered to be given by normaldistributed white noise whereas the variance
properties of the disturbances could either be given by normal distributed white noise or by the deterministic discrepancies
between the nonlinear plant and the linear model. For very nonlinear plantssuch as a wind turbine with its nonlinear
aerodynamics the nonlinearities will dominate the performance of the disturbance estimation and effort should be
concentrated on simple tuning rules for the estimator. The tuning of this estimator can be conducted via 4 scalars
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(rx, rd, rp, ry)

Rxpd = diag(rxI rdI rpI) andRy = ryI

If the stochastic information about the model is disregarded under the assumption that the deterministic nonlinearities
are dominating the performance of the disturbance estimation then the following tuning guidelines can be used: For
rp/(rx, rd, ry) → ∞ the disturbances are tracked instantly and forrp/(rx, rd, ry) → 1 the disturbances are tracked at
an increasingly slower rate. This simple tuning is possible due to structure ofthe disturbance model. If a more complicated
model where stochastic properties of states and outputs are consideredand the disturbance model structure is different than
the one suggested here then an entirely different approach of tuning should be chosen.

The disturbance model can be structured in many ways but from a practical perspective it should be simple to create.
A simple design rule used in this work is to include a state disturbance for eachmeasured state, and an output disturbance
for each measured output that is not simply a state but a function of several states and inputs.

In steady state, whenxk+1 = xk and the state and output noise are given by their mean values, the system equations
are given by

x = Ax+Bu+Ed (30a)

y = Cx+Du+ Fp (30b)

Combining (30) and (26) gives the linear system of equations to be solved
[
A− I B
HC HD

] [
x̄
ū

]

k

=

[
−Ed̂

r −HFp̂

]

k

(31)

which gives the steady state target values(x̄, ū) that results in the desired references to be reached without offset in
spite of external disturbances and model/plant mismatch. Applyingū to the plant will under the assumption of constant
disturbances and a time-invariant plant ensure offset-free reference tracking. Relying solely on this approach will result in
slow convergence between controlled outputs and references. A dynamic controller, which could be e.g. based on LQ- or
H∞-theory etc., is used to drive the states toward their target values at a faster pace. Origin shifted variables are introduced

x̃ = x̂− x̄ andũ = u− ū

and the role of dynamic controller is to drive the origin shifted states toward zero ((x̃, ũ) → 0) at a rate specified by the
tuning of the dynamic controller.

A set of conditions regarding number of controlled output versus inputs, number of augmented disturbances etc. have
to be fulfilled to ensure offset-free control, [19] can be consulted for an elaboration on these conditions.

4.2. Constrained linear quadratic regulator

The constrained linear quadratic regulator (CLQR) entails the computation of the control signal within a prediction horizon
in the rangei = (0, . . . , N) wherek is the global time index andi is the local receding time index. At timek the prediction
horizon ranges fromk to k +N . The CLQR is formulated as a dual mode horizon where the first part, i.ei = (0, . . . , N ),
is considered constrained. In the second horizon, i.e.i = (N + 1, . . . ,∞), it is assumed that the plant has reached a state
where the unconstrained solution is feasible [20].

New variables are introduced: An optimization variablez ∈ Rnz which contains the quantities that should be driven
towards their offset-free target values. Hard and soft constraints are also introduced, respectively denotedh ∈ Rnh and
s ∈ Rns

zk = Czxk +Dzuk + Fzpk (32)

hk = Chxk +Dhuk + Fhpk (33)

sk = Csxk +Dsuk + Fspk (34)

whereCz ∈ Rnz×nx , Dz ∈ Rnz×nu , Ch ∈ Rnh×nx , Dh ∈ Rnh×nu Cs ∈ Rns×nx andDs ∈ Rns×nu describe the
linear relationship between the new variables andx andu. The matricesFp ∈ Rnz×np ,Fh ∈ Rnh×np andFs ∈ Rns×np

describe the relationship between the new variables and output disturbances. If for instance the constrained variables are
not measured, then offset-free honoring of the constraints cannot be guaranteed. In the case of the wind turbine controller
the optimization, hard constraint and soft constraint vectors, respectively are

z =
[
Ωr Ωg φ ψ̇t θ θ̇ θ̈ Qg Q̇g Pe

]T
(35)

h =
[
θ̈ Q̇g

]T
(36)

s =
[
θ θ̇ Qg Ωg Pe

]T
(37)
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The sensitivity matricesA, B, Cz, Dz etc. can be determined analytically or through numerical differentiation. It is
considered beyond the scope of this paper to provide the actual numbers in the sensitivity matrices and the reader is
requested to consult [8] for the parameters used by the model. The resulting optimization problem ingeneral terms can be
written as

min
~xk,~uk,~σk

k+N∑

i=k

z̃T
i|kWz̃i|k + σ̃T

i|kΞσ̃i|k

︸ ︷︷ ︸
1st mode

+
∞∑

i=k+N+1

z̃T
i|kWz̃i|k

︸ ︷︷ ︸
2nd mode

(38a)

subject to

x̃k|k = x̃k (38b)

x̃i+1|k = Ax̃i|k +Bũi|k i = (k, k + 1, . . . ,∞) (38c)

h̃i|k ≤ hlim − h̄k i = (k, k + 1, . . . , k +N) (38d)

s̃i|k ≤ slim − s̄k + σi|k i = (k, k + 1, . . . , k +N) (38e)

σi|k ≥ 0 i = (k, k + 1, . . . , k +N) (38f)

where ~xk = [x̃k+1|k, . . . , x̃k+N+1|k]
T , ~uk = [ũk|k, . . . , ũk+N|k]

T and ~σk = [σ̃k|k, . . . , σ̃k+N|k]
T . The primary

component of the cost function (38a) is the weight matrixW ∈ Rnz×nz which determines how much each of the
optimization variables̃z should be minimized. The optimization problem is subject to the initial condition equality (38b)
and the state transition equation (38c). The first mode of the prediction horizon is subjected to constraints. In the second
mode of the prediction horizon, the system is assumed to be sufficiently faraway from any constraints. The inequality
constraints of the optimization problem is divided into the hard inequality constraints (38d) and the soft inequality (38e).
Hard constraints cannot be violated and if they are violated, the constrained optimization problem becomes infeasible and
no proper solution can be found [21]. To remedy the potential infeasibility soft constraints are introduced. The violation of
soft constraints is given by the slack variableσ ∈ Rns (38f) which is minimized with the use of the second component of
the cost function (38a) Ξ ∈ Rns×ns .

The unconstrained second mode minimization can be reduced to a terminalcostS ∈ Rnx×nx in the constrained problem
(38)

min

∞∑

i=k+N+1

z̃T
i|kWz̃i|k = x̃T

k+N+1|kSx̃k+N+1|k (39)

which gives infinite horizon properties and acts stabilizing [20]. The terminal costS and feedback gainK are determined
by the time-discrete steady state algebraic Riccati equation

K = [BTSB+Dz
TWDz]

−1[BTSA+DzWCz
T ] (40a)

S = Cz
TWCz +ATSA− [ATSB+Cz

TWDz]K (40b)

The first mode of (38) with the appended terminal cost can be formulated as a quadratic programming (QP) problem, which
can be solved using either interior-point or active-set algorithms [22]. From the computed sequence of control signals only
the first signal̃uk is actuated.

5. NUMERICAL EXAMPLE: MPC AND PI ON NREL 5MW REFERENCE WIND
TURBINE

In this section the proposed MPC controller design is tested on the NREL 5MW reference wind turbine [8] in the aero-
servo-elastic code HAWC2 [23] and compared to a more classical PI-based controller [8]. The pitch and generator actuators
have been implemented as external dll’s coupled to HAWC2. They are modeled as first and second order filters (13) and
(14), with hard coded constraints on position and rate.

The PI controller has been implemented with gain scheduling of the pitch controller gains to accommodate for the
nonlinear relationship between pitch angle and the aerodynamic power efficiency. The implemented PI controller is similar
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to the PI controller presented in [8], but has been modified with a different integrator anti-windup scheme toaccommodate
saturations in pitch rate. Without this modification the closed-loop system couldbe unstable during extreme events, if
pitch rate is saturated over an extended period of time leading to integrator windup. The modification implies that the PI
controller is only able to use collective pitch, but as collective pitch is the only configuration being tested in the present
work this has no influence on the results. The integrator anti-windup scheme only considers the output of the PI controller
and not the actual output of the actuators.

Where the PI controller ignores the actuator dynamics, the MPC includes them in the present work. The speed of the
actuator dynamics are important in the considerations of whether or not toinclude the actuator dynamics in the control
design model. If the actuator dynamics are significantly faster than the windturbine turbine dynamics and faster than the
sample time of the controller, it might be better to omit the actuator dynamics from the control design model of the MPC
and instead impose constraints directly on the control signal and its derivatives similar to the implementation of the PI.
If, on the other hand, the dynamics of the actuators are slow enough to have an significant influence on the closed-loop
dynamics, the actuator dynamics should be included in the control design model. An inclusion of the actuator dynamics in
the control design model enables the MPC to control and constrain the output of the actuators, where the PI disregards the
actuator dynamics and lags a bit behind the MPC. The potential benefit of including the actuator dynamics in the control
design model increases for slower actuators.

In addition to the physical constraints of the actuators, artificial constraintshave also been included in the model
predictive controller. The electrical power of the generator is not allowed to increase above 5 percent of rated power
according to an added ”semi-heavily” penalized soft constraint. It means that this constraint should not be violated unless
even harder constraints are in danger of being violated. An even softerconstraint specifying that the generator speed is
not allowed to exceed 10 percent of its rated value is also included in the MPC. The generator speed constraint cannot be
penalized as hard since situations might occur, where it is impossible to honor the generator speed constraint due to the
large inertia of the drive-train, and the control problem would be rendered infeasible.

Four test cases are presented: Test case 1 is a sequence of wind speed steps, going from 4 m/s to 20 m/s and back down
to 4 m/s gain in steps of 2 m/s. Test case 2 has a turbulent wind field based onthe model of Mann [10] with turbulence
intensity 0.16 and a power law wind shear with a 0.2 shear exponent. The mean wind speed ramps from 4 m/s to 16 m/s and
back to 4 m/s. Test cases 1 and 2 are included to evaluate the performance of the hybrid controller and its ability to switch
between the different regions of operation. Test cases 3 and 4 have mean wind speed of 12 m/s where an extreme operating
gust occurs, as specified by IEC for a classIA wind turbine [11]. In test case 3, the actuators have normal constraint
limits. In test case 4, the pitch rate limit has been reduced significantly to test the constraint handling capabilities of both
controllers.

In the following, results for the test cases are depicted in Figures4 to 8. The y-axis for a given variable in the different
figures has the same upper and lower limits, when possible, but for a given case, alternative limits have been used when
thought better for the sake of clarity.

The results for test case 1 are shown in Figure4. The two types of controllers show different behavior in certain areas.
The gain scheduling of the PI ensures that closed-loop behavior aboverated wind speed is similar over a wide range of
wind speeds, whereas the MPC is linearized at 15 m/s and suffers from this simplification, when operating far away from
the linearization point. Some sort of gain-scheduling scheme is required toovercome this problem. None the less, the MPC
controller linearized at 15 m/s is able to work over large wind speed range.The periodic disturbances of wind shear and
tower shadow are seen in the actuator states of the MPC controller. The MPCcontroller could be tuned differently to ignore
these periodic disturbances instead of trying to reject them, which would lead to less control action, if desired.

Figure5 depicts the results for case 2, it is seen that both controllers are able to operate in the full wind speed range
and switch between regions of operation. The generator torque rate of the PI controller has a sudden transient at approx
510 s. where the controller switches from full load to partial load operation. The reference switching filters of the MPC
controller prevent such transients and a smoother transition between different regions of operation is observed for the MPC
controller.

Results for test cases 3 and 4 are shown in Figures6, 7 and8. As the generator speed exceeds its limit of 10 percent above
rated speed, the generator torque is increased in an attempt to slow down the over-speeding wind turbine. The generator
power is however only allowed to exceed 5 percent of its nominal power and the generator torque is controlled accordingly.
The generator torque changes quite sudden to accommodate the attempt toslow the over-speeding wind turbine, especially
in test case 4 seen in Figure7. Perhaps this sudden change in generator torque is not good for realworld application but in
the given example it enables a reduction of the generator speed compared to the PI controller.

The benefit of including the actuator dynamics in the control design modelbecomes apparent in Figures7 and8, where
the pitch reference rate of the PI is constrained. The MPC has no constraints directly on the pitch reference rate and small
overshoots at 11 s and 14 s for the MPC can be observed in Figure8. The small overshoots enables the MPC to reach the
pitch rate limit at a faster rate than the PI, while still honoring the pitch rate limit, asshow in Figure7 where the pitch
rate of MPC at 11 s and 14 s approaches it limit at a sharper curve than prescribed by the first order dynamics of the pitch
actuator. The slower the dynamics of the actuator, the higher the benefit by including the actuator dynamics.
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Figure 4. Test case 1 with a sequence wind steps in 2 m/s increments and decrements respectively.

12 Wind Energ. 2010; 00:1–16 c© 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/we

Prepared using weauth.cls



Henriksen et al. Wind Turbine Control with Constraint Handling: A Model Predictive Control Approach

V
9
0
m

[m
/
s]

(Solid line) MPC (Dashed line) PI (Dotted line) Constraints
P
e
[M

W
]

Ω
g
[r
p
m
]

θ
[d
eg
]

θ̇
[d
eg
/
s]

Q
g
[k
N
m
]

Q̇
g
[k
N
m
/
s]

Time [sec]

0 100 200 300 400 500 600 700 800
-20

0

20

0

25

50

-10

0

10

0

10

20

500

950

1400

0

3

6

0

10

20

Figure 5. Test case 2 with turbulent wind. Mean wind speed ramps from 4 m/s to 16 m/s and back down to 4 m/s.

Wind Energ. 2010; 00:1–16 c© 2010 John Wiley & Sons, Ltd. 13
DOI: 10.1002/we
Prepared using weauth.cls



Wind Turbine Control with Constraint Handling: A Model Predictive Control Approach Henriksen et al.

