
 Eindhoven University of Technology

MASTER

An optimizing C-compiler for the PMS500 processor using the Lcc front end

van Loon, M.R.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1e19cb98-549d-4fe9-b74f-7049dbcb3268

Technische Universiteit tG3 Eindhoven

Faculty of Electrical Engineering
Section of Digital Information Systems

Master's Thesis:

An optimizing C-compiler for
the PMS500 processor using
the Lcc front end

M.R. van Loon

Coach

Supervisor

Period

: Ie. A.G.M. Geurts, Drs. C.M. Moerman, H.J.M. Joosten

: Prof. Ie. M.P.J. Stevens

: July 1994 - February 1995

The Faculty of Eleclrical Engineering of Eindhoven Univel'lily of Technology does not
accepl any rellpOlllIibilily regsrding the conlenls of Master's Theses.

Table of Contents
1 Abstract. .. 4

2 Introduction . 5

3 Survey of compiler generating utilities . • 6

4 Desaiption of the target processor • . • . . •. 8
4.1 The CONTEXT switching scheme 10
4.2 The SP, DP and EP pointers 10
4.3 The status register . • 10
4.4 The mode register and I/O•..................... 10
4.5 IRQ registers and Interrupts•................•.......... 10
4.6 The PC register .. 11
4.7 The PMSSOO instruction set 11

5 Building a dumb compiler with Lee • • . • 12
5.1 A brief description of the Lee code generation interface 12
5.2 Description of the dumb compiler 13

5.2.1 Assumptions. .. 13
5.2.2 Problems, possible solutions and useful information provided by Lee •• 13
5.2.3 Possible optimizations 14
5.2.4 Summary. .. 15

6 Investigation for useful additions to the PMSSOO instruction set 16

7 Structure of the final compiler 18
7.1 Possible optimizations 19
7.2 Data flow analysis 20
7.3 Loop optimization .. 20
7.4 Code elimination and code substitution 21

8 Data Flow Analysis 23
8.1 Collecting reference- and definition information 23
8.2 Determining usage- and definition points".............. 25
8.3 Data Flow Graph Construction 25
8.4 Alias analysis ". .. 27
8.5 Reaching deflDitions 31
8.6 Fmding cycles in the DFG 33
8.7 Making use of the calculated data flow information .. 36
8.8 Forward data flow analysis based on divergence 36
8.9 Backward data flow analysis • . . • • • . • • . • • • . . . • • • • . • . . • • • • . • . • • . . •• 37

9 Register allocation ". • . . • .. 38
9.1 Defining live variables for register allocation . • . .• 38
9.2 Graph Colouring . • .. 39
9.3 Simulated execution .. 40

10 Implementation 41
10.1 Data structures 41

10.1.1 Reference-deflDition information 41
10.1.2 The data flow graph 41
10.1.3 Extensions to codenodes 42

1

10.1.4 Extensions to symbol table entries . • • 44
10.1.5 Lists for aliases•.......... 44
10.1.6 Bitfields for data flow analysis•....•.......... 45

10.2 Algorithm complexity•........................•.......... 45
10.2.1 Building the DFG•.............. 45
10.2.2 Alias analysis•............ 46
10.2.3 Reaching definitions•...................•..•.•...... 46
10.24- Live variable analysis•.............. 47

103 Using the data flow information and implementing optimization algorithms 47
10.4 Calling trees •.............•...•••...•....•..•.........•..•.•..... 49
10.5 Modifications to the front end•............................... 51
10.6 Validation and libraries .•.•.........•...............•...••.......... 51

11 Conclusions •.•. . • . • • . • 53

12 Bibliography. . • • . • . . . • . • . • • 54

I. List of aiteria 56

II. List of compiler generating utilities .. 57
A. Compiler Tool Kits 57

1. Amsterdam Compiler Kit (ACK) .. 57
2. ELI 58
3. The GMD Tool Box (Cocktail) 59
4. Purdue Compiler Construction Tool Set (pcerS) 60

B. Retargetable compilers•............ 61
1. Lee • . • 61
2. GCC. • 63
3. Archelon User Retargetable Development Tools II 64

ill. Summary of discarded tools 66

IV. List of Lee opcodes 67

V. The PMSSOO instruction set 68

VI. Function declarations 70

VII. Global variables and definitions 74

VIII. Index • . • .. 75

2

List of Tables

Table 1 Available registers .. 9
Table 2 Usage statistics of MOV Ax. Ay+c instruction. .. 16
Table 3 List of Lee opcodes .. 67
Table 4 List of PMSSOO opcodes 69

List of Figures

Figure 1 PMSSOO processor architecture • • . • • • • • 8
Figure 2 Context switching•......••....•....................•..........•. 10
Figure 3 Stack frame layout of the dumb compiler•................•....•........ 13
Figure 4 A code tree and its corresponding ref-def information.•........... 24
Figure 5 Example of a data flow graph•.•.••............................. 26
Figure 6 Example of complex loops .••. • . . . • . . • • .. 35
Figure 7 The Xnode structure•.•.•.......•......................... 43
Figure BThe Xsymbol structure • .. 44
Figure 9 Calling tree for collecting reference-defmition information and data flow graph construction

• • • • . • • . . • • . . . • • . • .. 49
Figure 10 Calling tree for reaching definitions 50
Figure 11 Calling tree for live analysis 51

List of Algorithms

Algorithm 1 Construction of the Data Flow Graph Z7
Algorithm 2 Calculating the set of aliases 28
Algorithm 3 Solving the general forward dataflow problems .. 30
Algorithm 4 The TRANS function 31
Algorithm S Calculating the GEN- and KILL sets 32

3

1 Abstract
To be able to build a complete, optimizing, C-compiler for the PMSSOO microprocessor core, a project was
started to gather the information and knowledge necessary to build such a compiler and to implement a base
from which the compiler could be completed without too much difficulty, i.e. in just a few man-months. An
investigation has been held to select a tool to simplify this task. A large number of compiler building toolkits
and retargetable compilers have been examined and compared to select the most appropriate candidate. This
investigation resulted in the selection of the Lee retargetable C-compiler to be used as C-front end from
which the final compiler could be developed. After thorough examination of the limitations and features of
both the target processor and Lee, a number of optimizations, promising the largest gain in the areas of code
elimination and execution time minimalization, were selected. The selected optimizations include loop
optimizations (loop-invariant code detection, induction variable detection), optimizations to eliminate code
(dead code elimination through copy- and constant propagation and folding, common subexpression
elimination), improving register allocation and, providing they don't interfere with the previously mentioned
optimizations, code substitution for faster execution (reduction in strength). The currently selected
optimizations are basically target-processor independent (and are strictly speaking part of the front end), but
since optimizations that have no effect on code size or execution speed of programs running on the PMSSOO
are left out, the choice of optimization algorithms can be said to be 'target-processor dependent'.
Subsequently, preparations were made to implement these optimizations. The need for different types of data
flow analysis have been investigated and methods and algorithms to implement these types of analysis have
been provided to deal with the different aspects of the C-Ianguage and the Lee toolkit. These algorithms
include a number of data flow analysis types as well as algorithms to build a data flow graph or to handle
the effect of pointers in C. Most algorithms have been implemented yielding a base from which most of the
selected optimizations can be implemented within the timespan mentioned above. The optimizations for
which it is currently possible to write an implementation include induction variable detection, detection of
loop-invariant code and the resulting code hoisting, constant -propagation and -folding and dead code
elimination, and sufficient information is available from data flow analysis to perform reasonable register
allocation by simulated execution. Loop detection, register allocation and code selection as well as the actual
implementation of the different optimizations must be done to complete the compiler.

4

2 Introduction
This is a report on a project performed at Pijnenburg micro-electronics & software b.v. in Vugbt, in order
to acquire the degree of Master of Science from the Eindhoven University of Technology. Pijnenburg has
developed a microprocessor core, the PMSSOO, for which a C-compiler was to be developed. Particularly,
since building a complete C-compiler from scratch was recognized to be too large a task to finish in a
reasonable amount of time for a graduate project, the objective was to establish a firm base, in the form of
documentation and implementation, from which an optimizing C compiler could be built. The largest part
of the work consist of providing a basis for optimization.

Modem compilers can be divided into two main parts, the front end and the back. end. The front end
embodies the source-language dependent actions, while the back. end takes care of target language specifics.
In most cases the back. end also provides solutions for target system requirements and/or optimizations. For
higher level programming language compilers, the front end accepts source language programs and translates
them into a machine-independent form like intermediate code (IR) or abstract syntax trees (AST's).
Subsequently, the back. end takes this intermediate representation and adds the machine dependent
information to generate the assembly. In most practical compilers, both intermediate code and final assembly
are subject to optimization phases.

The front end itself comprises three blocks:
• The scanner, converting source code to tokens
• The parser, combining sequences of tokens to fmd the syntactic structure of sentences in the source

language, often resulting in an AST or a preliminary JR
• The constrainer, doing semantic analysis such as storing symbols and ensuring their correct use, resulting

in a decorated AST or final JR.
Machine-independent optimizations, such as common subexpression elimination and copy propagation are
also considered part of the front end.

The back. end comprises of the code generator and the machine dependent optimization. The code generator
performs tasks like outputting the actual assembly instructions, and assigning storage space for symbols
(memory or registers). Optimizing can include instruction scheduling (to take advantage of some processor's
pipeline), register reallocation (to reduce memory access) or peephole optimization (replacing sequences of
instructions with specialised or more suitable instruction sequences).

Existing code generators show two ways to translate the JR or AST to assembly. The first approach is to
have the front end generate intermediate code for a virtual machine that resembles the target machine in
architecture and instruction set. The back. end then translates this intermediate code by means of a simple
mapping to the target assembly. This is the simplest way to generate code but this approach usually results
in inefficient assembly.

Another way to generate code is to have the front end generate an AST or some IR that is largely
independent of the source- and target language or target machine. Assembly instructions are represented
by short sequences of intermediate code or AST subtrees. The code generator then substitutes parts of the
AST or IR with matching instructions. The generator is also able to translate sequences of IR instructions
or subtrees of the AST into semantically identical sequences to match assembly instruction sequences. There
are generally two ways to do this substitution:
• Using 'Attribute Grammars (AG's)': The code generator parses the IR in the same way as the front end

parses the original source, using abstract grammars. Production rules in this grammar can be attributed
with actions to output pieces of assembly, assign values to symbols and so on.

• With 'Tree Pattern Matching' or 'Tree rewriting': Tree pattern matchers try to cover the original AST
with subtrees corresponding to assembly instructions, until an assembly instruction sequence is found
covering the complete AST. Register allocation is usually delayed until a full match is found and is then
done by means of a graph colouring algorithm.. 'Tree rewriters' substitute subtrees of the original
intermediate tree with nodes representing machine instructions, rather than match them against subtrees.

5

3 Survey of compiler generating utilities
A sensible way to build a compiler nowadays is to generate it, at least partially, automatically. Much research
effort has been put into aeating all kinds of compilers from standard descriptions of source- and destination
languages. As a result of this, many ready-made compiler generating utilities exist. Because of the popularity
of the C language, the possibility exists that some of these utilities can be used or are intended to be used
specifically as C-compiler generators. The front end of the compiler, comprising scanning, lexical analysis
and syntactic analysis is practically the same for every C-compiler (due to the presence of an ANSI/ISO
standard for the C-Ianguage). Using existing utilities can therefore keep us from reinventing the wheel, thus
saving time and hopefully providing an amount of code that has already been debugged.

A SUJ'\'ey of existing compiler generating utilities was made to find the most suitable 'starter kit'. A query
was started at the USENET 'comp.compilers' newsgroup, yielding a list of publicly available utilities.
Checking references to articles using the 'Science Citation Index' did not result in any utilities besides those
already known from the USENET query, but it did bring up a large number of related articles, some of
which are ([6, 9]). Simultaneously Paul Jansen at Philips Eindhoven conducted a query for compiler
compilers [2], also using USENET, showing that Yacc, Flex, ELI, Cocktail and PCCTS were the most
frequently used compiler compilers. Retargetable compilers such as Lee or Gee were not included in this
query, however. rmally, the Eindhoven University libraries provided interesting reading material ([14,25]),
including an earlier conducted survey on attribute grammars listing over 33 compiler compilers using
attribute grammars [13].

Following the survey, some of the most promising options were tried (when available) to verify the different
qualities found in the survey. Inspected utilities were EU, Cocktail, Lee and Gee. EU proved to be a large
system but thoroughly documented. A C scanner/parser was included with the package. Cocktail was
dropped when it became known that BEG would not be available. Lee had the smallest size of all packages,
and it was not very difficult to see that simple compilers could easily be built using the Lee front end.
Documentation of the Lee package was limited. However, the new version of Lee (due September 1994)
would be followed by the release of a book about Lee, expected to come out near the end of 1994. rmally,
inspection of existing Gee compilers showed them to be high quality compilers, using a large amount of
resources. Documentation was present in on-line form but was not as complete as the EU documentation.
The front end- back end interface, using Gnu's Register Transfer Language (RTL) was more complex than
the Lee interface (using a tightly coupled system in which the front end and the back end make use of each
other's functions), but would be more flexible to use.

To choose the best possible utility, a list of aiteria was made. Every utility was checked against this list to
decide to which level it was fit to be used. Appendix I shows the list of aiterla. These aiterla cannot,
however, be used to compare utilities point-by-point because of the different nature of some utilities. There
are generally three ways to generate a compiler, each resulting in a different type of utility:

• Using a compiler construction toolkit
• Using a retargetable compiler
• Writing it completely from saatch

In case of a compiler toolkit, programs to deal with reside on three levels:
• The toolkit level: the actual utilities. These programs are finished and will o~y have to be compiled into

executables for the machine the compiler will be developed on. System requirements (memory usage,
original platform the code was written for), documentation, ease of use have to be considered.

• The compiler level: the resulting compiler or the programs comprising the compiler. These programs have
to be compiled into executables for the user platform, which is DOS in our case. Important factors are
size of the compiler, compiling speed, debugging capabilities, ANSI conformance and the possibility to
generate code for machines with varying register size.

• The target code level: These are the programs written for the PMSSOO that are to be compiled by the new
compiler. Code size and code speed have to be considered.

6

When using a retargetable compiler, two levels of code exist:
• The compiler level: Programs that comprise the compiler front end, and that implement an interface to

the machine-dependent back end. The previously mentioned considerations still hold, in addition to the
documentation of the interface, complexity of said interface, portability of the front end code (what
platform was the original front end developed for and how much time does it take to translate it to the
DOS platform?)

• The target code level

Writing a completely new compiler means scanning, lexical- syntactic- and semantical analysis and -checking
must be implemented from scratch. As this task was estimated to take up approximately three man-years
of time, it was decided not to take this approach.

Appendix D lists compiler toolkits and retargetable compilers considered. Possible advantages, disadvantages
and expected problems are also included.

Practical considerations influencing the decision process were cost of a package, availability, copyright
restrictions and support. Looking only at the compiler tool kits, Cocktail, PQCC and ACK seemed the most
promising as these where the only toolkits with a specific code generator generator. Most toolkits provided
similar utilities and only differed in ease of use or completeness, with EU being the most complete and
general, and pcers being a very user-friendly but less sophisticated package. Toolkits mentioned in [13]
range from 'simpler than pcers' to 'comparable with EU or Cocktail' (including Cocktail itself), but since
these toolkits were not reported to be in use and were older than the above toolkits, they where not pursued
any further. Further investigation showed that the PQCC project had been abandoned some time ago and
satisfying results were never reached.

From the retargetable compilers, Lee and Gee seemed the most promising. Lee for it's ease of use, Gee for
its wide support and the fact that it was known to have been ported to many systems and applications.
Archelon would be very well suited to our needs but the copyright restrictions and price prohibited its use.
Information on ACC never arrived (Only one reference to its use was found. The information promised
never arrived and as it took too much time to get other information, ACC was dropped.). CCG was not to
be sold.

Considering the fact that the target processor has a fairly straightforward instruction set and (from a
compiler's point of view) a relatively simple architecture (No pipeline, almost every instruction takes one
clock cycle), Lee seemed the best alternative. Compiler generating toolkits would generate front ends that
would be larger and slower than the Lee front end, and Lee offered an easy way to generate debuggable
output. Other points were the fact that ACK was quite expensive, whereas Lee was free, and the fact that
the latest version of Cocktail no longer incorporated its code generator generator (BEG). BEG was at that
time in use for an Esprit project and the policy towards selling BEG was not yet clear. The author offered
to speed up the decision process, but even then this would take too long so Cocktail lost its main advantage.
Another problem was the fact that the C front end, which was reported as written for Cocktail, would not
come with the package. This meant either writing a new C description or using a publicly available but
incomplete description.

Gee was (and still is) on of the best-optimizing compilers available, and is also able to generate debuggable
code. Taking the above points into consideration, the difference between Lee's (less optimized) and GCC's
code would be marginal. GCC, however, is much more difficult to retarget thanLcc, and would also result
in a larger, slower compiler due to the built-in options and functionality that would never be used. However,
a version of GCC ported to DOS (called DJGPP, from DJ Delorie's DOS port of GPP, the GCC compiler
including C+ +) was initially used as development compiler to build the Lee compiler.

7

4 Description of the target processor
This chapter is an extract of [17].
The PMSSOO processor contains a 16-bit RISe processor core centered around a dual-ported windowed
register fIle. It uses separate program and data memory spaces. The system architecture of the core is shown
in figure 1. The controller is register based. Registers are divided in two groups; the general purpose working
registers organised in a register file, and the device registers. Table 1 shows the available registers.

Destination

RAM

(internal)

'---_--1._-------_.._-,

.------311<._...,... ~

i
!
i

RAW ~
I

ROM:
I

(external):
etc•••

Status

Context

Interrupts

Destination

A-source

Dual port

register

file

ROM addr/data

Figure 1 PMS500 processor architecture

The PMSSOO is intended for integration with custom specifIc circuits. It can easily be extended with off-chip
customized I/O and other devices, such as A/D and D/ A converters, external memory controllers or
parallel/serial ports using UARTs.

Program space, data space and I/O space are strictly separated. These three area's can be accessed
simultanuously so execution speed is increased.

8

Name Access Description

General purpose registers

AO.A7 R/W General purpose arithmetic registers. These registers are a subset of the
complete register file, as selected by the current position of the sliding
context window (See 4.1).

Device registers

MODE R/W Mode and I/O register bank select.

STAT R/W Arithmetic condition codes.

IRQE R/W Interrupt enable bits.

IRQS R Interrupt status bits. Indicates pending interrupts.

CNTX R/W Context register. Determines which register window of the general purpose
register bank is visible. (See 4.1)

PC R/W Program counter. Accessible for e.g. indirect or calculated jumps and for
creating relocateable code.

MULDIV R/W Intermediate register used for multiply and division steps.

Data pointers

SP R/W RAM stack pointer. Used to select a specific RAM location, and to stack
PC for subroutines/IRQ's.

[SP] R/W The RAM contents as selected by the stack pointer.

[SP+ +] R/W The stack pointer can be post-incremented or

[--SP] R/W pre-decremented automatically.

DP R/W RAM stack pointer. Used to select a specific RAM location.

[DP] R/W The RAM contents as selected by the DP data pointer.

[DP+ +] R/W The data pointer can be post-incremented or

[--DP] R/W pre-decremented automatically.

EP R/W RAM stack pointer. Used to select a specific RAM location.

[EP] R/W The RAM contents as selected by the EP data pointer.

[EP+ +] R/W The extra pointer can be post-incremented or

[--EP] R/W pre-decremented automatically.

I/O Registers

100..103 R/W Dermed by I/O of specific implementation.

Table 1 Available registers

9

The general purpose registers are
treated as a window on some sort of
stack, the base address of which is
contained in the CNTX register. The
context space contains a total of 64
registers, of which 8 can be accessed
directly. One of the intended usages
of this register file by the designers
was as follows: Each routine can
reserve its own local register set by
deaementing the number of words it
needs. Any general register above the
created local ones is shared with its
ca1Iing routine, thus enabling
parameter passing between them (see
figure 2).

Figure 2 Context switching

4.1 The CONTEXT
switching scheme old

CNTX~

Register set
of calling
procedure

AO

A1

A2.

A3

A4

AS

A6

A7

local register

local register

shared register (param)

shared register (param)

shared register (param)

shared register (param)

shared register (param)

shared register (param)

AO ~CNTX

A1

A2. Register set

of current
A3 procedure

A4 or interrupt

AS routine

A6

A7

The processor automatically generates an interrupt (number 4) when CNTX becomes less than 0 (overflow)
or if it reaches value 57 or higher (underflow). For a more specific description of the register file and the
interrupt routines, the reader is referred to [17).

4.2 The SP, DP and EP pointers

The stack pointer SP, data pointer DP and extra pointer EP are the only ways in which data in the data
space RAM and program space ROM can be accessed. The addressing scheme provides indexed and auto
in/decrement modes for all pointers. The SP is used as hardware stack for pushing the program counter PC
and STAT register, when a subroutine or interrupt is activated.

Depending on the actual external RAM, only one read or write access may be done in a single instruction.
This means read/modify/write instructions such as add (ADD [SP], #1) and bit set are not allowed for
this type of RAM. Due to the single RAM address bus, instructions like MOV [DP++] , [EP++] are never
allowed. The internal RAM does allow a single cycle read/modify/write operation on a single location.

4.3 The status register

The status register reflects the status from the last arithmeticjlogic instruction. MOVes and control flow
instructions do not alter the status register bits. The status register is automatically saved when entering an
interrupt routine and stored on return from interrupt. When STAT is used as destination register, the actual
value written is the result of the AI,.U operation, not the value of the flags.

4.4 The mode register and I/O

In the PMS500 instruction encoding, 4 I/O addresses are direct accesstble. The MODE register is intended
as a 'bank' register for the I/O address space. By (externally) implementing this mode register, extra address
bits can be added to extend the I/O address range.

4.5 IRQ registers and Intermpts

The PMS500 has 7 interrupt inputs: IROO..IRQ3 and IRQ6 are external interrupts. IRQ4 is activated when
the CNTX space overflows or underflows. IRQ5 is reserved for a built-in trace mode, which enables single

10

step execution for easy debugging.

Two registers control the IRQ response of the PMS500:
• The IRQS (status) register shows a status bit for all currently active interrupts. Up to five external events

may cause interruption. Only bit 0..6 are used, bit 7 is always cleared. Bit 5 (trace interrupt) is always seL
• The IRQE (enable) register contains individual interrupt enable bits for each interrupt. Clearing these

bits disables the corresponding interrupts. Only bit 0..6 are used, bit 7 is always cleared.

Once an interrupt is detected, the processor wi1l:
• stack the status register on [-SP]
• stack the program counter on [--SP), i.e. stack the address of the instruction to be executed after RETI.
• adjust the status register to reflect the current interrupt level, thereby disabling all interrupts of the same

or lower priority
• deaement CNTX by 2 (freeing 2 local registers)
• jump to an address, specified by the interrupt number.

Return from interrupt is as follows:
• increment CNTX by 2
• restore PC from [SP++)
• restore status from [SP++)
• enable interrupts of same or lower priority

4.6 The PC register

Data can be moved into the Program Counter to enable calculated jumps (via the JMP <reg> instruction
or other instructions using the PC as destination) or to use jump tables located in ROM (via the JMPC
instruction). Using PC as an explicit destination (as in ADD PC, #1) will take one extra instruction cycle.

4.7 The PMSSOO instruction set

The PMSSOO instruction set contains three mayor instruction groups:
• Control flow instructions
• Data transfer instructions
• Arithmetic/Logic instructions.

Appendix V list the instruction set. Note the following points:
• An assembler is present that selects the appropriate MOV combination when moving immediate data into

a register (i.e. the dataS or dataB and possibly an extra move to mGH)
• Instructions for moving to and from ROM take extra cycles, and writing to ROM takes extra (external)

hardware
• Pushing the stack pointer on stack will first decrement SP and then push the decremented value
• Arithmetic and logic instructions operating on immediate data can include only 5 bits of data. However

the assembler can generate code to take into account larger data constants.
• Multiply- and divide instructions. perform only part of the calculation. A full multiplication (or division)

takes 16 steps to complete (see [17] for a full explanation).

