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ABSTRACT 

 

 

Optimization of a Reconfigurable Manipulator with Lockable Cylindrical Joints 

Gabriel Zeinoun 

 

This thesis presents a global optimization methodology to find the optimal Denavit-

Hartenbeg parameters of a serial reconfigurable robotic manipulator maximizing a cost 

function over a pre-specified workspace volume and given lower and upper bounds on 

the design parameters. Several cost functions are investigated such as the manipulability 

measure, maximum force/torque capability of the manipulator at its end-effector, and 

maximum velocity capability of the manipulator, therefore improving the general 

kinetostatic performance of the manipulator. A modified global and posture-independent 

parameter of singularity (MPIPS) is presented, and a generic global optimization 

approach is proposed, using combined genetic algorithm (GA) and sequential quadratic 

programming (SQP). Different case studies are provided for a 3-DOF and a 6-DOF 

reconfigurable manipulator. Finally, a weighted objective function that balances between 

the opposing actions of the end effector velocity and force is proposed. The results are 

illustrated to demonstrate the performance of the generated manipulators, and are 

validated. Post-optimality analysis has also been conducted to investigate the sensitivity 

of the index to the variation in optimal parameters.  

 

Keywords: Global optimization, manipulability, isotropy, kinetostatic performance, 

parameter of singularity. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motive and Problem Statement 

Robotic manipulators are generally required to be versatile when performing tasks 

in extreme environments, and they are often desired to reconfigure themselves in order to 

satisfy the constraints of different environments (Castano, Behar, & Will, 2002), (Farritor, 

Dubowsky, Rutman, & Cole, 1996), (Aghili & Parsa, 2009). Specifically in space 

applications, it is efficient to employ a single robot that can perform different tasks such 

as assembly, inspection, and pick and place operations (Farritor, Dubowsky, Rutman, & 

Cole, 1996). In general, the optimal operation of each of these tasks demands a specific 

manipulator design. For instance, robots with a low condition number are suitable for 

tasks requiring high accuracy (Merlet, 2006a), and robots with maximum manipulability 

measure are appropriate for dexterous tasks (Merlet, 2006b). Also, some tasks demand 

large forces at the end effector, while others require high velocity.  

The concept of reconfigurable robots to add versatility to the robot was presented 

in (Paredis & Khosla, 1993), reconfigurable manipulators for space applications in 

(Farritor, Dubowsky, Rutman, & Cole, 1996) and (Shibata & Ohkami, 2002), and 

reconfigurable manipulators that can take different shapes in (Castano, Behar, & Will, 

2002). A reconfigurable manipulator with lockable passive cylindrical joints was also 

introduced in (Aghili & Parsa, 2009). The latter, which is our manipulator type of interest, 

is illustrated in Figure 1.1. This kind of robotic arm is able to reconfigure its kinematic 
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design parameters, i.e., the Denavit-Hartenberg (DH) parameters, by forming a closed 

kinematic chain with a fixed point, unlocking the required passive joints, and achieving 

the desired parameters.  Upon converging to these values, the brakes are locked again, 

and a new configuration is born. A detailed study on the mechanism, singularity analysis, 

and kinematics and control during reconfiguration, can be found in (Aghili & Parsa, 

2009).  

 

 

 

 

 

 

 

Figure 1.1 Simplified model of a robotic arm during reconfiguration. (a) Initial 

configuration. (b) Grasping fixed point to form a closed kinematic chain and constrain x-

y-z motion. (c)-(e) Releasing brake, reconfiguring, and then relocking first passive 

cylindrical joint. (f)-(g) Releasing brake, reconfiguring, and then relocking second 

passive joint. (h) Final configuration is attained. (Aghili & Parsa, 2009)  

 

Clearly, prior to performing each type of task, it is essential to determine the ideal 

kinematic design parameters that satisfy the performance criteria of the robot. Finding 

these values, which can be achieved by an optimization methodology, is the main motive 

of this study, where this methodology will generate the ideal robot configuration that 

maximizes its performance criteria in the desired workspace. Evidently, the robot then 

reconfigures to the new configuration and operates as required. The problem can 

therefore be stated as follows: 
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Find the optimal Denavit-Hartenberg parameters of a serial robotic manipulator 

subject to lower and upper bounds, to maximize the (1) manipulability index within a 

pre-specified workspace volume, (2) Euclidean norm of the end-effector (EE) force and 

torque given the constraint of actuator torque in the manipulator joints, while maintaining 

a uniform joint torque distribution within a pre-specified workspace volume, and (3) 

Euclidean norm of the EE linear and angular velocity given the constraint of actuator rate 

in the manipulator joints, while maintaining a uniform joint rate distribution within a pre-

specified workspace volume. 

1.2 Literature Review 

Here a pertinent literature review concerned with optimization of serial 

reconfigurable robotic manipulator has been presented.  

The optimization of a robot workspace over its link lengths, as the design 

parameters, is reported in (Kumar & Waldron, 1981) and (Gupta & Roth, 1982), while 

optimization of kinematic parameters and criteria for fault tolerance are discussed in (Jing 

& Yi, 2007) and (Abdi & Nahavandi, 2012). Design of serial manipulators that satisfied 

certain kinematic specifications with obstacle avoidance was presented in (Paredis & 

Khosla, 1993), while Snyman and Van Tonder discussed link length design to minimize 

average torque requirement (Snyman & Van Tonder, 1999). Serial manipulator design for 

optimal dynamic performance was shown in (Shiller & Sundar, 1991), whereas (Zhang, 

Liu, & Ding, 2012) and (Krefft & Hesselbach, 2006) proposed a dynamic optimization 

method for parallel manipulators. Multi-objective optimization for different criteria was 

discussed in (Carbone, Ottaviano, & Ceccarelli, 2008) and (Barissi & Taghirad, 2008). For 

instance, the former examined a brief study that comprised of position and orientation 
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workspace optimization, singularity avoidance, optimal path planning and travelling time, 

stiffness criterion, lightweight design, and power consumption. Optimal design of 

medical robots for minimally invasive surgery with multiple objectives was also 

discussed in (Konietschke, Ortmaier, Weiss, Engelke, & Hirzinger, 2003) and (Du, 

Zhang, & Zou, 2007).  

 Huo and Baron (Huo & Baron, 2008) used joint limits and their proposed 

parameter of singularity (which will be later discussed in detail) to optimize the joint space 

trajectory of a six-rotation-axis (6-DOF) industrial robot to avoid singularity. In their 

optimization methodology, they decomposed the desired instantaneous end effector twist 

(electrode) into two orthogonal components, the relevant task subspace and the redundant 

task subspace. The projection matrices are then task-dependent and vary with the 

instantaneous geometry of the task at hand (Huo & Baron, 2008) (Zargarbashi, Khan, & 

Angeles, 2012). 

Genetic algorithms were employed for synthesizing and globally optimizing robot 

configurations in (Kim & Khosla, 1993), (Leger, 1999), and (Khatami & Sassani, 2002). 

The latter considered the measure of isotropy as a performance index to design the 

manipulator. On the other hand, Sobh and Toundykov (Sobh & Toundykov, 2004), and 

Bagchi (Bagchi, 2007), utilized local methods by optimizing manipulator configurations 

that maximized the measure of manipulability using the steepest descent method and 

sequential quadratic programming, respectively. Sobh and Toundykov’s approach was 

task-based, where the robot was optimized for a pre-specified task (trajectory). They 

solved for the inverse kinematics by including the joint angles in the objective function, 

and performed an optimization that minimized the distance between the EE and the 
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desired points in the trajectory, as well as generated the optimal design parameters. 

Bagchi followed a similar method for determining the inverse kinematic solution.  

A design strategy with constraint satisfaction, using the interval-based algorithm 

was used in (Oetomo, Daney, & Merlet, 2009), and a task-based design of serial robot 

manipulators with trajectory planning was employed using direct search non-gradient 

optimization in (Al-Dois, Jha, & Mishra, 2013).  

1.3 Problem Approach 

The optimization techniques mentioned above mainly rely on a single or limited 

optimality criteria, and also in many cases the employed numerical methods are only 

locally convergent. Therefore there is a need to develop a global optimization strategy 

that incorporates multiple optimality criteria, allowing the designer to optimize the robot 

such that it performs best in different situations. 

Considering this, this thesis presents a formal optimization methodology to find 

the ideal design parameters that satisfy the multiple performance criteria as follows:  

 Maximize the general force or velocity ellipsoid of the end effector. 

 Make the EE’s general force and velocity as uniform as possible. 

 Maximize the manipulator’s distance from singularity.  

 Increase positioning accuracy.  

 The key concept to this methodology is optimizing the manipulator’s worst-case 

performance in the desired workspace, thereby meeting the optimality criteria. These 

performance criteria are correlated in a way or another, and all depend on some major 

performance indices applied in robotics. Some of the most popular indices are based on 



 6 

the manipulability measure (Yoshikawa, 1985a), condition number (Salisbury & Craig, 

1982), and minimum singular value (Klein & Blaho, 1987). Other less popular indices 

include the service angle (Vinogradov, Kobrinski, & Stepanenko, 1971) (Angeles & 

Lopez-Cajun, 1992), and the joint rate availability (Liegeois, 1977) (Klein & Blaho, 

1987). 

 The numerical optimization methods that are used to meet our required criteria are 

based on combined Genetic Algorithm (GA) and Sequential Quadratic Programming 

(SQP), guaranteeing a precise global solution to the problem as will be justified later. 

1.4 Thesis Outline 

 Chapter 2 provides a brief introduction to the kinematics of robotic manipulators, 

as well as a definition of the reconfigurable manipulator to be optimized. A review of 

manipulator categories, joint types, DH parameters, manipulator kinematics extended to 

reconfigurable manipulator kinematics, Jacobian matrix, and EE force and velocity is 

discussed.  

 In Chapter 3, we investigate various performance indices such as the parameter of 

singularity (WPS), the manipulability measure, and condition number of the Jacobian 

matrix. The modified posture-independent parameter of singularity (MPIPS) is 

introduced, rendering it to a global index in the robot’s desired workspace. 

 In Chapter 4, a novel and precise optimization methodology is proposed, based on 

optimizing the robot’s worst-case performance inside its desired workspace. The problem 

formulation and constraints are described based on some assumptions on the manipulator 

links, joints, and workspace. A brief overview of stochastic based optimization algorithm 
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using GA and gradient-based nonlinear optimization algorithm based on SQP, is also 

presented, providing a better understanding as to why combined GA and SQP were 

chosen to perform the optimization.  

 Chapter 5 illustrates various case studies for maximizing the performance of 3-

DOF and 6-DOF reconfigurable manipulators. The necessity of GA is demonstrated, and 

the optimization is validated by its comparison with another method. Different case 

studies are also provided where the EE force or velocity is maximized, given that the 

maximum joint torque and joint rate are constrained.  
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CHAPTER 2  

KINEMATICS OF RECONFIGURABLE MANIPULATORS 

2.1 Introduction 

A robotic manipulator is defined by a set of rigid links that are connected together by 

joints (Craig, 2005). In this chapter, first basics of robotic manipulators are briefly 

reviewed and then extended to provide the general description of n-DOF reconfigurable 

manipulator to be optimized. 

2.2 Serial and Parallel Manipulators 

Manipulators can be classified in two main categories: (1) serial manipulators, 

whose links are connected consecutively. Among the most utilized serial manipulators in 

the industry, one can mention the SCARA-type, Unimation PUMA 560, and Yasukawa 

Motoman L-3 robots; (2) Parallel manipulators, which on the contrary utilize several 

serial chains directly connected to a single EE or platform. Of the most popular parallel 

manipulators is the Stewart Platform hexapod, which is extensively used in flight 

simulators (Angeles, 2007) (Stewart, 1965) (Krefft & Hesselbach, 2006).  

 Throughout this thesis, the manipulator of interest is a serial and reconfigurable 

manipulator similar to the one proposed by Aghili and Parsa in (Aghili & Parsa, 2009), 

Figure 1.1. 

2.3 Types of Joints 

Manipulator joints are generally composed of prismatic or revolute joints. The 

former are defined by linear motion along a single axis, while the latter are defined by 

relative motion about an axis (rotation). Each of these classes has only a single DOF, and 
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the manipulator as a whole can be considered to have as much DOFs as the number of 

joints (Craig, 2005). Joints can sometimes be a combination of both prismatic and 

revolute joints, making them cylindrical. Other hybrid types are planar, screw, and 

spherical joints.  

It is noteworthy to indicate that the n-DOF reconfigurable manipulator that will be 

studied in this thesis includes revolute joints, cylindrical joints, and a spherical joint at the 

wrist. The revolute joints are treated as active joints, and are equipped with actuators, 

while the cylindrical joints are passive, and have neither actuators nor sensors (Aghili & 

Parsa, 2009). The latter are normally locked when the robot operates in free-space, and 

only unlocked when the robot makes a closed kinematic chain and needs to reconfigure. 

Figure 2.1 shows a reconfigurable manipulator as described by (Hebert, Tatossian, 

Cairns, Aghili, & Parsa, 2007). It is composed of: 3 active revolute joints each with an 

angle θ, 2 passive cylindrical joints each with a twist α and a linear relative displacement 

l, and a passive spherical wrist. 

 

 

 

 

 

 

 

 

Figure 2.1 Reconfigurable manipulator. (Hebert, Tatossian, Cairns, Aghili, & Parsa, 2007) 
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2.4 The Denavit-Hartenberg Parameters 

 Each robotic manipulator is described by its link lengths, twist angles, link 

offsets, and joint angles, known as the Denavit–Hartenberg parameters (DH parameters). 

Introduced by Jacques Denavit and Richard Hartenberg, they became associated with a 

convention used in attaching frames of references to the links of a manipulator 

(Hartenberg & Denavit, 1964).  