V
9
0
m

[m
/
s]

(Solid line) MPC (Dashed line) PI (Dotted line) Constraints
P
e
[M

W
]

Ω
g
[r
p
m
]

θ
[d
eg
]

θ̇
[d
eg
/
s]

Q
g
[k
N
m
]

Q̇
g
[k
N
m
/
s]

Time [sec]

0 5 10 15 20 25 30 35 40 45 50
-20

0

20

30

40

50

-10

0

10

0

10

20

800

1100

1400

3

4.5

6

10

15

20

Figure 6. Test case 3 with extreme operating gust at a mean wind speed of 12 m/s. Tower shadow and wind shear has been disabled
to achieve clean results. Pitch rate is constrained to 8 deg/s and generator torque rate is constrained to 15 kNm/s.
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Figure 7. Test case 4 with extreme operating gust at a mean wind speed of 12 m/s. Tower shadow and wind shear has been disabled
to achieve clean results. The pitch rate constraint have been drastically reduced from 8 deg/s to 0.5 deg/s to challenge the controllers.
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6. CONCLUSION

In this paper the model predictive control within a hybrid controller framework is presented. A model describing the key
elements of wind turbine dynamics have been presented, thus enabling model-based control methods. It has been shown
that the hybrid controller setup handles changing wind speeds and operating conditions. Simulations show that model
predictive control ensures that no hard constraints are violated and that soft constraints are attempted to be honored when
possible. Generator speed and -power have been included as artificialsoft constraints to demonstrate the capabilities of
prioritizing which components should be attempted spared during extreme events. It has furthermore been demonstrated
that the inclusion of actuator dynamics in the control design model is advantageous as it exploits the full potential of the
actuators, an advantage that increases for slower actuator dynamics.
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ABSTRACT

A continuously relinearized model-based control and state estimation algorithm applied to the control of a floating
wind turbine is presented in this paper. The control algorithm covers both partial and full load operating regions. The
performance of the presented controller is compared to a proportional-integral controller in three different simulations
with mean speeds of 8, 12 and 16 m/s, respectively. Simulations show thatthe presented controller is able to switch
between partial and full load operation in a smooth manner and that fatigueload reductions are achieved in a number of
key components while reducing overall blade pitch activity compared to thebenchmark proportional-integral controller.
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1. INTRODUCTION

As an alternative to ground fixed offshore wind turbines, floating wind turbines offer a more versatile placement enabling
further deployment of renewable energy sources. In Ref. [1] several concepts are presented, one of these concepts, the
spar buoy also proposed by Ref. [2] is investigated in this work. Some of the challenges caused by the added degrees of
freedom compared to a fixed wind turbine has previously been investigated by Ref. [3] , where it is concluded that the
closed-loop frequency of the generator-speed-blade-pitch-loop should be below the tower pitch frequency to avoid unstable
control performance. Ref. [4] use a state estimator to filter the disturbances caused by the tower pitch motion. Ref. [5] ,
although investigating the barge platform concepts rather than the spar buoy concept, introduces model-based control of a
floating wind turbine and incorporates the azimuth dependent periodic behavior of the wind turbine into the control design
to achieve individual blade pitch actuation and reduce structural loads asa result. The model-based control design in Ref.
[5] assumes that all states of the model used by the model-based controllercan be measured. In the present work no such
assumptions are made and an extended Kalman filter is used to estimate the structural states of the wind turbine as well
as blade specific wind speeds and wave forces affecting the wind turbine, using only what is thought to be realistically
available sensors.

MPC is typically chosen for its ability to handle constraints both hard and soft and the ability to incorporate knowledge of
future disturbances into the prediction horizon of the controller. Performance during extreme events has not been examined
and with the conservative tuning of the presented controller no rate limits arein danger of being violated in the present
work. During switching between operating regions the constraint handlingabilities of MPC has been useful and details
about this will be elaborated later in this work. MPC also enables the use of soft constraints. A soft constraint limit is
placed on the generator speed, penalizing violations of 10 percent above nominal generator speed. Further soft constraints
could be placed on other states or outputs, if needed.

Copyright c© 2010 John Wiley & Sons, Ltd. 1
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Model predictive control (MPC), both in linear [6] , gain scheduled [7] , nonlinear [8, 9] versions have previously
been applied on wind turbines. Ref. [6] and Ref. [7] investigate both partial and full load operation, whereas Ref. [8]
and Ref. [9] only examine full load operation. The present work considers both partial and full load operation as well
smooth switching between the two regions of operation.

Ref. [6] switches between 4 controllers to handle the full wind speed range, all linearized around an equilibrium point
for a given wind speed. Ref. [7] enables switching between as many controllers as desired, they are however also linearized
around equilibrium points for specific wind speeds and the more the wind speed, rotor speed and blade pitch angles deviate
from their equilibrium points the more the linearized dynamical model used by the controller deviates from the real wind
turbine dynamics. Linear parameter variable (LPV) control [10] where wind speed as well as pitch angle and rotor speed
are used as scheduling variables overcome the problem of nonlinearitiesdependant of several scheduling variables. For an
increasing number of scheduling variables, the offline synthesis of the controller is rendered not piratically implementable.
With the added complexity of constraint handling within a prediction horizon theoffline synthesis of a controller is close
to impossible. Instead, the presented controller relinearize the control design model in each sample and a controller is
synthesized online giving a controller designed with the present nonlinearities taken into account. The presented controller
is thus an intermediate step between linear and nonlinear MPC.

The current contribution is structured as follows: The model used by theextended Kalman filter and the model predictive
controller is presented in the first section. The next section introduces thegeneral theory behind the extended Kalman filter
and the model predictive controller. On top of the model predictive control layer is a high-level layer determining which
region of operation the controller should be operating. The finer details ofthis high-level layer is presented in the fourth
section. The fifth section presents results where the performance of thepresented controller is compared to the performance
of benchmark proportional-integral controller. Finally conclusions aredrawn.

2. MODEL FOR CONTROLLER DESIGN

In this section the model used by the extended Kalman filter and the model predictive controller is presented. The presented
model is also discussed in Ref. [11] where focus in on wind speed and wave force estimation.

2.1. Aerodynamic model

The aerodynamic model used in this work is based on the single-state dynamic inflow model proposed in Ref. [12] with the
extension that the effective wind speed of the individual blades rather than a rotor-wide effective wind speed are included.
This extension of the model enables individual pitch control in future work.

For the bladesi = 1, . . . , nb, the aerodynamic torqueQi and thrust forceTi are the integrated aerodynamic forces over
the blade span

Ti(Vrel,i,Ω, θi, v̄n,i) =

∫ R

0

Fn(Vrel,i,Ω, θi, vn,i(r), r)dr (1)

Qi(Vrel,i,Ω, θi, v̄n,i) =

∫ R

0

rFt(Vrel,i,Ω, θi, vn,i(r), r)dr (2)

whereFn(·) andFt(·) are local blade forces normal and tangential to rotor-plane. The localtangential induced velocities
are assumed quasi-steady and the local axial induced wind speedsvn,i(r) are given by the averaged induced axial wind
speed̄vn,i and the quasi-steady distribution of the axial induction factor

vn,i(r) =
aqs
n (λi, θi, r)

āqs
n (λi, θi)

v̄n,i (3)

where

āqs
n (λi, θi) =

1

R

∫ R

0

aqs
n (λi, θi, r)dr (4)

The temporal dynamics of the averaged axial induced velocity is governed by a first order ordinary differential equation

v̄n,i =
1

τis+ 1
Vrel,iā

qs
n (λi, θi) (5)
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with the time constant

τi =
1

2

1.1R

Vrel,i − 1.3v̄n,i
(6)

based on the same assumption as in Ref. [12] .
The aerodynamic torque and thrust of each blade comprises the rotor-wide entities

Q =

nb∑

i

Qi andT =

nb∑

i

Ti (7)

Strain gauges (SG) are placed at root of the blade at the radial distancerSG and projected into the normal and tangential
directions of the rotor plane. If the blades where assumed rigid and massless the aerodynamic bending moments

Qn,i(Vrel,i,Ω, θi, v̄n,i) =

∫ R

rSG

rFn(Vrel,i,Ω, θi, vn,i(r), r)dr (8)

Qt,i(Vrel,i,Ω, θi, v̄n,i) =

∫ R

rSG

rFt(Vrel,i,Ω, θi, vn,i(r), r)dr (9)

could directly be obtained from the strain gauges and used to estimate blade specific wind speeds. However, the measured
out-of-plane root bending momentQSG

n,i is affected by the centrifugal loading of the blades and is thus lower than the
solely aerodynamic out-of-plane root bending moment. Several methods exist to make the out-of-plane sensor usable
in the estimation algorithm: The model can be extended to include the structural properties of the blade or the estimation
algorithm can assign smaller importance of the sensor by increasing the expected output variance of the sensor used to tune
the estimation algorithm. The measured in-rotor-plane root bending momentQSG

t,i is heavily influenced by the gravitational
loading of the blades varying with the azimuth angle of the blades. The aerodynamic moments are approximated by the
blade root bending moments in the following way

Qn,i(Vrel,i,Ω, θi, v̄n,i) ≈ QSG
n,i + νqn,i, νqn,i ∈ N(0, σ2

qn) (10)

Qt,i(Vrel,i,Ω, θi, v̄n,i) ≈ QSG
t,i − Fg,blade sinφb,i + νqt,i, νtn,i ∈ N(0, σ2

qt) (11)

whereFg,blade is the gravitational loading on the individual blades andφb,i is the azimuth angle of the individual blades
and the zero-mean Gaussian distributed noise contributionsνqn,i andνqt,i represent the uncertainties caused by blade
dynamics, blade deformation, centrifugal stiffening etc.

2.2. Wind spectra

For rotor-wide wind speed spatially averaged models, based on e.g. theturbulence model of Ref. [13] , are suitable. But for
the individual wind speeds of each blade, the strongest source of windspeed variation is the periodic contribution caused
by wind shear, tower shadow and the spatial structure of the turbulent field [14]. As a result the wind variation is modeled
as a periodically varying wind speed depending on the rotation speed of rotor. The total wind speed for bladei is the sum
of a rotor-wide mean wind speedVm and a blade specific turbulent wind speedVt,i

Vi = Vm + Vt,i (12)

where the turbulent wind speed spectrum is given by the rotational speedof the rotor

Vt,i =
ω2
n,v

s2 + 2ωn,vζv,is+ ω2
n,v

ξv,i, ξv,i ∈ N(0, σ2
v) (13)

The damped frequency of the turbulent wind field is equal to the rotationalspeed of the rotorωd,v = Ω. Giving a natural
frequency dependent of damped frequency and damping ratioωn,v = ωd,v/

√
1− ζ2v . For a constant periodic wind speed

the damping ratio should ideally be zero, numerical conditioning especially with regards to the synthesis of model-based
controllers, e.g. LQ, is however eased by adding a little damping in the model and ζv = 0.01 is chosen. The rotor-wide
mean wind speed is modeled as a parameter rather than a state and a first order filter driven by the mean of the individual
wind speed estimates of the current sample determines the mean wind speed in the next sample

Vm =
1

τs+ 1
V, V =

1

nb

nb∑

i

Vi (14)

where a time constantτ = 1/(Ω rad/s) has shown good performance with regards to the estimation of the blade specific
wind speeds.
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2.3. Hydrodynamic forces

The offshore tower either in a floating or fixed configuration is subjected towave forces. If these forces are not taken into
account, the tower top displacement will be ascribed solely to the aerodynamic thrust resulting in a erroneous estimation
of wind speed. The hydrodynamic forces on a moving body with velocityv in a fluid with the oscillating flow velocityu
can be described by the semi-empirical Morrison equation [1] .

Fh = ρwVbu̇+ ρ(Cm − 1)Vb(u̇− v̇) +
1

2
ρwCdAb(u− v)|u− v| (15)

whereCm andCd are the inertia and drag coefficients of the floating body,ρw is the mass density of the fluid andVb and
Ab are volume and area of the body submerged in the fluid. The Morrison equation can be simplified to

Fh = κ1u̇+ κ2v̇ + κ3(u− v)|u− v| (16)

where the constantsκ1,κ2 andκ3 contain the aforementioned coefficients, volume etc. The third term describing the drag
force, is assumed to be negligible, leading toκ3 = 0. The first term is rewritten to a wave forceFw = κ1u̇. The modeled
spectrum of the stochastic oscillating wave force is fitted to the measured spectrum of the water acceleration

Fw =
kω2

n,w

s2 + 2ωn,wζws+ ω2
n,w

ξw, ξw ∈ N(0, σ2
w) (17)

giving a damped frequencyωd,w = 2π
Tp

defined by the peak spectral periodTp. In the work of Ref. [15] values for the
peak spectral period and significant wave height are given asTp = 10 s andHs = 6 m and crude fitting of the water
acceleration power spectral density function to the model (17) gives a damping ratioζw = 0.125 and a steady state gaink
of 0.2. The natural frequency can then be determined asωn,w = ωd,w/

√
1− ζ2w. The stochastic inputww is assumed to be

zero-mean Gaussian distributed white noise. Simulations (not presented here) have shown that the wave force estimation is
not sensitive to whether or not the correct peak spectral period is known, correct information about the peak spectral period
is of higher importance when used in a model-based control algorithm. The correct peak spectral period can be estimated
online via the estimated wave force. The peak of the power spectral density can by computed using various algorithms e.g.
Fast Fourier Transform (FFT) algorithms. The peak spectral periodcan then be updated, e.g. through a first order dynamic
filter with a time constant in the range of tens of minutes.

2.4. Tower and spar buoy

The fore-aft motion of the wind turbine can be comprised of three degrees of freedom: Tower bending and pitch and surge
of the entire wind turbine. Pitch describes the angle which the turbine is rotatedwith regards to the vertical axis and surge
indicates the displacement of the wind turbine in the wind direction, see also Fig. 1 for a depiction of the mentioned degrees
of freedom. In this work, the wind turbine pitch (tp) angle is defined as the pitch angle of the wind turbine at the bottom,
denotedα. For a rigid tower and spar buoy, the wind turbine pitch angle is related to the relative displacement of the top
and bottom of the wind turbine by a simple trigonometric relation

ytp = h sinα (18)

whereh is the height of the wind turbine. For small variations ofα, the pitch displacement be approximated as

ytp ≈ hα (19)

In this work, the surge displacementysurge is defined as the displacement of the bottom of the floating wind turbine
relative to point where the turbine would be if no wind or waves where affecting it. The relative displacement of the tower
top, where turbine pitchytp and tower bending (tb) ytb are included, is denotedyrel and is given as

yrel = ytop − ysurge = ytp + ytb (20)

The tower bending and pitch of the floating wind turbine can be described bytwo interconnected mass-damper-spring
systems (Mtp, Dtp,Ktp) and (Mtb, Dtb,Ktb) where the first system models the pitch motion of the wind turbine and
the second system models the bending of the tower. The top of the wind turbine is affected by the aerodynamic thrust
forces of each bladeTi, which are functions of the relative wind speed seen from the wind turbinetopVrel,i = Vi − ẏrel.
The bottom of the wind turbine is affected by the hydrodynamic forces (16) consisting of a wave force and a turbine
acceleration term. A turbine acceleration termκ2ÿα can be added to the inertial mass of the turbine pitch resulting in a
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Figure 1. Degrees of freedom of tower in fore-aft direction. (a) Degrees of freedom: tower bend, pitch and surge, only tower bend
and pitch are included in the model. (b) The relative position yrel is the difference between the position of the tower top ytop and the
floater bottom ysurge. The sum of turbine pitch displacement ytp and tower bending displacement ytb equals yrel. (c) The floating

tower modeled as two interconnected mass-damper-spring systems.

new massM̃tp = Mtp + κ2 and the resulting system

Mtbÿrel +Dtbẏtb +Ktbytb = T (21a)

M̃tpÿtp +Dtpẏtp +Ktpytp = Fw +Dtbẏtb +Ktbytb (21b)

describes the fore-aft degrees of freedom of the floating wind turbine, see Fig.1 for a depiction of the two interconnected
mass-damper-spring systems. It is expected that an acceleration sensor in the tower top and an angle measurement in
the bottom are realistic assumptions of available sensors. The velocity and acceleration of the bottom angles can then be
calculated via numerical difference.