11

5 Building a dumb compiler with Lee
To get acquainted with the Lee package and code generation interface, a dumb compiler was built. No
assumptions were made with respect to the way in which 'good' code could be generated or what 'good code'
should look like. This approach was chosen to gain a better insight in Lee's code generation interface and
the assumptions Lee makes about the target processor. The design of the real compiler would be based on
information found during this recognition phase, thus making it less likely that design decisions would collide
with Lee's assumptions or requirements in a later stage. A better understanding of the code generation
interface would also make it easier to take advantage of Lee's features to simplify 'good' code generation.

5.1 A brief description of the Lee code generation interface

For better understanding of the following chapters, a brief description of the Lee code generation interface
is added. For a full description, the reader is referred to [1].

The Lee front end and back end are closely coupled. This means that the front end calls functions from the
back end, and vice versa. Both ends share two datastructures: the symbol table and the directed acyclic graph
nodes (DAG nodes). The symbol table stores information on name and place of variables, constants and
labels. DAG nodes store information on the program flow and program semantics.

The front end provides the following information using the symbol table entries:
• The front end's name for the symbol
• Scope level of the symbol (Global, local, labe~ constant etc.)
• Storage class of the symbol (Static, register, auto etc.)
• Its type
• In case of a constant symbo~ its value or location
• In case of a labe~ its number
• Additional information, such as whether the symbol is defmed, generated, or addressed, or if it's a

temporary or a structure parameter.
The back end can annotate these symbol table entries to its own liking with information such as offset from
stack, heap address or back end name.

The dag nodes provide the following information:
• The Lee-opcode for this node (appendix IV lists all available opcodes)
• Number of references to this node's result
• Links to symbols used by this node and/or the kids of this node (nodes that compute values needed by

this node's computation)
The back end can annotate these nodes with information like register number or symbol to store the result
of the node's computation, or the back end can do the nrst optimization phase on the DAG. The front end
passes DAGs in execution order, sometimes bundling various DAGs in case they share common
subexpressions, and forests containing DAGs to set up and execute jump- and switch statements.

The front end manages four logieal segments being the code segment, the bss segment (uninitialized
variables), the data segments (initialized variables) and the lit segment, containing constants. Code- and
literal segments can be mapped onto read-only memory, data and bss segments must be mapped on read
and writable memory. These segments can be declared to the back end in random order, so it may be
possible that references to (for instance) labels in a segment occur before they have actually been declared.

When compiling a source program, the front end first announces global symbols and symbols to be exported
or imported, such as function names and externally defmed variables. The front end will switch to the
appropriate segment before announcing symbols belonging to that particular segment. If no global symbols
are announced in one segment this segment may be declared after the code segment.

Generating program code is done in the following way:

12

The front end rust completely consumes a function before calling the back end. The back end then gets the
opportunity to initialize the annotation phase. Control is then returned to the front end that in its turn
repeatedly calls the back end for every DAG forest in the function, so the back end can annotate the DAG.
After that, the front end returns control to the back end to initialize the code generating phase. Control is
passed back again to the front end that passes the annotated forests in sequence to the back end to emit the
final code. Fmally, the back end may round up the code generation phase and the front end continues to
read the next function from the source file.

S.2 Description of the dumb compiler

5.2.1 Assumptions

Because the sole purpose of building the compiler was to determine Lee's assumptions, features and
shortcomings, the following (simplifying) assumptions were made:
• No effort was put into correct representation of different variable types. The front end provides ample

opportunity to correctly implement this functionality as can be seen from the table in appendix IV For
the dumb compiler, it is assumed that the value of a basic variable type fits into one PMSSOO word.

• No effort was put into dynamic memory allocation. Locals and function parameters reside on the stack,
which is assumed to be infinitely large. Globals and statics are assumed to be initialized by a (nonexistent)
linker.

• Possible optimization of the DAGs was not investigated.
• AO, Al and A2 are reserved for use by the compiler to pass function return values and copy blocks to

stack (AO), hold the base address of the current stack frame (Al) or to hold the address of temporaries
to which register values are spilled (A2).

• To free registers at function entry, 8 is added to CNTX. CNTX is restored at function exit. The register
file is also assumed to be infmite.

• Certain functions (multiply, divide and modulus) that take a sequence of assembly instructions are not
expanded.

• Functions returning structures are not supported

I.DcIIa 010 Iunc:tIan

~~eecI

Form."""".
Aelum.~ l--

1

...
n

n

...
1

Fl8e1l8cll l--

~bulld_

FJgUJ'e 3 shows the layout of the stack frame
used. During the rust code generation phase,
maximum local offset and maximum argument
offset are calculated. At function entry, the stack
pointer is decreased according to the sum of
these values to declare the necessary stack space.
This approach enables the use of the PUSH and
POP commands without having to keep track of
the location of locals or arguments relative to the
stack pointer.

Register allocation was taken from the example
VAX code generator that came with Lee. Only
small changes were necessary to make it suitable
for the PMSSOO code generator. Registers are
allocated on the fly, and the register allocation Fitpre 3 Stade frame /ayt1ut of the dumb
algorithm does not keep track of values of compiler
symbols already present in a register; AU symbols
are fetched from memory the moment their
values are needed, except values used more than
once per DAG forest. Register variables are not supported by the register allocator.

5.2.2 Problems, possible solutions and useful information provided by Lee

Problems or possible problems were encountered in the following area's:

13

Segment management:
Lee manages four logical segments, including a read only and a read/write data segment. String literals, for
instance, might be declared inside the read-only segment. It cannot, however, be computed at compile time
whether a pointer dereference accesses read only or read/write space. String literals can therefore not be
mapped onto PMSSOO codespace since the compiler is unable to determine if it should use the MOV or the
Move instruction. Besides that, Lee generates the code to initialize variables inside the data- and literal
segments. Strictly speaking this means that this is code that will not be executed by the PMSSOO processor
but should be interpreted by the PMSSOO assembler and linker. One or both modules should therefore be
able to initialize memory for the compiler, for example by generating initialization routines in the startup
code. If the compiled program is to be able to initialize all variables by itself, then the linker should first call
the module's initialization routines before calling 'main'.

Register allocation:
Because the front end passes the DAGs to the back end in execution order and at most one forest at a time,
it is difficult to allocate registers on a more global leveL If this is to be implemented, extra information
containing symbol lifetime and storage location must be added during the first phase of code generation. This
information can be used to choose which variables should be allocated to registers rather than to memory.
It will also be necessary to combine forests into basic blocks and basic blocks with each other in the back
end to get a complete view of variable lifetime and usage. Chapter 8.3 explains the concept of basic blocks.

Instruction layout:
Lee assumes for arithmetic instructions the presence of three operands for diadic, and two operands for
monadic instructions. An ADD instruction, for instance, adds the values of two registers and stores the result
in a third, whereas the PMSSOO ADD instruction adds the values of two registers and stores the result in one
of the original registers. It might therefore take one extra cycle for the PMSSOO processor to move the value
of one of the original registers into the third, assigned by the front end, for every arithmetic instruction.

Overhead caused by calculating the address of locals and arguments:
The dumb code generator bas to calculate the address of locals and arguments every time the value of such
a variable is used. This results in nearly 20% of the generated code consisting of address calculations. This
is partly a result of the choice to store every local variable or argument on stack and the percentage might
be lowered by choosing another storage method. However, the addition of an instruction to calculate this
address in one instruction could achieve an easy gain in speed and code size. To find out if such an
instruction would indeed cause a fundamental improvement in code size and execution time, a small
investigation was held (chapter 6).

Lee provides information on the number of times the result of a node is used after it has been calculated,
and whether its address is taken. This is useful when deciding if a symbol can be assigned to a register rather
than to a memory location. A relation between the symbol (in the symbol table) and the node (in a DAG
forest) bas to be calculated and stored for this purpose.

5.2.3 Possible optimizations

Building the dumb compiler, several points were found on which the generated code could be improved
without too much trouble. At this point, optimization means those transformations on the assembly code that
result in less and/or faster executing code. Lee does some local optimizations such as constant folding and
eliminating conditional jumps with a constant condition. The code that cannot be reached via these
eliminated jumps is still generated, though.

Optimizations than can easily be implemented:
• Every node for which the value can be calculated at compile time need not be emitted but can be

substituted directly wherever the value is used (this equals tree pattern matching, in which subtrees of the
AST are matched against subtrees representing instructions). This goes for:
• Addresses of labels,
• Constant values or expressions,

14

• Offsets to locals and arguments.
• Keeping track of values in registers, value lifetime and distance to next use can aid in:

• Assigning frequently used symbols to registers,
• Minimizing references to memory,
• Generating better spill code.

Optimizations that will need a more fundamental change in approach:
• Building and linking of basic blocks. This will make it possible to:

• Allocate registers globally,
• Eliminate dead code,
• and perform many other types of global optimizations.

• Changing the way locals and arguments are stored and passed. This could mean, for instance, that
addresses of symbols no longer have to be calculated as an offset from stack but can be accessed directly
in memory. To enable this approach, dynamic memory allocation has to be provided by the startup code
or host operating system (if available), or a protocol has to be invented so the compiler can allocate
memory by itself. Argument passing could make use of the context register file that could speed up the
process, but would introduce the problem of reindexing all registers in use.

• Loop optimizations, such as invariant code movement, can be implemented.

5.2.4 Summary

Lee does not make assumptions about the type of processor it will generate assembly for, nor about the kind
of environment in which it will run, that provide any real problems concerning the PMS500 processor. The
way in which symbols are declared implicitly assumes the presence of an assembler, for instance because the
generation of code for variable initialization is left to the assembler. Since the existing PMS500 assembler
did not recognize multiple data segments, a solution had to be found to initialize data in other than the code
segment. But the PMSSOO, being an embedded processor, allowes for multiple types of external ram, so the
use of segments or other ways to discriminate between these memory areas had to be added to the
assembler. If these different types of external memory are to be discriminated by means of different assembly
instructions, however, then the properties of the C-language make it impossible to effectively use these
different kinds of memory. Discrimination between segments using different address ranges in the same
numbering space, can be supported by the compiler (to the extend of the four segments managed by Lee),
but the assembler must make sure that labels declared in one of the segments indeed refer to addresses
inside the correct address range. All address ranges must then be accessible through one machine instruction
(instead of using either MOV or MOVe)

Various types of code improvements can be added without fundamentally changing the structure of the dumb
compiler but to be able to add global optimizations, the DAG forests Lee sends to the back end have to be
rejoined, meaning that some of the work done by Lee has to be undone.

15

6 Investigation for useful additions to the PMS500
instruction set

To be able to make suggestions about extensions to the PMS500 instruction set, a small investigation was
held to determine the effect of some extensions on code size and program execution time. Investigated
additions were the possibility to add a constant to a register before moving its value into another register
(like MOV AO, AI+3), and to access the value of a memory location addressed by an address pointer plus
a constant offset (such as MOV AO, [DP+2], which moves the value at the memory address designated by
DP added with two into AO). These instructions were considered because it is inevitable that a C compiler
uses offsets from a known address to designate local variables; the addresses of these locals have to be
calculated at run time while the compiler needs to have a scheme to designate these locals as well (compile
time). Optimization can focus on minimizing these address calculations, but since values have to be assigned
to variables at ANSI C's agreement points, a substantial amount of code will be dedicated to calculating the
addresses of locals. (Agreement points are points in the source code at which the values of variables as
stored in the real machine have to be identical to the values of variables as if the code was run on the
abstract machine defmed by ANSI C).

To gain insight in the amount of
space and time the addition of one
of the above instructions would save,
the dumb compiler was modified to
assume the presence of a type MOV
AO, Al+x instruction. The number
of times the instruction was used was
counted and compared to the total
number of code lines in the module.
Table 2 shows the results for the
modules comprising the Lee front
end. On the average, 10% of the
code consist of this new instruction.
This means that program code will
be 10% larger without this
instruction as it expands to a MOV
and an ADD instruction in the
current instruction set. Execution
time will increase by about 10%, as
the effect of loading the HIGH
register when dealing with large
constants has to be taken into
account.

Source module :# of lines :# of usages % of usage

dag 10,127 1,243 12.27%

decl 15,159 1,761 11.62%

enode 8,915 1,246 13.98%

error 1,054 112 10.63%

expr 16,735 2,040 12.19%

init 6,267 792 12.64%

input 1,239 46 3.71%

lex 7,4n 402 5.38%

main 928 85 9.16%

output 1,494 132 8.84%

profio 2,917 344 11.79%

simp 13,883 1,850 1333%

stmt 9,033 1,129 12.50%

string 1,668 138 8.27%

sym 3,634 404 11.12%

tree 3,347 359 10.73%

types 11,536 1,431 12.40%
Checking the usage of the MOV AO,
[DP+x I-type instruction was not
possible in this way due to the
structure of the dumb compiler. A

Table 2 Usage statistics of MOV AJ; Ay+c instruction similar usage count was performed
on code for the INTEL 386
processor, that possesses this
instruction type. This showed that an

average of 20% of the code consisted of indirections on a register value plus an offset, for the same set of
modules. The modules were compiled both optimized and non-optimized. This can be seen as an indication
that if the processor provides the instruction, it will be used a lot. It does not indicate, however, the gain in
code size or execution time compared to code lacking this instruction type, although every time a local
variable has to be referenced, this instruction can save up to two 'ordinary' instructions.

16

Considerations whether these types of instructions belong in the instruction set of a RISe processor or if
these instructions impose problems on the processor design (data path length etc.) were left to the designers
of the processor (of course). It is not possible to form a reliable conclusion based on the results acquired
by using the dumb compiler and an Intel 386 compiler, besides the fact that the extension would be easy to
have in the eyes of a compiler writer. It may well be possible that a compiler designed to minimize these
types of calculations could do perfectly well without the extra instructions. Further investigation into this
subject was not considered to be an objective for this project and the investigation was abandoned.

17

7 Structure of the final compiler
Based on the information gathered while building the dumb compiler, a number of decisions were made
concerning the implementation of the real compiler. These decisions affect the function call interface, register
usage and allocation, stack frame layout and memory usage. Below is the list of points the compiler will have
to conform to:

• The compiler assumes library functions or assembler macro's for the following actions:
• Multiply, divide and modulus. These operations take a large number of instructions to implement, and

inline expansion is not always desirable.
• Dynamic memory allocation. This was not primarily found to be a compiler problem and leaving this

functionality to library routines enables multiple allocation schemes for different memory types. The
decision to use stack as dynamic storage however makes this assumption redundant.

• Floating point operations. These functions also take more than one PMSSOO instruction to be
implemented. It also enables the programmer to choose different floating point libraries (if provided).

• Shift and rotate over multiple bits. As the PMSSOO isn't equipped with a barrel shifter, these functions
also take a number of instructions to implement

• The compiler will calculate an upper bound for relative jump distances and decide accordingly which jump
construct will be used. Peephole optimization can then be used to collapse long jumps to relative jumps
if possible. Calculating this upper bound is an easier task for the compiler than for the assembler.

• The compiler will not recognize different memory types the user might add to the PMSSOO core besides
the code- and data memory. This effectively means that all datapointers used by the compiler are assumed
to address the dataspace in which the stack resides (or to which SP points). DP will be used as
framepointer (see below), EP will be used for block copy/move instructions.

• DP will be used as framepointer. Addresses of locals and argument will be calculated this way:
ADO OP, offset
MOV Ax, [OP]
SUB OP, offset

This approach enables merging of successive SUB- and ADD instructions when calculating multiple
addresses and keeps the general purpose registers free for other uses.
• The context-stack will not be used by the compiler. CNTX is reserved for use by interrupt routines. This

leaves eight available registers: Ao-A7.
• Locals and arguments will be allocated on the stack. Globals and static variables will be declared to the

assembler which will concern itself with the actual storage allocation.
• The callee (in stead of the caller) saves and restores the registers it uses; it also saves and restores the

caller's framepointer. This choice enables assembly writers to interface with the compiler-generated code
and save/restore only the necessary number of registers.

• A stack frame will be similar to the stack frame used by the dumb compiler, with the exception of the
argument build area. The dumb compiler reserved enough stack space at function entry to be able to
handle all function calls from this function, which means declaring enough stack space to handle the
function with the largest number of arguments. The real compiler will push arguments on stack and pop
them again at function exit, thus making more efficient use of stack space.

• The caller removes arguments from stack. In case of library functions with a variable list of arguments,
the callee doesn't even know how much of the stack should be freed.

• ANSI dictates the following lower bounds for type sizes (in bits): CHAR: 8; INT: 16; LONG: 32; FLOAT:
32. Lee assumes INT and LONG types of equal length. This would mean that INT =LONG =32 bits, even
for the 16 bit PMSSOO. This poses a serious problem. Separating INTs and LONG's, aliasing LONG's
and DOUBLE's or replacing SHORT's for LONG's will take a considerable amount of redesign of the
Lee front end. For now, INT =LONG =16 bits is assumed for the 16 bit PMS, invalidating the compiler
as ANSI conforming. The 32-bits PMSSOO compiler can safely assume INT=LONG=32 bits.

• Registers will be allocated with 'Function scope'. Allocation schemes will be investigated starting with
graph colouring.

• The compiler will perform global (function level) optimization, optimizing primarily for program size.

Most decisions only affect the last steps of the code generation process, when the code is actually emitted.

18

Register allocation and global optimization, however, induce a number of analysis steps preliminary to the
emitting stage. Both register allocation and optimization require data flow analysis to decide which values
to store in registers, which variables can be substituted by constants and so forth. The compiler back end will
therefore perform the following operations:
• Data flow graph construction. Necessary to perform data flow analysis.
• Data flow analysis.
• Global (function level) and local (basic block level) optimization using the results of data flow analysis.
• Global register allocation.
• Code selection and emitting.
• Peephole optimization.

To some extent, local optimizations such as strength reduction and common subexpression elimination are
performed by the front end (always concerning a few code-trees at a time but not complete basic blocks)
but might be extended to cover complete basic blocks or even functions. The compiler parts will be
constructed in the following order: first data flow graph construction and data flow analysis, because this step
is obligatory for both register allocation and optimization. At that point a number of optimizations should
be investigated for implementation cost, computation cost and optimizing effect. After the desired
optimizations have been chosen, the methods for implementing these optimization have to be put on paper
to make it possible for other programmers to implement the desired algorithms. Subsequently the register
allocation algorithm will be chosen and implemented. Fmally the emitting stage of the compiler will be
constructed. This completes the rust version of the compiler and marks the first point in time on which
correct machine code can be generated by the compiler. It is at that point possible to add local, global and
peephole optimization to the compiler.

7.1 Possible optimizations

[18, 5, 12, 14, 15, 23 and 25] list a number of optimizations and data flow analysis techniques to aid in
optimization that can be performed during or after code generation. These optimizations generally aim to
reduce the amount of machine code produced by the compiler and at the same time minimize the execution
time of the produced program. Often these aims interfere with each other. Most of the optimizing techniques
only work or work best if the data flow graph of the program is reducible (See [1] for information on
reducible flow graphs). It is easily seen, however, that data flow graphs derived from C programs need not
be reducible per se, so a number of techniques cannot be implemented or will have greater complexity when
implemented for a C compiler. The following paragraphs list the optimizations that are considered useful
for the PMSSOO compiler and are therefore candidates for implementation.

Because the PMS500 was intended to be used as a processor core that could easily be embedded in specific
applications, and the amount of memory in these systems is generally fairly small, it was decided that
optimization of program size would prevail over minimizing the execution time of target programs. Based
on this decision, the most important optimization techniques are:
• Loop optimizations
• Code elimination
• Code substitution

Other optimizations such as instruction scheduling or code selection using tree·rewriting yield a relatively
low optimizing performance because the PMSSOO has no visible pipeline, executes every instruction in one
clock cycle (apart from a few instructions that need the HIGH register such as load immediate with large
constants) and has a fairly orthogonal instruction set (i.e. functionality of instructions doesn't overlap making
it unlikely that a sequence of instructions can be substituted for one, more complex, instruction).

Local optimizations affect only basic blocks. Even when Lee performs a number of optimizations on code
trees, local optimization can rmd a number of optimizations that can be performed parallel to global
optimization, such as (local) common subexpression elimination, strength reduction or copy propagations.
Local optimizations are easier to perform since it is not necessary to do data flow analysis.

19

Loop optimization algorithms try to reduce the number of instructions contained in the body of the loop,
or the number of times the loop body is executed. Since most programs spent 90% of their execution time
inside loops, these optimizations provide a large gain in execution time minimalization while at the same time
decreasing the program size (excluding the loop unrolling algorithm).

Code that will never be executed (dead code) can be eliminated and calculations occurring more than once
and yielding the same result (common subexpressions) can be substituted with a temporary so the expression
needs to be evaluated only once, its result can be used many times and every other occurrence of the
subexpression can be eliminated. These optimization techniques can be used to reduce the size of the target
program and, to a lesser amount, decrease the execution time of the program.

7.2 Data Dow analysis

Most optimization problems require data flow analysis, so let us first, for a better understanding, establish
what data flow analysis means. The different types of data flow analysis must also be identified. [18] defmes
data flow analysis as wthe transmission of useful relationships from all parts of the program to the places
where the information can be of usew. These 'useful relationships' include relations between the occurrence
and the usage of a variable definition or the availability of (sub)expressions at any point in the program.

Data flow analysis can be done in two directions. Forward data flow analysis takes information from certain
points in the program and tries to propagate the information through the program to points were it might
be used. Backward analysis does the exact opposite; it recognizes points that use some kind of information
and tries to trace points in the program where the information might have been generated. The information
propagation for both types of analysis can be done based on confluence or divergence. For instance, analysis
based on confluence initially assumes that nothing is valid, but if, at some point in the program, the
possibility exists that information may become valid, it is propagated until it is absolutely sure it becomes
invalid. Analysis based on divergence initially assumes that anything is valid but if at some point in the
program the chance exists that the information might become invalid, propagation of this information beyond
that point is stopped and is only started again if it is absolutely sure the information becomes valid again.

An example of forward flow analysis based on confluence is the analysis of 'reaching definitions'. The aim
of this analysis is to establish which defmitions of variables reach uses of certain variables (e.g. in the
expression x-a+b, x is defined and a and b are used). This type of analysis is can be used to decide wether
a used variable can be substituted for a constant value (constant propagation). Such a substitution can only
be made if it is absolutely sure the variable can only have one particular value at that point in the program.
So if there exist different paths from the start of the program to the point in question, and each path
contains a different defmition of the variable, the variable cannot be substituted. If no defmitions occur on
both paths, the variable can also not be substituted (note that this generally means a programming error).
So it is clear that the initial condition is 'no variable is defined', and every point y in the program that might
defme a variable x adds a 'x is defined at y' to the information heap. Only if it is absolutely certain that a
variable is defined at some point, all other defmitions of the same variable prior to this point are removed
from the heap.

7.3 Loop optimization

As stated, loop optimizations provide an easy way to speed up the program with relatively little effort. To
be able to perform loop optimizations, the following information has to be gathered from the source
program:
• The Data Flow Graph (DFG) of the program has to be constructed. (See chapter 8.3 for more

information on DFG's)
• Loops in the DFG must be discovered. A loop is a collection of nodes that are connected in such a way

that from every node in the loop, walking the connections, any other node (including itself) can be
reached. To make optimization possible, a loop must also have one entry node, the only node through

20

which any node inside the loop can be reached from outside the loop.
• The flow of information through the program must be analysed. (Data Flow Analysis or DFA). DFA

makes it possible to detect computations that yield the same result every time the body of the loop is
executed, regardless of the conditions changed by multiple execution of the loop body. These
computations can be moved out of the loop. It can also provide information about the number of times
a loop will be executed.

