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Abstract. Resource coordination and allocation strategies are proposed to reduce the probability of failure by
aiming at the problem that the robot cannot continue to work after joint failure. Firstly, the principal component
analysis method under unsupervised branches in machine learning is used to analyze the reliability function and
various indexes of the robot to obtain the comprehensive evaluation function. Then, based on the fault-tolerant-
control inverse-kinematics optimal algorithm, each joint can be scheduled by weighted processing. Finally, the
comprehensive evaluation function is used as an index to evaluate the probability of fault occurrence, and the
weight is defined to realize the coordinated resource allocation of redundant robots. Taking the planar four revo-
lute joints (4R) redundant robot as an example, the algorithm control is compared. Based on reasonable modeling
and physical verification, the results show that the method of optimal resource coordination and allocation is ef-
fective.

1 Introduction

As the cross-discipline of robotics has flourished, it has be-
come a major player in the agricultural sector. However,
robot components can age over time or have sudden changes
in load, leading to robot failure, and according to robot main-
tenance staff, when robots fail, they are shut down for repair,
which undoubtedly increases time costs. In actual agricul-
tural production, some fruits have a very short picking cy-
cle, for example, cherries, which are picked in half a month,
and if they are not picked in time, they will cause economic
losses. It is common for crops with a short picking cycle to be
picked a little early and then ripened, but this method requires
good ventilation to avoid accumulating too much moisture
and mold, and the ripened fruit is not as good in taste and
flavor as tree-ripened fruit. In order to ensure that the robot
picks the fruit at the optimum time, it needs to be able to op-
erate even if it experiences a joint malfunction, avoiding fi-
nancial losses due to maintenance and missing the optimum
picking time. To meet these requirements, the robot must be
highly reliable and fault tolerant. Fault-tolerant operation re-
duces its downtime and can also be used to extend its service

life or to detect subsystem failures early and speed up the
repair process. Fault tolerance in redundant robots has there-
fore become a major focus of attention.

The most systematic and in-depth research on fault-
tolerant control of redundant robotic arms is conducted by
the group of Ahmad A. Almarkhi and Khaled M. Ben-
Gharbia and Anthony A. Maciejewski, whose research
ranges from fault-tolerant control of planar three-joint redun-
dant machines to fault-tolerant control of spatially redundant
robotic arms, proposing the design of optimal fault-tolerant
Jacobi matrices and maximizing the size of a self-moving
human face to improve the fault tolerance of the robot and
for optimal fault tolerance for different joint failure proba-
bilities. Many original contributions to the design of robot
kinematics have been made (Ben-Gharbia et al., 2014; Xie
and Maciejewski, 2017, 2018; Almarkhi and MacIejewski,
2019; Almarkhi et al., 2020). Abdi and Nahavandi (2012)
proposed the theory of optimal fault-tolerant configurations
using condition numbers as optimization terms. Many do-
mestic scholars have also researched fault-tolerant control of
redundant manipulators. Jing Zhao’s Beijing University of
Technology team has conducted in-depth research on this as-
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pect. They have proposed a series of control algorithms for
redundant robotic arms, flexible redundant robotic arms, and
robot coordination and verified the effectiveness of these al-
gorithms through experiments (Xie and Zhao, 2010a; Zhao
et al., 2014, 2012; Xie and Zhao, 2010b). Jia Qingxuan’s
Beijing University of Posts and Telecommunications team
has researched multi-joint and multi-type fault-tolerant con-
trol, global fault-tolerant trajectory optimization methods,
and joint velocity mutation suppression during force and/or
position fault tolerance and verified the accuracy of the algo-
rithms through examples. Changchun Liang from the Gen-
eral Design Department of Beijing Space Vehicles studied
the space robotic arm using a degenerate Jacobi-matrix-
based mutation suppression method and made control simu-
lations for three operating conditions: pre-failure, operation,
and post-failure suppression (Liang et al., 2016). Zhaohui
Zhu from the Beijing University of Technology analyzed the
seven rotating joints (7R) redundant robotic arm, from the
working space of fault-tolerant performance to the screen-
ing of fault-tolerant dislocations by comprehensive indica-
tors (Zhu, 2016). Yu Cao, Southeast University, conducted
a fault tolerance analysis of an anthropomorphic redundant
robot arm with joint bias and made a prototype for the algo-
rithm’s effectiveness (Cao, 2019). Yanhui Wei, Harbin Engi-
neering University, conducted a study on the fault tolerance
of reconfigurable-robot working configurations and verified
the effectiveness of the fault tolerance analysis method and
the feasibility of the fault tolerance control method through
example validation (Wei et al., 2010). Yu She, Harbin In-
stitute of Technology, conducted a study on the kinemat-
ics and control of a redundant robot with a single joint.
The kinematics and dynamics of a single-joint robot are re-
modeled, and the trajectory planning under single-joint fail-
ure is investigated (She, 2013), Bo Zhao of Jilin Univer-
sity conducts an active decentralized fault-tolerant control
method for reconfigurable robots with multiple concurrent
faults and conducts an in-depth study from the field of con-
trol (Zhao, 2014). Minghao Li of Southwest University of
Science and Technology adopts a deep reinforcement learn-
ing approach to fault-tolerant control of robotic arms and
does experiments to verify the algorithm’s effectiveness (Li,
2019; Li and Zhang, 2020). Nie Fu Jie of Changchun Univer-
sity of Technology conducted a decentralized optimal active
fault-tolerant control for reconfigurable robotic arms based
on an adaptive dynamic programming approach (Nie, 2021).
Bing Ma of Changchun University of Technology obtained
a decentralized near-optimal fault-tolerant controller with
an observation–compensation–evaluation network structure
(Ma, 2021).