2.5. Drive-train

The drive-train connects the rotor to the generator through a low speed shaft, a gearbox and a high speed shaft. The
drive-train flexibility is a modeled in the low speed shaft coordinate system

Irφ̈r +Dsφ̇∆ +Ksφ∆ = Q (22)

IgN
2
g
φ̈g

Ng
−Dsφ̇∆ −Ksφ∆ = −QgNg (23)

whereNg is the gear ratio,Ir andIg are the moments of inertia of the rotor and generator,Ks andDs are the spring
and damping constants. It should also be mentioned that the following definitions are introduced:̇φr ≡ Ω is rotor speed,
φ̇g ≡ Ωg is generator speed andφ∆ ≡ φr − φg

Ng
is the angular torsion of the drive-shaft in the low speed shaft coordinate

system.

2.6. Actuators

The actuators are assumed linear under the assumption that a low level controller, e.g. PID or some type of nonlinear
controller e.g. [16], is operating in closed loop with the actuator mechanics. The closed loop actuator is described with 2nd
order dynamics, an approximation which under the proper conditions can be justified [17]

θ̈i + 2ζθωθ θ̇i + ω2
θθi = ω2

θθi,ref (24a)
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subject to

[
θmin

θ̇min

]
≤

[
θi
θ̇i

]
≤

[
θmax

θ̇max

]
(24b)

whereωθ andζθ are the natural frequency and damping ratio of the actuator andθref is the reference signal from the
controller. The generator torque actuator is assumed to be described with1st order dynamics [18]

Q̇g + τ−1
g Qg = τ−1

g Qgref (25a)

subject to

[
Qg,min

Q̇g,min

]
≤

[
Qg

Q̇g

]
≤

[
Qg,max

Q̇g,max

]
(25b)

whereτg is the time constant of the generator torque actuator andQgref is the reference signal from the controller.

2.7. Combined model

The ordinary differential equations of the submodels, are gathered in astate space ordinary differential equation function
and time-discretized to obtain the state progress equation

xk+1 = f(xk,uk) (26a)

and the ouputs are gathered in an output state space function

yk = gy(xk,uk) (26b)

wherex is the state vector,u is the input vector andy is the measurement vector. The vectors are comprised by the
following variables

xstruct = [Ωr Ωg φ∆ yα ẏα yβ ẏβ ]
T

xaero,wave = [Vt,i V̇t,i v̄n,i Fw Ḟw]
T

xactuator = [θi θ̇i Qg]
T

x = [xstruct xaero,wave xactuator]
T

u = [θref,i Qg,ref ]
T

w = [e]T

ystruct = [Ωr Ωg φ∆ α α̇ α̈ ÿtop QSG
n,i QSG

t,i ]
T

yactuator = [θi θ̇i θ̈i Qg Q̇g Pe]
T

y = [ystruct yactuator]
T

3. MODEL PREDICTIVE CONTROL AND STATE ESTIMATION

The controller presented in this work is based on full state information, which is not available, so an extended Kalman
filter is used to estimate the states. The control design model is augmented withdisturbance states to achieve offset-free
control at steady state, which will be explained in section3.1. The model predictive controller with and without constraint
handling capabilities is presented in section3.2.

3.1. Extended Kalman filter and augmented disturbance model

The method presented to achieve offset-free reference tracking is comparable to that of a proportional-integral (PI)
controller. Instead of integrating the error between reference and measured output as done by the PI controller, the
implemented method integrates the error between estimated output and measured output. Discrepancies between model
and plant outputs are used to compensate for unmodeled effects and thus obtain offset-free reference tracking by taking
the disturbances into account in the controller.
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To ensure off-set free performance, the control design model (26) can be augmented with a disturbance model [19, 20],
which is used to compensate for actual disturbances and for any plant/model mismatch



x
d
p




k+1

=



f(xk,uk) +Edk

dk

pk




︸ ︷︷ ︸
f̂(xk,dk,pk,uk)

+



wx

wd

wp




k

(27a)

yk = g(xk,uk) + Fpk︸ ︷︷ ︸
ĝ(xk,dk,pk,uk)

+vk (27b)

where



wx

wd

wp


 ∈ N(0,Rxdp), andv ∈ N(0,Ry)

where d ∈ Rnd are state disturbances andp ∈ Rnp are output disturbances and whereRxdp ∈
R(nx+nd+np)×(nx+nd+np) is variance of the states and disturbances andRy ∈ Rny×ny is the variance of the
output.

The disturbance model (E,F) can be structured in many ways but from a practical perspective is should be simple
to create. As prescribed by Ref. [20] there are as many disturbances as there measured outputs. If a state ismeasured
directly (e.g. generator speed), then the corresponding disturbanceis assigned be an input disturbance. If the measurement
is a combination of states (e.g. generator power, which is the product ofthe states generator speed and generator torque),
then the corresponding disturbance is assigned to be an output disturbance.

Because the disturbances cannot be measured they have to be estimated. A discrete time predictive Kalman filter is
designed to estimate states and disturbances. The predictive Kalman filter,which only bases its estimations on the previous
sample, is chosen instead of the ordinary Kalman, which bases its estimations on the previous and current sample. The
choice of the predictive Kalman filter is necessary since some measurements include a direct term from input to output,
e.g. pitch acceleration and generator torque rate, and the problem of causality would arise if an ordinary Kalman filter
was implemented. Furthermore, the predictive Kalman filter gives the computationally expensive MPC algorithm an entire
sample time period to compute the control signal.

The estimated states and disturbances are denoted[x̂ d̂ p̂]Tk|k−1, wherek|k − 1 means the estimation at timek given
by the information at timek − 1. Thea posterioriestimation of the states is given by



x̂

d̂
p̂




k|k

=



x̂

d̂
p̂




k|k−1

+ Lk[yk − ĝ(x̂k|k−1, d̂k|k−1, p̂k|k−1,uk)] (28)

Enabling aa prioriestimation of the one-step-ahead prediction of the states



x̂

d̂
p̂




k+1|k

= f̂(x̂k|k, d̂k|k, p̂k|k,uk) (29)

where the Kalman gainLk ∈ R(nx+nd+np)×ny and output error covarianceΨk

Lk = Pk|k−1Ĉ
T
k|k−1Ψ

−1
k (30a)

Ψk = Ĉk|k−1Pk|k−1Ĉ
T
k|k−1 +Ry (30b)

is updated by the discrete time recursive Riccati equation

Pk|k = Pk|k−1 − LkĈk|k−1Pk|k−1 (30c)

Pk+1|k = Âk|kPk|kÂ
T
k|k +Rxdp (30d)

whereÂ = [∇xf̂ ∇df̂ ∇pf̂ ] andĈ = [∇xĝ ∇dĝ ∇pĝ], which are calculated at the time given by the time indexk.
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3.2. Relinearized model predictive control

In this section, the estimated disturbancesd̂ and p̂ are assumed to be constant and are used as parameters rather than
dynamic states. Hence, the disturbances are not functional argumentsof the various equations but implied constant
contributions embedded in the equations.

The relinearized model predictive controller (RLMPC) entails the computation of the control signal within a prediction
horizon in the rangek = (0, . . . , N − 1). The RLMPC is formulated as a dual mode horizon where the first part, i.e
k = (0, . . . , N − 1), is considered constrained. In the second horizon, i.e.i = (N, . . . ,∞), it is assumed that the plant
has reached a state where the unconstrained solution is feasible [21].

The dual mode optimization problem is

min

N−1∑

k=0

φk(xk,uk) +

N−1∑

k=0

1

2
σT

k Wσσk +

∞∑

k=N

φk(xk,uk) (31a)

where the stagewise cost function

φk(xk,uk) =
1

2
gz(xk,uk)

TWzgz(xk,uk) +
1

2
(r − gr(xk,uk))

TWr(r − gr(xk,uk))

consist of two terms: The first term seeks to minimize dynamic variations given by gz(·) such as e.g. velocities,
accelerations. The second term seeks to drive the plant reference outputs gr(·) towards the desired referencer, e.g.
generator power and generator speed. An additional cost term, only included in the first part of the prediction horizon,
seeks to minimize the violation of the soft constraintsσ. The optimization problem is subject to an initial constraint

x0 = x̄ (31b)

wherex̄ is the current state estimate. Throughout the entire prediction horizon(k = 0, . . . ,∞), the optimization problem
is subject to the state progress equation constraint (26a). Whereas the soft and hard inequality constraints are only active
in the first part of the prediction horizon(k = 0, . . . , N − 1)

gs(xk,uk)− σk ≤ s (31c)

gh(xk,uk) ≤ h (31d)

The nonlinear equations are assumed linear throughout the entire prediction horizon in order to ease the problem solving,
as the nonlinear programming problem reduces to a quadratic programming problem, which can be solved using either
interior-point or active-set algorithms [22]. The equations for the reference outputsgr(·), the dynamic outputsgz(·) and
the softgs(·) and hardgh(·) constraint equations are linearized around(x̄, ū), whereū can be chosen arbitrarily since all
the equations are affine in the input, meaning that e.g.f(xk,uk) can be reformulated toa(xk) + b(xk)uk etc. The state
progress equation can be approximated by the linearized function

f(xk,uk) ≈ Axk +Buk + δ (32)

where the constant contribution is

δ = −Ax̄−Bū+ f(x̄, ū)

the reference tracking functiongr(·) can be approximated by

gr(xk,uk) ≈ Crxk +Druk + γr (33)

where

γr = −Crx̄−Drū+ gr(x̄, ū) (34)

The other output functionsgz(·), gs(·) andgh(·) can be linearized in a similar manner. The linearized stagewise cost
function can be put on a more general form

φk(xk,uk) =
1

2
(xT

k Qxk + uT
k Ruk + 2xT

k Muk + 2qTxk + 2rTuk) (35)
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where

Q = Cr
TWrCr +Cz

TWzCz (36a)

R = Dr
TWrDr +Dz

TWzDz (36b)

M = Cr
TWrDr +Cz

TWzDz (36c)

qT = [γr − r]TWrCr + γz
TWzCz (36d)

rT = [γr − r]TWrDr + γz
TWzDz (36e)

The second part of the optimization problem can be reduced to a terminal cost, consisting of a quadraticΠ and a linear
cost termπ

∞∑

k=N

φk(xk,uk) = xT
NΠxN + πTxN (37)

The quadratic cost for the terminal cost is found by the discrete-time algebraic Riccati equation (DARE)

Π = Q+ATΠA− M̃K (38)

where to simplify notation, the matrices

M̃ = M+ATΠB andR̃ = R+BTΠB

are introduced, leading to the feedback gainK = R̃−1M̃T . The linear terminal cost termπ is determined from the same
recursion as the discrete-time algebraic Riccati equation

π = q − M̃κ+ATΠδ +ATπ (39)

where the control action contributionκ

κ = R̃−1[r +BTΠδ +BTπ] (40)

is part of the optimal control law

uk = −Kxk − κ (41)

which is assumed to be active during the second part of the optimization problem. If no inequality constraints are present,
the presented control law can be used as the controller of the plant. The DARE should be solved using a specialized DARE
solver [23] to achieve fast and robust results and the linear cost term can be found from (39)

π = [I−AT +KTBT ]−1[q −KT [r +BTΠδ] +ATΠδ] (42)

Further information about the presented RLMPC controller can be foundin [24].

4. HYBRID CONTROLLER SETUP

The controller switches between two regions of operation, thereby between two control objectives, namely full and partial
load. A switching mechanism determines which control objective is presently active.

The primary static objective of the wind turbine control system is to optimize power production for the given wind
speed. Load reduction is a typical secondary objective, which shall however not be discussed further in this section. The
primary objective for a given wind speed can be formulated as the constrained minimization of nonlinear quadratic cost
function concerning generator power. An additional term concerning generator speed is included in the cost function, this
term is only active when the first term concerning power is zero. The steady state constrained optimization problem for a
given wind speed is

min
Ωg ,θ

(Pe − Pnom)2 + w(Ωg − Ωg,nom)2, (43a)
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where

w =

{
0 for Pe 6= Pnom

1 for Pe = Pnom

subject to

0 = f(x,u) (43b)

Ωg ∈ [Ωg,low,Ωg,nom] (43c)

θ ∈ [θmin, θmax] (43d)

where the equality constraint (43b) ensures steady state operation. The generator speed and pitch angle are limited to
a certain ranges (43c) and (43d). There are also other constraints such pitch rate and acceleration etc. but these velocity
constraints are not active during the present steady state optimization sweep. Above rated wind speeds, where the generator
power is at its nominal value, there is no unique solution for the optimization problem. The pitch angle and generator speed
could have any number of solutions as long as they are on the appropriatecontour line of theCP curve. The generator
speed weightw ensures that for above rated wind speed there is a unique solution with generator speed at its nominal
value.

The optimization gives the characteristic diagrams for generator power,generator speed and pitch angle versus wind
speed as seen in Figure2. Four regions of operationO ∈ (I, . . . , IV ) also denoted(OI , . . . , OIV ) respectively, are
derived from (43). The primary control objective in the partial load regions,OI −OIII is to maximize the amount of
power converted from the wind to generator, while keeping within the operating range of the generator speed. If a wind
speed measurement or estimate is available, the controller can aim to track the generator speed as a function wind speed
according to Figure2. For above rated wind speeds,OIV , the control objective is to regulate the generator power and speed
to their nominal values.

The resulting hybrid controller has a setup as shown in Figure3. The pitch angle should should ideally be at its optimum
in for a given wind speed inOI -OIII as seen in Figure2. Instead, the collective pitch angle is chosen to be at its optimal
value in these regions to simplify the control problem. The choice of fixatingthe collective pitch angle at lower wind
speeds means that only the generator torque is used as a primary control variable in the partial load controller. In this
region the collective pitch angle is controlled at the prescribed value. The constant collective pitch angle inOI toOIII has
little impact of the aerodynamic efficiency due to the flatness of theCP curve.

