

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 16, 2017

High Performance with Prescriptive Optimization and Debugging

Jensen, Nicklas Bo; Probst, Christian W.; Karlsson, Sven

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, N. B., Probst, C. W., & Karlsson, S. (2017). High Performance with Prescriptive Optimization and
Debugging. Kgs. Lyngby: Technical University of Denmark (DTU). (DTU Compute PHD-2016; No. 437).

http://orbit.dtu.dk/en/publications/high-performance-with-prescriptive-optimization-and-debugging(f2ea9bb8-d850-4d88-938c-5d63319964d9).html

High Performance with
Prescriptive Optimization and

Debugging

Nicklas Bo Jensen

Kongens Lyngby 2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary

Parallel programming is the dominant approach to achieve high performance
in computing today. Correctly writing efficient and fast parallel programs is a
big challenge mostly carried out by experts. We investigate optimization and
debugging of parallel programs.

We argue that automatic parallelization and automatic vectorization is attrac-
tive as it transparently optimizes programs. The thesis contributes an improved
dependence analysis for explicitly parallel programs. These improvements lead
to more loops being vectorized, on average we achieve a speedup of 1.46 over
the existing dependence analysis and vectorizer in GCC.

Automatic optimizations often fail for theoretical and practical reasons. When
they fail we argue that a hybrid approach can be effective. Using compiler
feedback, we propose to use the programmer’s intuition and insight to achieve
high performance. Compiler feedback enlightens the programmer why a given
optimization was not applied, and suggest how to change the source code to
make it more amenable to optimizations. We show how this can yield significant
speedups and achieve 2.4 faster execution on a real industrial use case.

To aid in parallel debugging we propose the prescriptive debugging model, which
is a user-guided model that allows the programmer to use his intuition to diag-
nose bugs in parallel programs. The model is scalable, yet capable enough, to
be general-purpose. In our evaluation we demonstrate low run time overhead
and logarithmic scalability. This enable the model to be used on extremely large
parallel systems.

ii

Resume

Parallel programmering er den dominerende måde at opnå høj computer ydeevne
i dag. At skrive effektive og korrekte parallelle programmer er en stor udfordring
der primært bliver udført af eksperter. Afhandlingen undersøger tre aspekter af
parallel programmering.

Først argumenterer vi for at automatisk parallelisering og vektorisering er at-
traktivt, da det er en transparent måde at opnå høj ydeevne. Denne afhandling
bidrager med en forbedret afhængigheds analyse for eksplicit parallelle program-
mer. Disse forbedringer leder til at flere løkker bliver vektoriseret, vi opnår en
gennemsnitlig 1,46 gange hurtigere afvikling af en række programmer.

Automatiske optimeringer fejler desværre ofte af teoretiske og praktiske grunde.
Det andet undersøgte aspekt er når de fejler. Her argumenterer vi for at en
hybrid tilgang kan være effektiv. Ved at bruge kompiler feedback, foreslår vi
at bruge programmørens intuition og indsigt til at opnå høj ydeevne. Kompiler
feedback fortæller programmøren hvorfor en given optimering ikke er anvendt, og
foreslår hvordan kildekoden kan gøres mere medgørlig i forhold til optimering. Vi
viser på en industriel use case, hvordan dette kan lede til forbedringer i ydeevne,
op til 2,4 gange hurtigere afvikling.

Det sidste aspekt er parallel debugging. Vi foreslår den prescriptive debugging
model, en bruger guidet model der tillader programmøren at kodificere sin intu-
ition til at fejlsøge parallelle programmer. Modellen er skalerbar, og dog stadig
generel anvendelig. I vores evaluering viser vi et lavt overhead og logaritmisk
skalerbarhed. Dette tillader at anvende modellen på ekstremt store parallelle
systemer.

iv

Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science, in the Technical University of Denmark in partial fulfillment of
the requirements for acquiring the Ph.D. degree in engineering.

The Ph.D. study was carried out under supervision of Associate Professor Chris-
tian W. Probst and Associate Professor Sven Karlsson in the period from Oc-
tober 2013 to September 2016.

The Ph.D. project was funded by the European collaborative project COP-
CAMS (Cognitive and Perceptive Camera Systems) funded jointly by the ARTEMIS
Joint Undertaking and national governments under GA number 332913.

Kongens Lyngby, 30-September-2016
Nicklas Bo Jensen

vi

Acknowledgments

This thesis would not be possible without the support and help of many people.

I would like to thank my supervisors Christian W. Probst and Sven Karlsson
for their valuable time and advice. I know the process of trying to turn me into
a scientist have not been easy, but I appreciate your continued effort.

I would also like to thank my awesome colleagues for their help and guidance
through this process. This include Ann-Cathrin and Karin Tunder. I have been
lucky to work together on projects with Pascal Schleuniger, Maxwell Walter,
Andreas Hindborg, Laust Brock-Nannestad, Martin Madsen, Artur Podobas
and Lars Bonnichsen. Special thanks to Artur for keeping me company at the
end of my PhD and for attempting to keep me sane. It has been a pleasure to
share an office with you and hope you achieve your goals.

Thank you to the guys at Lawrence Livermore National Laboratory for hosting
me, especially thanks to Greg Lee, Dong Ahn, Matt Legendre, Martin Schultz
and Niklas Nielsen for making my stay there a pleasure.

Thanks to Arla and Løgismose for good koldskål, always waiting in the refrig-
erator or the nearby Netto when needed to keep me alive and happy.

Thanks to my supporting family and friends for their support and understand-
ing. Especially thanks to my girlfriend Charlotte, her help and patience when
traveling or frequently being mentally absent.

viii

Publications

This thesis is partially based on the following peer-reviewed publications:

Nicklas Bo Jensen, Per Larsen, Razya Ladelsky, Ayal Zaks, and Sven Karlsson.
“Guiding Programmers to Higher Memory Performance”. In: Workshop on
Programmability Issues for Heterogeneous Multicores (MULTIPROG). 2012

Nicklas Bo Jensen, Sven Karlsson, and Christian W. Probst. “Compiler Feed-
back using Continuous Dynamic Compilation during Development”. In: Work-
shop on Dynamic Compilation Everywhere (DCE). 2014

Nicklas Bo Jensen, Christian W. Probst, and Sven Karlsson. “Code Commen-
tary and Automatic Refactorings using Feedback from Multiple Compilers”. In:
Swedish Workshop on Multicore Computing (MCC). 2014

Nicklas Bo Jensen, Sven Karlsson, Niklas Quarfot Nielsen, Gregory L. Lee,
Dong H. Ahn, Matthew Legendre, and Martin Schulz. “DySectAPI: Scalable
Prescriptive Debugging”. In: Proceedings of the 2014 ACM/IEEE Conference
on Supercomputing. SC. Poster and extended abstract. 2014. url: http:
//sc14.supercomputing.org/sites/all/themes/sc14/files/archive/
tech_poster/tech_poster_pages/post237.html

Nicklas Bo Jensen, Niklas Quarfot Nielsen, Gregory L. Lee, Sven Karlsson,
Matthew LeGendre, Martin Schulz, and Dong H. Ahn. “A Scalable Prescriptive
Parallel Debugging Model”. In: Proceedings of the International Parallel &
Distributed Processing Symposium. IPDPS. c© 2015 IEEE. Reprinted, with
permission. 2015. doi: 10.1109/IPDPS.2015.15

http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post237.html
http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post237.html
http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post237.html
http://dx.doi.org/10.1109/IPDPS.2015.15

x

Nicklas Bo Jensen and Sven Karlsson. Improving Loop Dependency Analysis.
Journal manuscript submitted for publication. 2016

The following peer-reviewed publications are closely related to the thesis content,
but the publications are not contained in the thesis:

Andreas Erik Hindborg, Pascal Schleuniger, Nicklas Bo Jensen, and Sven Karls-
son. “Hardware Realization of an FPGA Processor – Operating System Call Of-
fload and Experiences”. In: Conference on Design and Architectures for Signal
and Image Processing (DASIP). 2014. doi: 10.1109/DASIP.2014.7115604

Andreas Hindborg, Pascal Schleuniger, Nicklas Bo Jensen, Maxwell Walter,
Laust Brock-Nannestad, Lars Bonnichsen, Christian W. Probst, and Sven Karls-
son. “Automatic Generation of Application Specific FPGA Multicore Accelera-
tors”. In: The Asilomar Conference on Signals, Systems, and Computers. 2014.
doi: 10.1109/ACSSC.2014.7094700

Andreas Erik Hindborg, Nicklas Bo Jensen, Pascal Schleuniger, and Sven Karls-
son. “State of the Akvario Project”. In: Workshop on Architectural Research
Prototyping (WARP). 2015. url: http://www.csl.cornell.edu/warp2015/
abstracts/hindborg-akvario-warp2015.pdf

Maxwell Walter, Pascal Schleuniger, Andreas Erik Hindborg, Carl Christian
Kjærgaard, Nicklas Bo Jensen, and Sven Karlsson. “Experiences Implementing
Tinuso in gem5”. In: Second gem5 User Workshop. 2015. url: http://www.
m5sim.org/wiki/images/f/f5/2015_ws_16_gem5-workshop_mwalter.pptx

Nicklas Bo Jensen, Pascal Schleuniger, Andreas Hindborg, Maxwell Walter,
and Sven Karlsson. “Experiences with Compiler Support for Processors with
Exposed Pipelines”. In: IEEE International Parallel & Distributed Process-
ing Symposium: Reconfigurable Architectures Workshop. IPDPSW. 2015. doi:
http://dx.doi.org/10.1109/IPDPSW.2015.9

Last, the thesis is partially based on the following deliverable prepared for the
COPCAMS project:

Nicklas Bo Jensen, ed. D2.5 — Final Results for Exploration Tools. COPCAMS.
Deliverable for the Cognitive and Perceptive Camera Systems project. 2016

http://dx.doi.org/10.1109/DASIP.2014.7115604
http://dx.doi.org/10.1109/ACSSC.2014.7094700
http://www.csl.cornell.edu/warp2015/abstracts/hindborg-akvario-warp2015.pdf
http://www.csl.cornell.edu/warp2015/abstracts/hindborg-akvario-warp2015.pdf
http://www.m5sim.org/wiki/images/f/f5/2015_ws_16_gem5-workshop_mwalter.pptx
http://www.m5sim.org/wiki/images/f/f5/2015_ws_16_gem5-workshop_mwalter.pptx
http://dx.doi.org/http://dx.doi.org/10.1109/IPDPSW.2015.9

xi

xii Contents

Contents

Summary i

Resume iii

Preface v

Acknowledgments vii

Publications ix

1 Introduction 1
1.1 Thesis Contributions . 3
1.2 Synopsis . 4

2 Technical Background 5
2.1 Processing Elements . 5
2.2 Programming Models . 11
2.3 Program Analysis and Optimization 16

3 State-of-the-Art — Limitations of Modern Compilers 29
3.1 Automatic Vectorization . 30
3.2 Limitations in GCC 6.1 . 32
3.3 Discussions . 44

4 Motivation 47
4.1 Improving Utilization of Existing Optimizations 48
4.2 Improving Compiler Optimizations 49
4.3 Improving Parallel Debugging . 50
4.4 Research Methodology . 51

xiv CONTENTS

5 Related Work 55
5.1 Memory Optimizations . 55
5.2 Compiler Feedback . 57
5.3 Automatic Vectorization . 59
5.4 Dependences . 61
5.5 Models in Parallel Debugging . 61

6 Compiler Feedback for Higher Memory Performance 65
6.1 Memory Optimization . 66
6.2 Experimental Evaluation . 69
6.3 Conclusions . 77

7 Continuous Compiler Feedback during Development 79
7.1 Compiler Infrastructure . 81
7.2 Feedback Infrastructure . 83
7.3 Experimental Evaluation . 85
7.4 Discussion . 92
7.5 Conclusions . 93

8 Compiler Feedback using Multiple Compilers 95
8.1 Multi-Compiler Feedback Tool 97
8.2 Experimental Evaluation . 100
8.3 Conclusions . 105

9 Improving Loop Dependence Analysis 107
9.1 The Automatic Vectorization Problem 109
9.2 OpenMP Application Programming Interface 110
9.3 Using OpenMP Information in Compiler Optimizations 111
9.4 Our Approach to Dependence Analysis and Automatic Vector-

ization . 113
9.5 Experimental Evaluation . 119
9.6 Discussion . 135
9.7 Conclusions . 135

10 Prescriptive Parallel Debugging 137
10.1 Motivation . 138
10.2 Models in Parallel Debugging . 140
10.3 In Search for Sweet Spots . 141
10.4 A New Model: Prescriptive Debugging 143
10.5 DySectAPI: The Dynamic Scalable Event Tracing API 147
10.6 Evaluation . 151
10.7 Conclusions . 159

CONTENTS xv

11 Conclusions 163
11.1 Compiler Feedback . 163
11.2 Improved Compiler Optimizations 165
11.3 Prescriptive Debugging . 165
11.4 Outlook . 166

Bibliography 167

Limitations per Benchmark 185

xvi CONTENTS

Chapter 1

Introduction

Computing is central to the modern world. We use computers in many forms ev-
ery day. To keep up high performance, designers have relied on improvements in
computer architecture and manufacturing technology allowing them to increase
the clock frequency as a driver to increase performance. However, in the 21st
century scaling of the clock frequency has stopped due to power consumption.

It was estimated that information and communication technology accounted for
4.6% of the global electricity consumption in 2012, with one projection esti-
mating a 14% share in 2020 [Hed+14]. For supercomputers the performance of
running parallel scientific application has increased more than 10,000-fold from
1992 to 2007, while performance per watt only increased 300-fold [FC07]. Thus,
improving energy efficiency is one the main challenges of computing. There
exist many ways to improve the energy efficiency — for example by utilizing
the specialized hardware available and by increasing the performance reducing
run time. For systems designed with a fixed power budget it allows for more
performance within the same power budget. Improving the energy efficiency
will reduce the economical and environment impact of computing.

Chip manufacturers have moved to uphold the increasing need for processor
performance using parallelism. This trend has dominated across computing
from high-performance supercomputers, warehouse scale computing, servers,
general purpose machines, mobile and embedded.

2 Introduction

To efficiently program parallel machines, we rely on parallel programming. Cur-
rent parallel programming models and tools are often too low-level and requires
architecture specific tuning to achieve high performance. This makes paral-
lel programming hard. Given the complexity of parallel programming and the
sheer number of parallel machines available today, we are not efficiently using
the available resources.

Systems available today are so complex that only expert programmers can com-
prehend all aspects of them when writing software. When a programmer cannot
assess and manage the complexities in a system, they will produce lower quality
code. In this thesis I aim to show ways moving forward allowing us to take
advantage of the specialized hardware available to us today, while placing as
little as possible of a burden on the programmer as possible.

Some of the challenges with parallel programming is:

1. How do we decompose a problem into subproblems that can be executed
efficiently in parallel?

2. As we scale the amount of parallelism how do we ensure we continue to
achieve the desirable speedup?

3. Once we have achieved a parallel implementation, how do we debug it?
Debugging parallel programs proposed some unique challenges as it is
very different from debugging sequential programs. The extra challenges
include non-deterministic execution, parallel bugs such as deadlocks, and
the sheer amount of information available at large scale.

These challenges motivate the thesis contributions that are centered around
achieving high performance with prescriptive optimizations and prescriptive de-
bugging.

Prescriptive optimizations are defined analogously to prescriptive analytics [RD14]
in big data business analytics. Prescriptive optimization not only focuses on the
why, how, when and what, but also propose actions to take advantage of the
circumstances. Prescriptive optimization is an optimization regime where the
programmer prescribes how a code should be optimized, and if not possible
prescribe the necessary foundations to do so. Prescriptive optimizations allow
programmers to achieve high performance without manually having to optimize
code, but merely make the best out of automatic optimizations.

Prescriptive debugging is defined as a debugging model where the program-
mer’s intuition is codified to reduce the error search space. The programmer

1.1 Thesis Contributions 3

prescribes the debugging session before execution. This approach, in contrast
to the existing debugging models, is scalable in terms of tool communication
and volume of data produced for the programmer, yet capable enough, to serve
general-purpose debugging.

Next, we will briefly cover the thesis contributions around prescriptive optimiza-
tion and debugging.

1.1 Thesis Contributions

The main thesis contributions are:

1. Compiler Feedback:

We show how it is possible to generate feedback in more practical ways
with better refactorings. We also show how the feedback can contribute
to mitigate issues due to memory optimizations, inlining, automatic par-
allelization and automatic vectorization. The feedback enables more ag-
gressive compiler optimizations demonstrating its effectiveness.

2. Improved Compiler Optimizations:

We improve the automatic vectorization capabilities of GCC, by taking
into account dependences specified for explicitly parallel programs. The
improved dependence analysis is able to remove many of the false depen-
dences previously reported. These improvements lead to more loops being
automatically vectorized. On average we achieve a speedup of 1.46 for a
set of benchmarks.

3. Prescriptive Debugging:

We propose the new prescriptive debugging model. It is scalable in terms
of tool communication and volume of data produced for the programmer,
yet capable enough, to serve general-purpose debugging. Through our
evaluation we show logarithmic scalability allowing us to achieve extreme
scalability in terms of system size. Last, the prototype has been applied
to a real use case showing its strength in condensing the information pre-
sented to the programmer.

4 Introduction

1.2 Synopsis

The rest of the dissertation is organized into the following ten chapters:

Chapter 2 reviews the theory and practice necessary for reading the remain-
der of the thesis.

Chapter 3 identifies the state-of-the-art in automatic vectorization with a
study on compiler limitations with respect to automatic vectorization.

Chapter 4 presents the motivation and research questions of the thesis.

Chapter 5 describe related work and state-of-the-art, and relates it to the
research in the thesis.

Chapter 6 describe compiler feedback for memory optimizations.

Chapter 7 introduce continuous compiler feedback system integrated into a
development environment.

Chapter 8 introduce a feedback system using optimization reports from mul-
tiple compilers.

Chapter 9 introduce the OpenMP based dependence analysis and its im-
provement to automatic vectorization.

Chapter 10 introduce the prescriptive debugging model and evaluate its scal-
ability in terms of system size and information presented.

Chapter 11 concludes the thesis by summarizing the research findings and
discusses the potential impact.

Chapter 2

Technical Background

This chapter introduce the terminology necessary to understand the thesis con-
tributions.

The sections each introduce different aspects of computing: the underlying hard-
ware systems in Section 2.1.1, the programming models used Section 2.2 and
program optimizations in Section 2.3.

2.1 Processing Elements

A processor is a circuit that performs the instructions of a computer program.
Processing elements (PE) are the units that execute instructions inside a pro-
cessor. Each processor defines an instruction set architecture (ISA). The ISA
defines the interface for using the processor, how supported operations are en-
coded as instructions and how memory locations are accessed. Writing programs
manually using the processors instruction set is very difficult and time consum-
ing. Instead, we usually generate the instructions for a processor from higher
level languages that are more suitable for writing programs.

An instruction can access two types of storage, a memory location or a register.

6 Technical Background

A register usually holds a single value, for example 64-bits of information. Ac-
cess to registers is very fast, but a limited number of them are available. Usually
between 14 and 63 registers are available. Memory is addressed indirectly using
addresses, for example to implement array accesses such as Array[index]. In-
structions can also operate on immediate values. In some ISAs most instructions
can operate on both registers and memory, in some most ISA instructions can
mostly operate on registers. Each ISA defines which instructions can operates
on which types of storage.

The processor design strategy and its ISA can be classified as either being either
a reduced instruction set computing (RISC) architecture or a complex instruction
set computing (CISC) architecture [HP96]. Both RISC and CISC have advan-
tages and disadvantages [PD80], but today RISC or a hybrid between RISC and
CISC machines are dominating as all commercial ISAs in the past 30 years have
been RISC or a hybrid between RISC and CISC [Pat15].

PEs can be organized in several ways to form a computer. There are three clas-
sifications of computers according to Flynn’s taxonomy [Fly72] that are used
in mainstream computing. Single instruction, single data (SISD) describing a
sequential computer with no parallelism in the instruction and data streams.
The single instruction, multiple data (SIMD) where each instruction operates
on multiple data elements as illustrated in Figure 2.1a. The multiple instruction,
multiple data (MIMD) consisting of multiple cores operating independently on
different data as illustrated in Figure 2.1b. When multiple PEs are organized
into a single computer we call it a multi-core computer. Today’s modern main-
stream architectures usually combine the MIMD and SIMD paradigms into a
multi-core processor. Each core executes an independent thread, short for thread
of execution. Each executing thread can furthermore make use of SIMD paral-
lelism achieving the best of both worlds in a versatile system.

2.1.1 Driving Factors for Multi-Core SIMD Hardware

Moore’s law as we know it today was put forward by Moore in 1975 predict-
ing approximately a doubling in transistor counts every 18 months on a single
chip [Moo75]. Moore’s law is still in effect as seen in Figure 2.2. Closely, related
to Moore’s law is Dennard scaling [Den+74].

The interplay between Moore’s law and Dennard scaling was highlighted by
Bob Colwell in his DAC 2013 keynote: “Moore’s Law gave us more transistors,
Dennard scaling made them useful”.

Dennard scaling is defined as:

2.1 Processing Elements 7

Da
ta

 P
oo

l

PE

PE

PE

PE

Instruction Pool

(a) SIMD

Da
ta

 P
oo

l

PE

PE

PE

PE

Instruction Pool

(b) MIMD

Figure 2.1: SIMD architecture illustrated in 2.1a and MIMD architecture il-
lustrated in 2.1b.

Dynamic Power = αCFV 2

Where α is the percentage time the transistors switch from logical zero to one,
C is the capacitance or area, F is the frequency and V is the voltage. Den-
nard’s observation was that voltage and current should be proportional to the
dimensions of a transistor. This entails that as transistors gets smaller due to
innovations in process technology, the necessary voltage and current also gets
smaller. This allowed circuits to operate at a higher frequency at the same
power. A higher frequency equals the processor performing instructions faster.
However, Dennard scaling does not take into factors such as leakage current,
which starts becoming important as transistors gets smaller [Boh07]. Dennard
scaling have broken down around 2005 [Esm+11].

The effect of Dennard scaling failing is seen around 2005 where the frequency
scaling of single-core processors is no longer one of the primary drivers behind
single-core performance enhancements. This change in hardware has caused
designers to hit several walls — the Power Wall, the Memory Wall and the ILP
(instruction-level parallelism) Wall. The Power Wall is where we can put more
transistors on a chip than we can afford to turn on due to power issues [Esm+11].
The Memory Wall is where the memory speed does not scale at the same rate as
computation speed [WM95]. This entails that memory operations are expensive
and computation is cheap relative to each other. The ILP Wall describes how
the amount of parallelism on the instruction level is diminishing [Wal91].

To these ends processor designers have moved to multi-core systems, where
the transistor count is spent integrating several cores, bigger caches and more

8 Technical Background

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Year

40 Years of Microprocessor Trend Data

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Figure 2.2: 40 years of processor trend. Original data up to the year 2010
collected and plotted by M. Horowitz, F. Labonte, O. Shacham,
K. Olukotun, L. Hammond, and C. Batten. New plot and data
collected for the year 2010 to 2014 by K. Rupp under a Creative
Commons Attribution 4.0 International Public License.

2.1 Processing Elements 9

SIMD capabilities. A multi-core processor contains two or more processing
cores in a single package. Each core operates independently executing different
instructions on different data as per the MIMD architecture [Fly72]. At the
same time each processor core can independently execute single instructions
operating on multiple data as per the SIMD architecture [Fly72]. Most of today’s
processors, even processors designed for mobile devices, contain multiple cores
with SIMD capabilities.

Looking at the Intel processor generations from the last decade we see how
the numbers of cores has been growing steadily from one core in 2004 for Intel
microarchitecture codenamed Nocona to 500 cores for Intel microarchitecture
codenamed Knights Corner in 2014. Regarding SIMD the width of the vector
units has increased significantly. From 128 bits in the 2004 Intel Nocona archi-
tecture to 512 in the Intel Knights Landing Architecture as we see in Figure 2.3.
Furthermore, the number of vector registers have increased and the number of
vector instructions in the instruction sets have increased as well. In fact, most
new instructions added to Intel’s instruction set architecture for the past decade
have been vector instructions. For example, when the Intel Streaming SIMD
Extensions (SSE) were introduced in 1999 they contained just 62 instructions
in the ISA, in contrast the modern Advanced Vector Extensions 2 (AVX2) con-
tains 1557 SIMD instructions as seen in Figure 2.3. These numbers show how
the SIMD units in modern Intel processors have become increasingly powerful,
in both width and number of instructions. Last, for AVX and AVX2 we have
16 256-bit registers compared to 32 512-bit registers for the newest AVX512
extensions. Clearly, this shows that SIMD units have gotten more advanced
and complex. This complexity emphasizes how we need compiler support to
efficiently take advantage of SIMD without placing an enormous burden on pro-
grammers.

2.1.2 Memory Organization

Memory is organized into a hierarchy simply because main memory operates
much slower than the processor. Operating directly on main memory would be
very inefficient for many programs. Instead, frequently used data is kept in a
hierarchy of smaller and faster memories.

These smaller memories are called caches. Caches provide quick accesses to
frequently accessed data. The closer to the processor, the faster the memory
accesses, but the size of the cache will typically be smaller. To this end, caches
are organized in a hierarchy, usually within two or three levels.

A typical cache hierarchy contains three layers, with a shared Level 3 cache and

10 Technical Background

0
500
1000
1500
2000
2500
3000
3500
4000
4500

0

100

200

300

400

500

600

#	
Cu
m
ul
at
iv
e	
SI
M
D	
In
st
ru
ct
io
ns

SI
M
D	
W
id
th
	[b
its
]

SIMD	Width SIMD	Instructions

Figure 2.3: Intel processor trends in terms of SIMD width and cumulative
counts of SIMD instructions for modern generations of Intel SIMD
extensions. Product specifications are available at ark.intel.
com. Cumulative SIMD instruction counts by Ayal Zaks [Zak15],
used with permission.

ark.intel.com
ark.intel.com

2.2 Programming Models 11

L3 cache

Main Memory

Core 1

L1 cache

L2 cache

Core n

L1 cache

L2 cache FasterLarger

…

Figure 2.4: Example cache hierarchy organized in three layers.

private Level 2 and Level 1 caches as seen in Figure 2.4. The highest level of
cache is shared between the cores in a multi-core processor to efficiently make
use of the caches and allow the cores to share data.

2.2 Programming Models

A programming model defines the interface between the software and the hard-
ware. It is an abstraction presented to the programmer of the underlying ma-
chine executing the software. Different Programming models target different
types of machines, provide varying productivity for the programmer and more
or less performance.

Parallel programming models define how a parallel machine is programmed.
Typically, a parallel programming model is either under the shared memory or
the distributed memory abstraction. The machine being programmed is typically
using the same memory abstraction as the programming model. In the shared
memory programming model, the programmer is given the abstraction that
communication with other concurrently running threads is performed through
shared memory. In the distributed memory programming model, program com-
municates using message passing.

12 Technical Background

2.2.1 Threads

A thread is an entity that can execute on a PE. A thread consists of an execution
context together with the program instructions. A program can separate its
execution into multiple threads. Each thread can run concurrently on the same
processor core or in parallel several processor cores. A program can contain
several threads grouped into a process. Threads are used to implement MIMD
parallelism in shared memory programming models. One programming model
for shared memory programming is OpenMP introduced next.

2.2.2 OpenMP

OpenMP is de-facto standard for developing parallel applications. OpenMP
consists of a set of compiler directives, also called pragmas, and library rou-
tines. Loops annotated with OpenMP directives such as a worksharing loop,
where work is shared among several threads, are characterized by the absence
of dependences between loop iterations, i.e., each iteration of these loops can ex-
ecute in parallel. The OpenMP specification defines the interface for compilers
and runtime systems to create a compliant implementation [Boa15].

OpenMP is a shared memory programming model. OpenMP mainly focus on
fork-join parallelism. A master thread distributes work to a set of worker threads
when entering a parallel region. The master thread typically executes the se-
quential parts of the program.

Worksharing loops can have several schedules for how iterations are mapped
to available threads. The iterations can statically be partitioned evenly among
the threads. They can also be dynamically scheduled where thread executes a
specified chunk of iterations before requesting a new chunk. The default chunk
size is 1 if not specified by the programmer. Guided scheduling is similar to
dynamic scheduling, but starts out with large chunks and decreases to a smaller
chunk size to handle load imbalance. Auto lets the compiler and runtime choose
a mapping and runtime defers the decision until runtime.

A sequential program specifies a total execution ordering describing the happens-
before relationship. For a loop with memory operations, the order of these has
to comply with the memory model. For an OpenMP worksharing loop, the par-
allel semantics define a partial execution where each iteration of the loop can
be executed independently.

OpenMP also supports task-level parallelism. Tasking is powerful when units

2.2 Programming Models 13

1 #pragma omp parallel for
2 for(i=0; i<N; i++) {
3 for(j=0; j<N; j++) {
4 A[i][j] = A[i][j] + B[i][j];
5 }
6 }

Figure 2.5: OpenMP worksharing loop.

of work are generated dynamically. When a task encounters a task construct a
new task is spawned. Tasks are dynamically scheduled to be executed by the
set of threads available.

2.2.2.1 OpenMP SIMD

Automatic vectorization where the compiler automatically converts a sequential
code into a using SIMD is an inherently hard problem that is not fully solved
simply due to its complexity. Many have suggested programmer-guided vector-
ization. OpenMP 4.0 [Boa13] added support for programmer guided vectoriza-
tion with the #pragma omp simd construct influenced by work from Caballero
et al. [Cab+15] and Klemm et al. [Kle+12]. OpenMP 4.0 is a significant step
forward in terms of programmer productivity compared with manual vectoriza-
tion, but still requires significant effort compared to automatic vectorization.

It enables more vectorization by disabling alias and dependence analysis, and
enabling more aggressive vectorization transformations. The programmer is
required to determine that it is legal to vectorizable the loop and specify each
reduction variable and other properties in the loop. OpenMP SIMD therefore
puts significant burden on the programmer.

OpenMP SIMD supports several clauses for guiding the vectorization; these
include safelen for safe vector lengths and aligned for specifying data align-
ment.

2.2.3 Message Passing

The distributed memory abstraction relies on message passing for communica-
tion given the lack of shared memory. All communication in message passing

14 Technical Background

abstractions are through either point-to-point messages or through collective
operations such as a broadcast or reduction.

Usually, message passing is implemented with the single program, multiple data
(SPMD) abstraction, a subset of MIMD. A single program is executed with its
own data in parallel. Often a single execution of the program will be the master
orchestrating the execution. The best known message passing implementation
is the standardized Message Passing Interface (MPI) [For15]. MPI is imple-
mented in a library to lower the development effort, but correctly implementing
distributed programs is hard often leading to subtle bugs. The MPI-3 interface
defines more than 430 routines [For15] and is thus a complicated library to use
correctly and efficiently.

2.2.4 Writing Parallel Programs

Amdahl’s law describes the relation between serial and parallel parts of a pro-
gram and its effect on the theoretical speedup [Amd67].

One of the biggest limitations to parallel programming is the well-known Am-
dahl’s law limiting the theoretical speedup due to the serial parts of a program
that cannot be made parallel:

S =
1

(1− P) + P
N

(2.1)

Where S is the theoretical speedup, P is the fraction of the program that can
be made parallel and N is the number of threads executing in parallel or speed
of the vector unit relative to the scalar unit available on the system. Amdahl’s
law applies to both MIMD and SIMD parallelism. Combining both MIMD and
SIMD parallelism we obtain even more significant speedups. See Figure 2.6
for an example of the speedup for varying fractions of the program that can
be parallelized for both a MIMD machine, a SIMD machine and both types
combined.

Amdahl’s law implies that we should maximize the parallel regions of our pro-
grams and if possible parallelize with multiple types of parallelism. This often
means focusing on loops as many programs spent a majority of their execution
in loops. Another implication of Amdahl’s law is that the sequential parts of a
parallel program can take up a large part of the execution time and optimizing
the sequential is thus very important.

2.2 Programming Models 15

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Sp
ee
du
p

Percent	 Parallelized

SIMD MIMD Combined

Figure 2.6: Speedup as a function of the fraction of the program parallelized
with Amdahl’s law for MIMD parallelism, SIMD parallelism and
both types of parallelism combined. We assume a vector width of
8 and 4 threads.

There are several ways to obtain a parallel version of a program, each with
advantages and disadvantages. For example, to create a SIMD version of a
program the following three options are widely used:

• Automatic vectorization: where the compiler takes care of the heavy
lifting. It analyzes the code and proves that it is legal to vectorize it and
automatically perform the required transformations. This is attractive as
it puts a very small burden on the programmer.

• Guided vectorization: where the programmer specifies on the loop level
how a loop should be vectorized and let the compiler do the heavy lifting.

• Intrinsics: where the programmer implements the individual vector op-
erations using intrinsic functions. The programmer has to implement all
the low level SIMD operations and the compiler then turn the function
calls into SIMD.

Each method is attractive for different reasons. Automatic optimization places
no burden on the programmer. Guided vectorization can require significant pro-
grammer effort for determining the correctness of the described transformations,

16 Technical Background

Core with
SIMD

Core with
SIMD

Core with
SIMD

Core with
SIMD

Memory

Core with
SIMD

Core with
SIMD

Core with
SIMD

Core with
SIMD

Memory

Core with
SIMD

Core with
SIMD

Core with
SIMD

Core with
SIMD

Memory

Core with
SIMD

Core with
SIMD

Core with
SIMD

Core with
SIMD

Memory

Network

Figure 2.7: Parallel system with several types of parallelism.

but significantly less than using intrinsics where most of the burden is put on
the programmer.

When we have obtained a vectorized SIMD version of a program, we can com-
bine that with other types of available parallelism. SIMD can be combined
with shared memory programming models and distributed memory program-
ming models to best exploit parallelism at different level. In High Performance
Computing (HPC) both SIMD, OpenMP and MPI is often combined to achieve
high performance [Kar+13] on systems such as the one seen in Figure 2.7 with
multiple nodes. For smaller single node systems using SIMD and OpenMP is
attractive to exploit all the available parallelism.

2.3 Program Analysis and Optimization

A compiler transform source code written in one language into another. Typ-
ically, it transforms languages such as C and C++ into other, usually lower,
languages targeting a specific architecture. A static compiler transforms code
prior to execution. Programs can also be interpreted dynamically at run time
and compiled at run time. Compilers are traditionally organized into three parts:
the front-end, an optimizer and the back-end [Muc97] as seen in figure 2.8.

The front-end parses and check source code for errors. It is also responsible for
constructing an intermediate representation well-suited for optimization.

The optimizer performs optimizations on the intermediate representation. They
all have the goal of improving the performance of the compiled code.

2.3 Program Analysis and Optimization 17

C Frontend

C++ Frontend

Fortran Frontend

Optimizer ARM Backend

X86 Backend

SPARC Backend

Figure 2.8: A classic retargetable static compiler design.

The backend transforms the intermediate representation to a specific architec-
ture as well as architecture specific optimization.

Static compilers are very often built with this architecture or a closely related
organization. Examples includes the GNU Compiler Collection, GCC [Fou].
This organization has the benefit of a high level of reuse. Implementing a new
language only requires adding a new frontend. A new optimization pass can
benefit more than one programming language and architecture. Last, adding
support for a new architecture only requires adding a new backend.

The optimizer has the goal of improving performance using program optimiza-
tions. The optimization can usually either lead to the program executing faster
or use fewer resources such as power or space. Both the programmer and the
compiler can perform program optimization. Programmers have to change the
source code to perform optimization, which can affect the quality of the source
code through lower readability and maintainability. Automatic optimization
done by the compiler has the benefit of being the most transparent way of
optimizing programs.

Transformations need to be semantics preserving, valid and safe. Automatic
optimization is therefore based on program analysis. Static program analysis
is performed without executing the program. It statically predicts safe and
computable values and behaviors. To stay computable static analysis can only
compute approximate answers [NNH99]. The approximate nature of program
analysis is often a limitation in optimizations.

Loops are often the target of optimizations, as they due to their iterative nature
usually take of a large part of the program execution time. Many loops per-
form the same operations across array elements. Optimization targeting these
types of loops are therefore very important. Loop vectorization transforms these
operations into using instructions that applies the operations to multiple data

18 Technical Background

elements simultaneously.

2.3.1 Intermediate Representations

Program code has several representations inside a compiler each engineered with
specific goals enabling optimization or ease of performing specific transforma-
tions. These representations are called intermediate representations (IR).

First, each language frontend is represented as an abstract syntax tree (AST).
Every tree node is a construct in the program being compiled.

The frontend then translates the AST to a language independent representation.
This representation usually consists of instructions grouped into a basic block.
A basic block has a list of instructions to be executed in order. At the end of a
basic block we may have branches to other basic blocks used for implementing
control flow to define the order in which basic blocks are executed. The control
flow can be represented using a control flow graph (CFG). Each basic block is
represented as node in the CFG and edges represent branches. Loops and other
code constructs are represented in this way, for example with a cyclic CFG.

The instructions inside a basic block can be represented in different ways. One
popular choice is Static Single Assignment, SSA, which is a specific type of IR.
SSA form has the property that variables are only assigned at most once. SSA
form was developed in the 1980’s at IBM [Cyt+91] and has gained popularity
as it makes many common optimizations simpler and more powerful. SSA form
has the following properties:

• Each definition of a variable has a distinct name.

• Each use of a variable refers to a single specific definition.

SSA form inserts φ-functions into programs with multiple paths where a sin-
gle variable can be assigned. φ-functions merge variables to make the single-
assignment property hold. SSA code is usually in three-address code form, where
an instruction has the form i = j op k, where j and k are the operands, op is
the operator and the result is placed in i. φ-functions are not in three-address
form as they can merge arbitrary many variables.

Many optimizations benefit from SSA form and as each use has a single definition
because each use of a variable must refer to a specific definition of the variable.
Optimizations that benefit from SSA form are constant propagation, sparse

2.3 Program Analysis and Optimization 19

1 for(i=0; i < N; i++)
2 A[i] = A[i -1]+1;

Figure 2.9: Loop with a true-dependence.

conditional propagation, dead code elimination and global value numbering.
Due to these advantages of SSA form, many research and production compilers
use it.

Usually compilers convert to SSA form for use in the target independent op-
timizer and convert out of SSA for the backend and code generation. Some
research argue how SSA form is also useful for register allocation [HGG06] and
other compiler backend passes.

2.3.2 Dependences

There is a dependence between statements if they share a memory location and
one of them writes to it. Data dependences impose a constraining execution
ordering on the program execution, as it may not be legal to reorder statements
or execute them in parallel.