Detecting loop invariant expressions makes use of usage-definition information, derived from the 'reaching
definitions' information described in the previous chapter, and can be implemented using an algorithm that
iterates over the loop. Detection of loops can be done using an iterative algorithm for data flow graphs in
general and using depth-first ordering or dominance relations if the flow graph is reduaole. In C, however,
the poSS1oility exists that flow graphs are not reducible.

Loops provide a number of sources for optimizations. Summarizing the possibilities, we have (from [18, 14]
and [25]):
• Movement of loop-invariant computations out of the loop-body (Code Motion).
• Induction variable elimination.
• Loop unrolling.
• Loop jamming.

Especially code motion and induction variable elimination promise large gain in execution speed with little
programming- and computation effort. Loop-invariant computations can easily be detected if usage-definition
information has been calculated (see chapter 8). Even if, for instance, only two expressions can be moved
outside the loop, the gain will be substantial as the loop body executes repeatedly. Induction variable
elimination tries to detect variables that increase or decrease linearly with the loop counter. These variables
can be introduced by the programmer, if for instance an expression j-ci+d inside the loop body exists, with
i the loop counter and c and d constants. I and j are both induction variables. Induction variables can also
result from array index calculation, if the programmer uses the loop counter in expressions like A [i]-B [i] .
To calculate the actual memory address, i will be added to a pointer, making the result of this addition an
induction variable. Loop invariant parts of these computations can then be moved outside the loop and their
results used directly, test for conditional branches can be simplified, and expressions can be reduced in
strength (an assignment of the type x-c*i can be substituted for an initialisation x-c*io outside the loop
and an addition x-x+d with d equal to c times the amount that i gets increased every time the loop body
is executed. To detect induction variables, information about loop-invariant expressions must be calculated
and the expressions inside the loop body must be scanned. Data flow information is also necessary.

Loop unrolling and loop jamming try to reduce the overhead from the loop entry- or exit tests. Unrolling
a loop (replicating the body of the loop) avoids one test per replication every time the loop is iterated. Loops
can be jammed (merging bodies of two loops in one loop) if both loops get executed the same number of
times and the data flow through both loops doesn't interfere. Jamming two loops clearly saves the tests of
one loop. Evidently, loop jamming can seldom be performed, while the costs in programming- and
compilation-time are substantial (Data flow analysis and loop invariant expression detection are necessary,
besides the actual loop analysis to detect if and how loops can be unrolled or jammed). Loop unrolling is
a tradeoff between code speed and code size. Not unrolling a loop yields the smallest code which was
considered more important than f~ter code.

7.4 Code elimination and code substitution

Code can generally be eliminated if it is never executed, if its result is never USf'A or if the result of the code
can be calculated by simpler code sequences or as part of already existing code. Code sequences that are
candidates for elimination can result from the following actions:
• Constant propagation.
• Copy propagation.
• Global or local common subexpression elimination.
• Data flow analysis in general.

21

Constant- and copy propagation and common subexpression elimination both require data flow analysis, but
forward data flow analysis by itself may show the presence of expressions whose results are never used and
can thus be eliminated. Propagating constants means that variables whose value at some point in the program
is known, independent of the state of the program, the value can be used directly in the expression instead
of fetching the value runtime from memory. Common subexpression elimination is the substitution of
(sub)expressions by a temporary variable used to store the result of the (sub)expression, so the
(sub)expression has to be evaluated only once.

Constant propagation can lead to even more code elimination. Consider the situation that a constant can be
propagated until it reaches the test of some conditional branch. H this test becomes a constant expression,
one of the branch targets will never be executed by this expression. This again may lead to the situation that
the unused branch becomes dead, and can be eliminated completely. Thus a test and possibly even a
complete instruction sequence can be eliminated.

Copy propagation considers expressions of type y-x, in which the value of variable x is copied into variable
y. Whenever y is used after such an expression, x can be substituted. H y is a temporary variable, copy
propagation may eliminate all subsequent references to y, and the expression y-x can be eliminated, saving
code as well as run-time memory usage. Copy propagation may also free extra registers.

We have already seen that the result of data flow analysis is used so often that incorporating it into the final
compiler is necessary to perform any optimization at all. Constant propagation can easily be implemented
using only this information; to add copy propagation it is necessary to identify the copying expressions and
to use data flow information to decide what variables may be substituted. Common subexpression elimination
needs information on availability of expressions. Finding available expressions is a forward dataflow analysis
problem.

22

8 Data Flow Analysis
Prior to the execution of the actual data flow analysis algorithms, a number of things have to be set up. The
codegraph has to be partitioned into basic blocks, which will be interconnected to form the data flow graph.
Every code tree needs to be examined to find out what its effect is on the data flow. For every basic block,
the data from the code trees has to be gathered concerning the information generated inside the basic block
(referred to as the GEN set), and information that gets killed inside the basic block (the KILL set). Note
that different types of data flow analysis (DFA) require different interpretations of these GEN and KILL
blocks; chapter 8 elaborates on this notion. From these GEN and KILL sets, data flow analysis calculates
the information entering a basic block (IN set) and leaving the basic block (the OUT set). Every type of
DFA calculates different IN and OUT sets, as do the same types of DFA concerning different types of
information.

8.1 CoUecting reference- and definition information

Reference- and definition information (ref-def information) gives, per code tree, information on the variables
(symbols) used in this tree, and the variable or symbol defmed by this tree. If a code tree represents an
assignment, the deftnition information equals the symbol at the left side of the assignment-operator and the
reference-information is the set of symbols occurring at the right side of the assignment-operator. If the code
tree represents a jump statement, reference- and definition information both equal the target label

Ref-def information can be used to determine the targets of jumps, branches, and calls. It also is the starting
point for different types of global data flow analysis such as alias-analysis and reaching deftnitions, described
in chapters 8.4 and 8.5. The information collected will always be some pointer to a symbol in the front end's
symbol table, coupled with a number representing the number of times the symbol is 'dereferenced'. A
symbol can be dereferenced by means of the INDIR and ASGN operators (appendix IV), corresponding to
the C-operators '*' and '='. Dereferencing a symbol is equal to taking the value of the memory location
pointed to by the symbol. This can be done more than once. To represent such a symbol pointer/dereference
level pair, the following conventions is followed: Let S be a symbol in the symbol table, and N be a (non
negative) integer. Let * be the dereferencing operator and & be the 'address of' operator (similar to their
meaning in the C-language). Then the tuple (S,O) represents the (run-time) address in memory of the
symbo~ &S. (S,N) equals *(S,N-1), the value acquired by fetching the contents of the memory location
denoted by (S, N-1). .
Note that (S,l) denotes the 'actual' value of S and that the presence of tuple (S,N) stipulates the presence
of pointers denoted by tuples (S,n), O<n<N. So following this notation, an assignment of the form a-*c+l
can be written as (801) = (c,2) +('1',1). Note that the Lee front end creates symbols for every constant used,
so the constant 1 used in the assignment results in a symbol'!' in the symbol table.

Every node of a code tree can now be said to have a 'points to' tuple and a set of 'uses' tuples. The set of
'uses' tuples represent the values used to calculate the value of the node. The 'points to' tuple, only defined
for nodes operating on pointers, is used to extract the symbol used in the code tree that supplies the original
address; symbols used to calculate offsets from this address are added to the uses-set. Only the ASGN nodes,
whose sole occurrence may be as the root of a code tree, define an extra tuple 'defs', representing the
memory location defined by the assignment (in the above assignment, a would be represented by the 'defs'
tuple as (801); if a were a pointer (in which case *c must also be a pointer), then the 'points to' tuple would
hold (c,2); finally the 'uses' set would be {(c,1),(c,2);('1',1)}).

23

9

ASGN~ .._.._.._.-_.._.._.._.._.._.._.._.._.._.._.._.._..

..--.._.. "Defs"

---.. "Points to"
------I.~ "Uses"
() CodeNode

Uselist Node

o Symbol

Code tree and ref-def information for a[l]=b[i]+C;

1

Figure 4 A code tree and its comsponding ref-def infonnation.

To collect the ref-def information, the code trees are traversed in a depth-first order and the information
of a node is synthesized from the information of the kids of the node. The leaf nodes ADDRGP, ADDRLP,
ADDRFP and CNSTP initialize the 'points to' tuples. Only the CNST nodes initialize 'uses' sets since
calculating the address of a symbol is not considered to be a usage of the symbol's value. The 'uses' sets are
implemented as linked lists. FIgUre 4 shows a code tree annotated with its ref-def information. . It can be
seen that the points-to information of the ADDP node (8) is copied from the underlying ADDRP node (9) so
at the preceding INDIR node (7) it is known that an item in array b is accessed.

Uses-nodes have two pointers to other uses-nodes and one pointer to a 'points-to' tuple. A uses-node is
added if a codenode can introduce a new 'points-to' tuple (INDIR, ADDP etc.) or if the codenode can be
the root of two codetrees with each a corresponding uses-tree (ADD, ASGN etc.). The new uses-node then
joins both uses-trees. Nodes 1, 5 and 6 have such a uses-node, even though nodes 5 and 6 have only one
uses-tree.

The advantage of organizing the usagelist in this fashion is that parts of trees that are referenced more than
once (common subexpressions) need not be evaluated again and cost no extra memory. U, for instance, a
code forest contains two trees that both make use of the subexpression b [i] , it is sufficient to copy the uses
and points-to pointers of the upper INDIR node (7) in fIgUre 4. The necessary information for various data
flow analysis problems can now be collected easily at the root of the tree: The symbol defmed by the
assignment is known, the symbols used by the assignment are known, and if the assignment had been to a
pointer, the symbol pointed to had also been known (in that case, the right kid of the ASGN node would have
it's points-to information initialized. Nodes 1 and 5 would than have the P-qualifier, and the points-to
information of node 6 would reach node 1).

24

Fmally some remarks must be made concerning pointers to unknown locations. It is possible that somewhere
inside the code tree a CVIP (convert integer to pointer) node exists. From that node upward (in the
direction of the root of the tree) nodes are pointing to or using a location somewhere in memory, not
associated with any known symbol These types of pointers, the UNKNOWN pointers, represented by the
notation (?,o), impose particular restrictions on data flow analysis and subsequent optimization algorithms.
Dereferencing an unknown pointer always introduces the danger of an undetected definition of a symbol
The following paragraphs will specify how these types of pointers are handled.

8.2 Determining osage- and dermition points

After establishing what variables are defmed and used by certain assignments, the locations of these
definition- and usage points can be coupled to the symbol representing the variable. Doing this simplifies
the implementation of the algorithms introduced in the following paragraphs. Note that determining the
usage- and definition points of a variable is not the same as calculating defInition-usage or usage-definition
information! DU- and UD-chaining couple the list of definitions reaching a certain usage point or vice versa
to that usage point or definition point, respectively. Usage-definition determination couples nodes defining
or using a symbol to that symbol It can be achieved by simply traversing the code-trees and storing the
information on the fly.

DefInitions and usage of the UNKNOWN symbol are not stored. Because the defInition of an unknown
location through the UNKNOWN symbol can never kill another defmition of such a location (how will it ever
be known if both locations are identical?), it is not necessary to store this information.

8.3 Data Flow Graph Construction

The Lee front end passes code nodes or DAG (Directed Acyclic Graph) nodes to the back end. These nodes
are passed in forests and contain trees affecting data as well as program flow. To perform data flow analysis,
these forest have to be combined into basic blocks. Basic blocks are sequences of statements which may be
entered only at the beginning and when entered are executed in sequence without stopping or branching
except at the end of the block. The program flow (DAG)nodes must be used to derive the interconnection
of the basic blocks to make up the Data flow Graph (DFG). The DFG has a directed edge from node A
to node B if there is a conditional or unconditional jump from the last statement of A to the fIrst statement
of B or if A and B follow each other directly in the program and A doesn't end with an unconditional jump.
One node, the initial node, is the block whose first statement is also the fIrst statement of the program.

Every algorithm handling global optimization or data flow analysis assumes the presence of the DFG. This
means the data structures used to represent theDFG will be travelled and referenced very often and it is
vital to the speed and memory usage of the compiler that this structure is given careful thought. Deciding
on the representation of the DFG shall therefore be postponed until the various uses of the DFG have been
established.

Constructing the DFG comes down to recognizing the basic blocks in the source code and linking these
blocks according to the program flow information. To recognize the basic blocks, the following set of rules
can be used: .
• A basic block begins:

• At the start of every procedure.
• At the target of any branch.
• Immediately after any branch

• A basic block ends:
• Before the start of the next basic block, or
• At the end of the procedure.

Starts of basic blocks can be identified by searching for labels; every label is the target of a jump or a branch
Ends of basic blocks are signalled by (un)conditional branches and jumps. Detecting the end of a basic block
implicitly signals the start of a new block. Multiple labels immediately following each other can be bundled

25

to signify the start of one basic block and multiple jumps immediately following each other can be bundled
to signify the end of a block. This is especially the case with branch tables resulting from C's sw1tch
statement. Note that these rules do not mention the CALL instruction. Since this instruction jumps to
unknown locations but always returns and continues execution with the next instruction, CALL instructions
will not divide basic blocks. The fmal optimizing algorithms must recognize these instructions and decide
what to do with global variables or local variables that have their address taken. These variables may be
changed inside the called procedure!

Vtrtuallyall information necessary to create the DFG can be collected from the Lee front end directly, except
for the branch tables. These are translated into code sequences to calculate an address inside a jump table,
or into separate test- and branch sequences, depending on the density of the branch table (see [lJ for
details). The branch table is then generated at the end of the procedure, so after the code was emitted. This
means that, while traversing the basic block, the targets of the branches are not known and the DFG cannot
be completed. To fix this problem, the front end was adapted to call a 'defbranch' procedure every time a
branch table is used in the program.

The algorithm used to construct the DFG can now be given (algorithm 1). It
basically bundles sequences of codetrees into basic blocks, while at the same
time interconnecting those blocks using the program flow information. For
branches to blocks that do not yet exist a backpatching strategy is used. The
'active label' administration combines multiple labels directly following each
other into one access point, i.e. one basic block can start with code to defme
more than one label. The following example of C-code might produce the data
flow graph of figure 5.

a :- 1;
for (1:-1; 1<10; 1++)

a++;
1f(a-10)

b:-1;
else

b:-2;

26

a:=1
1:=1

Figure 5 Eromple of a
data flow graph

,* Codetr_s are sorted in execution order. All labele and branch targets known. *,
Dfgl-{l Empty Basic Block}J

PO. ...q i:C'ee 1a i:1a. CIOlIe lore.i: 1)0

{

II' A) i:1a.re i. ClUZ'rezai:1J' ao "ali4 ...ia aloak O.
B) i:lae ClUZ'reai: .. i. aot: -FJ'

{
cr.ate new Basic Block
II' i:1a.re i. ClUZ'reai:1J' a "ali4 ...iG aloak

cr.at. an edg. betw_n the new and the current Basic Block
make new block the current Basic Block

}
add label to the list of active label.
II' laMl laa. beea rel.rea0e4 br pZ'..ioaa CIOlIe-ao4e.
{

backpatch those references by creating an edge between the referencing and the
current BB

}
} .um II' i:re. b dii:ioaal :I-Pi
{ '* IL at this point there i. no valid ss, we have detected dead code*'

II' i:1a. :I _pi:azo," b a label
{

II' i:1a. label laa. be.a as._iai:e4 vii:1a a ..sia al_1I
create an edge betw~ the target BB and the current BB

a.s.
Hark this BB as 'r.ferencing the target label'

II' ClUZ'rezai: .. Cloai:a1a. ao ClOd.
move any label. from 'active label list' to current BB

make 'current BB designator' invalid
}
a.s.
{ ,* IL the jump target is not a label, then it is a result oL a branch table

calculation *'
move any labels from 'active label list' to current BB

} a.S. II' i:1a. ClOde i:Z'.e i. a ooa4ii:ioaal :I-p
{ ,* Again, no valid SS means dead code *'

act as if the code tr_ is a conditional jump to a label but leave current BB valid.
} a.s. II' i:1a. Clod. i:Z'.. i. a Z'.i:1IZ'a .i:ai:_.zai:
{

II' ClUZ'Z'.zai: .. Cloai:aia. ao Clo4e
move any labels from 'active label list' to current BB

make 'current BB de.ignator' invalid
} a.s.
{

II' i:laeZ'. are "lJ.. 1.a"izalJ i:lai. ..
create new BB and make current

assign code to current BB
}

},* The next part oL the algoritlw needs the 'deLbranch' Lunction *'
II' i:1a. ClUZ'reai: Clodftre. i. 1011_4 br a bZ'_oIa i:able
{

PO. .".q label 1a i:1a. b~ClIa i:abl. 1)0

{
II' i:1a. label laa. be.a a ••_iai:e4 vii:1a a ".ia 81_11

create an edge betw_n the target BB and the current BB
a.s.

Hark this BB as 'referencing the target label'
disable 'current BB designator'

}
}

}

.AJgoriJhm 1 ConstTuction of the DalIJ Flow Groph

8.4 Alias analysis

If the ref-def information has been set up and the DFG has been constructed, alias-analysis can be
performed. The aim of this analysis is to establish what every pointer in the program can point to during the
execution of the program. To see why alias analysis is of vital importance to data flow analysis, consider the
following situation. With the code sequen~:

27

int a, *p;

a-1;
p-&a;
*p-2;

Straightforward data flow analysis would recognize the variables a, p and *p, without noting that *p and
a are aliased. This could, in a later stage, lead to the substitution of '1' for a, because a wasn't (visibly)
redefmed. It is therefore necessary to discover what pointers can point to if we want to be able to perform
optimization without changing the functionality of the program.

Using the tuple notation of the previous paragraphs, the problem can be defined as follows:
If a tuple (a,n) is used or defined, find the set 0={(q,l) I(q,l) is aIiased with (a,n)} to determine what
physical values (not pointers!), represented by the tuples in 0, are used or defmed. To be able to find this
set 0, introduce sets IN and OUT for every node in the DFG. IN and OUT consist of tuples (p,q), p and
q symbols, denoting the fact that (P,l) points to (q,l). Call these tuples aliases (strictly speaking, p and q are
not aliases of each other as p only points to q. But to prevent confusion with the 'points-to' information
during ref-def collection, the term aliases is used. In the following paragraphs these tuples will be denoting
aliases, however). Note that only tuples of level 1 are used, because these represent the actual value of the
pointer. Now, let IN be the set of aliases that exist at some point in the program where the set 0 is needed.
It is clear that if the IN-set is known, the set 0 can be calculated for a tuple (a,n) by starting at {(a,l)} and
n-1 times substituting any tuple (a,l) by another tuple (b,l) for every alias (a,b) in IN. Algorithm. 2 does just
that.

/* IN: set of tuples (a,b) with (a,l) pointing to (b,l) */
/* p : symbol to find set of aliases for */
/* n : number of times p was dereferenced */

/* Returns the set of aliases Q of (p,n) */

Q:-{(p,l)};
T:-0;

FOR i-1 to n-1 DO
{

FOR every (a,l)EQ DO
{

FOR every (a,b)eIN DO
{

T:-T U{(b,l)}
}

}
Q:-T;
T:-0

}

Algorithm 2 Calculating the set of olioses

Note that algorithm. 2 does not discriminate between normal symbols and the UNKNOWN symbol This
implicitly states that the UNKNOWN pointer will be handled as any other symbol, or specifically, any other
symbol of aggregate type. To see why this is allowed, consider the following: All variables reside somewhere
in memory. The location of most variables in memory can be traced, either because they're only accessed
directly or through dereferencing traceable pointers. The variables accessed by dereferencing unknown
pointers reside, by the assumption of the previous paragraph, somewhere else in memory. The memory can
therefore be partitioned in an allocated part (where the traceable variables reside) an in an unallocated part
(the part of memory not allocated by the compiler). This unallocated part can be seen as a giant array to
which all unknown pointers point. This notion, however, will not become important until the point where we
explicitly want to determine what symbols are a1iased with a dereferenced pointer. Until that time it suffices

28

to assume that for every pointer assignment to a symbol of aggregate type a tuple is added to the IN-set
(without deleting other information concerning this pointer present) to signify that the aggregate symbol
points to the assigned symbol. Dereferencing a pointer to a symbol of aggregate type can therefore result
in a large number of aliased symbols (e.g. if an array of pointers to chars is completely initialized with
pointers, then dereferencing an element of this array results in a set Q containing all characters pointed to
by every element in the array). It is easy to see that this construction also works for 'the array spanning all
other memory'.

We still need to calculate the IN sets. This is, like usage-definition chaining, a forward data flow problem
based on convergence. [18], and a number of other books and publications that all reference [18], provide
a method to solve this kind problem without assuming reducibility of the flow graph. The algorithm is based
on the idea that information gets defined at some point and then propagates through the flow graph until
it gets killed again. This means that a basic block in the flow graph:
• Can generate information,
• Can kill information,
• Can leave information unchanged.

Every basic block in the DFG can therefore be associated with an IN-set (the set of information reaching
the basic block), an OUT-set (the set of information leaving the basic block) and a TRANS function, used
to calculate the effect of an instruction I on an information set such as IN or OUT. The notation
SI=TRANS(S2, i) is used to signify that SI is the information set acquired by applying instruction i to set
S2. For a basic block with a sequence of instructions 1= {i, ..in}, SI=TRANS(S2, I) means the sequential
application of TRANS to itself: TRANS(S2,I)sTRANS(TRANS(...(TRANS(S2,i,),...),in.,),in). Subsequently
a set of data flow equations for a sequence of instructions BB in a basic block is defmed;

OUT[n] =TRANS(lN[n],BB)
IN{n] ={OUT[P] I p a predecessor of n }

With these equations, algorithm 3 propagates the information through the DFG. This leaves the construction
of the TRANS function. [18] lists a number of rules to handle pointer information in alias analysis, but
assumes that pointers cannot point to pointers. This is clearly not true in C, where pointers can point to
almost everything, including memory locations that cannot be traced to addresses of variables. If such
pointers are dereferenced, it is impossible to know what variables are changed. Due to this effect, the
existence of these so-called 'unknown' pointers introduces serious restrictions for optimization.
Closer investigation of unknown pointers reveals that they can only occur if a non-pointer type is explicitly
cast to a pointer, as in p-(char *) i, with i an integer. Unknown-pointers are therefore always the result
of a deliberate decision of the programmer to manually assign a variable to a memory location. Because of
this, the compiler will assume the programmer isn't creating aliases for any regular variables using such casts.
Thus, an instruction sequence

int i,j ,*p;

i-(int)&j;
p-(int *)1;

after which p will normally point to j , introduces the possibility that the optimizing algorithms generate
incorrect code!

29

1* Assume depth-first ordering for the DFG. *1
1* N is the number of nodes in the DFG. *1
1* nl is the DFG node with depth-first number i.

1* Initialize: *1
FOR every node of the DFG in depth-first order DO
(

IN[i] :-¢;
OUT[i]:-TRANS(¢, ni);

}
CHANGE: -True;
WHILE CHANGE DO
(

CHANGE:-False;
FOR i :- 1 to N DO
(

NE\lIN:-¢;
FOR all predecessors p of n1 DO

NE\lIN:- NE\lIN UOUT[p];
IF IN[ni]~ NEWIN THEN
(

IN [ni] :-NE\lIN ;
OUT[ni]:-TRANS(IN[ni],ni);
CHANGE: -True;

}
}

Algorithm 3 Solving 'the general forward dataflow problems

To implement the TRANS function, the following rules apply:
For an assignment (p, n) :-(q ,m), assume the sets P and Q to be the sets of symbols (x,l) that might be
aliased by (p,n) and (q,m+l) (Note that the set of aliases Q of (q,m+l) denotes the set of symbols that
(q,m) might point to), respectively (as calculated by algorithm 2). Then:
• Every symbol (x,l) in P can point to every symbol (y,l) in Q: add tuples (x,y) to IN.
• If the alias-information will be used for data flow analysis based on confluence: IfP= {(P,l)} then remove

every tuple (p,a) from IN if (a,l)flQ.
• If the information will be used for data flow analysis based on divergence: remove every (p,a) in IN with

(P,l)EP and (a,l)flQ.