 The first step in defining a robot is the link-frame attachment procedure, which 

should be done in a proper way. For the purpose of our study, we will consider a 

manipulator with n links connected serially by n-1 joints. The links are numbered from 1 

to n, starting from the immobile base or the reference frame, which might be numbered as 

0. Links 1 to n are all mobile, actuated by the joints. A useful summary for assigning the 

frames is provided by Craig (Craig, 2005) as indicated below, and Figure 2.2 can be used 

for graphical reference:  

- Identify all the joint axes as shown in Figure 2.2, and for the next steps consider two 

adjacent joint axes i and i+1. 

- Identify the common perpendicular between the adjacent joint axes, and assign a link 

frame origin at the point of intersection with the ith axis. 

- Assign the Zi axis along the ith joint axis. 

- Assign the Xi axis along the common perpendicular. In the case that joint axes intersect, 

Xi would be normal to the plane formed by these two axes. 

- The Yi axis completes the right-hand rule for Xi and Zi. 
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Frame {0} is assigned such that it overlaps with {1} when the first joint variable (d for 

prismatic joint, or θ for revolute joint) is zero. As for {n}, it is assigned in such a way that 

sets the most number of DH parameters to zero. 

The DH parameters are then defined as follows:  

ai = Link length: distance from original frame Zi to Zi+1 along Xi 

αi = Link twist: angle measured from Zi to Zi+1 along Xi  

di = Joint offset: distance from Xi-1 to Xi along Zi 

θi = Joint angle: angle from Xi-1 to Xi along Zi 

 

 

 

 

 

 

 

Figure 2.2 DH parameters and frame attachment for a general serial manipulator section. 

(Craig, 2005) 

The DH parameters of a 6-DOF reconfigurable manipulator are represented in 

Table 2.1, with some assumed constant values for joint offsets and the fixed base’s link 

length. The joint-angle column will be represented by stars “*” since these values vary 

while maneuvering the robot arm. Also, due to design limitations, the joint angles will be 

bounded by assumed θmin and θmax values. Finally, since the robot has passive cylindrical 

joints on the links as the ones shown in Figure 1.1 and Figure 2.1, these will be 

represented by the design variables (α1, α2, l1, l2) in the DH table since they can vary, 
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adopting different values that satisfy different goal criteria. Note that the link offsets are 

not considered as design variables. As a summary, the general topology of the 6-DOF 

reconfigurable manipulator can be illustrated in Figure 2.3. 

Table 2.1 DH parameters of a 6-DOF reconfigurable manipulator. 

i α a (m) d (m) θ Joint  θmin θmax 

1 90o 0.2  0 * R -180o 180o 

2 α1 l1 0.2 * R -108o 108o 

3 α2 l2 0.2 * R -144o 144o 

4 -90o 0 0 * R -180o 180o 

5 90o 0 0 * R -180o 180o 

6 -90o 0 0 * R -180o 180o 

 

    

Figure 2.3 Reconfigurable robot to be optimized with DH parameters, drawn on 

AutoCAD.  
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2.5 Transformation Matrices and Forward Kinematics 

 Each frame of reference is described by a 4 x 4 transformation matrix. The matrix 

is clearly a function of the DH parameters, and is denoted as follows: 

 � =௜௜−ଵ ൮ cos ሺߠ௜ሻ −sin ሺߠ௜ሻ Ͳ ௜−ଵሻߙ௜ሻcos ሺߠ௜−ଵsin ሺߙ cos ሺߠ௜ሻcos ሺߙ௜−ଵሻ −sin ሺߙ௜−ଵሻ − sinሺߙ௜−ଵሻ�௜sin ሺߠ௜ሻsin ሺߙ௜−ଵሻ cos ሺߠ௜ሻsin ሺߙ௜−ଵሻ cos ሺߙ௜−ଵሻ cosሺߙ௜−ଵሻ�௜Ͳ Ͳ Ͳ ͳ ) (2.1) 

where �௜௜−ଵ  provides information about the position and orientation of frame {i} with 

respect to frame {i-1}. The first 3 rows of the first 3 columns describe the orientation 

sub-matrix of {i} with respect to {i-1}, and the first 3 rows of the last column define the 

x-y-z translation coordinates of {i} with respect to {i-1}. The last row should have “[0 0 

0 1]” elements so that the transformation matrix is orthonormal.  

The next step is to describe the position and orientation of the EE with respect to 

the base frame. This is done through the multiplication of individual transformation 

matrices from i=1 to n and developing what is known as the kinematic equations. Thus, 

 � =௡଴ �ଵ଴ �ଶଵ �ଷଶ … �௡௡−ଵ  (2.2) 

represents the 4 x 4 transformation matrix that relates the frame {n} to the frame {0}. The 

elements of this matrix are known as the kinematics of the robot at hand (Craig, 2005).  

By referring to Table 2.1, the simplified matrices for a 6-DOF reconfigurable 

manipulator are shown below: 

 � =ଵ଴ ൮cos ሺߠଵሻ −sin ሺߠଵሻ Ͳ Ͳ.ʹͲ Ͳ −ͳ Ͳsin ሺߠଵሻ cos ሺߠଵሻ Ͳ ͲͲ Ͳ Ͳ ͳ ) (2.3) 
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 � =ଶଵ ൮ cosሺߠଶሻ − sinሺߠଶሻ Ͳ ݈ଵsinሺߠଶሻ cosሺߙଵሻ cosሺߠଶሻ cosሺߙଵሻ − sinሺߙଵሻ −Ͳ.ʹ sinሺߙଵሻsinሺߠଶሻ sinሺߙଵሻ cosሺߠଶሻ sinሺߙଵሻ cosሺߙଵሻ Ͳ.ʹ cosሺߙଵሻͲ Ͳ Ͳ ͳ ) (2.4) 

 

 � =ଷଶ ൮ cosሺߠଷሻ − sinሺߠଷሻ Ͳ ݈ଶsinሺߠଷሻ cosሺߙଶሻ cosሺߠଷሻ cosሺߙଶሻ − sinሺߙଶሻ −Ͳ.ʹsinሺߙଶሻsinሺߠଷሻ sinሺߙଶሻ cosሺߠଷሻ sinሺߙଶሻ cosሺߙଶሻ Ͳ.ʹcosሺߙଶሻͲ Ͳ Ͳ ͳ ) (2.5) 

 

 � =ସଷ ൮ cos ሺߠସሻ −sin ሺߠସሻ Ͳ ͲͲ Ͳ ͳ Ͳ−sin ሺߠସሻ −cos ሺߠସሻ Ͳ ͲͲ Ͳ Ͳ ͳ) (2.6) 

 

 � =ହସ ൮cos ሺߠହሻ −sin ሺߠହሻ Ͳ ͲͲ Ͳ ͳ Ͳsin ሺߠହሻ cos ሺߠହሻ Ͳ ͲͲ Ͳ Ͳ ͳ) (2.7) 

 

 � =଺ହ ൮ cos ሺߠ଺ሻ −sin ሺߠ଺ሻ Ͳ ͲͲ Ͳ ͳ Ͳ−sin ሺߠ଺ሻ −cos ሺߠ଺ሻ Ͳ ͲͲ Ͳ Ͳ ͳ) (2.8) 

 

Remark that the design parameters are kept as variables (α1, α2, l1, l2), and are 

only found among the first 3 transformation matrices. Also notice that the last 3 

transformation matrices do not have any translational part in the fourth column since they 

only represent the spherical wrist of the robot arm.  
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The kinematic equations that determine the position and the orientation of the EE 

with respect to the base frame are then obtained by the product of all link transformations 

in the following order: 

 T଺଴ = Tଵ଴ T   ଶଵ Tଷଶ T ସଷ T  ହସ T଺ହ . (2.9) 

These are a function of the joint angle vector � = ,ଵߠ] ,ଶߠ ,ଷߠ ,ସߠ ,ହߠ  ଺], and the elementsߠ

of the design parameter vector x = [α1, α2, l1, l2], such that: 

 T௡଴ = ݂ሺ�, �ሻ. (2.10) 

2.6 Inverse Kinematics 

 The problem of inverse kinematics (IK) can be stated as follows: for a given n-

DOF manipulator, if a certain position and orientation of an EE is desired, and the base 

frame is specified, what are the values of the n joint angles that can generate such an EE 

pose? 

In order to answer that question, the transformation matrix �ே଴  in Eq. (2.10) can 

be a starting point. Consider a 6-DOF reconfigurable robot whose passive cylindrical 

joints are now fixed. �଺଴  is a function of the unknown joint variables, and has 16 

kinematic equations, 4 of which are trivial. Therefore, 12 equations remain to solve for 

the 6 joint variables. However, of the rotational part of �଺଴ , only 3 are linearly 

independent, added to the other 3 which define the position of the EE (Craig, 2005). The 

total number of equations is now equal to the number of unknowns, and can be used to 

solve for θ1 to θ6. It is important to mention that the 6 equations are very long and 

complex, and in general require the implementation of special substitutions for solving 

transcendental equations, if a solution exists (Craig, 2005). The following equations to be 
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retained for later use, will be used to convert the transcendental equations into 

polynomial functions in u:  

ݑ  = tan ሺ�ଶሻ cosሺߠሻ = ͳ − ଶͳݑ + ሻߠଶ sinሺݑ = ͳݑʹ +  ଶݑ
(2.11) 

 

Different methods can be used to solve for the inverse kinematics and will be 

indicated thereafter. 

2.6.1 Methods of Solution 

 Since solving for the joint angles can be a rigorous process, several different 

methods of solution are available in solving for joint angles. Algebraic, numerical, as 

well as geometric methods exist, and usually the choice of method depends on the 

complexity of the manipulator model, and the necessity of an efficient solution. The 

literature addressing different inverse kinematic problems and general solutions is very 

rich, and comprises of (Pieper, 1968), (Wang & Chen, 1991), (Raghavan & Roth, 1993), 

(Mavroidis, Ouezdou, & Bidaud, 1994), (Manocha, & Canny, 1994), (Chapelle & 

Bidaud, 2004), (Buss, 2004), (Wenz & Worn, 2007), and (Vasilyev & Lyashin, 2010). 

The IK solution can also be obtained by solving an optimization problem. Since the 

desired EE positions are known (the points are already defined by the user within the 

workspace), and the θ joint values are unknown, we can determine the optimum values of 

θ by calculating the error distance between the desired and the present location of the end 

effector and find a θ that minimizes the distance between the two. Optimization was used 

to obtain IK solutions in (Sobh & Toundykov, 2004) (Bagchi, 2007) and (Xu, Wang, & 

Sun, 2010). 
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 In our case, we will make use of Pieper’s method that is very efficient for 

manipulators with three intersecting axes (EE with a spherical wrist), and a closed-form 

IK solution will be finally developed as a function of x.  

Pieper’s Method for 3 Intersecting Axes: 

By writing the forward kinematics relating the wrist’s base (the point where the 3 

axes intersect) to the robot’s base frame as a function of the design parameters and the 

first 3 joints (θ1, θ2, and θ3), we determine the position of the EE:  

 �ସைோீ = �ଵ଴ �ଶଵ �ଷଶ ଴ � ଷ ସைோீ = ͳ�ݖ�ݕ�ݔ] ], (2.12) 

where the subscript “d” represents the desired position, pre-specified by the designer. 

It can also be written as 

 �ସைோீ ଴ = [ ଵ݂݂ଶ݂ଷͳ] = �ଵ଴ �ଶଵ �ଷଶ  [ ݈ଶ−�ସ sinሺߙଶሻ�ସ cosሺߙଶሻͳ ], (2.13) 

where: 

 ଵ݂ = ݈ଶ cosሺߠଷሻ + �ସ sinሺߙଶሻ sinሺߠଷሻ + ݈ଵ ଶ݂ = ݈ଶ cosሺߙଵሻ sinሺߠଷሻ − �ସ sinሺߙଶሻ cosሺߙଵሻ cosሺߠଷሻ − �ସ sinሺߙଵሻ cosሺߙଶሻ  − �ଷ sinሺߙଶሻ ଷ݂ = ݈ଶ sinሺߙଵሻ sinሺߠଷሻ − �ସ sinሺߙଶሻ sinሺߙଵሻ cosሺߠଷሻ + �ସ cosሺߙଵሻ cosሺߙଶሻ+ �ଷ cosሺߙଵሻ 
(2.14) 

 

Now, we can write Eq. (2.13) as:  

   ଴�ସைோீ = [cosሺߠଵሻ ݃ଵ − sinሺߠଵሻ ݃ଶsinሺߠଵሻ ݃ଵ + cosሺߠଵሻ ݃ଶ݃ଷͳ ], (2.15) 

where 
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 ݃ଵ = cosሺߠଶሻ ଵ݂ − sinሺߠଶሻ ଶ݂ + ݈଴ ݃ଶ = sinሺߠଶሻ cosሺߙ଴ሻ ଵ݂ + cosሺߠଶሻ cosሺߙ଴ሻ ଶ݂ − sinሺߙ଴ሻ ଷ݂ − �ଶ sinሺߙ଴ሻ ݃ଷ = sinሺߠଶሻ sinሺߙ଴ሻ ଵ݂ + cosሺߠଶሻ sinሺߙ଴ሻ ଶ݂ + cosሺߙ଴ሻ ଷ݂ + �ଶ cosሺߙ଴ሻ (2.16) 

 

Let r denote the squared magnitude of   ଴�ସைோீ. So 

 r = xd2 + yd2 + zd2. (2.17) 

From Eq. (2.15), it can also be written as  

 � = ݃ଵଶ + ݃ଶଶ + ݃ଷଶ. (2.18) 

From Eqs. (2.15) and (2.16), r can be written differently as 

 � = ሺ݇ଵ cosሺߠଶሻ + ݇ଶ sinሺߠଶሻሻʹ݈଴ + ݇ଷ, (2.19a) 

and the z-component of Eq. (2.15) can be written as 

ݖ  = ሺ݇ଵ sinሺߠଶሻ − ݇ଶ cosሺߠଶሻሻ sinሺߙ଴ሻ + ݇ସ, (2.19b) 

where 

 ݇ଵ = ଵ݂ ݇ଶ = − ଶ݂ ݇ଷ = ଵ݂ଶ + ଶ݂ଶ + ଷ݂ଶ + �଴ଶ + �ଶଶ + ʹ�ଶ ଷ݂ ݇ସ = ଷ݂ cosሺߙ଴ሻ + �ଶ cosሺߙ଴ሻ 
 

(2.20) 

Equation Eq. (2.19a) is very useful since it is independent from θ1, and can be used to 

solve for θ2 and θ3. So to solve for these joint angles from Eq. (2.19a), we can have 3 

interesting cases: 

- a0 = 0, then r = k3 , and is only a function of θ3. It can therefore be solved by equating 

the right-hand-side (RHS) of Eq. (2.19a) with the RHS of Eq. (2.17), and substituting 

equations (2.11) into tanሺ�యଶ ሻ. 