One classification of data dependences is according to the operation type and
their ordering:

True-Dependence: Also known as a read-after-write dependence. This depen-
dence is present when a read depends on a write from a previous operation.
With regards to automatic parallelization and automatic vectorization this de-
pendence can be reordered in some special cases.

The loop in Figure 2.9 represents such a true-dependence.

Anti-Dependence: Also known as a write-after-read dependence. This depen-
dence is present when one operation read a memory location that is later written
to by another operation. Even though there is no transfer of data between the
two operations, they cannot generally be reordered when considering automatic
parallelization and automatic vectorization.

The loop in Figure 2.10 contains such an anti-dependence.

Output-Dependence: Also called a write-after-write dependence. This data

20 Technical Background

1 for(i=0; i < N; i++)
2 A[i-i] = A[i]+1;

Figure 2.10: Loop with an anti-dependence.

1 sum = 0;
2 for(i=0; i < N; i++)
3 sum = sum + A[i];

Figure 2.11: Reduction example.

dependence is present when two operations both write to the same memory
location. In general, this type of dependence cannot be reordered either and is
unsafe for parallelization and vectorization.

All of the above: Some code patterns can contain all of the above dependences,
for example the reduction pattern example in Figure 2.11. The compiler rec-
ognizes the pattern and uses its built-in support for reductions to handle the
dependence.

It has been known for a long time that precisely determining the dependences
of memory operations is essential for many loop optimizations [Bra88]. Trans-
formations that rely on dependences are automatic parallelization, automatic
vectorization, renaming, expansion, dead code elimination, etc. Loop memory
operations are coarsely classified as either loop independent or as loop-carried
dependences. For automatic vectorization, a statement in a loop can directly
be vectorized if it does not depend on itself. Dependence analysis is therefore
an important part of automatic vectorization.

To exemplify the difficulty in determining dependences consider the loop in
Figure 2.12a. The statement in the body of the loop does not depend on itself,
as A[i] refers to the old value when reading it, and no other iteration reads it
once A[i] has been updated. In Figure 2.12b a loop carried dependence exist.
Each iteration writes to A[i+1] read by the next iteration.

Dependence analysis is usually designed for array loop bounds and data accesses
that are affine functions. An affine function is defined as a linear function with
a constant. For example, data accesses such as X[i], X[i+ j + 10], X[3 ∗ i] and
X[i ∗ j] are affine. Analyzing non affine functions is often considered too hard
and expensive to do inside a compiler.

2.3 Program Analysis and Optimization 21

1 for(int i=0; i < N; i
++)

2 A[i] = A[i] + C;

(a) Loop independent iterations.

1 for(int i=0; i < N; i
++)

2 A[i+1] = A[i] + C;

(b) Loop carried dependence.

Figure 2.12: Loop with loop independent memory operations in a and a loop
with a loop carried dependence in b.

A notation and terminology similar to that of Banerjee and Skeppstedt is
adopted [Ban93]; [Ske12] for the remainder of this section.

Definition 2.1 A perfect loop nest L is a loop nest such that the innermost
loop consists of a sequence of assignment statements and the outer loops do not
contain assignment statements. The loop bounds and data accesses of L are
furthermore affine functions.

We denote m as the number of nested loops. If m has the value 1 only a single
loop is present, the value 2 is a double loop and so on. We denote the index
vector I of loop nest L as I = (I1, I2, ..., Im). The index values of L are the
values of I.

Z is the set of all integers. The Cartesian product Zm denotes the integer vectors
of size m. The index space of L is the subset of Zm consisting of all the index
points.

Definition 2.2 We define a partial order relation ≺` in Zm for 1 ≤ ` ≤ m
by i ≺` j if i1 = j1, i2 = j2, ..., i`−1 = j`1 and i` < j`.

An example of the partial order is (1, 2, 3) ≺3 (1, 2, 4).

Definition 2.3 The lexicographic ordering ≺ in Zm is the union of all the
relations ≺`: i ≺ j iff i ≺` j for some ` in 1 ≤ ` ≤ m.

For two statements Sx and Sy, with loop indices i and j respectively, we denote
them as Sx(i1, ..., im) and Sy(j1, ..., jm). There is a dependence between the two
statements if:

1. Both Sx(i) and Sy(j) access the same memory locationM.

2. Sx(i) is executed before Sy(j) in L.

22 Technical Background

3. When L is executed, the memory location M is not written to in the
period from the end of execution of Sx(i) to the beginning of execution of
Sy(j).

The two statements Sxq and Sy does not need to be distinct, but the two
instances Sx(i) and Sy(j) need to be distinct according to requirement 2.

Definition 2.4 The data dependence distance is calculated as σn = jn− in.
The data dependence distance vector as σ = (σ1, ..., σm).

Definition 2.5 The data dependence direction ρn is defined as negative, zero
or positive if the distance is negative, zero or positive denoted as ρn = sig(σn).
The direction vector is defined as ρ = (ρ1, ..., ρm).

There are several ways to classify loop carried dependences, either according to
operation type, chronological order or dependence.

Chronologically ordered loop-carried dependences can be divided into the three
different classes:

• Lexical forward dependence if the direction is negative.

• Self-dependence if the direction is zero.

• Lexical backwards dependence if the direction is positive.

The compiler calculates the loop distance and its direction vectors to determine
if any dependences exist between the loop iterations. Dependences can often
not be determined due to the approximate nature of program analysis necessary
for it to stay computable.

2.3.2.1 Dependence Testing

It has been proven that the loop dependence analysis problem is actually to
solve a system of equations [All83]. Finding a solution to the arising system
of equations has been shown to be NP-complete. Therefore, approaches for
conservatively estimating a solution are used in practice. A common solution
is the GCD test [Coh73], also implemented in GCC as part of its dependence
analysis.

2.3 Program Analysis and Optimization 23

1 for(int j=0; j < N; j++ {
2 for(int i=0; i < N; i++) {
3 A[2*i] = ...
4 ... = A[2*j+1]
5 }
6 }

Figure 2.13: Loop example with no loop carried dependences.

Consider the example of the code fragment in Figure 2.13. We want to prove
that the memory accesses to A[2*i] does not conflict with the memory accesses
to A[2*j+1]. For this simple example it is clearly the case that there are no
dependences between the two accesses as A[2*i] touches even elements in A
while A[2*j+1] touches odd elements in A. To prove this, we can set up the
following equation:

2i = 2j + 1 (2.2)

A dependence exists if we there exist integers i and j, such that the equation 2.2
is satisfied. As no such i and j exists that can satisfy equation 2.2 there is
no dependence between the read and write access. This equation is called a
Diophantine equation.

Definition 2.6 A linear Diophantine equation of the form

a1x1 + a2x2 + ...+ anxn = c

has a solution for x1, x2, ..., xn if gcd(a1, a2, ..., an) divides with c.

We rewrite equation 2.2 to 2i − 2i = 1. Given how gcd(2,−2) = 2 and the
constant 1 does not divide 2 there is no solution. If a solution exists we there
may or may not exist a dependence. In these cases, we can apply stronger
dependence testing methods such as Fourier-Motzkin eliminations [Ban93].

2.3.3 Alias Analysis

A big obstacle for dependence analysis is the use of pointers. Some programming
languages allow the use of symbols to refer to memory locations as pointers.

24 Technical Background

When multiple pointers can point to the same memory location the pointers are
said to be aliased.

To be effective dependence analysis need to take aliasing into account through
alias analysis or points to analysis as aliasing greatly affects dependence analysis.

Alias analysis is particular difficult for C programs as C allows arbitrary oper-
ations to be performed on pointers. Taking an integer as input from the user
and assigning it to a pointer is valid C code, potentially aliasing all pointers in
the program.

Alias analysis is in general undecidable [Ram94]. Alias analysis is often de-
signed to give a safe conservative approximation of pairs of aliasing into the
categories: must alias, may alias and no alias. Many algorithms exist, some
intra-procedural and some that are inter-procedural. Even if a compiler imple-
ments an inter-procedural alias analysis, it is often only limited to the current
compilation scope (e.g. a file being compiled). This greatly limits the precision
of alias analysis on function calls.

C99 introduced the restrict keyword [JTC99]. The restrict keyword states
how only the pointer itself, or a value derived directly from the it, is used for
all accesses to that object. This makes the programmers intent clearer to the
compiler, mitigating many issues preventing optimizations.

2.3.4 Induction Variable Analysis

Induction variable analysis is important for many loop optimizations fundamen-
tal to automatic parallelization and vectorization. Array indexes of the accessed
memory locations in a loop that are affine expressions of loop indexes enables
us to reason about data dependences across iterations.

A variable is an induction variable in a region if within the region it is only
incremented or decremented with a region constant. A region is a strongly
connected component in the control flow graph(CGF). A region constant is a
variable whose definition dominates every edge in the CFG for the region or a
compile time constant [Ske12]. The most common induction variable is a loop
index being incremented by one in every iteration.

2.3 Program Analysis and Optimization 25

2.3.5 Automatic Parallelization

Writing correct and fast parallel code is hard as it adds several new dimensions
of complexity. Automatic parallelization is attractive as it puts the burden of
finding and exploiting parallelism on the compiler or runtime system. With-
out automatic parallelization the programmer has to manually parallelize the
applications requiring significant effort.

Automatic parallelization converts sequential code into parallel code. Automatic
parallelization usually focuses on loops as large speedups can be gained for them.
Automatic parallelization can refer to both thread level parallelism and SIMD
parallelism. Normally automatic parallelization refers to thread level parallelism
and automatic vectorization refers to SIMD parallelism.

Loop iterations with loop independent operations can be executed in parallel.
Loops with loop carried dependences may be transformed to remove loop carried
dependences. In contrast to scalar optimizations just one data dependence that
cannot be proven independent can render an entire important loop unparalleliz-
able. In scalar optimizations inaccuracies in the analysis does not have the same
impact on optimizations, missing one optimization opportunity usually has little
impact.

To Automatically parallelize program code involves performing alias analysis,
dependence analysis and induction variable analysis.

Many compilers exploit existing OpenMP facilities already built into them for
fork-join style parallelism. Once the compiler has proven correctness of paral-
lelizing, it applies a cost function to estimate if a speedup will be obtained and
finally emits the OpenMP code. It distributes the loop iterations to a number
of threads using the existing OpenMP primitives.

2.3.6 Automatic Vectorization

Automatic vectorization is the process of turning sequential code into parallel
code automatically utilizing the SIMD capabilities in processors. It is thus a
form of parallelization exploiting data-parallelism by executing iterations con-
currently.

26 Technical Background

We can model the performance of a vectorized loop by:

t = to + nte (2.3)

Where t is the time it takes to execute a vectorized loop, t0 is the startup
time, n is the numbers of iterations in the vectorized loop and te is the time it
takes to execute a particular vectorized iteration of the loop [LMM85]; [LCD91].
This model allows us to reason about the theoretical speedup while vectorizing.
The model takes into account the strip-mine nature of loop vectorization on
modern register-to-register SIMD architectures. A loop usually operates on
more elements than the SIMD units support. For example, if we operate on 128
elements and the SIMD units can operate on 16 elements the loop processed in
eight strips of 16 elements.

Automatic vectorization shares many of the same challenges as automatic par-
allelization for thread level parallelism. Automatic vectorization relies on alias
analysis, dependence analysis and induction variable analysis. Compilers typi-
cally implement two types of vectorization— traditional loop vectorization [AK87];
[KL00]; [EWO04]; [Bik+02] and Superword Level Parallelism vectorization [LA00];
[BZS10].

Traditional loop vectorization started out as a way to accelerate scientific work-
loads on vector machines, for example the Cray machines [Rus78]. Auto-
matic vectorization today exploits the SIMD extensions in modern instruction
sets. For example, Intel processors support the MMX/SSE/AVX SIMD exten-
sions [Int15b], with AVX-512 extensions supported on their newest processors.
The current trend is to have wider vector execution units, more vector registers
and richer instruction extensions as seen Figure 2.3.

Typically, automatic vectorization of inner loops proceeds in the following fash-
ion known as the unroll-and-jam approach:

1. Unrolling the loop by the vector factor (VF).

2. Scheduling the unrolled instructions so they are adjacent.

3. Replace the adjacent instructions with their corresponding vector variants.

Traditional loop vectorization typically targets inner loops, but for some loop
nests outer loop vectorization can yield good performance if the outer loop
has more data-level parallelism and locality than the inner loop. Outer loop

2.3 Program Analysis and Optimization 27

vectorization has traditionally been performed by interchanging the two loops.
Nuzman et al. describe a more direct approach strip-mining or blocking the
outer loop and collapsing the strip-mined iterations with the inner loop [NRZ06].
This technique is especially suited for short SIMDmachines and non-perfect loop
nests.

SIMD have a high theoretical computational throughput but using the vector
units often incurs several additional overheads. SIMD operations can only ac-
cess data that is packed correctly in vector registers. To load and store vector
registers, conventional SIMD platforms incorporate mechanisms for both strided
and contiguous memory access. Furthermore, SIMD extensions include shuffle
operations for data in vector registers. These shuffle operations can be expensive
if required for each iteration in a loop.

An alternative method for automatic vectorization is the Superword Level Paral-
lelism (SLP) [LA00] focusing on vectorization of one or more basic blocks. They
detect statements inside a basic block performing the same operations in a com-
patible ordering. These statements are then combined to form SIMD operations.
SLP have been extended to uncover more parallelism using dynamic program-
ming achieving a performance improvement of 13.78% relative to SLP [BZS10].
Last, SLP techniques have been extended to handle control-flow using the pred-
icated execution supported on PowerPC Altivec [SHC05]. Predicated execution
is the conditional execution of instructions. These approaches for SLP have the
limitation that they mainly focus on straight line code. If loops are consid-
ered the traditional approaches are more mature and can therefore handle more
special cases.

2.3.7 If-Conversion

Control-flow is a significant hurdle to vectorization of loops. Given how multiple
iterations of a loop is executing concurrently, it poses a challenge when control
flow is diverging between the iterations. If-statements can be replaced with a
sequence of predicated instructions in a method called if-conversion. An example
of if-conversion is shown in Figure 2.14. We see how the control flow is replaced
with predicated instructions. In this way all branches of the control flow are
executed. This transformation results in loops that can be vectorized using the
predicated store and loads available in many SIMD extensions.

There are many obstacles to if-conversion. It can introduce faulting traps chang-
ing the program behavior and have to maintain the precise exception semantics.
Precise exceptions assert that the state of the processor is consistent before
and after a faulting instructions. Traps can be caused by writes in a read only

28 Technical Background

1 for(int i=0; i<N; i
++)

2 if(cond)
3 x = a;
4 else
5 x = b;
6 A[i] = x;

(a) Original code.

1 for(int i=0; i<N; i
++)

2 x_0 = a;
3 x_1 = b;
4 x_2 = cond ? x_0 :

x_1;
5 A[i] = x_2 + C;

(b) If-converted.

Figure 2.14: If-conversion demonstrated by converting the original code in a
to the if-converted code in b.

memory, accessing out-of-range memory, invalid pointers and division by zero.
To prove correctness of if-conversion the compiler relies on alias analysis and
dependence analysis as previously described.

Given how all code paths are executed after if-conversion, it adds a significant
overhead. This overhead needs to be smaller than the benefit of the optimization
it enables. In the example in Figure 2.14 one extra instruction is executed in
each iteration, but with SIMD we achieve a speedup far out weighting this cost.
Depending on the loops being vectorized, this might not be beneficial.

Chapter 3

State-of-the-Art —
Limitations of Modern

Compilers

As described in the previous chapter compiler optimizations analyze and trans-
form codes into versions that achieves better performance. Optimization are
important as they are the most transparent way of improving application per-
formance. The analyses and transformations required to perform optimizations
are complex. Given the complexity, optimizations often fail for a multitude
of reasons. We argue that both regular application programmer and compiler
engineers should pay attention to when compiler optimizations fail. If we can
understand the reason behind missed optimization opportunities, we can either
address them in the compiler or the application programmer can slightly mod-
ify the code as a cost effective way to increase application performance. In this
chapter, we will motivate work on various optimizations aspects by studying
how one major compiler, GCC, performs on a wide set of benchmarks.

In general, we find three main reasons for the limitations in today’s production
quality compilers:

• Static analysis precision

30 State-of-the-Art — Limitations of Modern Compilers

• Lacking support for required transformation

• Profitability analysis

Static analysis is approximate by nature and therefore the precision is often
inadequate to perform optimizations. Second, compilers often assume certain
common code patterns to reduce the complexity of the compiler implementation
while still achieving high performance. Therefore, a specific code pattern is often
missing to perform an important optimization. Last, the profitability analysis is
based on heuristics and therefore often fails to produce the correct answer either
leading to a slowdown where an optimization should not have been applied or
a missed optimization that could lead to a speedup.

3.1 Automatic Vectorization

Automatic vectorization is either applied or not applied at all. This is in con-
trast to scalar optimizations that are less affected by the inaccuracies in the
analysis. Missing one scalar optimization opportunity usually has little impact.
In automatic vectorization a single limitation in one of the required analyses
can render an entire loop unvectorizable by the compiler. Many other loop
optimizations relying on the same analyses exhibit this pattern.

Given the complexity of automatic vectorization several studies have looked at
how good production compilers are at automatic vectorization.

Callahan et al. studied 100 synthetic loops written in Fortran with the purpose
of testing the vectorization effectiveness of 19 compilers [CDL88]. On average,
the compilers vectorized or partly vectorized 61% of the loops, the best compiler
vectorized 80% of the loops.

A follow-up study by Maleki et al. show how the production quality com-
pilers GNU GCC, IBM XLC [IBM15] and Intel ICC [Int] automatically vec-
torize a set of synthetic loops from the Test Suite for Vectorizing Compilers,
TSVC [Mal+11]. 123 out of 151 of the synthetic loops were found to be vec-
torizable on Intel platforms with the current hardware mechanisms for gather.
GCC could vectorize 47%, IBM XLC 55% and Intel ICC 73% of the 123 vector-
izable loops. All loops were amenable to vectorization and have been available
to the compiler engineer.

We reproduced the results from Maleki et al. using the newest compilers avail-
able for AVX-2 from Intel and GCC. The system and compilers used can be

3.1 Automatic Vectorization 31

30 1285

ICC GCC

24

Not vectorized
Figure 3.1: Loops vectorized by ICC and GCC in the Test Suite for Vectorizing

Compilers.

seen in Table 3.1. The results can be seen in Figure 3.1. In contrast to the
results obtained by Maleki et al. recent versions of GCC are vectorizing more
of the TSVC loops. Where GCC 4.7.0 could vectorize 47% of the loops, GCC
6.1 can vectorize 64% of the loops. ICC 12 could vectorize 73% of the loops
where ICC 16 can vectorize 76% of the TSVC loops. We conclude that GCC has
improved its automatic vectorization capabilities significantly when it comes to
the features required for the loops in TSVC, even though ICC still has a small
advantage.

We also see how even though if a loop is not optimized by one compiler, it
will often be optimized by another due to the strength and weaknesses of the
individual compiler optimizations. We can use this information to guide the
programmer focus on the loops that we know are possible to optimize more
aggressively.

Maleki et al. also studied two benchmark suites. GCC could only vectorize
21% of the most computationally intensive loops in the two benchmark suites.
Automatic vectorization with GCC achieved a speedup factor of 1.2 in contrast
to manual vectorization with a speedup factor of 2.7. Thus, while automatic
vectorization is effective there is significant room for improvement compared to
manual vectorization.

Similar to the two previous studies Larsen [Lar11] presented how four compilers,
ICC from Intel, XLC from IBM, PGCC from Portland Group and SUNCC from
Oracle, optimized the loops in the EEMBC benchmark suite. The motivation
was to show how synergies between compilers can be used for categorizing missed
optimizations as resolvable. Out of the 3490 missed optimizations generated
by the four compilers, 43% could be categorized as potentially resolvable or
unprofitable.

32 State-of-the-Art — Limitations of Modern Compilers

3.2 Limitations in GCC 6.1

While the related studies are very interesting, they fail to address the general
case. The related studies either only study synthetic loops or few benchmarks.
In this section we will study how the newest version of GCC does in term
of automatic vectorization. We evaluate on a wide set of compute intensive
benchmarks, targeting a broad set of application areas attempting to evaluate
the general case. We classify hot loops that take up a significant part of the
execution time, determine if the hot loops are automatically vectorized and if
not, exactly why not.

The included benchmark suites are SPEC CPU2006 [Hen06], SPEC OMP2012 [Mül+12],
NAS Parallel Benchmarks 3.3.1 [Bai+91], Rodinia Benchmark Suite 3.1 [Che+09]
and SPLASH-2x [Bie11]; [Woo+95]:

SPEC CPU2006 The foremost sequential benchmark suite. The suite con-
tains a mix of integer and floating point benchmark attempting to evaluate
the widest possible set of hardware features. Often used to evaluate compiler
performance.

SPEC OMP2012 Benchmark suite from the SPEC consortium for perfor-
mance evaluation using OpenMP 3.1 for shared-memory parallel systems. In
this evaluation we only use one thread.

NAS Parallel Benchmarks 3.3.1 Benchmark suite from NASA targeting
high performance computing and thus often used for evaluation of supercom-
puters and HPC systems.

Rodinia Benchmark Suite 3.1 A benchmark suite first released in 2010 tar-
geting heterogeneous systems updated regularly. It contains OpenMP, OpenCL
and CUDA implementations. We use the OpenMP benchmarks targeting the
host processor in the systems to evaluate CPU performance.

SPLASH-2x Suite of highly parallel benchmarks. In this study we only use
the sequential version. SPLASH-2x has been created by the PARSEC bench-
marks maintainers, the only difference is the scaled up input sets to make evalu-
ating realistic on modern machines. The suite is popular in architectures studies.

3.2 Limitations in GCC 6.1 33

Table 3.1: Experimental Machine Specification

Processor Intel R© Xeon R© CPU E3-1276 v3
Frequency 3.6 GHz
Cores 4
Caches 256 KiB L1D, 1 MiB L2 and 8 MiB L3
Memory 16GB DDR
Processor vector capabilities AVX2 256-bit SIMD
OS Debian 8.4, Linux kernel 3.16.7
Compilers GCC 6.1 and Intel Composer XE 16.0.3
Compiler Options -Ofast -mavx2

From these 5 benchmark suites we obtain 87 individual benchmarks. Unfortu-
nately, 5 benchmarks had compilation or run-time errors and were not included
in the evaluation leaving a total of 82 benchmarks in the study.

The targeted machine is an Intel Haswell as seen in Table 3.1. The GCC 6.1
compiler is used as it is the most recent release at the time of writing. We use
the -Ofast compilation option, giving the most aggressive optimizations and
allowing floating point vectorization that can lead to some numerical inaccu-
racy. This did not introduce numerical instability and correctness issues for the
studied benchmarks.

As we aim to evaluate performance improvements, we only study loops that
account for significant execution time. We used a loop profiler and determined
that 5% of execution time includes many of the important loops and excludes
many loops that are not important. Even though 5% of the execution times
is low, many of the benchmarks lack hot loops. The maximum number of hot
loops is seven with an average of around two hot loops per benchmark.

After classifying the hot loops, the compiler output has manually been analyzed
either studying the assembly code, compiler reports or the compiler internals
often modifying the compiler to emit more diagnostics. We report the first issue
encountered during automatic vectorization. Thus, if one limitation is mitigated
in the compiler, the loop may still not be automatic vectorizable. The results
of this classification can be seen in Figure 3.2.

An impressive 40% percent of the hot loops are automatically vectorized and
doing so has been assessed to be profitable. In the following sections we will go
the biggest limitations and explain their nature using examples.

34 State-of-the-Art — Limitations of Modern Compilers

Unsupported	
Memory	Access	

Pattern
12%

Control-Flow
19%

Auto-Vectorized
40%

Iterations
3%

Not	profitable
3%

Bad	Data	Ref.
6%

Func.	Calls
7%

Other
10%

Figure 3.2: Primary issues encountered during automatic vectorization in
GCC 6.1 on Spec CPU2006, Spec OMP2012, NAS Parallel Bench-
marks 3.3.1, Rodinia Benchmark Suite 3.1 and SPLASH-2x. Num-
bers are for inner loops representing more than 5% of the bench-
mark execution time.

3.2 Limitations in GCC 6.1 35

1 for(i = 0; i < N; i++) {
2 if(a[i] >= b[i])
3 c[i] = a[i];
4 else
5 c[i] = b[i];
6 }

(a) Example program.

a b mask
3 7 0
6 1 1
2 3 0
9 8 1

(b) Data and mask.

Figure 3.3: Vectorizable program with control flow and example data with
accompanying mask.

3.2.1 Limitations due to Unsupported Control Flow

The biggest limitation we see in practice for GCC 6.1 is due to control flow. 19%
of the loops could not be vectorized to control-flow in the loops. The main way
of dealing with control-flow is if-conversion and use of the masking instruction
in AVX or similar SIMD extensions.

As an example see Figure 3.3. The loop iterates each element in a and b and
saves the largest value in c. This loop can be vectorized using predication, all
paths of the loop is executed and then when saving the values, we use predica-
tion, also called masked stores. The mask is generated dynamically at run time
and used when saving the results back to c. The mask is complemented and used
for saving the else code path. In fact, the loop shown in Figure 3.3a cannot be
handled by the if-conversion optimization in GCC 6.1. c[i] is misclassified as
potentially trapping by GCC 6.1 as if-conversion optimization has the limitation
that memory accesses present in both branches can be misclassified.

For the 19% of the loops of the loops that could not be vectorized, as seen in
Figure 3.2, we categorize these limitations in more detail as seen in Figure 3.4.
In the following sections we will go over each of the dominant categories using
examples from the benchmarks.

3.2.1.1 Extra Edges in the Control-Flow Graph

Limitations related to extra edges in the CFG can be due to loops that have
multiple entries at the top and a single exit at the bottom of the loop. These
extra edges, or exits, in the loop can for C be due to continue, break, exit,
return and goto. For C++ throw might add extra edges in the CFG. For

36 State-of-the-Art — Limitations of Modern Compilers

Limitations
33%

Precise	Exceptions
24%

Extra	Edges	in	CFG
43%

Figure 3.4: Primary issues encountered during if-conversion in GCC 6.1 on
Spec CPU2006, Spec OMP2012, NAS Parallel Benchmarks 3.3.1,
Rodinia Benchmark Suite 3.1 and SPLASH-2x. Numbers are for
inner loops representing more than 5% of the benchmark execution
time.

3.2 Limitations in GCC 6.1 37

1 while(struct) {
2 if(struct ->orientation) {
3 struct ->a = struct ->b + struct ->c;
4 } else {
5 struct ->a = struct ->c - struct ->b;
6 check ++;
7 }
8 struct = struct ->child;
9 }

Figure 3.5: Hot inner loop code pattern similar to 429.mcf from the SPEC
CPU2006 benchmark suite [Hen06] representing 29% of the exe-
cution time. Cannot be if-converted due to precise semantics.

Fortran STOP will add an edge. Even though these loops could technically be
vectorizable, doing so will introduce extra operations for dealing with the extra
edges and will in many cases not be profitable. 43% of the limitations due to
control flow were due to such extra edges.

3.2.1.2 Precise Exceptions

For if-conversion we need to preserve the semantics of the program. Precise
exceptions state that the processor state should be consistent whenever an ex-
ception or interrupt occurs [HP96]. If care is not taken, we can easily trap on
memory instructions given that we execute all code paths in an if-converted
program. If the compiler cannot prove that if-conversion is valid, it has to be
conservative and not optimize. 24% of the limitations due to control-flow are
due to precise exceptions.

One example of this is seen in the 429.mcf benchmark from SPEC CPU2006. It
has a hot inner loop representing 29% of its execution time. The loop can be
seen in Figure 3.5. Several accesses to a struct inside the loop are control flow
dependent.

We have to assume that reading these might not be valid depending on the con-
dition of the if statement and we cannot execute all code paths for all iterations
of the loop. If-conversion is therefore illegal for this loop and we can therefore
not automatically vectorize it.

38 State-of-the-Art — Limitations of Modern Compilers

1 for(i=0; i<reg ->size; i++)
2 {
3 /* Flip the target bit of a basis state if both

control
4 bits are set */
5 if(reg ->node[i]. state & ((MAX_UNSIGNED) 1 <<

control1))
6 {
7 if(reg ->node[i]. state & ((MAX_UNSIGNED) 1 <<

control2))
8 {
9 reg ->node[i]. state ^= ((MAX_UNSIGNED) 1 <<

target);
10 }
11 }
12 }

Figure 3.6: Hot inner loop from 462.libquantum from the SPEC CPU2006
benchmark suite [Hen06] representing 62% of the execution time.
Cannot be if-converted due to limitations in the compiler analysis.
GNU General Public License 2.

3.2.1.3 Limitations in the Compiler Analysis

Unfortunately, there are also loops that could be vectorized, but the compiler
is unable to handle them because of assumptions in the implementation. There
are many good reasons for these limitations as it is unrealistic to cover all cases
and many cases are not worth handling in the compiler.

In GCC 6.1 33% of the limitations due to control-flow are because of limitations
in the analysis. As an example see the hot inner loop from 462.libquantum from
SPEC CPU2006 in Figure 3.6. Each loop iteration accesses reg->node[i].state.
Due to limitations in the supported code patterns in the analysis for if-conversion
and the interplay between optimization, this loop cannot be optimized. The
compiler calculates the base address of the reg variable outside the loop using
loop invariant code motion, also known as hoisting [Aho+06]. However, the if-
conversion pass assumes it is enough to calculate dependences only for variables
defined inside the basic block of the loop. Therefore, the optimization pass fails
to if-convert this loop.

3.2 Limitations in GCC 6.1 39

3.2.2 Limitations due to Unsupported Memory Accesses

The majority of operations can easily be vectorized by substituting them with
their SIMD counterparts, e.g. replace a scalar add with a vector add. Some
operations are harder to vectorize, for example memory operations loading and
saving data. These operates on addresses, but the SIMD extensions cannot
operate on arbitrary vectors of addresses. We could duplicate the scalar memory
operations and insert the results back into a vector, but doing so is inefficient.

The simplest, and common, case is consecutive address operations on a base
address. Thus all accesses are of the form base+ offset where offset = {i, i+
1, i+ 2, ..., i+N}. This access pattern can be implemented using the standard
SIMD load and store operations common in SIMD extensions. More advanced
access patterns, such as strided accesses where the strides can be determined at
compile time are often also supported. Last, some extensions support scatter
and gather operations, a form of indirect addressing.

From Figure 3.2 we see how 12% of the loops were not vectorized due to issues
related to unsupported memory operations. To illustrate the kinds of issues
experienced see Figure 3.7. The biggest issue encountered is when the group-
size of accesses is not a power of 2 or 3. In the following paragraphs we will go
over each of the dominant categories using examples from the benchmarks.

3.2.2.1 Unsupported Scatter Pattern

Some forms of indirection can be supported using gather and scatter memory
instructions. This makes it possible to implement operations with indirection.
A gather or scatter operation consist of a base address to which an index vector
is added with multiple offsets.

One example highlighting this limitation is the Radix benchmark from SPLASH-
2x that contains a loop requiring scatter instructions as shown in Figure 3.8. The
loop contains several scatter operations, for example when the array key_to is
updated using tmp as an index coming from array rank_ff_mynum. This access
pattern is simply not supported in AVX2 or previous generations. To efficiently
support this category of accesses we need further hardware support. Intel has
support for scatter operations in their extensions AVX-512f for the many-core
Intel Xeon Phi [Rei12].

40 State-of-the-Art — Limitations of Modern Compilers

Group	of	accesses	
is	not	a	power	of	2	

or	3
42%

Unsupported	
Memory	Access	

Pattern
32%

Unsupported	
Scatter
26%

Figure 3.7: Primary issues encountered during automatic vectorization due to
memory accesses in GCC 6.1 on Spec CPU2006, Spec OMP2012,
NAS Parallel Benchmarks 3.3.1, Rodinia Benchmark Suite 3.1 and
SPLASH-2x. Numbers are for inner loops representing more than
5% of the benchmark execution time.

1 for (i = key_start; i < key_stop; i++) {
2 this_key = key_from[i] & bb;
3 this_key = this_key >> shiftnum;
4 tmp = rank_ff_mynum[this_key];
5 key_to[tmp] = key_from[i];
6 rank_ff_mynum[this_key]++;
7 } /* i */

Figure 3.8: Loop nest from Radix from SPLASH-2x [Bie11]; [Woo+95] with
this inner loop taking up 26% of the execution time. Cannot be
vectorized due to unsupported scatter pattern.

3.2 Limitations in GCC 6.1 41

1 for (iindex=firstcol;iindex <= lastcol;iindex ++) {
2 indexp1 = iindex +1;
3 indexm1 = iindex -1;
4 for (i=firstrow;i<= lastrow;i++) {
5 ip1 = i+1;
6 im1 = i-1;
7 z[i][iindex] = factlap *(x[ip1][iindex]+
8 x[im1][iindex]+
9 x[i][indexp1]+
10 x[i][indexm1]-
11 4.*x[i][iindex]);
12 }
13 }

Figure 3.9: Loop nest from Ocean Non-Contiguous Partition from SPLASH-
2x [Bie11]; [Woo+95] with this inner loop taking up 25% of the
execution time. Cannot be vectorized due to group of accesses not
being a power of 2 or 3.

3.2.2.2 Group of Accesses Not a Power of 2 or 3

Another class of limitations due to memory accesses is limited not by indirection,
but by a statically known access pattern. These accesses are not sequential, but
strided. Unfortunately, the stride is unsupported as we can only efficiently
implement store and loads in with current SIMD extensions if the group of
accesses has a power of 2 or 3. This class of limitations accounts for 42% of the
limitations due to unsupported memory access patterns.

An example of an unsupported loop is the hottest loop in the Ocean from
SPLASH-2x shown in Figure 3.9. The store to z has an outer indexing variable
calculated in the outer loop leading to this common group of accesses that are
unsupported by the AVX-2 SIMD extensions. Similarly, all the loads from x
have an unsupported stride pattern.

3.2.2.3 Other Unsupported Memory Access Pattern

32% of the limitations are due to other unsupported memory access patterns.
These limitations take different forms, but often consist of complicated loops
indexes.

42 State-of-the-Art — Limitations of Modern Compilers

1 int i;
2 for(i=0; i<NUM_KEYS; i++)
3 {
4 k = key_array[i];
5 key_buff2[bucket_ptrs[k >> shift]++] = k;
6 }

Figure 3.10: Loop nest from IS from NAS Parallel Benchmark Suite [Bai+91]
with this inner loop taking up 36% of the execution time. Cannot
be vectorized due to unsupported scatter pattern.

As an example of an unsupported memory access pattern see the example inner
loop from the IS benchmark from NAS Parallel Benchmark Suite in Figure 3.10.
Compiling with GCC 6.1 targeting AVX2 this loop is not automatically vector-
izable. The store to key_buff2 goes through several layers of indirection and
address calculations. The analysis in GCC is not refined enough to handle such
cases. Such indirection could potentially be supported using scatter operations.

Scatter operations are supported in the newest Intel extensions AVX-512f for
Intel’s many-core Xeon Phi. If targeting AVX-512f, when compiling the loop
from the IS benchmark, GCC 6.1 does not support the loop as it does not
support stores with a zero step in inner loop vectorization when performing
data dependence analysis.

3.2.3 Limitations in Dependence Analysis

Each dependence test has its strengths as discussed in Chapter 2. Compilers
apply multiple dependence tests to achieve an accurate and precise results within
reasonable execution time. Dependence analysis therefore have limitations that
show up in loops that cannot be optimized.

An example highlighting this limitation is the loop nest from the Needleman-
Wunsch benchmark from the Rodinia Benchmark Suite in Figure 3.11. In this
loop nest the dependences between read and write to input_itemsets_l cannot
be determined by the dependence tests implemented in GCC 6.1.

Another example exposing the limitations in GCC is the loop nest from 359.bot-
salign from SPEC OMP2012 as seen in Figure 3.12. GCC 6.1 cannot automatic
vectorize this loop as it both reads and stores to inner[i*bots_arg_size_1+j]
in every iteration. But the indexing into inner is not based on the innermost

3.2 Limitations in GCC 6.1 43

1 for (int j = 1; j < BLOCK_SIZE + 1; ++j) {
2 input_itemsets_l[i*(BLOCK_SIZE + 1) + j] =
3 maximum(input_itemsets_l [(i - 1)*(BLOCK_SIZE + 1) +

j - 1] + reference_l [(i - 1)*BLOCK_SIZE + j -
1], input_itemsets_l[i*(BLOCK_SIZE + 1) + j - 1]
- penalty , input_itemsets_l [(i - 1)*(BLOCK_SIZE
+ 1) + j] - penalty);

4 }

Figure 3.11: Loop nest from the benchmark Needleman-Wunsch from the Ro-
dinia Benchmark Suite 3.1 [Che+09] with this inner loop taking
up 7% of the execution time. Cannot be vectorized due to un-
known dependences issues. Copyright (c) 2008-2014 University
of Virginia. All rights reserved.

loop creating a dependence between iterations. Interchanging the two innermost
loops could fix this issues.

3.2.4 Limitations per Benchmark Suite

Studying why GCC 6.1 could not automatically vectorize per benchmark shows
how differently the benchmark suites are. Even though the benchmarks are
collected from multiple sources, the benchmarks in a suite with a specific goal
in mind can exhibit similar coding patterns. Each benchmark suite is different
and has a different evaluation goal. The challenges are therefore going to be
different between benchmark suites.

The limitations for each suite can be seen in Figure 3.13. The benchmarks
are optimized very differently and the amount of automatically vectorized loops
ranges from 20% to 63%. The Rodinia Benchmark suite has the lowest per-
centage of automatically vectorized loops and SPEC OMP2012 has the highest
percentage of automatically vectorized loops.

The biggest difference between the two benchmark suites are the amount of
issues arising due to control-flow. For the Rodinia benchmarks, 34% of the
loops cannot be handled due to control-flow that the if-conversion optimization
in GCC cannot transform into predicated execution. For SPEC OMP2012 only
6% of the limitations arise due to control-flow.

After Rodinia, in SPLASH-2X 40% of the loops can be automatically vectorized.