The supervisor block in Figure3 follows the switching conditions listed in TableI to determine which controller is
active. The set of switching conditions depend on whether constant torque or constant power are used by the controller and
for a floating turbine where is not possible control as aggressive as ona normal wind turbine, additional switch conditions
regarding generator speed have been added to make the overall performance more robust. If the controller is in the partial
load regionsOI −OIII it will switch to the full load region if the electrical generator power exceedsit nominal value. If

Wind speed [m/s]
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Figure 2. Sweep of wind speeds showing the steady state values of the primary variables of the wind turbine. Notice the pitch
angle would normally have slightly different values for wind speeds below rated wind speed. The pitch angle in this case have been
constrained and is thus different from its unconstrained value. This is however not expected to have significant influence on the

performance of the controller.
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Figure 3. Setup of the hybrid controller. An extended Kalman filter provides estimates of states used by other blocks in the diagram.
Supervisor block provides partial or full load control objectives to controller depending on switching conditions. Reference and

reference filter blocks provide references for the controller to track depending on whether partial or full load operation is active.

the controller is in the full load regionOIV it will switch to the partial load regions if the collective pitch angle is below
its optimal value.

One of two modes of full load operation can be chosen, either constant torque or constant power. Constant torque
operation typically leads to lower loads at the expense of generator powervariability. Constant power operation lowers the
generator power variability at the expense of higher loads and also conflicts with the generator speed control objective.
The reference tracking objectives for partial and full load operation are

gr,partial(·) = [Ωg θref,col]
T (44)

gr,full(·) = [Ωg Pge Qg,ref ]
T (45)

rpartial = [Ωg(v̂) θ
opt]T (46)

rfull = [Ωg,nom Pnom Qg,nom]T (47)

Wr,partial = diag([wp,1 wp,2]) (48)

Wr,full = diag([wf,1 wf,2 wf,3]) (49)

where the weight matrix for the full load operation determines whether constant torque or constant power should be the
control strategy of choice. With a careful balancing ofwf,2 andwf,3 a compromise between the two full load control
strategies could also be obtained. For the floating wind turbine constant torque operation has been chosen to reduce loads.

4.1. Soft constraint

Three soft constraints are used in the present work. The first is a soft constraint on generator speed and becomes active
if generator speed exceeds its nominal value with more than 10 percent. The other two constraints are due to switching
between regions of operation. With the constant torque control a soft constraint has been placed on generator torque. The
controller is penalized for a generator torque above nominal value. A lower constraint has been placed on the collective
blade pitch angle at its optimal value.

4.2. Reference filter

To avoid violent transitions between different operating regions, a filter isinserted between the individual controllers and
the reference block. At times of switching between partial and full load operation, the reference filter ensures that the
reference sent to the controllers is initially the measured controlled output and that the reference sent to the controllers

S Switching conditions
(partial→ full) (Pe ≥ Pnom)
(full → partial)1 (Pe < 0.999Pnom) ∧ (θ < θmin + 0.05)
(full → partial)2 (Ωg ≤ 0.8Ωg,nom)

Table I. Switching conditions of supervisor block in hybrid controller. The chosen set of conditions depends on the overall controller
configuration, e.g. for a constant power non-floating wind turbine, the conditions might be different.
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approaches the real reference at a rate specified by the referencefilter. The reference to trackr is damped by a 1st order
filter

r = yr
ks

+
1

sτr + 1
(ru − yr

ks
) (50)

whereyr
ks

is the measured value of the controlled variable at the time of switch andru is the undamped reference. At
the occurrence of a switch of operating region, the states of the filter are reset. In this work the time constantτr has been
chosen to be 0.1 s.

5. RESULTS

In this section the proposed RLMPC controller design is tested on the NREL 5MW reference wind turbine [1] in the
hydro-aero-servo-elastic code HAWC2 [25] and compared to a benchmark PI-based controller proposed by Ref. [1] . The
PI controller has been modified to achieve better generator speed control performance. This has been done by adding a
quadratic error gain in the control loop, this enables more control action when the generator speed is further away from
nominal than when close. The pitch and generator actuators have been implemented as external dll’s coupled to HAWC2.
They are modeled as first and second order filters (24) and (25), with hard coded constraints on position and rate.

Three simulations have been performed, at mean wind speeds of 8, 12and 16 m/s, respectively. The different mean
wind speeds results in both partial (8 m/s), full (16 m/s) and combined (12m/s) load simulations. The simulations include
a turbulent wind field Ref. [13] with turbulence intensity is 0.14 and a power law wind shear with a coefficient of
0.14 is also added. Linear irregular wave kinematics based on composition of Airy waves with Wheeler stretching, with a
significant wave heightHs = 6 m and peak spectral periodTp = 10 s, are used. The chosen parameters for the hydrodynamic
loads are based on Ref. [15] .

Two different RLMPC configurations have been tested:

• RLMPC1 - Control design model does not include dynamic inflow, but assumes quasi-steady aerodynamics.
• RLMPC2 - Control design model includes dynamic inflow.

Results for the first simulation with a mean wind speed of 8 m/s can be seen in Figures4 and5. The wind speed estimate
(not shown here) of the RLMPC controllers is a bit higher than the real wind speed and the generator speed is controlled
to a higher level than done by the PI controller. The generator power output is however quite close for all the controllers.
The tower pitch cause the generator speed to vary which in turn cause the generator torque controlled by the PI controller
to vary. This tower pitch dependant generator torque variation is not seen in RLMPC’s as generator speed is tracked as
function of estimated wind speed rather than estimated relative wind speed.

The second simulation with a mean wind speed of 12 m/s can be seen in Figures 6 and7. It can be seen that both
the PI controller and the RLMPC’s manage to switch between regions of operation. The PI controller however, has
some significant generator torque rate changes when switching from full to partial load operation. This sudden change
in generator torque is not seen in RLMPC’s as the use of a reference filter smoothens switching.

Performance for the third simulation with a mean wind speed of 16 m/s can beseen in Figures8 and9. The performance
of the PI controller and RLMPC’s is quite similar.

Five different sensors are used for comparison of fatigue loads. Fatigue load calculations are based on the standard
defined by Ref. [26] . Two different material numbers are usedm = 3 for steel andm = 12 for fiberglass.

• Tower base fore-aft (m = 3)
• Tower side-side (m = 3)
• Blade root flap-wise (m = 12)
• Low speed drive shaft (m = 3)
• Yaw drive (m = 3)

Another measure of control performance is to compare the root-mean-square (RMS) of selected signals.

• Blade pitch rate (
∑nb

i RMS(θ̇i − 0))
• Generator speed error (RMS(Ωg − Ωg,nom))
• Generator power error (RMS(Pe − Pnom))

TablesII , III and IV present the performance comparison measures normalized with regards to the benchmark PI
controller for the three simulations, respectively. A positive number in thetables indicates a percent-wise improvement
compared to the PI controller.

TableII compares load reduction performance of the two RLMPC controllers relative to the benchmark PI controller
for the first simulation at partial load operation. Changes in tower base fore-aft fatigue load is less than 1 percent both
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Tow. base Tow. base Bl. root Low sp. Bl. pitch RMS of RMS of
Controller

fore-aft side-side flap-wise drive shaft
Yaw drive

activity G. sp. err. G. p. err.
RLMPC1 0.86 46.44 -19.67 11.02 -9.15 0.00 32.41 0.18
RLMPC2 0.67 43.82 -15.49 10.70 -8.35 0.00 31.07 0.17

Table II. Mean wind speed of 8 m/s: Fatigue load reduction etc. compared to PI controller in percent. Positive number means
improvement compared to PI controller.

Tow. base Tow. base Bl. root Low sp. Yaw Bl. pitch Gen. speed Gen. pow.
Controller

fore-aft side-side flap-wise drive shaft drive activity error error
RLMPC1 9.66 -7.50 21.21 1.99 -1.48 63.89 19.24 4.87
RLMPC2 10.79 7.72 18.49 1.49 -1.00 64.79 24.78 6.04

Table III. Mean wind speed of 12 m/s: Fatigue load reduction etc. compared to PI controller in percent. Positive number means
improvement compared to PI controller.

Tow. base Tow. base Bl. root Low sp. Yaw Bl. pitch Gen. speed Gen. pow.
Controller

fore-aft side-side flap-wise drive shaft drive activity error error
RLMPC1 2.61 -32.33 9.05 3.47 0.61 36.27 14.03 14.03
RLMPC2 2.26 -32.95 9.10 3.00 0.69 36.09 16.06 16.06

Table IV. Mean wind speed of 16 m/s: Fatigue load reduction etc. compared to PI controller in percent. Positive number means
improvement compared to PI controller.

RLMPC’s and no real improvement can be claimed. This is not surprising as collective blade pitch is kept at the optimal
value and can not be used to dampen tower pitch with the present tuning of the RLMPC’s. The RLPMC’s show superior
performance when it comes to tower base side-side and low speed drive shaft fatigue load reductions. This is probably
caused by the fact that the generator torque of RLMPC’s depends on wind speed rather than relative wind speed, giving
less variation of the generator torque for the RLMPC’s. Blade root flap-wise and yaw drive loads are increased. This could,
aside from wrong tuning of the RLMPC’s, be caused by a control designmodel which does not describe the needed degrees
of freedom.

Load reduction performance of the two RLMPC controllers relative to the benchmark PI controller for the second
simulation with both partial and full load operation is compared in TableIII . Tower base fore-aft load reduction is achieved
with both of the RLMPC’s as they now are able to change the collective blade pitch during full load operation. Blade root
flap-wise loads are also reduced, possibly an indirect consequence of reduced tower base fore-aft load reductions. In this
simulation the two RLMPC show the biggest difference in performance as RLMPC2 which includes dynamic inflow in the
control design model shows a reduction in tower side-side loads, whereas RLMPC1 shows an increase in tower side-side
loads compared the PI controller. Further simulations, investigating the importance of dynamic inflow in the control design
model are needed before any real conclusion can be made in that respect.

In TableIV load reduction performance of the three RLMPC controllers during full load operation is presented. The
trends of the results are similar to those of the second simulation. Both RLMPCs show superior performance compared to
the PI controller for fatigue load reduction, pitch activity reduction and generator speed reference tracking. The only load
increase is on tower side-side, an degree of freedom not included in thecontrol design model of the RLPMCs and hence
performance improvement cannot be expected.

6. CONCLUSION

In the presented work a floating wind turbine has been controlled with collective blade pitch. The presented framework
enables individual blade pitch for all wind speeds, but preliminary implementations (not shown is this work) showed no
performance improvements regarding reduction of asymmetric loads,e.g. yaw drive, and further modeling details added
to the control design model are needed before individual blade pitch can be enabled with success.

Model predictive control in a relinearization framework has been usedto control the floating wind turbine. The
relinearization scheme enables the linearized controller to always be linearized around the current operating point leading
to better control performance.

An extended Kalman filter has been used to estimated the unmeasurable states e.g. wind speed and wave forces using
only realistically available sensors.
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Simulations in partial, partial/full and full load operation showed performance improvements compared to a benchmark
PI controller and smooth transitions between partial full load operation hasbeen achieved with the presented controllers.

The importance of including dynamic inflow in the control design model used by the state estimator and control
algorithm has been investigated by comparing two controllers: The first assuming quasi-steady aerodynamics and the
second including dynamic inflow. No significant differences between thetwo controllers were observed, except for the
simulation with a mean wind speed of 12 m/s where the controller including dynamic inflow showed better performance
than the controller assuming quasi-steady aerodynamics. Further investigations are needed to determine whether or not it
is beneficial to include dynamic inflow in the control design model. Perhapsindividual blade pitch operation will clarify
the issue or simulations with a non-floating wind turbine where the controllers can be tuned more aggressive.
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Figure 4. Wave forces (proportional to water acceleration u̇) and turbulent wind with a mean speed of 8 m/s. Also depicted are tower
top velocity, generator power and generator speed.
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Figure 5. Control signals and rates at mean wind speed of 8 m/s.
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Figure 6. Wave forces (proportional to water acceleration u̇) and turbulent wind with a mean speed of 12 m/s. Also depicted are tower
top velocity, generator power and generator speed.
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Figure 7. Control signals and rates at mean wind speed of 12 m/s.
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Figure 8. Wave forces (proportional to water acceleration u̇) and turbulent wind with a mean speed of 16 m/s. Also depicted are tower
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Abstract: This paper discusses the implications of formulating a single control law governing
the entire wind speed range of operation for a wind turbine. Furthermore, the knowledge of
future wind speeds provided by e.g. LIDARs is included in the controller framework. This is
possible as the presented controller is based on nonlinear model predictive control and includes
the knowledge of the future wind speed in the prediction horizon of the controller. The potential
benefits of exploiting the knowledge provided by LIDARs is demonstrated in simulations with
a simplified 1 degree-of-freedom nonlinear wind turbine model.

Keywords: nonlinear model predictive control, constraint handling, horizontal axis wind
turbine, lidar

1. INTRODUCTION

The variable-speed horizontal-axis pitch-controlled wind
turbine [Burton et al., 2001] pose some interesting chal-
lenges with respect to the design of controllers. Partial
load wind speeds, that is wind speeds where the power
produced by the wind turbine is below the nominal gener-
ator power, the wind turbine controller seeks to maximize
the wind power converted by the wind turbine. In this
operating regime the wind turbine dynamics are highly
nonlinear as the wind turbine operates on the top of the
power coefficient (CP ) curve and depending on which side
of the CP curve the wind turbine currently operates the
aerodynamic gradients switches sign when going from one
side of the CP curve to the other. For above rated wind
speeds, the wind turbine has reached its nominal generator
power and has pitched away from the top of the CP curve.
On the slope of the CP curve, the wind turbine dynamics
can be considered linear for reasonable small perturbations
around the current operating point. Controllers usually
switch between partial and full load configurations and
the two configurations are usually quite different, where
virtually no pitch action occurs for partial load operation
and the electromagnetic generator torque attempts to keep
the wind turbine at an optimal point of power capture, the
roles reverse for full load operation where the generator
torque action is reduced and the pitch control takes over.

There are good reasons to use pitch control below rated
wind speeds as the spatial distribution of wind speeds seen
in the area of the rotor disc is not uniform nor constant
and load reductions on the key structures can be achieved
by prober pitch action. Wake meandering, tower shadow
and wind shear effects calls for individual pitch action,
a subject not investigated further in this work. Another
type of disturbance is rotor-wide wind speed changes, such

as a extreme operating gust (EOG) [IEC/TC88, 2005],
disturbances of that nature are the subject of interest
for this work. The knowledge of future changes in wind
speed can e.g. by achieved by the use of lidars [Angelou
et al., 2010], by upstream meteorology masts or wind speed
estimations of upstream wind turbines in a wind farm.