The distinction between confluence- and divergence is necessary to ensure that the corresponding data flow
analysis is performed correctly. For data flow analysis based on confluence, the most important aspect is to
find those assignments that define exactly one symbol. If the possibility exists that another symbol might be
defined as well, certain optimizations may not be performed. In this case, if a variable is dereferenced it is
vital that every possible alias is found. Had we been interested in data flow analysis based on divergence, only
those cases in which it is absolutely sure what variable is accessed are of interest. The effect on the TRANS
function is to add every alias that might arise and delete only those that are certain to get killed by the
current assignment.

Algorithm 4 shows the case for alias analysis based on confluence. Now, using algorithms 2 and 4, algorithm
3 can be used for alias analysis suited for data flow analysis based on confluence.

30

/* Let (P,n) :- (B,m), n>O. m>-O, be the assignment under consideration.
Let IN be the set of pointer tuples (X->Y I X-(X,l) points to Y-(Y,l»),
valid at this point. Assume the presence of algorithm 2 in the form of a
function Aliases taking as parameters a set of pointer tuples and a
pointer, and returning a set of aliases of the pointer in the form of
(X,l). */

Q :- A1iases(In, (P,n»;
A :- A1iases(In, (B, m+l»;

For every (C,l) in Q
For every (0,1) in A

In :- In U (C->D);

If IQI -- 1 Then
If (C,l)eQ not an array

For every (0,1) in A
In :- In - (C->D);

Algorithm 4 The TRANS function

8.5 Reaching dermitions

After the algorithms of the preceding paragraphs have been applied, all necessary information to calculate
what defInitions reach a basic block is present. The reaching definitions information is used to perform
various optimizations listed in the previous chapter. The problem of reaching defInitions is, like alias analysis,
a forward data flow problem based on confluence. To see this, note that we want to establish the set of
defInitions that can reach a certain basic block, not the set of definitions that do reach a block, hence
confluence. Since we start with a defmition and try to propagate it as far as it goes before it gets killed, it
is a forward flow problem.

A slightly altered version of algorithm 3 can be used to calculate the reaching defmitions information.
Specifically, since basic blocks are considered instead of single code trees, the TRANS function of algorithm
3 can be substituted by sets GEN and KILL, containing the set of defmitions generated or killed inside the
basic block, respectively. Again, [18, page 433] supplies the algorithm. The corresponding data flow equations
become:

OUT[BB] := (IN[BB] - KILL[BB» UGEN[BB]
IN[BB] := U{ OUT[P] I P a predecessor of BB }

The problem is the calculation of the GEN- and KILL sets. [18] provides an algorithm to do this barring the
presence of pointers. In the presence of pointers, establishing the GEN and KILL sets is an altogether
different problem. In particular, determining what variables are defined by an assignment and hence what
other definitions are killed by that assignment depends on the presence of pointers and the information on
what they point to.

The following list shows what pointers can point to in C:
• single variables (as in p-&a, a not an array),
• arrays (e.g. the a in a [i]),
• other pointers of equal type (from normal pointer assignments),
• other pointers of different type (as in p-(int *)a, a char pointer and pint pointer),
• unknown memory locations.

Pointers to simple symbols provide possible sources for defmition elimination. Casts of pointers to other
types of pointers introduce no extra complexity as it is the original symbol (the a in the 4th item of the

31

previous list) that is stored as target; had this been a symbol of aggregated type, it would still be known.
Pointers to aggregated symbols require special care, as has been explained in paragraph 8.4. It is not known
whether a pointer into an array points to element x or to element y, so even if only one definition of this
pointer is live it cannot be established if the new defmition access the same element as the one live
definition. Dereferencing pointers to aggregate types can therefore never result in the killing of another
definition. It is possible, though, to kill defmitions if, through multiple dereference of a pointer, a simple
symbol is reached, even if an array is passed while dereferencing. This statement is based on the notion that,
if a programmer dereferences an array element, this element had to be defined prior to the dereference. H
an element has been defined, its definition is live at any subsequent point in the program, so also at the point
under consideration. (Note that if no definitions are live, the program is dereferencing an uninitialized
element and can end up altering any location in memory. This is considered to be a programming error.).
Or, in other words, if only one element in the array of pointers has been initialized, and the program
dereferences an (unknown) element in the array, it is assumed that the initialized element was dereferenced.

The rules to determine the GEN- and KILL sets while walking the assignments in the basic block now
become:
• The current definition is added to the GEN-set.
• H a symbol (p,n), n> 1, is defmed, establish what the symbol points to (find a set 0 containing only

symbols of type (q,l) that can be reached by n-1 times dereferencing (p,l».
• Every symbol in 0, except (?,1) is marked to be defmed by the current assignment.
• Determine if this defmition kills any other defInitions. A defmition kills another definition if:

• The current defmition is not an assignment to the (?,1) symbo~ and
• both assignments defme a simple symbol directly (not through a pointer dereference), where a 'simple

symbol' is a symbol with type other then aggregated (arrays, struw etc.), or
• the defmition to be killed originates from a direct assignment to a simple symbo~ and the set Q

contains only one simple symbol (501)#('1,1).
• Killed definitions are added to the KILL-set.
Algorithm 5 shows these rules in programmable form.

/* Calculate the effect of assignment D:(P,n):-(A,m), n>1, m>-O on the
set of definitions generated (GEN) and killed (KILL) by this basic block
BB.
Assume In and Out to be this block's sets to signify the incoming and
outgoing sets of aliases. Out should be initialized by algorithm 2. En
passant, add this definition point to symbols defined through pointers.
*/
/* Q: set of tuples of the form (s,l) */

GEN :- GEN U(D);
Q :- Aliases(Out, (P,n»;

For every (q,l)eQ do
If (q,l)"(?,l)

Mark D as definition point for q;

If IQI-l
If «q,l)eQ)"(?,l) ~ (q is not an aggregate type)

For every definition point DP of q do
If DP directly defines (q,l)

KILL :- KILL U {DP};
If n-l

KILL :- KILL - (D);

GEN :- GEN - KILL;

.Algorithm S Calculating the GEN- and KILL sets

32

Algorithm 5 makes use of the alias information calculated by algorithm 3, so it is important to execute the
reaching-definitions algorithm after the alias analysis algorithm. However, the initialization phase of both
routines can be merged. During the initialization phase of the alias-analysis algorithm, a call to algorithm
5 can be inserted after the call to TRANS. This eliminates one initialization loop, but also provides a better
initialization! If the initialization for reaching defInitions is done after alias-analysis is completed, both GEN
and KILL sets will be calculated according to the alias information of a complete basic block. Consequently,
instructions inside a basic block might be prevented from killing other deftnitions because some pointer,
defIned by an instruction occurring later in the same basic block, introduces a blocking alias (the condition
IQI=1 in algorithm 5 is not satisfied). When the initialization is performed immediately after the alias
information of the current instruction has been calculated, the same definition can kill other definitions
because the information from the offending pointer deftnition hasn't been calculated yet An example of this
situation is given with the following code:
int a, b, c, *p;

for(c-O; c<10; c++)
(

a:-1;
p:-&a;
*p-2;
if(c<S)

p:-&b;
}

Intuitively, we know that the deftnition a: -1 never reaches the point directly following the loop body and
should therefore not occur in the GEN set of the BB consisting of the fIrst three instructions inside the loop
body. What happens if we fIrst calculate the alias-information, is that we know from alias analysis that at the
start of the loop body (which is the start of the BB ending at the if-statement), p can point to either a or
b. So the last instruction of this basic block, *p: -2, does not kill a: -1 because *p aliases both a and b.
Therefore the GEN-set will include the (redundant) deftnition. If, however, the GEN-set is calculated directly
after the alias information of an instruction has been calculated, it isn't know yet that because of the if
statement p might point to b (remember that we now have access to the alias information inside the BB
while otherwise we only have the collective information of the complete BB), and the deftnition a: -1 is
killed immediately and never occurs in the GEN-set, only in the KILL-set.

8.6 Finding cycles in the DFG

To perform loop optimization, loops have to be found fust. Or, to be precise, the loops in the flow graph
that have exactly one entry- and one exit point must be detected. Using the depth-fIrst ordering present, the
problem is equivalent to fmding the natural loops associated with the retreating edges in the graph. H an
edge originates in a node S with depth fIrst number s and ends in a node E with depth fust number e, then
the edge is advancing if e> s and retreating if 2.e. Retreating edges that do not create a loop are called cross
edges. Note that this definition differs from that of [18, p. 452]!

A possible way to detect the loops in the DFG is to traverse the graph depth-fust and, on detection of a back
edge, backtrack until the target nod~ of the back-edge is encountered, marking all nodes passed on the way
as belonging to the same loop. To detect back edges, note the following: assume a depth-fIrst traversal of
the graph has propagated to a node n. If a successor s of n has already been visited by the depth-fIrst search
then the edge n- > s is a back edge if and only if a path from the initial node to n passes through s. During
a depth fIrst search, a node can be assigned one of three states: unvisited, visited and completed. A node
marked 'visited' is the root of a subtree currently under investigation by the depth fIrst search and containing
nodes marked 'unvisited'; a node marked 'completed' has already been left by the depth fIrst algorithm and
is the root of a subtree with all it's nodes marked 'completed'. Thus, a back edge is an edge encountered
during depth-fIrst search pointing to a node marked 'visited'.

To collect the nodes belonging to a loop, the following strategy can be used:
Let L" be a set of nodes to form the loop numbered n. Assign states 'open' and 'closed' to L; If a loop is
open, it is currently being constructed. The 'closed' state signifies the nodes composing the loop have been

33

identified and marked accordingly; the set Ln can not increase in size. During depth-first, at node 11, for every
successor s:
If a back edge n- > s is encountered, with s status 'visited': open a new loop Ln. Mark s as 'starting Ln.
If a back edge n->s is encountered, with s status 'completed' and s belonging to but not starting a closed
loop I...x (btw: a node belonging to a closed loop always has status 'completed' since a loop is only closed at
the point that the starting node gets 'completed'.): I...x is a loop with more than one entry point.
If s has status unvisited, recurse to s. On return of the recursion, mark n as belonging to I...x iff s belongs to
I...x and s is not marked as 'starting I...x'.
If all successors have been processed, check if n belongs to a loop that one of its successors doesn't belong
to. For every such loop, mark n as the loop exit. If the loop already has a (different) exit point, the loop has
multiple exits and is not a candidate for optimization.

The above strategy can be combined with the depth-first numbering algorithm. The 'unvisited' status can be
checked using the visited bit already used by that algorithm; the distinction between 'visited' and 'completed'
can be made by checking if the node already has a depth-first number assigned to it. (visited->no dfn,
completed- > dfn assigned).

Algorithm 6 shows the solution in a more structured form.

/* DFN(n) is the depth-first number of node n.DFN(n)-O means n has not
yet been assigned a depth-first number.

N is the number of nodes in the DFG.
L is a set of nodes composing a loop; functions Open and Close resp.

open and close the loop as stated previously. */

Procedure depth_first(n)
int i-O;

mark n visited;
FOR every successor s of n DO

IF s visited and DFN(s)--O
Open Li ;
Mark s as starting Li ;

i :- i+l;
ELSE

IF s marked 'completed' AND s belongs to a loop Lz AND Lz closed
Lx is a multi-entry loop;

ELSE
depth_first(s);

IF n belongs to Ln AND any successor s of n not in Ln
IF Ln already has an exit

In is a multi-exit loop;
ELSE

mark n as exit of Ln

Ileturn

Algorithm 6 Detecting loops in the DFG.

Note that algorithm 6 detects the so called 'natural loop' of a back edge. Natural loops consist of a back edge
n->s and the set of nodes (and the edges connecting them), reachable through s, that can reach n without
passing through s again.For example, consider figure 6a. From the set of nodes {1,2,3} and {2,3,4}, only
{2,3,4} will be marked as comprising a loop since {l,2,3} has two entrypoints, nodes 1 and 2 respectively.
However, the loop consisting of nodes {1,2,3,4}, with node 1 acting as loop entry and exit, will never be
recognized as such since it is not a natural loop of one of the back edges 3- > 1 and ~> 2 Likewise nodes
1,2 and 3 of the graph shown in figure 6b and nodes 1 to 4 of figure 6c will not be marked as comprising
a loop. Extending loop detection to include the recognition of these constructs requires two new actions.
Detecting the loops in graphs a and b of figure 6 requires that a slightly altered version of algorithm 6 is
applied repeatedly to the graph. This new algorithm is not capable of 'opening' new loops but detects the

34

fact that the head of an edge points to a node belonging to a loop not (yet) incorporating the node at the
tail of the edge. Subsequently the tail-node will be added to the loop, unless the head node was the start of
the loop. This algorithm must be applied to the graph, expanding the loops, until no more expansion can take
place. It can easily be checked that this strategy will lead to the detection of the (hidden) loops in graphs
a and b of fIgure 6

Graph c of figure 6 represents a situation that introduces another type of problem. When multiple back
edges point to the same node, it is possible to construct more loops then there are back edges. In fact, with
n back edges pointing to one node it is theoretically possible to construct such a graph that in total In, from
1 to n,Joops can be formed by making every possible combination of loops. Depending on the loop entry
and exit nodes most of these combinations will not conform to the one-entry-one-exit aiterium that loops
of interest must satisfy, but since exits and entries can occur at random positions it is still neccesary to be
able to detect all possible loops (try which loops should be detected if the exit point of graph c is positioned
at different nodes). Therefore algorithm 6 should be extended with the following functionality: If a back edge
is encountered pointing to (a) loop entry point(s) (i.e. a node that was the target of a previously visited back
edge), make a copy of every loop the node belongs to and mark the tail of the back edge as member of these
copies. With copying a loop is meant that every node marked as belonging to the loop will also be marked
as belonging to the new loop. Marking the tail of the back edges ensures that nodes encountered while
backtracking from the recursion will also be marked as members of the new loops. Applying this extention
to graph c results in the following actions:
The algorithm recurses, depth fust, from node 1 through nodes 2 and 3 and encounters the back edge 3->1.
Nodes 1 and 3 are marked as belonging to loop 1. The algorithm then backtracks to node 2, marking that
node also as member of loop 1. It subsequently recurses to node 4 and encounters the back edge 4- >1,
pointing to the entry node of loop 1. Therefore loop 1 is copied (nodes 1,2 and 3 are marked as belonging
to loop 2) and loop 3 is opened. Node 1 is added to loop 3, node 4 is marked as beloning to loops 2 and 3.
The algorithm then backtracks back to the node 1, en passant marking node 2 as belonging to loops 2 and
3 as well. Thus, on completion of the algorithm three loops have been marked: loop 1 comprising of nodes
1,2 and 3, loop 2 spanning the complete graph and loop 3 made up by nodes 1,2 and 4. Depending on the
exit point(s) of the graph some loops may get eliminated: with node 1 as exit loops 1 and 3 are eliminated,
exiting at node 2 keeps all loops, and exiting at nodes 3 or 4 respectively eliminates loops 1 or 3.

Note that applying both extensions at the same time may result in the detection of a loop more than once,
possibly as a result of the order in which the graph is traversed; graph b provides an example of this
situation. (the order in which the exits of node 2 are chosen for recursion determines wether an extra third
loop is created). This is due to the fact that as a result of the multiple iterations of the first extension the
same back edge can be used to close more than one loop, causing the second extension" to make a redundant
copy of one of the loops.

A • c

FigIW 6 Example of complex loops

35

8.7 Making use of the calculated data Dow information

After having calculated the reaching-definitions information, what can be done with it? [18] suggests the
calculation of usage-defmition-chains. These can then be used to perform a number of optimizations. 00
chains are chains of definitions of variables that reach a certain usage of these variables. H these chains are
to be stored for every used variable, a large amount of memory may be necessary. Fortunately it is not
necessary to calculate these OO-chains due to the way the reference- and definition information is stored.
H we want to fmd out what defmitions reach a certain usage point for a specific variable, it is sufficient to
match the defmition points of that variable, accessible via the symbol denoting the variable, with the reaching
defmition information of the previous paragraph. Note that if we want to match the usage points of some
variable to a specific defmition point (DU-chaining), both the reaching defmitions and the alias-analysis
algorithms have to be rewritten for use with backward-flow analysis, as DU-chaining is a backward flow
problem based on confluence. However, backward flow versions of these algorithms are largely identical to
the (current) forward flow versions, since only the data flow equations change slightly.

It is evident that with the information on defmition points, usage points and reaching definitions, constant
folding can be performed. Simply check if, at some usage point, one and only one defmition of the variable
reaches and defmes the variable with a constant, and a substitution can be made. The substitution eliminates
a usage point of the substituted constant, which in turn may lead to code elimination if the constant is no
longer used.

Another, more sophisticated optimisation is detection ofloop-invariant computations. Besides the information
already present, loops in the DFG must be detected (specifically: loops with one entry- and one exit point).
rmding loops in the data flow graph can be simplified by using the depth first ordering present for the DFG
but still requires an extra iterating routine. But, given a loop, we can fmd loop invariant computations by
marking those computations whose used variables are either constant or have their defmitions outside the
loop, or are defmed by exactly one other invariant computation inside the loop (note that this statement
again introduces the necessity to iterate over a loop, as marking one computation as invariant introduces
possible new invariant computations). Invariant computations of course give rise to code motion.

Other optimization, such as copy propagation, calculation of available subexpressions and the resulting
strength reduction and global common subexpression elimination, or induction variable elimination require
other types of data flow analysis. Copy propagation and available expression calculation need forward flow
analysis based on divergence. rmding live variables, used to detect and eliminate induction variables, is, like
du-chaining, backward flow analysis based on confluence.

8.8 Forward data Dow analysis based on divergence

The previous paragraph concluded with the notion that different types of data flow analysis are necessary
to perform other optimization. Specifically, to enable copy propagation and available expression calculation
(in turn enabling global common subexpression elimination), forward data flow analysis based on divergence
is needed. Confluence-based analysis isn't suitable because the optimization mentioned above can only be
applied if it is absolutely certain that a certain variable or expression is equal to exactly one other variable
or expression, reaching the execution point via every possible path through the flow graph. Remember that
confluence based analysis relied on the notion that certain optimization could not be applied if some
information reached an execution point via any path through the DFG.

36

The data flow equations reflect this difference between 'any' path and 'all' paths by changing the operator
used to calculate the new Insets from U to n. So they become:

OUT[BB] := TRANS(BB, IN)
IN[BB] := n(IN[p] I P a predecessor of BB).

Algorithm 3 can easily be changed into a 'divergence based' algorithm by changing these equations.
Algorithm 2 and algorithm 5 need a little more consideration. Both algorithms were designed for use by a
confluence based algorithm and we need to assess what the effect of pointers and a1iases amounts to. The
following list summarizes the relevant aspects:
• An assignment to a dereferenced pointer defines every variable pointed to to guarantee the 'one and only

one' relationship.
• An assignment to a dereferenced pointer kills all existing definitions of all variables pointed to (even

variables of aggregate type) so the condition that 'it must be absolutely certain some information reaches
an execution point through all paths' is satisfied.

• An assignment to a pointer creates a points-to relation for every known alias of the pointer at that
execution point.

• An assignment to a pointer only kills a points-to relation if the pointer is not aliased, or is not of
aggregate type.

So the actual alias calculation (algorithm 2) can remain the same, but the calculation of the GEN and KILL
sets has to be changed to accommodate the first two points. rmally, the TRANS function must be changed
to conform to the last two points.

8.9 Backward data flow analysis

rmally, backward data flow analysis can be applied to enable live variable information and the resulting
induction variable elimination. This information could also be used to identify those defmitions that will never
be used, or establish if the storage space of a variable can be used by another variable.

Backward flow analysis requires the following data flow equations:

IN[BB] := TRANS(BB, OUT[BB])
OUT[BB] := U(IN[P} I P a successor of BB)

for confluence based analysis. To find the data flow equations for divergence based analysis, simply substitute
the union operator with the intersection operator, as with forward flow analysis. .

Effects of pointer assignments for confluence- and divergence based analysis are identical with the cases for
forward flow analysis, with the notion that for every occurrence of 'definition', the word 'usage' should be
substituted.

37

9 Register allocation
Register allocation is an important part of compiler design, especially so in a rise processor. The aim of
register allocation is to keep as many computation results as possible in registers to minimize access to
memory. The dumb compiler allocated registers on the fly and only for single code trees. It is evident that
this approach leads to unnecessary store and reload instructions. Allocating registers using knowledge of
Iiveness and future use of certain values greatly improves execution time and code size of a program. An
elegant method to achieve good register allocations using this information is register allocation using graph
colouring, described in [21] and [22]. Graph colouring however has the disadvantage that it does not perform
allocation of registers needed while calculating (complex) expressions. Extending graph colouring to include
register allocation in expressions will take a large amount of memory to store subexpressions and will also
enlarge the (already substlllJ.tial) interference graph described in paragraph 9.2. A simpler method is
simulated execution (used by the dumb compiler to allocate registers inside expressions), treating the
available registers as a kind of stack and using DFA to decide which values can be kept in registers, what
values can be killed and what registers should be spilled. This method does allocate registers inside
expressions, but doesn't (provably) allocate registers optimally, in contrast to graph colouring. This type of
register allocation is described in [18], [25] and [14].

9.1 DerIDing live variables for register allocation

Information on live variables will be used to determine whether the value contained by a variable can be
stored in a machine register instead of memory by checking if two values are simultaneously live. Assigning
a value to a register is of course only possible if the register is not assigned to another variable or if the
register's value is destroyed as a side effect of an instruction somewhere in the execution path between the
definition and the usage of the value. As the PMSSOO instruction set does not incorporate an instruction that
destroys the contents of a (general purpose) register as side effect, it suffices to state that a variable is live
if it is defmed on a path from the start of a program to the current execution point, and there exists at least
one path to a usage point of this variable that doesn't redefme its value.

The above paragraph implicitly mentions the relation between a variable and the value assigned to that
variable. The most convenient entity that can be used to gather information on the Iiveness of a value
assigned to a variable is the assignment itself, or the defmition as it is called. Definition- and usage points
of variables have already been identified and, noting the fact that 'defmitions' and 'values assigned to
variables' are essentially the same, we can couple the Iiveness of variables to the Iiveness of defmitions. With
this notion, a definition is live at some execution point if it reaches some usage point (using the reaching
definitions information described in chapter 8.1), and there exists some path through the DFG from the
defmition point through the execution point and to the usage point of the defmed variable that doesn't
contain another defmition point of said variable.

[21] furthermore limits the notion of interference to 'two values interfere if either one of them is live at the
defmition point of the other'. The rationale for this limitation is the simpler interference graph and the
possible reduction of the chromatic number of the interference graph. It enables two values, defmed in
separate branches of an if-statement, to be assigned to a single register, while otherwise they would fall under
the first definition of interference" at the point directly after both branches join again, inhibiting the
assignment of both values to one register. It can easily be seen that, in the absence of a loop containing the
if-statement, both values can in fact be assigned to the same register. Had the if-statement been part of a
loop the possibility arises that the definition in one of the branches stays live until the other branch is passed
so both values have to be assigned to different registers.

It has already been stated that live variable analysis is a backward flow problem based on confluence.
However, that statement was based on the fact that live variables will, for example, be used to decide
whether a variable has to be stored into a register at all. In that case it must be discovered which uses
'reach' what defmitions to delete those definitions that have no reaching uses of the defined variables. Live
variable analysis then simply propagates usage information upwards through the DFG, entering all branches

38

until it reaches another usage point, much in the same way as reaching definition information is propagated
downward through the graph. The notion of live variables for register allocation, however, inhibits this simple
approach; if there is no path from the starting node of the DFG, through the definition point, to the usage
of the variable, the variable is not live. Thus, if we encounter a point where two branches rejoin while
walking the DFG bottom up, it may well be possible that inside one of the branches the variable is not live
by the above defInition. So another type of 'live variable analysis' must be found.