44 State-of-the-Art — Limitations of Modern Compilers

1 int i, j, k;
2 for (i=0; i<bots_arg_size_1; i++)
3 for (j=0; j<bots_arg_size_1; j++)
4 for (k=0; k<bots_arg_size_1; k++)
5 inner[i*bots_arg_size_1+j] =
6 inner[i*bots_arg_size_1+j] -
7 row[i*bots_arg_size_1+k] *
8 col[k*bots_arg_size_1+j];

Figure 3.12: Loop nest from 359.botsalign from SPEC OMP2012 [Mül+12]
and the Barcelona OpenMP Tasks Suite [Dur+09] with this in-
ner loop taking up 89% of the execution time. Cannot be vec-
torized due to an unsupported access pattern. Copyright (C)
2009 Barcelona Supercomputing Center - Centro Nacional de Su-
percomputacion, Copyright (C) 2009 Universitat Politecnica de
Catalunya. GNU General Public License 2.

Limitations are not in particular due to a specific issue, but due to issues with
control-flow, unsupported memory patterns, etc.

For the SPEC CPU2006 benchmark suite 42% of the loops are automatically
vectorized by GCC 6.1. The main obstacle for this benchmark suite is control-
flow with 27% of the issues arising due to it.

For the NAS Parallel Benchmarks, NPB, 47% of the inner loops can be au-
tomatically vectorized by GCC 6.1. The benchmarks in NPB have no issues
with control-flow that GCC cannot handle in any of the benchmarks. Instead
the benchmarks cannot be vectorized due to issues with unsupported memory
access patterns. In particular, with groups of accesses that are not a power of 2
or 3 as required by GCC’s analysis.

To see the limitations in greater detail per benchmark in each suite, please refer
to Appendix 11.4. Here each individual limitation per loop is represented.

3.3 Discussions

This chapter shows that the majority of hot loops in several benchmarks suites
are not automatically vectorized due to many different reasons.

In comparison with the previously described study from Maleki et al. [Mal+11],

3.3 Discussions 45

13%

27%

42%

2%

2% 4%

10%

(a) SPEC CPU2006

9%

6%

63%

3%

13%

6%

(b) SPEC OMP2012

35%

47%

6%

6%
6%

(c) NAS Parallel Benchmarks

34%

20%
3%

14%

23%

3% 3%

(d) Rodinia Benchmark Suite

46 State-of-the-Art — Limitations of Modern Compilers

12%

18%

40%

3%

6%

9%

12%

(e) SPLASH-2x

13%

27%

42%

2%
2%
4% 10%

Unsupported	Memory	Access	Pattern
Control-Flow
Auto-Vectorized

Iterations
Not	profitable
Bad	Data	Ref.
Func.	Calls
Other

Figure 3.13: Primary issues encountered during automatic vectorization in
GCC 6.1 on Spec CPU2006 (a), Spec OMP2012 (b), NAS Paral-
lel Benchmarks 3.3.1 (c), Rodinia Benchmark Suite 3.1 (d) and
SPLASH-2x (e). Numbers are for inner loops representing more
than 5% of the benchmark execution time

where they study automatic vectorization of loops from the Test Suite for Vec-
torizing Compilers, we identify some of the same limitations. The significance of
the limitations is very different. Maleki et al. find that the biggest limitation is
due to unsupported gather and scatter patterns. However, Intel has since their
study introduced gather operations into AVX-2 and therefore many of these
limitations are now removed. The next biggest limitation according to Maleki
et al. is due to control-flow, for GCC 6.1 the biggest amount of limitations arises
due to control-flow. Maleki et al. further finds that they can manually handle
many of the issues arising due to control-flow.

The chapter does not study whether automatic vectorization was actually prof-
itable, as we assume the compilers profitability analysis is accurate. Obviously,
this is not always the case as demonstrated by Porpodas et al. [PJ15], they in-
troduce further throttling into the LLVM SLP vectorization pass. They achieve
a decrease in the execution time of 9% on average compared to SLP.

Identifying the current limitations of our tools is a good place to identify research
challenges in the next chapter.

Chapter 4

Motivation

The previous Chapter 3 has shown and illustrated the gap between what the
hardware supports and what applications require specifically for automatic vec-
torization. The issues are similar for many other hardware features and opti-
mizations, for example automatic parallelization, loop fusion, loop interchange,
loop-invariant code motion. Thus, even if we only highlight issues in automatic
vectorization, the trends can be widened and more broadly applied to many
types of optimizations.

In this chapter we identify research questions motivated by some of the chal-
lenges of parallel programming:

1. How do we decompose a problem into subproblems that can be executed
efficiently in parallel?

2. How do we ensure that performance linearly scales with increased amount
of parallelism in current and future systems?

3. How do we debug parallel applications? The challenges in debugging par-
allel programs is very different from sequential ones. The extra challenges
include non-deterministic execution, parallel bugs such as deadlocks, and
the sheer amount of collected information available at large scale.

48 Motivation

These challenges lead to the research questions introduced next.

4.1 Improving Utilization of Existing Optimiza-
tions

Compilers can perform many impressive optimizations in a transparent way. As
shown in Chapter 3, compilers have many limitations due to theoretical and
practical reasons. Compilers therefore refrains from optimizing in many cases.

Chapter 3 also highlighted how compilers optimize the same program differently.
If one compiler cannot apply an optimization, another compiler is often able to.
In some cases, it is not a limitation in the underlying theory of optimizations, but
an issue with assumptions and supported patterns in compilers. We therefore
argue that it is possible for programmers to rewrite their programs slightly to
enable more aggressive optimizations.

One common case is that program analysis in the compiler cannot determine an
important program property needed for optimization. If the programmer were
aware that the compiler has issues with proving a specific program property, it
is possible for the programmer to refactor the code to make it more amenable
to aggressive optimization. It is however unclear if compiler feedback systems
are practical and to what extent they can be applied.

This leads to the following research questions:

Research Question 1: Details are lost due to abstractions during com-
pilation where we lower from a program representation close to the source
language down to an intermediate representation. When generating feed-
back for programmers on missed optimizations, there are advantages and
disadvantages of generating compiler feedback using different representa-
tions of a program. What are these advantages and disadvantages, and
under which circumstances are the different representations best suited?

Research Question 2: Recently production compilers have imple-
mented better optimization reports. Obviously, these reports can be useful
to produce compiler feedback to the programmer. Can we use the reports
from multiple compilers to filter away false positive compiler feedback?

4.2 Improving Compiler Optimizations 49

Research Question 3: Can compiler feedback guide programmers to
higher memory hierarchy performance by improving the utilization of ex-
isting compiler optimizations?

Research Question 4: Can we guide the programmer using com-
piler feedback to improve the utilization of automatic parallelization and
automatic vectorization optimizations in existing compilers?

Maintaining legacy codebases is hard. They are large, they may have been
written many years ago and the people who understand them are perhaps no
longer available. One challenge is to cost effectively maintain the performance of
such codebases on new architectures. It is desirable to maintain these codebases
with the smallest effort possible while still achieving high performance on mod-
ern hardware. For these legacy codebases it is not evident whether we can use
compiler based feedback systems to achieve high performance for legacy code-
bases. If possible it could prove to be a very time efficient way of maintaining
legacy codebases.

This leads to the following research question:

Research Question 5: Can we use compiler feedback to increase
performance by taking advantage of modern architectures for legacy code-
bases?

4.2 Improving Compiler Optimizations

Chapter 3 showed the trend that many loops can already be handled by an
existing state-of-the-art compiler. 40% of the important hot loops across several
benchmarks were shown to already be automatically vectorized by GCC. On the
other hand, this means that 60% of the important hot loops were unable to use
SIMD, one of the most important hardware features for fast and power-efficient
computation in modern computers.

The most transparent way of improving performance is through improving the
compiler. When improving optimizations in the compiler, compiled code will
transparently execute faster without any effort from the programmer. Mapping
applications to efficiently use modern hardware features is hard and is still an
open research challenge. The contributions of this thesis seeks to significantly
improve performance by addressing this gap with improved compiler automatic
vectorization. It is however unclear how much room for improvement exist. In

50 Motivation

the end, for dependence analysis we can turn to symbolic analysis using auto-
mated theorem proving [Ske12], but doing so would be too slow to be practical
for a compiler.

This leads to the following research questions:

Research Question 6: What method should we use to obtain and com-
pare the precision and accuracy of an implementation of a static dependence
analysis?

Research Question 7: To what degree are false loop-carried dependences
recorded for loop nests in GCC during automatic vectorization?

Research Question 8: How can worksharing information improve the
accuracy of dependence analysis of loop nests with false dependences?

Research Question 9: How can the improved loop dependence analy-
sis enable vectorization of loops, also considering profitability, when false
dependences are removed?

4.3 Improving Parallel Debugging

Debugging is a critical step in the development of any program. However, the
traditional interactive debugging model, where users manually step through code
and inspect their application, does not scale well and quickly overwhelms the
human programmer with information. The amount of information can quickly
become unsustainable as the system scales. First, the biggest systems today are
in the order of millions of cores. Second, the amount of information gathered
and information presented to the programmer is massive. While lightweight
debugging models, which have been proposed as an alternative, scale well, they
can currently only debug a subset of bug classes. We propose a new model,
which we call prescriptive debugging. It is however unclear, whether the general-
purpose nature of the new debugging model impede its scalability. We seek to
demonstrate the scalability of the prescriptive debugging model.

This leads to the following research question:

4.4 Research Methodology 51

Research Question 10: How does the prescriptive debugging model
scale in terms of system size and information presented to the programmer?

4.4 Research Methodology

The thesis contributions aim to research these questions and achieve high per-
formance for prescriptive optimization and debugging.

4.4.1 Compiler Feedback

Research Question 1 address how to generate compiler feedback and the most
suitable representation for doing so in Chapter 6, Chapter 7 and Chapter 8. The
research methodology used to study this question is building prototypes utiliz-
ing several representation and report on our experiences. We study generating
feedback from a lowered representation suitable for optimization in Chapter 6
and a representation closer to the language being compiled in Chapter 7. Last,
in Chapter 8 we study using existing compiler reports allowing integration with
an existing toolchain without modifications. These studies highlight advantages
and disadvantages of each method.

Research Question 2 address how to filter false positive compiler feedback, where
the feedback is not effective. We study this question in Chapter 8 and show one
solution to the problem. In our evaluation we report on the filters effectiveness
and whether it removes important feedback on the Test Suite for Vectorizing
Compilers [Mal+11].

Optimizing memory accesses is an essential challenge to achieve high perfor-
mance. Research Question 3 address this by studying how we can improve the
utilization of an existing memory optimization in GCC using compiler feedback.
We study this aspect using two benchmarks from the SPEC CPU2000 Bench-
mark Suite [Hen00]. We apply our prototype on the benchmarks and report on
the improvement in execution time.

Research Question 4 addresses improving the usage of automatic parallelization
and automatic vectorization using compiler feedback. We study this feedback
in Chapter 7 and Chapter 8 on several standard benchmarks. We apply the tool
prototypes to enable automatic parallelization or automatic vectorization and
report on the improvements in execution time. We study benchmarks from the

52 Motivation

UTDSP benchmark suite [Lee], Java Grande C benchmarks [Bul+01], the Test
Suite for Vectorizing Compilers [CDL88] and one industrial use case.

Research Question 5 addresses porting legacy code bases to newer architectures
to maintain high performance over time. We argue that compiler feedback is a
cost effective way to maintain the performance. Taking the place of legacy code,
we apply our tool prototypes to optimize several benchmarks and one industrial
use case in both Chapter 7 and Chapter 8.

4.4.2 Improved Compiler Optimizations

While compiler feedback can mitigate many limitations in compilers, there is
also room for improvement in automatic compiler optimizations. Improving
automatic vectorization through an improved dependence analysis is the subject
of Chapter 9 studying Research Question 6-9.

Research Question 6 addresses how to evaluate a dependence analysis. It is
desirable to compare with the ideal dependences. We propose to compare with
the dynamically obtained ideal dependences given the complexity of obtaining
the correct dependences. We obtain the dynamic ideal dependences by manu-
ally instrumenting the programs and creating a trace of all memory accesses.
The trace is then processed offline through a custom tool that classify the loop
dependences.

Research Question 7 addresses the precision of the existing dependence analysis
and the amount of reported false dependences. We study this question by eval-
uating the original dependence analysis in GCC and our proposed dependence
analysis on a set of benchmarks. For this study we use a set of benchmarks
from the Rodinia benchmark suite [Che+09]. We then group the dependences
according to their type and whether they are vectorizable.

To study the improvement of the suggested OpenMP aware dependence analysis
we study Research Question 8 and report the improvement in vectorizable loop
dependences.

After integrating the suggested dependence analysis into an automatic vector-
ization optimization, we study to which degree improvements in performance
is achieved by addressing Research Question 9. We study a set of benchmarks
from the Rodinia benchmark suite [Che+09] and find that due to the fragile
nature of automatic vectorization we often do not achieve speedups, but we are
still able to transform the improvement in dependence analysis into significant
speedups.

4.4 Research Methodology 53

4.4.3 Parallel Debugging

After studying ways to achieve higher performance, we also study the related
challenge of how to debug and obtain correctly executing parallel programs in
Chapter 10.

We propose the prescriptive debugging model, achieving scalability while also
staying general-purpose.

We address the scalability Research Question 10 by using an analytic perfor-
mance model to indicate extreme scalability. We have validated the model up to
8,192 cores and use it to predict the scalability at larger scale. The debugging
model is user-guided and general-purpose. It is therefore possible for a user
to specify debugging sessions that does not scale well. On the other hand, it
is also possible to specify extremely scalable debugging sessions. We evaluate
the scalability in terms of information filtering on a real world use case. The
evaluation shows that the filtering of information results in a very condensed
output to the programmer.

54 Motivation

Chapter 5

Related Work

In Chapter 2 the background and terminology was defined. In Chapter 4 we
saw some of the limitations existing today in the GCC compiler for automatic
vectorization. In this chapter we will discuss some of the related work, how it
improves state-of-the-art and briefly how it compares to the contributions of
this thesis.

5.1 Memory Optimizations

Optimizing accesses to memory is also very important. Memory is organized
into a hierarchy where access to the smaller caches is faster than access to the
bigger last-level caches and main memory. Furthermore, when a given memory
is accessed it is likely that the same memory location is accessed again in the
immediate future. This aspect of caching is called temporal locality. We also
have spatial locality, where data that is accessed together is placed closed to
each other in memory. So when a single value is read from memory, access to
the adjacent data in the same cache line will be fast.

Many programs are optimized manually for memory performance. There are
many transformations that can be applied to loops to make sure that memory

56 Related Work

1 a = (int **) malloc (N)
;

2 for (i=0; i<N; i++)
3 a[i] = (int *)

malloc(M);
4 a[i][j]++;

(a) Dynamically allocated non flat-
tened two-dimensional C array. −→

1 a = (int*) malloc(N*M);
2
3
4 a[i*M + j]++;

(b) Dynamically allocated flattened C
array.

Figure 5.1: Dynamically allocated arrays in C showing both non flattened and
flattened versions.

accesses are efficient. Many of these transformations can be applied automati-
cally by the compiler to ease the burden of the programmer.

Compiler memory optimizations includes matrix-reorg [Lad06] where dynami-
cally allocated matrixes can be automatically flattened and transposed. The
optimizations can either be based on static predictions or on profiling data.

The framework consists of two optimizations: matrix flattening and matrix
transposing. When a matrix is flattened an m-dimensional matrix is replaced
with an n-dimensional matrix where n < m. This leads to fewer levels of
indirection for matrix accesses. Part of such an optimization can be seen in
Fig. 5.1. The matrix transposing optimization swaps rows and columns resulting
in better cache locality depending on access patterns. Afterwards, the accesses
are flattened. Profiling is used by GCC to make decisions on which matrixes to
transpose.

There exist several other compiler-based data layout transformations including
structure layout optimizations [GZ07]; [KF00]. In general, these techniques
optimize structures by decomposing them into separate fields, substructures or
reordering the fields in a structure.

The compiler can also improve memory performance through loop interchang-
ing [BE04]. Here the compiler interchanges the order of loops in a loop nest.
The legality of doing so is determined through dependence analysis and has to
preserve the dependences. Data layout transformations and loop restructuring
optimizations are all part of the normal compilation optimization flow.

It is also possible to automatically perform data layout optimizations. For
example, Leung and Zahorjan have presented their implementation of array

5.2 Compiler Feedback 57

restructuring at run time [LZ95]. They compare it with common forms of loop
restructuring and find that it has comparable performance and in some cases
even superior performance.

Beyls et al. present their tool Suggestions for Locality Optimizations, SLO [BD06a];
[BD06b]; [BD09]. SLO directly suggests program refactorings for improving
temporal locality. It bases its refactorings on instrumented programs sampling
the reuse distance. SLO will highlight the code where the largest reduction in
reuse distance is possible and in this way suggest code regions the programmer
should focus on.

5.2 Compiler Feedback

During compilation the compiler generates useful information about the pro-
gram being compiled. This information is used in compiler driven feedback
systems to take advantage of the powerful existing analysis in compilers. The
information is used in systems for improving interactive feedback in integrated
development environments [Ng+12], commentary about applied compiler opti-
mizations describing what the compiler has done [Ora]; [Du+15] and optimiza-
tion advice [Lar+12]; [Lar+11b]; [Lar+11a]; [Jen+12b]; [Int13]; [Du+15].

5.2.1 IDE Support

IDEs help the programmer with interactive feedback on syntax errors, type
errors and code completion. Furthermore, they often provided a rich set of
automatic refactorings for otherwise tedious coding tasks. These features require
an understanding of the program and many IDEs have implemented technology
which is also found in compilers. There is an opportunity for reusing code
from compilers in the IDE, providing IDE support. One prominent example of
this is the Microsoft Roslyn compiler [Ng+12]. It tackles the issue of serving
intelligent integrated development environments with data for auto-completion
information, refactorings and jumping around in source code such as finding
definitions. This is all information where compilers could open up and through
APIs to their internal data structures make these services available in IDEs.

58 Related Work

5.2.2 Optimization Commentary

Another important compiler feedback feature is letting the programmer know
which and where optimizations have been applied to the program.

The Oracle Solaris Studio [Ora] has a unique feature called Compiler Commen-
tary. It annotates the source code with details on which optimizations were
applied. Some comments are easy to understand, such as duplicate expressions
or a loop being fissioned. Other comments only make sense to experienced
developers or compiler engineers.

The tool cannot give advice on source code changes enabling further optimiza-
tion. Such tools are introduced next.

5.2.3 Optimization Advisers

Programmers often prevent optimization with their coding choices, but small
source code modification which does often not affect software engineering prin-
ciples can help the compiler optimize further. Based on this realization a series
of tools have been implemented, guiding the programmer in how to modify
programs allowing the compiler to optimize more aggressively.

The Intel Performance Guide included in the Intel Composer XE Suite [Int13]
can guide the programmer in profiling for hotspots, suggest optimization flags
and give advice for source code modifications enabling automatic paralleliza-
tion. It is a very user friendly tool, however it only gives suggestions when
it is confident, thus often not showing any advice. Complementary IBM’s XL
C/C++ and Fortran compilers can generate XML reports describing applied
optimization, and in some cases suggest modifications to enable further opti-
mization [Du+15].

Larsen et al. also describes their tool, consisting of a modified version of GCC,
outputting information on why a given optimization was not applied and dis-
plays this information in an IDE [Lar+12]; [Lar+11b]; [Lar+11a]. In this way
their tool reuses existing aggressive compiler optimizations for feedback and
help the programmer understand why a given optimization was not applied. In
a parallelization study, cases with super-linear speedups of parallel code parts
were reported due to positive side-effects of modifications [Lar+12]. The tool
has issues with mapping internal GCC data structures to the real source code
which is not always possible, and they generate many false positive comments
due to GCC, requiring extensive comment filtering which is still an open research

5.3 Automatic Vectorization 59

problem [Lar11].

Bluemke et al. introduce their parallelization adviser tool ParaGraph [BF10].
The goal of ParaGraph is to use a combination of manual and parallel paral-
lelization. The tool support parallelization of simpler worksharing loops, but is
not focused on parallelization of general more complex loops.

SUIF Explorer [Lia+99] parallelize sequential Fortran codes using their auto-
matic parallelization analysis and user interaction. It uses dynamic execution
analysis to determine loops that can benefit from parallelization. SUIF Explorer
then suggest annotations to be inserted to eliminate data-dependences and per-
form parallelization using the annotations approved by the programmer.

The Paralax infrastructure [VRD10] explores programmer knowledge to improve
parallelization. The tool use dynamically obtained dependence to propose a set
of annotations to remove data-dependences that cannot be handled by static de-
pendence analysis. Their approach is input sensitive entailing that dependences
observed with one program input is not guaranteed to be the same with another
input. The dependences are therefore verified them at run time. The Paralax
parallelizer focuses on parallelizing irregular pointer intensives codes.

Last, Aguston et al. shows their tool, which uses code skeletons for paralleliza-
tion hints [ABH14]. Using skeletons allows Aguston et al. to make larger code
transformation and leave the question of whether doing so is safe to the pro-
grammer. Applying their skeletons on a subset of SPEC benchmarks suggest a
speedup of 30%, however whether doing so is safe is not clarified.

Most compilers include options to generate optimization reports. Both GCC
and XLC includes optimization reports for several optimization passes. These
mostly state only what was done, and not what could have been done. GCC
reports often refer to intermediary representation and without any explanations.

5.3 Automatic Vectorization

Automatic vectorization is a well-researched area with many contributions [Cab+15];
[NRZ06]; [Nai04]; [Tri+09]; [RZB15]; [KH11]; [EWO04]; [Nai+03]; [NZ08].
Modern SIMD architectures have many limitations, such as predicated exe-
cution using masks, data alignment, and non-uniform memory accesses. Some
of these limitations have been addressed. For example, Nuzman et al. shows
how we can handle interleaved data accesses [NRZ06]. Eichenberger et al. show
how to consider alignment when generating SIMD code. Diamos et al. proposes

60 Related Work

a stack-based approach for handling arbitrary control flow on SIMD proces-
sors. Despite these significant contributions from industry and the research
community, compilers will often fail to generate automatically vectorize codes
to effectively take advantage of SIMD architectures.

Production quality compilers for C and C++, like the GNU Compiler Collection
(GCC) [Fou], Clang [The] and Intel’s ICC [Int], all have impressive automatic
vectorization capabilities. Unfortunately, automatic vectorization of programs
is fragile with many limitations in the analysis and supported transformations.
Reasons for this include strided memory accesses, control flow complexity and
unknown loop trip counts, making heuristics complicated,

We have studied GCC’s automatic vectorization capabilities. GCC contains
multiple automatic vectorizers. One focuses on loop vectorization, where the
entire loop is vectorized. Another focuses primarily on vectorization of straight-
line codes, the Superword Level Parallelism vectorizer as originally proposed by
Larsen et al. [LA00].

The loop vectorizer has many limitations. For example, it can only vectorize
loops with one basic block, complex loops are not supported and only simple
inner loops can be vectorized.

The basic block vectorizer can be applied to sub-parts of loops and is therefore
often more successful. Sadly, the performance gains are limited for complex
codes and only a small fraction of the code base can be vectorized.

Intel ICC is by many regarded as the best automatic vectorizer for Intel proces-
sors. It contains a very aggressive vectorizer. Maleki et al. compared ICC, GCC
and XLC [Mal+11]. They found that ICC will vectorize significantly more loops
compared to GCC when studying synthetic benchmarks. For real applications,
only few loops are vectorized by the compilers.

Another approach is the polyhedral model where the program is translated
into a linear-algebraic representation. Afterwards, new execution orderings are
found by applying a reordering function. The polyhedral model has been ap-
plied successfully for a wide range of optimization such as automatic paralleliza-
tion [Bon+08] and automatic vectorization [Tri+09].

Chatarasa et al. propose an alternative approach for improving the polyhe-
dral framework [CSS15]. They incorporate executions orderings from explicitly
parallel programs and broaden the range of legal transformations for explicitly
parallel programs.

5.4 Dependences 61

5.4 Dependences

Improving the accuracy and speed of dependence analysis is a well-researched
area with many contributions.

Goff et al. proposes a dependence testing scheme for fast yet exact tests [GKT91].
They implement several dependence tests in combination. They start out with
simpler tests, and in the cases where the simple tests are not applicable, apply
more expensive tests. This is the same strategy as implemented in GCC. GCC
implements ZIV, SIV, MIV, GCD and the two advanced frameworks Lambda [LP94]
and GRAPHITE [Tri+10]. Lambda is based on integer non-singular matrices.
GRAPHITE is a polyhedral framework that is based on a linear-algebraic rep-
resentation. GCC 6.1 uses the Lambda framework by default.

There are several ways to improve the precision of dependence analysis. Pugh
suggests the omega test [Pug91], applying integer linear programming to solve
the dependence analysis. Omega tests have previously been implemented in
GCC.

Viitanen et al. compares six different data dependence analysis and their per-
formance in terms of execution time and accuracy. The tested algorithms are
the GCD test, extreme value test, Fourier-Motzkin elimination, the Omega test
and the data dependence analysis implemented in the SUIF compiler [Wil+94].
Each analysis can determine a different number of independencies with varying
execution time. The most accurate of the evaluated analyses is the Omega test
and the least accurate is the GCD test. The GCD test has an accuracy of 58.4%
on the selected benchmarks compared with the Omega test accuracy of 61.3%.
The omega test takes approximately 1.3 longer to execute than the GCD test.

5.5 Models in Parallel Debugging

Debugging is important for a multitude of reasons, both diagnosing incorrect
behavior and figuring out performance issues.

Many tools and techniques exist for finding and correcting errors in parallel pro-
grams. The same tools and techniques can be used for performance debugging.
These range from user code instrumentation (i.e.,printf) to traditional inter-
active debuggers to proving correctness with formal methods. Each tool has its
benefits and no one tool is sufficient for identifying all bugs. These tools can
have high overheads, due to the cost of instrumenting or probing the application,

62 Related Work

analyzing the debug information and communicating amongst the tool compo-
nents. Applying these tool has an overhead, in the cost of instrumentation and
communication overhead as you scale the system. For example, Valgrind can
impose a slowdown of 10x-100x [NS07]. Many bugs only manifest themselves at
large scale, and therefore we need tools that works at extreme scale.

The current state of the art in parallel debugging is focused on four main models:
traditional; lightweight; semi-automatic; and automatic. In this section, we dis-
cuss the pros and cons of these models and the implications of the architectural
and application trends in HPC.

5.5.1 Traditional Model

The traditional debugging model seeks to aid programmers in interactively di-
agnosing an error. It enables them to view the detailed program state and to
modify it at any point in execution. The tools that offer this paradigm include
GDB [SS14], DDT [All14] and TotalView [Rog14]. They must provide features
that support nearly all debugging facets. Commonly, these features include var-
ious data displays, lock stepping of execution, breakpoints or evaluation-points,
and process or thread group control, such as barriers, if the tool is parallel-aware.

This model is highly effective in isolating the root cause of many classes of errors
at low to moderate scales. However, in the face of large concurrency and high
application complexity, its effectiveness starts to decrease sharply. More impor-
tantly, manually viewing and managing detailed state information at various
points of execution is becoming increasingly unwieldy at only a few thousands
of processes and on complex modern design patterns. The recent efforts of sev-
eral parallel debugger vendors [All14]; [Rog] have improved software scalability
by supporting the model through innovative communication and display mecha-
nisms. But its fundamental scheme of having to enable all idioms for interactive
use and the central point of control, i.e., the user, clearly limits its scalability.

At very small scales, applying this serial debugging paradigm to parallel debug-
ging is manageable, but becomes unwieldy at even moderate scales, let alone
extreme scales. This pitfall is shared by another common strategy, debugging
using printf. Even at today’s scales gathering debug information from each
core is intractable. For example, on the Sequoia machine [Law], with its over
1.6 million cores, gathering or printing just one byte from each core leaves the
programmer nearly 1.6 megabytes of data to analyze. This is value is multiplied
when analyzing larger data types, such as 8-byte double precision floating point
variables, or arrays of variables, and is further multiplied by the 4 threads of
execution per core on Sequoia.

5.5 Models in Parallel Debugging 63

5.5.2 Lightweight Model

The lightweight model has recently emerged in specific response to the chal-
lenges at scale. This model pursues trade-offs between debugging scalability and
capabilities. Thus, the tools of this paradigm, such as the Stack Trace Anal-
ysis Tool, STAT [Arn+07]; [Lee+08]; [Ahn+09]; [Lee+07], IBM’s Blue Gene
Coreprocessor debugger [LK32] and Cray’s Abnormal Termination Processing,
ATP [Cra13], drastically limit the types and amount of execution state informa-
tion that are fetched, collected and displayed. They also limit the level of user
interaction and provide only coarse mechanisms to select points in execution
to analyze. This paradigm has proven to be extremely scalable, for example,
STAT has successfully isolated certain classes of errors that only emerge over
one million processes. However, due to its coarseness, it can leave programmers
with no actionable information on some other classes of errors.

5.5.3 Semi-Automatic Model

The semi-automatic model is based on user-guided automation of finding er-
rors in large data arrays. Relative debugging [Abr+96] allows users to select
corresponding data arrays and points in two slightly different versions of the
same program, and at runtime automatically differentiates the arrays at those
points. The idea is that the region of code where corresponding arrays of differ-
ent versions diverge is likely to be where the error originated. Because the bulk
of analysis is computed, this model significantly reduces user interaction and
saves the user from having to examine individual data array elements manually.
However, its main debugging mode that requires two different simultaneously
running jobs can hamper debugging those errors that emerge only at large scales,
due to resource requirements.

Further, recent work, such as assertion-based parallel debugging [Din+11], has
advanced this model to be used in more diverse scenarios, including comparing
processes within a single job, and also to be more scalable. However, it targets
data-centric errors, as opposed to being general purpose.

5.5.4 Automatic Model

The automatic model has burgeoned in recent years with a promise to isolate
general programming errors with no user intervention. Specific work in this
area includes AutomaDeD [Bro+10]; [Lag+11]; [Mit+14], which applies statis-

64 Related Work

tical techniques on a semi-markov model representation of MPI processes to
automatically detect and localize software bugs. The model also strives to au-
tomate code instrumentation and hence avoids opening the execution state and
selection mechanisms to the users. While the automatic identification of erro-
neous tasks and code regions is the ideal approach, and recent work [Lag+11]
has shown that this model can scale easily to a very large number of tasks, the
level of isolation is only as good as the analysis and instrumentation techniques,
which are currently still lacking. Often, a user’s debugging intuition can al-
low a model to overcome the lack of analysis accuracy and precision, but the
automatic nature makes it hard to take advantage of this intuition for error
isolation. Other than these approaches, more popular forms of automated tools
tend to target specific types of errors, such as memory leaks [GS06] or MPI
coding errors [Kra+03]; [Lue+03]; [Che+10]; [VS00].

Chapter 6

Compiler Feedback for
Higher Memory

Performance

In the previous Chapter 4 we saw how the compiler often refrains from opti-
mizing due to the complexity of automatic optimizations. It is often a problem
for programmers to understand how source code should be written to enable
optimizations. Interactive tools that guide programmers to higher performance
are very important. This chapter present one aspect of such a tool we have de-
veloped. The tool helps programmers modify their code to allow for aggressive
optimization. In this chapter, we describe our extension for high level memory
optimizations such as matrix reorganization in the tool. We evaluate the tool
using two benchmarks and four different compilers. We show that it can guide
the programmer to 22.9% higher performance.

Optimizing compilers are complex and difficult for programmers to understand.
Programmers often do not know how to write code that the compilers can opti-
mize well. This work extended a previously developed tool that helps non expert
programmers write code that the compiler can better understand [Lar+11a] in
an interactive way. It uses feedback generated by the production compiler the
GNU Compiler Collection, GCC [Fou]. We have modified GCC to improve the
quality and precision of the feedback. Our tool then interprets the feedback

66 Compiler Feedback for Higher Memory Performance

and presents it in a human readable form directly into the Eclipse integrated
development environment, the Eclipse IDE. In principle, the techniques could
have been applied to any compiler and IDE.

We have extended our tool to support high level memory optimizations such
as matrix reorganization. These optimizations change the way matrixes are
accessed resulting in improved memory hierarchy performance. We perform a
performance evaluation using two benchmarks from SPEC CPU2000 [Hen00]
and four different compilers. We show that our enhanced tool can guide the
programmer to 22.9% higher performance.

Although one can argue that compilers should be better at optimizing code, pro-
grammers required to write performance sensitive code often cannot wait for a
more advanced compiler to be released. Our tool helps non expert programmers
change their code to fully utilize all the optimizations an existing production
compiler can offer. Our work is thus complementary to the work on more precise
analysis methods and aggressive compiler optimization passes.

In short, this chapter contributes the following:

• We have extended our tool significantly. It can now handle the matrix
reorganization memory optimization.

• We have developed a code refactoring wizard that helps programmers ap-
ply changes directly to their code.

• We evaluate the extended tool and show substantial performance improve-
ments on two SPEC CPU2000 benchmarks and with several compilers.

This chapter extends our previous work [Lar+11a] in that we have significantly
expanded the tool to provide feedback on high level memory optimizations.

The chapter is laid out as follows. Our tool and how it can improve memory
optimizations is introduced in Section 6.1 Experimental results are analyzed in
Section 6.2. We discuss the work, thesis research questions and conclude the
chapter in Section 6.3.

6.1 Memory Optimization

Compilers have to generate correct code. To this end, compilers often conser-
vatively decide not to apply optimizations in ambiguous cases where the intent

6.1 Memory Optimization 67

1 a = (int **) malloc (N)
2 for (i=0; i<N; i++)
3 a[i] = (int *) malloc

(M)
4 a[i][j]++

(a) Dynamically allocated non flat-
tened two-dimensional C array. −→

1 a = (int*) malloc (N * M
)

2
3
4 a[i*M + j]++;

(b) Dynamically allocated flattened C
array.

Figure 6.1: Dynamically allocated arrays in C showing both non flattened and
flattened versions.

of the programmer is not clear. The general idea behind our tool is to help
programmers fully utilize modern advanced compiler optimizations. We pro-
pose that programmers will work actively with the performance critical sections
of their code. Our tool interactively provides the programmers with hints and
suggestions for changing the code so that source code ambiguities are removed
thereby facilitating the application of additional compiler optimizations. The
tool consists of several parts. First, we link GCC [Fou] with a special library
that we have developed. The library will augment GCC’s diagnostic dump
files with information on the optimizations performed but also on optimizations
not performed. These dump files are then read by an Eclipse plugin that we
have developed as well. The plug-in interprets and displays the information.
The plug-in also suggests refactoring changes based on the extracted informa-
tion [Fou]. Refactoring is a technique for modifying source code in a structured
way, without changing the program’s external behavior [99].

We have extended our work to support GCC’s matrix reorganization [Lad06]
framework, which optimize dynamically allocated matrixes. The optimization
pass can perform two optimizations: matrix flattening and matrix transposing.
When a matrix is flattened an m-dimensional matrix is replaced with an n-
dimensional matrix where n < m. This leads to fewer levels of indirection for
matrix accesses. As an example of the optimization see Figure 6.1. The matrix
transposing optimization interchange rows and columns followed by flattening
resulting in better cache locality depending on access patterns. Profiling is used
by GCC to make decisions on what matrixes to transpose.

Reorganizing matrixes is an intrusive operation: declarations, allocation, ma-
trix access and deallocation sites have to be updated. The GCC compiler will
therefore refrain from using the optimization unless it can analyze exactly how
the matrix is used. In many cases, the compiler cannot fully analyze how a ma-
trix is accessed. The matrix escapes analysis. This may happen if the matrix

68 Compiler Feedback for Higher Memory Performance

is an argument to a function, even if it would be safe to optimize. Here the
analysis is conservative and chooses not to analyze even local functions. Only
global dynamically allocated arrays are optimized. Manual vector expressions
could lead to errors. Therefore, matrixes are not reorganized when vector or
assembler operations exists. Additional restrictions exist. For example, GCC
assumes only one matrix allocation and one or more accesses, therefore matrixes
with multiple allocation sites will not be optimized. In general, many matrices
are not optimized.

Our tool can help the programmer when the compiler refrains from optimizing.
It does so by giving reasons why the compiler did not optimize and suggests
changes if applicable. There exist many reasons why the optimizations do not
apply so our tool prioritizes the information so that the most useful hints are
shown first. One example is missing compiler options. If the correct options are
not used, it will present a hint in the Eclipse IDE suggesting the programmer
to change options.

As mentioned, if the matrix escapes the analysis it will often not be optimized.
One common scenario is when a matrix is an argument to an external function
or some other function for which the source code cannot be analyzed. Here our
tool points out all escaping matrixes to the programmer. It will also describe
why each matrix escapes as well as suggestions for how code can be rewritten.
This may include using annotations to get the compiler to inline functions. More
invasive refactorings can also be attempted. Instead of passing the matrix to a
function, it might be possible to pass a temporary variable if individual matrix
elements or their addresses are passed. This will often help the compiler analysis
understand the source code better. Another solution, not implemented, is to
use data copying in places where it is known where a matrix escapes and where
it returns. In the escaping region the original version of the matrix can be used.
This adds some overhead synchronizing data.

Many programmers have issues using the profiling features of GCC used by
the matrix reorganization framework to determine whether matrixes should be
transposed and how. It is easy to detect in the compiler whether profile guided
optimization is disabled. Our tool shows messages to the programmer explaining
the required steps to use profile guided optimization. This is seen in Figure 6.2.

We have developed an automatically refactoring wizard. The wizard helps the
programmer apply matrix flattening and transposing directly to the source code.
This makes it possible for the programmer to turn off matrix reorganization in
the compiler. This is sometimes necessary. For example, we have discovered at
least one bug in GCC that forced us to manually rewrite the code. The wizard
also allows us to apply code transformations using other compilers. This might
be useful as many compilers do not have matrix reorganization optimizations.

6.2 Experimental Evaluation 69

GCC cannot run the matrix-reorg
transposing optimization as no
profiling information is available.
Compile and link with -fprofile-
generate, run application with
benchmark data and compile again with
-fprofile-use.

Figure 6.2: Marker helping the programmer use profiling.

The wizard is implemented using Eclipse’s refactoring framework and so have
a familiar look and feel. The wizard will be offered to the programmer if the
compiler found that the matrix could be optimized. Both full and partial flat-
tening and transposing are supported. An example of the wizard can be seen in
Figure 6.3.

6.2 Experimental Evaluation

We have applied our tool on two kernel benchmarks from the SPEC CPU2000
benchmark suite: 179.art [RD] and 183.equake [OK]. The benchmarks have pre-
viously been used to evaluate the matrix reorganization capabilities in GCC [Lad06].
Good results were shown. A total of 35% improvement on 179.art and 9% on
183.equake. This indicates that the standard optimizations in GCC already are
effective.