- sin(α0) = 0, then z = k4, where z is zd. It can therefore also be solved by equating the 

RHS of (2.19a) with zd, and applying substitutions via equations (2.11). 
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- Otherwise, the following equation is used to eliminate sinሺߠଶሻ and cosሺߠଶሻ from Eq. 

(2.19a). Note that it can be solved also using the equations of (2.11): 

 ሺ� − ݇ଷሻଶͶ݈଴ଶ + ሺݖ − ݇ସሻଶsinଶሺߙ଴ሻ = ݇ଵଶ + ݇ଶଶ (2.21) 

After determining θ3, Eqs. (2.15) and (2.19a) can easily be manipulated to solve for θ2 

and θ1. 

For a 3-DOF robot, the above procedure is sufficient for the IK solution, but for a 6-DOF, 

there still remains the wrist angles θ4, θ5, and θ6. Clearly, these only affect the wrist’s 

orientation. These can be solved by applying the Z-Y-Z Euler angle solution 

(APPENDIX C) for the following rotation matrix (Craig, 2005): 

 �|�ర=଴ = �−ଵସ଴ |�ర=଴ ଺ସ �଺଴  (2.22) 

2.6.2 Existence of Solution 

 The IK solution does not always exist for a certain task, while several solutions 

might exist for another – EE poses can sometimes be reached by different joint angle 

combinations. So the question of IK solvability is of crucial importance in addressing the 

IK problem, whose answer lies roughly in the points and orientations a robot wants to 

reach, i.e. the robot’s workspace. 

2.7 Types of Workspace 

 When a robot is manipulated to all possible postures it can achieve, a volume is 

generated for the set of points that could be reached. This volume is called a 

manipulator’s workspace. In fact, the workspace can be classified into two definitions: 

The reachable workspace is the volume of space that can be reached by the robot, 

whereas the dexterous workspace is the volume of space that can be reached by the robot 

with all orientations. The dexterous workspace is always a subset of the reachable 
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workspace (Craig, 2005). Typically, a 3-DOF robot can only satisfy x-y-z positioning 

tasks, thus only comprises of a reachable workspace, while a 6-DOF robot such as the 

PUMA 560 and the reconfigurable robot at hand have both a reachable and a dexterous 

workspace. It is therefore unsurprising to see that the PUMA 560 manipulator is one of 

the most employed robots in the industry. 

2.8 Jacobian Matrix 

 It is important to note that the indices that will be used to study the performance 

of the manipulator are based on the Jacobian matrix, so we first recall this matrix and its 

relation to manipulator singularity. 

 The Jacobian in robotics is a multidimensional form of the derivative, relating 

joint velocities to Cartesian velocities of the tip of the arm (Craig, 2005). Hence it is 

necessary to study the linear and angular velocity propagation from one link to another in 

order to determine the Jacobian matrix. Craig summarized the equations of velocity 

propagation for prismatic and revolute joints. However we will only consider revolute 

joints for the matter of our study. These velocities are denoted by: 

 � ௜+ଵ ௜+ଵ = � � + ௜+ଵ ௜௜ ௜+ଵߠ̇ ௜+ଵ ࢆ  ௜+ଵ (2.23) 

and 

௜+ଵ ݒ  ௜+ଵ = �ሺ ௜ݒ + �௜ ௜ ௜௜ ௜+ଵ  × � ௜ ௜+ଵሻ (2.24) 

where ௜+ଵ ݒ ௜+ଵ  and � ௜+ଵ ௜+ଵ  represent the linear and angular velocities of the 

corresponding link i+1 with respect to frame {i+1}, respectively. �௜ ௜+ଵ  is the 3 x 3 

rotation matrix of frame {i} with respect to {i+1}, �௜+ଵ  ௜ is the position of {i+1} relative to 

{i}, and i ranges from 0 to N-1. ̇ߠ ௜+ଵis the joint rate of frame {i+1}, and   
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௜+ଵ ߠ̇  ௜+ଵ ࢆ ௜+ଵ = [ ͲͲ̇ߠ௜+ଵ ]. (2.25) 

 Equations (2.23) and (2.24) are applied iteratively, resulting in linear and 

rotational velocities � ே ே and ݒ ே ே and a total Cartesian velocity Nv = [ ௩ಿ ಿ�ಿ ಿ ] at EE frame 

{N}. To find the velocity in terms of the base frame {0}, we rotate it with �ே଴ , such that 

 0v = � v ேே଴ . 

 

(2.26) 

Now for a general n-joint manipulator, the Jacobian matrix is given by 

 Jሺߠሻ = [J୘Jୖ] = [J୘,A Jୖ,A   J୘,WJୖ,W] , (2.27) 

where J is the m x n Jacobian, the subscripts “T” and “R” relating the joint velocity vector 

to the translational and rotational velocity of the end effector, respectively. Subscripts “A” 

and “W” refer to the manipulator’s arm and wrist, respectively.  

 So in summary, the rows of the Jacobian matrix represent the Cartesian degrees of 

freedom, with a maximum of 6 Cartesian DOF – of which 3 are related to position and 

the other 3 are related to the rotation. As for the columns, each column represents a joint. 

So the total number of columns of the Jacobian matrix signifies the total DOF of the 

robot. For example, a 3 x 3 Jacobian matrix means that the robot at hand is only 

concerned with positioning tasks, and has 3 joints (DOF). A 6 x 6 Jacobian matrix 

indicates that the robot is concerned in both positioning and orienting tasks, and has 6 

joints (DOF). 

 Note that the upper sub-matrix of J, which refers to the positioning sub-matrix, 

has units of length, while the lower sub-matrix, which refers to the rotational sub-matrix, 
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is dimensionless. This will cause some issues demanding some Jacobian homogenization 

in some index calculations, as will be seen in Chapter 3. 

2.8.1 Jacobian Matrix in the Velocity Domain  

 The velocity of the EE which was written in Eq. (2.26) is related to the Jacobian 

by 

 v ଴ = [ ଴� ଴ ݒ ] = J ଴ ሺߠሻ̇(2.28) ,ߠ 

where 0ݒ and 0� are the linear and rotational velocities of the EE with respect to the base 

frame, respectively. For an n–DOF manipulator, 0v is an m-dimensional vector, J ଴ ሺߠሻ is 

an m x n matrix relating the EE velocities to the manipulator’s base frame, and ̇ߠ is an m-

dimensional vector describing the joint rates. The number of actuated joints is n, and the 

number of Cartesian degrees of freedom is m. So in order to have a degree of redundancy, 

n-m ≥ 0 should be satisfied.  

2.8.2 Jacobian Matrix in the Force Domain  

 When a manipulator is statically pushing on something in the environment or 

supporting a load at the EE, it is then actuating joint torques in order to counterbalance 

these forces. In order to solve for these joint torques, the joints are locked first and the 

manipulator becomes a rigid structure at that posture. In the force domain, the Jacobian 

transpose maps the external Cartesian forces acting at the EE into the equivalent joint 

torques (Craig, 2005).                   

 � = J ଴ ் ℱ  ଴ , (2.29) 

where    
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 ℱ ଴ = [ � ଴ܰ ଴ ] . (2.30) 

0F and 0N are the force and the moment vectors acting on the EE with respect to the 

manipulator’s base frame of reference. Comparing Eq. (2.28) with Eq. (2.29), the 

Cartesian force and joint torques are in inverse relation with the Cartesian velocity and 

joint rates, respectively.  

2.8.3 Singularities 

 Now consider that we wish to move the manipulator with a certain velocity in a 

certain direction, or on a certain trajectory. It is then necessary to solve for the joint rates, 

requiring the designer to determine the inverse of the Jacobian such that 

ߠ̇  = J ଴ −ଵሺߠሻ v ଴  . (2.31) 

If the inverse of the Jacobian exists, then it can be inverted to calculate the joint rates at 

each step of the trajectory as in Eq. (2.31). But, if it is not invertible, the Jacobian 

becomes singular, and the manipulator becomes in a singular configuration. The Jacobian 

in this case has lost full rank, and the manipulator has lost one or more DOF in Cartesian 

space. As Craig indicated, singularities can be generally classed in two categories. They 

can occur on (a) the manipulator’s workspace boundaries when the manipulator is fully 

stretched out or folded back on itself, and in (b) some areas inside the workspace when 

generally two virtual joint axes intersect.  

 In manipulators, singularity physically means that no matter which joint rates are 

selected, the EE cannot move in certain directions. Singularities also manifest themselves 

in the force domain, where the EE cannot exert static forces in certain directions. So ℱ   

could be increased or decreased in these directions without any effect on the calculated Ĳ 
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(Craig, 2005). Assuming that the Jacobian is a square matrix, det(J)=0 is a necessary and 

sufficient condition to indicate singularity. In the case that the Jacobian is an m x n 

rectangular matrix, singularity can be identified by det(JJT)=0, as will be discussed  in the 

next chapter. 

2.9 Conclusion 

In this chapter, the basics of manipulators and their kinematics were reviewed and 

extended to reconfigurable manipulators. Additionally, the Jacobian matrices in the 

velocity and the force domain are presented with their relation to joint rates and joint 

torques, and the matrix’s significance in detecting singularity is exposed. This 

information will be required to model the robotic arm in the optimization methodology. 
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(2) 

CHAPTER 3  

PERFORMANCE MEASURES 

3.1 Introduction 

Different performance indices are presented in this chapter. The manipulability 

measure is used to study the distance from singularity and robot arm maneuverability, the 

condition number is utilized to evaluate the joint rate/torque uniformity, and the 

parameter of singularity combines both indices. This parameter is then modified, 

rendering it a global and posture independent index to assess overall robot performance.  

3.2 Manipulability Measure 

 The manipulability measure (manipulability for brevity) is used to assess the 

manipulator’s “closeness” to singularity. It measures the amount of velocity and force 

that the EE can exert in all directions, and the ability to position and re-orient the EE in 

different directions, giving greater freedom for the specific configuration.  

 The manipulability was first used by Paul and Stevenson (Paul & Stevenson, 

1983), where the determinant of the Jacobian matrix was employed as a measure to 

evaluate the kinematic performance of spherical wrists.  

3.2.1 The Manipulability Ellipsoid and Force Manipulability Ellipsoid 

 Yoshikawa further developed Paul and Stevenson’s measure by defining the 

manipulability ellipsoid for non-square Jacobian matrices in (Yoshikawa, 1985a). He also 

expanded on this concept and presented the dynamic manipulability based on the 

determinant of the Jacobian and the nonsingular inertia matrix in (Yoshikawa, 1985b). 

For a given manipulator, the manipulability at a certain state θ was given by 
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 W = √��t ሺ J. J୘ ሻ , (3.1) 

where W is the manipulability, representing the volume of a manipulability ellipsoid. For 

a square Jacobian matrix with m=n, the manipulability reduces to 

 W = | ��tሺ J ሻ |. (3.2) 

 In order to have a clear view for the concept of manipulability ellipsoids, one can 

consider the input joint rate space �̇ = ,ଵߠ̇) ,ଶߠ̇ … ,  ௡൯, and the corresponding output EEߠ̇

velocity space �̇ = ሺ̇ݔଵ, ,ଶݔ̇ … ,  ௠ሻ. We now define an n-dimensional unit sphere ofݔ̇

 |�|̇ = ଵଶߠ̇√ + ଶଶߠ̇ + +ڮ ௡ଶߠ̇ ≤ ͳ. (3.3) 

 and its mapping into an m-dimensional ellipsoid of |�|̇  (Figure 3.1) – the velocity or 

manipulability ellipsoid – by a relation containing the Jacobian (Pham & Chen, 2003), 

such that   

 �̇�ሺ J J୘ሻ−��̇ ≤ ͳ. (3.4) 

 

 

 

  

 

 

 

 

Figure 3.1 Joint space mapping into EE space, A.K.A. the manipulability ellipsoid. 

(Pham & Chen, 2003) 
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This relation generates an ellipsoid, whose axes are defined by the eigenvectors of  J J୘, 

and the lengths of the ellipsoid axes have the values of the square roots of the eigenvalues 

(Park & Kim, 1998). The directions in which the ellipsoid has major axes means a high 

manipulability or ability for movement at higher speeds, while the minor axes indicate 

difficulty in manipulation (Pham & Chen, 2003). In fact, when a minor axis disappears, 

we have singularity, and the EE cannot move in a certain direction no matter which joint 

rates are applied (Angeles, 2007). As a general rule, analysis of the volume and shape of 

the ellipsoid can be used to assess the “amplification” between the actuated joint rate and 

the EE velocity (Pham & Chen, 2003).  

 Analogous to the manipulability ellipsoid, a force manipulability ellipsoid can be 

derived for illustrating the force transmission and amplification from the joint torques to 

the EE. We have seen in Eq. (2.29) that � = J  ் ℱ   . Then assuming the manipulator is not 

at a singular configuration one can write ℱ   = J  −்�. The force manipulability ellipsoid is 

therefore determined by the eigenvectors and eigenvalues of ሺJ J୘ሻ−ଵ; its eigenvectors 

will still be the same, but the eigenvalues will now have the inverse values of those of ሺJ J୘ሻ (Park & Kim, 1998). This means that the direction that has a maximum velocity 

transmission ratio is itself the direction of minimum force transmission ratio, and vice 

versa. In other words, the volume of the manipulating force ellipsoid is in inverse 

proportion to that of the manipulability ellipsoid (Yoshikawa, 1985a) (Zargarbashi, Khan, 

& Angeles, 2012). So, the manipulability index should be minimized when it is desired to 

maximize the force at the EE.  