Note that a usage point only makes those (used) defInitions live that indeed reach this point (defInitions that
do not reach a certain usage point can of course never be used by that point). Also note that two defInitions
can only interfere if one of them reaches the other. By using the original strategy to propagate live variable
information through the. graph, combined with the previous notions, we can conclude that two defInitions
interfere if they are live (using the notion in this paragraph) at the same time and if the defInition of one
reaches the defInition of the other. Otherwise, both defInitions do not interfere and the defined variable can
be assigned to the same register.

It will be clear by now that the algorithm used to find live variables is identical to the algorithm used to find
the reaching defInitions except that for live variables the DFG traversal is reversed. Therefore an algorithm
to calculate live variable information is omitted.

9..2 Graph Colouring

The idea is to build an interference graph of the function. The interference graph is a graph with a node for
every computation in the procedure and an edge between two nodes if, at any time in the function, both
results are live at the same time. Such results are said to interfere with each other. A result is live if it is
possibly going to be used by an instruction following the current execution point. To this graph is added the
clique of machine registers. (a clique is a fully connected graph). By colouring the interference graph, a
register allocation can be achieved, if the number of colours used does not exceed the number of machine
registers. Colouring a graph is the assignment to every node in a graph of a colour such that no two adjacent
nodes have the same colour, using as little colours as possible. The minimum number of colours needed to
colour the graph is called the chromatic number of the graph. An n-colouring of a graph is a colouring using
n different colours. Result can then be assigned to the register with the same colour. So, for the PMSSOO,
an 8-colouring must be reached to provide register allocation. If an interference graph is not 8-colourable,
spill code has to be added to reduce the chromatic number of the graph. Spill code must split some node
of the offending clique in order to break the clique in two or more separate cliques with a lesser number
of nodes. (It is easily seen that a clique containing n nodes has chromatic number n).

The graph colouring problem was proved to be NP-complete ([11] on NP-completeness, [10] on the proof
of NP-completeness of the graph colouring p{oblem). The heuristic used by [21] was shown to provide
practical register allocation, i.e. the execution time for actual programs stays within reasonable bounds. It
must be noted, however, that solving an NP-complete problem can take an exponential amount of time! For
these cases, the programmer should always be able to activate another register allocation scheme, such as
the on-the-f1y allocation of the dumb compiler.

Another problem that arises with register allocation via graph colouring is the fact that, while calculating an
expression, subexpressions have to be stored into registers. The graph colouring approach described in the
previous paragraphs doesn't provide for these allocations, while the solution to the problem may not interfere
with the graph colouring algorithm. The possibility exists, however, that the calculation of the expression
takes more registers than are available at that execution point. At that point, spill code has to be introduced,
in its turn affecting the effectiveness of the colouring algorithm. A solution to this problem is to identify
every extra register necessary for calculating the expression and introducing new variables, and thus new
defInitions, for those registers so graph colouring can be enhanced to allocate every register, including
temporaries. This approach can be effective if it is used in combination with global common subexpression
elimination, which must calculate these subexpressions as well. Lee already provides for local common
subexpressions. Identification of these subexpressions and adding the defInitions of the temporaries assigned
to these expressions to the defInition l!Jliverse should be done before data flow analysis to include

39

subexpressions in reaching definitions- and live variable calculations.

For graphs that have a chromatic number higher than the number of available machine registers, spill code
must be introduced. After inserting spill code, the interference graph has to be rebuilt, and the graph
colouring algorithm must again be invoked, until a colouring is found using no more colours than machine
registers available. The decision where to insert the spill code must be founded on information of future
usage of the spilled variable and the amount of execution time the spilling adds to the program. Evidently,
the decision to insert spill code can only be reached using an heuristic, adding another limit to the
effectiveness of graph colouring. Especially with the small number of available registers with the PMS500
the chance that spill code must be introduced frequently is always present, making graph colouring less
applicable for implementation.

9.3 Simulated execution

Register allocation by simulated execution walks the DFG in approximate execution order, assigning registers
to (sub)expressions on the fly. Every time a register is needed, a demand is made upon the register pool to
supply an unused register. If all registers are used, spill code has to be inserted.

This type of register allocation, used by the dumb compiler to assign registers in single DAG trees, can be
extended to perform reasonable allocation if information gathered from live variable analysis and reaching
defInitions is used, saving compile-time computation time and memory usage because it is not necessary to
build an interference graph. Specifically, register allocation for small loops can yield highly efficient register
usage and even outer loops (loops containing other loops) can be taken into account, albeit with more
programming effort. With the observation that control flow resides inside program loops for 90% of the time,
putting a little extra effort into register allocation in loops can make simulated execution perform almost as
well on register allocation as graph colouring, with much less programming effort yielding a smaller and
faster compiler because of the effects described above.

The decision to insert spill code uses, as with graph colouring, an heuristic (in fact, the simulated execution
algorithm is itself an heuristic) to decide which register to spill. Factors that can be taken into account are
usage frequency of the value stored in the register (provided as an approximation by the front end), the
distance before the value is used, and the fact that the register is or is not in use as an induction variable.
Induction variables can be found using the results of the live variable analysis and loop detection algorithms
previously mentioned. Values belonging to variables that are no longer live are never spilled, of course, while
values belonging to variables of volatile type are never kept in registers but are always stored to memory.

The weak point of register allocation by simulated execution is it's inherent 'local-ness'. While graph
colouring tries to allocate registers as efficiently as possible considering complete functions, the result of
register allocation by simulated execution can be greatly influenced by the local order in which statements
are executed. The decision to a value in register A at a certain execution point may lead to an extra register
copy if further down in the code the same register has been used to store a different variable, for example
if two blocks have an exit to a third block, the fIrst blocks allocate different values to register A and both
values are needed inside the last block. One of the values has then to be copied into another register. Had
both values originally been assigned to different register, this copy could have been avoided (barring other
conflicting allocations). It is therefore critical to use as much global data flow information as possible since
that information tells what the future and the past of the value underhand may be, enabling the register
allocator to predict' a situation as described above and allocating a value to a 'better' register.

Comparing the problems and features of both types of register allocation, the graph colouring scheme
appears to introduce more problems and will therefore take more time to implement than the simulated
execution scheme. Weighing these problems against the expected 'quality' of the resulting allocations, it was
concluded that register allocation by simulated execution provided the better solution. Specifically, the far
greater complexity introduced by graph colouring will only result in a marginally better allocation due to the
small number of available registers and hence the expected amount of spill code that must be introduced,
severely crippling the graph colouring algorithm.

40

10 Implementation

10.1 Data structures

10.1.1 Reference-definition information

A number of data structures is used by the back end. FU'St, the reference- and definition information.
Chapter 8.1 sketched the outline of the data structure used to store the relation between the DAG provided
by the front end and the ref-def information added by the back end. Every DAG node structure has an
extension named Xnode, used by the back end to annotate the DAG. Consequently, the Xnode structure
contains a uses pointer to access the Uses structures, used in the implemention to represent the square
blocks shown in figure 4, and defs and points pointers to access members of the list of Pointer
structures, used to represent the pointers used ina function. Oearly Uses structures contain three fields
(looking at fIgUI'e 4), being the pointers to the left- and the right kid in the structure, respectively, and a
pointer to a member of the Pointer structure to propagate pointer information through the tree.

While collecting ref-def information, a list of pointer structures is built. To avoid confusion, the following
notation is used: pointers are the (PMSSOO's) compiler representations for pointers used in the program
to be compiled; 'pointers' are variables in the (host) compiler-code used to reference other data structures.
Thus, pointers are data structures while pointers are parts of compiler source code. Every pointer
structure represents a separate pointer in the same form it appears in the function, i.e. a pointer to the
symbol in question and an integer to signify the derefencing level of the pointer. A pointer structure can
be thought of as a tuple (s,l) as used in chapter 8.4. The pointer-list is used to distinguish between the
various occurrences of one pointer with different dereference-levels. If a pointer is encountered the list is
traversed to see if a pointer already exists with identical symbol name and dereference-level If so, the list
already contains a structure for this pointer and the structure in question is referenced. Otherwise, a new
structure is added. This way every pointer occurs exactly once for every deference-level it is used with,
and comparing if two pointers are equal can simply be done by comparing the addresses at which the
structures are stored (i.e. comparing the values of the variables pointing to the pointer structures). The
pointer list is a linked list terminated by a NUll pointer.

Runtime memory usage

Every uses structure takes up 12 bytes of memory (3 pointers each consisting of 4 bYtes - the current host
compiler's pointer size). One of these pointers points to a pointer structure which consumes 9 bytes of
memory (two pointers and a Boolean type defmed as char). Assuming the worst case situation that every
dag node needs a new uses structure and every symbol declared by the front end is used by the back end,
the total number of bytes used by the reference-definition information for programs yielding N codenodes
and S symbols is 12N+9S. Normally, however, a number of codenodes make up a local common
subexpression and can be used more than once. Equally, normal programs reference certain variables a
number of times, and every time such a reference occurs there is no new memory allocated; the same
pointer structure is referenced.

10.1.2 The data now graph

Since it is known what the various uses of the data flow graph are, a data representation can be chosen.
While building the DFG the information about the interconnection of the basic blocks is incomplete and the
total number of basic blocks is unknown. To store the basic blocks, a linked list data structure is used, linking
the basic blocks in the order in which they are emitted by the front end. While performing data flow analysis,
either the predecessors or the successors of the basic blocks must be inspected quite often, making the
presence of a double link between basic blocks that can follow each other in the program flow plausible.
Fmally, while performing DFA the basic blocks are best traversed in order of their depth-first numbering.
Therefore a separate array containing an entry for a pointer to every basic block is created, with pointers
to basic blocks in order of the depth-frrst numbering, to eliminate the recursion necessary for a depth frrst

41

traversal of the DFG.

To store the list of exit- and entry points of a basic block, as well as the list of DAGS contained in the basic
block, the Lis t-datastructure provided by the front end is used. This data structure consists of two pointers:
a pointer to the next element in the list, and a pointer to another structure containing the data. These Lis t
elements are managed by the front end and are re-used when a new function is processed, so unnecessary
allocation and freeing of memory is prevented. The List datastructure is cyclic, i.e. while walking the list
starting with a certain element, the same element is eventually reached again. For the DAG-list, however,
the pointer to the list always points to the first DAG in the basic block and the execution order of the DAGs
is preserved. Furthermore the DFG-nodes contain a depth-first number and a flag to mark nodes visited,
fmished, or according to other states necessary for DFG-analysis.

Fmally, every DFG node possesses an In and an Out pointer. Both pointers point to the head of a list of
Alias structures, and will be used to store the aliases that enter and leave the basic block represented by
this DFG node, respectively. An Alias structure contains a pointer to another Alias structure to make
a single linked list. It also contains two pointers to Pointer structures to represent the fact that Pointer
a points to or is aliased with (depending on the usage of the list) Pointer b. To preserve memory and
to speed up the alias analysis process, these lists could also be represented by bitfields. However, the bit field
can only be allocated and initialized after the initial alias analysis has been performed since it is only then
that the exact number of aliases in the program is known: aliases formed by assigning the value of a pointer
to another pointer introduce new aliases while performing alias analysis.

Runtime memory usage

Each DFG-node consists of 36 bytes (3 integers and 6 pointers). Two of these pointers point to the entry
and exit point lists of the node. Depending on the interconnectivity of the DFG, these lists vary in size. Every
extra entry- or exit point yields two pointers or 8 extra bytes; every exit point has a corresponding entry point
in the target node, making the DFG doubly linked. Depending on the complexity of the source program
these lists and the number of DFG nodes may grow, but there will always be less DFG nodes than DAG
nodes; subsequently, there are always less than 2*2*(D!) interconnections for a DFG with D nodes. Of
course, a program yielding a fully connected data flow graph either consist of only a very small number of
nodes or is written to yield a pathetic flow graph.

10.1.3 Extensions to codenodes

Figure 7 shows the declaration of the Xnode structure, the back end's extension to codenodes.

42

int di;

Pointer defs;

Node next;
Xnode;

typedef struct (
char *expr; /* For expression reconstruction

convenient for debugging */
int id, lev; /* Node id and nesting level */
int argoffset; /* Max stackoffset for arguments */
unsigned char rmask;/* Mask of regs set by this node */
int visited; /* Flag if node has been processed */
Usagelist uses; /* List of symbols this node uses */
Pointer points; /* Symbol this node (might)

point to. For ASGN nodes, the uses and
points are used for data flow analysis;
these lists are inherited from the
kids-nodes. For nodes without P qualifier,
points is zero. */

/* For ASGN-nodes: pointer to symbol that
is defined by this node */

/* Position of this node in Def-array
(in case of ASGN-node) */

/* next node on output list */

Figure 7 The Xnode structure

Besides the structure entries mentioned in paragraph 10.1.1, the code DAG nodes are extended with a
number of other fields. Not all of these fields are used in the present state of the compiler, but are inherited
from their usage by the dumb compiler.

The expr pointer is a pointer to a string containing the reconstructed expression represented by the code
tree of which the current DAG node is the root. This string can be printed during development and
debugging stages to verify compiler functionality. Entries argoffset, rmask and lev are used by the
dumb compiler to allocate registers to nodes and to calculate the memory address at which the value of the
node (for those nodes that represent a value to be stored) resides. Argoffset is used to calculate the
maximum offset from the stack base necessary to store allloca1s used by the current code tree, rmask is
a mask to store the registers in use at the moment the node is to be emitted and lev is currently only used
by printing routines to identify root nodes. The id entry is simply used to number the codenodes that define
or use values, on the one hand to be able to identify them while debugging, on the .other band to provide
a reference to the node's position in the bitfields desaibed in the following paragraph.

Runtime memory usage

Codenode extensions consist of 41 bytes and contains only pointers to structures and lists descn"bed and
allocated elsewhere, such as the front end's symbol table, the uses lists or the pointer lists. Extensions
are automatically allocated by the front end and therefore consume an amount of memory linear to the
number of codenodes produced by the front end.

43

10.1.4 Extensions to symbol table entries

typedef struct {
char *name;
int offset;
Boolean unknown;

DFG def'
List ref:,

List defpoints;
} Xsymbol;

Fi11JTe 8 The Xsymbol

/* name for back end */
/* locals: frame offset */
/* Signals the possibility (unknown-True) that */
/* this symbol was assigned an unknown value */
/* for instance globals after a function call, */
/* addressed vars after a function call, or aliased */
/* symbols after a definition of an UNKOWN symbol. */
/* (Currently unused) */
/* Labels: */
/* Pointer to DFG node that defined label */
/* List of pointers to DFG nodes that reference

this label * /
/* Variables + labels: */
/* List of DAG nodes that define this symbol */

structure

As with DAG nodes, the symbol table entries are extended with a number of entries combined it the
Xnodes structure (figure 8). Name is a character pointer to find the name of the symbol used by the back
end. Offset is the stack frame offset necessary to find the run-time value of the symbol on stack. Unknown
is a flag added for future use by the optimizer to signal the fact that the symbol's value must be fetched from
memory, even if it is still marked as residing in a register. This is necessary to be able to handle the effects
of procedure calls and assignments to untraceable pointers.

To build the DFG, every symbol of type LABEL has its def pointer initialized to point to the DAG node
that defined the symbol; this pointer can then be used to update entry- and exit lists of DFG nodes. Ref and
defpoints are both pointers to Lis t datastructures, each list member representing a usage- or a
definition point for the symbol, respectively.

Runtime memory usage

The symbol table extension, designated by the Xsymbol structure, comprises of 18 bytes per symbol table
entry. All pointers reference structures belonging to lists or sets already described, so no extra memory has
to be allocated except for the 18 original bytes. Therefore, besides the memory allocated by the front end
for every symbol, the back end uses 18 bytes per symbol

10.1.5 Lists for aliases

The aliaslists, consisting of alias structures, form sets of aliases at entry. and exit points of the DFG
nodes. An alias structure contains two pointers into the pointer list to identify resp. the pointer p
and the aliased symbol a, which iIi turn may be a pointer; however every used symbol occurs in the
pointer lists to enable the handling of other types of variables that are cast into pointers.

RunUme memory usage
For every alias present at DFG entry, 12 bytes are used to store this information; also for every alias present
at DFG exit. An alias that doesn't get killed inside an inner basic block therefore occurs in at least four lists:
one of the exit lists of one of the preceding basic blocks, the entry- and exit list of the current block and
the entry lists of every descendant of the current block. The size of these alias-lists depends heavily on the
source program, although pointers that obtain the possibility to point to any symbol in the symbol table do
not actually create all these aliases. One (common) symbol is used for these pointers. Clearly a lot of
memory is used to store the alias information as the number of aliases grows. A lot of memory can be saved
if the alias information is stored using bitvector-like structures, where only a number of bits is needed to

44

store an alias-relationship. The current storage method is only suitable for small source program functions
using an equally small number of pointers resulting in little aliases.

10.1.6 Bittields for data now analysis

To perform data flow analysis, a number of set-like operations have to be performed on the 'universe' of
code-trees making up a definition. To reduce memory usage and computation time, the DAG nodes defining
or using a value are assigned an id-number. Subsequently, an amount of memory is allocated to represent
every data set used, with every set containing at least one bit for every node with an id-number assigned to
it. The set of nodes having a valid id is the defInition universe. Since memory can only be allocated in chunks
of 32 bits (the integer size of the host compiler), superfluous bits are always allocated, since every set used
is made up of these chunks of memory. Sets are always related to DFG nodes: every DFG node possesses
its own set of bitfIelds. For example, to perform the reaching definitions data flow analysis, every DFG node
has sets IN, OUT, GEN and KILL associated with it, addressed by multiplying the number of sets (4) with
the size of the sets (the number of defInitions in the defInition universe divided by the integer size of the host
compiler, rounded upwards) and adding n times the setsize to reach the individual sets (for example, n=O
for addressing IN, 0=2 for OUT etc.). The resulting value is the offset from the memory address at which
the first element of the bitfleld is located.

To address the bit corresponding to the DAG node with id=id belonging to a certain DFG node, the
address of the desired set is taken (using the method described previously); from that address, the offset into
the set is calculated, in machine words: id/(size of integers); the remainder of this division is used to address
the desired bit.

Runtime memory usage

To translate the bit vectors back to the actual defmitions a list is compiled containing every defmition in the
program. This list is of the Lis t type taken from and managed by the front end. Therefore every definition
adds two extra pointers or 8 bytes to the total memory usage. From the previous paragraphs it is clear that
the actual set of bit vectors (for each type of analysis) takes up a number of bytes corresponding to four
times the number of nodes in the DFG multiplied by the number of number of integers needed to represent
the defInition universe. So, for reaching defInitions and live variables, two equally sized bitflelds of these
length are necessary. Considering the fact that the last of these integers (one per set per DFG node) may
contain a number of unused bits, it can be fruitful to combine a bitvector representation for the alias lists
with the bitvectors for data flow analysis.

10.2 Algorithm complexity

Complexity of algorithms is measures by estimating the number of times the implementation passes its
internal loops, increased by the number of calls to other function implementations multiplied by their
respective complexities. Calls to library functions, such as allocating amounts of memory, are not taken into
consideration. Only those algorithms that take more than one pass over some sort of data set are discussed.
Calculating ref-def information for instance is linear to the amount of DAG nodes in the complete function
and will not be discussed. Omitted algorithms can therefore be assumed to be at most linear to the number
of DAG nodes comprising the function.

10.2.1 Building the DFG

Walking the DAG trees to combine them to basic blocks takes time linear to the number of DAG trees
comprising the function. Updating the entry- and exit points of the DFG is linear with the number of
interconnections in the DFG. Assuming that the front end only introduces labels if they are indeed used, i.e.
for every label there exists a jump referencing that label, the minimum number of interconnections is equal
to the number of labels in the program; the maximum number is the faculty of the number of labels. For
DFG's with a large number of nodes, the latter case of course only represents pathetic flow graphs
originating from pathetic programs.

45

10.2.2 Alias analysis

Because the administration necessary to access and update the alias lists introduces an important part of the
complexity of certain algorithms, these functions are discussed first. Before adding an alias to the alias list
of a certain basic block (or DFG node), the list is checked to find whether the alias is not already on the
list. Adding an alias to a list of length N therefore introduces a complexity of order O(N). Likewise,
removing an alias from the list or checking if an alias appears on the list adds a complexity of the same
order. Merging two lists, length M and N respectively, therefore requires time proportional to O(MxN). The
calculation of the complexity for manipulating the Pointer is analogous to alias lists, with identical results.
In fact, the manipulation of any linked list requiring an existence check in the program introduces the above
complexities.

Initially, the alias analysis algorithm makes a pass over the DFG to initialize the alias sets. For every node,
the alias information is calculated by the alias_trans function. This function inspects every definition in
the basic block and calculates new aliases to be added to or removed from the block's alias list. rust, it
invokes the aliases function twice to calculate the alias lists of the defmed symbol and the symbol pointed
to. For a pointer of level n, the aliases function simulates n-1 times dereferencing the pointer under
investigation by building a set of aliases of the same symbol with a dereferencing level one less than the
current and again dereferencing these the next iteration step (recall the paragraphs on alias analysis in the
data flow analysis chapter). Every iteration, the complete current alias list of the DFG is checked against
the temporary alias list and depending on this check new aliases are added to a new temporary list of aliases.
This new list is returned to alias_trans, and the old temporary list is freed. The upper bound for the
number of pointer dereferences is 12 (dictated by ANSI-C); in the hypothetical case that A pointers of level
twelve, all aliased with each other, have to be processed, the maximal number of checks and added pointers
amounts to iUxO(A) (twelve times checking A aliases from the DFG node against A identical temporary
aliases and for every check one pointer added to a list of maximum length A), giving the aliases algorithm
a complexity of order 0(.43).

Subsequently, alias_trans adds a combination of every pointer of both lists to the (new) DFG alias list,
again adding a complexity of ...t2xO(A) to the function. The total complexity of alias_trans therefore
amounts to the order of 0(.43) in the presence of a set of A cyclic, fully closed aliases.

After initialization, alias_analys is starts the iteration process. For every iteration, the DFG is traversed
in depth fust order. For every DFG node, the OUT-sets of its predecessors are merged into the new IN set
of the DFG, and if this amounts to a different IN set, alias_trans is again invoked to calculate the new
OUT set. The upper bound on the number of iterations is the depth of the DFG, i.e. the largest number of
retreating edges on a non-cyclic path in the DFG; this is assumed to be a program complexity parameter and
has been shown to be small (smaller than three) for practical programs, although a DFG with a depth equal
to its number of nodes is theoretically possible. Therefore, for a program yielding a DFG with N nodes and
a depth D, creating a total of A aliases, the complexity becomes of order O(NxDxAJ), or O(!'IxAJ) as
absolute upper bound. The quadratic order in N can not be avoided unless a check is added for reducibility
of the DFG, in which case a complexity of Mog(N) can be achieved for reducible graphs (See [3]); the third
order in A can be brought down if the linked list representation of the aliases is exchanged for another
representation such as a hash table,. a sorted linked list of a bitfield representation (but in that case the total
number of possible aliases must be established beforehand). When using hash tables, the most sensible thing
to do is to investigate whether the hash table used by Lee's front end to store the symbol tables can be used.

10.2.3 Reaching definitions

After completing the alias analysis, the reaching defmitions information is calculated in much the same way
as the alias information. The initialization for the iteration, performed by calc_genset, requires one call
to aliases, resulting in a set of aliases for the symbol to be defmed (a set with card.i.D.ality 1 if the symbol
is not a pointer). For every alias, a defmition point is added to the list of defmition points for the aliased
symbol. Then, iff the set of aliases has a cardinality of one, all other defmitions defining the current symbol
directly (not indirectly) are killed To do this, the defpoints list of the current symbol is traversed In this

46

sequence of events, again the most expensive part is the call to aliases, with a complexity of 0(,A3)
against a complexity of A times walking a defpoints list with maximum length equal to the total number of
defInitions in the DFG (which is not even an absolute upper bound on the number of aliases in the program;
that would be AZ with every pointe.r definition adding an alias with every other defmed pointer or addressed
symbol).