We will use our tool to further optimize the benchmarks. First by mitigating
issues preventing optimizations and then by applying the optimization directly
at the source code.

70 Compiler Feedback for Higher Memory Performance

Figure 6.3: The refactoring as it appears in the Eclipse IDE.

6.2 Experimental Evaluation 71

Table 6.1: Name, version and host machine of used compilers.

Compiler Version Host
GCC [Fou] The GNU Compiler Collection 4.5.1 xeonserver
ICC [Int] Intel C++ Composer XE 2011 for Linux 12.0.4 xeonserver
SUNCC [Ora] Oracle Solaris Studio 12.2 Linux xeonserver
XLC [IBM15] IBM XL C/C++ for Linux 11.1 g5server

Table 6.2: Compiler options used.

Compiler Options
GCC [Fou] -O3 -fipa-matrix-reorg -fwhole-program -std=c99
ICC [Int] -fast -ipo
SUNCC [Ora] -fast -xc99
XLC [IBM15] -O2 -qhot -qipa=level=2

We have run experiments on two machines. We have used a Dell Poweredge
1900, with one Quad-core Intel Xeon E5320 processor at 1.86GHz and a level
two cache of 2x4MB. The machine, called xeonserver, runs Debian 6.0.2.1. The
second machine is an iMac G5 with a 1.8GHz PowerPC 970fx processor. It is
called g5server and runs Red Hat Enterprise Linux 5.5.

We have used four different compilers. An overview of compilers, versions and
host systems are shown in Table 6.1. The compiler flags used are shown in
Table 6.2. All experiments have been run 50 times and the average benchmark
execution time has been used.

6.2.1 Case study: 179.art

The 179.art kernel benchmark is using neural networks to recognize objects in
thermal images. It consists of a training process where the neural network learns
from test images and an analysis process where it is matching a thermal image
against the training images [RD]. The training process is short. We will only
use the execution time for the analysis process when evaluating performance.

The program consists of 1042 lines of C code as measured using SLOCCount [Whe13].
It contains a number of matrixes but only three global multidimensional dynam-
ically allocated matrixes are candidates for optimization.

GCC can optimize two of them, the tds and bus matrixes, automatically but
the cimage matrix escapes. The matrix is not an argument to a function and

72 Compiler Feedback for Higher Memory Performance

Table 6.3: Global multidimensional dynamically allocated matrixes in 179.art
and whether they are optimized automatically by GCC and XLC.

Declaration GCC XLC

unsigned char **cimage
Not optimized, ma-
trix escapes Flattened

double **tds Flattened Flattened and
transposed

double **bus
Flattened and
transposed

Flattened and
transposed

therefore it should have been optimized by GCC. We found that the escape
analysis in GCC has problems with char arrays. This issue is due to an internal
limitation in the compiler’s analysis, which could be overcome by changing the
datatype, e.g. to an integer.

When profiling the program, the bus matrix was transposed meaning that the
dimensions of the matrix were swapped. We also used the IBM XL C/C++
compiler, XLC, to compile the kernel. Here all three matrixes were flattened
and two were chosen for transposing. XLC does not need profiling data to
determine whether transposing is useful and statically evaluates this.

The optimizations each compiler performed automatically are shown in Table 3.
One thing that stands out from this experiment is that XLC has a more precise
program analysis. It will probably optimize more aggressively.

Our tool could not guide the programmer to a version where the cimage ma-
trix in 179.art is optimized by the GCC compiler. Therefore, results are only
presented for the unmodified original program and a version where two of the
matrixes are optimized at the source code level obtained using the wizard. The
wizard optimizes the matrixes that GCC can automatically optimize as seen in
Table 6.3.

This, however, did not give any significant speedup over GCC’s own optimiza-
tion. In Figure 6.4 it can be seen that using GCC a speedup of 1.16 was possible.
This is only due to the wizard utilizing the profiling data to transpose a matrix.
Using profile guided optimization, the compiler does an equally good job.

We also have made experiments with multiple compilers. The performance re-
sults for 179.art on xeonserver are shown in Figure 6.4 and the speedup achieved
are shown in Figure 6.5. Using SUNCC a speedup factor of 1.36x was achieved
over the original version. ICC produced the fastest program but did not benefit
from the optimization with a speedup of one. The last compiler is XLC. It
has the matrix reordering optimization. However, it performed worse with the

6.2 Experimental Evaluation 73

0

10

20

30

40

50

60

Original Wizard

Ru
nn
in
g	
tim

e	
[s
]

GCC ICC SUNCC

Figure 6.4: Execution time of original and wizard optimized 179.art compiled
with GCC, ICC and SUNCC. The most aggressive optimization
options have been used, but not profile guided optimization.

optimization as seen in Figure 6.5 with a speedup of 0.8. One reason might be
that GCC chooses only to transpose one of the matrixes and XLC transposes
two of them. As the wizard applies optimization at the source code it prevents
XLC from further optimizing matrixes.

6.2.2 Case study: 183.equake

The 183.equake kernel is a program that simulates seismic waves propaga-
tion [OK]. It contains ten global multidimensional dynamically allocated ma-
trixes. All are candidates for optimization. Six out of the ten are automatically
recognized as optimizable and the refactoring wizard is offered.

Two matrixes ARCHcoord and ARCHvertex escape as they are input to a function.
If a matrix escapes, we cannot always analyze all access sites. The compiler tends
to choose to be conservative and back off when meeting a matrix passed as an
argument to a function. However, it may be possible to inline the functions
that will solve the problem. Using our tool, it was identified that the fscanf
C library function was the problem. Functions from the C library cannot be
inlined using annotations. However, only the address of a single element in
the matrix was passed as an argument. We chose to handle this situation by
inserting a temporary variable as seen in Figure 6.6. This is possible as only a
single element of the matrix is passed as an argument. This allowed the compiler
to optimize both ARCHvertex and ARCHcoord matrixes.

74 Compiler Feedback for Higher Memory Performance

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6

GCC ICC SUNCC XLC

Sp
ee
du
p

Figure 6.5: Speedups of the wizard optimized 179.art compiled with GCC,
ICC, SUNCC and XLC. The most aggressive optimization options
have been used, but without profile guided optimization.

1 fscanf(packfile , "%d",
2 &ARCHvertex[i][j]);

(a) Original source. −→

1 int tmp;
2 fscanf(packfile , "%d", &

tmp);
3 ARCHvertex[i][j] = tmp;

(b) Modified source.

Figure 6.6: Modifications needed for GCC to optimize ARCHvertex. In (a) the
compiler backs off but in (b) it is clear to the compiler that the
matrix can be optimized.

The matrixes K and disp also escape. Using our tool, which shows the function
calls causing the matrixes to escape, it was possible to identify the function smvp
as the main problem. In Figure 6.7, we show how information is presented in the
IDE. To resolve the problem, our tool proposes to inline the function if possible.
We did that by using the __attribute__((always_inline)) annotation that
we applied to the function prototype. If only inline was used, the compiler
determined that it is not advantageous to inline the function. However, with
always_inline the compiler is forced to inline it. After the function was inlined
the matrixes are now chosen for optimization and it was thus possible to help
the compiler when its analysis is too primitive or conservative.

All global matrixes can be optimized after applying the aforementioned changes
suggested by our tool. We changed three source code lines and added four lines.
The modifications are minor and do not affect readability.

Unfortunately, we found a bug in GCC when using the optimized source code.

6.2 Experimental Evaluation 75

Figure 6.7: IDE output showing the function call that makes the matrix escape
and suggested changes.

76 Compiler Feedback for Higher Memory Performance

Table 6.4: Global multidimensional dynamically allocated matrixes in
183.equake and whether they are optimized automatically by GCC
and XLC.

Declaration GCC XLC
double **ARCHcoord Flattened with help Flattened with help
int **ARCHvertex Flattened with help Flattened with help
double **M Flattened Flattened and transposed
double **C Flattened Flattened and transposed
double **M23 Flattened Flattened and transposed
double **C23 Flattened Flattened and transposed
double **V23 Flattened Flattened and transposed
double **vel Flattened Flattened and transposed
double ***disp Flattened with help Not flattened
double ***K Flattened with help Not flattened

Under certain circumstances the matrix reorganization optimization might intro-
duce a wrong malloc allocation size. This means that the generated executable
will return with an error and stop execution. This is not a bug in our tool,
but purely in the optimization pass of the GCC compiler. When flattening the
matrix allocation sites, it will not include the allocation statement for all dimen-
sions. This bug has been reported to the GCC Bugzilla [Jen12]. We changed
the benchmark so that the affected matrix, disp, is not optimized. Therefore,
in the presented results, the disp matrix has not been flattened.

The 183.equake kernel was also optimized using XLC. It can optimize local ma-
trixes and not just global. In our case, it could optimize two matrixes that GCC
could not. Both GCC and XLC could optimize the same global dynamically al-
located matrixes in the original source code. However, after our tool has been
used, GCC performs better. Now eight out of the ten matrixes are optimized.
The reason for XLC not optimizing the last matrixes, like GCC did, appears to
be that the compiler will only optimize two dimensional matrixes. GCC chooses
not to transpose any matrixes with profile guide optimization. However, XLC
chose to transpose some of the matrixes. Table 6.4 shows how each matrix were
optimized by each compiler.

Our tool could guide the programmer using code comments to rewrite the code
in a simple way that led to more matrixes being optimized. We saw a speedup
of 1.30 when GCC was used. A speedup of 1.6 was achieved, using GCC, if
the optimizations were applied on the source code level using the wizard. This
speedup is not only the result of the compiler optimizing more matrixes. In this
case, the changes to the source code made it possible for the compiler to apply
more aggressive optimizations. The results, seen in Figure 6.8, show that with

6.3 Conclusions 77

0
10
20
30
40
50
60
70
80
90

GCC ICC SUNCC

Ru
nn
in
g	
tim

e	
[s
]

Original Code	comments Wizard

Figure 6.8: Execution time of the original, comments and wizard optimized
183.equake compiled with GCC, ICC and SUNCC. The most
aggressive optimization options have been used, but not profile
guided optimization.

minor programming effort significant improvements in performance are possible.

We also tried the modified code with multiple compilers. The speedups are
shown in Figure 6.9. Only GCC could benefit from the code changes suggested
by our tool and they did not affect the other compilers. All compilers did benefit
from the changes made by the wizard with improvements in performance.

6.3 Conclusions

We have extended an interactive compilation tool to support high level memory
optimizations – matrix reorganization. The tool presents information in the
Eclipse IDE guiding programmers to write source code that can be aggressively
optimized. The tool uses feedback generated by the GCC compiler. These
aspects are related to Research Question 1, showing how the existing compilation
infrastructure can be used to generate useful feedback despite the loss of details
when lowering from a representation close to the language being compiled to a
language more suitable for optimization.

We have furthermore complemented the tool with a refactoring wizard that
applies the compiler optimization directly into the source code. This allows
for optimized source code to be used with multiple compilers. This show an

78 Compiler Feedback for Higher Memory Performance

0

0,5

1

1,5

2

2,5

GCC ICC SUNCC XLC

Sp
ee
du
p

Original Code	comments Wizard

Figure 6.9: Speedups of the comments and wizard optimized 183.equake com-
piled with GCC, ICC, SUNCC and XLC. The most aggressive
optimization options have been used, but without profile guided
optimization.

approach for how to apply an optimization from one compiler to other compilers.
This allows us to use an optimization in a compiler that does not implement
the optimization or where it is not applied due to limitations.

We have evaluated our tool using two SPEC CPU2000 benchmarks. Our results
show that it is not always possible to present good hints to the programmer.
This was noticed for the 179.art benchmark, where the compiler has issues with
a code pattern and no good solution is available. Modified source code was
evaluated with four different compilers. We could show that two compilers
benefited from the optimized source and two did not.

Better results were possible for the second benchmark 183.equake. Here the tool
helped us rewrite the code, in a very simple manner, to allow all possible ma-
trixes to be optimized. The modified source code yields a speedup of 1.3 using
GCC. Using the refactoring wizard to make more invasive changes resulted in
a larger speedup of 1.6. The refactored code was also compiled with multiple
compilers resulting in speedups for the executable code of 1.36 to 1.6. These
results contribute to the answer of Research Question 3. The feedback was not
always able to cope with the limitations and assumptions of the optimization
for the benchmark being compiled. In general, we are however able to signif-
icantly improve how benchmarks are optimized, by fully utilizing the existing
optimizations without compromising the quality of the source code.

Chapter 7

Continuous Compiler
Feedback during

Development

In the previous Chapter 6 we saw how we can extend a compiler to emit more
data during compilation. After compilation we then collected this data and
used it to generate feedback to the programmer. The feedback shows how it
is possible to refactor the source code to achieve higher performance by fully
utilizing the existing compiler optimizations.

In this chapter we will study a similar tool, but where the feedback is generated
continuously during development for faster feedback to the programmer and
easier tool setup attempting to address Research Question 1.

Arguably we all rely on optimizing compilers for performance. When they opti-
mize well, they can often generate code that outperform hand optimized code.
However, compilers ability to optimize aggressively is limited in some cases as
Chapter 3 highlighted.

Programmers are often not aware how their programs are optimized and how
they should be written to allow the compiler to optimize well. We have created
a compiler, that guides programmers in modifying their programs, potentially

80 Continuous Compiler Feedback during Development

making them more amenable to optimization.

To address this limitation, we have developed a compiler guiding the program-
mer in making small source code changes, potentially making the source code
more amenable to optimization. This tool can help programmers understand
what the optimizing compiler has done and suggest automatic source code
changes in cases where the compiler refrains from optimizing. We have inte-
grated our tool into an integrated development environment, interactively giving
feedback as part of the programmer’s development flow.

Optimizing compilers and integrated development environments both perform
analysis of code, regrettably usually with no code sharing between these. There-
fore, we have embedded a small optimizing compiler into an IDE. The compiler
is part of the programmer’s development flow continuously giving feedback to
the programmer as it is integrated with the IDE.

We open up the black box the compiler is today, exposing valuable information
to the programmer using compiler driven feedback. In contrast, other related
tools can also report on optimization issues encountered during compilation.
The programmer then has to understand why a given optimization was not
performed. Our tool is integrated into the IDE, dynamically giving quick feed-
back to the programmer during development. The integration improves the
automatic refactoring we provide.

The benefit of the feedback is twofold, programmers know how their code how
been optimized and why the compiler did not optimize. Compilers often refrains
from optimizing, especially due to limitations of program analysis. Programmers
can unintentionally prevent optimization by unfortunate coding choices. If the
programmer is aware of the problems, they can be mitigated by modifying the
source code, often without affecting other software engineering principles.

An early implementation of the introduced compiler has been evaluated on 12
kernel benchmarks and we show that the feedback can lead to speedups of up
to 153%.

In short, we make the following contributions:

• We show that the traditional compiler structure can be redesigned by
reusing existing IDE technology in the compiler.

• We show that we can provide better automatic refactoring by integrating
the IDE and the compiler. We provide feedback on a broader range of
issues and present the feedback directly in the IDE.

7.1 Compiler Infrastructure 81

• We have evaluated the tool and show that compiler driven feedback can
lead to performance speedups. For example, the suggested automatic
refactorings can improve performance with up to 153% when used with a
production compiler.

The chapter is laid out as follows. The tool is presented in Section 7.1 and
Section 7.2. Experimental results are analyzed in Section 7.3. We discuss the
work in Section 7.4 and conclude the chapter in Section 7.5.

7.1 Compiler Infrastructure

We have designed and implemented an optimizing compiler infrastructure to ad-
dress the issue of giving precise compiler feedback on the original source code.
The compiler is embedded inside the Eclipse IDE. The compiler reuses existing
Eclipse technology in the front-end by using the infrastructure already imple-
mented for code analysis and supporting the programmer during development.
In this way, the implemented compiler integrates into the normal Eclipse de-
velopment flow, continuously giving feedback to the programmer during devel-
opment. Furthermore, internal Eclipse data structures constructed for existing
source knowledge tools can be reused. This decreases the load of executing
our compiler during development in contrast to running an entire production
compiler.

The compiler is constructed as a series of passes where most consume a single
intermediary representation. The architecture and flow through the compiler is
presented in figure 7.1. The infrastructure is organized as a series of modules
with clear interfaces between them. The C front-end is constructed using Eclipse
language tooling. The front-end takes the Eclipse representation of the source
code and generates the internal representation inside the compiler for optimiza-
tion. The optimizer consumes the internal intermediary representation, IR, and
produces IR. The optimizer interfaces with the feedback-visualization Eclipse
plugin by generating data on applied optimization and when an optimization
was not applied. Last the code generator consumes the IR and emits assembly
code compatible with GCC [Fou] calling convention, which can be assembled
and linker by GNU Binutils [Fou13].

Only the C language is supported and the C front-end uses the Eclipse CDT
C/C++ language tooling [CDT13]. The idea behind the compiler infrastructure
is not restricted to C and there exists Eclipse language tooling for many other
languages.

82 Continuous Compiler Feedback during Development

C frontend
(CDT AST)

IR
+ metadata Optimizations

x86_64 code
generator

● Applied optimizations.
● Advice for source code changes

enabling further optimization.

Eclipse

Feedback
visualization

plugin

Figure 7.1: Compilation framework architecture.

7.2 Feedback Infrastructure 83

The intermediary representation used for feedback and optimizations is based
on Static Single Assignment, SSA, form [Cyt+91]. It has the special property
that variables are only assigned at most once. This form is argued to improve
many types of optimization and is found in many optimizing compilers. The IR
is on three address form and consists of blocks with sequential instructions and
special blocks for control flow.

7.1.1 Optimizer

The compiler is intended to be executed during the development, constraining
the type of optimizations that can be executed fast enough without disturb-
ing the responsiveness of the IDE. However, arguably the more optimization
passes we implement the better feedback we can provide. We have implemented
a series of scalar optimizations on the SSA form: Copy propagation [Ske12],
constant folding, sparse conditional constant propagation [WZ91], arithmetic
simplifications, partial redundancy elimination [Ken+99], global value number-
ing [TC11], operator strength reduction [Ske12], loop interchange and inlining.
All optimizations are performed in the order suggested by Muchnick [Muc97].

7.1.2 Backend

The backend of a compiler is very important for its performance. The im-
plemented backend is simple and does not generate optimal code. The backend
targets the x86_64 instruction set. It does instruction selection using the greedy
maximal munch algorithm [App97] and instruction scheduling using a simple list
scheduling implementation [Ske12]. The register allocator is based on the simple
Linear Scan working on SSA form [WF10]. It allocates registers for one linear
block at a time, linearly assigning register by choosing a register not used in
the period where the register is alive. The allocator only looks a single block
at a time, thus the allocation is not optimal globally. Furthermore, no low level
optimization is performed during code generation. For simplicity all the features
of the x86_64 instruction set is not used.

7.2 Feedback Infrastructure

To display feedback to the programmer and suggest automatic refactorings, we
extend and use the infrastructure in Eclipse. This includes markers, yellow

84 Continuous Compiler Feedback during Development

Figure 7.2: Simple marker suggesting adding the C99 inline keyword to
potentially enable inlining of the smvp function. Executing the
suggested automatic refactoring gives a 22.6% improvement with
GCC 4.8.1.

sticky notes in Eclipse used to present tasks, problems or general information
about a source code construct [GM01]. Eclipse contains views used for navi-
gating or displaying a hierarchy of information. We have implemented a view,
giving an overview of all the feedback presented to the programmer. This allows
the programmer to get an overview of all the feedback given by the compiler.

An example of the kind of feedback we provide to the programmer is seen in
figure 7.2. Here we inform the programmer that a function was not inlined
and suggest an automatic refactoring. This simple refactoring lead to a 22.6%
improvement using GCC 4.8.1.

All optimizations in the compiler generate data on applied optimizations and
data on missed optimizations. These show to the programmer how the compiler
has optimized. Furthermore, the compiler gives details on why a given optimiza-
tion was not applied and suggest an automatic refactoring. The modifications
can be applied automatically, simply by accepting the compilers suggestion.

The tool can currently provide automatic refactorings for:

• Removing dead code

• Applying the inline keyword to functions

• Permuting the loop order

• Applying the restrict C99 keyword to pointers, even if matrix notation
is used.

Mapping the internal representation used by the optimizer to the source code
is important. Therefore, we have integrated with the IDE and keep Eclipse

7.3 Experimental Evaluation 85

metadata in the IR during compilation, relating the IR to the Eclipse internal
data structures.

7.3 Experimental Evaluation

7.3.1 Setup

We evaluate our implementation on a platform based on a dual core 1.9Ghz
Intel Core i7-3517U and a total of 6GB of DDR3 ram. The operating system is
Linux with kernel version 3.8.0.

Furthermore, the performance is compared to GCC 4.8.1 with no optimizations
-O0 and with the aggressive optimization level -O3.

The compiler has been evaluated on 12 kernel benchmarks. Three very simple
kernels and nine kernel benchmarks from the Spec2000 benchmark suite [Hen00]
and the Java Grande C benchmarks [Bul+01]. The benchmarks are of varying
size, art and equake are the largest with 1042 lines of C code as measured using
SLOCCount [Whe13]. The kernel benchmarks are chosen to represent resource
demanding programs testing different elements of the system as they have high
processing, I/O or memory demands.

In addition, the power of the tool as an optimization adviser for a production
compiler is evaluated. This have been evaluated on an edge detecting program
from the University of Toronto DSP Benchmark Suite [Lee]. This benchmark
has only been evaluated using GCC due to a bug in the compiler.

7.3.2 Compiler Performance

First we consider the performance of the compiler used as a static offline com-
piler, similar to how GCC normally would be used. I.e. we do not consider the
compiler feedback in this section, only the quality of the generated code. The
compiler has been evaluated using all 12 kernel benchmarks. The performance
is reported first without any optimizations and second with all the implemented
optimizations.

The performance data is presented in figure 7.3, where the running time of each
benchmark is reported using our compiler and GCC. GCC outperforms our

86 Continuous Compiler Feedback during Development

�

��

���

����

�
�
�
�
��
�
��
��

�
�	

�

��������

��������	
�

������	
�

����������
�
���

����������
�
���

Figure 7.3: Raw performance of our compiler and GCC 4.8.1. Lower is better.

compiler. Even for the simple Fibonacci benchmark, GCC is 1.8 times faster.
In the Fibonacci benchmark GCC performs many optimizations on the source
code. It inlines the recursive calls and use tail recursion optimization to turn
the call into a loop. This decreases the amount of recursion significantly. In
contrast we can only do simple scalar optimizations on the Fibonacci kernel.

Our compiler is designed to be lightweight and executed during development, for
giving quick feedback to the programmer. In contrast GCC use optimizations
that are significantly slower, but optimize more aggressively.

7.3.3 Feedback

The compiler can guide the programmer with automatic refactorings, potentially
making the code more amenable to optimization.

An example of the feedback advice provided is that a given function was not
chosen to be inlined. This might be due to the size of the function or if the
function is recursive. This can be seen in figure 7.4 on a recursive greatest com-
mon divisor implementation. In C99 the inline keyword exists, which can be
applied to functions to force that the function is inlined. GCC implements three
semantics for the inline keyword in programs, one for GNU C89, another for
C99 or C11 or GNU C99 or GNU C11 and a third semantics for C++. In C99

7.3 Experimental Evaluation 87

Figure 7.4: Simple marker suggesting adding the C99 inline keyword to enable
inlining of the recursive function named gcdr.

the inline keywords intend that the function definition is only provided for in-
lining. Thus if it is not inlined the compiler will rely on another implementation
of the function without the inline keyword somewhere else in the program. In
GNU C89 the inline keyword is treated as a hint to the optimizer. In C++ the
inline keyword is a linkage directive. To this end, we support adding either
static inline or the GNU specific attributes.

The feedback adviser can only handle a specific number of cases where the com-
piler refrains from optimizing. Thereby, we cannot generally optimize all pro-
grams. Two benchmarks, the simple Fibonacci and GCD kernels, did not benefit
from the feedback advice. The other 10 kernels yielded small speedups. The
speedup obtained, by using the feedback advice for small source code changes
is shown in figure 7.6. The baseline is the optimized results from figure 7.3.

For the LUFact and Euler benchmarks the tool suggest automatic refactorings
for applying the inline keyword to loop intensive functions and interchanging
the order of some loops. However, the compiler cannot automatically analyze
whether the transformation is safe due to limitations in the dependency analysis.
Therefore, we suggest an automatic refactoring and leaves the task of whether
doing so is safe to the programmer as seen in figure 7.5. Performing the loop
interchange refactoring yields a speedup of 12% for LUFact and 8% for Euler.

For the Equake benchmark the feedback suggests adding the inline keyword a
function call to the smvp function. This both reduce the function call overhead,

88 Continuous Compiler Feedback during Development

Figure 7.5: Marker suggesting permuting the order of the loops, if the pro-
grammer determines doing so is safe.

but also makes some optimizations more effective. Inlining the smvp function
call yields a speedup of 7.6%.

7.3.4 Evaluate Feedback on Production Compilers

The quality of the feedback when used by a production compiler is also evalu-
ated. In this use case we can use the small optimizing compiler during develop-
ment and the refactored source code is then subsequently used with a production
compiler. The focus of our compiler is however not its performance.

The automatic refactorings suggested by our tool are also evaluated using the
GCC compiler. The kernel benchmarks have been optimized by applying the
suggested automatic refactorings described in section 7.3.3 and then afterwards
compiled with GCC 4.8.1 using the aggressive optimization level -O3.

The results are seen in figure 7.7. The baseline is the original source code,
aggressively optimized with -O3 using the same version of GCC.

Three of the kernels shows decent speedups, namely LUFact, Euler and Equake
of 11%, 5% and 23% respectively. More inlining have widened the scope of
GCC’s optimizer, allowing it to optimize the compute intensive parts of the

7.3 Experimental Evaluation 89

���

����

���

����

�

����

���

����
�
�
�
�
�
�
�

�����	
��

Figure 7.6: Speedup using the feedback advice on each benchmark.

kernels more aggressively. The manually interchanged loops also yield small
speedups, but as the loops are not part of the compute intensive part of the
kernels the speedup is moderate.

7.3.4.1 Parallelization Adviser

Earlier research has shown the benefit of applying the restrict keyword to C
pointers, mitigating issues preventing optimization [Lar+11a]. The restrict
keyword states that only the pointer itself, or a value derived directly from the
it, is used for all accesses to that object. This makes the programmers intent
clearer to the compiler, mitigating many issues preventing optimizations. It can
benefit automatic parallelization, vectorization and loop transformations.

For evaluating the feedback when performing automatic parallelization, we study
an edge detection application from the University of Toronto DSP Benchmark
Suite. Our compiler can provide optimization advice on the edge detection ker-
nel as seen in figure 7.8. Applying the C99 restrict keyword is simple on point-
ers, but may require more work on arrays. For example, the array arguments can
be rewritten as (*restrict input_image)[N] or int input_image[restrict
N][N]. We prefer the second notation, but they are for the GCC compiler opti-
mized in the same way.

We can also annotate the inner dimension of the array with the static and
const keywords. static entails that there will be at least the defined number
of elements (N in the previous example) also implicate that the pointer will not

90 Continuous Compiler Feedback during Development

���

����

���

����

�

����

���

����

���

����

�
�
�
�
�
�
�

�����	
��

Figure 7.7: Speedup using the feedback advice on each benchmark using GCC.

be null if more than 0 elements and for const that the array pointer does not
change in the function. We support the restrict and static keywords. The
suggested refactoring can be applied automatically by the tool.

The result has been evaluated on the system described in section 7.3 using
GCC 4.8.1 and the compiler flags -O3 -ftree-parallelize -loops=#threads
-fopenmp as seen in figure 7.9. The reported time is excluding the I/O activity
in the beginning and end of the program. Three numbers are reported for the
Intel i7 platform one and two threads respectively; the sequential execution, the
speedup of GCC’s automatic parallelization and the speedup after performing
the automatic refactoring.

The best speedup is achieved with two threads, where the modified version is
16% faster than the automatically parallelized unmodified version.

We have also analyzed the edge detection application on a 2.66 GHz quad-core
Intel Xeon X5550 system, with 24GB of ram running Linux kernel 2.6.32. The
available compiler on this system was GCC 4.7.2. The evaluation is shown in
figure 7.9. All loops were parallelized in the modified version, but most of the
speedup comes from automatic vectorization. GCC chose to parallelize the inner
loop and therefore the full potential of the parallelization is not achieved. The
best speedup was 2.62 with eight threads compared to the sequential version.

7.3 Experimental Evaluation 91

Figure 7.8: Marker suggesting adding the restrict keyword to the three array
arguments.

0

0,5

1

1,5

2

2,5

3

1 2 1 2 4 8

Intel i7 Intel Xeon

S
pe

ed
up

Platform and threads

Sequential Auto-par Modified

Figure 7.9: Speedup and executing time of the edge-detection kernel on the
(a) Intel i7 platform and (b) Intel Xeon platform. In the modified
version using the feedback suggestions, all loops were parallelized.
In the unmodified the outer loop were not parallelized.

92 Continuous Compiler Feedback during Development

0
1
2
3
4
5
6
7
8

1 2 4 8

Intel Xeon

S
pe

ed
up

Platform and Threads

Sequential Auto-Par Modified

Figure 7.10: Speedup and execution time achieved with -O2 and disabled vec-
torizer on the Intel Xeon Platform.

7.4 Discussion

One big challenge for feedback systems is when and what to display to the pro-
grammer. Feedback system can often generate many comments, but many are
false positives and only a few will lead to a speedup. Therefore, one limitation
is how we do not validate whether the feedback is a false positive and remove
it. One way to do it is to filter the feedback by automatically applying the sug-
gested automatic refactorings and validate whether the compilation benefited.
The generated assembly can also be used to statically approximate the running
time and use this information for filtering.

Another limitation is that even when we enable the compiler to optimize ag-
gressively, it might not make the best decision for how to do so. Compiling with
a production compiler can be complicated, for example GCC 4.8.1 has over
250 optimization flags with many possible combinations. On the edge detection
program, if we use the -O2 optimization flag and disable the vectorizer, we can
parallelize all loops giving a speedup of up to 7.46 as shown in figure 7.10. From
a programmer’s perspective this combination of automatic refactorings and op-
timization flags is far from obvious. This speedup indicates a great potential for
also guiding in combination of compiler flags.

7.5 Conclusions 93

7.5 Conclusions

Many applications rely on automatic compiler optimization for optimal perfor-
mance. Regrettably, programmers are often not aware of how their programs are
optimized and especially which small refactorings can lead further optimization
by the compiler. To address this issue, we have developed our dynamic feedback
compilation system, which can give feedback to the programmer during develop-
ment directly in the IDE. Compared to other compiler driven feedback systems
the advantage of the presented tool is dynamically executing the embedded com-
piler, as part of the normal Eclipse development feedback system and the IDE
integration benefiting the automatic refactoring. This chapter contributes to
address Research Question 1 as we show how it is possible to generate useful
feedback without involving the compiler. We highlight the benefits of faster
feedback and advanced refactorings made possible by working on a representa-
tion closer to the source code level. We also highlight the limitations with false
positives generated.

The implemented compiler has been evaluated on 12 C benchmarks, but com-
pared to GCC does not yield good performance. This is expected, as the tool
is designed to be fast and be executed continuously as the programmer works.
The optimization advise system have also been evaluated on the benchmarks.
The feedback on inlining of function calls and automatically changing the order
of loops lead to simple source code modifications, where 8 out of 12 benchmarks
yield a speedup. The system can guide to a 12% improvement over the compiler
optimized version.

The tool can also be used as a feedback adviser for a production compiler. Here 9
out of 12 of the benchmarks benefited from the feedback. On the Equake bench-
mark the tool can guide to a 23% improvement. Given the little work required
by the programmer to obtain the speedup, the compiler driven feedback is cost
effective. Furthermore, it was also investigated on an edge detection program,
how the feedback could improve the automatic parallelization performance us-
ing a production compiler. Here the tool could guide to a 153% performance
improvement. This is part of addressing Research Question 4 as we show how
we can generally provide feedback improving optimizations such as automatic
parallelization and automatic vectorization.

94 Continuous Compiler Feedback during Development

Chapter 8

Compiler Feedback using
Multiple Compilers

In this chapter we study another approach and another tool for compiler feed-
back. In the previous Chapter 7 we saw how we can generate feedback inside the
IDE as the programmer is developing. Further, we saw how we have extended
one compiler in Chapter 6 to emit further information during compilation and
show this feedback in the IDE guiding the programmer.

In this chapter we describe a tool using information from multiple unmodified
compilers. The tool is named Kommentator. It assists programmers in un-
derstanding how the compilers optimize and give advice changes to the source
code allowing more aggressive optimizations in an attempt to address Research
Question 1.

Optimizing compilers are essential to the performance of parallel programs on
multi-core systems. It is attractive to expose parallelism to the compiler letting
it do the heavy lifting. Unfortunately, it is hard to write code that compil-
ers are able to optimize aggressively and therefore tools exist that can guide
programmers with refactorings allowing the compilers to optimize more aggres-
sively. We target the problem with many false positives that these tools often
generate, where the amount of feedback can be overwhelming for the program-
mer. Our approach is to use a filtering scheme based on feedback from multiple

96 Compiler Feedback using Multiple Compilers

compilers and show how we are able to filter out 87.6% of the comments by only
showing the most promising comments. This addresses Research Question 2.

Writing programs that performs well on modern multi-core systems is a major
challenge. Many aspects influence the performance, especially how well the
optimizing compiler has transformed the code into a faster version. As parallel
programming is hard it is attractive to expose the parallelism to the compiler.
With automatic parallelization and automatic vectorization, the compiler can
do the heavy lifting. Sadly, it is hard to write code that compilers can optimize
well given the large complexity of compilers.

We have developed a tool Kommentator that can assist programmers in under-
standing how compilers optimize and even give advice on source code changes
that could allow for more aggressive optimization. Many such tools exist, but
we believe that one key difference will make our tool more usable, namely the
number of false positives and true positives. Programmers will only use a tool
if it is cost effective and a good use of their time. If only one out of many com-
ments can successfully be applied it is not effective. In contrast to other similar
tools, we use input from multiple compilers, allowing us to produce fewer false
positives while still producing many true positives. We believe this is key for a
wider adoption of optimization advice tools.

Kommentator works by parsing the optimization reports from multiple compilers
and use insight that if one compiler succeeded in optimizing, the others could
potentially as well. In this way, if one compiler succeeds in optimizing, even just
partially, we might be able to modify the original source code such that more
optimizations can be applied. We are able to filter the number of comments
generated by three compilers with 87.6%, resulting in an amount of comments
that is easier to handle and focus on for the programmer.

Our current implementation supports the optimization reports from three major
production compilers ICC [Int], GCC [Fou] and Clang [The]. Each of these has
optimization reports, which describe the applied optimizations and the missed
optimization. We analyze these reports in our plugin, built into the Eclipse
Integrated Development Environment. Combined with our own analysis we can
suggest automatic source code refactorings to the programmer. We also visualize
how the different compilers have optimized the code by coloring the source code,
giving a very quick overview of where the programmer’s time is best spent.

To summarize, this chapter makes the following contributions:

• We propose a novel compiler driven feedback model based on input from
multiple compilers.

8.1 Multi-Compiler Feedback Tool 97

• An implementation supporting optimization reports from ICC, GCC and
Clang.

• Show how we are able to filter 87.6% percent of the compiler generated
comments.

• Last, we study an industrial use case and achieve a speedup factor of 1.54
over an OpenCV implementation executing on a GPU by optimizing the
version of the use case targeting the CPU.

The chapter is laid out as follows. The tool is described in section 8.1. Ex-
perimental results are analyzed in section 8.2. Last, section 8.3 concludes the
chapter.

8.1 Multi-Compiler Feedback Tool

Our tool is based on the optimization reports from production quality compilers.
These can report applied optimizations and missed optimization.

We currently support input from three compilers, namely ICC from Intel and
the two production quality open source compilers GCC and Clang as seen in
Table 8.1. The versions are the newest at the time of writing. The optimization
report feature is new in GCC and Clang and thus has limited support for the
number of optimization passes it can produce feedback from. Therefore, we focus
on automatic vectorization of loops, an optimization that is very important for
good performance on modern processors.

There are many limitations to automatic vectorization as it involves numerous
advanced analysis steps. Every compiler performs roughly the same steps, how-
ever as the implementations vary they each has strengths and weaknesses. Some
of the types of analysis that needs to succeed are: identification of loop bounds
and stride, induction variable analysis to determine dependencies between loop
iterations and alias analysis to again to determine dependencies within and be-
tween loop iterations. These three analyses are used as input into the actual
data dependency analysis. For each of these analyses there exists many weak-
nesses, some of which can be addressed at the source code level. We propose
automatic refactorings to the programmer to mitigate these limitations. One ex-
ample is how we can help alias analysis by specifying that two memory locations
are distinct using the C99 restrict keyword. We reuse many of the automatic
refactorings shown to be effective in earlier research [JKP14b]; [Lar+12]. The
tool process is twofold as seen in Figure 8.1:

98 Compiler Feedback using Multiple Compilers

Table 8.1: Supported compiler versions and compiler flags

Compiler Version Flags

ICC Intel Composer XE
2015 [Int] -opt-report

GCC GCC 5.3 [Fou] -fopt-info-optall
Clang Clang 3.5.0 [The] -Rpass=.*

void filter(int input[N][N], int kernel[K][K],
int output[N][N]) {
 int sum;
 for(int r; r<N; r++) {
 for(int c; c<N; c++) {
 sum = 0;
 for(int i=0; i<K; i++) {
 for(int j=0; j<K; j++) {
 sum += input[i*r][j*c]*kernel[i][j];
 }}

Eclipse X

The arguments input, kernel and
output may alias.

↳ Apply the restrict keyword

1. Compile and generate optimization reports

2. Parse reports and generate optimization
advice and code refactorings

Terminal

~$ make
icc -opt-report main.c
gcc -fopt-info-optall main.c
clang -Rpass=.* main.c
~$

Optimization
reports

Figure 8.1: Overview of tool process.

1. First the programmer has to manually change the build system, such that
the program is compiled with multiple programs and with the additional
compiler flag for producing optimization reports. We are working on au-
tomating this step. The flags used for all later examples are shown in
Table 8.1.

2. Second we parse the optimization reports in our Eclipse plugin, aggregate
all the comments based on loops, filter them based on how each compiler
optimized and display the overview and proposed automatic refactorings
to the programmer.