 So, in order to properly design a robot, a careful compromise must be made 

between these two ellipsoids (Pham & Chen, 2003). 
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3.2.2 Singular Value Decomposition 

 Performing a Singular Value Decomposition (SVD) to any m x n Jacobian matrix, 

the singular values of J can be determined (Elkady, Mohammed, & Sobh, 2009):  

 J୫x୬ = U୫x୫Σ୫x୬V୬x୬୘  (3.5) 

Where 

 

 

 

Σ = ( 
 �ଵ  ͲͲͲͲ

Ͳ�ଶ  ͲͲͲ
ͲͲ⋱ڮڮ

Ͳ �௠−ଵ  Ͳڮڮ
ͲͲڮͲ�௠

   Ͳ   Ͳ   Ͳ   Ͳ   Ͳ
ڮ ڮ ڮ ڮ ڮ 

 Ͳ Ͳ Ͳ Ͳ Ͳ) 
 

  , (3.6) 

such that U and V are orthogonal matrices (i.e. the product of each of U or V by its 

transpose gives the identity matrix), and σ1, σ2 .  .  . , σm are called the singular values of 

J, sorted in descending order such that σ1 ≥ σ2 ≥ .  .  . ≥ σm . The singular values can also 

be determined by the set of eigenvalues of JJT.  

3.2.3 Minimum Singular Value 

 When the manipulator is far from singularity, J has a full rank m, meaning the 

smallest singular value is different from zero (σm ≠ 0). But when the manipulator is close 

to singularity, σm approaches zero. In that case J does not have full rank and it loses one 

or more degrees of freedom. 

 On the other hand, the determinant of J can also be expressed as a product of the 

matrix’s singular values: 

 ��tሺJሻ = �ଵ  �ଶ  .  .  . �୫  . (3.7) 

 Evidently, this product becomes close to zero when ım is very small. A 

remarkable property for ım is that it becomes most sensitive near singularities, making it 

the dominant parameter. For this reason, Klein and Blaho (Klein & Blaho, 1987) deduced 



 29 

that the minimum singular value σm alone could be used as a performance index. 

Physically, using σm to evaluate the robot’s manipulation ability measures the upper 

bound of the velocity with which the EE can be moved in all directions (Yoshikawa, 

1985a).  

3.2.4 Manipulators with Spherical Wrists 

 Manipulators with spherical wrists (Figure 3.2) are those whose joints are all 

revolute and their axes intersect at a point. These manipulators are most utilized in the 

industry because of their singularity decoupling ability (Yoshikawa, 1990) (Tourassis & 

Ang Jr, 1995).  Also, Pieper pioneered the use of decoupling by showing that the IK 

problem of manipulators with three consecutive intersecting axes can be divided into two 

sub-problems, whose solutions were obtained through a closed-form (Tourassis & Ang 

Jr, 1995).  

 

  

 

 

 

 

Figure 3.2 General architecture of a spherical wrist. 

 

 An interesting property in the manipulability measure for manipulators with 

spherical wrists is that the Jacobian sub-matrix responsible for the translational part of the 

wrist becomes zero, so the Jacobian matrix takes the following form (Yoshikawa, 1990):  
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  Jሺߠሻ = [୎T    ୎R] = [୍య    ଴   −[୮ೢ×]    ୍య ] [୎T,A     ୎R,A   ଴    ୎R,W] . (3.8) 

For a 6-DOF robot, I3 is a 3x3 identity matrix, and p௪ is the vector from the point where 

the wrist’s joint axes intersect to the center point of the end effector. As for the operator [� ×], it is defined as the matrix form of the cross-product such that: 

 [� ×] = [ Ͳ −�௭ �௬�௭ Ͳ −�௫−�௬ �௫ Ͳ ]. (3.9) 

 The determinant of J in this case can be decoupled (Yoshikawa, 1990), and it 

becomes equivalent to 

   det( J ) = det(J୘,A ) . det(Jୖ,W) . (3.10) 

 Notice that the determinant of J becomes independent of JR,A. For a 6-DOF 

(positioning and orienting) manipulator, JT,A and JR,W are 3x3 sub-matrices. Notice also 

that the elements in J have different units. Even though the sub-matrix J୘,A possesses units 

of length, while Jୖ,W  is dimensionless, det(J) can be directly computed without any 

homogenization of the Jacobian, a property that cannot be implemented with the 

condition number, as will be seen later (Angeles, 2007). It is worthwhile to say that for a 

6-DOF robot, decoupling is guaranteed, given that any three of its rotational joints 

intersect at a common point (Tourassis & Ang Jr, 1995). 

3.2.5 Manipulability Issues 

 Although the determinant going to zero means singularity, the real value of the 

determinant of a matrix is not a practical measure of the degree of the matrix’s ill-

conditioning, since the manipulability index generates different values for different used 

units. Also, Angeles and Gosselin (Angeles & Lopez-Cajun, 1992) argued that, "as 
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pointed out by Forsythe and Moler (1967), the absolute value of the determinant of a 

matrix is meaningless in assessing the inevitability of the matrix". Angeles then gave an 

example of a matrix with a large determinant, but inverting it with finite precision led to 

inadmissibly large round-off errors (Angeles & Lopez-Cajun, 1992) (Gosselin, 1990) 

(Klein & Blaho, 1987) (Forsythe & Moler, 1967). 

 Furthermore, the manipulability is strongly dependent on the robot’s dimensions. 

Kim and Khosla (Kim & Khosla, 1993) claimed that the manipulability faces two 

problems: scale and order dependency, preventing fair comparison of different sizes of 

robots, as well as comparison of planar and spatial robots. They proposed to divide the 

manipulability by the square of the total manipulator’s link lengths, and then evaluate the 

mth root (m being the DOF) of the resulting manipulability, thereby eliminating both 

problems (Kim & Khosla, 1993). On the other hand, Tanev and Stoyanov suggested 

dividing the manipulability by the maximum manipulability within the workspace of the 

robot, bounding the resultant index between zero and one, and consequently normalizing 

the manipulability (Tanev & Stoyanov, 2000). Their resultant index, which is termed as 

the normalized mobility index, will be used later in the formulation of the objective 

function. 

3.2.6 Other Studies on Manipulability 

An optimized form of the manipulability index based on the singular values of the 

manipulator’s Jacobian matrix was proposed in (Elkady, Mohammed, & Sobh, 2009). 

This method was based on identifying the joints that may lead to singular configurations, 

varying their values between the lower and upper limits, and calculating the Jacobian J 

and the singular matrices (Σ) at each step. Each singular value was then normalized, 
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plotted, and analyzed. The rank of the Jacobian was also checked in each step. 

The concept of manipulability has been extensively studied and applied in robotic 

applications, such as in (Chang, 1988), (Kim & Khosla, 1993), (Lee, 1997), (Pham & 

Chen, 2003), (Sobh & Toundykov, 2004), (Merlet, 2006a), and (Elkady, Mohammed, & 

Sobh, 2009), (Zacharias, 2012). 

3.3     Condition Number 

 The condition number is the ratio of the largest to smallest singular values of the 

Jacobian matrix, measuring the manipulator’s isotropy, meaning the uniformity of 

manipulability in all directions. This also means the uniformity of the joint rate or torque 

distribution over a time history (Zargarbashi, Khan, & Angeles, 2012), and the EE’s 

ability to move or apply forces uniformly in all directions (Yahya, Moghavvemi, & 

Mohamed, 2012). It basically gives information about the accuracy of a vector x when 

solving a system of equations A.x=b, and a good explication of this significance is 

provided in APPENDIX A (Keesling). In robotics, when applied to the Jacobian matrix J, 

the condition number will give a measure of the accuracy of the Cartesian velocity v or 

general static force ℱ acting on the EE (Salisbury & Craig, 1982) (Zargarbashi, Khan, & 

Angeles, 2012).  

 Other than the accuracy, the condition number describes the robot’s dexterity, and 

the closeness of a pose to singularity (Merlet, 2006a).  

 The condition number represents the uniformity of the manipulability ellipsoid, as 

compared to the volume of the ellipsoid in manipulability. In robotics, it was first used by 

Salisbury and Craig for the design of the Stanford-JPL mechanical fingers (Salisbury & 

Craig, 1982). The best-conditioned manipulators were termed to be in “isotropic” 
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(5) 

configurations, while the worst-conditioned were singular. Represented on the 

manipulability ellipsoid, an isotropy maps unit spheres in the space of joint rates to 

spheres of arbitrary radius in the space of EE velocity (Park & Kim, 1998).  

 Given that all entries of the Jacobian matrix bear the same units, the condition 

number is defined by 

 �ሺJሻ =  �ಾ�ೣ�೘�೙ = �1�೙   (3.11) 

where �ଵ and �௡ are the maximum and minimum singular values, respectively. 

Alternatively as presented in (Gosselin, 1990) and (Angeles & Lopez-Cajun, 1992), the 

condition number can be denoted by  

 �ሺJሻ = ‖J‖. ‖J−ଵ‖ , (3.12) 

where ‖.‖is any norm of the matrix J. Note that out of all norms, only the Euclidean 

norm (2-norm), and the Frobenius norm are frame-invariant, meaning that they are 

independent of the base joint angle ߠଵ. Also intuitionally, if a robot was rotated about its 

base joint while all other joints were fixed at the same pose, this makes it the same as 

looking at the robot from different viewpoints, which should not affect any of the 

manipulability or isotropy measures. Hence, using the 2-norm or Frobenius norm 

significantly simplifies calculations (Zargarbashi, Khan, & Angeles, 2012).  

 Moreover, the 2-norm requires an iterative singular value decomposition since it 

is defined as the maximum singular value of the matrix at hand. This is bound to cause a 

heavy computational load on the process. The Frobenius norm on the other hand, is an 

analytical function of the Jacobian matrix itself, as will be shown below, hence does not 

require singular value decomposition. For these reasons, the Frobenius norm will be used 

later in the formulation of the objective function (Zargarbashi, Khan, & Angeles, 2012). 
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A mathematical definition for the Euclidean and Frobenius norms is presented in 

APPENDIX B (Horn & Johnson, 1990), (Golub & Van Loan, 2012), (Watrous, 2011).  

 The Frobenius norm of a square matrix J is utilized by several researchers, such as 

in (Angeles & Lopez-Cajun, 1992), (Gosselin, 1990), and (Gosselin & Angeles, 1991), 

and (Zargarbashi, Khan, & Angeles, 2012), and is denoted by 

 ‖J‖ =  J ሻ  , (3.13)ܯሺ J்�ݐ√ 

where tr(.) is the trace of a matrix, and M is a positive definite matrix, used for 

dimensional homogenization and normalization purposes (Angeles & Lopez-Cajun, 

1992). Here M is a scalar, equivalent to the identity matrix divided by the robot’s degrees 

of freedom, as was used by Gosselin in (Gosselin, 1990). 

3.3.1 Positioning or orienting tasks vs. Positioning and orienting tasks 

 As mentioned earlier, calculating the determinant of the Jacobian matrix poses no 

problem for manipulators with positioning and orienting tasks (6-DOF), although the 

Jacobian bears different units. The calculation of the Jacobian condition number can be 

directly applied only if the Jacobian elements bear the same units, i.e. if the robot at hand 

is restricted to operate only on positioning or on orienting tasks. However, if the robot is 

meant to perform both tasks, the Jacobian entries possess disparate units, making the 

calculation of the condition number impossible. Considering a 6-DOF manipulator for 

instance, in order to determine the manipulator’s condition number we need to order the 

singular values in descending order, from largest to smallest. Three of these singular 

values have units of length, while those corresponding to orientation are dimensionless. 

Therefore it does not make sense to divide the largest singular value by the smallest one. 
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Consequently, the Jacobian matrix has to be homogenized for compatible units before 

computing its condition number. 

3.3.2 Homogenizing the Jacobian Matrix  

 In order to avoid dimensional inconsistency, Angeles (Angeles, 2007) defined a 

homogenous Jacobian matrix by introducing a characteristic length to divide the rows of 

the Jacobian with units of length. The characteristic length is defined as the normalizing 

length that generates the minimum condition number of the Jacobian matrix (Angeles, 

2007). Gosselin (Gosselin, 1990) used a different approach based on defining the velocity 

of the EE as the velocity of two or more points on it instead of using the velocity of one 

point only together with the angular velocity. He then proposed two indices for planar 

manipulators and derived them for spatial manipulators. One index was based on a 

redundant formulation of the velocity equations, while the other on the minimum number 

of parameters of these equations. 

 The condition number �ሺJ) ranges from 1 to +∞, where 1 implies an isotropic 

configuration and +∞ singularity. Alternatively, one can calculate the inverse of the 

condition number, thus bounding it between 0 (singularity) and 1 (isotropy). 

3.3.3 Performance Indices as Local and Posture-Dependent vs. Global and Posture-

Independent  

 Kinetostatic performance indices are becoming increasingly reliable as design 

criteria and as figures of merit in robot control. They can be used to either assess a 

manipulator’s performance while performing a task, or in the design process of robots. In 

the former case, they are used as local posture-dependent criteria to evaluate the 

invertibility of Jacobian matrix at different postures, whereas in the design stage, they are 
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implemented as global posture-independent criteria (Angeles, 2007).  

 In our case, it is desired to define a posture-independent index. Therefore this 

index has to be defined in a global sense. This can be done in a similar way as calculating 

the sum of the squares of the vector’s components. The global performance index can 

also be defined by using the Chebyshev norm, i.e. the maximum performance attained 

over the whole workspace (APPENDIX B) (Horn & Johnson, 1990) (Bock & Krischer, 

1998). Alternatively, the Euclidean norm for vectors can be used, i.e. the root-mean 

square (rms) value of the performance (Angeles, 2007). However, in this thesis we will 

use the robot’s worst-case performance attained over its desired workspace as a global 

index, as will be clarified in Section 3.4. 

