13,888 research outputs found

    Wide baseline pose estimation from video with a density-based uncertainty model

    Get PDF
    International audienceRobust wide baseline pose estimation is an essential step in the deployment of smart camera networks. In this work, we highlight some current limitations of conventional strategies for relative pose estimation in difficult urban scenes. Then, we propose a solution which relies on an adaptive search of corresponding interest points in synchronized video streams which allows us to converge robustly toward a high-quality solution. The core idea of our algorithm is to build across the image space a nonstationary mapping of the local pose estimation uncertainty, based on the spatial distribution of interest points. Subsequently, the mapping guides the selection of new observations from the video stream in order to prioritize the coverage of areas of high uncertainty. With an additional step in the initial stage, the proposed algorithm may also be used for refining an existing pose estimation based on the video data; this mode allows for performing a data-driven self-calibration task for stereo rigs for which accuracy is critical, such as onboard medical or vehicular systems. We validate our method on three different datasets which cover typical scenarios in pose estimation. The results show a fast and robust convergence of the solution, with a significant improvement, compared to single image-based alternatives, of the RMSE of ground-truth matches, and of the maximum absolute error

    Probabilistic RGB-D Odometry based on Points, Lines and Planes Under Depth Uncertainty

    Full text link
    This work proposes a robust visual odometry method for structured environments that combines point features with line and plane segments, extracted through an RGB-D camera. Noisy depth maps are processed by a probabilistic depth fusion framework based on Mixtures of Gaussians to denoise and derive the depth uncertainty, which is then propagated throughout the visual odometry pipeline. Probabilistic 3D plane and line fitting solutions are used to model the uncertainties of the feature parameters and pose is estimated by combining the three types of primitives based on their uncertainties. Performance evaluation on RGB-D sequences collected in this work and two public RGB-D datasets: TUM and ICL-NUIM show the benefit of using the proposed depth fusion framework and combining the three feature-types, particularly in scenes with low-textured surfaces, dynamic objects and missing depth measurements.Comment: Major update: more results, depth filter released as opensource, 34 page

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Constraining Relative Camera Pose Estimation with Pedestrian Detector-Based Correspondence Filters

    Get PDF
    International audienceA prerequisite for using smart camera networks effectively is a precise extrinsic calibration of the camera sensors , either in a fixed coordinate system, or relatively to each other. For cameras with partly overlapping fields of view, the relative pose estimation may be directly performed on or assisted by the video content obtained during scene analysis. In typical conditions however (wide baseline, repetitive patterns, homogeneous appearance of pedestrians), the pose estimation is imprecise and very often is affected by large errors in weakly constrained areas of the field of view. In this work, we propose to rely on progressively stricter constraints on the feature association between the camera views, guided by a pedestrian detector and a re-identification algorithm respectively. The results show that the two strategies are effective in alleviating the ambiguity which is due to the similar appearance of pedestrians in such scenes, and in improving the relative pose estimation

    Deep Forward and Inverse Perceptual Models for Tracking and Prediction

    Full text link
    We consider the problems of learning forward models that map state to high-dimensional images and inverse models that map high-dimensional images to state in robotics. Specifically, we present a perceptual model for generating video frames from state with deep networks, and provide a framework for its use in tracking and prediction tasks. We show that our proposed model greatly outperforms standard deconvolutional methods and GANs for image generation, producing clear, photo-realistic images. We also develop a convolutional neural network model for state estimation and compare the result to an Extended Kalman Filter to estimate robot trajectories. We validate all models on a real robotic system.Comment: 8 pages, International Conference on Robotics and Automation (ICRA) 201
    • …
    corecore