The plugin is based on Eclipse Kepler 4.3. The first step is to parse the optimiza-
tion reports generated by the compilers. Correlating the comments presents a
challenge in itself, for multiple reasons. Different coding styles must be handled
as seen in Figure 8.2. Comments from different compilers may refer to same
loop, but different source code lines. We handle this by relating each comment
to a loop instead of a source line. This is based on a simple algorithm that
first finds loops and loop nests, and their corresponding source code line ranges.
This implementation assumes that we only have one loop per source code line.
One last issue handled is how comments for inlined function calls are handled.
Depending on the compiler, these may be described as corresponding to the call
site or the function itself.

8.1 Multi-Compiler Feedback Tool 99

for (int i=0; i < N; i++)

(a) No opening brackets

for (int i=0; i < N; i++)
{

(b) Brackets on the subsequent lines

LOOP BEGIN
at file.c(1)
remark #15300:
LOOP WAS VECTORIZED

LOOP END

(c) ICC comment referring to line 1

file.c:3: loop vectorized

(d) GCC comment referring to line 3

Figure 8.2: Issues encountered when correlating compiler comments. In (a)
and (b) different coding styles must be handled. In (c) and (d)
comments from different compilers refers to the same loop, but
different lines numbers in the source code.

After aggregating comments, we classify how each compiler has optimized into
three categories: not vectorized, partially vectorized or fully vectorized. We
present this classification directly in the IDE to the programmer using colored
source code lines. We color the Eclipse marker bar either green, orange or red
depending on how many compilers optimized. In this way we do not overwhelm
the programmer with too much information and if more information is desired,
hovering over a marker bar will present the classification and the individual
compilers comments as seen in Figure 8.3.

For producing advise to the programmer we use a set of rules, detecting issues in

Figure 8.3: Screenshot of the visualization of how the different compilers vec-
torize. By hovering over the source line the compiler feedback will
be displayed.

100 Compiler Feedback using Multiple Compilers

the compilation output and suggesting a refactoring potentially leading to more
aggressive optimization. We only directly support targeting the GCC compiler,
but advise for any compiler can be generated by overcoming the challenge in dif-
ferent optimization output and supported directives. The following limitations
can be mitigated with the supported automatic refactorings:

• Aliasing by suggesting static and global arrays or automatic refactoring
for restrict keyword.

• Data alignment by suggesting adding alignment attribute.

• Data dependency by compiler specific pragmas making the compilers as-
sume no loop carried data dependency.

• Profitability by suggesting pragmas for forcing vectorization.

• Suggesting linking against a math library with vector implementations.

• Suggesting permuting loop order.

• Suggest inlining using the C99 keyword.

• Side effects of function call using the pure attribute.

Besides these, the tool will show issues with optimizing that the programmer
can combine with his knowledge of the application.

8.2 Experimental Evaluation

We have studied the C benchmarks from the SPEC CPU2006 benchmark suite [Hen06]
in total 11 benchmarks: 401.bzip2, 403.gcc, 429.mcf, 433.milc, 445.gobmk,
456.hmmer, 458.sjeng, 462.libquantum, 464.h264ref, 470.lbm and 482.sphinx3.
These benchmarks consist of 494.709 lines of C code and contain 30.370 loops
that can potentially be optimized. We use the compilers ICC, GCC and Clang
with the versions seen in table 8.1. Each compiler targets the Intel Haswell plat-
form. Out of the total 30.370 loops in the benchmarks, only 8829 loops produce
any comments by some compiler. This is mainly due to the large amount of
optimization done in the compilers, e.g. full loop unrolling will eliminate a loop.

The number of loops each compiler vectorized is shown in Figure 8.4. We see
how ICC from Intel is clearly dominating with 805 vectorized loops, where GCC
and Clang vectorized 335 and 260 loops respectively. We also see how GCC and

8.2 Experimental Evaluation 101

116

648 79

61
67

29

91

GCC

ClangICC

Figure 8.4: Venn diagram of how many loops the three compilers, ICC, GCC
and Clang have vectorized among the loops in the 11 C bench-
marks from SPEC CPU2006.

Clang optimize many loops that ICC does not, it may be a missed optimization
in ICC or that it is actually not beneficial to do so.

We intend to use this data in a loop ranking mechanism that ranks all loops
based on how likely it is a suggested refactoring is going to succeed and im-
prove performance. We use profiling data to rank hot loops and answer how
worthwhile a closer inspection is. We use compiler reports to rank loops on
how likely it is a refactoring is going to succeed. This means we can focus the
programmer’s attention on hot loops that are not optimized fully by his chosen
compiler, but by another compiler. These loops are good candidates for making
the suggested automatic refactorings cost effective.

In this way see how for example ICC could have vectorized 286 additional loops,
GCC could have vectorized 756 additional loops and last Clang could have
vectorized 831 additional loops. If the programmer only target one specific
compiler, the amount of compiler feedback is possible to handle given that these
are derived from 11 benchmarks. For all compilers the loops with feedback have
reduced the number of loops with feedback from 8829 loops to 1091, an 87.6%
reduction.

102 Compiler Feedback using Multiple Compilers

In the previous Chapter 6 and Chapter 7 we have shown the benefit of automatic
refactorings that allows the compilers to optimize more aggressively. One result
is the speedup achieved by adding the restrict keyword from C99 to an edge
detection kernel from the UTDSP Benchmark Suite [Lee]. This comment is
not filtered out by our tool, and can help GCC with an automatic refactoring
allowing it to vectorize one loop giving a 140% speedup [JKP14b]. Multiple
related works presents other use cases with good speedups [Jen+12b]; [Lar11];
[Lar+12].

We have applied our tool to the extended Test Suite for Vectorizing Compilers,
TSVC [Mal+11]. We were able to vectorize an additional 30 loops by introducing
source code directives for forcing vectorization due to profitability and ignoring
data dependencies, permuting the loop order and introducing further alignment
and aliasing hints. These changes led to an improvement in performance of 5.7%
for GCC on an Intel Core i7-3517U with AVX @ 1.90GHz.

To give more precise data it would be very relevant to add more compilers and
platforms. This could include XLC from IBM on the Power architecture. With
input from more compilers it would be possible to give extra priority to loops
that are optimized by multiple other compilers.

8.2.1 Case Study: Kolektor’s RoughnessMeasurements Ap-
plication

We also study applying our tool to an industrial use case from Kolektor. The
use case is called RoughnessMeasurements and is one of the programs used by
Kolektor to evaluate a texture using machine learning as part of their quality
control in the production line for commutators.

The use case has two main computationally intensive parts: one recalculates a
regression tree model with a set of images using supervised machine learning.
The other processes an incoming image and classifies it as “OK” or “NOK”. The
costliest part is recalculating the model so we have focused on this part. A set
of 300 images are used to recalculate the regression tree model. The program is
written in C++ using OpenCV [Bra00] library calls. The OpenCV routines are
optimized using CUDA to accelerate it for executing on a GPU. The program
contains several image processing steps for extracting properties later fed to the
machine learning library. We focus on the extraction part of the program as
it is the costliest part. The machine learning is performed using the WEKA
machine learning suite [Hal+09].

To evaluate DTU Kommentator within COPCAMS, we report on our experi-

8.2 Experimental Evaluation 103

Table 8.2: Experimental Machine Specification

Processor ARM Cortex-A15 32bit
Frequency 2.3 GHz
Cores 4
Caches 32 KiB L1D, 4 MiB L2
Processor vector capabilities NEON 128-bit SIMD
OS Linux 3.10-40
Compiler GCC 5.3

ences applying Kommentator to the Roughness Estimation use case provided
by Kolektor and JSI within T5.2. This use case is one of the main COPCAMS
project demonstrators.

The Roughness Estimation program runs on a NVIDIA Tegra TK1 embedded
development kit. The NVIDIA Tegra TK1 combines a performant embedded
ARM processor and a modern GPU. See Table 8.2 for the system specification.
The host processor is a quad-core ARM Cortex-A15, each core has a 128-bit
NEON SIMD vector processing capabilities making it very capable. We do not
report power usage of the NVIDIA Tegra TK1 as the board does not have any
power measurements facilities, neither dedicated power rails for measuring or en-
ergy sensors built into the board. We could have measured the power consump-
tion of the entire board, but the power consumption of the other components
on the board would dominate a significant part of the power consumption. We
focus on optimizing the costliest part of recalculating the regression tree model.
The dataset of 300 images are loaded from either an internal eMMC, which in
speed is comparable to an SD card. The entire recalculation takes around 110
seconds.

The RoughnessMeasurements application applies a box filter a size of 1 x 50
pixels on each grayscale image. This filter by far takes up the most significant
part of the computation time and we therefore focus on optimizing it. A box
filter is a linear filter used for blurring, it computes the average of all pixels in
a rectangle around a pixel.

The original unmodified program used the OpenCV implementation of box
filter. The OpenCV implementation uses the NVIDIA Performance Primi-
tives (NPP). NVIDIA has released NPP as a collection of GPU accelerated
processing functions. The box filter implementation in NPP only supports
NPP_BORDER_REPLICATE, but OpenCV and RoughnessMeasurements require the
BORDER_REFLECT_101 setting. The first setting clones the outermost pixel,
whereas the other reflects several pixels as a border. Before calling the NPP
library call, OpenCV creates a copy of the image with the required reflected

104 Compiler Feedback using Multiple Compilers

Figure 8.5: Example feedback from Kommentator, here we can apply the C99
restrict keyword.

borders to produce the same results.

The first step for applying Kommentator to the use case was to replace the
OpenCV box filter, using Nvidia NPP GPU optimized libraries to perform the
filter, with a sequential C version. This allows us first to modify the source and
target the host CPU instead of the GPU. The sequential version only works on
gray scale images, whereas the OpenCV box filter operates on multiple types of
images.

Next, we analyzed the naïve implementation of a box filter using Kommentator
and found that the arguments src and dst potentially could alias. This was
blocking several optimizations, most importantly automatic parallelization. The
feedback from Kommentator can be seen in Figure 8.5. As suggested we apply
the C99 restrict keyword to the arguments using the suggested automatic
refactoring. After applying the C99 restrict keyword GCC can automatic
parallelize the box filter. Using four threads, we obtain an execution time of 17
seconds. This is slightly slower than using OpenCV optimized for GPU.

Finally, even though the box filter has been parallelized, several other impor-
tant optimizations cannot be applied. For example, automatic vectorization is

8.3 Conclusions 105

0

5

10

15

20

25

30

1 2 4

E
xe

cu
tio

n
tim

e
[s

]

Threads

OpenCV (NPP) GCC Restrict Specialized

Figure 8.6: Box filter execution time on the Jetson TK1.

not applicable because of an unsupported reduction. Kommentator display a
comment describing how the reduction was not supported. To mitigate this,
we use fact that the applied filter is one dimensional. This allows us to remove
one loop nest. This transformation allows GCC to unroll an inner loop and
vectorize parts of the loop. This specialized version of the box filter leads to
an execution time of 10 seconds using four threads. This is a speedup factor of
1.54 over the OpenCV GPU version. The speedup of the different versions can
be seen in Figure 8.6.

8.3 Conclusions

Many applications rely on optimizing compilers for performance. Unfortunately,
they are often not written in a way that allows compilers to optimize aggres-
sively. Tools that help programmers write code in a way that the compilers can
understand are important. However, tools that do this often have many false
positives leading to programmers not using them, as they are simply not cost
effective.

To this end we introduce how the feedback of multiple compilers can be used as
a filtering mechanism, reducing the number of false positives by only showing

106 Compiler Feedback using Multiple Compilers

the most promising comments. Using a simple filtering we are able to achieve
an 87.6% reduction in comments. This is a significant step in the direction
of making compiler driven automatic refactorings cost effective. This address
Research Question 2 by showing that it is possible to use the existing compiler
optimizations reports for generating feedback to programmers. Furthermore,
contributing to Research Question 4 we see on a case study how we are able to
both automatically parallelize and automatically vectorize the use case. These
changes lead to high performance yielding a speedup factor over the OpenCV
based GPU implementation of 1.54.

Chapter 9

Improving Loop
Dependence Analysis

In the previous chapters we have seen how compiler feedback can help program-
mers refactor their source code to allow more aggressive compiler optimizations.
In this chapter we focus on improving the underlying dependence analysis as it
is the heart automatic vectorization.

Loop dependence analysis is the basis for many compiler optimizations. We
explore how we can improve the loop dependence analysis by using the infor-
mation given by the programmer for parallelization of worksharing loops. We
have implemented our worksharing aware dependence analysis and an automatic
vectorization pass making use of it in GCC. We evaluate our work on a subset
of the Rodinia benchmark suite, and improve the amount of correctly classi-
fied dependences with 133% and show an average speedup of 1.46 compared to
GCC’s current automatic vectorization pass. We thus seek to answer Research
Question 7 by studying the accuracy of the existing loop dependence analysis
in GCC. We seek to answer Research Question 8 and Research Question 9 in
our evaluation of our improved dependence analysis.

Since 2005, the historically exponential clock frequency increase of processors
has leveled off. Programmers can no longer expect new generations of processors
to have a higher clock frequency than previous generations. This also means

108 Improving Loop Dependence Analysis

that we need to look at other means than the clock frequency to improve single
thread performance.

One of the most transparent ways of improving performance is to improve the
compiler. The compiler can automatically analyze, optimize and transform our
programs into versions that execute faster and use less energy. The basis of
many important compiler optimizations is data dependence analysis.

There is a data dependence between statements if they access a shared mem-
ory location and at least one of the statements writes to the location. Data
dependences impose a constraining execution ordering on the program, as it
may not be legal to reorder dependent statements or execute them in paral-
lel. Unfortunately, data dependence analysis is hard and often fails in practice.
The analysis fails due to unanalyzable program constructs where static program
analysis cannot give a precise enough approximation to determine whether an
optimization is legal and profitable. In general, solving the dependence problem
statically is intractable [KA02].

Many optimizations rely on data dependence analysis. For example, loop in-
terchange, automatic parallelization and automatic vectorization [KA02]. Au-
tomatic parallelization is the process of automatically converting a sequential
program into a multi-threaded version. Similarly, automatic vectorization is the
automatic conversion from a sequential program to a vector implementation.

In this chapter, we focus on improving data dependence analysis and its im-
pact on automatic vectorization. We supplement the data dependence analysis
with OpenMP worksharing information to improve the analysis precision. This
improves the amount of correctly classified dependences from 29% currently in
GCC 6.1 to 69% with our analysis. Our improved data dependence analysis en-
ables compilers to improve vectorization of many benchmarks, yielding speedups
of up to 6.4.

9.0.1 Contributions

To summarize, we make the following contributions:

• An improved loop dependence analysis utilizing worksharing loop infor-
mation.

• A prototype implementation in GCC 6.1 complementing the existing au-
tomatic vectorization optimization passes.

9.1 The Automatic Vectorization Problem 109

• Thorough evaluation using a set of benchmarks from the University of
Virginia Rodinia 3.1 benchmark suite showing speedup factors of up to
6.4.

The chapter is laid out as follows. Automatic vectorization is introduced in Sec-
tion 9.1, followed by an introduction of OpenMP in Section 9.2. Our approach
and prototype is presented in Section 9.4. Experimental results are analyzed in
Section 9.5. We discuss how we specifically are improving upon state-of-the-art
in Section 9.6 and conclude the chapter in Section 9.7.

9.1 The Automatic Vectorization Problem

Most of the major modern processors have adopted single instruction multiple
data, SIMD [Rus78], extensions to their instruction set. For example, Intel
processors support the MMX, SSE and AVX SIMD extensions [Int15b], with
AVX-512 extensions supported on their newest processors. The current trend is
to have wider vector execution units, more vector registers and richer instruction
extensions.

SIMD have high theoretical computational throughput but using the vector units
also incurs several additional overheads. SIMD operations can only access data
that is packed correctly in vector registers. To load and store vector registers,
conventional SIMD platforms incorporate mechanisms for memory operations
of both contiguous accesses, strided accesses, indirection accesses and condi-
tional masked accesses. These different memory access types are illustrated in
Figure 9.1.

Furthermore, SIMD extensions include shuffle operations for data in vector reg-
isters. These shuffle operations can be expensive if required for each iteration
in a loop.

Several forms of automatic vectorization that complement each other are nor-
mally implemented in compilers: loop-level automatic vectorization and basic-
block level automatic vectorization. Loop-level automatic vectorization ana-
lyzes a loop to determine all dependences within and across iterations and to
determine whether the form of the loop is supported by the compiler and the
underlying target hardware. Last, it also determines whether vectorization is
profitable before generating the vector instructions. An example of a loop and
its vectorized and sequential versions can be seen Figure 9.2. In each iteration of
the vectorized loop, eight scalar iterations are executed. The potential speedup

110 Improving Loop Dependence Analysis

0 1 2 3 4 5 6 7

0 1 2 3

2 1 4 3

1 2 5 6

Contiguous access: A[i:i+8]

Strided access: A[i:i*S,S]

Indirect access: A[B[i:i+8]]

Conditional access: if(mask) A[i]

0 1 1 0 0 1 1 0 Mask
Memory

Memory

Memory

Memory

Figure 9.1: Memory access types for the SIMD units.

of this transformation is thus eight. In practice, the theoretical speedup is rarely
achieved as vectorization adds overhead for many operations.

Analyzing the dependences of memory operations between loop iterations is
hard when automatically vectorizing sequential loops. Depending on the type
of the loop carried dependence, its direction and distance vector, it may be illegal
to vectorize. For example, for a negative direction vector it is not possible to
vectorize. For a zero direction vector it is legal to vectorize for self-dependences
and lexically backward dependences. For a positive direction vector all types of
dependences can be vectorized.

Other reasons preventing automatic vectorization are aliasing issues where sev-
eral pointers might point to the same memory, mixed data types, unsupported
vector operations or an unknown number of iterations.

9.2 OpenMP Application Programming Interface

OpenMP is an Application Programming Interface, API, for developing paral-
lel applications. OpenMP consists of a set of compiler directives, also called
pragmas, and library routines. Worksharing loops annotated with OpenMP

9.3 Using OpenMP Information in Compiler Optimizations 111

1 /* Sequential */
2 for(int i=0; i<N; i++) {
3 A[i] = B[i] + C[i];
4 }
5
6 /* Vectorized */
7 for(int i=0; i<N;i+=8) {
8 vmovapd (%rdx ,%rax ,1) ,%ymm0
9 vaddpd (%rsi ,%rax ,1) ,%ymm0 ,%ymm0
10 vmovapd %ymm0 ,(%rdi ,%rax ,1)
11 }

Figure 9.2: Example of a sequential and vectorized version of the same loop.

directives such as a for loop, allows the compiler and runtime to assume the ab-
sence of dependences between loop iterations, i.e., each iteration of these loops
can execute in parallel.

A sequential program specifies a total execution ordering describing the happens-
before relationship. For a loop with memory operations, the order of these has
to comply with the memory model. For an OpenMP worksharing loop, the
parallel semantics define a partial execution where each iteration of the loop
can be executed independently. If the loops actually contain loop-carried de-
pendences, and each iteration is not allowed to execute in parallel, the program
is non-confirming and a compliant implementation may exhibit unspecified be-
havior [Boa15].

9.3 Using OpenMP Information in Compiler Op-
timizations

The information in the directives is key to overcome the limitations of static
analysis present in state-of-the-art compilers today when it comes to depen-
dence analysis. The directives allow the compiler to assume no dependences for
worksharing loops and execute the individual iteration in any order.

Compliant OpenMP program will execute correctly with our proposed anal-
ysis, but might change the behavior of incorrect OpenMP programs. The
OpenMP specification defines non-compliant programs as having undefined be-
havior [Boa15].

112 Improving Loop Dependence Analysis

The OpenMP specification does not specifically mention the legality or allowed
use of OpenMP information in compiler optimizations. OpenMP information
is used in all OpenMP compliant compilers to perform the required transfor-
mations when implementing the OpenMP directives. Further, many compilers
perform some optimizations as part of their OpenMP lowering where they map
from OpenMP to their intermediate representation.

Pop et al. describes how explicitly parallel programs are implemented using
lowering from the explicitly parallel format to a thread based implementation
without maintaining the original information in the directives during optimiza-
tions as for example done in GCC [PC10]. Further, they describe how optimizing
on this lower level representation is an obstacle for optimization. For example,
we could imagine that a compiler could vectorize a regular loop, but if turned
into an OpenMP worksharing loop the compiler cannot automatically vectorize
it anymore due to the representation. To this end, Pop et al. suggest maintain-
ing the original directive information through the compilation, and lower the
representation much later in the compiler. In this chapter we adopt a hybrid
approach where we let the compiler perform its original lowering, but also save
key OpenMP worksharing information for use later in the compiler.

Chatarasi et al. also utilize information from explicitly parallel OpenMP pro-
grams in their optimizer [CSS15]. They incorporate executions orderings from
explicitly parallel programs and broaden the range of legal transformations for
explicitly parallel programs in a polyhedral optimizer.

Furthermore, unless the monotonic specifier is used, individual chunks of iter-
ations can be executed in any order. The OpenMP 4.5 specification makes this
clear:

“Note —The next release of the OpenMP specification will include
the following statement:

Otherwise, unless the monotonic modifier is specified, the effect will
be as if the nonmonotonic modifier was specified.”

Furthermore, if the program depends on any execution order of the chunks then
the behavior of the program is unspecified.

The information in the directives is key to overcome the limitations of static
analysis present in state-of-the-art compilers today when it comes to depen-
dence analysis. The directives allow the compiler to assume no dependences for
worksharing loops and execute the individual iteration in any order.

9.4 Our Approach to Dependence Analysis and Automatic Vectorization113

#pragma omp parallel for
for(int i=0; i<N; i++) {

foo(A,B,i);
B[i] = A[i] + 1;

}

void foo(A, B, i) {
A[i] = B[i-1] * B[i-1] - 1;

}

Figure 9.3: Example of an erroneous non vectorizable loop with a possible
dependence between loop iterations. Considering the OpenMP
#pragma a compliant OpenMP implementation is free to assume
that foo does not add dependences.

For an inner loop, such as in the example in Figure 9.3, the compiler cannot
figure out that the entire loop can be vectorized unless it also analyzes the
call site. There are many ways to handle such an analysis, but it is often
impossible, for example if foo is defined in another compilation unit and if link
time optimization is not enabled. The compiler has to assume that the function
call to foo can add loop-carried dependences preventing vectorization. We also
show how foo could be defined, in Figure 9.3, adding an anti-dependence for
the read and write of B.

OpenMP 4.0 [Boa13] added support for programmer-guided vectorization with
the #pragma omp simd construct. We believe that OpenMP 4.0 is a significant
step forward, but is still limited in supported loop constructs and puts a bigger
burden on the programmer.

9.4 Our Approach to Dependence Analysis and
Automatic Vectorization

To improve precision of data analysis, we supplement the analysis with OpenMP
worksharing information. A worksharing construct divides the execution of
a code region, for example a loop, among a team of threads. Worksharing
information allows the compiler and runtime to assume an execution ordering.
The compiler is allowed to assume no loop carried dependences between the
iterations of a loop.

114 Improving Loop Dependence Analysis

The novelty in our approach is how we utilize the parallel worksharing infor-
mation the programmer has specified for parallelization. Our analysis uses the
existing worksharing constructs to improve the precision of dependence analysis
and automatic vectorization.

9.4.1 Overview

Our dependence analysis and automatic vectorization transformation are im-
plemented as a GCC optimization pass. The pass is placed right before the
existing loop vectorizer, as we utilize a significant part of the infrastructure
from the existing loop vectorization pass. We have implemented our work as
a new pass. The supported loop forms are limited are in the existing GCC
automatic vectorizer. We support Intel SSE4 and AVX SIMD extensions.

OpenMP defines confining worksharing loops as canonical loops [Boa13]. For
these loops, the loop index induction variable “must not be modified during the
execution”. Furthermore, the loop nest must consist of structured blocks. A
structured block is a series of statements with a single entry and a single exit or
another OpenMP construct. The entry to the block cannot be due to a setjmp.

For an inner loop in the canonical loop form with an OpenMP worksharing
annotation, our analysis works by determining the following:

1. Dependences on memory references

2. Vectorization factor

3. Loop-induction variables

4. Operations

9.4.2 Dependence Analysis

We have extended the existing loop-dependence analysis in GCC and made it
OpenMP workshare aware.

The existing dependence analysis in GCC works in two steps. First, it goes over
all pairs of memory references and initializes book keeping data structures for
each. Afterwards, it calculates actual dependences. Each pair is initialized to
either chrec_known, chrec_dont_know or NULL_TREE. A chrec_known means

9.4 Our Approach to Dependence Analysis and Automatic Vectorization115

it has been determined that no dependences exist between a pair of references,
i.e. not aliased. A chrec_dont_know means that the analysis was not able to
determine any useful dependences, i.e. may alias. Finally, NULL_TREE means
that there exists a dependence between a pair, i.e. must alias. The dependence
is represented as a distance vector and direction.

When initializing the dependence data structures, we supplement the analysis
with the information from the OpenMP worksharing annotations. If a reference
is only dependent on an outer worksharing loop, and not the inner loop, we
can determine that the pair does not have any dependences. This is due to the
OpenMP semantics where all iterations can be executed independently.

In a nested OpenMP worksharing loop, where the inner loops are not workshar-
ing loops, the inner loops have a sequential total execution ordering semantics.
This execution ordering is in general not vectorizable, unless an analysis can
prove that we can change the order of operations without affecting the result of
the computation.

The implementation and vectorizer prototype described in Figure 9.4 can also
be used for non OpenMP loops. The prototype is based on the existing vector-
izor [Nai04]. Compared to the existing GCC automatic vectorizers, we improve
the data dependence analysis for OpenMP worksharing loops. We are able to use
the partial execution ordering semantics for OpenMP outer loops and eliminate
undecided dependences in inner loops.

9.4.3 Prototype Overview

The vectorization factor is the number of scalar iterations of the loop performed
in a single vectorized iteration of the loop. We determine the vectorization
factor as having the largest data length appearing in the loop as a multiple of
the vector length. Thus, if the largest data type is a 32-bit integer and the
supported vector length is AVX2 with 256 bits, the vectorization factor will be
8.

As loops are in the canonical form as described in OpenMP [Boa13], we assume
in our analysis that the loop will have at least one induction variable. We deter-
mine the induction variable using a series of reaching definition steps. As part
of the transformation, we make sure to increment or decrement the induction
variable according to the vectorization factor.

We also iterate over all operations and determine for each whether the operation
is supported by the target. Finally, when generating the vectorized loop, our

116 Improving Loop Dependence Analysis

1 transform_loop(struct loop *loop)
2 {
3 FOR_EACH_STMT(loop , stmt)
4 transform_stmt(stmt);
5 transform_loop_iter(loop)
6 }
7
8 vect_analyze_loop (struct loop *loop)
9 {
10 loop_vec_info loopinfo;
11 if(! is_openmp_loop(loop)) return;
12 if(! analyze_VF(loopinfo)); return;
13 if(! analyze_data_refs(loopinfo)) return;
14 if(! analyze_data_ref_accesses(loopinfo)) return;
15 if(! analyze_operations(loopinfo)) return;
16 if(! analyze_profitability(loopinfo)) return;
17 transform_loop(loop);
18 }

Figure 9.4: Overview of our automatic vectorizer prototype.

optimization pass ensures the prologue and epilogue loops, as already emitted
by OpenMP, cover the necessary loop bounds.

An overview of our prototype optimization pass can be seen in Figure 9.4. We
start out by analyzing the loop nest. We determine whether it is an OpenMP
loop and what information was in the #pragma. Then we determine the vector-
ization factor, dependence analysis, using an OpenMP aware version of GCC’s
dependence analysis. Finally, we make sure the required operations are possible
and that it is actually profitable to vectorize the loop.

When GCC performs lowering of the OpenMP directives early in the compiler,
it translates the directives into a thread based version using the GCC interme-
diate tree representation. In this lowering, we save the original semantic of the
OpenMP directive and attach it to the loop nest for later use during compilation
as shown in Figure 9.5.

9.4 Our Approach to Dependence Analysis and Automatic Vectorization117

1 void foo() {
2 #pragma omp parallel for
3 for(i=0; i<N; i++) {
4 for(j=0; j<N; j++) {
5 A[I[i]][j] = A[I[i]][j] +
6 B[I[i]][j];
7 }
8 }
9 }

(a) Original sequential program.

1 foo._omp_fn .0 (struct .omp_data_s & restrict .
omp_data_i) {

2 int num_threads= __builtin_omp_get_num_threads ();
3 int thread_num = __builtin_omp_get_thread_num ();
4 #pragma omp parallel for
5 for(i=omp_lower (); i < omp_upper (); i++) {
6 for(j=0; j<N; j++) {
7 omp_data_i ->A[I[i]][j] = omp_data_i ->A[I[i]][j]

+
8 omp_data_i ->B[I[i]][j];
9 }
10 }
11 }
12
13 void foo() {
14 .omp_data_o .1.I = I;
15 .omp_data_o .1.B = B;
16 .omp_data_o .1.A =
17 __builtin_GOMP_parallel (foo._omp_fn.0, &.

omp_data_o .1, 0, 0);
18 }

(b) Lowered OpenMP program.

Figure 9.5: Expansion of OpenMP program early in the compiler, the high-
lighted pragma indicates that we store the pragma for later use in
the compiler.

118 Improving Loop Dependence Analysis

9.4.4 Control Flow

As was seen in Chapter 3, control flow was the biggest obstacle to automatic
vectorization across the benchmarks.

Control-flow is a significant hurdle to vectorization of loops. Divergence in
control flow between iterations pose a challenge when multiple iterations of a
loop is executing concurrently. If-statements can be replaced with a sequence
of predicated instructions, i.e. conditionally executed instructions, in a method
called if-conversion.

There are many obstacles to if-conversion. It can introduce faulting traps chang-
ing the program behavior and have to maintain the precise exception semantics.
Precise exceptions assert that the state of the processor is consistent before
and after a faulting instructions. Traps can be caused by writes in a read only
memory, accessing out-of-range memory, invalid pointers and division by zero.
To prove correctness of if-conversion the compiler relies on alias analysis and
dependence analysis.

Intel AVX2 SIMD extensions support masked loads and stores. If we have a
program with only small control-flow divergences, we will generate mask predi-
cates for the different paths. We use the built-in if-conversion optimization pass
in GCC, improve its dependence analysis. The if-conversion pass assumes it is
enough to calculate dependences only for variables defined inside the basic block
of the loop.

9.4.5 Memory Operations

Memory operations are important for vectorized loops. Intel AVX2 SIMD ex-
tensions incorporate mechanisms for memory operations with both contiguous
and strided accesses. We support either of these and use the existing GCC loop
analysis to determine stride sizes of memory operations.

9.4.6 Profitability

Vectorization is not always profitable. We model the cost of the original scalar
loops and the new vectorized loop.

Targets in GCC can implement cost functions for different types of statements;

9.5 Experimental Evaluation 119

scalar and vectorized. We query these and compare the values. We do not
transform the loop if it is not profitable.

9.5 Experimental Evaluation

We evaluate our proposed loop dependence analysis, automatic vectorization
approach and prototype implementation in GCC 6.1 to demonstrate its effec-
tiveness. We evaluate it by compiling, running and analyzing a set of C and
C++ benchmarks.

The main questions we seek to answer are:

• How well does dependence analysis in production compilers perform?

• Can our OpenMP aware loop dependence analysis, which utilizes work-
sharing information, be used to remove all dependences for worksharing
loops and many dependences even for inner loops with a worksharing super
loop?

• Will removing dependences lead to more loops being vectorized and more
vector instructions being executed dynamically?

• What is the impact of our approach on performance and the total energy
consumption?

We answer the first point by analyzing benchmark loop dependences with static
analysis and comparing it to results obtained with dynamic analysis. We study
the second point by comparing our OpenMP aware dependence analysis with
the ideal dependences obtained with dynamic analysis. Last, we study the exe-
cution time of the benchmarks and evaluate the speedup obtained. To study the
achieved performance, we analyze the cache performance and the dynamically
executed instructions.

The benchmarks all make use of OpenMP worksharing. Some benchmarks make
use of explicit vectorization using OpenMP. We use these explicitly vectorized
benchmarks as a baseline to compare the performance of our automatic vector-
ization optimization.

120 Improving Loop Dependence Analysis

9.5.1 Experimental Setup

We use benchmarks from the University of Virginia Rodinia 3.1 Benchmark
Suite [Che+09]. The benchmark suite contains a collection of parallel programs
for heterogeneous platforms with multi-core CPUs and GPUs. We evaluate our
loop dependence analysis and vectorization optimization on the multi-core CPU
benchmarks that use OpenMP worksharing.

We use seven benchmarks in our analysis and evaluation. They represent a
wide range of applications in fields from fluid dynamics to grid traversal. The
benchmarks show cases where our analysis can improve the results and cases
where existing approaches already give good results.

CFD Solver is a fluid dynamics application that calculates compressible flow for a
finite volume using three-dimensional Euler equations. The main computational
kernel in the solver is an unstructured grid computation.

HotSpot is a physics simulation used to estimate processor temperature based
on a floorplan and simulated power estimates. The main computation is a
structured grid kernel.

LavaMD is a molecular dynamics application that calculates particle potential
and relocation due to forces between particle. The main computation in LavaMD
is an N-body simulation.

LU Decomposition is a linear algebra application that calculates the solutions
of a set of linear equations.

Needleman-Wunsch is a bioinformatics application implementing a global op-
timization method for DNA sequence alignment. It represents a dynamic pro-
gramming type of computation.

Pathfinder is a grid traversal application for finding the shortest path in a grid
based on a dynamic programming computation.

SRAD is a diffusion method for ultrasonic and radar imaging applications. It
performs image processing, image extraction and image compression.

The inputs used when executing each benchmark is displayed in Table 9.2. For
most application we have used the standard inputs. For some we have scaled it
up to have at least seconds of computational time.

We analyze the vectorized benchmarks on an Intel R© Xeon R© CPU E3-1276

9.5 Experimental Evaluation 121

Table 9.1: Experimental Machine Specification.

Processor Intel R© Xeon R© CPU E3-1276 v3
Frequency 3.6 GHz
Cores 4
Caches 256 KiB L1D, 1 MiB L2 and 8 MiB L3
Memory 16GB DDR
SIMD AVX2 256 bit
OS Debian 8.4, Linux kernel 3.16.7
Compiler GCC 6.1, ICC 16.0.1

Table 9.2: Input sizes for the benchmarks.

Benchmark Input Seq. exe. time
CFD Solver 193 K Elements 11.5 s
HotSpot 16384 x 16384 grid, 2 iterations 0.9 s
LavaMD 1003 boxes 3.3 s
LU Decomposition 8000 x 8000 matrix 72.4 s
Needleman-Wunsch 8192 x 8192 matrix 9.6 s
PathFinder 1000000 x 1000 steps 9.4 s
SRAD 502 x 458 image, 1000 iterations 41.7 s

Haswell processor. The Haswell processor has 4 physical cores, capable of ex-
ecuting 8 threads with Intel Hyper-Threading. The processor supports AVX2
as well as previous SIMD extensions such as SSE4.2. The specification for the
processor and its memory hierarchy is described in Table 9.1.

Our prototype optimization pass is implemented in GCC 6.1. All benchmarks
are compiled with the -O3 optimization level flag. For comparison we also
compile and analyze the benchmarks with Intel’s ICC 16.0.1. Here we use the
-O3 optimization level flag as well.

We measure loop dependences, execution time, cache performance, energy and
dynamically executed instructions.

Accurate determination of the dependences for pairs of memory operations in
loops is important for many loop optimizations. We study the result of GCC’s
analysis and compare it with the ideal dependences. The ideal dependences are
obtained using dynamic analysis of all memory operations. This analysis is input
dependent, but for the benchmarks and loops we are studying, we have manually
determined that the dependences are not input dependent. The loop bounds
do not affect the loop dependences. We have instrumented the benchmarks to

122 Improving Loop Dependence Analysis

create traces of all memory operations. We study the traces offline to determine
and classify the dependences. We use the same inputs as used in all the other
experiments as described in Table 9.2.

Execution times are obtained by running the benchmarks 30 times using the
native input sets as provided in Table 9.2. The reported execution times are
the average means. All results are stable with negligible standard deviations
of less than 0.1% and absolute 95% confidence intervals within ±0.1 seconds.
The experimental machine is isolated and not connected directly to external
networks to reduce noise.

We conduct cache measurements using performance counters present in the
Intel processor. The counters are accessed through the Performance Application
Programming Interface, PAPI [Bro+00]. We obtain numbers for level 1 data
cache references and cache misses for loads and stores.

To measure energy, we use the Intel RAPL energy counters [Int15a] exposed
through Linux perf. We report power consumption by the entire processor
package including the cores and caches, and the processor core alone.

Finally, we have studied how many vector instructions are dynamically executed.
We instrument the applications using Intel’s Pin [Luk+05] with a custom Pin
tool counting how many times each basic block is executed. From this we
can derive counts for SIMD instructions and total executed instructions in the
parallel region. We do not use performance counters as the Haswell processor
does not include a suitable performance counter.

As obtaining cache numbers and measuring energy introduce a small overhead
proportional to the sampling rate, we obtain these numbers in separate runs for
each metric. Similarly, we obtain dynamically executed vector instructions in
separate runs as the Pin based instrumentation adds a large overhead.

9.5.2 Analysis of Dependences

First, we study the result of loop dependence analysis. It is very important for
many loop optimizations to determine the loop dependences between iterations.
For automatic vectorization it is furthermore important to determine whether
vectorization is legal when dependences exist.

We compare our OpenMP aware loop dependence analysis pass with the de-
pendence analysis in GCC. We look at dependences for inner OpenMP loops

9.5 Experimental Evaluation 123

considered for vectorization. Dependences are classified according to GCC’s
classification.

Each pair of dependences between iterations is classified as either not vectoriz-
able or vectorizable. Furthermore, these are divided into:

• Not vectorizable due to unsupported loop form.

• Unknown reason due to limitations in the analysis.

• Loop-carried dependences.

The vectorizable dependences are divided into no loop-carried dependences or
loop-carried dependence but vectorizable. An unknown dependence means the
analysis was not able to determine any useful dependences and there may exist
a dependence. For loop-carried dependences we further classify whether the
dependence can be vectorized, both with our vectorizer and the GCC loop vec-
torizer. The dependence analysis in GCC will return early for unsupported loop
forms, e.g. loops containing function calls with unsupported side effects. For
this reason, we have modified the dependence analysis to report the number of
dependences for unsupported loop forms. However, we are not able to classify
whether some of the dependences in these unsupported loop forms could actu-
ally be vectorized due to limitations in the analysis. Loop forms that are not
valid cannot be vectorized and correctly classifying dependences in these loops
would not improve vectorization.