From the above, it can be seen that, at present, most of the
research in the field of fault-tolerant control is directed to-
ward fault-tolerant control after a fault has occurred, such as
suppressing sudden changes in joint speed and suppressing
sudden changes in torque. Although the end position and end
speed are guaranteed not to change abruptly, the joint speed

will change abruptly, which leads to great instantaneous ac-
celeration of the joint and easy damage to the motor. Based
on a real-time control method for the optimal total perfor-
mance of a planar redundant robot (Rong et al., 2022), this
paper proposes a control method for optimal coordinated re-
source allocation of a redundant robot and is structured as
follows: this paper introduces the concept of coordinated re-
source allocation, derives a comprehensive evaluation func-
tion based on the robot indicators and reliability functions
through principal component analysis, and thus carries out
coordinated resource allocation control based on this com-
prehensive evaluation function. The core of the algorithm is
based on the comprehensive evaluation function for all track-
ing points in the trajectory. The comprehensive evaluation
function is used to define the weight of the joint that affects
the performance the most, to reduce the degree of impact on
the overall performance after the failure of the joint, to reduce
the sudden change in the angle of each joint when a failure
occurs, and to achieve a smooth transition between the speed
of the joint before the failure and the speed of the joint after
the failure.

2 Robot reliability curve

The most fundamental analytical methods in reliability stud-
ies are probability distributions, of which four are considered
to be useful in the study of the reliability and safety of robotic
systems, namely (i) exponential distribution, (ii) Rayleigh
distribution, (iii) Weibull distribution, and (iii) bathtub haz-
ard rate curve distribution (Dhillon, 2015). It has been shown
that the failure rate of most robots is a function of time, with
the most commonly used being the bathtub hazard rate curve.
The distribution is like the shape of a bathtub.

The bathtub hazard rate curve function equation is

λ(t)= θa(θt)a−1e(θt)a , (1)

where t is time, λ(t) is the hazard rate, a is the shape param-
eter, and θ is the scale parameter.

The hazard rate function can also be expressed as

λ(t)=
f (t)
R(t)

. (2)

R(t) is the general reliability function, and f (t) is the fault
density function.

The fault density function is related to the hazard rate func-
tion as follows:

f (t)=−
dR(t)

dt
. (3)

From the above equation, it can be deduced that

−λ(t)dt =−
1
R(t)
· dR(t). (4)
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By integrating both sides of the equation, we get the follow-
ing formula:

−

∫ t

0
λ(t)dt =

∫ R(t)

1

1
R(t)
· dR(t), (5)

where, when t = 0, R(t)= 1.

lnR(t)=−
∫ t

0
λ(t)dt (6)

Thus from the above equation, we have

R(t)= e−
∫ t

0λ(t)dt . (7)

Therefore, we can obtain the reliability function of the prob-
ability distribution of the failure time of the system. By sub-
stituting Eq. (2) into Eq. (7) for calculation, the reliability
function of the bath curve is

R(t)= e−
∫ t

0 {θa(θt)a−1e(θt)a
}dt
= e−{e

(θt)a
−1}. (8)

Equation (8) shows that the reliability of the robot decreases
when the robot uses the bathtub curve as a hazard function,
which is also in line with the actual production pattern. This
reliability function can therefore be used as an indicator to
analyze the robot’s performance.

3 Principal component analysis

Principal component analysis (PCA) is an important evalu-
ation method for quantitative calculations, which allows in-
stantaneous planar data to be replaced by a small number of
integrated variables with minimal loss of information from
the original data, making the data structure much simpler.
The data structure can be greatly simplified.

These attempts to integrate the reliability function and
multiple evaluation indicators of the robot using the PCA
method, from which a comprehensive evaluation function is
derived, provide the basis for an optimal control method for
the coordinated allocation of resources.

The principal component analysis method is divided into
two main aspects in this paper: firstly, the establishment of
a comprehensive evaluation index consisting of a reliability
function and the fusion of several evaluation indicators of
the robot, and secondly, the determination of the relevance of
every single indicator according to the correlation coefficient
matrix. The main steps are outlined below.

1. The data are standardized for all indicators to resolve
the original problem of inconsistencies in the data scale,
thus enabling standardized data for further evaluation.

Let the matrix of indicators be composed of m experi-
mental samples and n indicators.

X=


x11 x12

... x1n

x21 x22
... x2n

· · · · · ·
. . . · · ·

xm1 xm2
... xmn


m×n

(9)

The Z-score transform was used to normalize X. The
normalization equation is

Zij =
(
xij − xj

)/
Sj , (10)

xj =

m∑
i=1

xij
/
m S2

j =

m∑
i=1

(
xij − xj

)2/ (m− 1) . (11)

The normalization matrix is then obtained as follows:

Z= (zij )=


z11 z12 · · · z1n
z21 z22 · · · z2n
...