3.3.4 Other Indices Based on the Condition Number 

 A posture-independent Kinematic Conditioning Index (KCI) of a manipulator, 

based on the inverse of the minimum condition number (1/ �min) in the whole workspace, 

was introduced in (Angeles & Lopez-Cajun, 1992). This makes it a global measure of the 

condition number, ranging between 0 and 1 (or 0% and 100%, for this matter). The KCI 

assesses the robot’s measure of isotropy based on the best-or minimum-conditioned point 

within its workspace.  

 A Global Conditioning Index (GCI) that measured the robot’s conditioning over 

the entire workspace was also explained in (Gosselin & Angeles, 1991). It is denoted by 

ߟ  =  (3.14) ,  ܤܣ

where 
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ܣ  = ∫ ቀଵ�ቁ�� � , (3.15) 

and  

ܤ  = ∫ �� 
�  , (3.16) 

where � is the condition number at a particular point of W, the manipulator's workspace, 

and B is clearly the volume of the workspace. Thus the GCI is a measure of the 

Jacobian’s invertibility over the whole workspace. Note that the concept of a global index 

to characterize the kinematic or dynamic properties of manipulators could be used with 

local indices different than the condition number (Gosselin & Angeles, 1991), such as the 

manipulability index. This fact will be introduced in the parameter of singularity in the 

next subsection, making it a global index. 

 Finally, spatial robotic isotropy, which is the isotropy for both positioning and 

orienting the EE, was discussed by (Klein & Miklos, 1991). A more detailed discussion 

about the condition number can be found in (Angeles, 2007) and (Zargarbashi, Khan, & 

Angeles, 2012). 

3.4     Combining Indices 

 The manipulability and condition number possess some common features. They 

both indicate the presence of singularity, and their absolute values appear to represent the 

distance from singularity (Chang, 1988). On the other hand, as already noticed, the 

aforementioned indices have different purposes (Klein & Blaho, 1987) (Tanev & 

Stoyanov, 2000), (Merlet, 2006a) (Zacharias, 2012). Ultimately, the manipulability 

measures the volume of the manipulability ellipsoid, and the condition number measures 

the uniformity of its shape. Therefore a performance index representing both the volume 
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and the shape is required for the manipulability ellipsoid to be better represented.  Huo 

and Baron (Huo & Baron, 2007), (Huo & Baron, 2008), (Huo & Baron, 2011), proposed 

the parameter of singularity for the trajectory optimization of a redundant 6-DOF robot. 

Yahya, Moghavvemi, and Mohamed (Yahya, Moghavvemi, & Mohamed, 2012), then 

used this index on a manipulator with extra degrees of freedom, to improve its ability for 

singularity avoidance, thus making it more maneuverable. The parameter of singularity is 

given by 

 WPୗ = √ �W = √ ͳ�ଶ�ଷ …�௠ଶ   , (3.17) 

where � is the condition number of J, W is the manipulability index, and �௜ is a singular 

value of J. In order to eliminate the manipulability’s scale dependency, we slightly 

modified the above index by introducing a normalization factor. The manipulability is 

divided by the maximum manipulability in the workspace (W௠௔௫), thus bounding the 

W/W௠௔௫ ratio between 0 and 1. 

The resultant index to be minimized is 

 WPୗ = √ �W/W௠௔௫   , (3.18) 

and only has a lower bound of 1. As WPS get smaller, the manipulability ellipsoid gets 

more spherical and its volume gets larger, resulting in EE velocity maximization. As WPS 

gets larger, both the manipulator’s conditioning and performance gets worse (Yahya, 

Moghavvemi, & Mohamed, 2012).  

 Note that the reciprocal of WPୗ can alternatively be used, and is bounded between 

0 and 1. 
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 Being dependent on both the manipulability and the condition number, WPୗ 

possesses the ability to assess several criteria including our criteria of interest. However, 

this index in its current state is posture and task dependent, reliant on the joint angles. It 

is required to define a posture-independent index, so that it can be represented it in the 

global sense (Angeles, 2007). As mentioned earlier, this index is chosen to be the robot’s 

worst-case performance in the desired workspace. Optimizing the worst case guarantees 

that the performance criteria for all points on the workspace are met, hence creating a 

global and posture-independent index. This posture-independent index will be denoted by �Pୗ, termed as the MPIPS. 

3.4.1 Maximizing EE Force and Maintaining Actuator Rate/Torque Uniformity 

 In summary, by finding an optimized set of design parameters that minimizes �Pୗ , this effectively (a) maximizes the robot’s manipulability and (b) minimizes the 

condition number (enhances robot isotropy). Mechanically this means that the velocity at 

the EE is maximized, and the joint rates and torques are maintained to be as uniform as 

possible, as explained by (Huo & Baron, 2007) (Huo & Baron, 2008) (Huo & Baron, 

2011), and (Yahya, Moghavvemi, & Mohamed, 2012). 

 Now, consider the case that the force manipulability ellipsoid is desired to be 

maximized instead of the velocity, while maintaining actuator rate and torque uniformity. 

In order to fulfill force maximization, the manipulability index in (3.18) should be 

minimized. As for joint rate and torque uniformity, the condition number of (3.18) should 

also be minimized. One can consider maximizing �PS of (3.18) to solve the problem. 

However, this would maximize the condition number. Thus, the objective function has to 
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be necessarily altered as to just invert the condition number � in (3.18), and multiply the 

square root by -1, resulting in the following index, to be minimized: 

 WPୗ−ℱ = −√ ͳ/�W/W௠௔௫   . (3.19) 

As |WPୗ−ℱ| gets larger, the force manipulability ellipsoid gets more spherical and its 

volume gets larger, resulting in EE force maximization. As |WPୗ−ℱ| gets smaller, both 

the manipulator’s conditioning and performance gets worse (Yahya, Moghavvemi, & 

Mohamed, 2012).  

 Analogously to �PS, if it is required to define a global posture-independent index, 

the robot’s worst-case performance – or the largest value of WPୗ−ℱ (smallest |WPୗ−ℱ |) in 

the desired workspace – should be chosen in the optimization approach to be the global 

index. We will denote this index by �௉ௌ−ℱ. 

3.5 Conclusion 

In this chapter we presented different performance indices that are used to 

evaluate the kinematic performance of robots, and a preliminary discussion on force 

domain of manipulability ellipsoid is also explained. A combination of the manipulability 

and isotropy measures was presented, then modified and implemented in a global and 

posture-independent sense by selecting the worst-case performance in the workspace, 

assessing the overall robot’s performance. 
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CHAPTER 4  

OPTIMIZATION METHODOLOGY 

4.1 Introduction 

 Before stating the optimization methodology, it is of vital importance to discuss 

the assumptions considered in simplifying the robot model, and the numerical methods 

chosen to perform this optimization. Here, first the assumptions and selected numerical 

optimization techniques will be discussed and then, the optimization strategy is 

presented. 

4.2 Assumptions 

 We have proposed some assumptions for determining the unknown DH 

parameters of the manipulator. These will help to simplify the computations, without 

majorly affecting the credibility of the model or the results of the optimization. It is 

assumed that: 

- The robot is composed of massless rigid links. 

- The workspace in which the robot is working is free of any obstacles, and the robot is 

assumed to not have any collisions within its own body. 

- The 6-DτF manipulator’s EE is a spherical wrist with its three joint axes intersecting at 

one point. As pointed out earlier, this helps in separating the IK position from the IK 

orientation problem, enabling to solve both problems explicitly using Pieper’s method 

(Pieper, 1968), (Craig, 2005), (Angeles, 2007). Decoupling also permits singularity 

decoupling (Tourassis & Ang Jr, 1995), allowing the use of equation 3.8.  
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- The joint offsets at the spherical wrist of the 6-DOF manipulator, and between the wrist 

and the positioning manipulator, are all zero. This permits the wrist to control only the 

orientation of the EE, prohibiting it from having any effect on the position. As a result, 

the upper-right 3x3 sub-matrix of the Jacobian (J୘,Wሻ will possess only entries of zeros. 

4.3 Optimization Methods 

4.3.1 Optimization Formulation 

 A formal optimization problem is defined as to find a design variable vector x that 

minimizes a certain cost function (or objective function) f(x) subject to p equality 

constraints cj(x) = 0, j = 1 to p, and/or m inequality constraints dk(x) ≤ 0, k = 1 to m. The 

statement can be translated to: 

          minimize   f (x) 

                               subject to:    cj (x) = 0,  j = 1 to p 

                                                   dk (x) ≤ 0, k = 1 to m 

(4.1) 

 

Note that the constraints must have a relation with the design variables (x), and the 

formulation of the problem depends on these variables that describe the system (Arora, 

2004). In the case that a cost function is to be maximized, it can be inverted and 

minimized, or better yet multiplied by a negative sign and minimized. 

4.3.2 Numerical Optimization Methods 

The optimization problem stated in Eq. (4.1) may generally be addressed 

analytically using the Karush–Kuhn–Tucker (KKT) conditions (APPENDIX C), but 

except for very simple problems, it is not possible to find optimal solutions. Thus, various 

numerical techniques have emerged. Among these techniques are stochastic based 
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algorithms and gradient-based algorithms. The former are prone to generating solutions 

near the global minimum, while the latter converge at precise but local minima. As a 

result, one might use a combined stochastic and gradient-based algorithm to generate 

precise global minima, which is the case of interest.  

We discuss two numerical techniques that were implemented in our optimization, 

a stochastic algorithm (GA), and a gradient-based nonlinear optimization algorithm based 

on SQP, providing an understanding as to why combined GA and SQP were chosen to 

perform the optimization.  

Genetic Algorithm 

Genetic algorithm (GA) is a global optimization method that simulates a process 

based on natural evolution, natural selection, and natural genetics. It is based on the 

genetic reproduction process where only the fittest shall survive (Belegundu & 

Chandrupatla, 2011). As compared to conventional techniques, GA evaluates many 

individuals by generating random populations (design variables) in parallel and does not 

need continuity or differentiability of the objective function. Although GA is used in 

global optimization problems, its convergence is relatively slow, requiring a large amount 

of calculation for even small-scale problems, and it cannot absolutely guarantee a global 

convergence. The former can be solved by the exploitation of parallel processing, while 

running several simulations and choosing the best result can solve the latter. 

After GA evaluates random populations at an iteration, it creates a mating pool 

through the reproduction process where the stronger members (lower fitness function 

values) replace the weaker ones. Afterwards, a crossover operation exchanges the 

characteristics between the members of the new population (Arora, 2004).  
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GA will be necessarily used in our optimization methodology, because global 

minima are required. 

Sequential Quadratic Programming  

Sequential Quadratic Programming (SQP) is a set of nonlinear programming 

(NLP) methods, where the constraints or the objective cost function are nonlinear, which 

solve an optimization problem by a sequence of optimization sub-problems.  

Starting from an initial design parameter guess x0, SQP approximates f(x) by a 

Quadratic Programming (QP) sub-problem. The solution of the QP sub-problem is based 

on a quadratic approximation of the Lagrangian function (APPENDIX C), and is then 

used to determine a search direction for a line search process and construct a new iterate. 

This construction is done until the QP converges to a local minimum of the NLP. A 

major advantage for SQP is that the neither the initial point nor the iterates have to be 

feasible points, since calculating a feasible point in a complicated constraint function 

might be very difficult.  

Note that, if the SQP problem is unconstrained, it then reduces to Newton's 

method that finds a point that vanishes the gradient of the objective function. 

SQP has been extensively tested and implemented (Arora, 2004), outperforming 

other methods in terms of precision and efficiency. However, it converges to local 

minima, decreasing the accuracy of the algorithm as the number of variables increases 

(see APPENDIX C for a definition of accuracy vs. precision). 

Combined GA and SQP Algorithms 

The implementation of GA yields approximate global solutions, while SQP yields 

precise local solutions, thus an effective way to accurately catch the global optimum 
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solution is to incorporate both methods sequentially.  Hereafter generating a solution 

from GA, the obtained approximate global optimal solution is substituted in SQP to 

achieve a precise global minimum. An example will be provided in the case studies to 

prove the necessity of GA in finding global solutions. 

4.4 Optimization Strategy 

It is proposed to perform the optimization using the following strategy: 

1. Describe a workspace by specifying a set of points, and orientations if necessary, in 

space. The workspace can be an arbitrary volume taking the form of a sphere, cube, 

cylinder, or any other shape. 

2. Identify the design parameters of interest and define a manipulator using DH 

parameters in terms of the unknown parameters. Then, generate the kinematic equations 

for the manipulator.  

 The design parameters in this study are the link twists α1, α2, and link lengths l1, 

l2, as shown in Figure 2.3. 

The DH parameters for the 6-DOF manipulator are shown in Table 2.1. If it is 

desired to consider a 3-DOF robot which performs positioning tasks only, the first three 

rows of this DH table represent this robot. 

The resulting link-transformation matrices are described in equations (2.3)—(2.8), 

calculated from (2.1) for i ranging from 1 to n. There will be 6 matrices for a 6-DOF 

reconfigurable manipulator, and 3 for a 3-DOF manipulator. The matrices of latter case 

are equivalent to the first 3 transformations of the 6-DOF case. The resultant forward 

kinematic equations are calculated through (2.2), depending on a 6-DOF (n=6) or a 3-

DOF (n=3) case. 
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3. Solve for an explicit closed-form IK solution for the points in space as a function of the 

design parameters, using Pieper’s method. By substituting the symbolic solutions of the 

joint angles in the objective function, their presence is eliminated from the function, 

making it only dependent on four variables: α1, α2, l1, and l2.  

