55 research outputs found

    Towards Formally Verified Optimizing Compilation in Flight Control Software

    Get PDF
    International audienceThis work presents a preliminary evaluation of the use of the CompCert formally specified and verified optimizing compiler for the development of level A critical flight control software. First, the motivation for choosing CompCert is presented, as well as the requirements and constraints for safety-critical avionics software. The main point is to allow optimized code generation by relying on the formal proof of correctness instead of the current un-optimized generation required to produce assembly code structurally similar to the algorithmic language (and even the initial models) source code. The evaluation of its performance (measured using WCET) is presented and the results are compared to those obtained with the currently used compiler. Finally, the paper discusses verification and certification issues that are raised when one seeks to use CompCert for the development of such critical software

    Optimization Coaching for JavaScript

    Get PDF
    The performance of dynamic object-oriented programming languages such as JavaScript depends heavily on highly optimizing just-in-time compilers. Such compilers, like all compilers, can silently fall back to generating conservative, low-performance code during optimization. As a result, programmers may inadvertently cause performance issues on users\u27 systems by making seemingly inoffensive changes to programs. This paper shows how to solve the problem of silent optimization failures. It specifically explains how to create a so-called optimization coach for an object-oriented just-in-time-compiled programming language. The development and evaluation build on the SpiderMonkey JavaScript engine, but the results should generalize to a variety of similar platforms

    High Performance with Prescriptive Optimization and Debugging

    Get PDF

    Sequential decomposition of operations and compilers optimization

    Get PDF
    Code optimization is an important area of research that has remarkable contributions in addressing the challenges of information technology. It has introduced a new trend in hardware as well as in software. Efforts that have been made in this context led to introduce a new foundation, both for compilers and processors. In this report we study different techniques used for sequential decomposition of mappings without using extra variables. We focus on finding and improving these techniques of computations. Especially, we are interested in developing methods and efficient heuristic algorithms to find the decompositions and implementing these methods in particular cases. We want to implement these methods in a compiler with an aim of optimizing code in machine language. It is always possible to calculate an operation related to K registers by a sequence of assignments using only these K registers. We verified the results and introduced new methods. We described In Situ computation of linear mapping by a sequence of linear assignments over the set of integers and investigated bound for the algorithm. We introduced a method for the case of boolean bijective mappings via algebraic operations over polynomials in GF(2). We implemented these methods using Mapl

    Verified compilation and optimization of floating-point kernels

    Get PDF
    When verifying safety-critical code on the level of source code, we trust the compiler to produce machine code that preserves the behavior of the source code. Trusting a verified compiler is easy. A rigorous machine-checked proof shows that the compiler correctly translates source code into machine code. Modern verified compilers (e.g. CompCert and CakeML) have rich input languages, but only rudimentary support for floating-point arithmetic. In fact, state-of-the-art verified compilers only implement and verify an inflexible one-to-one translation from floating-point source code to machine code. This translation completely ignores that floating-point arithmetic is actually a discrete representation of the continuous real numbers. This thesis presents two extensions improving floating-point arithmetic in CakeML. First, the thesis demonstrates verified compilation of elementary functions to floating-point code in: Dandelion, an automatic verifier for polynomial approximations of elementary functions; and libmGen, a proof-producing compiler relating floating-point machine code to the implemented real-numbered elementary function. Second, the thesis demonstrates verified optimization of floating-point code in: Icing, a floating-point language extending standard floating-point arithmetic with optimizations similar to those used by unverified compilers, like GCC and LLVM; and RealCake, an extension of CakeML with Icing into the first fully verified optimizing compiler for floating-point arithmetic.Bei der Verifizierung von sicherheitsrelevantem Quellcode vertrauen wir dem Compiler, dass er Maschinencode ausgibt, der sich wie der Quellcode verhält. Man kann ohne weiteres einem verifizierten Compiler vertrauen. Ein rigoroser maschinen-ü}berprüfter Beweis zeigt, dass der Compiler Quellcode in korrekten Maschinencode übersetzt. Moderne verifizierte Compiler (z.B. CompCert und CakeML) haben komplizierte Eingabesprachen, aber unterstützen Gleitkommaarithmetik nur rudimentär. De facto implementieren und verifizieren hochmoderne verifizierte Compiler für Gleitkommaarithmetik nur eine starre eins-zu-eins Übersetzung von Quell- zu Maschinencode. Diese Übersetzung ignoriert vollständig, dass Gleitkommaarithmetik eigentlich eine diskrete Repräsentation der kontinuierlichen reellen Zahlen ist. Diese Dissertation präsentiert zwei Erweiterungen die Gleitkommaarithmetik in CakeML verbessern. Zuerst demonstriert die Dissertation verifizierte Übersetzung von elementaren Funktionen in Gleitkommacode mit: Dandelion, einem automatischen Verifizierer für Polynomapproximierungen von elementaren Funktionen; und libmGen, einen Beweis-erzeugenden Compiler der Gleitkommacode in Relation mit der implementierten elementaren Funktion setzt. Dann demonstriert die Dissertation verifizierte Optimierung von Gleitkommacode mit: Icing, einer Gleitkommasprache die Gleitkommaarithmetik mit Optimierungen erweitert die ähnlich zu denen in unverifizierten Compilern, wie GCC und LLVM, sind; und RealCake, eine Erweiterung von CakeML mit Icing als der erste vollverifizierte Compiler für Gleitkommaarithmetik

    Data Parallel C++

    Get PDF
    Learn how to accelerate C++ programs using data parallelism. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This book begins by introducing data parallelism and foundational topics for effective use of the SYCL standard from the Khronos Group and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. Data Parallel C++ provides you with everything needed to use SYCL for programming heterogeneous systems. What You'll Learn Accelerate C++ programs using data-parallel programming Target multiple device types (e.g. CPU, GPU, FPGA) Use SYCL and SYCL compilers Connect with computing’s heterogeneous future via Intel’s oneAPI initiative Who This Book Is For Those new data-parallel programming and computer programmers interested in data-parallel programming using C++

    Full proof cryptography: verifiable compilation of efficient zero-knowledge protocols

    Get PDF
    Developers building cryptography into security-sensitive applications face a daunting task. Not only must they understand the security guarantees delivered by the constructions they choose, they must also implement and combine them correctly and efficiently. Cryptographic compilers free developers from having to implement cryptography on their own by turning high-level specifications of security goals into efficient implementations. Yet, trusting such tools is risky as they rely on complex mathematical machinery and claim security properties that are subtle and difficult to verify. In this paper, we present ZKCrypt, an optimizing cryptographic compiler that achieves an unprecedented level of assurance without sacrificing practicality for a comprehensive class of cryptographic protocols, known as Zero-Knowledge Proofs of Knowledge. The pipeline of ZKCrypt tightly integrates purpose-built verified compilers and verifying compilers producing formal proofs in the CertiCrypt framework. By combining the guarantees delivered by each stage in the pipeline, ZKCrypt provides assurance that the implementation it outputs securely realizes the high-level proof goal given as input. We report on the main characteristics of ZKCrypt, highlight new definitions and concepts at its foundations, and illustrate its applicability through a representative example of an anonymous credential system.(undefined
    • …
    corecore