...
. . .

...

zm1 zm2 · · · zmn


m×n

. (12)

2. The correlation coefficient R is calculated. Since there
may be some correlation between single indicators,
making the data have some information overlap, apply-
ing the correlation coefficient matrix can fully reflect
the correlation between these indicators, which is also
the primary condition for dimensionality reduction. The
correlation coefficient matrix R is expressed as follows:

R=
1

n− 1
ZTZ, (13)

where R is a matrix of order n× n, and ZT is the trans-
pose matrix of the matrix Z.

3. The eigen roots and eigenvectors of the correlation co-
efficient matrix R are calculated. From the equation
|λE−R| = 0, n eigenvalues are obtained in ascending
order, λ1 ≥ λ2 ≥ . . .≥ λn ≥ λ0.

The eigenvector corresponding to the n eigen roots is
obtained from the system of equations |λE−R|X= 0
as

ZX=


ZX1
ZX2
...

ZXn

 , (14)

where ZXi corresponds to the eigenvalue λi unit and the
eigenvector ZXi = (ZX1i,ZX2i, · · ·,ZXni).
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4. The number of principal components is determined. In
this paper, the number of principal components of the
comprehensive evaluation indexes is determined by the
cumulative variance contribution of each index and the
reliability function, i.e., according to the proportion of
variance in relation to the total variance.

α =

p∑
i=1

λi

/ n∑
i=1

λi (15)

For research, a cumulative contribution rate of 50 % is
acceptable, and more than 70 % can be used as the stan-
dard for practical application. However, in order to be
more relevant, α ≥ 85 % is usually taken to select the
number of p as the main component.

5. We can get the expression for the principal component
Fi(i = 1,2, . . .,p) as follows:

Fi = Z×ZXi

=


z11ZX1i + z12ZX2i + ·· ·+ z1nZXni
z21ZX1i + z22ZX2i + ·· ·+ z2nZXni

...

zm1ZX1i + zm2ZX2i + ·· ·+ zmnZXni

 . (16)

6. The comprehensive evaluation function is determined.

F =
λ1

λ1+ λ2+ . . .λp
F1

+
λ1

λ1+ λ2+ . . .λp
F2

+ . . .+
λp

λ1+ λ2+ . . .λp
Fp (17)

4 Robotic-arm indicators

Commonly used single performance indicators for robotic
arms consist of kinematic condition number (x1) (Klein and
Blaho, 1987), kinematic maneuverability (x2) (Yoshikawa,
1985), isotropic indicators (x3) (Mayorga et al., 2005), other
indicators (x4) (Xie and Zhao, 2010a), and reliability (x5)
(Dhillon, 2015). Specific information on each single perfor-
mance indicator is given in Table 1.

5 Optimal-redundancy inverse-solution algorithm
under fault-tolerant control

Let us assume we have a redundant robot with n degrees of
freedom and m absolute end motion parameters and a robot
redundancy of r = n−m. When a joint of the robot fails and
locks, the original robot motion will change to that of the
degraded robot, and as that joint fails and locks, the structure
of the Jacobi matrix will change, and the velocities of the
remaining joints will be redistributed. This will result in a

difference between the velocity of the original robot arm joint
and the velocity of the degraded robot arm joint. Therefore,
we define it as the robot joint velocity jump (JVJ), and the
mathematical expression is as follows:

iλj =

∣∣∣i θ̇ j − θ̇ j ∣∣∣ , (18)

s.t. j 6= i, (19)

If i< j, let i θ̇ j = i θ̇ j−1, (20)

where iλj is the vector of sudden changes in velocity for each
of the remaining joints of the robot after a failure of any one
during the entire operation. θ̇ j is the velocity vector of each
joint of the original robot. i θ̇ j is the velocity vector for each
joint of the degraded robot.

In the above formula, the variable of angular velocity sub-
script j ranges from 1 to n, and the variable j represents
which robot joint it belongs to; the superscript i indicates the
faulty joint, and the meaning of Eq. (19) excludes the faulty
joint vector from the velocity vector of each joint of the robot
after degradation when the i joint fails.

For the jumping of robot joint speed, its essence is that
the structure of the Jacobian matrix in the normal working
environment is different from that in the fault environment,
which leads to the jumping of robot joint speed. Although
the end position of the robot does not change, the speed of
the robot joint will also jump. Therefore, just avoiding the
singularity of the Jacobian matrix after robot failure cannot
really reduce the speed jump of robot locking joints.

