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This study presents a Bayesian parametric model for the purpose
of estimating the extreme load on a wind turbine. The extreme load
is the highest stress level imposed on a turbine structure that the
turbine would experience during its service lifetime. A wind turbine
should be designed to resist such a high load to avoid catastrophic
structural failures. To assess the extreme load, turbine structural re-
sponses are evaluated by conducting field measurement campaigns or
performing aeroelastic simulation studies. In general, data obtained
in either case are not sufficient to represent various loading responses
under all possible weather conditions. An appropriate extrapolation
is necessary to characterize the structural loads in a turbine’s service
life. This study devises a Bayesian spline method for this extrapola-
tion purpose, using load data collected in a period much shorter than
a turbine’s service life. The spline method is applied to three sets of
turbine’s load response data to estimate the corresponding extreme
loads at the roots of the turbine blades. Compared to the current in-
dustry practice, the spline method appears to provide better extreme
load assessment.

1. Introduction. A wind turbine operates under various loading condi-
tions in stochastic weather environments. The increasing size, weight and
length of components of utility-scale wind turbines escalate the stresses (or
loads, responses) imposed on the structure. As a result, modern wind tur-
bines are prone to experiencing structural failures. Of particular interest in
a wind turbine system are the extreme events under which loads exceed a
threshold, called a “nominal design load” or “extreme load.” Upon the oc-
currence of a load higher than the nominal design load, a wind turbine could
experience catastrophic structural failures.
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Mathematically, an extreme load is defined as an extreme quantile value
in a load distribution corresponding to a turbine’s service time of T years
[Sørensen and Nielsen (2007)]. Let y denote the maximum load, in the unit
of million Newton-meter (MN-m), during a specific time interval. Then, we
define the load exceedance probability as follows:

PT = P [y > lT ],(1.1)

where PT is the target probability of exceeding the load level lT (in the same
unit as that of y).

In structural reliability analysis of wind turbines, people collect load re-
sponse data and arrange them in 10-minute intervals because wind speeds
are considered stationary over a 10-minute duration [Fitzwater and Winter-
stein (2001)]. Given this data arrangement in wind industry, y commonly
denotes the maximum load during a 10-minute interval. The unconditional
distribution of y, p(y), is called the long-term distribution and is used to
calculate P [y > lT ] in (1.1).

In (1.1), the extreme event, {y > lT }, takes place with the exceedance
probability PT . The waiting time until this event happens should be longer
than, or equal to, the service time. Therefore, a reasonable level of PT can
be found in the following way [IEC (2005), Peeringa (2003)]:

PT =
10

T × 365.25× 24× 60
.(1.2)

Note that PT is the reciprocal of the number of 10-minute intervals in T
years. For example, when T is 50, PT becomes 3.8× 10−7.

Estimating the extreme load implies finding an extreme quantile lT in the
10-minute maximum load distribution, given a target service period T , such
that (1.1) is satisfied. Wind turbines should be designed to resist the lT load
level to avoid structural failures during its desired service life.

Since loads are highly affected by wind profiles, we consider the marginal
distribution of y obtained by using the distribution of y conditional on a
wind profile as follows:

p(y) =

∫

p(y|x)p(x)dx.(1.3)

Here, p(x) is the joint probability density function of wind characteristics
in a covariate vector x. The conditional distribution of y given x, p(y|x)
in (1.3), is called the short-term distribution. The long-term distribution
can be computed by integrating out wind characteristics in the short-term
distribution.

The conditional distribution modeling in (1.3) is a necessary practice in
the wind industry. A turbine needs to be assessed for its ability to resist
the extreme loads under the specific wind profile at the site it will be in-
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stalled. Turbine manufacturers usually test a small number of representative
turbines at their own testing site, producing p(y|x). When a turbine is to
be installed at a commercial wind farm, the wind profile at the proposed
installation site can be collected and substituted into (1.3) as p(x), so that
the site-specific extreme load can be assessed. Without the conditional dis-
tribution model, a turbine test would have to be done for virtually every
new wind farm; doing so is very costly and thus uncommon.

For in-land turbines, the wind characteristic vector x in general comprises
two elements: (1) a steady state mean of wind speed and (2) the stochastic
variability of wind speed [Bottasso, Campagnolo and Croce (2010), Ronold
and Larsen (2000), Manuel, Veers and Winterstein (2001)]. The first ele-
ment can be measured by the average wind speed (in the unit of meters
per second, or m/s) during a 10-minute interval, and the second element
can be represented by the standard deviation of wind speed, or the turbu-
lence intensity, also during a 10-minute interval. Here, turbulence intensity
is defined as the standard deviation of wind speed divided by the average
wind speed for the same duration. For offshore turbines, weather character-
istics other than wind may be needed, such as the wave height [Agarwal and
Manuel (2008)].

In this study, we propose a new procedure to estimate the long-term ex-
treme load level lT for wind turbines. The novelty of the new procedure is
primarily regarding how to model the short-term distribution p(y|x). Spe-
cially, we establish a load distribution for y|x using spline models. As such,
we label the resulting method a Bayesian spline method for extreme loads.
In the remainder of the paper we first provide some background information
regarding wind turbine load responses and the data sets used in this study.
In Section 3 we explain how the extreme load estimation problem is currently
solved. We proceed to present the details of our spline method in Section 4.
In Section 5 we compare the spline method with the method reviewed in Sec-
tion 3, arguing that the spline method produces better estimates. Finally,
we end the paper with some concluding remarks in Section 6.

2. Background and data sets. Figure 1 shows examples of mechanical
loads at different components in a turbine system. The flap-wise bending
moments measure the loads at the blade roots that are perpendicular to the
rotor plane, while the edge-wise bending moments measure the loads that
are parallel to the plane. Shaft- and tower-bending moments measure, in
two directions, the stresses on the main shaft connected to the rotor and on
the tower supporting the wind power generation system (i.e., blades, rotor,
generator etc.), respectively.

We only study in-land turbines (ILTs) in this work and use the data sets
from three ILTs located at different sites. These data sets were collected by
Risø-DTU (Technical University of Denmark) [WindData]. Table 1 summa-
rizes the specification of the data sets.
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Fig. 1. Illustration of structural loads at different components. (The illustration is mod-
ified based on a figure originally available at WindData.)

We would like to first explain a few terms used in the table as well as in
the rest of the paper:

• Pitch control : To avoid production of excessive electricity, turbines hold
the rotor at an approximately constant speed in high wind speeds. A pitch
controlled turbine turns its blades to regulate its rotor speed.

• Stall control : This serves the same purpose as in pitch control. But the
blade angles do not adjust during operation. Instead the blades are de-
signed and shaped to increasingly stall the blade’s angle of attack with
the wind to protect the turbine from excessive wind speeds.

Table 1

Specifications of wind turbines in three data sets

Wind turbine model NEG-Micon/2750 Vestas V39 Nordtank 500
(Name of data set) (ILT1) (ILT2) (ILT3)

Hub height (m) 80 40 35
Rotor diameter (m) 92 39 41
Cut-in wind speed (m/s) 4 4.5 3.5
Cut-out wind speed (m/s) 25 25 25
Rated wind speed (m/s) 14 16 12
Nominal power (kW) 2750 500 500
Control system Pitch Pitch Stall
Location Alborg, Tehachapi Pass, Roskilde,

Denmark California Denmark
Terrain Coastal Bushes Coastal
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• Cut-in wind speed : This is the lowest wind speed at a hub height at which
a wind turbine starts to produce power.