4. Formulate the optimization problem based on the MPIPS: 

min{ �PS (αi-1, ai-1, θi , ..., αn-1, an-1, θn)} 

                               subject to:    cj(x) = 0  

                                                   ck (x) ≤ 0 

                                                   lb ≤ x ≤ ub 

 

where α, a, and θ are the DH parameters representing the link twists, link lengths, and 

joint angles, respectively. The subscript i = 1 and n = DOF. cj(x) and ck(x) are possible 

linear or non-linear constraints limiting the joint angles, joint rates and joint torques, as 

will be explained thereafter. lb and ub are the lower and upper bounds of the design 

parameters ( lb ≤ {l1, α1, l2, α2} ≤ ub ), respectively, and �PS is the objective cost 

function to be minimized over the predefined workspace volume. Note that the 

workspace volume is not a constraint for the objective function, but rather a means for 

obtaining the IK solution in terms of the design parameters, which is itself constrained by 

cj(x) and ck(x). 

Now, the inequality constraint cj(x) limits the joint-angle range, which is a 

property of the motor design, and the joint rates and joint torques, which are properties of 

the motor power and capacity.  

 The only equality constraint ck(x) is the one assuring that the IK solution (θIK) is 

real. σote that, although Pieper’s method generates an IK solution, it cannot differentiate 

between real and imaginary solutions, as sometimes only imaginary solutions exist. So an 
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equality constraint assuring that only the real solution is chosen is necessary. The 

optimization constraints are tabulated in Table 4.1. 

Finally, as for the situation where the force at the EE is needed to be maximized, 

the only thing that is changed is the objective function, which becomes �Pୗ−ℱ instead of �Pୗ. 

Table 4.1 Optimization bounds and constraints 

cj(x) = 0 isreal(θIK) =1 

ck (x) ≤ 0 θIK - θmax≤ 0 

 - θIK - θmin ≤ 0 

 � ̇ - �̇max ≤ 0 

 - � ̇ - �̇min ≤ 0 

 τ - τmax ≤ 0 

 - τ - τmin ≤ 0 

 

5. Solve the optimization problem using GA in order to approximate the value of the 

global solution. The GA algorithm mainly takes the fitness function, number of design 

parameters, lower and upper bounds on x, nonlinear constraint functions, and some pre-

specified options as inputs.   

  

6. The optimal solution obtained from GA is then forwarded as the initial solution to the 

Sequential Quadratic Programming (SQP) to achieve a precise global optimum point.  It 

should be noted that both GA and SQP have been implemented in the MATLAB 
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environment. The proposed optimization methodology is summarized in the following 

flowchart: 

 

 

Describe a desired 

workspace 

Define an n-DOF 

manipulator and identify 

design parameters (x) 

Determine an explicit 

form of IK solution. θ = 

f(x) 

Formulate objective 

function based on worst 

case �= f(θ,x)= f(x) 

Improve � using GA to 

get approximate global 

solution for x 

Apply SQP to get precise 

global solution for x 

 

Equality and 

inequality 

constraints 

Bounds for 

design 

parameters 

Find � in the desired 

workspace 

 

Figure 4.1 Flowchart for general optimization strategy. 
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4.5 Conclusion 

In this chapter we provided the assumptions considered in simplifying the robot 

model, and presented a generalized methodology in solving the optimization problem. 

The formulation of the optimization problem was also discussed, and the use of 

numerical algorithms to solve this problem was justified. A combined stochastic 

algorithm (GA) and a gradient-based nonlinear optimization algorithm based on SQP 

were proposed to perform the optimization, and the optimization methodology was 

finally summarized in a flowchart. 
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CHAPTER 5  

CASE STUDIES 

5.1 Introduction 

In this chapter, case studies will be presented for both 3-DOF (3R) and 6-DOF 

(6R) reconfigurable manipulators in different workspaces. First, we evaluate the global 

nature of optimization strategy using two case studies: (1) the first case studies the 

existence of multiple local points and the necessity of using combined GA and SQP to 

find accurate global optimum solution, and (2) the second case study deals with the 

validation of presented optimization strategy by comparing the optimal solution with that 

obtained from parametric study. 

Afterwards, cases tackling the different performance criteria will be studied, 

mainly exploiting the use of the manipulability measure and condition number, for 

force/moment maximization capability at the manipulator’s EE, linear/angular velocity 

maximization capability of the manipulator, and joint rate/torque uniformity. The cases 

concerning 3-DOF reconfigurable robots deal with the positional performance regardless 

of the EE’s orientation in the workspace, while the 6-DOF cases consider the positional 

and orientational performance of the robotic manipulator. 

For better representation purposes on the figures, the performance index �Pୗ will 

be denoted by its inverse in order to bound it between 0 and 1 instead of 1 and ∞, as well 

as to represent singularity by a 0 instead of ∞. As for �Pୗ−ℱ , which is a negative 

quantity (See Eq. 3.19), it will be represented by its absolute value on figures. So, the 

larger the |�Pୗ−ℱ| , the better force performance of the robot. In summary, the 
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performance of all cases which minimize �Pୗ  is represented graphically as 1 / �Pୗ , and 

the performance of all cases which minimize �Pୗ−ℱ , is represented graphically as |�Pୗ−ℱ|. 
5.2 Evaluation of Optimization Strategy 

5.2.1 6-DOF Reconfigurable Manipulators  

It is required to check if there are several local minima for the objective function � at hand, resulting in different design parameter solutions with different corresponding 

performances. If this is true, then SQP alone may not be a reliable method for our model, 

and GA implementation for catching global minima would be crucial. Optimization is 

thus performed on a 6-DOF robot with a workspace whose points are shown in Figure 

5.1, and their orientations all possess a rotation matrix described by (0.5, -0.5, 0.5) Euler 

angles with respect to the base frame. The design parameters are bounded such that: −ͻͲ୭ ≤ ଵߙ ≤ ͻͲ୭     −ͻͲ୭ ≤ ଶߙ ≤ ͻͲ୭ .  ͷm ≤ ݈ଵ ≤ ͻm ͷm ≤ ݈ଶ ≤ ͻm 
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Figure 5.1 Set of points defining a cylindrical workspace. The red circle indicates the 

base of the robot. 

 

Using different initial points, SQP has converged to different local optimum 

solutions, while combining GA and SQP has always converged to optimum solutions 

regardless of starting initial point, confirming that global optimum solution has been 

found. Results have been summarized in Table 5.1. 

  

Table 5.1 Robot performance corresponding to SQP and combined GA and SQP 

optimization methods. 

Initial Guess (x0) Method Optimized parameters (x) ͳ / �Pୗ  
[0.0 0.0 5.0 5.0] SQP No feasible Solution N/A 

[1.0 0.0 5.0 9.0] SQP [0           0.134    7.587   7.714] 0.424 

[0.0 0.0 7.5 7.5] SQP [0.149     0.010   9.000   6.258] 0.539 

[-1.0 0.0 9.0 5.0] SQP [-0.981   -0.777   8.815   5.319] 0.638 

N/A GA + SQP  [0.065    1.405    8.795   6.321] 0.705 
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5.2.2 3-DOF Reconfigurable Manipulators 

In order to further ensure that the proposed optimization strategy generates global 

values that minimize the objective function, this methodology has to be benchmarked 

against another technique.  

We choose to employ a method that finds the optimal parameters by simply 

varying the design parameter values and finding the respective robot performances. A 3-

DOF reconfigurable robotic arm was chosen for our comparison, because in a 3-DOF 

case, the EE’s orientation isn’t of any importance. This makes α2 independent of the 

objective function since it is directly attached to the EE, only affecting its orientation. 

Consequently, the design parameters become α1, l1 and l2. A 4D figure can then be 

plotted, with 3 dimensions being α1, l1 and l2, and the 4th dimension (performance or ͳ / �Pୗ ) represented as color. The optimal design parameter combination can finally be 

identified and compared with the results of the proposed optimization strategy. 

Method A: Finding the optimal parameters using the presented optimization strategy. 

By following the steps provided in the flowchart of Figure 4.1, the desired 

workspace is shown in Figure 5.1, and the design parameters are bounded such that −ͻͲ୭ ≤ ଵߙ ≤ ͻͲ୭     ͷm ≤ ݈ଵ ≤ ͻm   ͷm ≤ ݈ଶ ≤ ͻm . 
Optimized design parameters at the worst case �Pୗ = 1.735, are found to be: 

α1= -0.01404 rad 

l1= 8.4476 m 

l2= 6.9851 m 

 

Post-optimality investigation has also been conducted and results are illustrated in Figure 

5.2 and Figure 5.3, which confirm the global nature of the evaluated optimal solution.  
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Figure 5.2 Post-optimization analysis by varying l1 and l2 at a constant α1 shows that the 

optimized link lengths are indeed at the highest performance of the objective function. 

Note the performance is denoted by the inverse of ���. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Post-optimization analysis by varying α1 and α2 with constants link lengths. It 

shows that the optimized link twist  (α1=-0.01404 rad) is at the highest performance of 

the objective function. Notice that varying α2 does not affect the performance. The 

performance is denoted by the inverse of ���. 
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Method B: Finding the optimal solution using parametric study by varying the design 

parameter values. 

The same desired workspace shown in Figure 5.1 is defined. In this method, the 

design parameters are varied between their lower and upper bounds. So a matrix 

comprising of all different values of design parameter vector x = [α1, l1, l2] is generated, 

where the lower and upper bounds of the design parameters are the same as in Method A, 

and the worst case � PS in the workspace is determined for each x. Then, the 

configuration resulting in the best (smallest) � PS of all worst-case performances is 

chosen to be the global solution. Figure 5.4 shows the global solution (black dot), and it 

can be seen that the optimal design parameters are exactly the same as the ones found in 

Method A. 

 Both methods generate the same solution, hence validating the proposed 

optimization strategy of Method A. 

 

 

 

 

 

 

 

 

 

Figure 5.4 Different values of l1, l2, α1, as a function of performance (color). It is seen 

that the best design parameters (black dot) lie in the high-performance region of the 

figure. 
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5.3 3-DOF Reconfigurable Manipulator - Minimize �PS 

The first step in the optimization strategy is specifying a set of points describing a 

workspace, as indicated in Figure 5.5a. The reconfigurable robot is to be optimized for 

link lengths and link twists, and its base is located at the origin. The first 3 rows of Table 

2.1 illustrate the DH parameters. For each point in the workspace, the IK solution (vector 

θIK) is explicitly computed in terms of the DH parameters and substituted in the Jacobian 

matrix. It is noted that the base joint θ1 does not affect the robot’s performance, which is 

reasonable since the first axis does not affect singularities, neither does it affect isotropy 

(Angeles, 2007). Also as mentioned earlier, since the last link is directly connected to the 

EE without any joint offset, α2 cannot have any control over the robot’s performance 

since it only changes the EE orientation. The objective function can be formulated as 

follows: 

 

min{�PS (α1, α2 , l1, l2)} 

                                                     subject to:    isreal(θIK) =1  

                                                                       θmin ≤ θIK ≤ θmax  

                            �̇min  ≤ � ̇ ≤ �̇max 

                                                                       τmin  ≤ τ  ≤ τmax  

                                                                       lb ≤ {α1, α2, l1, l2} ≤ ub 

 

       Notice θ is excluded from the objective function since it is now a function of the 

design parameters α1, l1, and l2. The isreal(θIK) = 1 condition is necessary to guarantee a 

real IK solution, and θIK is clearly bounded between the lower and upper limits (θmin and 

θmax respectively). The joint rates and joint torques should be bounded to prevent motor 

failure, in case an EE velocity or a static force is applied. Finally, the set {α1, α2 , l1, l2} is 

bounded by the lower and upper bounds, lb and ub vectors, such that: −ͻͲ୭ ≤ ଵߙ ≤ ͻͲ୭     
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(13) 

−ͻͲ୭ ≤ ଶߙ ≤ ͻͲ୭ .  ͷm ≤ ݈ଵ ≤ ͻm ͷm ≤ ݈ଶ ≤ ͻm 
 

 The successive GA and SQP optimizations converge at a global minimum of � PS=1.7341, meaning that  � PS cannot be any worse (higher) than 1.7341 in the 

workspace, and this value would be even worse if the optimized design vector x was 

varied. Figures 5.5b-c depict the optimized robot in the workspace, and Figure 5.6 shows 

the performance curve (blue) sorted in ascending order, with the corresponding 

normalized manipulability and inverse condition number. Recall that the performance in 

the figures is represented by the inverse of � PS. So, the optimized worst-case 

performance is about 58%. The mean is 75.1%, and the standard deviation is calculated 

to be 6.3%, indicating that the average performance is high, and its distribution is close to 

the mean. The optimized DH parameters are: 

 . rad l2 = 6.9851 m 0.7576  = 2ߙ rad   l1 = 8.4476 m 0.0140- = 1ߙ 

 

Figure 5.7 shows the optimized robot with its corresponding performance in the 

workspace, and it is apparent that the high-performance (red) region now contains the 

workspace of interest. On the other hand, Figure 5.8 shows the IK solution distribution in 

joint space, verifying that the joint angle occurrences all lie in the high performance 

regions. Furthermore, post-optimization results shown in Figure 5.9 and Figure 5.10 

confirm the existence of a global minimum (or maximum for demonstration purposes). 

Notice that as expected, varying the link twist α2 in Figure 5.10 has no effect on the 

performance. 
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Figure 5.5 (a) Set of points defining a cylindrical workspace. The circle is the robot’s 
base. (b) and (c) depict the 3-DOF optimized robot in the workspace. 

 

 

 

Figure 5.6 The performance curve (blue) of the 3-DOF robot sorted in ascending order 

with the corresponding normalized manipulability and inverse condition number. 

 

 

 

 

(a) Workspace (b) Optimized robot (c) Optimized robot 
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Figure 5.7 Performance of the 3-DOF robot in Cartesian space. The visible dots indicate 

boundaries of the workspace. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 The IK distribution of the optimized 3-DOF robot in joint space. The black 

dots, indicating the IK solutions of θ2 and θ3, are located in the high performance regions. 
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Figure 5.9 Post-optimization analysis by varying l1 and l2 at a constant α1 shows that the 

optimized link lengths are at the highest performance of the objective function. 