In this paper, the robot joint failure is defined as the
locking-joint failure so the redundant robot will face the fol-
lowing three problems when carrying out the fault-tolerant
operation: (1) maintaining the maximum operability of the
robot to ensure that, when the robot joint fails, it will try to
avoid the singular position; (2) ensuring that the task is as
close to the center as possible to ensure that the robot end
effector can always carry out work tasks in the fault-tolerant
workspace; (3) when the robot joint fails to lock, the joint
speed jump should be reduced as much as possible – that is,
the speed change before and after the failure should be re-
duced as much as possible. From the above three problems,
we can express motion planning as optimizing the joint speed
of the robot and ensuring that the square of the speed jump is
minimized; the formula can be expressed as follows:

Min Z = 1
2

(
i θ̇ − θ̇ ′

)T (i θ̇ − θ̇ ′) θ̇ < θ̇max
Subject to Ẋ= iJi θ̇ .

(21)

We establish a new objective function, which we need to
transform constrained optimization into unconstrained opti-
mization; thus, we need to introduce Lagrange multiplier K
as follows:

Min Z′ =
1
2

(
i θ̇ − θ̇ ′

)T (
i θ̇ − θ̇ ′

)
+ λT

(
Ẋ− iJi θ̇

)
. (22)
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Table 1. Common performance indicators.

Indicators Analytical formula Physical significance Value requirements

x1 k(J)= σ1
σ2

Homogeneity of the transformation The smaller the number of conditions, the better
of the Jacobi transformation the flexibility of the robot’s motion;
matrix in all directions when the minimum value of 1 is taken, the robot

is isotropic, and when it is infinite,
the robot is in odd dislocation.

x2 ω =

√
det(JJT ) The ability of the robot to move The ability of the robot to move in all directions

in all directions – measures – measures the overall flexibility of the robot.
the overall flexibility The larger the maneuverability degree, the better
of the robot the robot’s motion flexibility, and when ω = 0,

the robot is in singular dislocation.

x3 1= M
ψ =

m
√

det(JJT )
trace(JJT )

m

Anisotropy as a measure Anisotropy as a measure of operability ellipsoid 1≤ 1

=
m
√
λ1λ2...λm

λ1+λ2 ...+λm
m

of operability ellipsoid 1 The larger the robot, the better the flexibility.

x4 1′ = M
λ1
=

m
√

det(JJT )
λ1

Anisotropy as a measure 1′ ≤ 1, 1′ The larger the robot,

=
m
√
λ1λ2···λm
λ1

of operability ellipsoid the better the flexibility.

x5 R(t)= e−{e
(θt)a
−1} Reliability is used to measure The larger the R(t), the more reliable the robot.

how reliable a robot is.

Note: λm is the eigenvalue of the matrix JJT .

To minimize Z′, the following two prerequisites must be met:
∂Z′
∂ i θ̇
=
(
i θ̇ − θ̇ ′

)
−
iJT λ= 0,

∂Z′

∂λ
= Ẋ− iJi θ̇ = 0.

(23)

From the first equation of Eq. (23), it follows that

i θ̇ = θ̇ ′+ iJT λ. (24)

Substituting Eq. (24) into the second Eq. (23) leads to deriva-
tion.

λ=
(
iJiJT

)−1(
Ẋ− iJi θ̇ ′

)
(25)

Substitute λ into Eq. (24).

i θ̇ = iJ+Ẋ+
(

I− iJ+iJ
)
θ̇ ′ (26)

This Ẋ ∈ Rm×1 is the terminal velocity vector of the
robot, iJ ∈ Rm×(n−1) is the degenerate Jacobi matrix iJ+ =
iJT

(
iJiJT

)−1
∈ R(n−1)×m, MP is the Moore–Penrose gener-

alized inverse matrix of the degenerate Jacobi matrix formed
by adding two conditions to the reflexive generalized inverse
matrix, I ∈ R(n−1)×(n−1) is the unit matrix, and θ̇ ′ ∈ R(n−1)×1

is the velocity vector of other healthy joints except for the
faulty joint after the robot fault.

From Eq. (26), we can get that the optimal joint speed of
the robot after a joint failure of the robot can also be ex-
pressed by the gradient projection method, which includes
the general solution and the special solution, that is (I−
iJ+iJ)θ̇ ′ and iJ+Ẋ; from the knowledge of matrix theory, the
general solution does not affect the result of the expression
so iJ+Ẋ will not affect the final result of the equation, and
iJ+Ẋ is the zero space of the redundant robot; how to opti-
mize the joint speed of the robot depends on the projection
of joint speed on the zero space of the redundant robot after
the failure of the robot. In general,

θ̇ ′ =Wθ̇ , (27)

where W =
[
wij

]
∈ R(n−1)×n if i = j or i = j − 1, wij = 0,

or else wij = 1. θ̇ is the original manipulator joint velocity
vector. Therefore, we can determine the following formula
according to the gradient projection method:

θ̇ = J+Ẋ+ λ ·
(
I− J+J

)
·∇H . (28)

In Eq. (28), the gradient vector ∇H is the fault tolerance in-
dicator H , and the coefficient λ is a real scalar constant. The
larger the coefficient λ, the faster the optimizationH , but this
can also lead to instability in the overall robotic-arm control
system. Here, using the reduced-operability performance as
a fault tolerance indicator, we get the following:

H =
(

det
(
iJiJT

))2
. (29)
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The first term of Eq. (28) is a special case in which the speed
of each joint is the optimal solution of instantaneous speed
when there is no robot joint failure; thus, the speed vector of
each joint can be expressed as