Nonlinear model predictive control (NMPC) [Qin and
Badgwell, 2003] fit the needs for control of wind turbines
with the knowledge of future wind speeds. NMPC is able
to cope with the nonlinearities caused by operation below
rated speeds and the knowledge of future wind speeds
can be included in the prediction horizon of the NMPC.
For wind speeds clearly in the partial or full load regions
the NMPC controller can operate with a control law
designed specifically for the particular region of operation.
For wind speeds just around rated wind speed, the need
for a single a control law is apparent. Initial thoughts of
how to device such a control law are presented in this
paper. NMPC has previously been applied for wind turbine
control [Trainelli et al., 2006, Santos, 2007], but no special
attention has been brought on below rated operation and
on the switching between regions of operation.

The NMPC algorithm used in this work [Henriksen and
Poulsen, 2010b,a] is partly based on the work of Tenny
et al. [2004] and Rao et al. [1998] where the special struc-
ture of the MPC is exploited to reduce the computational
burden of NMPC with long prediction horizons.

This paper is composed in the following way: The wind
turbine model is presented first. The wind turbine model
is followed by a section describing NMPC in general terms.
The third section discusses relevant objectives for the
wind turbine controller and discusses different options for
implementing a single full wind speed range control law.



Finally results of simulations with the NMPC for above
and below rated are presented and conclusions are made.

2. WIND TURBINE MODEL

The wind turbine used in this work is a 1 degree of freedom
model with physical parameters similar to those of the
NREL 5MW reference wind turbine defined by Jonkman
et al. [2009]. A wind turbine of this type is controlled by
the pitch angle θ of the blades and the electromagnetic
torque of the generator Qg, where generator torque in the
one end of the drivetrain and aerodynamic rotor torque
Q in the other determines whether the wind turbine
rotational speed Ω is increased or decreased. The state
space ordinary differential equation for the simplified wind
turbine model, augmented with integrators between the
control signals u1 and u2 and the pitch angle and generator
torque, is




Ω̇

θ̇

Q̇g


 =




1

Jt
(Q(V,Ω, θ)−Qg)

u1
u2


 (1)

with the aerodynamic torque Q given by

Q(V,Ω, θ) =
1
2ρπR

2V 3CP (V,Ω, θ)

Ω
(2)

where ρ is mass density of air, R is the rotor radius and CP

is the power coefficient describing how much of the power
available in the air is captured by the rotor. Generator
power is given by

Pe = QgΩgη, Ωg = ΩNg (3)

where η is the efficiency factor describing losses in gear,
power electronics etc and Ng is the gear ratio. The aerody-
namic power coefficient CP can be mapped to be a function
of (λ, θ) rather than (V,Ω, θ) where λ = ΩR/V as seen in
Fig. 1(a).

The augmentation of the model, given by (1), with the
two integrators is done to enable constraints on the control
signal rates as well as on the control signals themselves.

3. NONLINEAR MODEL PREDICTIVE CONTROL

In this section the concept of Nonlinear Model Predictive
Control will be presented. NMPC predicts the future be-
havior of the plant based on the model, current state es-
timates, and available knowledge of controlled and uncon-
trolled inputs. Controlled inputs are in this case the pitch
angle and generator torque and the uncontrolled input
is the wind speed. Typically no future knowledge of the
disturbances is available, but with the naive assumption
that e.g. a LIDAR is able to provide information about
future wind speeds, this information can be used by the
NMPC algorithm.

3.1 Constrained Dynamic Optimization

The control law is given by the minimization of the cost
function Φ from current time t to the end of the prediction
horizon at time t + tf with N + 1 discrete points within
the finite prediction horizon

min ΦN (xN ) +
N−1∑

k=0

Φk(xk,uk, sk, rk) (4a)

subject to the following inequality constraints (4c) to (4e)
and state progress constraint (4b)

f(xk,uk,dk)− xk+1 = 0 (4b)

ch(xk,uk) ≤ 0 (4c)

cs(xk,uk)− sk ≤ 0 (4d)

sk ≥ 0 (4e)

where x are states, u are controlled inputs, d are un-
controlled inputs or disturbances, r are the references to
be tracked and s are the slack variables associated with
the soft constraint inequality. f(·) is the state progress
equation, ch(·) is the hard constraints inequality and cs(·)
is the soft constraints inequality. The total stage-wise cost
function Φk(xk,uk, sk, rk) is the sum of the reference
tracking cost (power control)

Φr(xk,uk, rk) = ‖y(xk,uk)− rk‖2Wr
(5)

the dynamic cost (load reduction)

Φz(xk,uk) = ‖z(xk,uk)‖2Wz
(6)

and of the cost of violating soft constraints

Φs(sk) = ‖sk‖2Ws
(7)

A terminal cost ΦN (xN ) can be appended to achieve
closed loop stability [Chen and Allgower, 1998]. But as
discussed later on, this is not possible for the below rated
operation and has thus been omitted from the controller.
The open-loop system is not always stable and closed-
loop predictions could be used to stabilize the system
predictions within the prediction horizon [Tenny et al.,
2004]. Open-loop instabilities have not given cause to any
concern in the results obtained so far and has therefore
not been implemented in the present work.

3.2 Time-discretization: Non-equidistant spacing

To exploit the potential benefit of having the knowledge
of future wind speeds obtained by e.g. LIDARs, prediction
horizons matching the length of future available knowledge
are needed. It becomes beneficial w.r.t. computational
costs to reduce the number of time-discrete points in
the prediction horizon for long prediction horizons. The
reduction of temporal points can be achieved by having a
fine temporal resolution in the beginning of the prediction
horizon and a coarser resolution towards the end of the pre-
diction horizon. A non-equidistant temporal distribution
means that the cost function can no longer be considered
the sum of a number of equally important cost and the cost
at a given temporal point should be weighted according
to the current temporal spacing. Trapezoidal integration
of the costs w.r.t. the temporal points of the prediction
horizon ensures a proper weighting of the different cost
along the prediction horizon. The temporal integration
of the state progress equation should also be done with
the non-equidistant temporal spacing in mind. Time dis-
cretization of the state progress equation can be done with
e.g. forward Euler, Runge-Kutta schemes such as ESDIRK
Kristensen et al. [2004], collocation points Biegler [2007]
etc. The nonlinear model within the NMPC algorithm
is repeatedly called throughout the temporal integration
within a time step, resulting in a lot of computationally
expensive function calls. To ease the computational bur-
den, the model can be assumed to be linear within a time
step and time integration can be performed using zero-
order-hold or linear forward Euler. For larger time steps



as seen in the end of the prediction horizon zero-order-hold
did not give satisfactory results and forward Euler has as
result been used throughout this work. The assumption of
linear dynamics within a time step might lead to poor
convergence as the dynamics might change a lot from
one iteration to another, especially for large time steps,
it remains to be investigated whether the assumption of
linear dynamics within a time step leads to overall faster
computations or not.

3.3 Steady state performance

One method to determine if the control objectives achieve
the desired steady state for a given constant wind speed is
to perform an optimization with a cost function as one of
the stage-wise costs from the dynamic optimization

min
x̄,ū,s̄

Φtot(x̄, ū, s̄, r̄) (8a)

s.t.

ch(x̄, ū) ≤ 0 (8b)

cs(x̄, ū)− s ≤ 0 (8c)

f(x̄, ū) = 0 (8d)

where the prediction horizon has been omitted from the
optimization and the state progress equation has been
replaced with the ordinary differential equation for the
model.

3.4 Optimization algorithm

A trust-region-based sequential quadratic programming
algorithm Henriksen and Poulsen [2010b] framework has
been used as the optimization algorithm for both the
steady state and for the dynamic optimization problems,
where the underlying quadratic programming problem
(QP) solvers, quasi-Newton Hessian approximations and
trust-regions are specifically tailored for the specific prob-
lem. The steady state optimization uses a general pur-
pose QP solver and produces dense quasi-Newton Hessian
approximations and trust-regions. The dynamic optimiza-
tion on the other hand use a QP solver exploiting the
structure of the problem [Rao et al., 1998, Henriksen and
Poulsen, 2010a] and quasi-Newton Hessian approximations
and trust-regions also exploit the special structure of the
problem as described by Tenny et al. [2004].

4. STEADY STATE CONTROL OBJECTIVES FOR
THE WIND TURBINE

The first and foremost objective of the wind turbine
control is to produce as much power as possible below
rated wind speeds and to produce the nominal power above
rated wind speeds. This objective can be formulated as

J = (Pe − Pnom)
2

+ w (Ωg − Ωg,nom)
2

(9)

where the additional term concerning generator speed Ωg

is only active for above rated wind speeds. This leads to
w = 0 for partial load and w = 1 for full load. If the second
term was omitted, then the generator speed could be a
number of different values which together with a number
of different pitch angles all lie on the same contour of the
CP curve. A soft constraint on generator speed, confining
the generator speed to its allowed operating range, is active

for w = 0. For w = 1 the second term is expected to keep
generator speed within the allowed operating range.

A sweep of wind speeds ranging from Vhigh (= 25 m/s) to
Vlow (= 3 m/s) is investigated for steady state values. The
sweep is started at the highest wind speed Vhigh and the
initial guess is ensured to be on the pitch side of the CP -
curve. As steady state values for the initial wind speed is
determined the second highest wind speed is investigated
with the optimal values of the higher wind speed. Once
partial load wind speeds are reached, the optimization is
no longer able to determine values which ensure a power
production at nominal power. The operating region weight
w is changed to partial load and the sweep is continued for
the below rated wind speeds. The mixed integer switching
between one region of operation and another is not suitable
for the dynamic optimization where regions of operation
switch inside the prediction horizon. A smoother weight w
depending on e.g. generator power should be designed and
gradients for the gradients of w should be included in the
gradients provided to optimization solver.

If the wind sweep goes from low to high wind speeds, a
closer look at Fig. 1(a) shows that up until rated wind
speed the wind turbine is operating on the ridge of the CP

curve. As rated wind speed is reached, power should be
reduced and one of two options should taken: Either pitch
to the stall side of the CP curve or to the pitch side. The
optimization algorithm has no preference to which option
to choose and should be aided to ensure that solutions are
found on the pitch side of the CP curve rather than on the
stall side. Nonlinear constraints could be imposed ensuring
only feasible solutions on the pitch side another option is
to use the fact that the optimization algorithm is gradient
based and the aerodynamic gradient w.r.t. to pitch can be
truncated such that increase in pitch angle always lead to
decrease in CP .

5. RESULTS

In this section results for the NMPC applied on a simplified
wind turbine model is presented. First, partial load oper-
ation is examined and afterwards performance of full load
operation is investigated. Two configurations of the NMPC
is used: The first, NMPClidar, assumes that knowledge of
future wind speeds is available within the entire predic-
tion horizon. Whereas the second, NMPCnormal, has the
same prediction horizon length as NMPClidar but assumes
the currently measured/estimated wind speed to remain
constant throughout the prediction horizon.

5.1 Partial load operation

In this section partial load performance is investigated.
No simulation results are presented as computation times
where to long, only the finally iterated prediction horizons
of the two controller configurations are shown in Fig. 2.
The prediction horizon is extremely long, in this case 250
s. The necessity for a long prediction horizon can be seen
by examination of the plots in Fig. 2 in the last approx. 50
s of the prediction horizon generator power is increased
at the expense of generator speed. This behavior is as
prescribed by the cost function (9) and to achieve good
closed loop control the prediction horizon should be so
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Fig. 1. Wind sweep for steady state operating points of the wind turbine: Fig. 1(a) depicts the CP -curve and shows
the steady state pitch angles and tip-speed-ratios for a sweep of wind speeds. Fig. 1(b) plots the normalized state
values of generator power, generator speed and pitch angle.

long that the last 50 s does not influence the beginning
of the prediction horizon. Another solution would be
to append a suitable infinite horizon control law in the
form of a terminal cost [Chen and Allgower, 1998]. The
problem would however not be solved by appending a
linear control law as the wind turbine is operating on the
top of the CP curve in partial load where the temporal
dynamics of the wind turbine are approximated better
by second order Taylor expanded models than by first
order Taylor expanded models. Another option would be
to change the control objectives in partial load operation
from optimization of generator power to optimization of
CP , but different control objectives for partial and full load
operation might lead to problems regarding convergence
of the dynamic optimization problem when switching
between the operating regions occur within the prediction
horizon.

Another interesting observation, unfortunately not easily
seen in Fig. 2, is that for the NMPClidar the wind turbine
is accelerated to higher rotational speed prior to the
EOG. This is done to optimize the cost function and
to produce more power than would have been produced
if the rotational speed had not been accelerated. This
observation indicates that also for more complex wind
structures e.g. turbulence, the wind turbine would be
able to produce more power at partial load operation if
information of future wind speeds where available and if
these predicted wind speeds where to be trusted.

5.2 Full load operation

In this section, results for the performance of the NMPC
for full load operation is presented. An extreme operating
gust occurs and as time progresses NMPClidar the EOG
moves into the prediction horizon of NMPClidar and future
control moves are planned accordingly, the outcome of the
two controller configurations can be seen in Fig. 3. The
pitch action of the two controllers is quite similar as shown
in Fig. 3(b) but the resulting generator speed is better
controlled when the information of future wind speed is
included in the prediction horizon. The better controlled

generator speed can be seen as an indication of the load
reduction potential when applied on wind turbine models
with more degrees of freedom.

6. CONCLUSION AND FUTURE WORK

A Nonlinear Model Predictive Control algorithm has been
presented and its application on a wind turbine has been
shown. Initial thought concerning the implementation of a
full wind speed range control law has been expressed and
results for the implemented controller has been shown both
in partial and full load operation. It has been shown that
inclusion of future wind speeds in the prediction horizon
is beneficial and leads to increased power production for
partial load operation and to decreased loads for full load
operation.

It remains to be determined how to achieve good com-
bined full and partial load operation within the prediction
horizon. Different strategies for operating region switch-
ing exist: The operating region weight w could be made
continuous and dependant of e.g. Pe in a smooth way to
aid the optimization algorithm, that way the operating
regions would not be clearly defined within the prediction
horizon and as the optimization routine iterates the re-
gions of operation change according to the current iterate,
which might leave the optimization in limbo as the cost
function is not well defined and convex. Another measure
for determining which operating region should be active at
a given point in time within the prediction horizon could
be to make w dependant of the predicted wind speed for
the given point in time in the prediction horizon, that way
the iterations would not change w and the cost function
would remain constant and better convergence properties
might be achieved. Yet another option would be to make
the region of operation dependant of a discrete set of rules
for but as for the first option this would mean that the cost
function could change from one iteration to the other and
lead to poor convergence properties of the optimization
algorithm. Future work should investigate these details.
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and M. Harris. Lidar wind speed measurements from
a rotating spinner: ”spinnerex 2009”. Risø-R 1741, Risø
National Laboratory for Sustainable Energy, Technical
University of Denmark, 2010.

L. T. Biegler. An overview of simultaneous strategies for
dynamic optimization. Chem. Eng. Process.: Process
Intensif., 46(11):1043–1053, 2007.