The pairs of dependences, in inner loops of nested worksharing loops, can be
seen in Figure 9.6 for each benchmark. The dependences classified in percentages
can be seen in Figure 9.7. We present numbers for GCC’s dependence analysis,
our proposed worksharing aware dependence analysis (named improved) in the
Figure and the ideal dependences. The ideal dependences have been obtained
dynamically by analyzing all memory operations dynamically.

We define the precision as the fraction of correctly predicted vectorizable de-
pendences. As dependence analysis by design is conservative both methods
achieve a precision of one. This means that the analysis methods do not clas-
sify non vectorizable dependences as vectorizable. To describe how many of
the true ideal vectorizable dependences that each method correctly classifies as
vectorizable, we calculate the recall. We define recall as the amount of correctly
predicted vectorizable dependences compared to the ideal. The original depen-
dence analysis in GCC achieves a recall of 29% for all benchmarks, whereas our
worksharing aware analysis achieves a recall of 69%. This is a big improvement
without sacrificing the precision and thus correctness of the analysis.

124 Improving Loop Dependence Analysis

Overall, if we study dependences that are vectorizable and those that are not, we
go from 146 vectorizable dependences to 340. This is an increase of 133% more
dependences that can be vectorized. For non-vectorizable dependences we go
from 346 to 152 dependences, this is a decrease of 56%. We thus conclude that
for OpenMP worksharing loops our dependence analysis is very efficient. Even
when the worksharing annotation is not applied directly to the inner loop we
are studying, it still provides a significantly improved precision of the analysis.

There are several reasons behind the results depending on the benchmarks and
loops in the benchmarks:

PathFinder PathFinder contains one parallel loop dwarfing the execution
time. The loop has OpenMP worksharing annotation specified directly and we
can thus ignore dependences. For each pair of references, the compiler only has
to determine whether the access patterns can be vectorized efficiently. This al-
lows us to use the worksharing #pragma omp parallel for to enable automatic
vectorization.

CFD Solver The CFD Solver application contains three inner loops with
worksharing super loops. One loop in CFD can be unrolled completely. For
the statements in this loop, the worksharing annotation can be applied directly.
This aids the dependence analysis as OpenMP worksharing semantics can now
be applied directly.

One of the two other loops in the benchmark has been turned into a memory
copy. The last loop in the benchmark have a form that GCC does not support,
we can thus not analyze the data dependences in the loop.

HotSpot HotSpot contains two inner loops inside a worksharing loop. Our
dependence analysis can improve the amount of correctly classified data de-
pendences for both loops as parts of these loops independent of the inner loop
they are inside. Unfortunately, there are still many unknown dependences that
neither our analysis nor the existing analysis can handle the dependences.

LavaMD LavaMD contains one worksharing loop with several nested loops.
We analyze its inner loop. It contains several subscripted memory references.
We are able to apply the outer loop worksharing semantics to several variables.
The existing dependence analysis is then able to expand upon this and improve
the amount of correctly classified vectorizable dependences significantly. A few

9.5 Experimental Evaluation 125

dependences are only related to the inner loop and have a complicated access
pattern that is not vectorizable.

LU Decomposition The LU Decomposition benchmark contains two work-
sharing loop. Each worksharing loops contain several inner loops.

Out of the five inner loops, the existing dependence analysis in GCC can already
handle three of them. GCC determines that they contain dependences, which
are all vectorizable. With our improved analysis we can in many of the cases go
further and convert vectorizable dependences into no loop carried dependences.
In our case, this makes vector code generation straightforward.

Unfortunately, neither analysis methods can prove that all dependences in the
remaining two loops are vectorizable.

Needleman-Wunsch Needleman-Wunsch contain two worksharing loops each
with four loop nests inside, i.e., in total eight inner loop nests. Two of these
cannot be handled by the existing analysis in GCC due to their access patterns.
For the remaining loops, we apply the worksharing information from the outer
loops to several pairs of dependences. With this information, GCC is able to
prove that all the remaining pairs are vectorizable.

SRAD The SRAD benchmark contains two worksharing loops. Each work-
sharing loop contains one inner loop. GCC can handle many of the dependences
between iterations of the inner loops, but cannot determine if the many arrays
accessed are aliased. Due to the high number of aliased arrays GCC decides
not dynamically test these. But, the programmer’s assertion that these are
worksharing loops prove to the analysis that these aliases are not possible.

9.5.3 Automatic Vectorization Results

We compile and run each benchmark with Intel ICC 16.0.1 [Int] and GCC 6.1.
We compare the execution time of the following versions:

• Original automatic vectorization optimization in ICC.

• Original automatic vectorization optimization in GCC.

126 Improving Loop Dependence Analysis

0
20
40
60
80

100
120
140
160
180

GC
C

Im
pr
ov
ed

Id
ea
l

GC
C

Im
pr
ov
ed

Id
ea
l

GC
C

Im
pr
ov
ed

Id
ea
l

GC
C

Im
pr
ov
ed

Id
ea
l

GC
C

Im
pr
ov
ed

Id
ea
l

GC
C

Im
pr
ov
ed

Id
ea
l

GC
C

Im
pr
ov
ed

Id
ea
l

CFD	Solver HotSpot LavaMD LU		
Decomposition

Needleman-
Wunsch

PathFinder SRAD

#	
De

pe
nd
en
cie

s

Analysis	 and	Benchmark

Unsupported	 loop	 form	(Not	vectorizable) Unknown	 (Not	vectorizable)

Loop-carried	dependency	 (Not	vectorizable) Loop-carried	dependency	 (Vectorizable)

No	loop-carried	dependencies	 (Vectorizable)

Figure 9.6: Number of pairs of dependences and their classification using the
original GCC dependence analysis, our improved analysis and the
ideal dependences.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CFD	Solver HotSpot LavaMD LU		
Decomposition

Needleman-
Wunsch

PathFinder SRAD

De
pe
nd
en
cie

s

Analysis	 and	Benchmark

Unsupported	 loop	 form	(Not	vectorizable) Unknown	 (Not	vectorizable)

Loop-carried	dependency	 (Not	vectorizable) Loop-carried	dependency	 (Vectorizable)

No	loop-carried	dependencies	 (Vectorizable)

Figure 9.7: The percentages of the categories of dependences using the original
GCC dependence analysis, our improved analysis and the ideal
dependences.

9.5 Experimental Evaluation 127

0

0,2

0,4

0,6

0,8

1

1,2

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

ICC GCC Ours ICC GCC Ours ICC GCCSIMDOurs ICC GCCSIMDOurs ICC GCC Ours ICC GCC Ours

PathFinder LavaMD Needleman-Wunsch lud cfd SRAD

No
rm

.	e
xe
cu
tio
n	
im
e	
	w
.r.
t.	
GC

C	
1	
th
re
ad

Threads,	compilers	 and	benchmarks

Total Parallel	Region

Figure 9.8: Normalized execution time of each benchmark with Intel ICC,
GCC, hand-vectorized and our vectorization pass.

• Hand-vectorized using OpenMP SIMD pragmas for the benchmarks in
Rodinia that have been hand-vectorized.

• Our automatic vectorization optimization utilizing the improved loop de-
pendence analysis.

We execute each benchmark with one, two and four threads. The machine has
four physical cores. We do not take advantage of simultaneous multi-threading.
We measure the total execution time of the program and the execution time of
just the parallel region. The normalized execution time results are presented
in Figure 9.8. For some benchmarks ICC has the shortest execution time, for
some it is the hand-vectorized version and for some it is our automatically
vectorized version. The speedups of the respective parallel regions are presented
in Figure 9.9. We achieve speedup using one thread of up to 1.54.

For PathFinder our approach is the fastest. The improved dependence analysis
enabled vectorization as we also hoist out first iteration to the OpenMP pro-
logue loop. Neither ICC nor GCC are able to vectorize the benchmark. The
parallel region of the program only account for 5% to 17% of the execution time.
Allocating data structures and random number generation takes up a significant

128 Improving Loop Dependence Analysis

0

2

4

6

8

10

12

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

ICC GCC Ours ICC GCC Ours ICC GCCSIMDOurs ICC GCCSIMDOurs ICC GCC Ours ICC GCC Ours

PathFinder LavaMD Needleman-Wunsch lud cfd SRAD

Sp
ee
du
p	
w
.r.
t.	
GC

C	
1	
th
re
ad

Threads,	compilers	 and	benchmarks

Figure 9.9: Speedup of each benchmark with Intel ICC, GCC, hand-vectorized
and our vectorization pass.

part of the execution time. Using Intel ICC and one thread, PathFinder exhibits
a slowdown factor of 0.85 compared to GCC. Our vectorized version achieve a
speedup of 2.4 compared to GCC using one thread. When we scale the number
of thread to two and four, the speedup becomes smaller.

For LavaMD we can vectorize the innermost loop of its worksharing loop ex-
cept a function call to exp. However, doing so is not profitable as the function
call adds too much overhead and we do therefore not vectorize. Intel ICC and
GCC cannot fully vectorize the loop. We achieve the same performance with
our approach as GCC, as we decide to not vectorize this loop. Intel achieve a
significant speedup over GCC. This speedup is not due to vectorization. Even
at the lower optimization level (-O1), ICC produces faster code. This indicates
that ICC applied some basic optimizations more successfully than GCC. Study-
ing the assembly source code indicates that ICC avoids some rematerialization
compared to GCC.

We compare four versions of the Needleman-Wunsch benchmark as a hand-
vectorized version of it exist. We observe how the four versions exhibits similar
execution times even though the four versions are optimized quite differently.
For the original GCC version the compiler can automatically vectorize several of

9.5 Experimental Evaluation 129

the loops in the benchmark. However, mostly inner loops moving data around
are optimized. The hand-vectorized version of the Needleman-Wunsch bench-
mark has been annotated with omp simd pragmas on some of the inner loops in
the benchmark. All the loops that are hand-vectorized are converted to unrolled
memory copies as GCC can completely unroll the hand-vectorized loops. Our
improved analysis can also vectorize the same loops as were hand-vectorized.
Similar to the hand-vectorized version, these loops are later completely unrolled
and converted into memory operations in the compiler. This indicates that some
versions of the loops are simpler to analyze for the compiler and thus optimized
more aggressively in later stages. The computational part of the benchmark is
unfortunately not vectorizable as also determined in our analysis of the depen-
dences earlier.

For LU Decomposition, we also compare four versions including the hand-
vectorized version. For this benchmark, ICC generates executable code slower
than GCC with a slowdown of 0.8 for one thread. GCC is able to vectorize
three out of six of the inner loops in the benchmark. The hand-vectorized ver-
sion vectorize two additional loops and achieves a speedup of 2.2 over GCC
with one thread. Our improved analysis and optimization achieves a speedup
of 1.54 over GCC using one thread. The difference between the hand-vectorized
and our automatically vectorized version is due to one loop, where our analysis
cannot prove that the dependences are vectorizable.

In the CFD application, ICC achieves a lower execution time resulting in speedup
of 1.1 over GCC with one thread. GCC is already capable of vectorizing two out
of five inner loops in the benchmarks. Out of the three remaining loops, GCC
cannot analyze them because they contain many function calls and limitations
in the dependence analysis. The loops that it can vectorize are later optimized
to memory operation intrinsics. Our improved data dependence analysis can
improve the recall, but does not prove that all of any of the additional loops are
completely vectorizable making vectorization not profitable. Furthermore, the
strides of this loop makes the required memory operations expensive.

For the SRAD benchmark, the improved dependences in if-conversion and auto-
matic vectorization have enabled vectorization in GCC. The dependences were
hindering both if-conversion and automatic vectorization to succeed. The vec-
torized version achieves a significant speedup over the non vectorized version of
1.8 using one thread, and 6.4 using four threads. A OpenMP SIMD version does
not exist for this benchmark, and applying the SIMD pragma is not enough to
vectorize it due to limitations in the if-conversion used when enabling OpenMP
SIMD. Intel ICC achieves the best performance, with a speedup of 2.8 using one
thread. Both versions vectorizes the unaligned accesses, but the for ICC might
be due to other scalar optimizations or superior thread based OpenMP support.

130 Improving Loop Dependence Analysis

0

10

20

30

40

50

60

70

80

90

100

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

ICC GCCOurs ICC GCCOurs ICC GCCSIMDOurs ICC GCCSIMDOurs ICC GCCOurs ICC GCCOurs

PathFinder LavaMD Needleman-
Wunsch

lud cfd SRAD

Ex
ec
ut
ed
	A
VX

	in
st
ru
ct
io
ns
	o
ut
	o
f	t
ot
al
[%
]

Threads,	compilers	 and	benchmarks

Figure 9.10: AVX2 instruction usage dynamically measured using Pin.

9.5.4 Instruction Mix

We study the dynamic instruction mix to answer the questions of how efficient
vectorization is for the different benchmarks. Each benchmark has been instru-
mented with a custom Pin tool that counts basic blocks producing counts for
each instruction. We quantify the amount of AVX2 instructions executed. We
filtered the counts to remove the scalar AVX2 instructions. For example, scalar
floating point operations can be implemented with AVX2 instructions but we
are only interested in the SIMD instructions. These figures are presented in
Figure 9.10.

We observe that for PathFinder, GCC and Intel ICC have almost zero percent
SIMD instructions executed dynamically. For our vectorized version we have
between 32% and 33% percent SIMD instructions. This is due to the improved
dependence analysis that enabled vectorization of the benchmark as also indi-
cated by the speedup achieved.

For LavaMD we observe dynamically executed SIMD instructions for all ver-
sions. However, neither ICC, GCC or our version decided to vectorize the inner
loop. For all version the SIMD instructions are due to function calls to the

9.5 Experimental Evaluation 131

vectorized math libraries.

For Needleman-Wunsch, both ICC and GCC have some SIMD instructions.
The SIMD instructions are due to calls to memory copy intrinsics and does
thus not come from automatic vectorization. The only SIMD instruction ICC
have generated is the VMOVDQU instruction. Therefore, the SIMD usage is due
to an optimized move utilizing SIMD move instructions. In the hand vectorized
version, GCC decided to completely unroll the SIMD loops and turned the
loops into straight line memory copies. Similar, for our automatically vectorized
version these loops are unrolled completely after the optimization pass. This
optimization of unrolling is only applied to the hand-vectorized and our version
by GCC.

ICC has the highest amount of SIMD instructions, above 45%, for LUD. The
fastest version, the hand-vectorized, actually has fewer dynamically executed
SIMD instructions than ICC. To understand why, we also look at the instruction
mix for this benchmark. The SIMD instruction mix for LUD is presented in
Figure 9.11. We study the outliers for the AVX2 SIMD instruction mix and
observe the amount of VINSERTPS instructions in the ICC version. We also
study the memory operations of the different version as presented in Figure 9.12.
Here ICC and GCC have many 4-byte memory reads. For ICC, this is due to
simulated gather memory read instructions for several loops. Instead of reading
16 bytes or 32 bytes with one SIMD instruction, ICC reads 4 bytes at a time
into the SIMD registers. Exactly why ICC does this is not clear and it is not
possible to determine this with optimization reports available in ICC.

We also observe how both the hand-vectorized of LU Decomposition and our im-
plementation optimizing it have around 35% SIMD instructions. So even though
the programmer by hand have vectorized more loops in the hand-vectorized
version, the amount of executed SIMD instructions is within 2% between the
hand-vectorized and our version.

All versions make use of AVX2 instructions for CFD. Large parts of the bench-
mark are vectorized. Unfortunately, we are not able to vectorize the costliest of
the inner loops. For this reason, we do not see more SIMD instructions.

9.5.5 Cache Misses

We study the cache performance to analyze if vectorization affects the cache
performance. We measure store and load misses for the first level data cache
using hardware performance counters. The results are presented in Figure 9.13.

132 Improving Loop Dependence Analysis

0

5E+09

1E+10

1,5E+10

2E+10

2,5E+10

3E+10

3,5E+10

4E+10

#	
Ex
ec
ut
ed
	I
ns
tru

ct
io
ns

AVX	Instruction

ICC GCC SIMD Ours

1.278E+11

Figure 9.11: LUD AVX2 dynamically executed instructions mix.

0

1E+10

2E+10

3E+10

4E+10

5E+10

6E+10

#	
Ex
ec
ut
ed
	O

pe
ra
tio
ns

Memory	operation

icc gcc simd ours

2.37E+111.8E+11

Figure 9.12: LUD AVX2 dynamically executed memory operations.

9.5 Experimental Evaluation 133

0

10

20

30

40

50

60

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

ICC GCC Ours ICC GCC Ours ICC GCCSIMDOurs ICC GCCSIMDOurs ICC GCC Ours ICC GCC Ours

PathFinder LavaMD Needleman-Wunsch lud cfd SRAD

Ca
ch
e	
m
iss
es
	[%

]

Threads,	compilers	 and	benchmarks

L1D-Load-Misses L1D-Store-Misses

Figure 9.13: Cache miss rate for the first level data cache.

In general, we find that SIMD implementations can reduce the total number
of memory accesses, but the number of cache misses remain approximately the
same. Thus, vectorized implementations have a higher cache miss rate.

We notice this both for PathFinder and LU, where we get a significant increase
in both load and store misses for our implementation compared to ICC and
GCC.

9.5.6 Energy

We study the energy consumed to analyze if vectorization can reduce the energy
consumed. Vector units consume a lot of energy but are also very performance
efficient. With enough parallel efficiency, vector units can reduce the overall
energy consumption.

We measure the energy consumption using the Intel RAPL interface. The mea-
surements are presented in Figure 9.14. We observe that for benchmarks like
PathFinder and LU decomposition where we have successfully vectorized sig-
nificant parts of the benchmarks, we also reduce the energy consumption. For

134 Improving Loop Dependence Analysis

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

ICC GCC Ours ICC GCC Ours ICC GCCSIMDOurs ICC GCCSIMDOurs ICC GCC Ours ICC GCC Ours

PathFinder LavaMD Needleman-Wunsch lud cfd SRAD

No
rm

al
ize

d	
En
er
gy
	w
.r.
t.	
GC

C	
1	
th
re
ad

Threads,	compilers	 and	benchmarks

Energy	Package Energy	Core

Figure 9.14: Energy measured using the Intel RAPL interface.

PathFinder, we decrease the energy consumption of the entire processor package
with 57% over GCC using one thread. For LU Decomposition we decrease the
power consumption of the entire package by 47%.

9.5.7 Summary

Overall, we find that we can improve the precision of the loop dependence
analysis, improving the recall from 29% to 69%. Thus, improving the amount
of correctly classified pairs of dependences. This improvement can enable several
important optimizations to succeed. We have evaluated the effect on automatic
vectorization and find that we can achieve speedups up to 6.4 using four threads.
On average we achieve a speedup of 1.46. We also analyze why we do not
always observe speedups when the improved dependence analysis has enabled
automatic vectorization. Here we find multiple reason: from later optimization
passes replacing vectorized code with intrinsics, loop unrolling and profitability.

We observe it is not necessarily a correlation between the amount of SIMD in-
structions executed dynamically and the execution time. For example, for LU
Decomposition ICC generate an inefficient SIMD pattern when reading mem-

9.6 Discussion 135

ory. As expected, when using SIMD instructions efficiently we see significant
reductions in the power consumptions.

9.6 Discussion

OpenMP SIMD added support for manual vectorization using OpenMP direc-
tives [Boa13], being influenced amongst others by work from Caballero et al.
[Cab+15] and Klemm et al. [Kle+12].

We compare in the experimental section with all benchmarks in the Rodinia
Benchmark Suite where OpenMP SIMD has been implemented and do not
achieve speedups higher than OpenMP SIMD. There are several reasons for
this, but amongst other that the pragmas are only added to loops where the
programmer has determined it will lead to a speedup. However, with our ap-
proach we lessen the burden on programmers as we automatically enable many
of the optimizations otherwise requiring the programmer to reason about both
thread-level parallelism and SIMD parallelism.

9.7 Conclusions

In this chapter, we have introduced an improved loop dependence analysis and
evaluated it on a set of benchmarks. Using only static analysis, we increase the
number of dependences that can be proven to be safe for vectorization. This
improvement is due to applying the execution orderings made possible from
parallel worksharing loops in automatic vectorization. This answer Research
Question 6, Research Question 7 and Research Question 8 by comparing the
ideal dependences with reported dependences. The original dependence analy-
sis achieves a recall of 29% compared with our improved dependence analysis
achieving a recall of 69% for the selected benchmarks.

Our results show that not all applications experience speedup. Optimization
and speedups are limited by several factors: how vectorization friendly the
benchmark is, the profitability of vectorization and remaining limitations in the
analysis. On average, we achieve a speedup of 1.46 using one thread compared
to the existing GCC automatically vectorized version. This answers Research
Question 9 by showing the improvement made possible by the improved analysis.

As the data dependence analysis is the basis of many compiler optimization, we
believe the idea behind our improved analysis could be applied to more loop

136 Improving Loop Dependence Analysis

optimizations. Prime candidates are several loop optimizations such as loop
interchange, loop fusion, loop skewing and other important loop optimizations

Chapter 10

Prescriptive Parallel
Debugging

In the previous chapters we have seen how the compiler often refrains from
optimizing programs as determining whether a transformation is legal is hard
and it is often not possible to map applications efficiently to modern processors.
We see a similar challenge in debugging, where a gap exist between how the
programmer could most efficiently debug an issue and the existing debugging
methodologies.

Optimized compilation and efficient optimized debugging is a critical step in
the development of any parallel program. However, the traditional interactive
debugging model, where users manually step through code and inspect their
application, does not scale well even for current supercomputers due its central-
ized nature. While lightweight debugging models, which have been proposed as
an alternative, scale well, they can currently only debug a subset of bug classes.
We therefore propose a new model, which we call prescriptive debugging, to fill
this gap between these two approaches.

This user-guided model allows programmers to express and test their debugging
intuition in a way that helps to reduce the error space. Users are provided
with the ability to define their own debugging probes, which are monitored by
the system at runtime. The traditional, interactive debugging model, whereby

138 Prescriptive Parallel Debugging

users manually step through and inspect their application, does not scale well
even for current supercomputers. While lightweight debugging models scale
well, they can currently only debug a subset of bug classes. The prescriptive
debugging model fills the gap between these two approaches with a novel user-
guided approach.

Based on this debugging model we introduce a prototype implementation em-
bodying this model, the DySectAPI, allowing programmers to construct probe
trees for automatic, event-driven debugging at scale. In this chapter we intro-
duce the concepts behind DySectAPI and, using both experimental results and
analytical modeling, we show that the DySectAPI implementation can run with
a low overhead on current systems. We achieve a logarithmic scaling of the
prototype and show predictions that even for a large system the overhead of the
prescriptive debugging model will be small.

10.1 Motivation

Debugging is an important capability for large-scale simulations, but little has
changed in how we debug applications. At the same time, high-fidelity simula-
tions continue to drive strong demand for extremely large-scale machines while
pushing application complexity to extremes. As a net result of this trend, ma-
chines with over a million cores are not uncommon today [Law]; [Oak]; and
further, mission-critical applications often comprise a few million lines of code,
coupling many scientific packages and libraries written in a wide range of pro-
gramming paradigms and languages, e.g., C, C++, FORTRAN and Python.
This sheer scale combined with application complexity has made debugging one
of the most arduous tasks in code-development for high performance computing,
HPC.

This situation will become even more challenging in the future [D+11]. Due
to power and energy concerns, performance gains on HPC systems no longer
come from increased single-thread performance, but rather, from increased core
counts and the use of accelerators or co-processors. This trend increasingly
requires programmers to rely on hybrid programming models, such as MPI +
OpenMP or MPI + CUDA, to realize the full hardware potential, but this comes
at significantly added coding complexity and to many unintended side effects be-
tween the various models. In short, programming complexity will rise, and with
that so will the likelihood that bugs, particularly with respect to parallelism,
will be introduced into codes; the current interactive (per thread/process) de-
bugging techniques are not sufficient in helping programmers overcome these
challenges. Without effective and scalable debugging models, and the tools that

10.1 Motivation 139

embody these models, the cost of debugging will sharply increase due to the lost
productivity of programmers and wasted compute cycles.

Unfortunately, while programming models designed to improve programmers’
productivity are actively studied and proposed, there has been a lack of studies
to understand the most capable debugging models with the same goal.

Traditional parallel debugging [Rog14]; [All14]; [SS14] is a several-decade-old
model and does not scale even to today’s core counts. Most importantly,
manually stepping through source lines and inspecting the application state
overwhelms the programmers with too much information. As a response to
this problem, the lightweight debugging model [Arn+07]; [Lee+08]; [Ahn+09];
[LK32] arose, where information is sacrificed for scalability, but has the oppo-
site problem – it scales well by design, but for many classes of errors, does
not provide enough information. Further work has focused on fully automatic
or semi-automatic debugging that helps automate the detection of suspicious
behavior, e.g., through relative debugging [Abr+96] or automated anomaly de-
tection [GQP07], but these approaches also limit themselves to particular classes
of bugs and do not provide the generality of interactive debuggers.

To fill this gap, we propose a novel scalable debugging model called prescrip-
tive parallel debugging that helps users automate the tedious parts of interac-
tive debugging, while keeping its generality, and present our implementation
that embodies this model: the Dynamic Scalable Event-Chain Tracing API or
DySectAPI. This model offers a highly-scalable debugging paradigm by using an
engine that expresses a programmer’s debugging intuition to automatically and
progressively reduces the error search space across both the task and source-code
dimensions.

Our approach allows programmers to install debugging probes into a parallel
application. These probes can gather data under user-specified conditions, in
the form of either debugging procedures (e.g., trigger an action when a certain
set of breakpoints is hit) or code behaviors (e.g., trigger an action when the code
hangs). Probes are linked into a probe tree, automatically driving the prescribed
debugging actions to reduce the error space. When the specified conditions are
met, it presents highly condensed debug information to the programmer.

We demonstrate the scalability of our model by empirically evaluating the per-
formance overheads of various probe-tree topologies of the DySectAPI and also
by deriving a performance model. The evaluation suggests that using a probe
tree that prunes out processes that are not of interest scales better than a flat
topology analogous to the traditional debugging model. Further, we present
results from a case study that show the effectiveness of our model: we used a
DySectAPI probe tree to effectively debug a previously undiagnosed, real-world

140 Prescriptive Parallel Debugging

bug in a scientific application, which manifested itself only when scaled to 3,456
MPI processes.

10.1.1 Contributions

To summarize, we make the following contributions:

• A novel prescription-based debugging model striking a balance between
scalability and capability;

• The DySectAPI, an implementation embodying this model;

• Empirical experiments and an analytic model of overheads of the DySec-
tAPI;

• A case study on a real world application showing its effectiveness.

10.2 Models in Parallel Debugging

As described in Chapter 2 the current state of the art in parallel debugging
is focused on four main models: traditional; lightweight; semi-automatic; and
automatic. In this section, we discuss the pros and cons of these models and
the implications of the architectural and application trends in HPC.

In the traditional debugging model users insert breakpoints, step through their
code and examine variable values. Example tools include GDB [SS14], To-
talView [Rog14] and DDT [All14]. Traditional debuggers have cited operation
on a large set of processes, for example DDT touts its ability to step and dis-
play 700,000 processes in 1/10 of a second [All14]. However, this time can
increase with larger and more complicated applications and a typical debug ses-
sion requires many step operations through the code. Typical debug sessions
also involve performing more complex and expensive debug operations, such as
examining and aggregating variable values.

But its fundamental scheme of having to enable all idioms for interactive use
and the central point of control, i.e., the user, clearly limits its scalability.

The lightweight model has been created to address both the tool machinery
and the human cognition scalability challenges. These tools aggregate debug
information across a parallel application, thus reducing the amount of detail

10.3 In Search for Sweet Spots 141

presented to the user and making it possible to scale to existing and future
systems. One example, the Stack Trace Analysis Tool (STAT), aggregates stack
traces across the parallel application and groups processes that exhibit similar
behavior into equivalence classes [Arn+07]; [Lee+07]; [Lee+08]; [Ahn+09]. This
grouping often identifies a small set of outlier processes that led to erroneous
execution and the stack traces can effectively pinpoint the precise location of
the bug. In cases where more in-depth debugging is required, one process can
be selected from each equivalence class, forming a small subset of processes that
represents the full application’s behavior. The user can then attach a traditional
debugger to this manageable subset for root cause analysis.

Other approaches are the automatic model and the semi-automatic model, which
include relative debugging. For example, Dinh. et. al. introduces scalable
relative debugging [DAJ14], which requires running two versions simultaneously,
one working and one failing, thus solving a special case and may not scale to
extreme scales.

Similarly, DMTracker [GQP07] and FlowChecker [Che+10] solves special case
automatic inference of root cause. Another approach to automatic debugging is
with AutomaDeD [Bro+10] that probabilistically identify abnormal MPI tasks
and find the least progressed task in many cases. AutomaDeD can efficiently
solve many bugs at scale.

Other tracing techniques include systemtap, which has been used as a Linux
trace/probe tool [Ibm+05]. systemtap has been extended with user-space probe
capabilities using Dyninst [BH00]. The main difference between traditional
tracing tools and DySectAPI is the dynamic nature of DySectAPI’s probe-tree
model and the fact that DySectAPI is targeted at massively-parallel systems.
[EIg+05] [Jac+09]

10.3 In Search for Sweet Spots

At Lawrence Livermore National Laboratory (LLNL), one of the largest su-
percomputing centers, we have provided many tools embodying the debugging
models described in Section 10.2. In recent years, however, it became appar-
ent that a significant gap exists in models of parallel debugging on large HPC
environments. The traditional model offers a general-purpose environment, but
does not scale well. Other debugging models scale better, but can target only
specific classes of errors, making them special purpose.

For example, STAT can be used to efficiently debug hangs at large scale, while

142 Prescriptive Parallel Debugging

Formal verification
Static and dynamic analysis

Interactive debugging

Prescriptive
debugging

Lightweight debugging

Scalable

Non-scalable

Coarse-grained

Fine-grained

Figure 10.1: Debugging models.

doing so with a traditional debugger can be slow and complicated. STAT groups
processes exhibiting similar behavior and can quickly expose why the hang
arises, oftentimes due to a small set of outlier processes. With a traditional
debugger, digesting the information from the many processes can overwhelm
the programmer. On the other hand, a simple bug in the program logic that
is exhibited even at small scale can be simpler to debug with a traditional de-
bugger. STAT is a special purpose tool and can only find a bug if it visible by
analyzing the stack traces of the application.

Therefore, we find significant needs for a new model that can be extremely
scalable, yet capable enough, to serve general-purpose debugging. Figure 10.1
illustrates this notion.

To explore the trade-off space, we first identify several key principles that should
drive the construction of a new scalable, general-purpose debugging model.

The new model must:

1. Be an engine to test the hypothesis behind a programmer’s debugging
intuition;

2. Enable users to express their intuition easily in terms of progressive re-
duction of error space;

3. Guide run-time debug actions with minimal interaction with the user;

4. Present condensed information after the error space is reduced.

The first principle states that any general-purpose debugging model must assist

10.4 A New Model: Prescriptive Debugging 143

users with mechanisms well-suited to test the programmer’s debugging intuition,
otherwise, the model is limited to be special purpose. The second principle
dictates how to capture this intuition. Ultimately, the goal of any parallel
debugger is to narrow down the root cause of a problem in several dimensions.
One is to determine the particular process(es) or thread(s) that exhibit erroneous
behavior. A second is to pinpoint the precise source-code location of the bug.
Yet another dimension can be to isolate any contaminated data that led to the
error. The new model must enable users to encode the notion of progressive
reduction on the potentially huge error search space along all dimensions.

The third principle argues for the batch processing of debugging actions whereby
the debugging expressions given by the programmer are evaluated in batches [Fel10].
This is necessary because the sheer volume of debug data may slow down a tra-
ditional model to the point where the tool would be intolerable to use. Even
if a debugger could process that data with interactive latencies, it would be
challenging to present that much data in a form that is scalable to the user.
Computers, on the other hand, are much better suited for the task of sifting
through massive amounts of data. Along with the third principle, the fourth
one addresses the limitation in a programmer’s information processing ability.
Any information provided to the users must not be too much for a human to
digest.

10.4 A New Model: Prescriptive Debugging

The traditional debugging paradigm has survived because it provides the rudi-
mentary operations that a user needs to effectively reduce the error search space.
In a typical debug session, a user first sets a breakpoint at a particular code
location. Once that breakpoint is triggered, the user will evaluate the state of
the application and subsequently set another breakpoint, perhaps on a subset
of processes that satisfy certain conditions. This process is then repeated until
the bug is isolated.

Our new prescriptive debugging model aims to capture the flexibility and gen-
erality of this interactive process, but allow users to codify individual steps
and sequences in the form of debug probes that can then be executed with-
out the need for individual interactions between debugger and user. Similar
to Aspect-Oriented Programming, AOP [Kic+97], the prescriptive debugging
model addresses the separation of concerns. AOP breaks down program logic
into distinct concerns, where one concern could be debugging. AOP does not
address scalability or debugging in general and does not satisfy the four guiding
principles from section 10.3. Essentially, the prescriptive debugging model pro-

144 Prescriptive Parallel Debugging

vides the means for a user to codify their debugging intuition into prescribed
debug sessions. The application can then be submitted into the system’s batch
queue to be run under that debug session. At runtime, the debugger follows
the user’s intuition by executing the debug probes and, at the end, summary
information is gathered that can be examined by the user during the execution
or at their convenience after the job has completed.

While we argue for batch debugging instead of traditional interactive debugging,
the end goal of our proposed model remains the same. Ultimately, the goal of
any parallel debugger is to narrow down the root cause of a problem in several
dimensions. One is to determine the particular process(es) or thread(s) that
exhibit erroneous behavior. A second is pinpoint the precise source-code location
of the bug. A potential third dimension is isolate any contaminated data that
led to the error.

Our prescriptive parallel debugging model is built upon the notion of probes
that can be linked together into a probe tree. A probe itself is composed of a
domain, events, conditions, and actions as defined below.

Probe = 〈Domain,Events, Conditions,
{Actions}, {Probes}〉

The domain is the set of processes to install a probe into. It also includes a
synchronization operation that determines how long the probe should wait for
processes in the domain before proceeding. More precisely, after the first process
triggers a probe, the remaining processes have until some specified timeout to
participate.

We define an event as an occurrence of interest. Events borrowed from tra-
ditional debuggers include breakpoints, which specify a code location (when
reached, the debugger will stop the target process) and data watchpoints, which
monitor particular variables, memory locations or registers. An event can also be
a user-defined timeout that instructs a probe to be triggered after some elapsed
amount of time. Events can also capture asynchronous occurrences such as a
program crash, a signal being raised or a system-level event such as memory
exhaustion.

These events allow programmers to express their debugging in terms of a set
of procedures and in terms of code behaviors—e.g., on detecting a hang or
slowness.

10.4 A New Model: Prescriptive Debugging 145

Further, individual events can also be composed together to enable advanced
fine-grained event selection.

When an event occurs, its associated condition is evaluated. The condition is
an expression that can be evaluated either locally on each backend or globally
across the domain. A local condition may, for instance, check if a variable equals
a particular value. A global condition can evaluate an aggregated value, such
as minimum, maximum or average, across the entire domain. Conditions can
also be composed to specify multiple variables of interest or to combine local
and global evaluations.

If the condition is satisfied, the probe is said to be triggered, and the specified
actions are executed. Probe actions can be formulated by the user as an aggre-
gation or a reduction, for example, aggregated messages, merged stack traces or
the minimum and maximum of a variable.

A probe can optionally include a set of child probes, which is enabled upon the
satisfaction of the parent probe’s condition. In this manner, a user can create
a probe tree. A probe tree naturally matches the control-flow traversal that is
typical of an interactive session with a traditional debugger. This can effectively
narrow down the search space across the source-code dimension.

An example of a probe tree is shown in Figure 10.2a and the corresponding
search-space reduction is shown in Figure 10.2b. As the application progresses,
the probe tree effectively narrows down the search across the process space. As
child probes are only installed in processes that satisfy the condition, processes
that are not of interest are implicitly filtered out. Filtering not only helps
narrow down the debug search space, but also reduces the number of subsequent
probe installations, the amount of tool communication and the volume of data
produced. These qualities are paramount to the scalability of the prescriptive
parallel debugging model, both for the user’s comprehension and for the tool’s
operation.

The process-space reduction has an additional benefit to debugging capabilities.
While operations on the full application or a large set of processes should be
lightweight in order to scale, operations on a small subset can be more complex.
Thus, a well-formed probe tree would start with high-level summary informa-
tion, such as a merged stack trace or a message displaying aggregated values,
and get progressively complex, perhaps even gathering individual variable values
across a subset of tasks.

A debugging session is then defined as a set of probe trees. Generic debug ses-
sions can be created for common errors such as hangs, segmentation violations
or other crashes. Furthermore, programmers can create application-specific de-

146 Prescriptive Parallel Debugging

Probe #1

Probe #2

Probe #4Probe #3

(a) Probe tree.

Processes

Application
progress

Group #1: Probe #1

Group #2: Probe #2

Group #3: Probe #3

Group #4: Probe #4

(b) Process search space reduction using a probe tree.

Figure 10.2: Example probe tree and corresponding processes being filtered
out during the search space reduction.

10.5 DySectAPI: The Dynamic Scalable Event Tracing API 147

bugging sessions for their users to employ when an error occurs. With inside
knowledge, the programmer can write debug sessions that track known invari-
ants for deviation, monitor control flow for abnormal behavior or specify con-
ditions under which an application is considered to be hung. The aggregated
debug log messages or merged stack traces can then be analyzed by the user or
the programmer to aid in identifying the root cause.

10.5 DySectAPI: The Dynamic Scalable Event
Tracing API

Based on the guiding principles from Section 10.3 and following the prescriptive
debugging model introduced above, we developed the Dynamic Scalable Event-
Chain Tracing API, DySectAPI. DySectAPI allows programmers to express and
test their debugging intuition, executes with minimal user interaction and only
presents condensed information once the error space has been reduced.

The programmer specifies a debugging session prior to the execution, based
on their debugging intuition. They do so in a session file using our API for
expressing probes and probe trees.

The workflow of DySectAPI has six steps:

1. Prior to execution, the programmer encodes a debugging session, which
may contain several probe trees.

2. The session is compiled into a shared library.

3. The target application is launched by the DySectAPI runtime and the
probe trees are installed in the specified domains.

4. The application executes.

5. When probes are triggered, the programmer-specified conditions and ac-
tions are performed.

6. The condensed diagnostic output is presented to the programmer.

Figure 10.5 illustrates this workflow.