θ̇ ′ = iJT
(

JJT
)−1

Ẋ. (30)

As a result,

iJ+iJiJT
(

JJT
)−1
=
iJT

(
iJiJT

)−1 (
iJiJT

)(
JJT

)−1

=
iJT

(
JJT

)−1
. (31)

Substituting Eq. (30) into the second term in Eq. (26) gives(
I− iJ+iJ

)
θ̇ ′ = 0. (32)

Through this equation, we know that, when a joint of the
robot fails, the instantaneous optimal velocity vector of the
remaining healthy joints is projected to the zero space of the
degenerate robot as a zero vector. Therefore, we can draw a
conclusion that, when the robot uses the algorithm of optimal
instantaneous speed to move, if you want to reduce the muta-
tion of the robot joint, the optimal joint speed after degrada-
tion should be its minimum norm solution. This method does
not assume the robot’s structure, size, and redundancy; thus,
this algorithm has a certain universality.

6 Modeling of indicators based on a comprehensive
evaluation function

Most of the current research has focused on fault-tolerant
control after a robot joint has failed, and many algorithms
have been proposed, such as suppression of velocity surges
and post-fault fault tolerance based on neural network meth-
ods. However, few studies have investigated a real-time re-
source coordination allocation strategy for a certain robot ex-
ecuting a certain trajectory. In this paper, based on the exten-
sive literature, we propose a comprehensive evaluation of the
robot based on a reliability function derived mathematically
from a hazard function combined with the robot’s perfor-
mance metrics using a principal component analysis (PCA)
method under the unsupervised-algorithm branch of machine
learning algorithms.

The principal component analysis method described above
is used here to analyze the indicators corresponding to all
state points in this task state, from which the principal com-
ponents and the total evaluation function are analyzed.

6.1 Interpolation point performance indicator data

As shown in Table 2, the robot arm tracking trajectory is in-
terpolated into 10 interpolation points, each with its corre-
sponding performance index.

Table 2. Performance index data of each interpolation point.

Sample x1 x2 x3 x4 x5

1 1.8858 1.3287 0.8278 2.6544 1
2 2.0365 1.3934 0.7913 2.6157 0.6894
3 2.2103 1.4574 0.7511 2.5678 0.5689
4 2.3891 1.5135 0.7123 2.5169 0.4822
5 2.5873 1.5625 0.6725 2.4575 0.4139
6 2.7908 1.6009 0.6351 2.3950 0.3577
7 3.0291 1.6314 0.5954 2.3208 0.3105
8 3.2918 1.6509 0.5562 2.2394 0.2702
9 3.589 1.6578 0.5171 2.1492 0.2355
10 3.9304 1.6504 0.4779 2.0492 0.2055

Table 3. Standardized performance index data of the manipulator.

Sample x1 x2 x3 x4 x5

1 −1.305 −1.837 1.475 1.264 2.227
2 −1.084 −1.287 1.166 1.075 0.961
3 −0.828 −0.743 0.826 0.839 0.471
4 −0.566 −0.265 0.497 0.590 0.118
5 −0.274 0.152 0.159 0.298 −0.161
6 0.025 0.478 −0.157 −0.008 −0.389
7 0.375 0.738 −0.494 −0.372 −0.582
8 0.761 0.903 −0.825 −0.771 −0.746
9 1.198 0.962 −1.157 −1.213 −0.887
10 1.699 0.899 −1.489 −1.703 −1.009

6.2 Data standardization

The four-sport flexibility indicators x1, x2, x3, and x4 and the
reliability function data x5 were normalized from the equa-
tions of the above principal component analysis method for
the 10 interpolation points. See Table 3 for normalization re-
sults.

6.3 Calculating the correlation coefficient matrix R

From the above principal component analysis method equa-
tions, the correlation coefficient matrix R can be calculated
for the four-sport flexibility indicators data (x1, x2, x3, and
x4) and the reliability function data (x5). See Table 4 for the
results.

6.4 Determination of principal components

From Table 5, the cumulative variance contribution of the
first principal component is 95.223 %, which is greater than
85 %, indicating that the first principal component responds
to 95.223 % of the information we get from the original vari-
able and basically reflects the information contained in all
indicators. So the principal component is 1.
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Table 4. Correlation coefficient matrix R of mechanical-arm per-
formance indicators.

x1 x2 x3 x4 x5

x1 −1.3051 −1.8373 1.4755 1.2641 2.2268
x2 −1.0836 −1.2869 1.1661 1.0745 0.9615
x3 −0.8283 −0.7426 0.8256 0.8394 0.4708
x4 −0.5656 −0.2653 0.4971 0.5901 0.1175
x5 −0.2743 0.1517 0.1598 0.2985 −0.161

Table 5. Characteristic values, principal component contribution
rate, and cumulative contribution rate.