After initialization the iteration stage of the algorithm is entered. The iteration process is identical to the
process used for alias analysis. For reaching defInitions, however, a bit field has been initialized to represent
all definitions. The set operations therefore reduce in complexity to one operation, such as bitwise AND, OR
and NOT operations. The complexity of the iteration stage then becomes equal to the complexity of the alias
analysis iteration stage without the set administration complexity, O(rf) for a DFG of n nodes. Remember
that for practical programs the depth of the flow graph is small and the typical complexity for these
algorithms will be near linear.

10.2.4 Uve variable analysis

The live variable analysis function uses both the alias- and the reaching defmition information. As stated, the
iteration part of the algorithm is nearly identical to the reaching defInitions and alias analysis algorithms and,
using the same bitfIeld representation as reaching defmitions, again introduces a complexity of O(rf) for a
DFG comprising n basic blocks. The initialization phase of live variable analysis traverses the DFG once in
reverse depth fIrst order, and inspects every DAG in the basic blocks in reverse execution order (remember
live variable analysis is a backward flow problem). Unlike reaching defmitions, however, live variable analysis
not only inspects the defInitions itself but also the use s information collected during the reference-definition
stage of the back end. Since every used and every defmed symbol necessitates a call to aliases and for
every symbol in the resulting set of aliases its respective list of defInition points must be traversed, the
initialization phase of live variable analysis takes a substantial amount of computing time. For a procedure
comprising of D defInitions, U uses, creating A aliases, the complexity is bounded by the following formula:
(D+ U)(0(,A3) +AD), or in words the total number of symbols under consideration, multiplied by the
complexity introduced by calls to aliases and the complexity of walking the defpoints lists which can
never exceed the total number of aliases times the total number of defInitions. Typically, U will be two or
three times as large as D, and A can, worst case, have a quadratic relation with D (a new definition n can
at most introduce n-l new aliases, iff every defInition indeed aliases the previous.)

10.3 Using the data flow information and implementing optimization
algorithms

The data flow information currently available can be used to optimize register allocation and loops. It can
also be used to eliminate redundant code produced by either the codewriter or the compiler front end.
Redundant code can result from dead code intentionally introduced by the code writer to enable different
compilation options, or dead code resulting from optimizations like copy propagation, common
subexpressions or unused definitions.

Using the available information, the following points should be taken into consideration:
• Data flow analysis handles the CALL as if it were a normal, in line, instruction. This means that global

variables and locals that have their address taken (all addressed locals reachable through dereferencing
one of the parameters or global variables, not just those used as parameterI), may have their values
changed after returning to the caller. In fact even the alias information can be affected by a function call,
influencing not only the current basic block but the alias information in the complete DFG. That notion
makes alias analysis and, as a result thereof, data analysis for pointers or depending on pointer
information virtually impoSSIble in the presence of function calls. It is left to the designer of the
optimizing routines to establish a number of assumptions to enable this type of analysis in the presence
of function calls, or to ignore globals and addressed variables in the optimization process. Note that the
information on locals that do not have their addresses taken doesn't lose its validity over function calls.
One option to overcome the previous problem is to store information on modified variables globally so
the effect of a function call can be calculated. This solution however requires a fundamental change in

47

both the front- and the back end of the compiler.
• Volatile type variables may never be kept in registers.
• The available information is valid at a block boundary. For optimization of some DAG inside the blocks,

it may be necessary to calculate the effect of preceding or succeeding DAG's on the value of the
information. For instance, one might be tempted to conclude that a definition that doesn't occur in the
block's OUT set for live variables (i.e. its value will never be used by any other block) can be eliminated
altogether. However, one of the succeeding instructions inside the same block may use that value and in
that case, eliminating the definition leads to an incorrect program. A similar case can be made for
reaching definitions and alias analysis. Ifwe want to know the set of aliases existing at the execution point
of a single DAG, the block's In-set must be taken and the TRANS and TRANSl functions should be used
to calculate the effect of the preceding DAG's on that set

• The effect of C's special setjmp and longjmp keywords for interprocedural jumps has not been
investigated.

• Moving or eliminating blocks of code may change the structure of the DFG. Be aware of the possibility
that the data flow analysis has to be redonel

Having mentioned the above limitations and keeping them in mind, the following notions can help in writing
optimizing routines:

• How to fmd what variables are really accessed by a pointer dereference?
Providing the above restrictions do not apply, the aliases function can be used to find (the set of)
symbol(s) reached by dereferencing the pointer. It should always be remembered that variables of aggregate
type (arrays, structures, or unions) and the unknown symbol require special care in handling: if, after
dereferencing, such a type is reached, it is still impossible to determine the exact memory location that will
be accessed. Therefore, even if only one definition of such type reaches a certain execution point, and the
value resulting from that definition still resides in one of the registers, it is not correct to eliminate the
memory fetching operation and use the register instead.
• How to check whether the value of a variable, last defmed outside the current basic block, can be taken

from a register instead of fetching it from memory?
rust note that this is possible if either there is only one definition of that variable reaching the current block,
or if all reaching definitions are stored in the same register. Checking what definitions reach the current
block can be done by walking the list of definition points, x. defpoints, attached to the symbol
representing the variable, and checking the bits in the bitfield IN of the block, corresponding to those
definitions. The bit number to be checked is the number stored in the x .di field of the defIning DAG node
(which was in turn extracted from the defpoint list). Every definition that has its corresponding bit set
reaches the current basic block and verifying if those definition are stored in the same register can only be
done by the register allocator. From this follows the notion that it may be beneficial to investigate the
possibility of assigning the results of every definition point of one variable to the same register. Note that
if the symbol in question is a dereferenced pointer, only a call to aliases can reveal the variables that are
actually referenced. If exactly one symbol, not of aggregated type or unknown, was a1iased and the alias
information is valid (mind the previously mentioned restrictions!), the value may be taken from a register.
• How to decide if a definition is live at a certain execution point?
Fust, check the L_IN and L_OUT sets of the basic block the execution point resides in. If both sets have
the bit corresponding to the definition in question set, the definition is live throughout the complete block.
If one (or both) bits are not set, then at least during part of the basic block the definition is not live. With
both bits not set and the corresponding bit in L_USE not set the definition is not live in this block; if the
bit in L USE is set, then the corresponding bit in L DEF must also be set otherwise the dataflow analysis
stage ofthe compiler contains a bug. The definition-is then live in the part of the basic block enclosed by
the definition and the last usage point in the basic block. This situation typically arises with temporary
variables. With the bit in L OUT set and L IN cleared, the bit in L DEF must also be set and the definition
will be live from its execution point onward. Fmally, the bit in L_INset and in L_OUT cleared requires the
existence of a usage point in the basic block (marking the bit in L USE), which is also the last execution
point at which the value resulting from the definition is used Note that it may still be possible that the basic
block in question contains more than one usage point of the value under investigation: don't stop looking
at the first occurrence of a usage point! Also note that to fmd a usage point it may be necessary to simulate
execution to establish the possible aliases created inside the block. A similar procedure can be used to

48

compute if a definition reaches a certain usage point inside a basic block, of course allowing for the reverse
order of the dataflow analysis.

It may be clear by now that the current implementation of data flow analysis was meant to support global
(function level) optimization, and all information is valid at basic block boundaries. For local optimization
the information gathered by data flow analysis can be used but bas to be extended to be valid inside a
specific execution point inside a basic block. This statement it true for alias analysis, reaching defmitions and
live variable analysis alike. To see how information at block boundaries can be propagated into the block
it can be helpful to look at the initialization functions for every type of data flow analysis: alias_trans
for alias analysis, calc_genset (called from alias_analysis) forreaching definitions, and live_ini t
for live analysis.

10.4 Calling trees

To provide insight in the program flow inside the compiler, this chapter will elaborate on the calling
hierarchy of the back end. Implementation names will be used; appendix VI lists all names with a short
description of the functionality. Calling trees will be shown related to the different stages in the compilation
process, i.e. first the building of the DFG, followed by alias analysis, reaching definitions, and live analysis.
Routines to access and maintain the data structures are not shown.

The implementation of the reference- and defmition information collection and the building of the data flow
graph consists of the functions shown in figure 9. Gen is the function the front end calls to annotate the
DAG's and is called every time the front end completes a forest of (relating) DAG's. Frrst, number assigns
a numbering to the nodes of the DAG's that are mainly used to help the programmer (me) to identify and
reconstruct DAG trees from debugging information. refdef takes care of the collection of the reference
and defmition information by calling trans which in turn calls the recursive transl to walk the DAG's.
Again, find_pointer is used to keep pointer tuples unique. This is also the place where pointers in the
code are initially detected and stored. Fmally update_dfg performs the bundling of DAGs into basic
blocks and updates the interconnection between the basic blocks.
Figure 10 shows that the alias analysis algorithm has been placed within the initialization of the reaching
defmitions implementation. This was done to stress the relation between the alias analysis implementation
and the reaching defmitions algorithm: reaching defmitions is a form of analysis based on confluence,
therefore needing an implementation of alias analysis that was also based on confluence. The implementation
parts have the following functions: depth_ firs t performs the depth first ordering of the data flow graph.
The depth frrst order is subsequently stored in an array (by ud_chain). Next the definition universe is built
by add_definitions. After those necessary initialisations alias analysis can be executed by calling
alias_analysis. alias_trans is called to initialize the analysis and to calculate"the effect of codetrees
on sets of aliases. calc_genset pr:e-initializes" the GEN and KILL sets used by the reaching defmitions
algorithm; it has already been stated (chapter 8.5) why it can be placed here. aliases simulates pointer
dereferencing and findJointer is called to ensure uniqueness of pointer tuples, enabling the comparing
or two tuples by comparing the (C) pointers to their datastructures. Fmally, iterate performs the actual
iteration of the data sets over the data flow graph as described by algorithm 3.

49

FigI-W 9 Calling tree fOT collecting reference
definition information and data flow graph
constTuction

FigI-W 10 Calling tree for reaching definitions

50

F'agure 11 shows the last of the three important calling trees of
the back end, the live variable analysis tree. live_analysis
(called by function), fust initializes the various sets by calling
live_ init and subsequently performs the iteration. The
chapter on data flow analysis explained the mechanism of this
iteration. Live_ init requires quite complex inspections ofboth
the alias- and the reaching defInitions information to establish
what usage points must be marked and what definition points
finally can kill This, of course, is what live_markuses and
live_killdef s are for. As always when working with pointers
a call to aliases is necessary at different points to find what
exactly gets defined or killed, and aliases still cal1s
findJointer, as it did before.

10.5 Modifications to the front end

The front end was modified at a few points to enable certain
wishes or requirements of the back end. These modifications can
easily be found in the front end by scanning the source text for
the pair of conditional inclusion statements #ifdef
pms_SOO ...#endif and #ifndef pms_SOO ... #endif.
Their effect and the reason for the modification is listed below: FIgI-W 11 Calling tree for live
• In string. c: functionality was added to use the front-end's analysis

linked list datastructure. Elements of this data type are
managed by the front end in an efficient way to reduce the
number of memory allocations and releases. Added functions
were free_list to return a complete list to the heap, and remove_from_list to return single
elements, though this function is currently not in use by the back end.

• In simp. c (function simplify): the 'simplification' to add a new temporary named 'a+c' to replace
a sequence 'get the address of a and add (or subtract) the value c' in case c is a known constant of type
(unsigned) integer was excluded because this led to the situation that the variable a [l] was not
considered to be an element of the array a, leading to incorrect conclusions on behalf of the data flow
algorithms.

• In dag. c (function gencode): an extra call to the back end function defbranch was added to enable
the construction of the data flow graph in the presence of branch tables.

• F'mally, the original driver uses a feature of the Unix operating system not supported by DOS, the pipe
construction. This construction is used to transfer data between different modules of the compiler. The
driver has been modified to use temporarie rues instead of the unsupported pipe functions.

All modification take effect if the sources are compiled with pms_SOO defmed, otherwise the original front
end is generated. The modifications have to be enabled to use the PMSSOO back end.

10.6 Validation and libraries

After the compiler has been implemented it will have to be validated. It has to be tested at a number of
points, such as:
• Conformance to the ANSI C standard
• Correct compilation of arithmetic expressions (including checks for guard- and sticky bits, overflow bits,

carry bits and so on)
• Generation of correct PMSSOO code in relation to register allocation, stack usage, memory allocation and

usage and so on. It is especially important to check all optimization types for actions that change program
results.

• Stability of the compiler and of the compiled programs (related to the previous point)
• Sufficient, correct and usable (readable) documentation
• Correctness and usefulness of debug information

51

It is evident that this list is not exhaustive. Except for the first two items, all tests can or must be taken with
specific tests written for this particular compiler, although the Lee distribution comes with a number of
programs that can be used to check (manually) whether translation of a number of basic C constructs
proceeds correctly. These tests include programs for testing array and structure handling, spill code insertion
and register allocation and recursion. Testing ANSI C conformance can be done using specialized test suites
that are commercially or publicly available. While looking for compiler toolkits, a small number of validation
suites were encountered:
• ACE C Validation Suite - 50000 lines of source over 600 programs perform over 2000 tests. The suite is

priced at 15500 dutch guilders. It is available via:
• ACE Associated Computer Experts bv Phone: +31 20 646461
• van Eeghenstraat 100 Telex: 11702 (ace nl)
• 1071 GL Amsterdam Fax: +31 20 750389
• The Netherlands

• C Validation suite from MetaWare, $2,000
• 903 Pacific Ave, Suite 201
• Santa Cruz, CA 95060
• (408) 429-6382

• The Plum Hall Validation Suite for C $10,000 (This is the suite used to validate the Lee front end)
• Plum Hall
• 1 Spruce Ave.
• Cardiff, NJ 08232
• (609) 927-3770

• The PERENNIAL Validation Suite for C Compiler Validation
• PERENNIAL
• 4677 Old Ironsides Drive, Suite 450
• Santa Clara, CA 95054
• (408) 727-1255

• C Compiler Torture Test - Checks a compiler against K&R. $20
• The Austin Code Works
• 11100 Leafwood Lane
• Austin, TX 78750-3409
• (512) 258-0885

• HCR offers a C Test Suite in various forms (50,000 to 350,000 tests)
• HCR Corporation Phone: (416) 922-1937
• 130 Bloor Street West Telex: 06-218072 HCR TOR
• Suite 1001 Fax: (416) 922-8397
• Toronto, Ontario
• Canada

This list is by no means intended to be complete and is an extract of a list that was originally compiled by
Tom Wood at Data General. It was made available as an article posted to the USENET comp.compilers
newsgroup.

To finally complete the compilerpa~e the item ofh"braries has to be considered. To conform to the ANSI
C-standard for a freestanding implementation, the features listed by the standard headers <float. h>,
<limits .h>, <s tdarg .h> and <s tddef .h> must be provided. The contents of these headers can be
found in [24]. The Gnu public h"braries might be used to help implementing these libraries, although these
libraries are protected by an extended version of the Gnu public licence.

52

11 Conclusions
An investigation was held to establish how an ANSI-C compiler could be built in a relatively short period
of time. First a number of compiler building toolkits, retargetable compilers and compiler compilers were
inspected to help with this task. It was expected that by using a toolkit, retargetable compiler or compiler
compiler the amount of work necessary to develop a front end could be greatly reduced. The selected
retargetable compiler, La; lived up to these expectations, providing a complete front end thus reducing the
task of writing a compiler to constructing a back end and, in this case, a number of optimizing routines.

While constructing a first version of the back end, problems, possibilities and options introduced by either
the front end or the pro<:essor were discovered and investigated. The main conclusion resulting from this
phase of the investigation was the need for a data flow graph to provide insight in the control flow of the
source program, and a number of optimizations expected to yield the best result for the Lcc-PMSSOO
combination. Effective optimizations included loop-optimizations such as loop-invariant code detection and
movement and induction variable detection, code elimination optimizations like dead code elimination
through constant folding, copy propagation or common subexpression detection and data flow analysis for
use by register allocation. Whenever possible these optimizations would be combined with optimizations for
execution time, providing these don't interfere with the optimizations for code elimination. As a side effect,
the fust version of the compiler showed a large number of MOV instructions resulting from address
calculations for variables either residing on the stack or as member of an aggregate variable type, thus
needing a base address and an offset from that base. A small investigation was held to find if an extension
of the PMSSOO instruction set with a MOV <reg>, address+offset type instruction could be beneficial.
The result of this experiment point to an approximate code reduction of 10%.

In order to perform the optimizations mentioned above, the source program had to be subjected to data flow
analysis to provide insight in the data flow of the source program. Of the types of data flow analysis possible,
the types necessary to be able to implement the optimizations mentioned above are primarily forward and
backward analysis based on confluence, including the so called 'reaching definitions' and 'live variable
analysis' analysis. To enable these types of data flow analysis, a graph had to be build to gather information
on definition and reference points of variables (ref-def information) and a solution had to be found to handle
the possibilities of the versatile pointer type in C. Also, loops in the data flow graph must be detected. To
allocate registers the technique of register allocation via graph colouring has been investigated, as well as
register allocation by simulated execution. The latter was shown to be the better choice for this situation.

For the fmal compiler, the data flow analysis types 'reaching defmitions' and 'live variable analysis' have been
implemented, as well as reference-defmition information and alias analysis to handle pointers. An algorithm
is provided for implementing loop detection. With the information gathered by these algorithms (provided
loop detection will be implemented), possible optimization routines that can be implemented include
induction variable detection, detection of loop-invariant code and the resulting movement of this code out
of the loop, constant propagation and folding and dead code elimination. To acquire a working compiler,
register allocation and code selection have to be implemented. After that, the optimizations previously
mentioned can be implemented to provide better code. To reach a production version of the compiler it must
be tested and finally a minimum set of hbraries must be provided.

53

12 Bibliography
1 A Code Generation Interface for ANSI C, Christofer W. Fraser, David R. Hanson

Research Report CS-TR-27~90 ,1992
2 A Compiler Generator Usage Inquiry, Paul Jansen

Philips Research Information and Software Technology, Eindhoven, the Netherlands No. RWB-51~
re-94009 , 1994

3 A Fast and Usually Linear Algorithm for Global Flow Analysis (1'n-202), Susan L Graham, Mark
Wegman
Journal of the American Association for Computing Machinery VoL 23, No.1, 1976

4 A New Strategy for Code Generation - the general purpose optimizing compiler (29-37), W.
Harrison
Proceedings of the 4th ACM Symposium on Principles of Programming Languages ,1m

5 A Unified Approach to Global Program Optimization (5-15), GA. Kildall
Proceedings of the ACM Symposium on Principles of Programming Languages ,1973

6 Automatic Derivation of Code Generators from Machine Descriptions (173-190), R.G.G. Cattel
ACM Transactions on Programming Languages and Systems Vol. 2, No.2, 1980

7 Characterizations of Reducible Flow Graphs (367-375), M.S. Hecht and J.D. Ullman
Journal of the Association for Computing Machinery no. 21 ,1974

8 C Handboek, Brian Kernighan, Dennis M. Ritchie
Prentice Hall Academic Service 2nd Edition, 1990
ISBN 90-6233-488-1

9 Code Generation Using Tree Matching and Dynamic Programming (491-516), Alfred V. Aho,
Steven W.K. Tjiang
ACM Transactions on Programming Languages and Systems VoL 11, No.4, 1989

10 Computers and Intractability: a guide to the theory of NP-completeness (191), Michael R. Garey
and David S. Johnson
Freeman, New York, 1979
ISBN ~7167-1045-5

11 Elements of the theory of computation (349-356), Harry R. Lewis, Christos H. Papadimitriou
Prentice-Hall International Editions ,1981
ISBN ~l3-273426-5

12 Global Data Flow Analysis and Iterative Algorithms (158-171), John B. Kam and Jeffrey D. Ullman
Journal of the Association for Computing Machinery Vol 23, No.1, 1976

13 Lecture Notes in Computer Science, vol. 323: Attribute Grammars: defmition, systems, and
bibliography, A Survey on Attribute Grammars in Three Parts., P. Deransart, M. Jourdan, B. Lorho
Springer-Verlag, Berlin Heidelberg. part II: Review of Existing Systems. , 1988
ISBN 3-540-SOOS6-1

14 Introduction to Compiler Construction, Thomas W. Parsons
W.H. Freemand and Company, New York, U.SA ,1992
ISBN ~7167-8261-8

15 Node Listing techniques applied to Data Flow Analysis (1~21), K.W. Kennedy
Proceedings of the 2nd ACM Conference on Principles of Programming Languages ,1975

16 Node Listing for Reducible Flow Graphs (286-299), A.V. Aho
Journal of Computer and System Sciences no. 13 , 1976

17 PMSSOO programmers manual (unpublished)
18 Principles of Compiler Design, Alfred V. Aho and Jeffrey D. Ullman

Addison-Wesley Publishing Comnpany, Reading Massachusetts, U.sA Third printing, 1979
ISBN ~201-00022-9

19 Proceedings of the Third International Workshop on Compiler Compilers (CC '90), Schwerin,
France, October 1990, D. Hammer (Ed.)
Lecture Notes in Computer Science, Springer Verlag, Berlin Heidelberg no. 4n , 1991
ISBN 3-540-53669

20 Rationale for American National Standard for Information Systems - Programming Language - C
(9-70)

21 Register Allocation via Coloring (47-57), Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra,

54

John Cocke, Martin E. Hopkins, Peter Marlcstein
Computer Languages no. 6 , 1981

22 Register Allocation & Spilling via Graph Coloring (98-105), GJ. Chaitin
SIGPlAN 82 Symposium on Compiler Construction , 1982

23 Some Topics in Code Optimization (76-102), Cbristofer Earnest
Journal of the Association for Computing Machinery Vol 21, No.1, 1974

24 The Annotated ANSI-C Standard, Herbert Schildt
Osborne McGraw-HilI, California, U.sA ,1990
ISBN 0-07-881952-0
The Art of Compiler Design, Theory and Practice, Thomas Pittman and James Peters
Prentice-Hall International, Inc, London ,1992
ISBN 0-13-046160-1

55

I. List of criteria
A division is made between utilities or code used to generate the compiler front end. and utilities or code
used to generate the compiler back end.

Criteria considering the complete compiler tool box or the retargetable compiler front end:
• Transparancy: can somebody without knowledge of building compilers generate a new compiler?
• Sufficient documentation?
• Does the system generate the complete compiler or do some parts have to be generated manually?
• What are the resource requirements? (Memory, disk space, processor power)
• Is the system still supported by the author?
• What is the state of development? (Fmished. under construction)
• Are there restrictions on commercial use?
• Is the system in use by other people? If so, how many and what is their experience?
• How much time does it take to generate a new compiler?
• What is the status of the C front end? Are there alternative front ends available?
• Can the sources (both of the system and the generated compiler) be ported to a DOS platform, and how

long will this take?
• What is the availability of the sources?

Criteria concerning the resulting compiler or retargetable compiler back end:
• What is the complexity of the processor specific information?
• What is the quality of the generated compiler?

• Optimized for size and speed
• Compilation speed
• Conformance to design goals:

- Accept ANSI C code
- Output assembly code listing for the PMSSOO processor core
- Pass a C-compiler test suite. (A decision has to be made on the suite to be used)
- Debugable assembly code

Optimize primarily for size
- Generate code for 16 and 32 bit architectures, and possibly 64 bit.

56

II. List of compiler generating utilities

A. Compiler Tool Kits

1. Amsterdam Compiler Kit (ACK)
Autbors: Vrije Universiteit Amsterdam,

Andrew S. Tanenbaum, Hans van StavereD, Ed G. .Keizer, Joban W. Stevenson
Cost: $995,- for universities,

$9995,- for commercial use (prices per april 1992)

Documentadon
A Practical Toolkit for Making Portable Compilers
Andrew S. Tanenbaum, Hans van StavereD, Ed G. .Keizer, Joban W. Stevenson
report no. IR-74, october 1981, Vrije Universiteit Amsterdam

Desaiption of a Machine Architecture for Use With Block Structured Languages
Andrew S. Tanenbaum, Hans van StavereD, Ed G. Keizer, Joban W. Stevenson
report or. IR-B1, august 1993, Vrije Universiteit Amsterdam

Ease of use
The ACK information sheet reports four phases to generate a new compiler:
• Writing a back end table for the processor. This may take 2-3 months
• Writing the machine-dependent part of an assembler for the processor. This may take several days. Since

an assembler for the PMSSOO already exists, this part can be skipped.
• Writing a system-call interface. This may again take a couple of days. (Only if the PMSSOO will posess

system calls, of course)
• Writing a conversion program, converting the machine-independent object format that ACK produces into

a binary for the machine at hand.