• Cut-out wind speed : This is the speed beyond which a wind turbine shuts
itself down to protect the turbine.

• Rated wind speed : This is the speed beyond which the turbine’s output
power needs to be limited and, consequently, the rotor speeds are regu-
lated, by using, for example, a pitch control mechanism.

Among the structural load responses, we consider only the flap-wise bend-
ing moments measured at the root of blades. In other words, y in this study
is the 10-minute maximum blade-root flap-wise bending moment (hereafter,
we call y a maximum load). But please note that our method applies to other
load responses as well. Regarding weather characteristics, since we consider
only the ILTs, we include in x the average wind speed v and the standard
deviation of wind speed s, namely, x := (v, s).

The data are recorded at different frequencies on the ILTs, as follows:

• ILT1 : 25 Hz = 15,000 measurements/10-min;
• ILT2 : 32 Hz = 19,200 measurements/10-min;
• ILT3 : 35.7 Hz = 21,420 measurements/10-min.

Here, 1 Hz means one measurement per second. The raw measured variables
are vij and yij , where i= 1, . . . , n represents a 10-minute block of data and
j = 1, . . . ,N is the index of the measurements. We use N to represent the
number of measurements in a 10-minute block, equal to 15,000, 19,200 and
21,420 for ILT1, ILT2 and ILT3, respectively, and use n to represent the total
number of the 10-minute intervals in each data set, taking the value of 1154,
595 and 5688, respectively, for ILT1, ILT2 and ILT3. For these variables,
the statistics of the observations in each 10-minute block are calculated as
follows:

vi =
1

N

N
∑

j=1

vij ,(2.1)

si =

√

√

√

√

1

N − 1

N
∑

j=1

(vij − vi)2 and(2.2)

yi =max{yi1, yi2, . . . , yiN}.(2.3)

3. Literature review. The previous edition of the international standard,
IEC 61400-1:1999, offers a set of design load cases with deterministic wind
conditions such as annual average wind speeds, higher and lower turbulence
intensities, and extreme wind speeds [IEC (1999)]. In other words, the loads
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in IEC 61400-1:1999 are specified as discrete events based on design ex-
periences and empirical models [Moriarty, Holley and Butterfield (2002)].
Veers and Butterfield (2001) point out that these deterministic models do
not represent the stochastic nature of structure responses, and suggest us-
ing statistical modeling to improve design load estimates. Moriarty, Holley
and Butterfield (2002) examine the effect of varying turbulence levels on the
statistical behavior of a wind turbine’s extreme load. They conclude that
the loading on a turbine is stochastic at high turbulence levels, significantly
influencing the tail of the load distribution.

In response to these developments, the new edition of IEC 61400-1 stan-
dard (IEC 61400-1:2005), issued in 2005, replaces the deterministic load
cases with stochastic models, and recommends the use of statistical ap-
proaches for determining the extreme load level in the design stage. Freuden-
reich and Argyriadis (2008) compare the deterministic load cases in the IEC
61400-1:1999 with the stochastic cases in IEC 61400-1:2005, and observe
that when statistical approaches are applied, higher extreme load estimates
are obtained in some structural responses, such as the blade tip deflection
and flap-wise bending moment.

After IEC 61400-1:2005 was issued, many studies were reported to devise
and recommend statistical approaches for extreme load analysis [Freudenre-
ich and Argyriadis (2008), Agarwal and Manuel (2008), Peeringa (2009), Mo-
riarty (2008), Fogle, Agarwal and Manuel (2008), Regan and Manuel (2008),
Natarajan and Holley (2008)]. These studies adopt a common framework,
which we call binning method. The basic idea of the binning method is to
discretize the domain of a wind profile vector x into a finite number of bins.
For example, one can divide the range of wind speed, from the cut-in speed
to the cut-out speed, into multiple bins and set the width of each bin to, say,
2 m/s. Then, in each bin, the conditional short-term distribution of y|x is
approximated by a stationary distribution, with the parameters of the dis-
tribution estimated by the method of moments or the maximum likelihood
method. Then, the contribution from each bin is summed over all possible
bins to determine the final long-term extreme load. In other words, integra-
tion in (1.3) for calculating the long-term distribution is approximated by
the summation of finite elements.

According to the classical extreme value theory [Coles (2001), Smith
(1990)], the short-term distribution of y|x can be approximated by a gener-
alized extreme value (GEV) distribution. The probability density function
of the GEV is

p(y) =



























1

σ
exp

[

−

(

1 + ξ

(

y− µ

σ

))−1/ξ](

1 + ξ

(

y− µ

σ

))−1−1/ξ

,

if ξ 6= 0,
1

σ
exp

[

−
y− µ

σ
− exp

(

−
y− µ

σ

)]

, if ξ = 0,

(3.1)
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for {y : 1 + ξ(y − µ)/σ > 0}, where µ ∈ ℜ is the location parameter, σ > 0
is the scale parameter, and ξ ∈ ℜ is the shape parameter that determines
the weight of the tail of the distribution. ξ > 0 corresponds to the Fréchet
distribution with a heavy upper tail, ξ < 0 to the Weibull distribution with
a short upper tail and light lower tail, and ξ = 0 (or, ξ → 0) to the Gumbel
distribution with a light upper tail [Coles (2001)].

One of the main focuses of interest in extreme value theory is in deriv-
ing the quantile value (which, in our study, is defined as the extreme load
level lT ), given the target probability PT . The quantile value can be ex-
pressed as a function of the distribution parameters as follows:

lT =

{

µ−
σ

ξ
[1− (− log(1−PT ))

−ξ], if ξ 6= 0,

µ− σ log[− log(1−PT )], if ξ = 0.
(3.2)

The virtue of the binning method is that by modeling the short-term dis-
tribution with a homogeneous GEV distribution (i.e., keep the parameters
therein constant), it provides a simple way to handle the overall nonsta-
tionary load response across different wind speeds. The binning method is
perhaps the most common method used in the wind industry and also rec-
ommended by IEC (2005). For example, Agarwal and Manuel (2008) use
the binning method to estimate the extreme loads for a 2MW offshore wind
turbine. In each weather bin, they use the Gumbel distribution to explain
the probabilistic behavior of the mudline bending moments of the turbine
tower. The data were collected for a period of 16 months. However, most
bins have a small number of data, or sometimes, no data at all. For the
bins without data, the authors estimate the short-term distribution param-
eters by using a weighted average of all nonempty bins with the weight
related to the inverse squared distance between bins. They quantify the un-
certainty of the estimated extreme loads using a bootstrapping technique
and report 95% confidence intervals for the short-term extreme load given
specific weather conditions (weather bins). Because bootstrapping resam-
ples the existing data for a given weather bin, it cannot precisely capture
the uncertainty for those bins with limited data or without data.

Despite its popularity, the binning method has obvious shortcomings in
estimating extreme loads. A major limitation is that the short-term load
distribution in one bin is constructed separately from the short-term distri-
butions in other bins. This approach requires an enormous amount of data
to define the tail of each short-term distribution. In reality, the field data
can only be collected in a short duration (e.g., one year out of the 50-year
service) and, consequently, some bins do not have enough data. Then, the
binning method may end up with inaccuracy or big uncertainty in the es-
timates of extreme loads. In practice, how many bins to use is also under
debate, and there is not yet a consensus. The answer to the action of binning
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Fig. 2. Scatter plots of 10-minute maximum load versus 10-minute average wind speed.

appears to depend on the amount of data—if one has more data, he/she can
afford to use more bins; otherwise, fewer bins.