Ingredients Eigenvalue Contribution Cumulative
rate (%) contribution

(%)

1 4.761 95.22 95.223
2 0.217 4.33 99.553
3 0.022 0.446 99.999
4 3.9× 10−5 0.001 100.000
5 9.9× 10−9 2× 10−7 100.000

6.5 Determination of the integrated evaluation function

From the loadings of each indicator in Table 6, x1, x2, x3,
x4, and x5 all have high loadings on the first principal com-
ponent. This means that the first principal component repre-
sents most of the five indicators’ information. The original
five variables can be replaced by one principal component
variable. The first principal component represents a com-
prehensive evaluation indicator that combines the reliability
function derived from the failure rate function of the predic-
tion model and each indicator of the robotic arm.

As can be seen from Fig. 1, the first principal compo-
nent accounts for the largest proportion eigenvectors are ob-
tained by dividing the data of the factor-loading matrix by
the square root of its corresponding eigen root. Using the
equation for principal component analysis, we multiply the
resulting eigenvectors with the normalized data to obtain the
principal component expression.

F=−0.4496x1− 0.4450x2+ 0.4564x3+ 0.4478x4

+ 0.4372x5 (33)

This is a comprehensive evaluation function.

7 Sudden-speed-change suppression at the
moment of failure based on coordinated resource
allocation

In order to ensure that the end effector can complete its ex-
pected tasks after the mechanical arm fails, this paper uses
the value of the integrated evaluation function as a criterion.
According to the analysis, the larger the value, the better the

Table 6. Factor load matrix.

Factor Load

x1 −0.981
x2 −0.971
x3 0.996
x4 0.977
x5 0.954

Figure 1. Gravel figure.

performance and the smaller the impact on the overall perfor-
mance when the fault occurs; conversely, the worse the per-
formance, the greater the impact on the overall performance
when the fault occurs.

The derivation is as follows: the Jacobi matrix is a linear
transformation of the mapping of the joint space velocity q̇
to the operation space velocity ẋ (end velocity). The relation-
ship between these two variables is

ẋ= Jq̇. (34)

Define j̇k as the kth of the space of the robotic arm in terms
of the Jacobi matrix J column.

J=
[
j̇1, . . ., j̇k−1, j̇k, j̇k+1, . . ., j̇n

]
(35)

Each column in the equation represents the contribution of
the joint speed to the end speed.

The results are weighted on the basis of the optimal
inverse-solution algorithm under fault-tolerant control in
Sect. 4 to facilitate the allocation of individual rod speeds
in the context of a coordinated resource allocation strategy.
Namely,

J+ =W−1JT
(

JW−1JT
)−1

, (36)
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where W is the diagonal matrix.

diag(W )=



w1 0 0 0 0 0 0 0
0 w2 0 0 0 0 0 0

0 0
. . . 0 0 0 0 0

0 0 0 wk−1 0 0 0 0
0 0 0 0 wk 0 0 0
0 0 0 0 0 wk+1 0 0

0 0 0 0 0 0
. . . 0

0 0 0 0 0 0 0 wn


(37)

The resulting joint speed of the redundant robot can be ex-
pressed as follows:

q̇= J+ẋ, (38)

where the full rank case (q)+ will satisfy the following condi-
tion so that the minimum parametric solution (q)+ẋ can also
be obtained, and the solution is orthogonal to the zero space
N(J).

JJ+J= J

J+JJ+ = J+(
J+J

)T
= J+J(

JJ+
)
= JJ+

(39)

We expanded J+ to

J+ =



J1 · (w1 · δ)−1

J2 · (w2 · δ)−1

...

Jk−1 · (wk−1 · δ)−1

Jk · (wk · δ)−1

Jk+1 · (wk+1 · δ)−1

...

Jn · (wn · δ)−1

,


(40)

where δ is

δ =

n∑
i=1

(
J 2
i ·w

−1
i

)
. (41)

From the above equation, we can see that the elements J+
are closely related to the elements diag(W ). If we want to
reduce the speed of this joint, we need to increase the corre-
sponding wk to find the joint that has the greatest impact on
the performance of the robot system after the failure and then
adjust the joint. The larger the F value, the more reliable the
wk and the lower the speed suppression of the joint with the
greatest impact on the performance of the robot system, and
conversely, the larger wk is, the higher the speed suppression
of the joint with the greatest impact on the performance of
the robot system. This principle is applied in combination
with a comprehensive evaluation function to control the arm
in order to reduce the probability of failure and to reduce the
overall performance impact if a failure occurs. The algorithm
has a certain universality.

The analysis process is shown in Fig. 2.

Table 7. D–H link parameters of 4R redundant robot.

Joint i αi ai di θi Range of variables
(◦) (mm) (mm) (◦) (◦)

1 0 L1 0 θ1 −180 to 180
2 0 L2 0 θ2 −150 to 150
3 0 L3 0 θ3 −150 to 150
4 0 L4 0 θ4 −150 to 150

αi : connecting-rod turning angles; ai : connecting-rod length;
di : connecting-rod deflection distance; θi : joint angle.

8 Experimental validation

Joint performance in the event of failure without a
coordinated resource allocation strategy

This paper validates the resource coordination allocation al-
gorithm on a previously studied redundancy-degree robot ob-
ject based on the concept of centralized drive arrangement.
The model is shown in Fig. 3.

In the Cartesian coordinate system, each linkage is defined
according to theD–H parameter method for the robot shown
in Fig. 3, and the parameters of each linkage are set. The
definition of each joint of the robot arm, as shown in Fig. 4,
shows how the four links are connected in series and the rules
for defining the coordinate system.