T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi. Wind
Energy Handbook. John Wiley And Sons Ltd, 2001.

H. Chen and F. Allgower. Quasi-infinite horizon nonlinear
model predictive control scheme with guaranteed stabil-
ity. Automatica, 34(10):1205–1217, 1998.

L. C. Henriksen and N. K. Poulsen. An online re-
linearization scheme suited for model predictive or lin-
ear quadratic control. IMM-Technical Report 2010-
13, Dept. of Informatics and Mathematical Modelling,
Technical University of Denmark, 2010a.

L. C. Henriksen and N. K. Poulsen. A trust-region-based
sequential quadratic programming algorithm. IMM-
Technical Report 2010-14, Dept. of Informatics and
Mathematical Modelling, Technical University of Den-
mark, 2010b.

IEC/TC88. IEC 61400-1 Ed.3: Wind turbines - Part
1: Design requirements. International Electrotechnical
Commission (IEC), 8 2005.

J. Jonkman, S. Butterfield, W. Musial, and G. Scott.
Definition of a 5-mw reference wind turbine for offshore
system development. Technical Report NREL/TP-500-
38060, National Renewable Energy Laboratory, 1617
Cole Boulevard, Golden, Colorado 80401-3393, February
2009.

M. R. Kristensen, J. B. Jørgensen, P. G. Thomsen, and
S. B. Jørgensen. An esdirk method with sensitivity
analysis capabilities. Comput. Chem. Eng., 28(12):
2695–2707, 2004.

S. J. Qin and T. A. Badgwell. A survey of industrial
model predictive control technology. Control Engineer-
ing Practice, 11(7):733–764, 2003.

C. V. Rao, S. J. Wright, and J. B. Rawlings. Application
of interior-point methods to model predictive control. J.
Optim. Theory Appl. (USA), 99(3):723–757, 1998.

R. Santos. Damage mitigating control for wind turbines.
PhD thesis, University of Colorado at Boulder, United
States – Colorado, 2007.

M. J. Tenny, S. J. Wright, and J. B. Rawlings. Non-
linear model predictive control via feasibility-perturbed
sequential quadratic programming. Computational Op-
timization and Applications, 28(1):87–121, 2004.

L. Trainelli, W. Sirchi, B. Savini, A. Croce, and C. L.
Bottasso. Aero-servo-elastic modeling and control of
wind turbines using finite-element multibody proce-
dures. Multibody System Dynamics, 16(3):291–308,
2006.



(Solid) NMPClidar (Dashed) NMPCnormal

V
[m

/
s]

Ω
g
[r
a
d
/
s]

P
e
[M

W
]

Time [s]

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

4.99

5

5.01

120

122

124

10

20

30

(a) Wind speed, generator speed and power.

(Solid) NMPClidar (Dashed) NMPCnormal

θ
[d
eg
]

θ̇
[d
eg
/
s]

Q
g
[k
N
m
]

Q̇
g
[k
N
m
/
s]

Time [s]

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

-0.5

0

0.5

43

43.2

43.4

-10

0

10

0

10

20

(b) Controlled inputs to plant: Pitch angle and rate, and generator torque and rate.

Fig. 3. Above rated wind speed: Simulations where an extreme operating gust occurs. Two nonlinear model predictive
controllers are compared: The first, NMPClidar, includes knowledge of future wind speeds in the prediction horizon.
The second, NMPCnormal, assumes that the current wind speed remains constant throughout the prediction horizon.



Part III

Numerical Methods





IMM - TECHINICAL REPORT - 2010-13 - REV. 3

An online re-linearization scheme suited for Model
Predictive and Linear Quadratic Control
L. C. Henriksen1 and N. K. Poulsen2

1 Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark,

DK-4000 Roskilde, Denmark, larh@risoe.dtu.dk
2 Dept. of Informatics and Mathematical Modelling, Technical University of Denmark, DK-2800 Kgs. Lyngby,

Denmark, nkp@imm.dtu.dk

ABSTRACT

This technical note documents the equations for primal-dual interior-point quadratic programming
problem solver used for MPC. The algorithm exploits the special structure of the MPC problem
and is able to reduce the computational burden such that the computational burden scales with
prediction horizon length in a linear way rather than cubic, which would be the case if the structure
was not exploited. It is also shown how models used for design of model-based controllers, e.g.
linear quadratic and model predictive, can be linearized both at equilibrium and non-equilibrium
points, making the presented extension of the controller formulation equivalent to that of the
extended Kalman filter compared to an ordinary Kalman filter.
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linear quadratic control, model predictive control, primal-dual interior-point quadratic programming problem

1 Introduction

State-space control methods based on linear models such as linear quadratic control (LQ), model
predictive control (MPC) etc. are typically based on linearizations around equilibrium points,
where the control objectives seek to minimize the distance from the current point of operation
to the equilibrium point. Gain scheduling frameworks for different operating conditions can be
used to handle nonlinearities. The classical gain scheduling framework, consisting of a Jacobian
linearization family as described by Rugh and Shamma [1], is comprised of a family of lineariza-
tions all done at equilibrium points depending on the chosen scheduling variable. The mentioned
control methods all have the same shortcoming, linearizations around equilibrium points are not
guaranteed to resemble the actual dynamics at the current operating point. More advanced gain
scheduling methods such as linear parameter varying (LPV) methods enable linearizations within
a finite parameter space and are not limited to a set of equilibrium points. With an increasing
number of scheduling variables and with an increasing discretization of the scheduling variables,
the dimensions of the parameter space quickly grows and renders the practical implementation
close to impossible, especially if constraints on states, outputs and inputs are to be handled by
the controller. The easy fix to avoid the explosion of dimensions in the parameter space is to
re-linearize the model online at each sample time and design a controller based on the linearized
model, taking non-equilibrium residuals of the linearization into account in the controller design.
No theoretical guarantees concerning stability etc. can however be given to this ad-hoc procedure
compared to the theoretically better founded LPV framework.

If one or more outputs are to be steered towards their desired reference values several methods
exits: The first is to augment the system with an integrator for each reference tracked output and
seek to minimize the integrated the error between the output and the reference value. For varying
reference values or constraints on e.g. control signals or control signal rates, integrator wind-up
can occur, giving rise to unwanted overshoot performance of the closed-loop. A second option is to
use target calculation to determine the new steady state target values for states and control signals
and use an origin-shifting controller framework, e.g. as proposed by Pannocchia and Rawlings [2].
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In this note, it is shown how to gather reference tracking and relinearization at non-stationary
points, into a unified formulation, which serves as an extension to the standard Linear Quadratic
(LQ) formulation. Model Predictive Control (MPC) with quadratic cost functions is similar to
the standard LQ control and the unified control formulation can be applied to MPC as well. Rao
et al. [3] has shown how to ease the computational burden of MPC by exploiting the structure
given by an inequality constrained optimal control problem. The method suggested by Rao et al.
[3] is extended to accommodate the unified formulation presented in this paper. Similar algo-
rithms exploiting the structure of the interior-point optimization problem have subsequently been
implemented by others, e.g. Edlund et al. [4] and Haverbeke et al. [5] for MPC and Moving Hori-
zon Estimation purposes, respectively. The extended MPC formulation is also able to act as the
quadratic programming problem (QP) solving algorithm used by a sequential quadratic program-
ming solver, when applied to Nonlinear Model Predictive Control (NMPC) as done by Tenny et al.
[6].

This documents outline is: In the first section unconstrained MPC and reference-tracking non-
stationary LQ control is presented. In the second section it is shown how to exploit the structure of
an inequality constrained MPC adapted to the unified control framework when solving the QP. To
relate the second section to a quadratic programming problem solver, theory for a general purpose
primal-dual interior-point quadratic programming is revisited in the third section. In the second
last section it is shown how to obtain time discrete dynamic models at non-stationary points. The
last section shows how to incorporate control moves into the framework.

2 Unconstrained linear model predictive control

The finite horizon optimal control problem is given as

minφN (xN ) +

N−1∑

k=0

φk(xk,uk) (1a)

where the stagewise cost function

φk(xk,uk) =
1

2
‖r − gr(xk,uk)‖2Wr

+
1

2
‖gz(xk,uk)‖2Wz

(1b)

consist of two terms: The first term seeks to drive the plant reference outputs gr(·) towards the
desired reference r. The second term seeks to minimize dynamic variations given by gz(·) such as
e.g. velocities, accelerations. The optimization problem is subject to an initial constraint

x0 = x̄ (1c)

and to the nonlinear state progress equation constraint

xk+1 = f(xk,uk), for k = 0, . . . , N − 1 (1d)

The nonlinear equations can be assumed linear throughout the entire prediction horizon to ease
the problem solving. The state progress equation as well as the equations for the reference outputs
gr(·) and the dynamic outputs gz(·) are linearized around (x̄, ū)

f(xk,uk) ≈ Axk + Buk + δ (2a)

gr(xk,uk) ≈ Crxk + Druk + γr (2b)

gz(xk,uk) ≈ Czxk + Dzuk + γz (2c)

The linearized stagewise cost function can be put on a more general form

φk(xk,uk) =
1

2
(xTkQxk + uTkRuk + 2xTkMuk + 2qTxk + 2rTuk) (3)

2



where

Q = Cr
TWrCr + Cz

TWzCz (4a)

R = Dr
TWrDr + Dz

TWzDz (4b)

M = Cr
TWrDr + Cz

TWzDz (4c)

qT = [γr − r]TWrCr + γz
TWzCz (4d)

rT = [γr − r]TWrDr + γz
TWzDz (4e)

and the final state cost

φN (xN ) =
1

2
(xTNΠNxN + 2πTNxN ) (5)

The Lagrangian to optimal control problem is

L = φN (xN ) +
N−1∑

k=0

φk(xk,uk) + νT0 (x̄− x0) +
N−1∑

k=0

νTk+1 (Axk + Buk + δ − xk+1) (6)

The optimal solution is given by ∇L = 0, which can be found by a recursion of the stagewise
Lagrangian gradients

∇xkL = Qxk + Muk + q + ATνk+1 − νk (7)

∇ukL = MTxk + Ruk + r + BTνk+1 (8)

starting a the end of the prediction horizon

∇xNL = ΠN + πN − νN (9)

inserting the final stage Lagrangian gradient (9) and the state progress equation (2a) into the N−1
stage Lagrangian gradient yields

∇xN−1
L = [QN−1 + ATΠNA]xN−1 + M̃N−1uN−1 + q̃N−1 − νN−1 (10)

∇uN−1
L = M̃T

N−1xN−1 + R̃N−1uN−1 + r̃N−1 (11)

where

R̃N−1 = R + BTΠNB and M̃N−1 = M + ATΠNB (12)

and

q̃N−1 = q + ATΠNδ + ATπN and r̃N−1 = r + BTΠNδ + BTπN (13)

are introduced to simplify notation. A control law can be derived from (11)

uN−1 = −KN−1xN−1 − κN−1 (14)

where

KN−1 = R̃−1
N−1M̃

T
N−1 and κN−1 = R̃−1

N−1r̃N−1 (15)

which can be inserted into (10) giving

∇xN−1
L = ΠN−1 + πN−1 − νN−1 (16)

where

ΠN−1 = Q + ATΠNA− M̃N−1KN−1 and πN−1 = q̃N−1 − M̃N−1κN−1 (17)
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The recursion can then be continued for the stages N − 2, N − 3 etc. until the beginning of
the prediction horizon. The variables can be reconstructed, if needed, with a forward recursion
initiated with

x̄ = x0 (18)

ν0 = Π0x0 + π0 (19)

and then going from k = 0, . . . , N − 1 where

uk = −Kkxk − κk (20)

xk+1 = Axk + Buk + δ (21)

νk+1 = Πk+1xk+1 + πk+1 (22)

For a LTI system and N →∞ the solution becomes an algebraic set of equations. The quadratic
cost for the terminal cost is found by the discrete-time algebraic Riccati equation (DARE)

Π = Q + ATΠA− M̃K (23)

where to simplify notation, the matrices

M̃ = M + ATΠB and R̃ = R + BTΠB

are introduced, leading to the feedback gain K = R̃−1M̃T . The linear terminal cost term π is
determined from the same recursion as the DARE

π = q − M̃κ+ ATΠδ + ATπ (24)

where the control action contribution κ

κ = R̃−1[r + BTΠδ + BTπ] (25)

is part of the optimal control law

uk = −Kxk − κ (26)

The DARE should be solved using a specialized DARE solver [7] to achieve fast and robust results
and the linear cost term can be found from (24)

π = [I−AT + KTBT ]−1[q −KT [r + BTΠδ] + ATΠδ] (27)

3 Inequality constrained MPC

In this section, the temporal subscript k has been omitted for the Jacobians A,B etc. even though
that they can vary within the prediction horizon, if used within a NMPC framework. This is done
to ease notation and because they remain constant within the iterations of the QP solver.

The model predictive controller entails the computation of the control signal within a prediction
horizon in the range k = (0, . . . , N − 1). The MPC is formulated as a dual mode horizon where
the first part, i.e k = (0, . . . , N − 1), is considered constrained. In the second horizon, i.e. k =
(N + . . . ,∞), it is assumed that the plant has reached a state where the unconstrained solution is
feasible [8]. The dual mode optimization problem is

min
N−1∑

k=0

φk(xk,uk) +
N−1∑

k=1

‖σk‖2Wσ
+
∞∑

k=N

φk(xk,uk) (28a)

where the stagewise cost function is φk(·) is given by (1b). The term ‖σk‖2Wσ
is only included in

the first part of the prediction horizon and seeks to minimize the violation of the soft constraints
σ. The optimization problem is subject to an initial constraint as in (1c) and to the state progress
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equation (2a) in the interval (k = 0, . . . ,∞). Whereas the soft and hard inequality constraints are
only active in the first part of the prediction horizon

gs(xk)− σk ≈ Csxk + γs − σk ≤ s, k = (1, . . . , N − 1) (28b)

σk ≥ 0, k = (1, . . . , N − 1) (28c)

gh(xk,uk) ≈ Chxk + Dhuk + γh ≤ h, k = (0, . . . , N − 1) (28d)

The constants contributions and the inequality limits can be combined in a redefined inequality
limit to ease notation

s̄ ≡ s− γs and h̄ ≡ h− γh

The second part of the optimization problem can be reduced to a terminal cost, consisting of a
quadratic ΠN and a linear term πN

φN (xN ) =
∞∑

k=N

φk(xk,uk) = xTNΠNxN + πTNxN (29)

given by the unconstrained DARE (23) and (27). The Lagrangian for the inequality constrained
problem can written as

L = φN (xN ) +
N−1∑

k=0

φk(xk,uk) +
N−1∑

k=1

‖σk‖2Wσ

+ νT0 (x̄− x0) +

N−1∑

k=0

(
νTk+1(Axk + Buk + δ − xk+1)

)

+
N−1∑

k=0

(
(λhk )T (Chkxk + Dhuk − h̄)

)
+
N−1∑

k=1

(
(λsk)T (Csxk − σk − s̄)

)
+
N−1∑

k=1

(
(λσk )T (−σk)

)

(30)

where ν0 is Lagrange multiplier for (1c); νk for k = 1, . . . , N is the Lagrange multiplier for (2a);
λhk ,λsk and λσk are the Lagrange multipliers for (28d),(28b) and (28c) respectively.

