499 research outputs found

    Real-time failure-tolerant control of kinematically redundant manipulators

    Get PDF
    Includes bibliographical references (pages 1115-1116).This work considers real-time fault-tolerant control of kinematically redundant manipulators to single locked-joint failures. The fault-tolerance measure used is a worst-case quantity, given by the minimum, over all single joint failures, of the minimum singular value of the post-failure Jacobians. Given any end-effector trajectory, the goal is to continuously follow this trajectory with the manipulator in configurations that maximize the fault-tolerance measure. The computation required to track these optimal configurations with brute-force methods is prohibitive for real-time implementation. We address this issue by presenting algorithms that quickly compute estimates of the worst-case fault-tolerance measure and its gradient. Comparisons show that the performance of the best method is indistinguishable from that of brute-force implementations. An example demonstrating the real-time performance of the algorithm on a commercially available seven degree-of-freedom manipulator is presented

    Real-time failure-tolerant control of kinematically redundant manipulators

    Get PDF
    Includes bibliographical references.This work considers real-time fault-tolerant control of kinematically redundant manipulators to single locked-joint failures. The fault-tolerance measure used is a worst-case quantity, given by the minimum, over all single joint failures, of the minimum singular value of the post-failure Jacobians. Given any end-effector trajectory, the goal is to continuously follow this trajectory with the manipulator in configurations that maximize the fault-tolerance measure. The computation required to track these optimal configurations with brute-force methods is prohibitive for real-time implementation. We address this issue by presenting algorithms that quickly compute estimates of the worst-case fault-tolerance measure and its gradient. Real-time implementations are presented for all these techniques, and comparisons show that the performance of the best is indistinguishable from that of brute-force implementations.This work was supported by Sandia National Laboratories under contract number AL-3011

    Parallel algorithm and architecture for the control of kinematically redundant manipulators, A

    Get PDF
    Includes bibliographical references (pages 413-414).Kinematically redundant manipulators are inherently capable of more dexterous manipulation due to their additional degrees of freedom. To achieve this dexterity, however, one must be able to efficiently calculate the most desirable configuration from the infinite number of possible configurations that satisfy the end-effector constraint. It has been previously shown that the singular value decomposition (SVD) plays a crucial role in doing such calculations. In this work, a parallel algorithm for calculating the SVD is incorporated into a computational scheme for solving the equations of motion for kinematically redundant systems. This algorithm, which generalizes the damped least squares formulation to include solutions that utilize null-space projections and task prioritization as well as augmented or extended Jacobians, is then implemented on a simple linear array of processing elements. By taking advantage of the error bounds on the perturbation of the SVD, it is shown that an array of only four AT&T DSP chips can result in control cycle times of less than 3 ms for a seven degree-of-freedom manipulator

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    Control algorithm implementation for a redundant degree of freedom manipulator

    Get PDF
    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation

    Near-Optimal Motion Planning Algorithms Via A Topological and Geometric Perspective

    Get PDF
    Motion planning is a fundamental problem in robotics, which involves finding a path for an autonomous system, such as a robot, from a given source to a destination while avoiding collisions with obstacles. The properties of the planning space heavily influence the performance of existing motion planning algorithms, which can pose significant challenges in handling complex regions, such as narrow passages or cluttered environments, even for simple objects. The problem of motion planning becomes deterministic if the details of the space are fully known, which is often difficult to achieve in constantly changing environments. Sampling-based algorithms are widely used among motion planning paradigms because they capture the topology of space into a roadmap. These planners have successfully solved high-dimensional planning problems with a probabilistic-complete guarantee, i.e., it guarantees to find a path if one exists as the number of vertices goes to infinity. Despite their progress, these methods have failed to optimize the sub-region information of the environment for reuse by other planners. This results in re-planning overhead at each execution, affecting the performance complexity for computation time and memory space usage. In this research, we address the problem by focusing on the theoretical foundation of the algorithmic approach that leverages the strengths of sampling-based motion planners and the Topological Data Analysis methods to extract intricate properties of the environment. The work contributes a novel algorithm to overcome the performance shortcomings of existing motion planners by capturing and preserving the essential topological and geometric features to generate a homotopy-equivalent roadmap of the environment. This roadmap provides a mathematically rich representation of the environment, including an approximate measure of the collision-free space. In addition, the roadmap graph vertices sampled close to the obstacles exhibit advantages when navigating through narrow passages and cluttered environments, making obstacle-avoidance path planning significantly more efficient. The application of the proposed algorithms solves motion planning problems, such as sub-optimal planning, diverse path planning, and fault-tolerant planning, by demonstrating the improvement in computational performance and path quality. Furthermore, we explore the potential of these algorithms in solving computational biology problems, particularly in finding optimal binding positions for protein-ligand or protein-protein interactions. Overall, our work contributes a new way to classify routes in higher dimensional space and shows promising results for high-dimensional robots, such as articulated linkage robots. The findings of this research provide a comprehensive solution to motion planning problems and offer a new perspective on solving computational biology problems

    Optimal resource allocation method and fault-tolerant control for redundant robots

    Get PDF
    Resource coordination and allocation strategies are proposed to reduce the probability of failure by aiming at the problem that the robot cannot continue to work after joint failure. Firstly, the principal component analysis method under unsupervised branches in machine learning is used to analyze the reliability function and various indexes of the robot to obtain the comprehensive evaluation function. Then, based on the fault-tolerant-control inverse-kinematics optimal algorithm, each joint can be scheduled by weighted processing. Finally, the comprehensive evaluation function is used as an index to evaluate the probability of fault occurrence, and the weight is defined to realize the coordinated resource allocation of redundant robots. Taking the planar four revolute joints (4R) redundant robot as an example, the algorithm control is compared. Based on reasonable modeling and physical verification, the results show that the method of optimal resource coordination and allocation is effective.</p

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Optimization of a Reconfigurable Manipulator with Lockable Cylindrical Joints

    Get PDF
    This thesis presents a global optimization methodology to find the optimal Denavit-Hartenbeg parameters of a serial reconfigurable robotic manipulator maximizing a cost function over a pre-specified workspace volume and given lower and upper bounds on the design parameters. Several cost functions are investigated such as the manipulability measure, maximum force/torque capability of the manipulator at its end-effector, and maximum velocity capability of the manipulator, therefore improving the general kinetostatic performance of the manipulator. A modified global and posture-independent parameter of singularity (MPIPS) is presented, and a generic global optimization approach is proposed, using combined genetic algorithm (GA) and sequential quadratic programming (SQP). Different case studies are provided for a 3-DOF and a 6-DOF reconfigurable manipulator. Finally, a weighted objective function that balances between the opposing actions of the end effector velocity and force is proposed. The results are illustrated to demonstrate the performance of the generated manipulators, and are validated. Post-optimality analysis has also been conducted to investigate the sensitivity of the index to the variation in optimal parameters
    • …
    corecore