Several development utilities are provided: Test suites for back-ends, intermediate code assembler- and
interpreter, libraries written in processor independent form etc.

Description of the front end
A C front end is part of the package. Conformance to ANSI-C unknown. Front ends for Modula 2, Pascal,
Basic and Occam.

Description of the back end
The user has to generate a table to map machine independent instructions generated by the front end to
(sequences of) machine-specific instructions. Peephole and global optimization are performed on the
intermediate code; table-driven peephole optimization is performed on the machinecode. Back-ends for DEC
PDP-11, DEC VAX, Motorola 68000, Motorola 68020, Intel 8080, Intel 8086, Zilog ZSO, Zilog Z8000 and
NS 16032 will be supplied.

Resources
ACK has been tested on the following machines:
VAX, SUN workstations, PDP-11, AT-compatibles running Microsoft Xenix and an M68000-system running
Unix Sytem V.O.

Restricdons
Unknown

Possible problems
The IR used is stack-directed; somewhere during code-generation variables will have to be assigned to
registers and memory locations. The back-end driver table will probably be used to make this assignment.

57

If this is the case, register allocation may be ACK's weak spot.

Pro's
ACK is a completely developed system. Multiple front- and back ends are available; these make clear that
generating compilers for different architecture widths is no problem. Ack is commercially in use by various
companies. ACK comes with a lot of utilities.

Con'.
Cost, possibly weak on register allocation.

Info on the complier generated by ACK
The compiler will be larger and slower than handwritten compilers, but debugging options and optimization
will be included so the generated compiler will be fairly complete. Register allocation will be a weak spot.

Info on the code for the PMSSOO
Code will be compact and fast due to the number of optimizations performed by the compiler, though
handwritten codegenerators could take more advantage of the PMSSOO's specifics.

Why/why not
ACK is expensive. ACK's weak register allocation poses a problem because register allocation is exactly the
area for which the PMS500 needs special care.

2. ELI
Authors

Cost

Compiler Tools Group,
Electrical and Computer Engineering Department
University of Colorado
Boulder,CO, USA.

Documentation
Full documentation is supplied with the package; also available via anonymous ftp from the University of
Colorado

Ease of use
The EU toolkit is a very extensive set of tools but does not contain a code generator as such. EU generates
AST's (as do most other toolkits) and includes utilities to process these trees, thus helping to generate code
generators. ELI is highly integrated and contains an online help function. ELI is the most flexible toolkit
which means that it can generate compilers for a wide range of applications. Generating a specific compiler
with ELI however will take more time than with a dedicated, less flexible tooL

Description of the front end
Specifications to generate a C-code parser are supplied as example. ANSI conformance is unknown and the
parser description probably doesn't include semantical analysis.

Description or the back end
There is no explicit back end; it must be generated using EU's tree walking tools. Optimalization will have
to be included manually.

Resources
The complete system takes about 30MB of harddisk space on a UNIX platform. It has been tested on the
following systems:
SUN workstation (SunOS 4.1.x), Sun workstation (Solaris, SunOS 5.2 sun4m spare)
DECstation SOOO (U1trix 4.2), IBM RS/6000 (AIX version 3, release 2)
HP9000/370 (HP-UX version B, release B.09.(0)

58

HP9OOO/175 (HP-UX version E, release A.09.01)
SGI (IRIX system V release 4.0.5F)
UNUX (Linux O.99.U Slackware-Release 1.0.3 i486)

Restrictions

Possible problems
Translating the AST to code, optimizing. Compilers generated by Ell will probably be larger and slower
than handwritten ones. It will take quite some time to get to know EU. EU works on UNIX platforms; the
generated compiler will have to be ported to a DOS platform.

Pro's
Flexible, free, (in the end) user friendly.

Con's
No code generator, large.

Info on the complier generated by ELI
Compilers generated by toolboxes in general will be larger and slower than handwritten ones. Because a code
generator has to be built, specific parts of the code generation process can be stressed. This can be an
advantage with the PMS5OO's relatively straightforward instruction set and architecture, but this goes for all
utilities without a back end generator.

Infonnation on the code for the PMSSOO
Quality of the code will depend on the amount of work put into the compiler. Creating good code will take
more time using EU then toolkits with back end generators.

Why/why not
EU is large. It will take a lot of time to generate an acceptable compiler using EU. EU offers unneccesary
flexibility.

3. The GMD Tool Box (Cocktail)
Authors Josef Grosch, Helmut Emmelmann
Cost Back end (BEG) costs $2500,- for commercial, $250,- for non-commercial use.

Documentation
Every part of the toolbox is seperately documented, the back end even extensively:

BEG- Generator for Back Ends
H. Emmelmann, F.-W. SchrOer & R. Landwehr
SIGPLAN '89 PLDI conf., Portland
SIGPLAN Notices 24, 7 Guly 1989), pp. W-Z37

A Tool Box for Compiler Construction
Report No. 20, Jan. 21, 1990
Gesellshcaft FUr Mathematik und Oatenverarbeitung mbH
Forschungsstelle an der Universitat Karlsruhe
(Vmcenz-Priepnitz-Str. 1
0-7500 Karlsruhe)

BEG - a Back End Generator, User Manual
same address

Ease or use

59

As with every compiler construction toolkit, the compiler is generated in phases: from a description of the
source language to an intermediate form a scanner, a parser and a semantic analyser have to be generated.
GMD even uses some extra representations. For each of these representations, a regular expression, attribute
grammar of other kind of source-target mapping must be supplied. The modules will then be generated
automatically. After that a mapping from intermediate code to target language must be supplied, from which
a code generator generator will be derived. All generated modules together make up the compiler. A
(standard) grammar to generate a C front end is available but is known to have bugs. The back end
generator generates good code generators.

Description of the front end
The compiler is made by combining the previously mentioned modules. This will result in a large compiler
generating good code, though not as good as code produced by a hand written code generator, even if the
techniques for code generation used by the new back end are largely the same as handwritten ones.
Debugging options will be minimal

Resources
BMG was developed on a SUN workstation but a port to PC exists. Availability of this port is unknown.

Restrictions
The toolbox with the exception of BEG is freely available. Since the author of BEG took the program to an
Esprit project it is unclear wether it still is commercially available.

Pro's
Toolkits provide flexibility. Cocktail is comparable to ACK as a toolkit but the resulting compiler from BEG
will probably generate better code.

Con's
Incomplete front end, back end possibly unavailable. No easy way of debugging the final (PMSSOO) code,
whereas ACK provides EM code debugging.

Info on the compiler generated by Cocktail
Again, automatically generated compilers will be slower and larger than handwritten ones, although tests
provided by the authors indicated that Cocktail-generated compilers where relatively small and fast. Dynamic
memory usage was on the high side.

Info on the generated code for the PMSSOO
The codegenerater created by BEG handles register allocation as wei as instruction selection. The AST can
also be transformed to generate better code. This results in code comparable to code generated by hand
written compilers and even better than code generated by native SUN-compilers (from tests supplied by the
authors).

Why/why not
The C grammar is incomplete and it will take a lot of time to finish it. BEG may no longer be commercially
available.

4. Purdue Compiler Construction Tool Set (PCCTS)
Authors School of Electrical Engineering, Purdue university, West Lafayette
Cost

Documentation
The pcers reference manual comes with the distribution; there's a USENET newsgroup especially for
pcers that is in frequent use.

Ease of use
pcers comprises of two tools, antlr and dig. These are lex- and yace like scanner/parser generators,

60

Christofer W. Fraser,
AT&T Bell Laboratories, 600 Mountain Avenue
Murray Hill, NJ (1]974

extended to handle attribute grammars. Another tool in frequent use with pcers is sorcerer, a tool to walk
AST's and emit code or actions along the way. pcers uses the same approach as toolkits like ELI and
Cocktail to generate compilers, but is less sophisticated and doesn't have a specific code generator generator.
Learning to use pcers would be easier than ELI or Cocktail, and the functionality may suffice for our
needs.

Deserlptlon of the front end
As for all lex- and yace like tools a grammar "for accepting C exists but will probably need some work.

Description of the back end
N/A

Resources
?

Restrictions

Possible problems
It will take some work to generate a front end, and the complete back end has to be constructed. This gives
a lot of control over the fmal PMSSOO code quality but will also take a lot of time.

Pro's
Easier to learn than ELI. pcers is actively supported by it's authors so advice and bug corrections are easily
available. pcers contains that part of ELI's functionality that is of use for generating a compiler for the
PMSSOO.

Con's
It will take a lot of time to generate a compiler. Generated compiler and PMSSOO code will be comparable
to ELI results.

Why/why not
pcers is easier to use then ELI, while the neccesary functionality is present. pcers is actively supported.
It will take a lot of time to generate a quality compiler.

B. Retargetable compilers

1. Lee
Authors:

David R. Hanson,
Department of Computer Science, Princeton University
Princeton, NJ 08544

Cost
Front end is free. Some back-ends are available, though not for commercial use.

Documentation
A Retargetable Compiler for Ansi-C
Christofer W. Fraser, David R. Hanson
Research Report CS-TR-303-91

A Code Generation Interface for Ansi C

61

Christofer W. Fraser, David R. Hanson,
Research Report CS-TR-27Q-90

(Both available via anonymous FI'P from Princeton University)

Ease of use
Lee users report that a dumb compiler could be generated in a few days. Lee supports standard VAX and
SUN debugging tableS, and supplies some extra facilities for debugging and profiling.

Description of the front end
Lee was designed to use ANSI C. No other front ends possible (Icc is the front end). No global optimization.
Elimination of common subexpressions and constant folding.

Description or the back end
The back end will have to be supplied by the user. The interface is relatively easy. Back ends available for
VAX, MIPS, Motorola 68020 +68881 FP coprocessor. These are reported to generate better code than native
compilers but not as good as Gcc with optimization.

Resources
Lee was developed to run on unix systems. It needs a third-party preprocessor like the GNU gpp
preprocessor.

Restrictions
The Lee front end may be used freely but charging money for distributing is prohibited. Charging money for
personally developed back-ends is allowed. Using the front end to write, for instance, a C+ + compiler is
prohibited.

Possible problems
The fad that the complete back end has to be written introduces problems like register allocation and
machine dependent optimization.

Pro's
Front end ready, corred and fast. Ease of use. Resulting compiler small.

Con's
Impossible to modify the compiler to accept other source languages. Complete back end has to be written.

Porting problems

Lee uses the host's arithmic to fold constant expressions. This results in overflows when the host's native
integer size is smaller than the target's integers. To run on a DOS platform, a DOS extender and 32 bit
compiler will be neccesary. Generating code for a 64 bit version of the PMSSOO will be a nontrivial problem.
Since Lee was written for a UNIX platform, code rewriting will be neccesary to compensate for non
supported system calls such as fork and pipe.

Info on the resulting complier
The front end is handcoded and so very fast. It includes debugging options. Quality of the codegenerator
largely depends on the time invested in the project, although the interface between front- and back end will
surely impose some restrictions.

Info on the generated code for the PMS500
The front end performs a few optimizations on the AST, but since code optimizations and register allocation
have to be provided by the programmer, code quality is a function of invested time and designer ability.

Why/why not
Complete front end including semantic analysis. Easy to learn as the first version of a compiler should be

62

Gee

available in just a few weeks (according to Lee users). Lee is still supported and a 386 back end and an Lee
book are expected in a couple of months. The Lee front end is free but restricted to the supplied copyright
notice. Resulting compilers will be small. Generating compilers with integers larger than 32 bits (or better.
larger than the integer size of the host Lee is running on) is problematic.

2.

Authon
Cost

Free Software Foundation
None.

Documentation
Extensive online documentation, readable with a special info-reader. There's info on what GCC is and does,
a description of RTL (GCe' intermediate representation) and how to port GCC or generate new back-ends
for it. USENET has special newsgroups devoted to GCe. The compiler is actively under construction.
Updates and bug fixes appear regularly. In various locations all over the world people have ported or are
porting GCC to generate code for a wide variety of processor architectures.

Ease of use
Gee is very large and it will take a lot of time to learn all it's features. GCC has loads of options and utilities
with new ones appearing all the time. Making a back end for a new compiler turns out to be quite a chore.
It takes some time to get to know GCC and to be able to aeate a new back end.

Description of the front end
GCC accepts various C dialect including ANSI C. Using the -pedantic options causes GCC to complain about
every little deviation from the standard, but different options provide a fairly extensive superset of the ANSI
C standard.

Description of the back end
Creating a new back end is not a trivial task. In the end, however, GCC probably generates the best possible
code.

Resoun:es
GCC can run on almost all UNIX platforms as well as most conventional miaocomputer platforms as DOS,
Atari, Amiga or Acorn, altougb a large amount of disk space, lots of memory and a powerfull processor are
required for smooth operation.

Restrictions
See the Gnu General Public License.

Possible problems
GCC might cause a problem when generating code for 16 bit architectures. It has been done before,
however, for a DSP with an architecture that resembled a common RISC structure.

ho~ .
GCC is free; if a working version can be constructed then there are a variety of possibilities for upgrades
and utilities in the future, as well as a large group of users for questions and problems.

Con'.
Huge resource requirements. Writing a back end is not a trivial task.

Porting problems
GCC is up and running for a DOS platform. 64 bit ints can be generated using GCe's Long Long int's,
however this is not ANSI compatable. Generating code with int's of 16 bit poses a problem.

Info on the resulting compiler

63

Gee requires a large amount of system resources: the compiler is large and not very fast. However, you get
a lot of extra options and a great optimizing compiler, including different front ends to accept different
languages and a large set of utilities for debugging and profiling.

Info on the code for the PMSSOO
As Gee is one of the best optimizing compilers, generated code will be compact an/or fast

Why/whu not
Writing a code generator for Gee is not a trivial task. Gee is very large and incorporates a lot of
unneccesary functionality. A less optimizing compiler will be able to generate comparable code for the
PMS500.

3. Archelon User Retargetable Development Tools II
Authors Archelon Inc.

460 Forestlawn Road
Waterloo, Ontario N2K2J6
Tel. (519)746-7925

Cost DOS version: USS3495,-

Documentation
For full documentation: see Archelon's information folder. This is a new system; they couldn't generate code
for 64 bit int's yet but if we really wanted to, they could add it to their actions list for medio '95. In the same
period a debugger will be developed. For approx. USS50.000,- they could even build the complete compiler
for us.

Ease or use
Processor dependent information has to be supplied in text files, being:
• The Compiler Information Ftle, for information on registers, operand types, instruction formats,

instructions, code tables and the mapping from IR to the code table. This will take up approximately 2000
lines of code.

• The Machine Definition ftle: for a mapping from assembly to object code (for the assembler); between
1000 and 3000 lines.

• The Replacement Rule file for the peephole optimizer
• The Microcode Definition file, unused for this project.
The complete package includes a e preprocessor, an ANSI e compiler, a peephole optimizer, a code
convertor/compactor (for parallel/pipelined processors), a microcode assembler, a linker and an object
librarian.

It's a flexible system and perfectly suited for generating the PMSSOO compiler. Almost every problem that
could be solved without knowing anything about the processor has been solved, using a minimum number
of assumptions.

The systems comes complete with a Users Guide, Reference Manuals, one year of support and P&P. Extra
copies against 40% reduction. .

Description or the front end
The package is designed to comply to ANSI e norms with extensions to supply the compiler with information
on how to generate better code. Even inline assembly is a poSSIoility. Extensions include global register
variables, fast implementations of the 'switch' statement, inline function expansion, hardware loop counter
control, use of built-in or direct assembly code, user-specified register usage, use of special registers for
argument passing, multiple address spaces and symbolic debug tables.

Description or the back end
All processor dependent information is supplied using textftles. &timated number of lines range between
2000 and 5000. Optimalizations include constant folding, global common subexpression elimination in

64

extended conditional regions, register allocation by graph coloring, peephole optimization.

Resources
Binaries for the following systems are available:
DOS, Unixware on Intel processors, SUN solaris on Intel and Sparc workstations, HP-UX/HP-PA

Restrictions
This system is sold per package or per site, and cannot be handed out to other users. The system doesn't
generate a compiler: it is the compiler which the user can retarget to suit his needs. Compiled sources are
free but the compiler itself cannot be distnouted.

Possible problems
Restrictions, cost.

Pro's
It's the complete package for our needs.

Con's
Parts of the system are still under development.

Porting problems
None. A DOS version is available.

Information on the resulting compiler
The system is the compiler. There's no indication on size, speed and memory usage of the system.

Information on the code for the PMS500
This system can handle architectures with a much greater complexity than the PMSSOO. A number of
optimalizations are performed and the compiler can even be supplied with compiling directives to squize the
last bit of perfomance out of the code.

Whv/why not
The copyright restrictions pose the biggest problem, next to the cost and the fact that the system is still under
construction. Besides that, this system can do more than is needed for this project.

65

III. Summary of discarded tools
Lex, Yacc, Bison, Flex, Ox, Muskox: All parser generators and lexical analysers derived from Lex and Yacc,
based on attribute grammars.

Production Quality Compiler Compiler Project: abandoned several years ago, and never yielded the result
people expected from it.
ACC: Never received information
PCC: The portable compiler, the program that started it all
CCO: Used internally by Harris Computer systems Division and not for sale
In: 'Lecture notes in Computer science', no. 323,
·attnbute grammars·
Pierre Deransart, Martin Jourdan, Bernard Lorho,
This work descnbes a large number of compiler compilers based on attribute grammars. These compiler
compilers are comparable to toolkits like pcers and Cocktail (also listed), but older.

Twig, Codegen, Burg, MIMOLA, Pagode: codegenerators of the same type, walk AST's. Can be used to help
generate a back end for toolkits or retargetable compilers; a version of the Burg code generator was used
to generate the x86 back end for Lee.

66

suffix meanings:
C constant
S short
I integer
U unsigned

IV. List of Lee opeodes
Opcode Type Suffix Description

ADORF P addre.. of • patameter

ADORG P addre.. of • global

ADORL P address of • local

CNST CSIUPFO constant

BCOM U bitwise oomplement

eve IU convert from char

CVD IF convert from double

CVF 0 convert from float

CVI CSUO convert from Int

CVP U convert from pointer

CVS IU convert from lIhort

CVU CSIP convert from unsigned

INOIR CSIPFOB fetch

NEG IFO negation

ADO IUPFO addition

BAND U bitwise AND

BOR U bitwise OR

BXOR U bitwise XOR

OIV IUFO division

LSH IU left shift

MOO IU modulus

MUL IUFO mUltiplication

RSH IU right shift

SUB IUPFO subtraction

ASGN CSIPFOB assignment

EQ IFO jump if equal

GE IUFO jump if greater than or equal

GT IUFO jump if greater than

LE rUFO jump if Ie.. than or equal

LT IUFO jump if Ie.. than

NE IFO jump if not equal

ARG IPFOB argument

CALL IFOBV function call

RET IFOV retum from function

JUMP V unconditional lump

LABEL V label definition

Ttlb1e 3 List of Lee opcodes

P pointer
F float
D double
B block (struct, union, array)
V void

So 'ADDI' means integer addition and ASSGNB means assignment of one block to another (by value, not
by reference).

67

v. The PMS500 instruction set

Mnemonic Description

The PMSSOO control flow InatrucUona

JMP <addr> Jump to addre.. <addr>
JMP <reg> Jump to addre.. In reg
JMPC <reg> Jump via table In code space, PC:-rom[<reg>]

JSR <addr> Jump to subroutine at addr... <addr>

Bxx <addr> ~anch conditionally to addr.... Max. displacement Is -127.. +128. xx or <CC>
BRA <cc>,<addr> represents the condition to be tested

BSxx <addr> Branch conditionally to subroutine at addre.. <addr>. Max. displacement is -127.. + 128.
BSR <cc>,<addr> xx or < CC > represents the condition to be tested

RET <CC> Conditional retum from subroutine. <CC> Is optional
RET! <CC> Conditional retum from Interrupt. <cc> is optional

NOP No operation (BRN $+ 1)

The PMSSOO data transfer InstrucUona

Register to Register Transfer

MOV <drg>,<srg> Transfer data form <srg> to <drg>

Move bits immediate data to register

CLR <reg> Transfer constant data to <reg>. For constants that need more than 8 bits to store the
MOV < reg>, #dataS constant has to be split in an 11- and a IS bit part and the actual transfer consists of a
MOV < reg>, #dataS move of the 8 bit part into HIGH Immediately followed by a move of th IS bit part to the
MOV HIGH, #data11 regsiter. The full 16 bits will be written to the register

Move data from/to cocIe space (program memory space)

MOve <drg>,<srg> Transfer indexed data from program memory space to <drg>
STRC <drg>,<srg> Store data from register in cocIe (program memory) space pointed by <srg>. This

Instruction requires extra hardware

Move data from/to stack

PUSH <srg> Push register onto stack
POP <drg> Pop register from stack

PMSSOO arithmetic InstrucUona

Arithmetic Dyadic Instructions

ADD <drg>,<srg> Add <srg> to <drg>
< drg > ,#dataS Add immediate data to drg

ADDC <drg>,<srg> Add with carry
<drg>,#dataS

SUB <drg>,<srg> Subtract
< drg >, #dataS

SUBC <drg>,<srg> Subtract with carry
<drg>,#dataS

RSUB <drg>,<srg> Reverse subtract: <drg> :- <srg> • <drg>
<drg>,#dataS

CMP <drg>,<srg> Compare (flags set according to <drg>-<srg>
<drg>,#dataS

68

Mnemonic Description

Arithmetic Monadic instructions

BSWAI' <drg> Byte swap within reg
INC <drg> Increment (ADD # 1)
DEC <drg> Decrement (SUB, #1)
NEG <drg> Negate (RSUB #0)

BitwIse logical Dyadic Inatruetlons

AND <drg>,<arg> BitwIse Logical AND
<drg > ,#data5

OR <drg>.<arg> Bitwise Logical OR
<drg>,#data5

XOR <drg>.<arg> Bitwise Exclusive OR
< drg > ,#data5

Bitwise Logical Monadic Instruction.