The Karush-Kuhn-Tucker (KKT) conditions for optimality are

∇L = 0 (31)

x̄− x0 = 0 (32)

Axk + Buk + δ − xk+1 = 0 (33)

Chxk + Dhuk − h̄ ≤ 0 (34)

Csxk − σk − s̄ ≤ 0 (35)

−σk ≤ 0 (36)

diag(λhk )diag(Chxk + Dhuk − h̄)e = 0 (37)

diag(λsk)diag(Csxk − σk − s̄)e = 0 (38)

diag(λσk )diag(−σk)e = 0 (39)

(λhk ,λ
s
k,λ

σ
k ) ≥ 0 (40)

where (37), (38) and (39) are the complementary slackness conditions. By the introduction of the
slack variables thk , tsk and tσk for λhk , λsk and λσk respectively, the KKT condition can be rewritten
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to

F =




∇L
x̄− x0

Axk + Buk + δ − xk+1

Chxk + Dhuk − h̄+ thk
Csxk − σk − s̄+ tsk

−σk + tσk
ThkΛhke
TskΛ

s
ke

TσkΛσk e




= 0 (41)

(λhk , t
h
k ,λ

s
k, t

s
k,λ

σ
k , t

σ
k ) ≥ 0 (42)

where there appropriate ranges of k are omitted for ease of notation. Thk ≡ diag(tλk ), Λhk ≡
diag(λhk ), Tsk ≡ diag(tsk), Λsk ≡ diag(λsk), Tσk ≡ diag(tσk ), Λσk ≡ diag(λσk ) and e = [1 1 . . . 1]T .
The Jacobian of the Lagrangian ∇L consist of

∇x0
L = Qx0 + Mu0 + q0 − ν0 + ATν1 + CT

hλ
h
0 (43)

∇xkL = Qxk + Muk + qk − νk + ATνk+1 + CT
hλ

h
k + CT

s λ
s
k (44)

∇xNL = ΠNxN + πN − νN (45)

∇ukL = Ruk + MTxk + rk + BTνk+1 + DT
hλ

h
k (46)

∇εkL = Zσk + z − λsk − λσk (47)

The Newton like step

∇F∆w = −F = r (48)

will be used to iterate towards a solution. The full KKT matrix ∇F multiplied with the variable
step ∆w = [∆x0 ∆u0 . . .] and the residual vector r = [rx0 r

u
0 . . .] are

∇F∆w =




Q∆x0 + M∆u0 −∆ν0 + AT∆ν1 + CT
h∆λh0

Q∆xk + M∆uk −∆νk + AT∆νk+1 + CT
h∆λhk + CT

s ∆λsk + qk
ΠN∆xN −∆νN

R∆uk + MT∆xk + BT∆νk+1 + DT
h∆λhk

Z∆σk −∆λsk −∆λσk
−∆x0

A∆xk + B∆uk −∆xk+1

Dh∆uk + Ch∆xk + ∆thk
Cs∆xk −∆σk + ∆tsk
−∆σk + ∆tσk

Thk∆λhk + Λhk∆thk
Tsk∆λsk + Λsk∆tsk
Tσk∆λσk + Λσk∆tσk




(49)
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rx0
rxk
rxN
ruk
rσk
rν0
rνk+1

rλ
h

k

rλ
s

k

rλ
σ

k

rt
h

k

rt
s

k

rt
σ

k




= −F =




−Qx0 −Mu0 − q0 + ν0 −ATν1 −CT
hλ

h
0

−Qxk −Muk − qk + νk −ATνk+1 −CT
hλ

h
k −CT

s λ
s
k

−ΠNxN − πN + νN
−Ruk −MTxk − rk −BTνk+1 −DT

hλ
h
k

−Zσk − z + λsk + λσk
−x̄+ x0

−Axk −Buk − δ + xk+1

−Chxk −Dhuk + h̄− thk
−Csxk + σk + s̄− tsk

σk − tσk
−ThkΛhke− Ωh
−TskΛ

s
ke− Ωs

−TσkΛσk e− Ωσ




(50)

where Ωh = diag(∆thk )diag(∆λhk )−σµe, Ωs = diag(∆tsk)diag(∆λsk)−σµe and Ωσ = diag(∆tσk )diag(∆λσk )−
σµe are the centering terms for the corrector step in the predictor-corrector algorithm.

The slack variables ∆thk , ∆tsk and ∆tσk are eliminated using (∆thk = (Λhk )−1(rt
h

k − Thk∆λhk ),
(∆tsk = (Λsk)−1(rt

s

k −Tsk∆λsk) and (∆tσk = (Λσk )−1(rt
σ

k −Tσk∆λσk ) respectively, giving

∇F∆w =




Q∆x0 + M∆u0 −∆ν0 + AT∆ν1 + CT
h∆λh0

Q∆xk + M∆uk −∆νk + AT∆νk+1 + CT
h∆λhk + CT

s ∆λsk
ΠN∆xN −∆νN

R∆uk + MT∆xk + BT∆νk+1 + DT
h∆λhk

Z∆σk −∆λsk −∆λσk
−∆x0

A∆xk + B∆uk −∆xk+1

Dh∆uk + Ch∆xk −Σhk∆λhk
Cs∆xk −∆σk −Σsk∆λsk
−∆σk −Σσk∆λσk




(51)

where Σhk = (Λhk )−1Thk , Σsk = (Λsk)−1Tsk and Σσk = (Λσk )−1Tσk




rx0
rxk
rxN
ruk
rσk
rν0
rνk+1

r̄λ
h

k

r̄λ
s

k

r̄λ
σ

k




=




rx0
rxk
rxN
ruk
rσk
rν0
rνk+1

rλ
h

k − (Λhk )−1rt
h

k

rλ
s

k − (Λsk)−1rt
s

k

rλ
σ

k − (Λσk )−1rt
σ

k




(52)

Eliminating ∆λhk , ∆λsk and ∆λσk (using ∆λhk = (Σhk )−1(Dh∆uk + Ch∆xk − r̄λ
h

k ), ∆λsk =
(Σsk)−1(Cs∆xk − ∆σk − r̄λ

s

k ) and ∆λσk = (Σσk )−1(−∆σk − r̄λ
σ

k )), and afterwards eliminating
∆σk (using ∆σk = Z̄−1(CT

s (Σsk)−1∆xk + r̄σk )) where r̄σk = rσk − (Σsk)−1r̄λ
s

k − (Σσk )−1r̄λ
σ

k yields

∇F∆w =




Q̄0∆x0 + M̄0∆u0 −∆ν0 + AT∆ν1

Q̄k∆xk + M̄k∆uk −∆νk + AT∆νk+1

ΠN∆xN −∆νN
R̄k∆uk + MT

k ∆xk + BT∆νk+1

−∆x0

A∆xk + B∆uk −∆xk+1




(53)
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and the residuals




r̃x0
r̃xk
r̃xN
r̃uk
rν0
rνk+1




=




rx0 + CT
h (Σh0 )−1r̄λ

h

0

rxk + CT
h (Σhk )−1r̄λ

h

k + CT
s (Σsk)−1r̄λ

s

k + CT
s (Σsk)−1Z̄−1

k r̄
σ
k

rxN
ruk + DT

h (Σhk )−1r̄λ
h

k

rν0
rνk+1




(54)

where

R̄k = R + DT
h (Σhk )−1Dh (55)

M̄k = M + CT
h (Σhk )−1Dh (56)

Z̄k = Z + (Σsk)−1 + (Σσk )−1 (57)

Q̄0 = Q + CT
h (Σh0 )−1Ch (58)

where

Q̄k = Q−CT
h (Σhk )−1Ch + CT

s [(Σsk)−1 − (Σsk)−1Z̄−1
k (Σsk)−1]Cs (59)

using

∆uN−1 = −KN−1∆xN−1 + κN−1 (60)

where

R̃N−1 = [R̄N−1 + BTΠNB] (61)

M̃N−1 = [M̄N−1 + ATΠNB] (62)

KN−1 = R̃−1
N−1M̃

T
N−1 (63)

ΠN−1 = Q̄N−1 + ATΠNA− M̃N−1KN−1 (64)

κN−1 = R̃−1
N−1[r̃uN−1 + BT r̃xN + BTΠNr

ν
N ] (65)

πN−1 = r̃xN−1 + ATΠNr
ν
N + Ar̃xN − M̃N−1κN−1 (66)

The recursion can be continued for k = N − 1, . . . , 0

R̃k = [R̄k + BTΠk+1B] (67)

M̃k = [M̄k + ATΠk+1B] (68)

Kk = R̃−1
k M̃T

k (69)

Πk = Q̄k + ATΠk+1A− M̃kKk (70)

κk = R̃−1
k [r̃uk + BT r̃xN + BTΠNr

ν
k+1] (71)

πk = r̃xk + ATΠk+1r
ν
k+1 + Ar̃xk+1 − M̃kκk (72)

A forward recursion can be used to construct variables

∆x0 = −rν0 (73)

∆ν0 = Π0∆x0 − π0 (74)

For k = 0, . . . , N − 1

∆uk = −Kk∆xk + κk (75)

∆xk+1 = A∆xk + B∆uk − rνk+1 (76)

∆thk = −Dh∆uk −Ch∆xk + rλ
h

k (77)

∆λhk = (Thk )−1(rt
h

k −Λhk∆thk ) (78)
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For k = 1, . . . , N − 1

∆σk = Z̄−1(CT
s (Σsk)−1∆xk + r̄σk ) (79)

∆νk = Πk∆xk − πk (80)

∆tsk = −Cs∆xk + ∆σk + rλ
s

k (81)

∆tσk = ∆σk + rλ
σ

k (82)

∆λsk = (Tsk)−1(rt
s

k −Λsk∆tsk) (83)

∆λσk = (Tσk )−1(rt
σ

k −Λσk∆tσk ) (84)

4 Linear constrained quadratic optimization

This section describes the underlying quadratic programming problem (QP) solver based on a
interior-point primal-dual formulation. The algorithm (Alg. 1) is taken from Rao et al. [3], similar
algorithms can be found in Wright [9] and Nocedal and Wright [10]. The mentioned algorithms
are all based on the predictor-corrector method developed by Mehrotra [11]. The standard QP is
given as

min
x

1

2
xTQx+ cTx (85a)

subject to

Ax = b (85b)

Cx ≤ d (85c)

where the Hessian Q is a symmetric positive semidefinite matrix. The Lagrangian to (85) is

L(x,λ,ν) =xTQx+ cTx+ λT (Cx− d) + νT (Ax− b) (86)

Leading to the Karush-Kuhn-Tucker (KKT) conditions

Qx+ c+ ATν + CTλ = 0 (87a)

Ax− b = 0 (87b)

Cx− d ≤ 0 (87c)

λ ≥ 0 (87d)

λT (Cx− d)e = 0 (87e)

where (87a) is the stationarity condition, (87b) and (87c) are the primal feasibility conditions,
(87d) is the dual feasibility condition and (87e) is the complimentary slackness condition for the
primal-dual problem. Introducing the slack variable t to (85c) simplifies the KKT conditions and
gives the following system to solved

F(w) =




Qx+ c+ ATν + CTλ
Ax− b

Cx− d− t
ΛTTe


 = 0, s.t. (λ, t) ≥ 0 (88)

where Λ = diag(λ) and T = diag(t) , w = (x,ν,λ, t). Newton like steps ∇F∆w = −F = r
can be taken to iterate towards the solution. Multiple methods exist but one the most used is the
predictor-corrector method by Mehrotra [11]. The method starts with a predictor step




Q AT CT 0
A 0 0 0
C 0 0 −I
0 0 T Λ







∆xaff

∆νaff

∆λaff

∆taff


 = −




rx

rν

rλ

rt


 (89)
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where

rx = Qx+ c−ATν −CTλ (90)

rν = Ax− b (91)

rλ = Cx− t− d (92)

rt = ΛTe (93)

The largest possible step size without violating the inequality constraints is calculated

αaff = arg max{α ∈ [0, 1]|(λ, s) + α(∆λaff ,∆saff ) ≥ 0} (94)

The current complementary measure

µ = λTs/dim(λ) (95)

is a measure of the current feasibility and the affine complementary measure

µaff = (λ+ αaff∆λ)T (s+ αaff∆s)/dim(λ) (96)

is a measure of the feasibility if the full predictor step was taken. The predictor step is followed
by a corrector step which takes the centering parameter into account

σ =

(
µaff

µ

)3

(97)

to keep the iterate at the central path between the primal and the dual problem and thus
away from infeasibility. This is done by modifying the residual rt with the corrector term
Ω = diag(∆taff )diag(∆λaff )e− σµe




Q AT CT 0
A 0 0 0
C 0 0 −I
0 0 T Λ







∆x
∆ν
∆λ
∆t


 = −




rx

rν

rλ

rt + Ω


 (98)

The corrected step size can then be calculated

α = arg max{α ∈ [0, 1]|(λ, s) + α(∆λ,∆s) ≥ 0} (99)

and the variables can be updated

w+ = w + αβ∆w, 0 < β < 1 (100)

where β is a damping factor typically close to 1, this damping is imposed on the step to improve
the numerical stability of the algorithm. Convergence is assumed if

µ ≤ tolµ and ‖r‖∞ ≤ tolr‖(Q,A,C, c, b,d)‖∞ (101)

Care should also be taken when determining an initial guess, see e.g. Mehrotra [11] to determine
good starting points for λ and t such that they are sufficiently far away from infeasibility but at
the same time not to far away from each other as convergence speed would be impaired otherwise.

5 Linearization of models

A dynamic system can be described by the differential state equation and an output equation

ẋ(t) = f(x(t),u(t)) (102a)

y(t) = g(x(t),u(t)) (102b)
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Algorithm 1: Interior-point primal-dual quadratic programming solver

Initial guess;
if Constraints are not violated then

Return with result;

for ITER from 1 to IMAX do
Solve ∇F∆waff = −r;

Calc. αaff = max
{
α ∈ (0, 1]|(t,λ) + α(∆taff ,∆λaff ) ≥ 0

}
;

Calc. µ = tTλ/m;

Calc. µaff = (t+ αaff∆taff )T (λ+ αaff∆λaff )/m;

Calc. σ = (µaff/µ)3;

Calc. residuals with corrector terms: rcorr = (rx, rν , rλ, rt + Ω);
Solve ∇F∆w = −rcorr;
Calc. α = max {α ∈ (0, 1]|(t,λ) + α(∆t,∆λ) ≥ 0} ;
Update variables: w+ = w + αβ∆w ;
Calc. residuals used by next predictor step: r;
if Convergence then

Terminate algorithm;

For the application of model predictive control several methods of time-discretization exits, for
nonlinear model predictive control where the model is re-linearized at each temporal point in
the prediction horizon, the time-discretization method influences the convergence properties of the
NLP solver. Forward Euler time integration is probably the most simple choice. Runge-Kutta time
integration schemes are common choices for time discretization of the models. The computation
of the sensitivity/Jacobian matrices (A,B) of the state progress equation can be computationally
expensive. Methods such as the one suggested by Kristensen et al. [12], seeks to minimize the
computational burden by reusing already calculated information. Yet another time discretization
method, which can be used for NMPC is collocation of time-discrete points [13], which shall not
be discussed further in this work.