4. Bayesian spline method for extreme load. In this section we present
our new procedure of estimating the extreme load with two submodels.
The first submodel (in Section 4.1) is the conditional maximum load model
p(y|x), and the second submodel (in Section 4.3) is the distribution of wind
characteristics p(x). Our major undertaking in this study is on the first
submodel, where we present an alternative to the current binning method.

We begin by presenting some scatter plots for the three data sets. Fig-
ure 2 shows the scatter plots between the 10-minute maximum loads and
10-minute average wind speeds. We observe nonlinear patterns between the
loads and the average wind speeds in all three scatter plots, while individual
turbines exhibit different response patterns. ILT1 and ILT2 are two pitch
controlled turbines, so when the wind speed reaches or exceeds the rated
speed, the blades are adjusted to reduce the absorption of wind energy. As
a result, we observe that the loads show a downward trend after the rated
wind speed. But different from that of ILT1, the load response of ILT2 has
a large variation beyond the rated wind speed. This large variation can be
attributed to its less capable control system since ILT2 is one of the early
turbine models using a pitch control system. ILT3 is a stall controlled tur-
bine, and its load pattern in Figure 2(c) does not have an obvious downward
trend beyond the rated speed.

Figure 3 presents the scatter plots between the 10-minute maximum loads
and the standard deviations of wind speed during the 10-minute intervals.
We also observe nonlinear relationships between them, especially for the new
pitch-controlled ILT1. Figure 4 shows scatter plots of 10-minute standard
deviation versus 10-minute average wind speed. Some previous studies [Mo-
riarty, Holley and Butterfield (2002), Fitzwater, Cornell and Veers (2003)]
suggest that the standard deviation of wind speed varies with the average
wind speed, which appears consistent with what we observe in Figure 4.
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Fig. 3. Scatter plots of 10-minute maximum load versus 10-minute standard deviations
of wind speed.

4.1. Submodel 1: Bayesian spline model for conditional maximum load.

Recall that in the binning method, a homogeneous GEV distribution is
used to model the short-term load distribution, for it appears reasonable
to assume stationarity if the chosen weather bin is narrow enough. A finite
number of the homogeneous GEV distributions are then stitched together
to represent the nonstationary nature across the entire wind profile. What
we propose here is to abandon the bins and instead use a nonhomogeneous
GEV distribution whose parameters are not constant but depend on weather
conditions.

Our research started out with simple approaches based on polynomial
models. It turns out that polynomial-based approaches lack the flexibility of
adapting to the data sets from different types of turbines. Moreover, due to
the nonlinearity around the rated wind speed and the limited amount of data
under high wind speeds, polynomial-based approaches performed poorly in
those regions that are generally important for capturing the maximum load.
Spline models, on the other hand, appear to work better than a global

Fig. 4. Scatter plots of 10-minute average wind speed versus 10-minute standard devia-
tion of wind speed.
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polynomial model, because they have more supporting points spreading over
the input regions. In the sequel, we present two flexible Bayesian spline
models for the purpose of establishing the desired nonhomogeneous GEV
distribution.

Suppose we observe 10-minute maximum loads y1, . . . , yn with correspond-
ing covariate variables x1 = (v1, s1), . . . ,xn = (vn, sn), as defined in (2.1) and
(2.2). We choose to model yi with a GEV distribution:

yi|xi ∼GEV(µ(xi), σ(xi), ξ), σ(·)> 0,(4.1)

where the location parameter µ and scale parameter σ in this GEV distribu-
tion are a nonlinear function of wind characteristics x. The shape parameter
ξ is fixed across the wind profile, while its value will still be estimated using
the data from a specific wind turbine. The reason that we keep ξ fixed is to
keep the final model from becoming overly complicated. Let us denote µ(xi)
and σ(xi) by

µ(xi) = f(xi),(4.2)

σ(xi) = exp(g(xi)),(4.3)

where in (4.3), an exponential function is used to ensure the positivity of
the scale parameter.

Our strategy of modeling f(·) and g(·) is to use a Bayesian MARS (mul-
tivariate adaptive regression splines) model [Denison, Mallick and Smith
(1998), Denison et al. (2002)] for capturing the nonlinearity between the
load response and the wind-related covariates. The Bayesian MARS model
has high flexibility. It includes the number and locations of knots as part
of its model parameters and determines these from observed data. In ad-
dition, interaction effects among input factors can be modeled if choosing
appropriate basis functions.

Specifically, the Bayesian MARS models f(x) for the location parameter
µ and g(x) for the scale parameter σ are represented as a linear combination
of the basis functions Bµ

k (x) and Bσ
k (x), respectively, as

f(x) =

Kµ
∑

k=1

βkB
µ
k (x),(4.4)

g(x) =

Kσ
∑

k=1

θkB
σ
k (x),(4.5)

where βk, k = 1, . . . ,Kµ and θk, k = 1, . . . ,Kσ are the coefficients of the basis
functions Bµ

k (·) and Bσ
k (·), respectively, and Kµ and Kσ are the number of

the respective basis functions. According to the study by Denison, Mallick
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and Smith (1998), which proposed the Bayesian MARS, the basis functions
are specified as follows:

Bk(x) =











1, k = 1,
Jk
∏

j=1

[hjk · (xr(j,k) − tjk)]+, k = 2,3, . . . ,K.
(4.6)

Here, [·]+ =max(0, ·), Jk is the degree of interaction modeled by the basis
function Bk(x), hjk is the sign indicator, taking the value of either −1 or
+1, and r(j, k) produces the index of the predictor variable which is being
split on tjk, commonly referred to as the knot points.

We here introduce an integer variable Tk to represent the types of basis
functions used in (4.6). Since we consider two predictors v and s for inland
turbines, there could be three types of basis functions, namely, [±(v − ∗)]+
and [±(s − ∗)]+ for each explanatory variable, respectively, and [±(v −
∗)]+[±(s − ∗)]+ for interactions between them. So we let Tk take the in-
teger value of 1, 2 or 3, to represent the three types of basis functions. That
is, [±(v − ∗)]+ is represented by Tk = 1, [±(s− ∗)]+ represented by Tk = 2,
and [±(v−∗)]+[±(s−∗)]+ represented by Tk = 3. When Jk = 1 in equation
(4.6), then the first two types of basis functions are used, while when Jk = 2,
all three types of basis functions are used. In our model, we set Jk = 1 or
Jk = 2 in the model of the location parameter µ for ILT1 and ILT3 data to
allow the interaction to be modeled. For ILT2, however, due to its relatively
smaller data amount, a model setting Jk = 2 produces unstable and unrea-
sonably wide credible intervals. So for ILT2, Jk = 1 is set for its location
parameter µ. For the scale parameter σ, we set Jk = 1 for all three data
sets, but for ILT2, again due to its data scarcity, we include v as the only
predictor in its scale parameter model.