COMPL <drg> Complement (at XOR #-1)
(2-word Instruction)

Bit Manipulation Instructions

BTST <drg>,<arg> Bit test Qogical AND)
<drg>,#data5 <drg> not altered

BSET <drg>.<arg> Bit test and set
<drg > .#data5

BCLR <drg>,<srg> Bit test and clear
< drg > ,#data5

Shift Instructions

LSR <drg> Logic shift right
LSL <drg> Logic shift left
ROR <drg> Rotate right
ROL <drg> Rotate left
RCR <drg> Rotate right through carry
RCL <drg> Rotate left through carry
ASR <drg> Arithmetic shift right
ASL <drg> Arithmetic shift left

Multiply/Divide steps

UMUL <drg>,<arg> Unsigned multiply step
SDIV <drg>,<arg> Unsigned division startup
UDIV <drg>.<arg> Unsigned division step
LOIV <drg>,<arg> Unsigned division last step

rClbk 4 List Of PMS500 opcodes

69

VI. Function declarations
Appendix vn lists the global variables and definitions of the program. The source files config. h and
c . h contain all other defmitions.

add definitions - collect every definition in the dfg and append to list.
static void add_definitions(DFG dg);

add_list - add x to I if not already included
static List add_list(Generic x, List 1);

address - initialize q for addressing expression p+n
void address(Symbol q, Symbol p, int n);

alias_add - add node with pointers p and b to list I if not already on it
static Aliaslist alias_add(Aliaslist I, Pointer p, Pointer b);

aUas_analysis - Establish what every pointer can point to at any point in dfg. Create separate entries
for P and -P if -P also a pointer. Annotate dfg-nodes with list of live aliases
static void alias_analysis(DFG dg);

aUas_free - append nodes of I to list of free nodes.
static void alias_free(Aliaslist 1);

aUas member - return True if p in I, else return False
static Boolean alias_member(List I, Pointer p);

alias merge - add copy of every node of s not in -t to -t. Return True if nodes were copied.
static Boolean alias_merge(Aliaslist s, Aliaslist *t);

aUas remove - remove node (p,x) with pointer p and any x from list I except when x in n.
static Aliaslist alias_remove(Aliaslist I, List n, Pointer p);

alias trans - calculate effect of assignment to pointer n- >x.def
static Aliaslist alias_trans(Aliaslist in, Node n);

aliases - calculate the list of symbols that might be accessed when p is dereferenced n times.
static List aliases(Aliaslist IN, Symbol p, int n);

asmcode - emit assembly language specified by asm
void asmcode(char *str, Symbol argv[]);

blockbeg - begin a compound statement
void blockbeg(Env *e);

blockend - end a compound statement
void blockend(Env *e);

calc genset - calculate effect on KILL- and GEN sets by codenode p
static void calc_genset(DFG dg, Node p);

clear - clear bit n in bitset s
static void clear(Bitfield s, int n);

dear globals - make sure linked lists attached to s are freed-called from function
static void clear_globals(Symbol s, Generic d);

70

clagllst_append - append an item to the doubly-linked Daglist
static Dag1ist dag1ist_append(Node n, Dag1ist 1);

deraddn:ss • define an address. BEWARE: this function may be called in dataspace (defining a pointer)
or in codespace (defining a branch table)!
void defaddress(Symbo1 p);

defbrancb • update current dfg node with default and branch table labels BEWARE: this function is
specific: for the PMS-SOO compiler! it was added to make the construction of the dfg from gencode
possible, so the (global) codelist doesn't need to be walked (the global codelist was meant to be used by
the front end only). Called directly after gen has processed the code for the switch statement
void defbranch(Swcode *s);

defCODst • define a constant
void defconst(int ty, Value v);

defstrfng - emit a string constant
void defstring(int len, char *s);

defsymbol • defme a symbol: initialize p->x
void defsymbo1(Symbo1 p);

depth_first - Depth-first traversal of the DFG, assigning depth-fU'st numbers and detecting back edges.
static void depth_first(DFG dg);

emit - emit the dags on list p
void emit(Node p);

export - export a symbol
void export(Symbo1 p);

findJOinter - find the pointer-struet P for symbol p
static Pointer find-pointer(Symbo1 p, int lev);

function - generate code for a function codehead points to codegraph for this function. Offsets etc. are
reset FU'sl, dag nodes are annotated, ASGN nodes in particular, for data flow analysis. Next, registers
are allocated (using dfa), and fmally the assembly is written.
void function(Symbo1 f, Symbol ca11er[], Symbol ca11ee[], int nca11s);

gen - annotate and linearize dags on list p; return pointer to new list
Node gen(Node p);

gent - annotate .p and append to head of list
static void gen1(Node p, int lev);

global • emit code to define a global variable
void globa1(Symbo1 p);

import - import a symbol
void import(Symbo1 p);

iterate - propagate ud-information through the data flow graph. Return True if changes have been
detected, false if not.
static Boolean iterate();

live analysis • live variable analysis
sta-tic void 1ive_ana1ysis(DFG dfg);

71

live}nit - Calculate L_DEF and L_USE sets for live variable analysis
static void 1ive_init(DFG dfg);

live}dlldefs - Kill liveness of every direct defInition of s reaching dg by resetting the corresponding bit
in L USE and setting the bit in L DEF;
static void 1ive_ki11defs(DFG dg, Symbol s);

live markuses - recursively walks the annotated DAG and marks reaching defInitions of used symbols
as liVe.
static void 1ive_markuses(DFG dg, Usage1ist u);

load - local variable
void 10ca1(Symbo1 p);

number - number nodes in list p
static void number(Node p);

prepend - prepend s to Symlist; return pointer to new list N.B. function 'append' in use by front end
static Usage1ist prepend(Usage1ist 1, Usage1ist r, Pointer p);

progbeg - beginning of program
void progbeg(int argc, char *argv[]);

progend • finalize program
void progend(void);

ralloc: - perform register allocation
static void ra110c(void);

refdef - Collect reference, definition and usage information from forest
static void refdef(Node p);

segment - emit code to change segment
void segment(int x);

set - set bit n in bitfield s
static void set(Bitfie1d s, int n);

space - emit code to allocate x bytes
void space(int x);

stab functions to emit symbol table Information

stabbloc:k
void stabb10ck(int a,int b,Symbo1 *c);

stabend - finalize stab output
void stabend(Coordinate *cp, Symbol p, Coordinate **cpp, Symbol *sp, Symbol
*stab) ;

stabfend -
void stabfend(Symbo1 a,int b);

stabinit -
void stabinit(char *a, int b, char *c[]);

12

stabllne - emit line number information for sourcc coordinate .cp
void stabline(Coordinate *cp);

stabsym -
void stabsym(Symbol a);

stabtype -
void stabtype(Symbol a);

trans - collect definition. usage, and referencc information from DAG-nodes (data transfer information)
static void trans(Node n);

transI - recursive extension of trans
static void transl(Node n);

ud_chain - Calculate tbe usage-definition chains of tbe data flow graph
static void ud_chain(DFG dg);

unite - Perform a bitwise OR of a and b into a. Return True if a is changed, False if not.
static Boolean unite(Bitfield a, Bitfield b);

update_dCg - add basic blocks and data flow information from forest to data flow graph
static void update_dfg(Node p);

73

VII. Global variables and definitions
#define pms 500

#include<stdio.h>
#include<string.h>
#include"c.h" .
#include"tools.h"

#define INT_BIT (sizeof(unsigned int)*CHAR_BIT)

/* IN(x) means pointer to In-set of dfg-node x. IN(x)[y] gives value of
y-th unsigend int~ger in this set */

#define
#define
#define
#define

#define
#define
#define
#define

IN(x) (sets+(x)*setsize)
OUT (x) (sets+(ndfg+(x»*setsize)
GEN(x) (sets+(2*ndfg+(x»*setsize)
KILL(x) (sets+(3*ndfg+(x»*setsize)

L IN(x) (live+(x)*setsize)
L:OUT(x) (live+(ndfg+(x»*setsize)
L_USE(x) (live+(2*ndfg+(x»*setsize)
L_DEF(x) (live+(3*ndfg+(x»*setsize)

locals, and
*/
*/

*dfa;

buf[BUFSIZ] ;
*tail;
dfg, current,lastdfg;

offset, maxoffset;

int dfn;

int

DFG

Bitfield sets;
Bitfield live;
int setsize;

/* Current stackoffset for defining
maxoffset

/* line buffer
/* Aux. pointer to linearize DAG */
/* Data flow graph of current function and

current node and last created node (for
linkage) */

/* Number of dfg nodes */
/* Counter to number DAG nodes */
/* List of labels for current DFG node */
/* List of all definitions in function */
/* Total number of definitions */
/* Array of all definitions (List is converted

to array at some point in the program */
/* In, Out, Gen and Kill sets */
/* Same for live variable analysis */
/* Number of integers necessary to store In,

Out .. etc. sets */
/* Auxiliary for depth-first numbering of the

dfg */
/* Array of pointers to dfg-nodes in

depth-first order */
int slsize-O; /* Size (bytes) of list of symbols */
Aliaslist free aliasnodes-NULL; /* List of free aliasnodes */
List pointerlist-NULL; /* List of existing pointer tuples */
Daglist free dagnodes-NULL; /* List of free dag nodes */
struct pntr unknown-{(Symbol)-l,l,True); /* The instantiation of the famous

UNKNOWN symbol */

char
Node
DFG

int ndfg;
int node number-a;
Daglist lols-NULL;
List defl-NULL;
int ndefl-O;
Node *Def;

74

VIII. Index
ACK ••••••••..•.•.•.••.••••.•••••..••••••.••••••.••.•••••••...•••••.•••.••••••••••••.•.•• 7, 57, .58, 60
algorithm complexity ..•••..•..••...•...•......•..•....••...•••.......•..•........•....•......••..... 4S
Alia& analysis •• . • • • • • • . • • . • • • • . • • • • • • • • • • • • • . • . • • • • • • • • • • • • • • • • . • •. rT, 30

complexity •.••.•.••...•....•.......••......••....•...••....•...•...••.....•........••....• 4S
implementatioa .•••••••...••..•..••....•.•....•••..•.....••...••...•....•.••..••........•... 49
usage ..••..•••.••••.••••..•.•.•.....•.....•....•••.•••...•...•....•.••...••...•...•... 47, 49

.naa lilt .•.... • • • • . • . 46
aIiu IttUctUre •• 42, 44
Aliuea

, lilt for ••.•.••...•...••........•.•••...•••••.••.••••..•..•...•••••..•.•.•.•••••••••••....• 44
, set of • . • • • • • • • • . • • • • •• 30, 46
functioa ••..•••.•••••.•.••••..•..••..••...••.•..••....••••••••••..••••.••••....•.•••• 46-49,51
implelDCntaboa .••.•••..••..••..•....•..••..•••••..•••.••.•••..•••..••••••.••••.•••..•••... 42
repre&elltation ••.•.•••...•...•..••.••••..•.•.•••••...•.•••.•••..••...•••••.••••.••••..•...• 28

ALU .••..•••..••••••.•••.•••••....•..•....••..•••••.••••.•••••.•••••.••...••••••••...••.•••...•• 10
annotatioa phase ••••••••••••••••••••••••••.•• 13
ANSI •••••.••••••••••.••••••••••••.•••••••••••••••.••••••••••••••••••••••••••.•• 6, 16, 18, 46, 51-58, 61~
Arcbelon•.•..•.••.•.•..•.•.•....•..•.••.•...•.••...••.............•..••..•.•••.•••...•..••.• 7, 64
assembler. . • • • • • . . . • • • . . . • • . . . • . . • . . • • • • . . . • 11, 14, lS, 18, 57, 64
AST .••••.••.•..•..•.••••...••••.•••..•••••••..•.•.•.•...••.•..••••••••..••.•..•••.••.. 5, 14, 59, 60, 62
attribute grammars ..••....•.....•..................................•............•..•.•...... 6, 54, 61, 66
available expression•..............•.............•....•..........•........................... 36
Back end

criteria • • . . • • • . • • . . . • . • • • . . • • • • • • • . • • . . • • . • . . . • • • . • • . . • . • • . • • . . . • • • • . • . . . • • . . • • 56
interface for • • • • . • 12
tasks performed by • • • . . . • • • • .. 5, 19

backward flow analysis •...••........................••...................•.....•................. , 36,:r7
barrel shifter .•..........••....•....•.....•...•.......•........•...•........•...................... 18
Basic block•.....••...•........••........••..........•....••.......................•..... 25

in the data flow grapb ..•...•........•.........•.•...•.........•..........•........•...•..... 29
optimizations ••.........••....•........•.....•.•.............•........•.....•........•..... 19

BEG••..........••.............••......•.........•....•....................•..... 6, 7, 59, 60
brancb table . • • • • • • • • • • • • . •• 26, rT, 72
ba segment .••....•....••.......•........•....••..•......•....•..•••........•.........••....•..... 12
calling tree ••....••..••••...•.•....•....•.•.••....••..•.•....•....•.....•..•....•••.......•...•.• 49-51
chromatic number•.........••....•••....•....•.............•......•.•.....•.....•.. 3840
clique•.•...••...•..........•..........•...•..........•.•.........•...•....•....•...••. 39
CNrX•..•.....•.......•.........•...............••...•............................... 9-11, 13, 18
cocktail ••.......•.••...•.................••.............••.....••....•..•..........•.•.. 6, 7, 59-61, 66
code elimination ...•.......••••...•...........••.........••..•••....•....•...•........ 4,19,21,22, 36, 53
code generation interface • • • • . . • . • • . . • • . • . . • • • • . . • • . . • • • • . • .. 12
code hoisting .••...•............•.........•.....•.....••..........•....•..••....•...••.•.•.......••. 4
code motion . • . . . • • • • • • • . . • • • . . . • • • . . • • . . . • • • . . . • . • . • • . . . • •. 21, 36
code segment '" • • • • . . . • • . • • • . • . • •• 12, lS
code substitution•..•..•....................••...•.....••....•..•...•.•........••....•. 4, 19, 21
common subexpn:.ssion elimination .•.....•............•.• , ••••.•.....••..••.......••... 4,5, 19,21,22, 36, 39, 64
compiler compiler •..•......••......••....••........•....••..........•........•.......••....•.•.. 53, 66
constant folding ••• . . . • . • • . . • • • . . . • • • • • • • • • • . . • • •• 14, 36, 53, 62, 64
constant propagatioa ••.....•....••..•....••..•.••...•.••.•........•.•............••....•....• 4, 2G-22, 53
context ...•..•......•..•.•••...... '..................••....•..............................•• 9, 10, lS, 18
copy propagation ...••.••.•..•••....•.•.....•.....••.....•..•.....•.......•.......... 5, 19, 21, 22, 36, 47, 53
criteria . • • • • • • • . • • • . . . • . • • • • • • • . • • • • • • • • • • • . • • • • • . . • • • . • • • • • . • . • • • . • . . • • . • • • . • • • • . • • • • • • . . • • . • •• 6, 56
~le•.•...••......••........•...............•••.••.•......•........•.......•.. 7, 10, 11, 14, 19
DAG ...•.•..•..•...••.•.•...•.•. , ...•.•.....••....••.•••...••••• , .•....•• 12-16, 25, 40-45, 4749, 51, 72-75
data flow grapb collltruction ..•.......•.......................••...•.••......•..•...•••...•..•.••.. 19, 49
data flow information . . . • • • • • • . • . . . • • • • • • • . . • • . . . • . . • • . . .• 21, 22, 36, 40, 47, 74
data segment ••...••..•..••..••....•.•........••...•••...•.••...•.•••....••..•...••...••.••.••••... 14
defb:rancb••.••.•..•••••.••••.•....•..•...•...•••...•••...•....••.......•..••.•••••.••..••. 51, 72
definition point ...••••....•.••....••....••......•..••••..•....•..•..•...•...•. 25, 32, 36, 38, 39, 44, 46-48, 51
deptb fi1'5t number . • . • . . . • . • • . • • • • • . . • • . • • • . . • • • . . . • . . . • • . . . • . . . • . . . • • . 33
deptb fl1'5t order ..•••.....•....•••.•...•...••.......•...••........••......••.....•..••••.•.•. 46, 47, 49
deptb fi1'5t searcb • • • . . . • • . • • • . . . • • • 33
device registers •••.••••••••••••••••••••••••••••••••••••• 8, 9
DFG •.•..•.•...•..••...•................................•..•••...........••.......•.•..•.....• 25,29

7S

DJOPP ...•...••.••••...••••...•..•.......•••.........••...........••....•••.......•.•............ 7
DP •.....•.......••.....•.•........••..........••.......••.....••.....••.....••....... 9, 10, 16, 18, 32
dumb compiler. • • . • • • • • • . . . • • • • • • . . • • . . . • . • • . • . • • . . • . . . • . • • • 12-18, 38-40, 43, 62
dynamic: memory allocation ...•..••••...•••.........•...•••••••......••...•..•••...•••••...•.••. 13, 15, 18
.Eli •••••••.•••••••••••••••••.•••••.••••••••.••••••.••.•••••••••••••••••••••••••••••.•••• 6, 7, 58, 59, 61
EP •••.•••••••••••• " ••.•••••••••••••••••••••••••••.•• 9,10, 18
flex ••••••••••••••.•••••••••••••••••••••••••...••••••••••••••••••••.••••••••••••••••••••••••.•• 6, 66
OoatinJ point . • . . • • . . • • • . • . . • . • • . . • • • • . • • • • . • • . . • • • • • • • • . . . • . . • • • • . • • • . • • . . . • • . • . . .• 18
Occ ••••..••.••..••.......•.••••.........•..•.....•••.••••.....••.••....•••...••••••.....•• 6, 7, 62-64
gIobaII ••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••.••••••••••••••••••. 13, 18, 44,47,71
grapb coloring ••••••••••••••••••••••••••••••••••••••..•• 55, 6S
induction variable •.••••.••••••...•.•.••••••••••.•..••••.••••.••.•••.••••••...••....••• 4, 21, 36, 37, 40, 53
interference grapb .•••••..•••••••.•.....••.••....••••••••.•.••••••..•..•••••.••••••••••••..•••••.. 38-40
interrupt 9-11, 18, 68
IR ...•..........•..•......•............•......... 5,57,64

t:~:·:::~~E
L:USE •..................................••............•...•....................•......... 48,73,75
IeJ: ••••• • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • . • • • . • . • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • 16, 60, 61, 66
IeJCic:aI anal)'5is ..•.•....•.•..•......•.•......•.....•..•.......•.•....•................•........•....• 6
libruy •.........•...............•.•..••.....•....................................•......•... " 18, 45
linked list•.....................................•................•.......•....... 41, 42, 46, 51
linker • . . . • . . • • • • . . . • .. 13, 14, 64
list datastrueture••.....•..•....••..•...• 42, 51
lit segment • • • . • . • • • 12
live analysis•.........•..................•.............•.........•.......................•.. 49, 51
live variable analysis. • .. 38-40,47,49,51,72, 73, 75
locals•...••••..•..•••....••........•......•........••...•...•.............. 13-16, 18,43,44,47,75
logical segments • • . • • • • . • • . • 12, 14
loop jamming•.•..........•••........••............•........•..•.•....••.....•.........•.•.... 21
loop optimization . . • . • • • • • . . • • . • • • • 20, 33
loop unrolling ..•.•....•.•.•.....•.......••........••......•.....•••...........•....•........... 20, 21
loop-invariaDt •••.••••••.•••••••••..•......•••••••••••••••••••••..•••.•••••••••••••••••.•.•. 4, 21, 36, 53
mode register . . . • . • • • • • • • . • • . • • • • • • . . • • 10
NP<amplete ..•.••.........•.•......••••.....•....•.••....•.•..•....••.•......•......•••.......... 39
optimizations •••.....•.••....•........•......•......•••....•••......• 4, 5, 14, 15, 19-21, 30, 31, 36, 47, 53, 58, 62
parser ..•..•.......•.•••..••.•••.....•.......••......•.........••..•...•.....•..••....•. 5, 6, 58, 60, 66
PCCfS ..•.......••.......•.•.•............•.....••••...•........•..................•... 6, 7, 60, 61, 66
PMSSOO code generator '" • . . . • • • . • • • . . . • • . • . . . • • • . . . •• 13
pointer assignment ...••.•..•.•.......•.•....•.•.•.•........••.•.....•..•.....••.•....••.•....•.••... 29
pointer derererence ...•.......•.............•••..•..•..........•....•........•.... ,........... 14, 32, 48
pointer structure .••.......•....•••....•••....•.......•••.•...•......•.••.......•.•..............••• 41
points-to infonnation ..•...•••......•.....•••......•.............••.•.....•.•....••.......••..•.....• 24
PQCC •••••.•••••••••••••••.••••••..•••••••.••••••.•••••••••.••••••••.••••••.••••••.•.••.••••••••. 7
program counter .•..•••..•..••..•...•......••....••••.•....•.••...•.••.....•••.......•.•.....••.. 9-11
RAM . • • . . . • • . • . . . • • . • . • • . • . . • • • . . . • • • • . • • • . •• 9, 10, 15
Reaching definitions•.•....•.......•.•...................•........•...................••. 20, 31, 45, 46
real compiler ..••...•.•••...•.....••.••........••...•• 12, 18
rer-der coUection .••..••••....••..•....•••....•.......•.•...........•...•.......•........•.....••••. 28
rer-der inrormation ••...•.......••..•.••.•.................•.........•...•..••......... 23, 24, n, 41, 45, 53
rerder•....••...•.•..••••....................•........•.....•...................•..•••.... 49, 73
rererence-deflDition information•...., ••......•••......•.......•.•....•..•.....•...••..... " ... 41,49,53
Register allocation " . • • • . . . • . • • • • • • . • • • 13, 14, 38
register file •....••....•..•••.•.•••..•...••....•.....•..•....•..•.........•..••.........••.. 8-10, 13, 15
retargetable compiler ..••........•••......••....••...•........•••••.......•••......•...•.... 6, 7, 53, 56, 61
ROM •••••••••••••••••••.•• '" ••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••• 10,11
ICllIlIIC:r ••.••....•••••..•••••••...•.••.•.•.••....••••....•••••....••••.•.••.•.•.••••••••.••••. 5, 6, 60
ICOpC leYI:I • U
semantic analysis ..••••.••...•..••..•..•.•.•.•...•••....••••••..••.••••••.•.•••..••....••••...••.• 5, 62
limulated exec:ution .•.•.•...••.••••..••••..•..••....•.••......••••...••.•••••..•.••••••..•.•• 4, 38, 40, 53
SP ••.....•....••....••.•.••••...•••....••....•.••............••.•••••••••..••.•......•••. 9-11, 18, 73
spill code • : • • • • • • • • 15, 39, 40, 52
statics ...•••....•....•.•••...•.••....•....•.....•••....•.•••....••••••.•..•.•.•••.....•..••.....• 13
sta tUi register •••..••••......•............•••..•.•...••........•.........•.......••..•.•.....••. 10, 11
storage c1a&& . . • • • • • . • • . . . • . . • . • • • • • • • • • . . • • • • • 12
strength reduction•....•.......•.•....•........................•....•.....•••..••.....•.....• 19, 36

76

stJinllitcrail ••........•......•...•....•.•...........••..•••.•••.....••...•.......••.•.....•.•..•.. 14
switch ••.•••••••• 12, 26, 72
synUlCtic: anaIysiI ••••••••..•••••••••••.•••••••••.••••••••••••••••••••••.••.•.••••••••••••••••••••.•.• 6
toltcDI •• 5
toolkit •...•••••••••••••••..•••.••••.••••.••••••••••••••••••••••••••••••••.••••••••••• 4, 6, 53, 57, 58, 60
TRANS ••••.••..••.•.•.••.•••..••••.••••.••••••••••••••••••.••••••••.••• , 29-31, 33, 37, 37,46, 48, 49, 71, 74
tree pattcrn matching • • . . • . . . • . • • • • • . . • . . • . . . • .. 14
tree rewriting • . • • . . • • . . . • • . • . . . • • . . . • . . • • • • • • • . • • . . . • . . • . . • . . . • . . •. 19
tuple ..••..••...••...•..•....•.••.•..•••..•.•..•••••...••••••.••..••..•..•••.••••....• 23, 24, 28-30, 41
_ strue:ture • • • • • • • • • . • • • • . • • • • • • . • • . • . • • • • • • • • • • 41
VAX code gencl1ltor ..•.•.•..•..•.••..••..•..•••....••.••..••.••••.•......•••.•.••.••••••..••..•.••. 13
working registcrs •..•...••••.••.•.••••••••.•••••••••••••••••.••••••••••.••••••••••••.•••..••••.•••••• 8
Xnodc ••.•.•••..••...•..•..•..•...•..•.••.••.•••••......•••......••.•••..•..•.•..•...•..•.•....• 41-43
Xsymbol ••.••••.•••..••••.•••••••••••••••••••••••.••...•.•....•.....•...•..•.••••.••••.•••••••••. 44
yaa: ••••••..••••••.••••••••••••••••.••••••••••••••••••••••••••••••.•••••••••••••••••••.••• 6, 60, 61, 66

T1

	Voorblad
	Table of contents
	1. Abstract
	2. Introduction
	3. Survey of compiler generating utilities.
	4. Description of the target processor.
	5. Building a dumb compiler with Lcc.
	6. Investigation for useful additions to the PMS500 instruction set.
	7. Structure of the final compiler.
	8. Data flow analysis.
	9. Register allocation.
	10. Implementation
	11. Conclusions
	12. Bibliography
	Appendix