If the models can be assumed to be linear within a time step of the prediction horizon, the
computational burden of time-integration might be reduced significantly. The differential state
equation and the measured outputs are linearized around (x̄, ū) using first order Taylor series
approximation

f(xk,uk) ≈ Axk + Buk + δ (103a)

g(xk,uk) ≈ Cxk + Duk + γ (103b)

where the constant contributions δ and γ are

δ = f(x̄, ū)−Ax̄−Bū (104)

γ = g(x̄, ū)−Cx̄−Dū (105)

The time-discrete state progress equation

xk+1 = xk +

∫ tk+1

tk

f(x(t),u(t))dt

︸ ︷︷ ︸
f(xk,uk)

(106)

can, under the assumption of being linear and having a constant input u within a time step, be
time-discretized by the zero-order-hold method [14] and written as

f(xk,uk) ≈ xk +

∫ tk+1

tk

Ax(t) + Bu(t)dt+

∫ tk+1

tk

δdt = Axk + Buk + δ (107)

where

δ = ∆tδ (108)
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and where
[
A B
0 I

]
= expm

(
∆t

[
A B
0 0

])
(109)

where expm is the matrix exponential function, usually approximated by a Padé approximation
with scaling and squaring [15]. Linear forward Euler time integration can be used instead of the
zero-order-hold method. The time step ∆t can be divided into n even smaller equidistant time
steps and a forward recursion can calculate the state values at the next time step

xi+1 = xi + ∆t
n ẋi = xi + ∆t

n (Axi + Bui + δ) (110)

where i is the local time index between time tk and tk+1. The time discrete state and input
matrices A and B are initiated as

A = I and B = 0 (111)

and updated as

A = (I + ∆t
n A)A and B = (I + ∆t

n A)B + ∆t
n B (112)

during the n number of time steps, if the time discrete sensitivity matrices are needed.
Notice that the linearized functions (103) are functions of the original variable and not pertur-

bations around the linearization points. If used for NMPC, the iterations within the sequential
programming solver uses the perturbations instead of the actual value and a reformulation is
required.

6 Control Moves

A typical Model Predictive Control formulation includes penalties on control moves as well as
constraints on control moves. A control move u∆

k relates to the control signal in the following way

uk = uk−1 + u∆
k (113)

and relates to temporal derivative of the control signal u∆
k /∆t = u̇k. The system presented in the

previous sections can be augmented to handle control moves within the existing framework. Take
the extended problem where control moves have been included

min

∞∑

k=N

(
φk(xk,uk) + 1

2

∥∥u∆
k

∥∥2

W∆

)
+

N−1∑

k=0

(
φk(xk,uk) + 1

2

∥∥u∆
k

∥∥2

W∆

)
+

N−1∑

k=1

1
2‖σk‖2Wσ

(114)

subject to (1c) and to the state progress equation (2a) in the interval (k = 0, . . . ,∞) and to the
inequality constraints (28b), (28c) and (28d) and to the control move constraint

C∆u
∆
k ≤ h∆, k = (0, . . . , N − 1) (115)

then by augmenting the state progress equation
[
xk+1

uk

]

︸ ︷︷ ︸
x̃k+1

=

[
A B
0 I

]

︸ ︷︷ ︸
Ã

[
xk
uk−1

]

︸ ︷︷ ︸
x̃k

+

[
0
I

]

︸︷︷︸
B̃

u∆
k︸︷︷︸
ũk

+

[
δ
0

]

︸︷︷︸
δ̃

(116a)

the controlled outputs

g̃r(x̃k, ũk) ≈
[
Cr Dr

]
︸ ︷︷ ︸

C̃r

x̃k +
[
0
]

︸︷︷︸
D̃r

ũk +
[
γr
]

︸︷︷︸
γ̃r

(116b)

g̃z(x̃k, ũk) ≈
[
Cz Dz

0 0

]

︸ ︷︷ ︸
C̃z

x̃k +

[
0
I

]

︸︷︷︸
D̃z

ũk +

[
γz
0

]

︸ ︷︷ ︸
γ̃z

(116c)
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and the inequality constraints

g̃s(x̃k)− σk ≈
[
Cs 0

]
︸ ︷︷ ︸

C̃s

x̃k +
[
0
]

︸︷︷︸
D̃r

ũk +
[
γs
]

︸︷︷︸
γ̃s

−σk ≤ s (116d)

g̃h(x̃k, ũk) ≈
[
Ch Dh

0 0

]

︸ ︷︷ ︸
C̃h

x̃k +

[
0
I

]

︸︷︷︸
D̃h

ũk +

[
γh
0

]

︸ ︷︷ ︸
γ̃h

≤
[
h
h∆

]

︸ ︷︷ ︸
h̃

(116e)

and the dynamic oputput weight matrice, which should also be augmented

W̃z =

[
Wz 0
0 W∆

]
(117)

then the augmented system can be used in the algorithms of the previous sections and the control
signal to be send to the plant is

uk = uk−1 + ũk (118)

If constraints are also present on higher order derivatives of the control signals, then the system
should be augmented accordingly.
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ABSTRACT

This technical note documents the trust-region-based sequential quadratic programming algorithm used
in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject
to linear inequality constraints and nonlinear equality constraints.
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nonlinear programming problem, sequential quadratic programming, trust region

1 Introduction

A nonlinear cost function subject to nonlinear equality and inequality constraints constitutes a nonlinear
programming problem (NLP). Multiple methods for solving such problems exists, best known are sequen-
tial quadratic programming problem (SQP) [1, 2] algorithms and interior point (IP) algorithms [3, 4] or
hybrids of the two [5]. The SQP is typically augmented with a trust region inequality constraint, which
can be tightened of loosened depending on the progress made by the current search direction. More
advanced versions of these algorithms are able to cope with nonlinear inequality constraints, a feature
not yet tested with the algorithm presented in this paper. This paper describes a trust-region-based
sequential quadratic programming (TRSQP) algorithm with a general framework which can be used for
different problems with adaptations suited for the particular structure of the problem. Such a particular
structure is seen in Nonlinear Model Predictive Control [6, 7, 8].

2 Trust-region-based sequential quadratic programming

A NLP of the general form

min
x
f(x), s.t. c(x) = 0 and d(x) ≤= 0 (1)

has the Lagrangian

L(x,ν,λ) = f(x) + νT c(x) + λTd(x) (2)

leading to the Karush-Kuhn-Tucker (KKT) conditions for optimality [3, 4]

∇L(x,ν,λ) = ∇f(x) +∇c(x)ν +∇d(x)λ = 0 (3)

c(x) = 0 (4)

d(x) ≤ 0 (5)

diag(d(x))diag(λ) = 0 (6)

λ ≥ 0 (7)

the KKT conditions will not be investigated further here as they more relevant for the IP methods. The
NLP can be solved via an iterative procedure known as sequential quadratic programming (SQP) where
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in each iteration the local approximated problem is solved as a quadratic programming problem (QP).

min
∆x

m(∆x), m(∆x) = 1
2∆xTH∆x+∇f(x)T ∆x (8a)

subject to

c(x) +∇c(x)T ∆x = 0 (8b)

d(x) +∇d(x)T ∆x ≤ 0 (8c)

‖D∆x‖p ≤ δ (8d)

The optimization variable is updated by the iterative progress

(x,ν,λ)+ = (x,ν,λ) + ∆(x,ν,λ) (9)

if certain step acceptance criteria are met. The extra inequality constraint (8d), known as a trust-region,
where δ is the trust region radius, can be added to aid the convergence. Iterations continue either until
the maximum number of allowed iterations are met, if termination criteria are met or until the algorithm
fails due e.g. bad numerical handling of the problem solving or because the problem was ill-posed to
begin with. The outline of the TRSQP can be seen in Alg. 1.

Algorithm 1: Trust region based sequential quadratic programming solver

Set initial values for (x,ν,λ), δ = δmax and H = ∇2f ;
for ITER from 1 to IMAX do

Calc. trust-region scaling matrix D;
Solve QP to obtain ∆(x,ν,λ);
Set trial variables (x,ν,λ)+ = (x,ν,λ) + ∆(x,ν,λ);
Calc. f(x+), c(x+) and d(x+) and their Jacobians;
Calc. progress measures ρ and γ;
Update trust region radius δ;
Update Quasi-Newton approximation of Hessian of Lagrangian H;
if Step accepted then

Set (x,ν,λ) = (x,ν,λ)+;

if Convergence then
Terminate algorithm;

The different points of the algorithm are elaborated in the following sections.

2.1 Step acceptance

Step acceptance is depending on two measures of progress as well as inequality feasibility. The actual to
predicted cost reduction ratio

ρ =
f(x)− f(x+)

−m(∆x)
(10)

provides a measure of how well the QP subproblem resembles the properties of the NLP at the current
point. For ρ ≈ 1, the QP and the NLP are in good agreement. For ρ > 1, a greater decrease in cost
function than predicted by the QP has occurred and for 0 < ρ < 1 the actual decrease in cost function
was not as good as predicted by the QP. For ρ < 0, the NLP and the QP are not in agreement of whether
the cost function was decreased or increased with the current step. The relative improvement of the cost
function

γ =
f(x)− f(x+)

f(x)
(11)
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Figure 1: Two trust regions are shown in this figure: The box is given by the ∞-norm and the ellipsoid
is given by the 2-norm. Both norms have scaling matrices based on the Hessian.

provides another measure of progress. Different strategies can be taken. In the present work the cost
function is allowed to increase as long as ρ or γ are positive and inequalities are feasible. This enables a
search where the algorithm is able to move around. The step is accepted if the QP was able to find a
feasible solution and if

max(ρ, γ) > 0 (12)

max(d(x+)) ≤ τd(x) (13)

furthermore steps are not accepted in the first iteration as experience has shown better performance by
letting the algorithm start up and generate its first Quasi-Newton Hessian approximation etc.

2.2 Trust region

A trust region with the general form

‖D∆x‖p ≤ δ (14)

where D is the scaling matrix, p is the number of the norm, e.g. 1,2 or∞, and δ is the trust region radius,
can be imposed on the QP. The first choice of a suitable scaling matrix D might be the identity matrix.
An even better choice takes the Hessian H into account as the problem might not be equally sensitive
to changes of x in all directions. The 2-norm yields a quadratic constraint ∆xTDTD∆x ≤ δ2 which
can be chosen to be identical to the Hessian ∆xTH∆x ≤ δ2. The quadratic constraints would make the
approximated problem a quadratic constrained quadratic cost (QCQC) problem which does not fit into
the normal QP framework used by the SQP, where only linear constraints occur. The ∞-norm results
in linear inequality constraints

−δ ≤ D∆x ≤ δ (15)

and is thus suitable for the description of a trust region which can be included in standard QP. Inspired
by the quadratic constraints the Hessian can be decomposed by e.g. singular value decomposition

H = UΣVT = UΣ1/2Σ1/2VT = DTD (16)

giving a multidimensional box circumscribing the ellipsoid of the quadratic constraint as tight as possible.
Fig. 1 shows how the ∞-norm and the 2-norm trust regions resemble the Hessian and ensure that steps
are constrained along the dimensions in a fashion scaled by the Hessian.
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2.3 Trust region radius

The trust region radius should be increased or decreased according to a set of rules: If ρ is small indicating
poor agreement between the NLP and QP or if γ is negative indicating an increase in cost function or
if the previous step has been rejected for some reason, then the trust region radius should be decreased.
If the QP failed, it is most likely due to a too restrictive trust region radius and the radius should be
increased. If ρ was high, indicating good agreement between the NLP and the QP, then the trust region
radius should be increased.

δ =





δ/2 for ρ < 1/4 or γ < 0 or Step Rejected
min(3δ, δmax) for QP failed

min(3 min(δ, ‖D∆x‖p), δmax) for ρ > 3/4
(17)

2.4 Quasi-Newton approximations of Hessian of Lagrangian

The quadratic cost in the QP should ideally by the Hessian of the Lagrangian of the NLP

∇2L = ∇2f(x) +

nc∑

i

∇2ci(x)νi +

nd∑

i

∇2di(x)λi (18)

this would computational expensive and if no analytic second derivatives of the cost function and con-
straints are available, those would have to be determined via finite differences. Commonly used alter-
natives are different Quasi-Newton approximations such as dBFGS (Alg. 2), SR1 (Alg. 3) and SR1pos
(Alg. 4). They are all calculations based on the variable step s and and with the difference in the
gradients of the Lagrangian y

s = x+ − x (19)

y = ∇L(x+,ν+,λ+)−∇L(x,ν+,λ+) (20)

Algorithm 2: damped Broyden-Fletcher-Goldfarb-Shanno (dBFGS) update

if sTy < 0.2sTHs then
θ = 0.8sTHs(sTHs− sTy)−1;
y = θy + (1− θ)Hs;

H = H−HssTH(sTHs)−1 + yyT (yTs)−1;

Algorithm 3: Symmetric rank-1 (SR1) update

if (y −Hs) < 10−6(y −Hs)s then
H = H + (y −Hs)(y −Hs)T ((y −Hs)Ts)−1;

Algorithm 4: Positive definite symmetric rank-1 (SR1pos) update

if (y −Hs) < 10−6(y −Hs)s then
H = H + (y −Hs)(y −Hs)T ((y −Hs)Ts)−1;
ΛV = HV;
H = VΛ+V−1;

The dBFGS and SR1pos both maintain a positive definite Hessian, making the QP easier to solve.
The SR1 might be a better fit if the NLP is not positive definite.
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2.5 Termination

The algorithm terminates if steps toward the optimum are becoming to small and if the last accepted
step was feasible

‖∆x‖2 ≤ τ∆x (21)

max(d(x+)) ≤ τd(x) (22)∥∥c(x+)
∥∥
∞ ≤ τc(x) (23)

3 Discussion and future work

The presented algorithm has been tested with Nonlinear Model Predictive Control, with nonlinear equal-
ity constraints [6]. It has not been tested with nonlinear inequality constraints and performance with
nonlinear inequality constraints remains to be investigated.
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