LetΨa = (Ψµ,Ψσ, ξ) denote all the parameters used in model (4.1), where
Ψµ and Ψσ include the parameters in function f(·) and g(·), respectively.
These parameters are grouped into two sets: (1) the coefficients of the basis
functions in β = (β1, . . . , βKµ) or θ = (θ1, . . . , θKσ), and (2) the number and
locations of the knots, and the types of basis function in φµ or φσ , as follows:

φµ = (Kµ,Λ
µ
2 , . . . ,Λ

µ
Kµ

),
(4.7)

where Λ
µ
k =

{

(T µ
k , h

µ
1k, t

µ
1k), when T µ

k = 1,2;

(T µ
k , h

µ
1k, h

µ
2k, t

µ
1k, t

µ
2k), when T µ

k = 3,

and

φσ = (Kσ,Λ
σ
2 , . . . ,Λ

σ
Kσ

),
(4.8)

where Λ
σ
k = (T σ

k , h
σ
1k, t

σ
1k) when T σ

k = 1,2.

Using the above notation, we have Ψµ = (β,φµ) and Ψσ = (θ,φσ).
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To complete the Bayesian formulation for the model in (4.1), priors of
the parameters involved should be specified. In this paper, we use uniform
priors on φµ and φσ ; see the detailed expression in Appendix A. Given φµ

and φσ , we specify the prior distribution for the parameters (β,θ, ξ) as the
unit-information prior, that is, UIP [Kass and Wasserman (1995)], which is
defined by setting the corresponding covariance matrix to be equal to the
Fisher information of one observation.

4.2. Submodel 1: Posterior distribution of parameters. The Bayesian
MARS model treats the number and locations of the knots as random quan-
tities. When the number of knots changes, the dimension of the parameter
space changes with it. To handle a varying dimensionality in the probabil-
ity distributions in a random sampling procedure, researchers usually use
a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm devel-
oped by Green (1995). The acceptance probability for a RJMCMC algorithm
includes a Jacobian term, which accounts for the change in dimension. How-
ever, under the assumption that the model space for parameters of varying
dimension is discrete, there is no need for a Jacobian. In our analysis, this
assumption is satisfied since we only consider probable models over all pos-
sible knot locations and numbers. Therefore, instead of using the RJMCMC
algorithm, we use the reversible jump sampler (RJS) algorithm proposed in
Denison et al. (2002). Since the RJS algorithm does not require new param-
eters to match dimensions between models and the corresponding Jacobian
term to the acceptance probability, it is simpler and more efficient to exe-
cute.

To allow for dimensional changes, there are three actions in the RJS
algorithm: BIRTH, DEATH and MOVE, which adds, deletes or alters a
basis function, respectively. Accordingly, the number of knots as well as the
locations of some knots change. The detailed definitions of the three actions
are given in Denison et al. (2002), page 53, so we need not repeat them here.
They suggest the following: use equal probability (i.e., 1

3 ) to propose any of
the three moves, and then use the following acceptance probability α for a
proposed move from a model having k basis functions to a model having kc

basis functions:

α=min{1, the ratio of marginal likelihood ×R},(4.9)

where R is a ratio of probabilities defined as follows:

• For a BIRTH action, R=
probability of DEATH in model kc

probability of BIRTH in model k
;

• For a DEATH action, R=
probability of BIRTH in model kc

probability of DEATH in model k
;

• For a MOVE action, R=
probability of MOVE in model kc

probability of MOVE in model k
.
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We have R= 1 for most cases, because the probabilities in the denominator
and numerator are equal, except when k reaches either the upper or the
lower bound.

The marginal likelihood in (4.9) can be expressed as follows:

p(Dy|φµ,φσ)
(4.10)

=

∫

p(Dy|β,θ, ξ,φµ,φσ)p(β,θ, ξ|φµ,φσ)dβ dθ dξ,

where Dy = (y1, . . . , yn) represents a set of observed load data. Since it is
difficult to calculate the above marginal likelihood analytically in our study,
we consider an approximation of p(Dy|φµ,φσ). Kass and Wasserman (1995)
and Raftery (1995) showed that when UIP priors are used, the marginal
log-likelihood, that is, log(p(Dy|φµ,φσ)), can be reasonably approximated
by the Schwarz information criterion (SIC) [Schwarz (1978)]. The SIC is
expressed as

SICφµ,φσ
= log(p(Dy|β̂, θ̂, ξ̂,φµ,φσ))−

1
2 dk log(n),

where β̂, θ̂, ξ̂ are the maximum likelihood estimators (MLEs) of the corre-
sponding parameters obtained conditional on φµ and φσ, and dk is the total
number of parameters to be estimated. In this case, dk =Kµ +Kσ +1.

Recall that we have two dimension-varying states φµ and φσ in the RJS
algorithm. Depending on which state vector is changing, two marginal log-
likelihood ratios are needed, and they are approximated by the correspond-
ing SICs, such as

log
p(Dy|φ

c
µ,φσ)

p(Dy|φµ,φσ)
⋍ SICφc

µ,φσ
− SICφµ,φσ

and(4.11)

log
p(Dy|φµ,φ

c
σ)

p(Dy|φµ,φσ)
⋍ SICφµ,φ

c
σ
− SICφµ,φσ

.(4.12)

Then, we use two acceptance probabilities αµ and ασ for accepting or
rejecting a new state in φµ and φσ, respectively. Using the SICs, αµ and ασ

are expressed as

αµ =min{1, exp(SICφc
µ,φσ

− SICφµ,φσ
)×R} and(4.13)

ασ =min{1, exp(SICφµ,φ
c
σ
− SICφµ,φσ

)×R}.(4.14)

In order to produce the samples from the posterior distribution of pa-
rameters in Ψa, we sequentially draw samples for φµ and φσ by using the
two acceptance probabilities, while marginalizing out (β, θ, ξ); and then,
conditional on the sampled φµ and φσ, draw samples for (β, θ, ξ) using
a Normal approximation based on the maximum likelihood estimates and
the observed information matrix. The detailed simulation procedure can be
found in Step I of Appendix B.



14 LEE, BYON, NTAIMO AND DING

4.3. Submodel 2: Distribution of wind characteristics. To find a site-
specific load distribution, the distribution of wind characteristics p(x) in
(1.3) needs to be specified. Since a statistical correlation is noticed between
the 10-minute average wind speed v and the standard deviation of wind
speeds s in Figure 4, the distribution of wind characteristics p(x) can be
written as a product of the average wind speed distribution p(v) and the
conditional wind standard deviation distribution p(s|v). In this section we
separately discuss how to specify each model.

For modeling the 10-minute average wind speed v, the IEC standard sug-
gests using a 2-parameter Weibull distribution (W2) or a Rayleigh distri-
bution (RAY) [IEC (2005)]. These two distributions are arguably the most
widely used ones for this purpose. Carta, Ramirez and Velazquez (2008)
and Li and Shi (2010) note that under different wind regimes other dis-
tributions may fit wind speed data better, including 3-parameter Weibull
distribution (W3), 3-parameter log-Normal distribution (LN3), 3-parameter
Gamma distribution (G3) and 3-parameter inverse-Gaussian distribution
(IG3). We take a total of six candidate distribution models for average wind
speed (W2, W3, RAY, LN3, G3, IG3) from Li and Shi (2010), and conduct
a Bayesian model selection to choose the best distribution fitting a given
average wind speed data set.

We assume UIP priors for the parameters involved in the aforementioned
models, and our approach is again based on maximizing the SIC. Once the
best wind speed model is chosen, we denote it by Mv . Then, the distribution
of 10-minute average wind speed v is expressed as

vi ∼Mv(ν),(4.15)

where ν is the set of parameters specifying Mv . For instance, if Mv is W3,
then ν = (ν1, ν2, ν3), where ν1, ν2 and ν3 represent the shape, scale and shift
parameter, respectively, of a 3-parameter Weibull distribution.