The D–H parameters for the planar 4R redundant robot
are shown in Table 7.

In this paper, the main research of joint failure after the
stuck fault forms. The optimal algorithm in Sect. 7 is used
to control the arm, tracking a straight line, assuming that the
fault is accurately detected and that the fault occurs in 5 s.
The simulation results are shown below.

No failures. It can be seen from Figs. 5 and 6 that, when
the joint is in a healthy state, the angle change and velocity
of each joint are relatively stable without mutation, and these
data can be used as the control data.

Failure of joint 1. When joint 1 fails, the specific anal-
ysis is as follows: from Fig. 7, it can be seen that, at the
fifth second, joint 1 will remain at 83◦ and will not change.
This is because the joint is stuck after the failure at this mo-
ment, resulting in the angle of joint 1 not changing. It can be
seen from Fig. 8 that, at the fifth second, the speed of each
joint has a sudden-change value. The speed of joint 1 directly
changes from −0.012 to 0 rad s−1, and the sudden-change
value is 0.012; the speed of joint 2 changes from −0.011
to −0.03 rad s−1, and the sudden-change value is 0.019; the
speed of joint 3 changes from 0.031 to 0.024 rad s−1.

Failure of joint 2. When joint 2 fails, the specific analysis
is as follows: from Fig. 9, it can be seen that, at the fifth sec-
ond, joint 2 will remain at 82◦ and will not change because
the joint is stuck after the failure at this moment, resulting in
the angle of joint 2 not changing. It can be seen from Fig. 10
that, at the fifth second, the speed of each joint has a sudden-
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Figure 2. Flow chart of suppression algorithm based on fault pre-
diction model.

Figure 3. Three-dimensional diagram of 4R redundant robot:
1. servo motor, 2. planetary reducer, 3. axis I, 4. rod I, 5. axis II,
6. rod II, 7. axis III, 8. rod III, 9. axis IV, 10. rod IV, 11. small
pulley, 12. large pulley, 13. long timing belt, 14. motor-connecting
plate, 15. short timing belt, 16. stiffener, 17. wallboard.

Figure 4. D–H coordinate system for planar 4R redundant robot.

change value. The speed of joint 1 has changed from−0.008
to−0.016 rad s−1, and the sudden-change value is 0.008; the
speed of joint 2 has changed from −0.007 to 0 rad s−1, and
the sudden-change value is 0.007; the speed of joint 3 has
changed from 0.032 to 0.031 rad s−1, and the sudden-change
value is 0.001; the speed of joint 4 has changed from 0.039 to
0.041 rad s−1, and the sudden-change value is 0.002. The to-
tal sudden-change variable is 0.018, which can be seen from
the data. When joint 2 fails, the overall sudden change is not
very large, but relatively speaking, it has a greater impact on
joint 1 than on other joints.

Failure of joint 3. When joint 3 fails, the specific analysis
is as follows: from Fig. 11, it can be seen that, at the fifth
second, joint 3 will remain at−79◦ and will not change. This
is because the joint is stuck after the failure at this moment,
resulting in the angle of joint 3 not changing. Joint 4’s fi-
nal angle changes greatly. When no failure occurs, the angle
is −52◦, and the current angle is −38◦. It can be seen from
Fig. 12 that, at the fifth second, the speed of each joint has a
sudden-change value. The speed of joint 1 has changed from
−0.011 to −0.001 rad s−1, and the sudden-change value is
0.01; the speed of joint 2 has changed from −0.011 to
−0.008 rad s−1, and the sudden-change value is 0.003; the
speed of joint 3 has changed from 0.031 to 0 rad s−1, and
the sudden-change value is 0.031; the speed of joint 4 has
changed from 0.039 to 0.068 rad s−1, and the sudden change
value is 0.029. The total sudden-change value is 0.073, which
can be seen from the data. When joint 3 fails, the overall sud-
den variable is relatively large, and the impact on joint 4 is
greater than that on other joints.

Failure of joint 4. When joint 4 fails, the specific anal-
ysis is as follows: from Fig. 13, it can be seen that, at the
fifth second, joint 4 will remain at−76◦ and will not change.
This is because the joint is stuck after the failure at this mo-
ment, resulting in the angle of joint 4 not changing anymore.
The rearmost angle of joints 2 and 3 will change, but joint 3
will change a little more. It can be seen from Fig. 14 that,
at the fifth second, the speed of each joint has a sudden-
change value. The speed of joint 1 changes from −0.011 to
−0.023 rad s−1, and the sudden-change value is 0.012; the
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Figure 5. Diagram of joint angle changes without failure.

Figure 6. Diagram of joint velocity variation without failure.

Figure 7. Diagram of angle changes of each joint when joint 1 fails.

Figure 8. Abrupt changes in the velocity of each joint during the
failure of joint 1.

Figure 9. Diagram of angle changes of each joint when joint 2 fails.

Figure 10. Abrupt changes in the velocity of each joint during the
failure of joint 2.
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Figure 11. Diagram of angle changes of joints when joint 3 fails.