 

 

Figure 5.10 Post-optimization analysis by varying α1 and α2 with constants link lengths, 

shows that the optimized link twists are at the highest performance. 
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5.4 6-DOF Reconfigurable Manipulator - Minimize �PS 

The minimization of the �PS index (MPIPS) is expected to maximize the EE 

Cartesian velocity making the manipulability ellipsoid as spherical as possible, or 

minimize the joint rates, making their distribution as uniform as possible. Again, we first 

need to specify a set of points describing a workspace. For this example, the chosen 

workspace is described by a set of points and orientations. The positional workspace is a 

cube as shown in Figure 5.11, and the point orientations possess rotation matrices such 

that the EE is always directed perpendicular to the surface of the cube and pointing 

inwards. The robot is to be optimized for link lengths and link twists, and its base is 

located at the origin. Table 2.1 illustrates the robot’s DH parameters. 

As for the IK solution (vector θIK), it is computed symbolically in a closed form 

using Pieper’s method, as was described previously and will be done in later examples.  

 

The objective function can now be formulated as follows, using the �PS index: 

min{ �PS (α1, α2 , l1, l2)} 

                                                     subject to:    isreal(θIK) =1  

                                                                       θmin ≤ θIK ≤ θmax  

                            -ͳ ra�/s  ≤ � ̇ ≤ ͳ ra�/s 

                                                                       -15 N.m  ≤ τ  ≤ 15 N.m  

                                                                       lb ≤ {α1, α2, l1, l2} ≤ ub 

 
 

The joint rates and joint torques are constrained to avoid any motor failure. Finally, the 

design parameters should be also bounded such that: −ͻͲ୭ ≤ ଵߙ ≤ ͻͲ୭     −ͻͲ୭ ≤ ଶߙ ≤ ͻͲ୭ .  ͷm ≤ ݈ଵ ≤ ͻm ͷm ≤ ݈ଶ ≤ ͻm 
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(13) 

 The optimization converges at a global minimum of �PS=1.4803 for worst-case 

performance, and Figure 5.12 illustrates the optimized robot in the workspace. Figure 

5.13 shows the performance curve sorted in ascending order, with the corresponding 

normalized manipulability and inverse condition number. We can extract the following 

information from the figure: the optimized worst-case performance is about 68% with an 

RMS value of 72%, and a standard deviation of 3.8%. These values clearly indicate a 

consistently high manipulability performance for the optimized robot, inside the pre-

specified workspace. The optimized DH parameters are: 

 . rad l2 = 6.4206 m 1.0570- = 2ߙ rad   l1 = 8.0557 m 0.3835- = 1ߙ 

 

Comparably to the previous example, Figure 5.14 shows that the desired 

workspace is now in the high-performance (red) region. On the other hand, Figure 5.15 

validates that the IK solution lies within its lower and upper boundaries, and Figure 5.16 

shows the IK solution distribution in joint space of θ2 and θ3, verifying that the joint angle 

occurrences all lie in the high performance regions. Furthermore, post-optimization 

results shown in Figure 5.17 and Figure 5.18 confirm the existence of a global minimum 

(recall that as we portray performance by the inverse of �PS, the inverse of the minimum 

is a maximum). 

Now, in order to show that the joint rate requirement is minimized, the RMS joint 

torque and joint rate are calculated from equations (2.29) and (2.31) for two different 

cases applied on the EE, as shown below:  
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Static force  [  
   ͳͳͳͲͲͲ]  

    ܰ �ோெௌ = [  
   ͳʹ.ʹ͹ͳͺ.͵Ͷͻ͹ͺ.ͺ͵ͺʹͲͲͲ ]  

    ܰ.݉ 

Velocity       [  
   ͳͳͳͲͲͲ]  

    m/s                  �̇ୖMୗ = [  
   Ͳ.ͳͲ͸ͶͲ.ͲͷͲʹͲ.ʹͲ͹ͻͲ.ͳ͹ͶͷͲ.Ͳ͸ʹͲͲ.ͳͺͲͳ]  

     rad/s 

 

Note that the joint torques and rates are still between their lower and upper 

bounds, but the torque requirement is high. These values are to be retained for future 

comparison with the results of minimizing the �Pୗ−ℱ index. Also, notice the uniformity 

of joint rate distribution, for the corresponding optimized design parameters on Figure 

5.19.  

 

 

 

 

 

 

Figure 5.11 Set of points and orientations defining a cubic workspace. The red circle is 

the robot’s base.  

 

Eq. (2.29) 

Eq. (2.31)  
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Figure 5.12 The 6-DOF optimized robot in Cartesian workspace. 

 

 

Figure 5.13 The performance curve of the 6-DOF robot sorted in ascending order with 

the corresponding normalized manipulability and inverse condition number. 
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Figure 5.14 Performance of the 6-DOF robot in Cartesian space. The visible dots indicate 

boundaries of the workspace. 

 

Figure 5.15 IK solution for the first 3 joints, indicating that the IK solution conformed to 

the joint angle constraints.  
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Figure 5.16 The IK distribution of the optimized 6-DOF robot in joint space. The black 

dots, indicating the IK solutions of θ2 and θ3, are located in the high performance regions. 

Note that the color map is changed here for clearer comparison with the subsequent case. 

 

Figure 5.17 Post-optimization analysis by varying l1 and l2 at a constant α1 shows that the 

optimized link lengths are at the highest performance of the objective function. 
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Figure 5.18 Post-optimization analysis by varying α1 and α2 with constants link lengths, 

shows that the optimized link twists are at the highest performance. 

 

  
Figure 5.19 Joint rate distribution in the workspace, sorted in ascending order. 
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(13) 

5.5 6-DOF Reconfigurable Manipulator – Minimize ���−� 

The �Pୗ−ℱ  index is expected to minimize the joint torques, making their 

distribution as uniform as possible. Similarly to the previous example, a set of points are 

specified to describe a workspace. For this example, the positional and orientational 

workspace chosen is the same as the previous case, shown in Figure 5.11. The robot is 

again to be optimized for link lengths and link twists, and its base is located at the origin. 

Clearly, the DH table does not change, and is represented in Table 2.1. 

For each point in the workspace, the IK solution is explicitly computed in terms 

of the DH parameters and substituted in the Jacobian matrix. The objective function can 

now be formulated using the �Pୗ−ℱ  index subject to the same equality and inequality 

constraints as the previous example: 

min{ �Pୗ−ℱ(α1, α2 , l1, l2)} 

                                                     subject to:    isreal(θIK) =1  

                                                                       θmin ≤ θIK ≤ θmax  

                            -ͳ ra�/s  ≤ � ̇ ≤ ͳ ra�/s 

                                                                       -15 N.m  ≤ τ  ≤ 15 N.m  

                                                                       lb ≤ {α1, α2, l1, l2} ≤ ub 

 

and the set {α1, α2 , l1, l2} is bounded such that: −ͻͲ୭ ≤ ଵߙ ≤ ͻͲ୭     −ͻͲ୭ ≤ ଶߙ ≤ ͻͲ୭ .  ͷm ≤ ݈ଵ ≤ ͻm ͷm ≤ ݈ଶ ≤ ͻm 
 
 

 The combined GA and SQP optimization algorithm converges at a global 

minimum of �Pୗ−ℱ =-1.2384. This value means that the worst |�Pୗ−ℱ|  in the pre-

specified workspace is 1.2384. As a side note, contrary to minimizing �Pୗ to 1, |�Pୗ−ℱ| 
is to be maximized. Our obtained value is the best value the optimized robot can achieve 
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at the worst point of the workspace. Changing the entries of the optimized design vector 

would  generate a smaller |�Pୗ−ℱ|, hence a lower force performance. Figure 5.20 depicts 

the optimized robot in the workspace. Note that Figure 5.21 shows the performance curve 

sorted in ascending order, with the corresponding normalized manipulability and inverse 

condition number. The RMS performance is 1.55, and the standard deviation is calculated 

to be 0.27. The optimized DH parameters are found to be: 

 . rad l2 = 9.0000 m 1.2463- = 2ߙ rad   l1 = 9.0000 m 1.6399 = 1ߙ 

 

Figure 5.22 shows the optimized robot with its corresponding performance in the 

workspace, and it is apparent that the high-performance (red) region now contains the 

workspace of interest. The IK solution is also confirmed to lie within the given joint 

angle bounds as shown in Figure 5.23, and Figure 5.24 shows its distribution in joint 

space, verifying that the joint angle occurrences all lie in the high performance regions. 

Furthermore, post-optimization results shown in Figure 5.25 and Figure 5.26 confirm the 

existence of a global minimum (or maximum in the case of |�Pୗ−ℱ|). 
Now, in order to show that the joint torque requirement is minimized, the RMS 

joint torque and joint rate are calculated from equations (2.29) and (2.31) for two 

different cases applied on the EE, as shown below:  

 

 

Static force:  [  
   ͳͳͳͲͲͲ]  

    ܰ �ோெௌ = [  
   ʹ.ͻ͹ͺʹͶ.ͶͷͷͶͳʹ.͸ͺͲͲͲͲ ]  

    ܰ.݉ 
Eq. (2.29) 
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Velocity:      [  
   ͳͳͳͲͲͲ]  

    m/s                  �̇ୖMୗ = [  
   Ͳ.Ͳͺ͵ͻͲ.ͳ͵͹ͶͲ.ʹͳ͸ͶͲ.ͷͷͳ͹Ͳ.ͳʹͶͶͲ.Ͷ͹ͳ͵]  

     rad/s 

 

Note that the joint torques and rates are still between their lower and upper 

bounds. Comparing these two values with the previous case, it can be seen that the RMS 

value of the joint torques here is lower than when using �Pୗ. Conversely, the RMS value 

of the joint rates here is higher than when using �Pୗ. The difference between the two 

indices �Pୗ and �Pୗ−ℱ is thus now clear. Also, notice the uniformity of joint torque 

distribution for the corresponding optimized design parameters on Figure 5.27. 

 

 

Figure 5.20 The 6-DOF optimized robot in Cartesian workspace. 

 

Eq. (2.31)  
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Figure 5.21 The performance curve of the 6-DOF robot sorted in ascending order with 

the corresponding normalized manipulability and inverse condition number. 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Performance of the 6-DOF robot in Cartesian space. The visible red dots 

indicate boundaries of the cube. Note that the scale has been multiplied by its negative 

inverse for better illustration, making the red region equivalent to high performance, and 

blue region low performance. 
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Figure 5.23 IK solution for the first 3 joints, indicating that the IK solution conformed to 

the joint angle constraints.  

 

 

 

 

 

 

 

 

Figure 5.24 The IK distribution of the optimized 6-DOF robot in joint space. The black 

dots, indicating the IK solutions of θ2 and θ3, are located in the high performance regions.  
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Figure 5.25 Post-optimization analysis by varying l1 and l2 at a constant α1 shows that the 

optimized link lengths are at the highest performance of the objective function. 

 

 

Figure 5.26 Post-optimization analysis by varying α1 and α2 with constants link lengths, 

shows that the optimized link twists are at the highest performance. 
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Figure 5.27 Joint torque distribution in the workspace, sorted in ascending order. 

 

5.6 6-DOF Reconfigurable Manipulator – Minimize �/��ࢇ�  
In this case, the force manipulability ellipsoid is to be maximized by minimizing 

the Yoshikawa index only. This will minimize the robot’s velocity manipulability, but 

will maximize its force manipulability. After specifying a set of points and orientations in 

the desired workspace as shown in Figure 5.11 and described previously, the robot is to 

be optimized for link lengths and link twists, with its base located at the origin. 

The same procedure shown in Table 4.1 is followed, with the exception of the 

objective function, which is now formulated as follows, using the W/W௠௔௫  index: 

min{ W/W௠௔௫ (α1, α2 , l1, l2)} 

                                                     subject to:    isreal(θIK) =1  

                                                                       θmin ≤ θIK ≤ θmax  

                            -ͳ ra�/s  ≤ � ̇ ≤ ͳ ra�/s 

                                                                       -15 N.m  ≤ τ  ≤ 15 N.m  

                                                                       lb ≤ {l1, l2} ≤ ub 

 
 

and the set {l1, l2} is bounded by the lower and upper bounds, lb and ub vectors, such 
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(13) 

that: ͷm ≤ ݈ଵ ≤ ͻm ͷm ≤ ݈ଶ ≤ ͻm 
 
 

 The optimization algorithm converges at a global minimum of W/W௠௔௫= 0.2319 

for worst-case performance. We are interested in determining the force manipulability 

ellipsoid of the robot, as well as the velocity manipulability ellipsoid. Afterwards we 

desire to compare it with an opposing case that maximizes the velocity only. 

The optimized worst-case performance here is 23.19%. This is the highest 

manipulability in the desired workspace, i.e. the worst force manipulability. So the 

volumes of the normalized velocity and force ellipsoid are both illustrated in Figure 5.28. 

The following information can be extracted from the figure: 

RMS volume of velocity manipulability    =  0.18131 

RMS volume of force manipulability         =  7.4298 

Worst volume of velocity manipulability   =  0.077794 

Worst volume of force manipulability        =  4.3216 

 

The optimized DH parameters are found to be: 

 . rad l2 = 6.9790 m  1.2895- = 2ߙ rad   l1 = 5.9740 m   1.6559 = 1ߙ 

 

Now, the normalized manipulability index (W/W௠௔௫) is expected to minimize the 

joint torques maximizing the force manipulability ellipsoid volume. In order to show that 

the joint torque requirement is minimized, the average joint torque and joint rate are 

calculated from equations (2.29) and (2.31) for two different cases applied on the EE, as 

shown below:  
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Static force  [  
   ͳͳͳͲͲͲ]  

    ܰ �ோெௌ =
[  
   ͷ.͵͵ͳͷ͸.ͷͶͻ͵͸.͵ʹͻͺͲͲͲ ]  

    ܰ.݉ 

Velocity      [  
   ͳͳͳͲͲͲ]  

    m/s                  �̇ୖMୗ = [  
   Ͳ.Ͷͳ͸͵Ͳ.ͳʹͶ͸Ͳ.͸͹͹͹Ͳ.ͷͶͻʹͲ.ͳ͹Ͳ͹Ͳ.Ͷ͹ͳͺ]  

     rad/s 

 

 

 

It is noted that the joint torques and rates are still between their lower and upper 

bounds. These values are to be retained for future comparison with the results of 

maximizing the W/W௠௔௫ index (or minimizing W/W௠௔௫). 