For modeling the standard deviation of wind speed s, given the average
wind speed v, the IEC standard recommends using a 2-parameter Trun-
cated Normal distribution (TN2) [IEC (2005)], which appears to be what
researchers have commonly used; see, for example, Fitzwater, Cornell and
Veers (2003). The distribution is characterized by a location parameter η
and a scale parameter δ. In the literature, both η and δ are treated as a
constant. But we observe that data sets measured at different sites have
different relationships between the average wind speed v and the standard
deviation s. Some of the v-versus-s scatter plots show nonlinear patterns.

Motivated by this observation, we employ a Bayesian MARS model for
modeling η and δ, similar to what we did in Submodel 1. The standard
deviation of wind speed s, conditional on the average wind speed v, can
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then be expressed as

si|vi ∼ TN2(η(vi), δ(vi)),
(4.16)

where η(vi) = fη(vi) and δ(vi) = exp(gδ(vi)),

where fη and gδ , like their counterparts in (4.4) and (4.5), are linear com-
binations of the basis functions taking the general form (4.6). Notice that
both of the functions have only one input variable, which is the average wind
speed.

Let Ψη = (βη,φη) and Ψδ = (θδ,φδ) denote the parameters in fη(·) and
gδ(·). Since the basis functions fη and gδ in (4.16) have only one input
variable, only one type of basis function (i.e., Tk = 1) is needed. Hence, φη

and φδ are much simpler than φµ and φσ, their counterparts in (4.7) and
(4.8), and are expressed as follows:

φη = (Kη,Λ
η
2, . . . ,Λ

η
Kη

),
(4.17)

where Λ
η
k = (T η

k , h
η
1k, t

η
1k) and T η

k = 1

and

φδ = (Kδ ,Λ
δ
2, . . . ,Λ

δ
Kδ

),
(4.18)

where Λ
δ
k = (T δ

k , h
δ
1k, t

δ
1k) and T δ

k = 1.

We choose the prior distribution for (βη,θδ) as UIP and the prior for
(φη,φδ) as uniform distribution, and solve this Bayesian MARS model by
using a RJS algorithm, as in the preceding two sections. The predictive
distributions of the average wind speed ṽ and the standard deviation s̃ are

p(ṽ|Dv) =

∫

p(ṽ|ν)p(ν|Dv)dν and(4.19)

p(s̃|ṽ,Dv,Ds) =

∫ ∫

p(s̃|ṽ,Ψη,Ψδ)p(Ψη,Ψδ|Dv,Ds)dΨη dΨδ,(4.20)

where Dv and Ds are the data sets of the observed average wind speeds and
the standard deviations. The detailed simulation procedure is included in
Step II in Appendix B.

4.4. Posterior predictive distribution of the extreme load level lT . We
are interested in getting the posterior predictive distribution of the quantile
value lT , based on the observed load and wind data D := (Dy,Dv,Ds). In
order to do so, we need to draw samples ỹ’s from the predictive distribution
of the maximum load given parameters p[ỹ|D,Ψa], which is

p[ỹ|D,Ψa] =

∫ ∫

p[ỹ|ṽ, s̃,Ψa,D]p[ṽ, s̃|Dv,Ds]dṽ ds̃,(4.21)

where p[ṽ, s̃|Dv,Ds] can be expressed as the product of (4.19) and (4.20).
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To calculate a quantile value of the load for a given PT [as in (1.2)], we
go through the following steps:

• Draw samples from the joint posterior predictive distribution p[ṽ, s̃|Dv,Ds]
of wind characteristics (ṽ, s̃) (Step II in Appendix B);

• Draw a set of samples from the posterior distribution of model parame-
ters Ψa = (Ψµ,Ψσ, ξ); this is realized by employing the RJS algorithm in
Section 4.2 (or Step I in Appendix B);

• Given the above samples of wind characteristics and model parameters,
we calculate (µ,σ, ξ) that are needed in a GEV distribution; this yields a
short-term distribution p[ỹ|ṽ, s̃,Ψa];

• Integrating out the wind characteristics (ṽ, s̃), obtain the long-term dis-
tribution p[ỹ|D,Ψa];

• Draw samples from p[ỹ|D,Ψa], and compute a quantile value lT [Ψa] cor-
responding to PT .

In fact, the predictive mean and Bayesian credible interval of the extreme
load level lT are obtained when running the RJS algorithm. The RJS runs
throughMl iterations and, at each iteration, we obtain a set of samples of the
model parameters Ψa and calculate a lT [Ψa]. Once Ml values of lT [Ψa] are
obtained, its mean and credible intervals can then be numerically computed.

5. Results.

5.1. Model selection. Table 2 presents the SIC values of the six candidate
average wind speed models using different ILT data sets. The boldfaced
values indicate the largest SIC for a given data set and, consequently, the
corresponding models are chosen for that data set.

Regarding the average wind speed model, all candidate distributions ex-
cept RAY provide generally a good model fit for ILT1, with a similar level
of fitting quality, but W3 dominates slightly. For the ILT2 data, W2, W3,
LN3 and G3 produce similar SIC values. In the ILT3 data, W3, LN3, G3
and IG3 perform similarly. Still W3 is slightly better. So we choose W3 as
our average wind speed model.

Table 2

SIC for the average wind speed models

Distributions ILT1 ILT2 ILT3

W2 −2984 −1667 −12,287
W3 −2941 −1663 −11,242
RAY −3120 −1779 −13,396
LN3 −2989 −1666 −11,444
G3 −2974 −1666 −11,290
IG3 −2986 −2313 −11,410
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Fig. 5. 95% point-wise credible intervals for different wind speeds.

5.2. Point-wise credible intervals. As a form of checking the conditional
maximum load model, we present in Figures 5 and 6 the 95% point-wise
credible intervals under different wind speeds and standard deviations. To
generate these figures, we take a data set and fix v or s at one specific speed
or standard deviation at a time and then draw the posterior samples for
ỹ from the posterior predictive distribution of conditional maximum load,
p(ỹ|x). Suppose that we want to generate the credible intervals at wind
speed v∗ or standard deviation s∗. The posterior predictive distributions are
computed as follows:

p(ỹ|(v, s) ∈Dv∗ ,Dy) =

∫

p(ỹ|(v, s) ∈Dv∗ ,Ψa)p(Ψa|Dy)dΨa,

p(ỹ|(v, s) ∈Ds∗ ,Dy) =

∫

p(ỹ|(v, s) ∈Ds∗ ,Ψa)p(Ψa|Dy)dΨa,

where Dv∗ and Ds∗ are subsets of the observed data such that Dv∗ = {(vi, si) :
v∗ − 0.5 < vi < v∗ + 0.5, and (vi, si) ∈ Dv,s} and Ds∗ = {(vi, si) : s∗ − 0.05 <
si < s∗ + 0.05, and (vi, si) ∈ Dv,s}. Given these distributions, samples for ỹ
are drawn to construct the 95% credible intervals at v∗ or s∗. The result is

Fig. 6. 95% point-wise credible intervals for different standard deviations.
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shown as one vertical bar in either a v-plot (Figure 5) or a s-plot (Figure 6).
To complete these figures, the process is repeated in the v-domain with 1 m/s
increment and in the s-domain with 0.2 m/s increment. These figures show
that the variability in data are reasonably captured by the spline method.