Figure 12. Abrupt changes in the velocity of each joint during the
failure of joint 3.

speed of joint 2 changes from −0.011 to −0.023 rad s−1,
and the sudden-change value is 0.012; the speed of joint 3
changes from 0.032 to 0.072 rad s−1, and the sudden-change
value is 0.06; joint 4 changes from 0.039 to 0 rad s−1, and the
sudden change value is 0.029. The total sudden-change value
is 0.113, which can be seen from the data. When joint 4 fails,
the overall sudden variable is relatively large, and the impact
on joint 3 is greater than that on other joints.

The data from the moment before and the moment after
the moment of failure were calculated to collate the data in
Table 8.

The analysis in Table 8 shows that the overall performance
is most affected by a failure in joint 4; thus, the resource co-
ordination allocation algorithm is controlled for joint 4.

9 Adopting a coordinated resource allocation
strategy for joint performance in case of failure

From Sect. 8.1, it is clear that a failure of joint 4 has the
greatest impact on overall performance; thus, the method in
Sect. 6 is used to control joint 4. The graph below shows the

Figure 13. Diagram of angle changes of joints when joint 4 fails.

Figure 14. Abrupt changes in the velocity of each joint during the
failure of joint 4.

change in speed and angle of each joint following a failure of
joint four after control using the coordinated resource alloca-
tion strategy.

According to Fig. 15, it can be seen that the velocity of
joint 4 had reduced to approximately near zero before the 5 s
failure moment occurred. As can be seen from Fig 16, the
angular fluctuation is negligible; thus, the sudden change in
joint velocity after the failure occurred was minimal and had
very little effect on the robot trajectory tracking. It can be
seen that there is almost no mutation in joint 1 at the time of
failure. The mutation value of joint 2 is 0.003, that of joint 3
is 0.005, that of joint 4 is 0.004, and the total mutation value
is 0.012, which greatly reduces the impact of joint failure on
the overall performance. Figures 18 and 20 show the physical
verification images of the tracking-line trajectory. The mor-
phology diagram shows that the attitude of the fourth joint
was mediated before the failure occurred, as can be seen in
the completely different attitude of the tracking-line simula-
tion diagrams in Figs. 17 and 19.

Since our main concern is the fault-tolerant control strat-
egy after the fault occurs, which is to ensure the minimum
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Table 8. Index data affecting the performance of different joint fail-
ures.

Type Moment of failure Moment of failure
Total value of Total value of sudden

angular mutation change in angular
(◦) velocity (rad s−1)

Joint 1 failure 0.0971 0.0423
Joint 2 failure 0.0921 0.0246
Joint 3 failure 0.0810 0.0725
Joint 4 failure 0.1171 0.0981

Figure 15. The velocity changes of each joint after the failure of
joint 4 under the prediction model.

instantaneous impact of the equipment failure and to ensure
the stability of the job processing, we assume that the mode
failure will occur at a certain time so we did not predict the
fault in advance in the study. We will study robot failure pre-
diction in future research work.

10 Conclusions

The main innovation of this paper is to integrate the bath-
tub hazard rate curve with various performance indicators of
the robot; to propose the obtainment of the comprehensive
evaluation function through the principal component anal-
ysis method; and to take the function as the mathematical
model of resource coordination allocation strategy, to take
the planar redundant robot as the research object based on
the inverse kinematics of the fault-tolerant control of the op-
timal redundancy, and to realize the adjustment of the rod
that has the greatest impact on the performance after failure.
This reduces the probability of failure and the impact on the
overall performance after a fault occurs. Through the above
theoretical derivation and verification of simulation results
and experimental results, the following conclusions can be
drawn:

1. The sudden change in angle after the failure of each
joint shows that the sudden change in the speed of the

Figure 16. The angle changes of each joint when joint 4 fails under
the prediction model.

Figure 17. End tracking-status diagram without failure.

joints close to the failed joint is greater than that of the
joints far from the failed joint; i.e., the performance of
the joints close to the failed joint is more affected after
a failure.

2. It can be seen from the simulation verification in
Figs. 17 and 19 and the physical verification in Figs. 18
and 20 that the fault-tolerant control method based on
coordinated resource allocation can ensure that the end
trajectory coincides with the target trajectory after a fail-
ure.

3. A comparison of Figs. 14 and 15 shows that the fault-
tolerant control method based on coordinated resource
allocation can effectively reduce the impact on the over-
all performance after a failure.

4. A synthesis of the figures in the text shows that the fault-
tolerant control method based on the coordinated allo-
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Figure 18. State diagram of redundant robot after 1–9 s each time
a fault occurs.

Figure 19. Terminal tracking-trajectory-state diagram when joint 4
fails.

cation of resources can ensure that the sudden change in
joint speed is greatly reduced without a sudden change
in end speed at the moment of failure.

This method can reduce the impact on the overall perfor-
mance of the robot after joint failure to a certain extent, but

Figure 20. State diagram of redundant robot after 1–9 s each time
joint 4 fails.

there are still a few mutations in the final result. Therefore,
more appropriate fault prediction functions and more feed-
back data are needed to further optimize the coordinated al-
location of resources among the robot joints.
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