 

Figure 5.28 Volumes of the normalized velocity and force ellipsoid. 

Eq. (2.29) 

Eq. (2.31) 
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(13) 

5.7 6-DOF Reconfigurable Manipulator – Maximize �/��ࢇ�  
In this case, the velocity (manipulability) is to be maximized by maximizing the 

Yoshikawa index only. This will minimize its force manipulability. After specifying a set 

of points and orientations in the desired workspace as described previously, the robot is 

to be optimized for link lengths and link twists, with its base located at the origin. The 

exact procedure as the latter case is followed, with only the difference in the objective 

function, which can now be formulated as follows, using the W/W௠௔௫  index: 

min{−W/W௠௔௫ (α1, α2 , l1, l2)} 

                                                     subject to:    isreal(θIK) =1  

                                                                       θmin ≤ θIK ≤ θmax  

                            -ͳ ra�/s  ≤ � ̇ ≤ ͳ ra�/s 

                                                                       -15 N.m  ≤ τ  ≤ 15 N.m  

                                                                       lb ≤ {l1, l2} ≤ ub 

 

and the set {l1, l2} is bounded by the same values as the latter case. 

 

 The successive GA and SQP optimizations converge at a global minimum of W/W௠௔௫= 0.7299 for worst-case performance. Again, we are interested in determining 

both the velocity and force manipulability ellipsoids. Afterwards we desire to compare 

them with the previous case that maximized the force only. 

The optimized worst-case performance here is about 73%. This is the worst 

manipulability in the desired workspace. So the volumes of the normalized velocity and 

force ellipsoid are both illustrated in Figure 5.29. The following information can be 

extracted form the figure: 

RMS volume of velocity manipulability    =  0.8365 

RMS volume of force manipulability         =  1.2223 

Worst volume of velocity manipulability   =  0.73076 

Worst volume of force manipulability        =  1.0536 
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The optimized DH parameters are:  

 . rad l2 = 6.6600 m  2.2645 = 2ߙ rad   l1 = 6.9744 m  2.9139 = 1ߙ 

 

Now, contrary to the latter case, the normalized manipulability index (W/W௠௔௫) 

is expected to minimize the joint rates maximizing the manipulability ellipsoid volume. 

In order to show that the joint rate requirement is minimized, the RMS joint torque and 

joint rate are calculated from equations (2.29) and (2.31) for two different cases applied 

on the EE, as shown below:  

Static force  [  
   ͳͳͳͲͲͲ]  

    ܰ �ோெௌ = [  
   ͻ.͵ʹʹ͹ͺ.͵ͷͻͳʹ.ͻ͵ͶͷͲͲͲ ]  

    ܰ.݉ 

Velocity      [  
   ͳͳͳͲͲͲ]  

    m/s                  �̇ୖMୗ =
[  
   Ͳ.ͳͳͷͲͲ.ʹ͵͵͹Ͳ.͵Ͷ͸ͶͲ.ͳͳ͵͸Ͳ.ͲͶͺ͹Ͳ.ͲͷͲͲ]  

     rad/s 

 

 

 

Note that the joint torques and rates are still between their lower and upper 

bounds. Comparing these two values with the previous case, it can be seen that the RMS 

value of the joint torques here is higher than when minimizing W/W௠௔௫. Conversely, the 

RMS value of the joint rates here is lower than when minimizing W/W௠௔௫.  

 

 

Eq. (2.29) 

Eq. (2.31) 
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(11) 

 

Figure 5.29 Volumes of the normalized velocity and force ellipsoid. 

 

5.8 Conclusion 

As a conclusion to the case studies, one can say that that a compromise between 

velocity maximization and force maximization should be taken, according to the task that 

the robot is desired to perform. Hence, a weighted objective function is suggested to be 

formulated as follows:  

min{uଵ�Pୗ+ uଶ�Pୗ−ℱ} 

                                                     subject to:    isreal(θIK) =1  

                                                                       θmin ≤ θIK ≤ θmax  

                             �̇min ≤ � ̇ ≤  �̇max  

                                                                       τmin ≤ τ  ≤ τmax  

                                                                       lb ≤ {α1, α2, l1, l2} ≤ ub 

 

where u1 and u2 are the weight coefficients of �Pୗ and �Pୗ−ℱ, respectively. If a task 

demands high velocity and agility, more weight is emphasized on �Pୗ . As for tasks 

demanding large forces, more weight is stressed on �Pୗ−ℱ.  
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this study, a generic algorithm for optimizing reconfigurable manipulators, 

based on a novel modification and global posture-independent implementation of the 

parameter of singularity, was presented. This new index was termed the modified 

posture-independent parameter of singularity (MPIPS). Optimization was essentially 

carried out using combined GA and SQP to catch the global optimal solution accurately. 

The strategy is designed to optimize the DH parameters of a serial robotic manipulator 

over a pre-specified workspace volume, given several inequality constraints on the design 

parameters. Several criteria have been tackled, based on the measures of manipulability 

and isotropy.  

Afterwards, a preliminary study was discussed involving force maximization at 

the EE. It was seen that maximizing the manipulability index could either maximize the 

velocity ellipsoid or the force ellipsoid. For the case that required uniformity of joint 

rate/torque distribution, �௉ௌ has been necessarily altered to �௉ௌ−ℱ in order to maintain 

this uniformity.  

Different optimization case studies using �௉ௌ  and �௉ௌ−ℱ  are provided for 3-

DOF and 6-DOF reconfigurable manipulators. Results were illustrated to demonstrate the 

performance of the generated manipulators, and were validated. Post-optimality analysis 

was also conducted to investigate the sensitivity of the index to the variation in optimal 

parameters.  
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Finally, a weighted objective function that balanced between the opposing actions 

of �௉ௌ and �௉ௌ−ℱ was concluded. The designer was given the freedom to place more 

weight on the primary index of interest accordingly. 

6.2 Future Work 

Since the indices used in performance evaluation are kinetostatic indices (dealing 

with kinematics and statics), there will be a need for studying the dynamics of the robot 

at hand. 

As for the robot’s physical properties (length, cross-section diameter, material 

etc.), these could be taken into account for dynamic and stress optimization too. 

The model can also incorporate a more thorough torque and joint rate analysis, 

especially with trajectory planning.  

Obstacle avoidance inside the desired workspace could be taken into account for 

future work. 

Finally, for practical but more complex applications, the assumptions that were 

considered in the study can be integrated in the calculations, resulting in more accurate 

and precise calculations.  
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APPENDIX A 

SIGNIFICANCE OF THE CONDITION NUMBER 

 The condition number of an n × n matrix A is 

cond(A) = |||A||| · |||A-1|||. 

This number tells us how accurate we can expect the vector x when solving a system of 

equations A · x = b. We assume that there is an error in representing the vector b, call it 

Ȝ and otherwise the solution is given to absolute accuracy. That is we solve A · x = b + 

Ȝ and get a solution x + ț where x is the solution of Ax = b. 

How does the condition number help estimate the number ț? We note that  

x + ț = A−1(b + Ȝ) = A−1b + A−1
Ȝ. 

Since A−1b = x, this gives us the following equation for ț.  

ț = A−1 · Ȝ 

||ț|| ≤ |||A−1||| · ||Ȝ|| 

So, the condition number for the magnitude of the absolute error ț for such a calculation 

is just the operator norm, |||A−1|||. 

On the other hand, the relative error is given by ||ț|| / ||x||. For the relative error we 

simply divide the above inequality by the norm of x to get the following inequality.  ||ț|| ||ݔ|| ≤  |||A−ଵ|||  ·  ||Ȝ||||ݔ||  

However, from the definition of the norm of A, 
||A.௫||||௫||  ≤ |||A||| and Ax = b. So, 

||b|| ≤ |||A||| · ||x||. Thus, combining these inequalities we get the following. 
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||ț|| ||ݔ|| ≤  |||A−ଵ|||  ·  ||Ȝ||||ݔ|| ≤  |||A |||  ·  |||A−ଵ|||  ·  ||Ȝ|||||A ||| · ||ݔ|| =  con�ሺAሻ ·  ||Ȝ|||| b || 
So, in solving the equation Ax = b, the relative error in the solution divided by the 

relative error in the right-hand-side vector is given by the condition number of A. The 

following rule of thumb is a useful way to express the above estimate. It states that if m = 

log10 (cond(A)), then m is the number of digits accuracy lost in solving the system of 

equations Ax = b. There is typically additional error due to the many calculations needed 

in solving the equations. The estimate for additional losses is given by log10(n) if the 

matrix A is n × n. 
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APPENDIX B 

VECTOR AND MATRIX NORMS 

B.1 Euclidean Norm 

 The Euclidean norm |x| (also called the l2 – norm) is a vector norm defined for 

a complex vector 

� =  |௡ݔ ڭଶݔଵݔ|
By 

|x| = √∑ |xk|ଶ୬
k=ଵ  

 

where |xk| on the right denotes the complex modulus. The Euclidean norm is the vector 

norm that is commonly encountered in vector algebra and vector operations (such as the 

dot product), where it is commonly denoted |x|. However, if desired, a more explicit (but 

more cumbersome) notation |x|ଶ can be used to emphasize the distinction between 

the vector norm |x| and complex modulus |z| together with the fact that the Euclidean 

norm is just one of several possible types of norms. 

 For real vectors, the absolute value sign indicating that a complex modulus is 

being taken on the right of equation (2) may be dropped. So, for example, the Euclidean 

norm of the vector  
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� =   |ଷݔଶݔଵݔ|
is given by 

x = √ሺxଵଶ + xଶଶ + xଷଶሻ (3) 

 As for the special case of square matrices, the induced matrix norm is called 

the spectral norm. The spectral norm of a matrix A is the largest singular value of A i.e. 

the square root of the largest eigenvalue of the positive-semidefinite matrix ATA: 

||A||ଶ = √λ୫ax  ሺA୘Aሻ = σ୫ax  ሺAሻ 

where AT denotes the conjugate transpose of A. 
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B.2 Frobenius Norm 

The Frobenius norm, sometimes also called the Euclidean norm (which may cause 

confusion with the above vector l2-norm which also known as the Euclidean norm), 

is matrix norm of an m x n matrix A defined as the square root of the sum of the absolute 

squares of its elements, 

ி||ܣ|| = √∑∑|�௜௝|ଶ௡
௝=ଵ

௠
௜=ଵ  

(Golub & Van Loan, 2012)  

The Frobenius norm can also be considered as a vector norm. It is also equal to the square 

root of the matrix trace of ATA, where AT is the conjugate transpose, i.e., 

ி||ܣ|| =  ሻ்ܣܣሺ�ݐ√
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B.3 Chebyshev Norm 

Also known as the uniform norm, supremum norm, or infinity norm (l ∞-norm) 

In particular, for the case of a vector 

� =   |௡ݔڭଶݔଵݔ|
in finite dimensional coordinate space, the Chebyshev norm takes the form: ||ݔ||∞ = max {|ݔଵ|, ,|ଶݔ| … ,  {|௡ݔ|
In the Chebyshev norm, the distance between two sets of points or two lines is just the 

largest distance between any pair of points or the separation between two lines at the 

point where they are the farthest apart. A Chebyshev approximation minimizes the 

maximum distance between the data and the approximating function, hence the 

occasional name minimax approximation (Bock & Krischer, 1998) 
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APPENDIX C 

DEFINITIONS 

Kinetostatic performance: the kinematic (related to velocity) and static (related to 

forces) performance of a manipulator. 

Transcendental equations: are equations that contain transcendental functions, i.e. 

functions that are not algebraic. Examples include trigonometric, exponential, and 

logarithmic functions. 

Z-Y-Z Euler angles: is a method to describe a frame {B} with respect to frame {A}, 

using three rotations about Z then Y then Z axis, all relative to frame {B}. 

Given that a rotation matrix  

�௓′௒′௓′ሺ஻஺ Ƚ, Ⱦ, γሻ = [ �ଵଵ �ଵଶ �ଵଷ�ଶଵ �ଶଶ �ଶଷ�ଷଵ �ଷଶ �ଷଷ] 
already exists, the Z-Y-Z Euler angles can be extracted from that matrix using the 

following formulas: 

If sin(β) ≠0, 

ߚ = Atanʹሺ√�ଷଵଶ + �ଷଶଶ , �ଷଷሻ 

ߙ = Atanʹሺ�ଶଷ/sin ሺߚሻ, �ଵଷ/sin ሺߚሻሻ ߛ = Atanʹሺ�ଷଶ/sin ሺߚሻ, −�ଷଵ/sin ሺߚሻሻ 

If β = 0, ߚ = Ͳ ߙ = Ͳ ߛ = Atanʹሺ−�ଵଶ, �ଵଵሻ 
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If β = 1800, ߚ = ͳͺͲ° ߙ = Ͳ ߛ = Atanʹሺ�ଵଶ, −�ଵଵሻ 
Newton’s method: a method that uses the second order derivative of a function at each 

step starting from an initial design parameter guess x0, to find the direction that takes it a 

step closer towards the minimum (or maximum for - f(x) or 1/f(x) ) of that function, until 

local convergence is attained after n iterations, at a stationary point xn. 

Lagrangian function: a method for finding the local minima/maxima of 

a function subject to equality constraints. 

KKT conditions: are first order necessary conditions for finding the local 

minima/maxima of a function subject to equality and inequality constraints. These 

conditions generalize the Lagrangian function, which can also take into account inequality 

constraints. 

Quadratic Programming: is the optimization of a quadratic function subject to linear 

constraints. 

Accuracy: is the nearness of an actual value to the true value.   

Precision: is the closeness of repeated measurements, given that the same conditions are 

maintained. 
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