5.3. Comparison between the binning method and spline method for con-

ditional maximum load. In our procedure for estimating the extreme load
level, two different distributions of maximum load y are involved: one is the
conditional maximum load distribution p(y|x), aka the short-term distribu-
tion, and the other is the unconditional maximum load distribution p(y),
aka the long-term distribution. Using the observed field data, it is difficult
to assess the estimation accuracy of the extreme load levels in the long-term
distribution, because of the relatively small amount of observation records.
What we undertake in this section is to evaluate a method’s performance
of estimating the tail of the short-term distribution p(y|x). We argued be-
fore that the short-term distribution underlies the difference between the
proposed Bayesian spline method and the binning method. The compari-
son in this section is intended to show the advantage of the Bayesian spline
method. In Section 5.5 we employ a simulation study that generates a much
larger data set, allowing us to compare the performance of two methods in
estimating the extreme load level in the long-term distribution.

To evaluate the tail part of a conditional maximum load distribution,
we compute a set of upper quantile estimators and assess their estimation
qualities using the generalized piecewise linear (GPL) loss function [Gneiting
(2011)]. A GPL is defined as follows:

Sτ,b(l̂(xi), y(xi))
(5.1)

=















(1(l̂(xi)≥ y(xi))− τ)
1

|b|
([l̂(xi)]

b − [y(xi)]
b), for b 6= 0,

(1(l̂(xi)≥ y(xi))− τ) log

(

l̂(xi)

y(xi)

)

, for b= 0,

where l̂(xi) is the τ -quantile estimation of p(y|xi) for a given xi, y(xi) is the
observed maximum load in the test data set, given the same xi, b is a power
parameter, and 1 is an indicator function. The power parameter b usually
ranges between 0 and 2.5. When b = 1, the GPL loss function is the same
as the piecewise linear (PL) loss function.

For the above empirical evaluation, we randomly divide a data set into a
partition of 80% for training and 20% for testing. We use the training set
to establish a short term distribution p(y|x). For any xi in the test set, the

τ -quantile estimation l̂(xi) can be computed using p(y|x). And then, the
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GPL loss function value is taken as the average of all Sτ,b values over the
test set, as follows:

Sτ,b =
1

nt

nt
∑

i=1

Sτ,b(l̂i(xi), yi),(5.2)

where nt is the number of data points in a test set and yi is the same as
y(xi). We call Sτ,b the mean score. We repeat the training/test procedure
10 times, and the final mean score is the average of the ten mean scores. For
notational simplicity, we still call the final mean score the mean score and
use Sτ,b to represent it, as long as its meaning is clear in the context.

In this comparison, we use two methods to establish the short-term dis-
tribution: the binning method and the proposed Bayesian spline method.
In our RJS algorithm in Section 4.2, we draw Nl = 100 samples from the
short-term distribution. Accordingly, we can evaluate the quality of quantile
estimations of the short-term distribution for a τ up to 0.99.

We first take a look at the comparisons in Figure 7, which compares the
PL loss (i.e., b = 1) of both methods as τ varies in the above-mentioned
range. The left vertical axis shows the values of the mean score of the PL
loss, while the right axis is the percentage value of the reduction in mean
scores when the spline method is compared with the binning method. For
all three data sets, the spline method maintains lower mean scores than the
binning method.

When τ is approaching 0.99 in Figure 7, it looks like the PL losses of the
spline and binning methods are getting closer to each other. This is largely
due to the fact that the PL loss values are smaller at a higher τ , so that their
differences are compressed in the figure. If one looks at the solid line in a plot,
which represents the percentage of reduction in the mean score, the spline
method’s advantage over the binning method is more evident in the cases of

Fig. 7. Comparison of PL function: the left Y-axis represents the mean score values and
the right Y-axis represents the percentage values, which are the reduction in the mean
scores when the spline method is compared with the binning method.
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Table 3

Mean scores of GPL/PL for the 0.9-quantile estimators

ILT1 ILT2 ILT3

Power parameter Binning Spline Binning Spline Binning Spline

b= 0 0.0185 0.0108 0.0129 0.0103 0.0256 0.0171
b= 1 0.0455 0.0265 0.0040 0.0031 0.0042 0.0028
b= 2 0.1318 0.0782 0.0013 0.0010 0.0008 0.0005

ILT1 and ILT3 data sets. When τ gets larger, the spline method produces
a significant improvement over the binning method, with a reduction of PL
loss ranging from 33% to 50%. The trend is different when using the ILT2
data set. But still, the spline method can reduce the mean scores of the
PL loss from the binning method by 8% to 20%. Please note that the ILT2
data set is the smallest set, having slightly fewer than 600 data records. We
believe that the difference observed over the ILT2 case is attributable to the
scarcity of data.

We compute the mean scores of the GPL loss under three different power
parameters b = 0,1,2 for each method. Table 3 presents the results under
τ = 0.9, while Table 4 is for τ = 0.99. In Table 3 the spline method has
a mean score 20% to 42% lower than the binning method. In Table 4 the
reductions in mean scores are in a similar range. Overall, these results clearly
show the improvement achieved by employing the Bayesian spline method.

In order to understand the difference between the spline method and
binning method, we compare the 0.99 quantiles of the 10-minute maximum
load conditional on a specific wind condition. This is done by computing
the difference in the quantile values of the conditional maximum load from
the two methods for different weather bins. The wind condition of each
bin is approximated by the median values of v and s in that bin. Figure 8
shows the standardized difference of the two 0.99 quantile values in each
bin. The darker the color is, the bigger the difference. Note that we exclude
comparisons in the weather bins with very low likelihood, namely, low wind

Table 4

Mean scores of GPL/PL for the 0.99-quantile estimators

ILT1 ILT2 ILT3

Power parameter Binning Spline Binning Spline Binning Spline

b= 0 0.0031 0.0018 0.0022 0.0020 0.0045 0.0027
b= 1 0.0086 0.0045 0.0007 0.0006 0.0008 0.0005
b= 2 0.0270 0.0135 0.0003 0.0002 0.0002 0.0001
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Fig. 8. Comparison of the 0.99-quantiles between binning method and spline method.

speed and high standard deviation or high wind speed and low standard
deviation.

We can observe that the two methods produce similar results at the bins
having a sufficient number of data points (mostly weather bins in the central
area), and the results are different when the data are scarce—this tends to
happen at the two ends of the average wind speed and standard deviation.
This echoes the point we made earlier that without binning the weather
conditions, the spline method is able to make better use of the available
data and overcome the limited data problem for rare weather events.

5.4. Estimation of extreme load. Finally, Tables 5 and 6 show the esti-
mates of the extreme load levels lT , corresponding to T = 20 and T = 50
years, respectively. The values in parenthesis are the 95% credible (or con-
fidence) intervals.We observe that the extreme load levels lT obtained by

Table 5

Estimates of extreme load levels (lT , T = 20 years), unit: MN-m

Data sets Binning method Spline method

ILT1 6.455 (6.063, 7.092) 4.750 (4.579, 4.955)
ILT2 0.752 (0.658, 0.903) 0.576 (0.538, 0.627)
ILT3 0.505 (0.465, 0.584) 0.428 (0.398, 0.463)

Table 6

Estimates of extreme load level (lT , T = 50 years), unit: MN-m

Data sets Binning method Spline method

ILT1 6.711 (6.240, 7.485) 4.800 (4.611, 5.019)
ILT2 0.786 (0.682, 0.957) 0.589 (0.547, 0.646)
ILT3 0.527 (0.480, 0.621) 0.438 (0.405, 0.476)
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the binning method are generally higher than those obtained by the spline
method. This should not come as a surprise. As we push for a high quantile,
more data would be needed in each weather bin, but the amounts in reality
are limited due to the binning method’s compartmentalization of data. The
binning method also produces a wider confidence interval than the spline
method, as a result of the same rigidity in data handling. The detailed pro-
cedure for computing the binning method’s confidence interval is included
in Appendix C.