148 Prescriptive Parallel Debugging

Probe* p1= new Probe(
Code:: location("instrumentationHead"),
Domain ::world (10),
Act:: trace("probe 1: Location is instrumentationHead

()"));

Probe* p2 = new Probe(
Code:: location("instrumentPoint2"),
Domain ::world (10),
Act:: trace("probe 2: Location is

instrumentationPoint2 ()"));

ProbeTree :: addRoot(p1);
p1 ->link(p2);

Figure 10.3: Example probe tree debugging session.

10.5.1 Expressing Debugging Intuition

DySectAPI allows programmers to express their debugging intuition using probes
and probe trees. Probes are represented as C++ objects, which can be linked
into a probe tree. A debugging session snippet can be seen in Figure 10.3. This
snippet is compiled into a shared library and launched together with the target
binary under the tool’s control. The two probes are triggered at the source code
location instrumentationHead and instrumentPoint2 in the target example
program in Figure 10.4. The first probe will be installed in all target processes.
When triggered it will send a message through the network with the number of
triggered processes. This will result in a message being printed by the frontend.
In addition, when the first probe has been triggered, the second probe is enabled
in the processes that triggered the first probe.

The probe-tree debugging primitives allow programmers to specify their debug-
ging intuition and to test their debugging hypothesis. The supported capabilities
are:

Events can be either a code-centric classical breakpoint or an asynchronous
event such as a signal. The latter includes a crash, an exit or a specific signal
number.

10.5 DySectAPI: The Dynamic Scalable Event Tracing API 149

void instrumentPoint2 () {
static volatile int _count = 0;
_count ++;

}

void instrumentHead () {
static volatile int _count = 0;
instrumentPoint2 ();
_count ++;

}

int main() {}
MPI_Init (&argc , &argv);
for(int i = 0; i < N; i++) {

instrumentHead ();
MPI_Barrier(MPI_COMM_WORLD);

}
MPI_Finalize ();

}

Figure 10.4: Example parallel application.

Conditions are evaluations based on data such as variables, e.g. x > 0 && y
< 0.

Domain specifies in which processes to install the probe. This can be all
processes or in a subset based on their MPI rank. An optional timeout can also
specify the maximum time to wait for other participants before aggregating.
The default is to wait infinitely long or until all processes have been triggered.

Actions can be formulated as aggregations or reductions, including messages
that can aggregate the min, max and desc([min,max]) of variables, and the
function or source-code location where triggered. There are no restrictions
with respect to encapsulation and local variables. Further, the system can
produce merged stack-traces both in text and graphical form.

150 Prescriptive Parallel Debugging

User
debug

session

1

4

3Launch and
attach

5Diagnostics

STAT frontend Target application
processes instrumented

by STAT backends

[512] instrumentHead() hit
[8] Processes crashed

6Diagnostics presented
to the programmer

Compile

2

5Diagnostics

Figure 10.5: DySectAPI workflow: the programmer’s debugging session is
compiled and then launched. Probe trees are installed into the
application and whenever probes are triggered, diagnostics are
propagated up to the programmer.

10.5.2 Infrastructure

One important factor in DySectAPI is its scalability, which we achieve by bas-
ing communication on MRNet [RAM03], an efficient tree-based overlay network,
TBON, for scalable tool communication and data processing. This system allows
us to not only execute communication hierarchically following a tree structure,
but also to embed processing operations into the tree, avoiding a central pro-
cessing bottleneck at the tool frontend. In particular, our aggregation process
has two steps:

1. Local data is aggregated on each backend. A backend is attached to a set
of processes. When one process triggers a probe, other processes triggered
within a timeout will form one packet to be sent through the MRNet tree
network.

2. Packages from multiple backends are aggregated. Each MRNet node is also
setup to wait for a specified timeout before forwarding packets through the
network.

This process is illustrated in Figure 10.6. A set of events happens on each back-
end and is then efficiently aggregated using the MRNet network. DySectAPI
uses Dyninst [BH00] to control and debug application processes. Dyninst is an
API for binary analysis, binary instrumentation and process control. Dyninst
allows us to debug unmodified application processes.

10.6 Evaluation 151

MRNet

2 2

4

10

Probe triggered Send count of
triggered processes

Continue processes

BackendDyninst MRNet

2 4

6

Figure 10.6: Communication architecture. The example probe counts the
number of triggered processes and aggregates the information
efficiently using the MRNet communication tree.

10.6 Evaluation

We evaluate the DySectAPI implementation to demonstrate the scalability and
effectiveness of the proposed prescriptive debugging model. However, evaluating
all aspects of a debugger is hard. It is possible to measure the performance
of the debugging primitives in a traditional interactive debugger, but those
numbers would not account for human interaction, which would require a larger
psychological study. Similarly, it is hard to quantify the usability of a debugger,
given the complexity of debugging.

We therefore want to show that the prescriptive parallel debugging model has
the scaling characteristics of the lightweight debugging model and a sufficient
set of capabilities from the traditional, interactive debugger to capture a wide
range of parallel bugs. The main questions we seek to answer are:

• What is the scalability of the prescriptive debugging model?

• Can we use the capabilities of the prescriptive debugging model to debug
real parallel bugs only manifesting themselves at scale?

152 Prescriptive Parallel Debugging

We answer the first question by focusing on how the underlying implementa-
tion scales on large parallel machines using a performance study combined with
modeling that predicts the scalability beyond current machine resources. This is
valuable to determine if our debugging model is going to scale on large systems.
As a baseline for the scalability of the traditional interactive parallel debugger
we ignore the human factor and use a batch debugging session that reflects the
operations in a traditional interactive session.

Second, we wish to demonstrate the prescriptive debugging model validity and
usefulness. We do so by focusing on the usability of the debugging model with
a use-case example. In this way we show how the prescriptive debugging model
can be applied to an undiagnosed real-world bug that emerges at large scale and
outline the steps involved.

10.6.1 Experimental Setup

All experiments were conducted on the Cab Linux cluster located at the Lawrence
Livermore National Laboratory. This cluster consists of 1,296 nodes, each with
2 Intel Xeon E5-2670 processors for a total of 20,736 cores and 41.5 TB memory.
Each node has a total of 16 cores. DySectAPI has been built on top of MRNet
4.1 and Dyninst 8.2.

10.6.2 Analytical Performance modeling

We derive an analytical performance model for an arbitrary probe tree to both
reason about the underlying scalability and to predict scalability beyond current
machine resources.

In each probe, we include a pruning factor, which is the fraction of processes that
a probe filters out. A ratio in a probe of 0.5 means that 50% of the processes
are filtered out by that probe. Figure 10.7 illustrates this notion.

Each compute node runs several application processes and one backend daemon
that is responsible for debugging all processes on that node. We refer to the an-
cestor of a probe, in the probe tree as ancs(probe). Themax(installsbackend(probe))
is the maximum number of installations on any backend for that probe.

We first consider the number of probe installations, installs(probe), for a single
probe on a single backend. The root probe is installed into all specified processes,

10.6 Evaluation 153

Number of processes enabling
probe

Number of processes triggering
probe and installing children

Prune ratio

Figure 10.7: Pruning ratio in a probe.

while the number of children probes depends on how many processes satisfied
the conditions associated with their ancestors:

installs(probe) =

{
root,max(installsbackend)
otherwise, invocs(ancs(probe))

(10.1)

The number of invocations, invocs(probe), defines the number of times a probe
is triggered on a single backend:

invocs(probe) = (1− ratio(probe)) · installs(probe) (10.2)

Probe installation are distributed across the backends and thus each backend
install probes in parallel. For example, if a probe has to be installed in a total
of 16 processes across two backends, and they each install in 8 processes, the
cost of doing so should only account for one backend, as the installations will
happen simultaneously.

The cost of installation might be slightly higher on one backend due to variations
in the load in each backend, therefore we use max to represent the maximum
value that we encountered across a large number of runs.

The model is not restricted to how many installations happen on each backend,
where one backend could perform all the installations. Therefore, we use the
backend that has the highest number of installations. The cost of installation
for one probe is:

154 Prescriptive Parallel Debugging

costinst(probe) =max(costinst)·
max(instsbackend(probe))

(10.3)

The cost of invoking the probe has a sequential part and a communication
part. The latter assumes that the depth of the MRNet topology increases as
the number of processes increases, making network cost a logarithmic function
as it depends on the MRNet tree depth [APM06]. We define Nprocesses as the
number of processes that a probe has triggered in the application.

costinvoc(probe) =max(costinvoc)·
max(invocsbackend(probe))+

max(costnetwork) · log(Nprocesses)

(10.4)

The total cost of all probes in the tree is the sum of the costs for installing and
invoking each probe.

costtotal =

|probes|∑
i=0

costinstall(i) + costinvoc(i) (10.5)

We are interested in deriving what limits the scalability of our model. Therefore,
we study what happens when limNprocesses→∞. In this case the logarithmic net-
work term dwarfs the other factors. The cost of installation, costinst(probe) be-
comes a constant as both max(costinst) and max(instsbackend(probe)) are con-
stants. Similarly, for the cost of invocation costinvoc(probe), bothmax(costinvoc)
and max(invocsbackend(probe)) are constants. This leaves the logarithmic net-
work term as the dominating factor:

lim
Nprocesses→∞

costtotal = max(costnetwork) · log(Nprocesses) (10.6)

Therefore, we conclude that our model is able to achieve logarithmic scalability
with our implementation. This is critical to enable scaling to extreme system
sizes.

10.6 Evaluation 155

10.6.3 Performance Results

The model predicts logarithmic scalability O(log n). In practice, many details
can limit the scalability and we therefore seek to validate our model and to
model scalability using experimental data.

Optimally we would compare the performance directly to a traditional debug-
ger, however doing so would require a large psychological study. Therefore, we
ignore the human factor and use a flat probe tree without any pruning as the
baseline. In the flat probe tree, the root probe installs four children probes
without any pruning. Each child probe aggregates a single message across all
processes that satisfy the probe’s condition. An example of the probes can be
seen in Figure 10.3, containing the first two probes in the tree, and the target
application in Figure 10.4.

During execution of a DySectAPI debugging session, a reduction in the task
search space naturally occurs as probes are dynamically enabled only when a
specified condition is met, which leads to reductions in the amount of instrumen-
tation and in the amount of debug information generated. A chained probe tree
with each probe tree having a pruning ratio of 50% represents the prescriptive
debugging model. The pruning ratio is chosen as a representative pruning ratio.
Actual pruning ratios in real scenarios will depend on the prescribed debugging
session, the program being debugged and the inputs to the program. We will
later study how important the pruning ratio is. The pruning of processes will
be spread out equally over all the backends in our experiment.

Using microbenchmarking of DySectAPI we have obtained the following costs
costinvoc = 0.72ms, costinstall = 0.28ms and costnetwork = 4.6ms.

Figure 10.8 shows the actual and modeled overhead of the two probe trees with a
pruning factor of 50% in the deep probe tree. We see that the modeled execution
time for the deep probe tree more closely resembles the actual execution time,
while for the flat tree there is a small difference. This is due to overlapping
communication that results in a smaller communication overhead than modeled.
In both cases, though, the model predicts an upper bound and therefore matches
the observed scaling behavior, which is, as modeled, logarithmic.

The filtering of processes also reduces the amount of information presented to
the programmer. For example, in the chained deep tree consisting of four probe
87.5% of the original processes are filtered out.

156 Prescriptive Parallel Debugging

0

50

100

150

200

8 16 32 64 128 256 512 1024 2048 4096 8192

Pr
ob

e
tr

ee
 e

xe
cu

tio
n

tim
e

[m
s]

Cores

Flat no pruning Deep 50% pruning

Predicted flat no pruning Predicted deep 50%

Figure 10.8: Actual and modeled execution time on Cab with 16 cores per
node for a flat and a deep probe tree with 50% pruning.

10.6.4 Predicting Large Scale Performance

The introduced performance model is a good estimate of the worst-case runtime
as exhibited by DySectAPI. We can use the model to predict the performance
beyond current machine resources if we assume that the Cab cluster were an
order of magnitude larger and exhibited the same performance.

Figure 10.9 show what the scalability would be like on a very large system. The
modeled probes are the same ones as in Figure 10.8, consisting of four probes
organized either in a flat tree or a deep chained tree with 50% pruning. The
predicted overhead for a system with over 1,000,000 cores is just 180 ms for the
four probes. This is consistent with the traditional interactive debugger DDT,
which claims in the best case being able to step and display 700,000 cores in
100 ms [All14].

We also model the performance of the DySectAPI implementation for multiple
pruning ratios and for cases when the pruning is not spread out equally over
the backends. The pruning ratio affects the number of probe invocations per
backend and has a demonstrable impact on overhead. At 1,048,576 cores the
modeled overhead for the four probes organized in a deep chained tree, with
25% pruning in each of the probes, is 212.5 ms. With a pruning ratio of 50%

10.6 Evaluation 157

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2

P
ro

b
e

 t
re

e
 e

xe
cu

ti
o

n
 t

im
e

 [
m

s]

Number of cores in millions

Flat no pruning Deep 50% pruning

Figure 10.9: Modeled execution time on a larger version of Cab with 16 cores
per node.

the overhead is 177.2 ms and with a pruning ratio of 75% the overhead is only
135.7 ms. Thus, overhead can be reduced by expressing probe trees in a way
that prunes out many processes.

Intuitively, and according to the performance model, the cost of installing and
invoking a probe depends on the backend with the highest cost. If we assume
that the pruning of processes is unbalanced such that none are pruned on one
backend, at 1,048,576 cores for the four probes organized in a deep chained tree,
with a 25% pruning ratio, the modeled execution time overhead is 240.6 ms.
With a pruning ratio of 50% the overhead is 221.9 ms and with a pruning ratio
of 75% the overhead is 189.8 ms. Thus even if pruning of processes is unbalanced,
the amount of pruning has a big impact on the execution time overhead. This
can be explained by the difference in the overall amount of debug information
that needs to be processed.

10.6.5 Case Study

We have evaluated DySectAPI on an MPI bug that only manifested itself at
or above 3,456 MPI processes with BoomerAMG, a high-performance precondi-

158 Prescriptive Parallel Debugging

Probe* mpiError =
new Probe(Code:: location("MPI_Err_str"),
Domain ::world (100),
Acts(Act:: stackTrace (),

Act:: trace("MPI_Err_str probe")));

Figure 10.10: MPI bug probe example.

tioner library developed at the Lawrence Livermore National Laboratory [Fal+14].

A specific configuration led to failures at scale and we have used DySectAPI
to investigate the issue. An error was emitted by a method within MPI called
MPI_Error_string. Therefore, we started with the simple probe seen in Fig-
ure 10.10 to figure out the call-path that led to the error message being printed.

The probe resulted in the debug output shown in Figure 10.11. From the out-
put we see how a small subset of 6 processes called the MPI_Error_string
routine and had equivalent stack traces. We can also see that the issue could
be related to the call to MPI_Allgather and its call to MPIR_ToPointer, which
resolves MPI communicator identifiers into pointers of the corresponding inter-
nal communicator structure. To this end, we created a more advanced probe
to give more detailed information about the error, as shown in Figure 10.12.
This probe tree captures the callpath from the previous stack trace and prints
a trace message with the communicator identifiers. Further, a more detailed
segmentation fault detector is setup to show precisely where it happens and to
print the communicator identifier.

Figure 10.13 shows the debugging output of the probe. We see how three pro-
cesses trigger the segmentation fault exception at the same location. By inspect-
ing the call site at intra_fns_new.c:2885 we see that this bug only appears
in a shared memory feature, sporadically causing floating values to be resolved
into pointers. We looked into the communicator initialization code and found
a member field that was uninitialized. The problem was an issue in a recently
upgraded MVAPICH 1.2.7 MPI library. Based on this diagnosis, a work-around
was quickly identified and a bug was reported to the MVAPICH developers.

With this use case, we demonstrate how the prescriptive debugging model can
be used as an engine to allow programmers to test their debugging intuition
and that the expressiveness of the model helps reduce the error space. The use
case shows how the prescriptive debugging model is capable of reducing to very
condensed debugging information even for a complex debugging scenario.

10.7 Conclusions 159

DysectAPI Frontend:Info > [6] Trace: MPI Error string
probe

DysectAPI Frontend:Info > [6] Stack trace
DysectAPI Frontend:Info > |-> [6] _start >

__libc_start_main > main > HYPRE_PCGSetup >
hypre_PCGSetup > HYPRE_BoomerAMGSetup >
hypre_BoomerAMGSetup > hypre_seqAMGSetup >
hypre_BoomerAMGSetup > hypre_BoomerAMGCreateS >
hypre_MatvecCommPkgCreate >
hypre_MatvecCommPkgCreate_core >
hypre_MPI_Allgather > MPI_Allgather >
intra_Allgather > MPIR_ToPointer > MPIR_Error >
MPIR_Errors_are_fatal > PMPI_Error_string

Figure 10.11: MPI bug probe example output.

10.7 Conclusions

Prescriptive debugging is a novel debugging model that can scale without sac-
rificing key debugging information presented to programmers, thus filling the
gap between traditional and lightweight debuggers. It allows programmers to
codify their debugging intuition and to test their hypothesis with minimal user
interaction during run-time. This allows the error search space to be reduced
such that the information presented to the programmer is very condensed.

Using both experimental results and analytical modeling we show that our pro-
totype implementation, DySectAPI, has logarithmic scaling on current systems.
We also predict performance beyond current machine resources, and our model
predicts good performance results even for very large system scales.

To this end we answer Research Question 10 by showing how the prescriptive
debugging model achieves logarithmic scaling and when applied to a real use
condensed the information

160 Prescriptive Parallel Debugging

Event #hypre_seqAMGSetup

Event #hypre_MatvecCommPkg
Create_core

Event #MPI_Allgather

Actions trace(“MPI_Allgather
communicators: @desc(comm)”)

Event signal(SIGSEGV)

Actions stackTrace(),
trace(“Seg fault at: @location”),
trace(“@desc(comm)”)

Event #intra_Allgather

Actions trace(“Intra Allgather 1st:
@desc(comm)”)

Event #intra_Allgather

Actions trace(“Intra Allgather 2nd:
@desc(comm)”)

Figure 10.12: MPI bug advanced probe example.

10.7 Conclusions 161

DysectAPI Frontend: Info > [369] Trace: MPI_Allgather
communicators: comm = [92:92]

DysectAPI Frontend: Info > [368] Trace: Intra
allgather 1st comm = [92:92]

DysectAPI Frontend: Info > [363] Trace: Intra
allgather 2nd comm = [92:92]

DysectAPI Frontend: Info > [3] Stack trace:
DysectAPI Frontend: Info > |-> [3] _start >

__libc_start_main > main > HYPRE_PCGSetup >
hypre_PCGSetup > HYPRE_BoomerAMGSetup >
hypre_BoomerAMGSetup > hypre_seqAMGSetup >
hypre_BoomerAMGSetup > hypre_BoomerAMGCreateS >
hypre_MatvecCommPkgCreate >
hypre_MatvecCommPkgCreate_core >
hypre_MPI_Allgather > MPI_Allgather >
intra_Allgather > intra_Allgather

DysectAPI Frontend: Info > [3] Trace: Segmentation
fault at location: /usr/ local/tools/mvapich -intel -
debug -1.2/ src/src/coll/intra_fns_new.c:2885

DysectAPI Frontend: Info > [3] Trace: comm = [0:0]

Figure 10.13: MPI bug advanced probe example output.

162 Prescriptive Parallel Debugging

Chapter 11

Conclusions

The thesis has contributed solutions to achieve high performance with prescrip-
tive optimization and debugging. Achieving high performance is important to
capitalize on using the specialized features offered in processors today.

11.1 Compiler Feedback

Chapter 6, Chapter 7 and Chapter 8 all contribute to showing how compiler
based feedback to the programmer can lead to significant speedups without
placing a big burden on the programmer. The feedback is based on the obser-
vation that small modifications to the source code can enable more aggressive
compiler optimizations.

We investigate three ways of generating feedback:

• By extending an existing optimization to emit more information during
compilation in Chapter 6.

• By embedding static analysis inside an IDE, allowing for dynamic feedback
during compilation, i.e. it is not required to rebuild the whole project.

164 Conclusions

• By using existing compiler optimization reports from production compil-
ers.

Each of these methods have advantages and disadvantages and are most suitable
for specific feedback.

The first way, by modifying an existing compiler optimization, has the advantage
of generating feedback that is easy to relate to the optimization being performed.
On the other hand, it is not always possible to infer the exact statement in the
original source code for which the limitation arises leading to fragile feedback.
This method is best suited for an optimization pass with some implementation
specific limitations that you like to overcome.

The second way, where the feedback is not generated from a specific compiler,
but inside an IDE has the benefit of being fast and enabling very precise auto-
matic refactorings. The downside is that this method can generate many false
positives, where the feedback is not applicable. It is a suitable method when
you like to enforce certain good coding patterns, like annotating with the C99
restrict keyword whenever suitable.

The third method, using optimization reports, is suitable to check that compiler
optimizations are applied as expected given how we can compare the optimiza-
tion performed by multiple compilers. It does not require a special toolchain,
making initial setup easier, and allows us to perform a filtering with the feed-
back from multiple compilers. The downside is clearly the extra compilation
time for compiling with more than one compiler. The feedback can be fragile,
as correctly locating the statement in the original source code for which the
feedback arises can be difficult, as it has been produced on the intermediary
representation used for optimization.

In these studies, we see how this applies to legacy code bases, here in the form of
benchmarks, as it good way to optimize these for modern architecture features
not, perhaps not dominant when the program was written.

For memory optimizations we saw how slightly rewriting the memory accesses
and applying the inlining feedback could lead to a speedup of 1.3 by making
certain that accesses being optimized did not escape the compilers analysis. We
also showed how it is possible to apply the memory optimization directly at the
source code using our wizard leading to a speedup of 1.6 for 179.art from SPEC
CPU2000 [Hen00] for GCC.

We enable automatic parallelization and automatic vectorization of several bench-
marks and one industrial use case. For the use case, applying the C99 restrict

11.2 Improved Compiler Optimizations 165

keyword to a filter and slightly rewriting the application using the feedback we
achieve a speedup of 2.4 over the sequential version for the filter. The use case
also contains an alternative implementation of the filter using OpenCV execut-
ing on a GPU. Here we achieve a speedup factor of 1.54 using the CPU over the
GPU.

11.2 Improved Compiler Optimizations

In Chapter 9 we saw how we could improve dependence analysis for explic-
itly parallel programs leading to improvements in the accuracy of the depen-
dence analysis. We have implemented our prototype in GCC 6.1. We evalu-
ated our proposed analysis on set of benchmarks from the Rodinia Benchmark
Suite [Che+09]. The OpenMP worksharing aware dependence analysis improved
the number of correctly classified vectorizable dependences with 133%.

These improvements lead to more loops being vectorized, on average we achieve
a speedup of 1.46 over the default dependence analysis and vectorizer in GCC.
These incremental improvements in automatic vectorization allow more loops to
be vectorized automatically. This lessens the burden placed on the programmer
as loops are transparently vectorized without requiring vectorization specific
pragmas or manually vectorization.

11.3 Prescriptive Debugging

Last, in Chapter 10 we introduced a new debugging model that is both general
and scalable. Debugging is essential when creating programs to achieve high
performance, find bugs and ensure correct execution. For parallel programs
these challenges are even bigger due to non-deterministic execution, a whole
new class of parallel bugs and the amount of information available.

The prescriptive debugging model is based on codifying the programmer’s in-
tuition in a way that allow the communication in the debugger to be scalable.
Further, it focuses on condensing the information presented to the programmer
to make it scalable for humans.

We evaluate our prototype using both experimental results and analytical mod-
eling. The overhead is shown to be low and its scalability demonstrated to be
logarithmic in terms of system size. This entails that the debugging model can
scale to extreme sizes.

166 Conclusions

We also successfully apply our prototype to a real world bug test case and
demonstrate how it was possible to quickly diagnose and fix the bug using our
prototype.

11.4 Outlook

Unfortunately, automatic optimizations are not always applied due to limita-
tions in compilers. When optimizations are not applied it is today often reserved
for experts to study why and apply a fix. Similarly, parallel debugging quickly
becomes overwhelming even for experts.

This thesis has demonstrated how we can transparently improve automatic op-
timization, by improving the underlying analysis and information the analysis
has available. Fully automatic optimization is desirable, but as we show auto-
matic vectorization is fragile with many limitations. When automatic optimiza-
tions fail, including the programmer is necessary to achieve high performance.
We propose and contribute to the feedback approach where the programmer is
guided in best utilizing the existing compilers optimizations. This enables non
experts in applying more advances optimizations such as vectorization in more
cases. One can argue that these methods cannot cover all programs. While
we agree, it is still desirable to automatically optimize as many programs as
possible and only rely on manual optimizations when required.

When it comes to the challenge of parallel debugging, we propose a user-guided
approach that include the programmer. Fully automatic debugging methods are
desirable, but not yet mature enough to be generally applicable. Therefore, we
also here argue that for debugging we need to use the programmer’s intuition
and insight to effectively debug parallel programs.

We believe this trend could become more mainstream in the coming years, as
more compilers start generate feedback and suggestions to the programmer and
new debugging tools emerge.

Bibliography

[99] Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1999. isbn:
0-201-48567-2 (Cited on page 67).

[ABH14] Cfir Aguston, Yosi Ben Asher, and Gadi Haber. “Parallelization
Hints via Code Skeletonization”. In: Proceedings of the Symposium
on Principles and Practice of Parallel Programming. PPoPP. 2014
(Cited on page 59).

[Abr+96] David Abramson, Ian T. Foster, John Michalakes, and Rok Sosic.
“Relative Debugging: A New Methodology for Debugging Scientific
Applications”. In: Communications of the ACM (1996) (Cited on
pages 63, 139).

[Ahn+09] Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L.
Lee, Ben Liblit, Barton P. Miller, and Martin Schulz. “Scalable
Temporal Order Analysis for Large Scale Debugging”. In: Proceed-
ings of the 2009 ACM/IEEE Conference on Supercomputing. SC.
2009. doi: 10.1145/1654059.1654104 (Cited on pages 63, 139,
141).

[Aho+06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools (2nd Edition).
2nd ed. 2006. isbn: 0321486811 (Cited on page 38).

[AK87] Randy Allen and Ken Kennedy. “Automatic Translation of FOR-
TRAN Programs to Vector Form”. In: ACM Transactions on Pro-
gramming Language Systems. TOPLAS (1987). doi: 10 . 1145 /
29873.29875 (Cited on page 26).

http://dx.doi.org/10.1145/1654059.1654104
http://dx.doi.org/10.1145/29873.29875
http://dx.doi.org/10.1145/29873.29875

168 BIBLIOGRAPHY

[All14] Allinea Software Ltd. Allinea DDT: The Global Standard for High-
impact Debugging. http://www.allinea.com/products/ddt/
features. Accessed 17 October 2014. 2014 (Cited on pages 62,
139, 140, 156).

[All83] John Randal Allen. “Dependence Analysis for Subscripted Variables
and Its Application to Program Transformations”. PhD thesis. Rice
University, 1983 (Cited on page 22).

[Amd67] Gene M. Amdahl. “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities”. In: Proceedings of
the April 18-20, 1967, Spring Joint Computer Conference. AFIPS.
ACM, 1967. doi: 10.1145/1465482.1465560 (Cited on page 14).

[APM06] D.C. Arnold, G.D. Pack, and B.P. Miller. “Tree-based Overlay Net-
works for Scalable Applications”. In: Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium. IPDPS (2006)
(Cited on page 154).

[App97] Andrew W. Appel. Modern Compiler Implementation in C: Ba-
sic Techniques. New York, NY, USA: Cambridge University Press,
1997. isbn: 0521583896 (Cited on page 83).

[Arn+07] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L.
Lee, Barton P. Miller, and Martin Schulz. “Stack Trace Analysis for
Large Scale Debugging”. In: Proceedings of the International Paral-
lel and Distributed Processing Symposium. IPDPS. 2007 (Cited on
pages 63, 139, 141).

[Bai+91] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
“The NAS Parallel Benchmarks — Summary and Preliminary Re-
sults”. In: Proceedings of the 1991 ACM/IEEE Conference on Su-
percomputing. SC. 1991. doi: 10.1145/125826.125925 (Cited on
pages 32, 42).

[Ban93] Utpal K. Banerjee. Loop Transformations for Restructuring Com-
pilers: The Foundations. Kluwer Academic Publishers, 1993. isbn:
079239318X (Cited on pages 21, 23).

[BD06a] Kristof Beyls and Erik H. D’Hollander. “Discovery of Locality-
Improving Refactorings by Reuse Path Analysis”. In: Proceedings
of the International Conference on High Performance Computing
and Communications. HPCC. 2006. doi: 10.1007/11847366_23
(Cited on page 57).

http://www.allinea.com/products/ddt/features
http://www.allinea.com/products/ddt/features
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/125826.125925
http://dx.doi.org/10.1007/11847366_23

BIBLIOGRAPHY 169

[BD06b] Kristof Beyls and Erik H. D’Hollander. “Intermediately Executed
Code is the Key to Find Refactorings That Improve Temporal
Data Locality”. In: Proceedings of the 3rd Conference on Comput-
ing Frontiers. CF. 2006. doi: 10.1145/1128022.1128071 (Cited
on page 57).

[BD09] Kristof Beyls and Erik H D’Hollander. “Refactoring for data local-
ity”. In: IEEE Computer 42.2 (2009). doi: 10.1109/MC.2009.57
(Cited on page 57).

[BE04] Daniel Berlin and David Edelsohn. “High-Level Loop Optimizations
for GCC”. In: Proceedings of the GCC Developer’s Summit. 2004
(Cited on page 56).

[BF10] Ilona Bluemke and Joanna Fugas. “A Tool Supporting C code Par-
allelization”. In: Innovations in Computing Sciences and Software
Engineering. 2010. doi: 10.1007/978-90-481-9112-3_44 (Cited
on page 59).

[BH00] Bryan Buck and Jeffrey K. Hollingsworth. “An API for Runtime
Code Patching”. In: International Journal of High Performance
Computing Applications (2000). doi: http://dx.doi.org/10.
1177/109434200001400404 (Cited on pages 141, 150).

[Bie11] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD
thesis. Princeton University, Jan. 2011 (Cited on pages 32, 40, 41).

[Bik+02] Aart J. C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian.
“Automatic Intra-register Vectorization for the Intel Architecture”.
In: International Journal Parallel Programming (2002). doi: 10.
1023/A:1014230429447 (Cited on page 26).

[Boa13] OpenMP Architecture Review Board. OpenMP Application Pro-
gram Interface (Version 4.0). OpenMP Specification. 2013 (Cited
on pages 13, 113–115, 135).

[Boa15] OpenMP Architecture Review Board. OpenMP Application Pro-
gram Interface (Version 4.5). OpenMP Specification. 2015 (Cited
on pages 12, 111).

[Boh07] Mark Bohr. “A 30 Year Retrospective on Dennard’s MOSFET Scal-
ing Paper”. In: IEEE Solid-State Circuits Society Newsletter 12.1
(2007). doi: 10.1109/N-SSC.2007.4785534 (Cited on page 7).

[Bon+08] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J.
Ramanujam, Atanas Rountev, and P. Sadayappan. “Automatic Trans-
formations for Communication-Minimized Parallelization and Lo-
cality Optimization in the Polyhedral Model”. In: Proceedings of
the International Conference on Compiler Construction. CC. 2008.
doi: 10.1007/978-3-540-78791-4_9 (Cited on page 60).

http://dx.doi.org/10.1145/1128022.1128071
http://dx.doi.org/10.1109/MC.2009.57
http://dx.doi.org/10.1007/978-90-481-9112-3_44
http://dx.doi.org/http://dx.doi.org/10.1177/109434200001400404
http://dx.doi.org/http://dx.doi.org/10.1177/109434200001400404
http://dx.doi.org/10.1023/A:1014230429447
http://dx.doi.org/10.1023/A:1014230429447
http://dx.doi.org/10.1109/N-SSC.2007.4785534
http://dx.doi.org/10.1007/978-3-540-78791-4_9

170 BIBLIOGRAPHY

[Bra00] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Soft-
ware Tools (2000) (Cited on page 102).

[Bra88] Thomas Brandes. “The Importance of Direct Dependences for Au-
tomatic Parallelization”. In: Proceedings of the 2nd International
Conference on Supercomputing. ICS. 1988. doi: 10.1145/55364.
55404 (Cited on page 20).

[Bro+00] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. “A
Portable Programming Interface for Performance Evaluation on
Modern Processors”. In: International Journal of High Performance
Computing Applications (2000). doi: 10.1177/109434200001400303
(Cited on page 122).

[Bro+10] Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R. de
Supinski, Dong H. Ahn, and Martin Schulz. “AutomaDeD: Automata-
Based Debugging for Dissimilar Parallel Tasks”. In: International
Conference on Dependable Systems and Networks. 2010. doi: 10.
1109/DSN.2010.5544927 (Cited on pages 63, 141).

[Bul+01] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. “Benchmark-
ing Java against C and Fortran for Scientific Applications”. In:
Proceedings of the 2001 joint ACM-ISCOPE Conference on Java
Grande. 2001 (Cited on pages 52, 85).

[BZS10] Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. “Efficient Selec-
tion of Vector Instructions Using Dynamic Programming”. In: Pro-
ceedings of the 43rd Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO. 2010. doi: 10.1109/MICRO.2010.38
(Cited on pages 26, 27).

[Cab+15] Diego Caballero, Sara Royuela, Roger Ferrer, Alejandro Duran,
and Xavier Martorell. “Optimizing Overlapped Memory Accesses
in User-directed Vectorization”. In: Proceedings of the 29th ACM
on International Conference on Supercomputing. ICS. 2015. doi:
10.1145/2751205.2751224 (Cited on pages 13, 59, 135).

[CDL88] D. Callahan, J. Dongarra, and D. Levine. “Vectorizing Compilers:
A Test Suite and Results”. In: Proceedings of the 1988 ACM/IEEE
Conference on Supercomputing. SC. 1988 (Cited on pages 30, 52).

[CDT13] CDT. Eclipse C/C++ Development Tooling. http://www.eclipse.
org/cdt/. Accessed on 18/5/2013. 2013 (Cited on page 81).

[Che+09] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy
W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. “Rodinia: A Bench-
mark Suite for Heterogeneous Computing”. In: Proceedings of the
2009 IEEE International Symposium on Workload Characteriza-
tion. IISWC. 2009. doi: 10.1109/IISWC.2009.5306797 (Cited on
pages 32, 43, 52, 120, 165).

http://dx.doi.org/10.1145/55364.55404
http://dx.doi.org/10.1145/55364.55404
http://dx.doi.org/10.1177/109434200001400303
http://dx.doi.org/10.1109/DSN.2010.5544927
http://dx.doi.org/10.1109/DSN.2010.5544927
http://dx.doi.org/10.1109/MICRO.2010.38
http://dx.doi.org/10.1145/2751205.2751224
http://www.eclipse.org/cdt/
http://www.eclipse.org/cdt/
http://dx.doi.org/10.1109/IISWC.2009.5306797

BIBLIOGRAPHY 171

[Che+10] Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin. “FlowChecker:
Detecting Bugs in MPI Libraries via Message Flow Checking”. In:
Proceedings of the 2010 ACM/IEEE Conference on Supercomput-
ing. SC. 2010 (Cited on pages 64, 141).

[Coh73] W. L. Cohagen. “Vector Optimization for the ASC”. In: Conference
on Information Sciences and Systems. 1973 (Cited on page 22).

[Cra13] Cray. CrayDoc - ATP 1.7 Man Pages. Accessed 22 December 2014.
2013 (Cited on page 63).

[CSS15] Prasanth Chatarasi, Jun Shirako, and Vivek Sarkar. “Polyhedral
Optimizations of Explicitly Parallel Programs”. In: 2015 Interna-
tional Conference on Parallel Architecture and Compilation (PACT).
2015. doi: 10.1109/PACT.2015.44 (Cited on pages 60, 112).

[Cyt+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. “Efficiently computing static single assign-
ment form and the control dependence graph”. In: ACM Transac-
tions on Programming Languages and Systems. TOPLAS (1991)
(Cited on pages 18, 83).

[D+11] Jack Dongarra, Peter H. Beckman, et al. “The International Exas-
cale Software Project Roadmap”. In: International Journal of High
Performance Computing Applications. IJHPCA (2011) (Cited on
page 138).

[DAJ14] Minh Ngoc Dinh, David Abramson, and Chao Jin. “Scalable Rel-
ative Debugging”. In: IEEE Transactions Parallel Distributed Sys-
tems (2014). doi: 10.1109/TPDS.2013.86 (Cited on page 141).

[Den+74] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and
A. R. Leblanc. “Design of Ion-Implanted MOSFETs with Very Small
Physical Dimensions”. In: IEEE Journal of Solid-state Circuits (1974)
(Cited on page 6).

[Din+11] Minh Ngoc Dinh, David Abramson, Donny Kurniawan, Chao Jin,
Bob Moench, and Luiz De Rose. “Assertion Based Parallel De-
bugging”. In: International Symposium on Cluster, Cloud and Grid
Computing. CCGrid. 2011 (Cited on page 63).

[Du+15] Yong Du, Kobi Vinayagamoorthy, Kevin Yuen, and Yan Zhang.
Explore Optimization Opportunities with XML Transformation Re-
ports in IBM XL C/C++ and XL Fortran for AIX Compilers. IBM
developerWorks. 2015 (Cited on pages 57, 58).

http://dx.doi.org/10.1109/PACT.2015.44
http://dx.doi.org/10.1109/TPDS.2013.86

172 BIBLIOGRAPHY

[Dur+09] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell,
and Eduard Ayguade. “Barcelona OpenMP Tasks Suite: A Set of
Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP”.
In: Proceedings of the 2009 International Conference on Parallel
Processing. ICPP. 2009. doi: 10.1109/ICPP.2009.64 (Cited on
page 44).

[EIg+05] Frank C. EIgler, Vara Prasad, Will Cohen, Hien Nguyen, Martin
Hunt, Jim Keniston, and Brad Chen. Architecture of systemtap: a
Linux trace/probe tool. https://sourceware.org/systemtap/
archpaper.pdf. 2005 (Cited on page 141).

[Esm+11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. “Dark Silicon and the End of
Multicore Scaling”. In: Proceedings of the 38th Annual International
Symposium on Computer Architecture. ISCA. ACM, 2011. doi: 10.
1145/2000064.2000108 (Cited on page 7).

[EWO04] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. “Vector-
ization for SIMD Architectures with Alignment Constraints”. In:
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI. 2004. doi: 10.1145/
996841.996853 (Cited on pages 26, 59).

