24 research outputs found

    Characterisation of Human Body Shadowing in Millimetre Wave Systems

    Get PDF

    Millimeter wave propagation measurements and characteristics for 5G system

    Get PDF
    In future 5G systems, the millimeter wave (mmWave) band will be used to support a large capacity for current mobile broadband. Therefore, the radio access technology (RAT) should be made available for 5G devices to help in distinct situations, for example device-to-device communications (D2D) and multi-hops. This paper presents ultra-wideband channel measurements for millimeter wave bands at 19, 28, and 38 GHz. We used an ultra-wideband channel sounder (1 GHz bandwidth) in an indoor to outdoor (I2O) environment for non-line-of-sight (NLOS) scenarios. In an NLOS environment, there is no direct path (line of sight), and all of the contributed paths are received from different physical objects by refection propagation phenomena. Hence, in this work, a directional horn antenna (high gain) was used at the transmitter, while an omnidirectional antenna was used at the receiver to collect the radio signals from all directions. The path loss and temporal dispersion were examined based on the acquired measurement data—the 5G propagation characteristics. Two different path loss models were used, namely close-in (CI) free space reference distance and alpha-beta-gamma (ABG) models. The time dispersion parameters were provided based on a mean excess delay, a root mean square (RMS) delay spread, and a maximum excess delay. The path loss exponent for this NLOS specific environment was found to be low for all of the proposed frequencies, and the RMS delay spread values were less than 30 ns for all of the measured frequencies, and the average RMS delay spread values were 19.2, 19.3, and 20.3 ns for 19, 28, and 38 GHz frequencies, respectively. Moreover, the mean excess delay values were found also at 26.1, 25.8, and 27.3 ns for 19, 28, and 38 GHz frequencies, respectively. The propagation signal through the NLOS channel at 19, 28, and 38 GHz was strong with a low delay; it is concluded that these bands are reliable for 5G systems in short-range applications

    Multi‐band millimetre wave indoor directional channel measurements and analysis for future wireless communication systems

    Get PDF
    Single‐input single‐output (SISO) three‐dimensional (3D) wideband indoor directional measurements collected in a factory environment and an office environment at 38 and 70 GHz are presented. 3D single‐input multiple‐output (SIMO) dual polarised measurements with 1 × 2 antenna configurations were also carried out in a meeting room, a conference room, and an office room at the 60 GHz band. The measurements cover both azimuth and elevation by rotating the directional antenna (RDA) at the receiver side. Different statistical channel parameters such as power delay profile, power angle profile, root‐mean‐square delay spread, angular spread, and path loss were estimated for different possible antenna orientations between the transmitter and the receiver, which include line‐of‐sight, obstructed line‐of‐sight, and non‐line‐of‐sight. The polarisation effects on path loss models and the delay and angular spread models based on the surface area of the environment are studied. The results will be valuable for the design of indoor millimetre wave cellular networks

    Analog Radio-over-Fiber for 5G/6G Millimeter-Wave Communications

    Get PDF

    Multi-band Wideband Channel Measurements in Indoor and Outdoor Environments above 6 GHz for 5G Networks

    Get PDF
    This document presented the results of ultra-wideband of multi-bands measurements performed in three different indoor environments such as large office, factory like and small office and one outdoor street canyon scenario at the science site of Durham University, United Kingdom. The measurements conducted using a wideband chirp sounder developed at Durham University. An analytical review of the radio wave propagation mechanisms and formulas is presented in addition to the background of the channel characteristics parameters and statistics. The parameters reviewed are the received signal strength, path loss, the excess, average and RMS delay spread, in addition to the angular parameters such as the angle of arrival (AoA), angle of departure (AoD) and the RMS angular spread. A literature survey for about 80 paper of the previous work are studied and summarised for the measurements and simulation performed to estimate different parameters in both indoor and outdoor scenarios. Two different measurements set up were performed in three indoor environments and one outdoor scenario to measure mainly, the frequency dependency in various channel characteristics parameters. In the first set the measured parameters are the received signal strength, path loss, and the excess, average and the cumulative distribution function (CDF) and the RMS delay spread in three indoor environments. While in the second set the 3D angular parameters such as AoA, AoD and RMS angular spread in both Tx and Rx sides are studied in three indoor and one outdoor environment mentioned earlier. The measurements set up and procedures are presented for each set of measurement. The measurements were performed using a wideband channel sounder up to 6 GHz for both sets. Five different frequency bands (i.e.13.4 GHz, 26.8 GHz, 54.2 GHz, 62.6 GHz and 70 GHz) were used in the first set and three bands (i.e.13.4 GHz, 26.8 GHz, 62.6 GHz) for the second set. A steerable horn antenna at both side using 3D positioner in the second set of measurements, while an omnidirectional antenna was used at the receiver side in the first set. A summary and discussion the extracted results for each set of measurements are given. Conclusions about the achieved results and the recommended future work are provided
    corecore