5.5. Simulation of extreme load. In this section a simulation study is
undertaken to assess the estimation accuracy of extreme load level in the
long-term distribution. The simulations use one single covariate x, mimicking
the wind speed, and a dependent variable y, corresponding to the maximum
load. We use the following procedure to generate the simulated data:

(a) Generate a sample xi from a 3-parameter Weibull distribution. Then
sample xij , j = 1, . . . ,1000, from a normal distribution having xi as its mean
and a unit variance. The set of xij ’s represents the different wind speeds
within a bin.

(b) Draw the samples yij from a normal distribution with its mean as µs
ij

and its standard deviation as σs
ij , which are expressed as follows:

µs
ij =































1.5

[1 + 48× exp(−0.3× xij)]
,

if xi < 17,
1.5

[1 + 48× exp(−0.3× xij)]
+ [0.5− 0.0016× (xi + x2i )],

if xi ≥ 17,

σs
ij = 0.1× log(xij).

The above set of equations is used to create a y response resembling the load
data we observe. The parameters used in the equations are chosen through
trials so that the simulated y looks like the actual mechanical load response.
While many of the parameters used above do not have any physical meaning,
some of them do, for instance, the “17” in “xi < 17” bears the meaning of
the rated wind speed.

(c) Find the maximum value yi =max{yi,1, . . . , yi,1000}, corresponding to
xi. According to the classical extreme value theory [Coles (2001), Smith
(1990)], yi produced in such a way can be modeled by a GEV distribution.

(d) Repeat (a) through (c) for i = 1, . . . ,1000 to produce the training
data set with n = 1000 data pairs, and denote this data set by DTR =
{(x1, y1), . . . , (x1000, y1000)}.
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Fig. 9. Simulation data set, estimated and observed extreme quantile values: (a) An ex-
ample of a simulated data set. (b) and (c) Boxplots for the distribution of the binning
estimate, the Bayesian spline estimate and the respective sample quantile across 100 sim-
ulated data sets.

Once the training data set DTR is simulated, both the binning method and
spline method are used to estimate the extreme load levels lT corresponding
to two probabilities: 0.0001 and 0.00001. This estimation is based on drawing
samples from the long-term distribution of y, as described in Section 4.4,
which produces the posterior predictive distribution of lT . To compare the
estimation accuracy of the extreme quantile values, we also generate 100
simulated data sets; each data set consists of 100,000 data points, which
are obtained by repeating the above (a) through (c). For each data set, we
find the observed quantile values l0.0001 and l0.00001. Using the 100 simulated
data sets, we also obtain 100 different samples of these quantiles.

Figure 9(a) shows a scatter plot of the simulated x’s and y’s in DTR, which
resembles the load responses we saw previously. Figure 9(b) and (c) present
the extreme load levels estimated by the two methods as well as the observed
extreme quantile values under the two selected probabilities. We observe that
the binning method tends to overestimate the extreme quantile values and
yields wider confidence intervals than the spline method. Furthermore, the
degree of overestimation appears to increase as the probability corresponding
to an extreme quantile value goes smaller. This observation confirms what we
observed in Section 5.4 using the field data. This simulation result suggests
that using the binning method for extreme load estimation is not a good
practice.

6. Summary. This study presents a Bayesian spline method for estimat-
ing the extreme load on wind turbines. The spline method essentially sup-
ports a nonhomogeneous GEV distribution to capture the nonlinear rela-
tionship between the load response and the wind-related covariates. Such
treatment avoids binning the data. The underlying spline models instead
connect all the bins across the whole wind profile, so that load and wind
data are pooled together to produce better estimates. This is demonstrated
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by applying the spline method to three sets of inland wind turbine load
response data and making comparisons with the binning method.

The popularity of the binning method in industrial practice is due to
the simplicity of its idea and procedure. However, simplicity of a procedure
should not be mistaken as simplicity of a model. Suppose that one uses a
6 × 10 grid to bin the two-dimensional wind covariates (as we did in this
study) and fixes the shape parameter ξ across the bins (a common practice
in the industry). The binning method yields 60 local GEV distributions,
each of which has two parameters, translating to a total of 121 parameters
for the overall model (counting the fixed ξ as well). By contrast, the spline
method, although conceptually and procedurally more involved, produces
an overall model with fewer parameters. To see this, consider the following:
for the three ILT data sets, the average (Kµ +Kσ) from the RJS algorithm
is between 12 and 18. The number of model parameters dk in (4.2) is gen-
erally less than 20, a number far smaller than the number of parameters
in the binning method. In the end, the spline method uses a sophisticated
procedure to find a simpler model that is more capable.

APPENDIX A: PRIORS

In this appendix we specify priors for parameters used in the basis func-
tions as follows:

φ= (K,Λ2, . . . ,ΛK)
(A.1)

where Λk =

{

(Tk, h1k, t1k), when Tk = 1,2,

(Tk, h1k, h2k, t1k, t2k), when Tk = 3,

p(K) =
1

n
, K = {1, . . . , n},

p(Tk) =











1, Tk = {1}, for φη and φδ,
1
2 , Tk = {1,2}, for φµ in ILT2 and all φσ,
1
3 , Tk = {1,2,3}, for φµ in ILT1 and ILT3,

p(h·k) =
1
2 , h·k = {+1,−1},

p(t·k) =
1

n
, t·k = {v1, . . . , vn} or {s1, . . . , sn}.

APPENDIX B: IMPLEMENTATION DETAILS OF THE SPLINE
METHOD

In this appendix we provide the detailed implementation procedure for
the spline method. The procedure consists of two major steps: (1) Step I:
construct the posterior predictive distribution of the extreme load level lT
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and (2) Step II: obtain the joint posterior predictive distribution of wind
characteristics (v, s).

1. Step I: construct the posterior predictive distribution of the extreme load
level using the Bayesian spline models:

(a) Set t= 0 and the initial φ
(t)
µ and φ

(t)
σ both to be a constant scalar.

(b) At iteration t, Kµ and Kσ are equal to the number of basis functions

specified in φ
(t)
µ and φ

(t)
σ . Find the MLEs of β(t),θ(t), ξ(t) and the

inverse of the negative of Hessian matrix, given φ
(t)
µ and φ

(t)
σ .