[Fal+14] Rob Falgout, Tzanio Kolev, Jacob Schroder, Panayot Vassilevski,
and Ulrike Meier Yang. Scalable Linear Solvers: Software. https:
//computation-rnd.llnl.gov/linear_solvers/software.php.
Accessed 17 October 2014. 2014 (Cited on page 158).

[FC07] Wu-chun Feng and Kirk Cameron. “The Green500 List: Encourag-
ing Sustainable Supercomputing”. In: Computer 40.12 (2007) (Cited
on page 1).

[Fel10] Bob Feldman. Debugging Exascale: To heck with the complexity, full
speed ahead! Sept. 2010 (Cited on page 143).

[Fly72] Michael J. Flynn. “Some Computer Organizations and Their Ef-
fectiveness”. In: IEEE Transactions on Computers C-21.9 (1972),
pp. 948–960. doi: 10.1109/TC.1972.5009071 (Cited on pages 6,
9).

[For15] Message Passing Interface Forum. MPI: A Message-Passing Inter-
face Standard (Version 3.1). MPI Specification. 2015 (Cited on
page 14).

[Fou] Free Software Foundation. GNU Compiler Collection. http : / /
gnu.gcc.org. Accessed on 24/9/2014 (Cited on pages 17, 60, 65,
67, 71, 81, 96, 98).

[Fou13] Free Software Foundation. GNU Binutils. http://www.gnu.org/
s/binutils/. 2013 (Cited on page 81).

http://dx.doi.org/10.1109/ICPP.2009.64
https://sourceware.org/systemtap/archpaper.pdf
https://sourceware.org/systemtap/archpaper.pdf
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1145/996841.996853
http://dx.doi.org/10.1145/996841.996853
https://computation-rnd.llnl.gov/linear_solvers/software.php
https://computation-rnd.llnl.gov/linear_solvers/software.php
http://dx.doi.org/10.1109/TC.1972.5009071
http://gnu.gcc.org
http://gnu.gcc.org
http://www.gnu.org/s/binutils/
http://www.gnu.org/s/binutils/

BIBLIOGRAPHY 173

[GKT91] Gina Goff, Ken Kennedy, and Chau-Wen Tseng. “Practical De-
pendence Testing”. In: Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI.
1991. doi: 10.1145/113445.113448 (Cited on page 61).

[GM01] Dejan Glozic and Jeff McAffer. Mark My Words. http://www.
eclipse.org/articles/Article-MarkMyWords/mark-my-words.
html. Accessed on 7/4/2013. 2001 (Cited on page 84).

[GQP07] Qi Gao, Feng Qin, and Dhabaleswar K. Panda. “DMTracker: Find-
ing Bugs in Large-Scale Parallel Programs by Detecting Anomaly
in Data Movements”. In: Proceedings of the 2007 ACM/IEEE Con-
ference on Supercomputing. SC. 2007. doi: 10 . 1145 / 1362622 .
1362643 (Cited on pages 139, 141).

[GS06] Satish Chandra Gupta and Giridhar Sreenivasamurthy. Navigating
"C" in a "Leaky" Boat? Try Purify. www.ibm.com/developerworks/
rational/library/06/0822_satish-giridhar/. Accessed 17 Oc-
tober 2014. 2006 (Cited on page 64).

[GZ07] Olga Golovanevsky and Ayal Zaks. “Struct-reorg: current status
and future perspectives”. In: Proceedings of the GCC Developer’s
Summit. 2007 (Cited on page 56).

[Hal+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Pe-
ter Reutemann, and Ian H. Witten. “The WEKA Data Mining Soft-
ware: An Update”. In: SIGKDD Explorations Newsletter 11 (2009).
doi: 10.1145/1656274.1656278 (Cited on page 102).

[Hed+14] Ward Van Heddeghem, Sofie Lambert, Bart Lannoo, Didier Colle,
Mario Pickavet, and Piet Demeester. “Trends in worldwide ICT
electricity consumption from 2007 to 2012”. In: Computer Commu-
nications 50 (2014). doi: 10.1016/j.comcom.2014.02.008 (Cited
on page 1).

[Hen00] John L. Henning. “SPEC CPU2000: Measuring CPU Performance
in the New Millennium”. In: IEEE Computer 33.7 (2000), pp. 28–
35. issn: 0018-9162 (Cited on pages 51, 66, 85, 164).

[Hen06] John L. Henning. “SPEC CPU2006 Benchmark Descriptions”. In:
ACM SIGARCH Computer Architecture News (2006) (Cited on
pages 32, 37, 38, 100).

[HGG06] Sebastian Hack, Daniel Grund, and Gerhard Goos. “Register Allo-
cation for Programs in SSA-Form”. In: Proceedings of the Interna-
tional Conference on Compiler Construction. CC. 2006 (Cited on
page 19).

http://dx.doi.org/10.1145/113445.113448
http://www.eclipse.org/articles/Article-Mark My Words/mark-my-words.html
http://www.eclipse.org/articles/Article-Mark My Words/mark-my-words.html
http://www.eclipse.org/articles/Article-Mark My Words/mark-my-words.html
http://dx.doi.org/10.1145/1362622.1362643
http://dx.doi.org/10.1145/1362622.1362643
www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1016/j.comcom.2014.02.008

174 BIBLIOGRAPHY

[Hin+14a] Andreas Erik Hindborg, Pascal Schleuniger, Nicklas Bo Jensen,
and Sven Karlsson. “Hardware Realization of an FPGA Proces-
sor – Operating System Call Offload and Experiences”. In: Confer-
ence on Design and Architectures for Signal and Image Processing
(DASIP). 2014. doi: 10.1109/DASIP.2014.7115604 (Cited on
page x).

[Hin+14b] Andreas Hindborg, Pascal Schleuniger, Nicklas Bo Jensen, Maxwell
Walter, Laust Brock-Nannestad, Lars Bonnichsen, Christian W.
Probst, and Sven Karlsson. “Automatic Generation of Application
Specific FPGA Multicore Accelerators”. In: The Asilomar Confer-
ence on Signals, Systems, and Computers. 2014. doi: 10.1109/
ACSSC.2014.7094700 (Cited on page x).

[Hin+15] Andreas Erik Hindborg, Nicklas Bo Jensen, Pascal Schleuniger, and
Sven Karlsson. “State of the Akvario Project”. In: Workshop on Ar-
chitectural Research Prototyping (WARP). 2015. url: http://www.
csl.cornell.edu/warp2015/abstracts/hindborg- akvario-
warp2015.pdf (Cited on page x).

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture
(2nd Edition): A Quantitative Approach. Morgan Kaufmann Pub-
lishers Inc., 1996. isbn: 1-55860-329-8 (Cited on pages 6, 37).

[Ibm+05] Vara Prasad Ibm, Frank Ch, Eigler Red Hat, and Jim Keniston
Ibm. Locating System Problems Using Dynamic Instrumentation.
https://sourceware.org/systemtap/systemtap-ols.pdf. 2005
(Cited on page 141).

[IBM15] IBM. XL C/C++ for Linux. http://www-01.ibm.com/software/
awdtools/xlcpp/linux/. Accessed on 27/1/2016. 2015 (Cited on
pages 30, 71).

[Int] Intel. Intel Composer XE 2015. http://software.intel.com/
en- us/intel- composer- xe. Accessed on 24/9/2014 (Cited on
pages 30, 60, 71, 96, 98, 125).

[Int13] Intel. Intel Composer XE 2013. http://software.intel.com/en-
us/intel-composer-xe. Accessed on 17/5/2013. 2013 (Cited on
pages 57, 58).

[Int15a] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual. 2015 (Cited on page 122).

[Int15b] Intel. Intel Architecture Instruction Set Extensions Programming
Reference. Tech. rep. 2015. url: http://download- software.
intel.com/sites/default/files/319433-014.pdf (Cited on
pages 26, 109).

http://dx.doi.org/10.1109/DASIP.2014.7115604
http://dx.doi.org/10.1109/ACSSC.2014.7094700
http://dx.doi.org/10.1109/ACSSC.2014.7094700
http://www.csl.cornell.edu/warp2015/abstracts/hindborg-akvario-warp2015.pdf
http://www.csl.cornell.edu/warp2015/abstracts/hindborg-akvario-warp2015.pdf
http://www.csl.cornell.edu/warp2015/abstracts/hindborg-akvario-warp2015.pdf
https://sourceware.org/systemtap/systemtap-ols.pdf
http://www-01.ibm.com/software/awdtools/xlcpp/linux/
http://www-01.ibm.com/software/awdtools/xlcpp/linux/
http://software.intel.com/en-us/intel-composer-xe
http://software.intel.com/en-us/intel-composer-xe
http://software.intel.com/en-us/intel-composer-xe
http://software.intel.com/en-us/intel-composer-xe
http://download-software.intel.com/sites/default/files/319433-014.pdf
http://download-software.intel.com/sites/default/files/319433-014.pdf

BIBLIOGRAPHY 175

[Jac+09] Bart Jacob, Paul Larson, Breno Henrique Leitao, and Saulo Au-
gusto M Martins da Silva. SystemTap: Instrumenting the Linux
Kernel for Analyzing Performance and Functional Problems. IBM
Redpaper Publication. 2009 (Cited on page 141).

[Jen+12a] Nicklas Bo Jensen, Per Larsen, Razya Ladelsky, Ayal Zaks, and
Sven Karlsson. “Guiding Programmers to Higher Memory Perfor-
mance”. In: Workshop on Programmability Issues for Heterogeneous
Multicores (MULTIPROG). 2012 (Cited on page ix).

[Jen+12b] Nicklas Bo Jensen, Per Larsen, Razya Ladelsky, Ayal Zaks, and
Sven Karlsson. “Guiding Programmers to Higher Memory Perfor-
mance”. In: Proceedings of 5th Workshop on Programmability Issues
for Heterogeneous Multicores (MULTIPROG-12). 2012 (Cited on
pages 57, 102).

[Jen+14] Nicklas Bo Jensen, Sven Karlsson, Niklas Quarfot Nielsen, Gre-
gory L. Lee, Dong H. Ahn, Matthew Legendre, and Martin Schulz.
“DySectAPI: Scalable Prescriptive Debugging”. In: Proceedings of
the 2014 ACM/IEEE Conference on Supercomputing. SC. Poster
and extended abstract. 2014. url: http://sc14.supercomputing.
org/sites/all/themes/sc14/files/archive/tech_poster/
tech_poster_pages/post237.html (Cited on page ix).

[Jen+15a] Nicklas Bo Jensen, Niklas Quarfot Nielsen, Gregory L. Lee, Sven
Karlsson, Matthew LeGendre, Martin Schulz, and Dong H. Ahn.
“A Scalable Prescriptive Parallel Debugging Model”. In: Proceedings
of the International Parallel & Distributed Processing Symposium.
IPDPS. c© 2015 IEEE. Reprinted, with permission. 2015. doi: 10.
1109/IPDPS.2015.15 (Cited on page ix).

[Jen+15b] Nicklas Bo Jensen, Pascal Schleuniger, Andreas Hindborg, Maxwell
Walter, and Sven Karlsson. “Experiences with Compiler Support for
Processors with Exposed Pipelines”. In: IEEE International Parallel
& Distributed Processing Symposium: Reconfigurable Architectures
Workshop. IPDPSW. 2015. doi: http://dx.doi.org/10.1109/
IPDPSW.2015.9 (Cited on page x).

[Jen12] Nicklas Bo Jensen. GCC Bugzilla bug 49916. http://gcc.gnu.
org/bugzilla/show_bug.cgi?id=49916. 2012 (Cited on page 76).

[Jen16] Nicklas Bo Jensen, ed. D2.5 — Final Results for Exploration Tools.
COPCAMS. Deliverable for the Cognitive and Perceptive Camera
Systems project. 2016 (Cited on page x).

[JK16] Nicklas Bo Jensen and Sven Karlsson. Improving Loop Dependency
Analysis. Journal manuscript submitted for publication. 2016 (Cited
on page x).

http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post237.html
http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post237.html
http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post237.html
http://dx.doi.org/10.1109/IPDPS.2015.15
http://dx.doi.org/10.1109/IPDPS.2015.15
http://dx.doi.org/http://dx.doi.org/10.1109/IPDPSW.2015.9
http://dx.doi.org/http://dx.doi.org/10.1109/IPDPSW.2015.9
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=49916
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=49916

176 BIBLIOGRAPHY

[JKP14a] Nicklas Bo Jensen, Sven Karlsson, and Christian W. Probst. “Com-
piler Feedback using Continuous Dynamic Compilation during De-
velopment”. In: Workshop on Dynamic Compilation Everywhere
(DCE). 2014 (Cited on page ix).

[JKP14b] Nicklas Bo Jensen, Sven Karlsson, and Christian W. Probst. “Com-
piler Feedback using Continuous Dynamic Compilation during De-
velopment”. In: Workshop on Dynamic Compilation Everywhere.
DCE. 2014 (Cited on pages 97, 102).

[JPK14] Nicklas Bo Jensen, Christian W. Probst, and Sven Karlsson. “Code
Commentary and Automatic Refactorings using Feedback fromMul-
tiple Compilers”. In: Swedish Workshop on Multicore Computing
(MCC). 2014 (Cited on page ix).

[JTC99] JTC 1/SC 22/WG 14. ISO/IEC 9899:1999: Programming languages
– C. International Organization for Standards. ISO C99 Standard.
1999 (Cited on page 24).

[KA02] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers Inc., 2002. isbn: 1-55860-286-0 (Cited on page 108).

[Kar+13] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamber-
lain, Jonathan Cohen, Zachary Devito, Riyaz Haque, Dan Laney,
Edward Luke, Felix Wang, David Richards, Martin Schulz, and
Charles H. Still. “Exploring Traditional and Emerging Parallel Pro-
gramming Models Using a Proxy Application”. In: Proceedings of
the International Symposium on Parallel and Distributed Process-
ing. IPDPS. 2013. doi: 10 . 1109 / IPDPS . 2013 . 115 (Cited on
page 16).

[Ken+99] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng
Tu, and Fred Chow. “Partial redundancy elimination in SSA form”.
In: ACM Transactions on Programming Languages and Systems.
TOPLAS (1999) (Cited on page 83).

[KF00] Thomas Kistler and Michael Franz. “Automated Data-member Lay-
out of Heap Objects to Improve Memory-hierarchy Performance”.
In: ACM Transactions on Programming Languages and Systems.
TOPLAS (2000). doi: 10.1145/353926.353937 (Cited on page 56).

[KH11] Ralf Karrenberg and Sebastian Hack. “Whole-function vectoriza-
tion”. In: Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. CGO. 2011.
doi: 10.1109/CGO.2011.5764682 (Cited on page 59).

http://dx.doi.org/10.1109/IPDPS.2013.115
http://dx.doi.org/10.1145/353926.353937
http://dx.doi.org/10.1109/CGO.2011.5764682

BIBLIOGRAPHY 177

[Kic+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-Oriented
Programming”. In: Proceedings of the European Conference on Object-
Oriented Programming. ECOOP (1997) (Cited on page 143).

[KL00] Andreas Krall and Sylvain Lelait. “Compilation Techniques for Mul-
timedia Processors”. In: International Journal of Parallel Program-
ming (2000). doi: 10.1023/A:1007507005174 (Cited on page 26).

[Kle+12] Michael Klemm, Alejandro Duran, Xinmin Tian, Hideki Saito, Diego
Caballero, and Xavier Martorell. “Extending OpenMP* with vector
constructs for modern multicore SIMD architectures”. In: Interna-
tional Workshop on OpenMP. IWOMP (2012). doi: 10.1007/978-
3-642-30961-8_5 (Cited on pages 13, 135).

[Kra+03] Bettina Krammer, Katrin Bidmon, Matthias S. Müller, and Michael
M. Resch. “MARMOT: An MPI Analysis and Checking Tool”. In:
International Conference on Parallel Computing. ParCo. 2003 (Cited
on page 64).

[LA00] Samuel Larsen and Saman Amarasinghe. “Exploiting Superword
Level Parallelism with Multimedia Instruction Sets”. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI (2000). doi: 10.1145/349299.
349320 (Cited on pages 26, 27, 60).

[Lad06] Razya Ladelsky. “Matrix flattening and transposing in GCC”. In:
Proceedings of the GCC Developer’s Summit. 2006 (Cited on pages 56,
67, 69).

[Lag+11] Ignacio Laguna, Todd Gamblin, Bronis R. de Supinski, Saurabh
Bagchi, Greg Bronevetsky, Dong H. Ahn, Martin Schulz, and Barry
Rountree. “Large Scale Debugging of Parallel Tasks with AutomaDeD”.
In: Proceedings of the 2011 ACM/IEEE Conference on Supercom-
puting. SC. 2011 (Cited on pages 63, 64).

[Lar+11a] Per Larsen, Razya Ladelsky, Sven Karlsson, and Ayal Zaks. “Com-
piler Driven Code Comments and Refactoring”. In: Workshop on
Programmability Issues for Heterogeneous Multicores. MULTIPROG.
2011 (Cited on pages 57, 58, 65, 66, 89).

[Lar+11b] Per Larsen, Razya Ladelsky, Jacob Lidman, Sally A. McKee, Sven
Karlsson, and Ayal Zaks. Automatic Loop Parallelization via Com-
piler Guided Refactoring. Technical Report. Technical University of
Denmark, 2011 (Cited on pages 57, 58).

[Lar+12] Per Larsen, Razya Ladelsky, Jacob Lidman, Sally A. McKee, Sven
Karlsson, and Ayal Zaks. “Parallelizing More Loops with Compiler
Guided Refactoring”. In: International Conference on Parallel Pro-
cessing. ICPP. 2012 (Cited on pages 57, 58, 97, 102).

http://dx.doi.org/10.1023/A:1007507005174
http://dx.doi.org/10.1007/978-3-642-30961-8_5
http://dx.doi.org/10.1007/978-3-642-30961-8_5
http://dx.doi.org/10.1145/349299.349320
http://dx.doi.org/10.1145/349299.349320

178 BIBLIOGRAPHY

[Lar11] Per Larsen. Feedback Driven Annotation and Refactoring of Paral-
lel Programs. PhD Thesis. Technical University of Denmark, 2011
(Cited on pages 31, 59, 102).

[Law] Lawrence Livermore National Laboratory.Advanced Simulation and
Computing Sequoia. https://asc.llnl.gov/computing_resources/
sequoia. Accessed 17 October 2014 (Cited on pages 62, 138).

[LCD91] David Levine, David Callahan, and Jack Dongarra. “A Comparative
Study of Automatic Vectorizing Compilers”. In: Parallel Computing
17 (1991) (Cited on page 26).

[Lee] Corinna G. Lee. UTDSP Benchmark Suite. http://www.eecg.
toronto.edu/~corinna/DSP/infrastructure/UTDSP.html. Ac-
cessed September 19, 2016 (Cited on pages 52, 85, 102).

[Lee+07] Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de
Supinski, Barton P. Miller, and Martin Schulz. “Benchmarking the
Stack Trace Analysis Tool for BlueGene/L”. In: Proceedings of the
International Conference on Parallel Computing. ParCo. 2007 (Cited
on pages 63, 141).

[Lee+08] Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R. de
Supinski, Matthew P. LeGendre, Barton P. Miller, Martin Schulz,
and Ben Liblit. “Lessons Learned at 208K: Towards Debugging Mil-
lions of Cores”. In: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing. SC. 2008 (Cited on pages 63, 139, 141).

[Lia+99] Shih-Wei Liao, Amer Diwan, Robert P. Bosch Jr., Anwar Ghuloum,
and Monica S. Lam. “SUIF Explorer: An Interactive and Interproce-
dural Parallelizer”. In: Proceedings of the Seventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.
PPoPP. 1999. doi: 10.1145/301104.301108 (Cited on page 59).

[LK32] Gary Lakner and Brant Knudson. IBM System Blue Gene Solution:
Blue Gene/Q System Administration. IBM Redbooks. 20132 (Cited
on pages 63, 139).

[LMM85] Olaf Lubeck, James Moore, and Raul Mendez. “A Benchmark Com-
parison of Three Supercomputers: Fujitsu VP-200, Hitachi S810/120,
and Cray X-MP/2”. In: IEEE Computer 18.12 (1985). doi: 10.
1109/MC.1985.1662769 (Cited on page 26).

[LP94] Wei Li and Keshav Pingali. “A singular loop transformation frame-
work based on non-singular matrices”. In: International Journal of
Parallel Programming (1994). doi: 10.1007/BF02577874 (Cited on
page 61).

https://asc.llnl.gov/computing_resources/sequoia
https://asc.llnl.gov/computing_resources/sequoia
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://dx.doi.org/10.1145/301104.301108
http://dx.doi.org/10.1109/MC.1985.1662769
http://dx.doi.org/10.1109/MC.1985.1662769
http://dx.doi.org/10.1007/BF02577874

BIBLIOGRAPHY 179

[Lue+03] Glenn R. Luecke, Hua Chen, James Coyle, Jim Hoekstra, Marina
Kraeva, and Yan Zou. “MPI-CHECK: a tool for checking Fortran
90 MPI programs”. In: Concurrency and Computation: Practice and
Experience (2003) (Cited on page 64).

[Luk+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Ar-
tur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. “Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation”. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation. PLDI. 2005. doi: 10.1145/1065010.1065034 (Cited
on page 122).

[LZ95] Shun-tak Leung and John Zahorjan. Optimizing Data Locality by
Array Restructuring. Tech. rep. University of Washington, 1995
(Cited on page 57).

[Mal+11] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong,
and David A. Padua. “An Evaluation of Vectorizing Compilers”.
In: Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques. PACT. 2011. doi: 10.
1109/PACT.2011.68 (Cited on pages 30, 44, 51, 60, 102).

[Mit+14] Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi,
Martin Schulz, and Todd Gamblin. “Accurate Application Progress
Analysis for Large-scale Parallel Debugging”. In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI. 2014 (Cited on page 63).

[Moo75] Gordon E. Moore. “Progress in Digital Integrated Electronics”. In:
International Electron Devices Meeting. 1975 (Cited on page 6).

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementa-
tion. San Francisco, CA, USA, 1997. isbn: 1-55860-320-4 (Cited on
pages 16, 83).

[Mül+12] Matthias S Müller, John Baron, William C Brantley, Huiyu Feng,
Daniel Hackenberg, Robert Henschel, Gabriele Jost, Daniel Molka,
Chris Parrott, Joe Robichaux, Pavel Shelepugin, Matthijs Waveren,
Brian Whitney, and Kalyan Kumaran. “SPEC OMP2012 – An Ap-
plication Benchmark Suite for Parallel Systems Using OpenMP”. In:
Proceedings of the International Workshop on OpenMP. IWOMP.
2012. doi: 10.1007/978-3-642-30961-8 (Cited on pages 32, 44).

[Nai+03] Dorit Naishlos, Marina Biberstein, Shay Ben-David, and Ayal Zaks.
“Vectorizing for a SIMdD DSP architecture”. In: Proceedings of the
International Conference on Compilers, Architectures and Synthe-
sis for Embedded Systems. CASES. 2003. doi: 10.1145/951710.
951714 (Cited on page 59).

http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1109/PACT.2011.68
http://dx.doi.org/10.1109/PACT.2011.68
http://dx.doi.org/10.1007/978-3-642-30961-8
http://dx.doi.org/10.1145/951710.951714
http://dx.doi.org/10.1145/951710.951714

180 BIBLIOGRAPHY

[Nai04] Dorit Naishlos. “Autovectorization in GCC”. In: Proceedings of the
GCC Developer’s Summit (2004) (Cited on pages 59, 115).

[Ng+12] Karen Ng, Matt Warren, Peter Golde, and Anders Hejlsberg. The
Roslyn Project: Exposing the C# and VB compiler code analysis.
Whitepaper. Microsoft. 2012 (Cited on page 57).

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. Secaucus, NJ, USA, 1999. isbn: 3540654100
(Cited on page 17).

[NRZ06] Dorit Nuzman, Ira Rosen, and Ayal Zaks. “Auto-vectorization of In-
terleaved Data forc SIMD”. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation.
PLDI. 2006. doi: 10.1145/1133255.1133997 (Cited on pages 27,
59).

[NS07] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework
for Heavyweight Dynamic Binary I]nstrumentation”. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI. 2007 (Cited on page 62).

[NZ08] Dorit Nuzman and Ayal Zaks. “Outer-Loop Vectorization”. In: Pro-
ceedings of the 17th international conference on Parallel architec-
tures and compilation techniques. PACT. 2008. doi: 10 . 1145 /
1454115.1454119 (Cited on page 59).

[Oak] Oak Ridge National Laboratory. Introducing Titan - Advancing the
Area of Accelerated Computingß. https://www.olcf.ornl.gov/
titan/. Accessed 17 October 2014 (Cited on page 138).

[OK] David R. O’Hallaron and Loukas F. Kallivokas. 183.equake SPEC
CPU2000 Benchmark Description File. Accessed on 13/5/2016 (Cited
on pages 69, 73).

[Ora] Oracle.Oracle Solaris Studio. http://www.oracle.com/technetwork/
server- storage/solarisstudio/overview/index.html. Ac-
cessed on 17/5/2013 (Cited on pages 57, 58, 71).

[Pat15] David Patterson. “Past and Future of Hardware and Architecture”.
In: SOSP History Day 2015. SOSP. 2015. doi: 10.1145/2830903.
2830910 (Cited on page 6).

[PC10] Antoniu Pop and Albert Cohen. “Preserving high-level semantics
of parallel programming annotations through the compilation flow
of optimizing compilers”. In: Proceedings of the 15th Workshop on
Compilers for Parallel Computers. CPC. 2010. url: https://hal.
inria.fr/inria-00551518 (Cited on page 112).

http://dx.doi.org/10.1145/1133255.1133997
http://dx.doi.org/10.1145/1454115.1454119
http://dx.doi.org/10.1145/1454115.1454119
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://dx.doi.org/10.1145/2830903.2830910
http://dx.doi.org/10.1145/2830903.2830910
https://hal.inria.fr/inria-00551518
https://hal.inria.fr/inria-00551518

BIBLIOGRAPHY 181

[PD80] David A. Patterson and David R. Ditzel. “The Case for the Reduced
Instruction Set Computer”. In: ACM SIGARCH Computer Archi-
tecture News 8.6 (1980). doi: 10.1145/641914.641917 (Cited on
page 6).

[PJ15] Vasileios Porpodas and Timothy M. Jones. “Throttling Automatic
Vectorization : When Less Is More”. In: Proceedings of the In-
ternational Conference on Parallel Architectures and Compilation
Techniques. PACT. 2015. doi: 10.1109/PACT.2015.32 (Cited on
page 46).

[Pug91] William Pugh. “The Omega Test: A Fast and Practical Integer
Programming Algorithm for Dependence Analysis”. In: Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing. SC. 1991.
doi: 10.1145/125826.125848 (Cited on page 61).

[RAM03] P.C. Roth, D.C. Arnold, and B.P. Miller. “MRNet: A Software-
Based Multicast/Reduction Network for Scalable Tools”. In: Pro-
ceedings of the 2003 ACM/IEEE Conference on Supercomputing.
SC. 2003 (Cited on page 150).

[Ram94] G. Ramalingam. “The Undecidability of Aliasing”. In: ACM Trans-
actions on Programming Languages and Systems. TOPLAS (1994).
doi: 10.1145/186025.186041 (Cited on page 24).

[RD] Charles Roberson and Max Domeika. 179.art SPEC CPU2000 Bench-
mark Description File. Accessed on 13/5/2016 (Cited on pages 69,
71).

[RD14] Pethuru Raj and Ganesh Chandra Deka. Handbook of Research
on Cloud Infrastructures for Big Data Analytics. English. Ed. by
Pethuru Raj and Ganesh Chandra Deka. IGI Global, 2014. isbn:
9781466658646. doi: 10.4018/978- 1- 4666- 5864- 6 (Cited on
page 2).

[Rei12] James Reinders. An Overview of Programming for Intel R© Xeon R©
processors and Intel R© Xeon PhiTM coprocessors. Intel Corporation.
2012 (Cited on page 39).

[Rog] Rogue Wave Software. TotalView Achieves Massive Milestone To-
wards Exascale Debugging. http://www.roguewave.com/company/
news-events/press-releases/2012/scalability-milestone-
for-totalview-debugger.aspx. Accessed 17 October 2014 (Cited
on page 62).

[Rog14] Rogue Wave Software. TotalView R© Graphical Debugger. http://
www.roguewave.com/products/totalview.aspx. Accessed 17
October 2014. 2014 (Cited on pages 62, 139, 140).

http://dx.doi.org/10.1145/641914.641917
http://dx.doi.org/10.1109/PACT.2015.32
http://dx.doi.org/10.1145/125826.125848
http://dx.doi.org/10.1145/186025.186041
http://dx.doi.org/10.4018/978-1-4666-5864-6
http://www.roguewave.com/company/news-events/press-releases/2012/scalability-milestone-for-totalview-debugger.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/scalability-milestone-for-totalview-debugger.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/scalability-milestone-for-totalview-debugger.aspx
http://www.roguewave.com/products/totalview.aspx
http://www.roguewave.com/products/totalview.aspx

182 BIBLIOGRAPHY

[Rus78] Richard M. Russell. “The CRAY-1 Computer System”. In: Com-
munications of the ACM (1978). issn: 0001-0782. doi: 10.1145/
359327.359336 (Cited on pages 26, 109).

[RZB15] Gil Rapaport, Ayal Zaks, and Yosi Ben-Asher. “Streamlining Whole
Function Vectorization in C Using Higher Order Vector Semantics”.
In: IEEE International Parallel and Distributed Processing Sympo-
sium Workshop. IPDPSW. IEEE, 2015. doi: 10.1109/IPDPSW.
2015.37 (Cited on page 59).

[SHC05] Jaewook Shin, Mary Hall, and Jacqueline Chame. “Superword-
Level Parallelism in the Presence of Control Flow”. In: Proceedings
of the International Symposium on Code Generation and Optimiza-
tion. CGO. 2005. doi: 10.1109/CGO.2005.33 (Cited on page 27).

[Ske12] Jonas Skeppstedt. An Introduction to the Theory of Optimizing
Compilers. 2012. isbn: 978-91-977940-1-5 (Cited on pages 21, 24,
50, 83).

[SS14] Richard M. Stallman and Cygnus Support. Debugging with GDB
: The GNU source-level debugger. Free Software Foundation, 2014.
isbn: 1-88211-409-4 (Cited on pages 62, 139, 140).

[TC11] Linda Torczon and Keith Cooper. Engineering a Compiler. 2nd. San
Francisco, CA, USA, 2011. isbn: 012088478X (Cited on page 83).

[The] The LLVM Foundation. clang: a C Language Family Frontend for
LLVM. http://clang.llvm.org. Accessed on 24/9/2014 (Cited
on pages 60, 96, 98).

[Tri+09] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and
Ira Rosen. “Polyhedral-Model Guided Loop-Nest Auto-Vectorization”.
In: 18th International Conference on Parallel Architectures and
Compilation Techniques. PACT. 2009. doi: 10.1109/PACT.2009.
18 (Cited on pages 59, 60).

[Tri+10] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, To-
bias Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop, Jan
Sjödin, and Ramakrishna Upadrasta. “GRAPHITE Two Years Af-
ter: First Lessons Learned From Real-World Polyhedral Compi-
lation”. In: GCC Research Opportunities Workshop. GROW. 2010
(Cited on page 61).

[VRD10] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. “The
Paralax Infrastructure: Automatic Parallelization with a Helping
Hand”. In: Proceedings of the 19th International Conference on Par-
allel Architectures and Compilation Techniques. PACT. 2010. doi:
10.1145/1854273.1854322 (Cited on page 59).

http://dx.doi.org/10.1145/359327.359336
http://dx.doi.org/10.1145/359327.359336
http://dx.doi.org/10.1109/IPDPSW.2015.37
http://dx.doi.org/10.1109/IPDPSW.2015.37
http://dx.doi.org/10.1109/CGO.2005.33
http://clang.llvm.org
http://dx.doi.org/10.1109/PACT.2009.18
http://dx.doi.org/10.1109/PACT.2009.18
http://dx.doi.org/10.1145/1854273.1854322

BIBLIOGRAPHY 183

[VS00] Jeffrey S. Vetter and Bronis R. de Supinski. “Dynamic Software
Testing of MPI Applications with Umpire”. In: Proceedings of the
2000 ACM/IEEE Conference on Supercomputing. SC. 2000 (Cited
on page 64).

[Wal+15] Maxwell Walter, Pascal Schleuniger, Andreas Erik Hindborg, Carl
Christian Kjærgaard, Nicklas Bo Jensen, and Sven Karlsson. “Ex-
periences Implementing Tinuso in gem5”. In: Second gem5 User
Workshop. 2015. url: http://www.m5sim.org/wiki/images/f/
f5/2015_ws_16_gem5-workshop_mwalter.pptx (Cited on page x).

[Wal91] David W. Wall. “Limits of Instruction-level Parallelism”. In: Pro-
ceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASP-
LOS. 1991. doi: 10.1145/106972.106991 (Cited on page 7).

[WF10] Christian Wimmer and Michael Franz. “Linear Scan Register Al-
location on SSA Form”. In: Proceedings of IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. CGO.
2010 (Cited on page 83).

[Whe13] David Wheeler. SLOCcount. 2013. url: http://www.dwheeler.
com/sloccount/ (Cited on pages 71, 85).

[Wil+94] Robert Wilson, Robert French, Christopher Wilson, Saman Ama-
rasinghe, Jennifer Anderson, Steve Tjiang, Shih Liao, Chau Tseng,
Mary Hall, Monica Lam, and John Hennessy. The SUIF Compiler
System: A Parallelizing and Optimizing Research Compiler. Tech.
rep. 1994 (Cited on page 61).

[WM95] Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall:
Implications of the Obvious”. In: ACM SIGARCH Computer Ar-
chitecture News (1995). doi: 10.1145/216585.216588 (Cited on
page 7).

[Woo+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder
Pal Singh, and Anoop Gupta. “The SPLASH-2 Programs: Charac-
terization and Methodological Considerations”. In: Proceedings of
the 22nd Annual International Symposium on Computer Architec-
tures. ISCA. 1995 (Cited on pages 32, 40, 41).

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. “Constant Propagation
with Conditional Branches”. In: ACM Transactions on Program-
ming Languages and Systems. TOPLAS (1991) (Cited on page 83).

[Zak15] Ayal Zaks. “Compiling for Scalable Computing Systems – the Merit
of SIMD”. The 5th Annual Henry Taub International TCE Confer-
ence. 2015. url: http://tce.webee.eedev.technion.ac.il/wp-
content/uploads/sites/8/2015/11/AyalZaks.pdf (Cited on
page 10).

http://www.m5sim.org/wiki/images/f/f5/2015_ws_16_gem5-workshop_mwalter.pptx
http://www.m5sim.org/wiki/images/f/f5/2015_ws_16_gem5-workshop_mwalter.pptx
http://dx.doi.org/10.1145/106972.106991
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/
http://dx.doi.org/10.1145/216585.216588
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2015/11/AyalZaks.pdf
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2015/11/AyalZaks.pdf

184 BIBLIOGRAPHY

Limitations per Benchmark

Primary and first encountered limitation for each individual benchmark, in the
five benchmark suites, Spec CPU2006, Spec OMP2012, NAS Parallel Bench-
marks 3.3.1, Rodinia Benchmark Suite 3.1 and SPLASH-2x is shown in Figure 1.

186 Limitations per Benchmark

0 1 2 3 4 5 6 7 8
401.bzip2	

437.leslie3D	
462.libquantum	

429.mcf	
400.perlbench	

433.milc	
447.dealII	

454.calculix	
465.tono	

482.sphinx3	
350.md	

357.bt331	
360.ilbdc	

367.imagick	
372.smithwa	

DC	
IS	
SP	
bfs	

heartwall	
kmeans	

lud	
nn	

pathfinder	
streamcluster	

Fft	
Lu_ncb	

Radiosity	
Volrend	

#	Loops

Control-Flow Unsupported	Memory	Access	Pattern

Auto-Vectorized Iterations

Aliasing	checks Not	profitable

Bad	Data	Ref. Func.	Calls

Other

Figure 1: Primary issues encountered during auto-vectorization in GCC 6.1
for each benchmark. Numbers are for inner loops representing more
than 5% of the benchmark execution time

	Summary
	Resume
	Preface
	Acknowledgments
	Publications
	Contents
	1 Introduction
	1.1 Thesis Contributions
	1.2 Synopsis

	2 Technical Background
	2.1 Processing Elements
	2.2 Programming Models
	2.3 Program Analysis and Optimization

	3 State-of-the-Art — Limitations of Modern Compilers
	3.1 Automatic Vectorization
	3.2 Limitations in GCC 6.1
	3.3 Discussions

	4 Motivation
	4.1 Improving Utilization of Existing Optimizations
	4.2 Improving Compiler Optimizations
	4.3 Improving Parallel Debugging
	4.4 Research Methodology

	5 Related Work
	5.1 Memory Optimizations
	5.2 Compiler Feedback
	5.3 Automatic Vectorization
	5.4 Dependences
	5.5 Models in Parallel Debugging

	6 Compiler Feedback for Higher Memory Performance
	6.1 Memory Optimization
	6.2 Experimental Evaluation
	6.3 Conclusions

	7 Continuous Compiler Feedback during Development
	7.1 Compiler Infrastructure
	7.2 Feedback Infrastructure
	7.3 Experimental Evaluation
	7.4 Discussion
	7.5 Conclusions

	8 Compiler Feedback using Multiple Compilers
	8.1 Multi-Compiler Feedback Tool
	8.2 Experimental Evaluation
	8.3 Conclusions

	9 Improving Loop Dependence Analysis
	9.1 The Automatic Vectorization Problem
	9.2 OpenMP Application Programming Interface
	9.3 Using OpenMP Information in Compiler Optimizations
	9.4 Our Approach to Dependence Analysis and Automatic Vectorization
	9.5 Experimental Evaluation
	9.6 Discussion
	9.7 Conclusions

	10 Prescriptive Parallel Debugging
	10.1 Motivation
	10.2 Models in Parallel Debugging
	10.3 In Search for Sweet Spots
	10.4 A New Model: Prescriptive Debugging
	10.5 DySectAPI: The Dynamic Scalable Event Tracing API
	10.6 Evaluation
	10.7 Conclusions

	11 Conclusions
	11.1 Compiler Feedback
	11.2 Improved Compiler Optimizations
	11.3 Prescriptive Debugging
	11.4 Outlook

	Bibliography
	Limitations per Benchmark