(c) Generate u1µ uniformly on [0,1] and choose a move in the RJS pro-
cedure. In the following, bKµ , rKµ ,mKµ are the proposal probabilities

associated with a move type, and they are all set as 1
3 :

• If (u1µ ≤ bKµ), then go to BIRTH step, denoted by φ∗
µ = BIRTH-

proposal(φ
(t)
µ ), which is to augment φ

(t)
µ with a Λ

µ
Kµ+1 that is

selected uniformly at random;
• Else if (bKµ ≤ u1µ ≤ bKµ + rKµ), then go to DEATH step, denoted

by φ∗
µ = DEATH-proposal(φ

(t)
µ ), which is to remove from φ

(t)
µ with

a Λ
µ
k where 2≤ k ≤Kµ is selected uniformly at random;

• Else, go to MOVE step, denoted by φ∗
µ =MOVE-proposal(φ

(t)
µ ),

which first does φ†
µ = DEATH-proposal(φ

(t)
µ ) and then does φ∗

µ =

BIRTH-proposal(φ†
µ).

(d) Find the MLEs (β∗,θ∗, ξ∗) and the inverse of the negative of Hessian
matrix, given φ∗

µ and φσ .

(e) Generate u2µ uniformly on [0,1] and compute the acceptance ratio αµ

in (4.13), using the results from (b) and (d).

(f) Accept φ∗
µ as φ

(t+1)
µ with probability min(αµ,1). If φ∗

µ is not ac-

cepted, let φ
(t+1)
µ =φ

(t)
µ .

(g) Generate u1σ uniformly on [0,1] and choose a move in the RJS pro-
cedure. In the following, bKσ , rKσ ,mKσ are the proposal probabilities
associated with a move type, and they are all set as 1

3 :

• If (u1σ ≤ bKσ), then go to BIRTH step, denoted by φ∗
σ = BIRTH-

proposal(φ
(t)
σ ), which is to augment φ

(t)
σ with a Λ

σ
Kσ+1 that is

selected uniformly at random;
• Else if (bKσ ≤ u1σ ≤ bKσ + rKσ), then go to DEATH step, denoted

by φ∗
σ = DEATH-proposal(φ

(t)
σ ), which is to remove from φ(t) with

a Λ
σ
k where 2≤ k ≤Kσ that is selected uniformly at random;

• Else, go to MOVE step, denoted by φ∗
σ =MOVE-proposal(φ

(t)
σ ),

which first does φ†
σ = DEATH-proposal(φ(t)) and then does φ∗

σ =
BIRTH-proposal(φ†

σ).
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(h) Find the MLEs (β∗,θ∗, ξ∗) and the inverse of the negative of Hessian
matrix, given φt+1

µ and φ∗
σ .

(i) Generate u2σ uniformly on [0,1] and compute the acceptance ratio ασ

in (4.14), using the results from (d) and (h).

(j) Accept φ∗
σ as φ

(t+1)
σ with probability min(ασ ,1). If φ∗

σ is not ac-

cepted, let φ
(t+1)
σ =φ

(t)
σ .

(k) After initial burn-ins (in our implementation, initial burn-in is 1000),

draw a posterior sample of (β(t+1),θ(t+1), ξ(t+1)) from the approxi-
mated multivariate normal distribution at the maximum likelihood
estimates and the inverse of the negative of the Hessian matrix. De-
pending on the acceptance or rejection that happened in (f) and (j),
the MLEs to be used are obtained from either (b), (d) or (h).

(l) Take the posterior sample of Ψa, obtained in (f), (j) and (k), and
calculate a sample of µ and σ using (4.4) and (4.5), respectively, for
each pair of the Nw ×Nsw samples of (v, s) obtained in Step II. This
generates Nw ×Nsw samples of µ and σ.

(m) Draw Nl samples for the 10-minute maximum load ỹ from each GEV
distribution with µi, σi and ξi, i= 1, . . . ,Nw ×Nsw, where µi and σi
are among Nw ×Nsw samples obtained in (l), and ξi is always set as
ξ(t+1).

(n) Get the quantile value (i.e., the extreme load level lT [Ψa]) corre-
sponding to 1−PT from the Nw ×Nsw ×Nl samples of ỹ.

(o) To obtain a credible interval for lT , repeat (b) through (n) Ml times.
2. Step II: obtain the joint posterior predictive distribution of wind charac-

teristics (v, s):
(a) Find the MLEs of ν for all candidate distributions listed in Sec-

tion 4.3.
(b) Use the SIC to select the “best” distribution model for the average

wind speed v. The chosen distribution is used in the subsequent steps
to draw posterior samples.

(c) Draw a posterior sample of ν from the approximated multivariate
normal distribution at the MLEs and the inverse of the negative of
the Hessian matrix.

(d) Draw Nw samples of ṽ using the distribution chosen in (b) with the
parameter sampled in (c).

(e) Implement the RJS algorithm again, namely, (a) through (k) in Step
I, to get one posterior sample of Ψη = (βη,φη) and Ψδ = (θδ,φδ).

(f) Take the posterior sample of Ψη and Ψδ , obtained in (e), and cal-
culate a sample of η and δ using (4.16) for each sample of v. This
generates Nw samples of η and δ.

(g) Draw a sample for the standard deviation of wind speed s̃ from each
truncated normal distribution with ηi, δi, i = 1, . . . ,Nw. Using the
Nw samples of η and δ obtained in (f), we obtain Nw samples of s̃.
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(h) To get Mw × Nw samples of ṽ and s̃, repeat (c) through (g) Mw

times.

In our implementation, we use Mw = 1000, Ml = 10,000, Nw = 100 and
Nl = 100.

APPENDIX C: CONFIDENCE INTERVALS FOR THE BINNING
METHOD

To calculate the confidence intervals for the binning method, we follow
a procedure similar to the one used for calculating the credible intervals in
the spline method. The difference is mainly that in the binning method, the
parameters used in the GEV distribution, namely, µ and σ (recall that ξ
is fixed as a constant across all the bins), are sampled using only the data
in a specific bin. For those bins which do not have data, its µ and σ are a
weighted average of all nonempty bins with the weight related to the inverse
squared distance between bins, following the approach used by Agarwal and
Manuel (2008). Once a sample of µ and σ is obtained for a specific bin, the
resulting local GEV is used to sample ỹ in that bin. Do this for all the bins,
and ỹ’s from all bins are pooled together to estimation lT .

Specially, we go through the following steps, where Φc denotes the col-
lection of the parameters associated with all local GEV distributions used
in all bins:

• Draw Mw ×Nw samples from the joint posterior predictive distribution
p[ṽ, s̃|Dv,Ds] of wind characteristics (ṽ, s̃); this step is the same as in the
spline method;

• Using the data in a bin, draw a sample of µ and σ for that specific bin
from a multivariate normal distributions taking the MLE as its mean and
the inverse of the negative of the Hessian matrix as its covariance matrix.
Not all the bins have data. For those which do not have data, its µ and σ
are a weighted average of all nonempty bins with the weight related to the
inverse squared distance between bins, as we explained above. Collectively,
Φc contains all the µ’s and σ’s from all the bins;

• Decide which bins the wind characteristic samples (ṽ, s̃)’s fall into. Based
on the specific bin in which a sample of (ṽ, s̃) falls, the corresponding
µ and σ in Φc is chosen; doing this yields the short-term distribution
p[ỹ|ṽ, s̃,Φc] for that specific bin;

• Draw Nl samples of ỹ from p[ỹ|ṽ, s̃,Φc] for each of the total Mw ×Nw

samples of (ṽ, s̃). This produces a total of Mw ×Nw ×Nl ỹ samples;
• One can then compute the quantile value lT [Φc] corresponding to PT ;
• Repeat the above procedure Ml times to get the median and confidence

intervals of lT .

Our implementation here uses the same Mw,Ml,Nw and Nl as those used
in the spline method’s implementation.
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