
5.F f f;,'--az , (:j 1 . . - .I .-., .:> ,".". .,>!.,!,,:lfi - Release nate B,,;

National Aeronautics and Space Administration P- 70
Small Business Innovation Research Program

Phase I1 Final Report

"Control Algorithm Implementation For A Redundant
Degree Of Freedom Manipulator"

Prepared For:

Jet Propulsion Laboratory
ATTN: Dr. Neville Marzwell, MIS 198-21 9

4800 Oak Grove Drive
Pasadena, CA 9 1 109

Prepared By:

Odetics, Inc.
1515 S. Manchester Ave.

Anaheim, CA 92802

Contract No. NAS7- 1062

October 13, 1991

(NASA-CR-191339) CONTROL A L G O R I T H M N94-13131
IMPLEMENTATION FOR A REDUNDANT
DEGREE OF FREEDOM MANIPULATOR Final
Report, 13 Jul. 1989 - 13 O c t . 1991 Unc 1 as
(Odetics) 90 p

https://ntrs.nasa.gov/search.jsp?R=19940008658 2020-06-16T21:44:13+00:00Z

Project Summary

This project's purpose is to develop and implement control algorithms for a kinematically
redundant robotic manipulator. The manipulator is being developed concurrently by
Odetics Inc., under internal research and development funding. This SBIR contract
supports algorithm conception, development, and simulation, as well as software
implementation and integration with the manipulator hardware.

The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator
being developed for space and commercial applications. It has seven fully active degrees
of freedom, is electrically powered, and is fully operational in 1 G. The manipulator
consists of five self-contained modules. These modules join via simple quick-disconnect
couplings and self-mating connectors which allow rapid assembly/disassembly for
reconfiguration, transport, or servicing. Each joint incorporates a unique drivetrain design
which provides zero backlash operation, is insensitive to wear, and is single fault tolerant
to motor or servo amplifier failure. The sensing system is also designed to be single fault
tolerant. Although the initial prototype is not space qualjfied, the design is well-suited to
meeting space qualification requirements.

The control algorithm design approach is to develop a hierarchicaI system with well
defined access and interfaces at each level. The high level endpoint/co~guration control
algorithm transforms manipulator endpoint position/orientation commands to joint angle
commands, providing task space motion. At the same time, the kinematic redundancy is
resolved by controlling the configuration (pose) of the manipulator, using several different
optimizing criteria. The center level of the hierarchy servos the joints to their commanded
trajectories using both linear feedback and model-based nonlinear control techniques. The
lowest control level uses sensed joint torque to close torque servo loops, with the goal of
improving the manipulator dynamic behavior. The control algorithms are subjected to a
dynamic simulation before implementation.

The manipulator control hardware is a VME bus-based multiprocessor computing system.
Software, which is entirely written in the C language, is developed under UNIX on a
workstation host computer and executed on the embedded controller using a real time
operating system.

The report discusses the control system implementation, system integration, and
performance evaluation in detail.

Potential applications exist in both the space and terrestrial domains. Many of the system's
sizing and fault tolerance characteristics are chosen to be consistent with space
applications such as satellite servicing, refueling, and space assembly. Terrestrial
applications may include handling of hazardous materials in unstructured environments.
In addition, the system's modularity encourages the development of simpler reduced
degree of freedom mechanisms for specific applications.

TABLE OF CONTENTS
1.0Introduction .. 7

....................... .. 1.1 Background ... 7
.. 1.2 Motivation 8

.. 1.3 Phase I Work 8
... 1.4 Phase II Proposal 9

1.5 Contract Dcliverables .. 9
2.0 The Odetics Dexterous Manipulator 10

2.1 Objectives .. 10
.. 2.2 Design 10

... 2.2.1 Kinematics 12
.. 2.2.2 Joint Modules -13

.. 2.2.3 Actuators and Transmission 14
... 2.2.4 Sensors 1 5

3.0 Control System Technical Description 1 6
.. 3.1 Architecture -16

.. 3.2 Algorithms -18
.. 3.2.1 Trajectory Generation 20

3.2.2 Endpoint / Configuration Control .. 20
................................ 3.2.2.1 Endpoint Algorithm Development 22

.. 3.2.3 Joint Level Control 29
... 3.2.3.1 Modelling -29

3.2.3.2 Joint Torque Servo Control ... 33
3.2.3.3 Backlash Elimination ... 40
3.2.3.4 Linear Positioflate Feedback Control 42
3.2.3.5 Model Based Compensation ... 48
3.2.3.6 Adaptive Control .. 49

... 3.3 Simulation 50
.. 3.3.1 Manipulator Modelling 51

.. 3.3.2 Simulation Code 51
3.3.3 Manipulator Inertial Properties 52
3.3.4 Dynamic Simulation Results .. 53

... 4.0 Control System Implementation 62
4.1 Hardware .. 62

4.1.1 Processors ... -64
.................................. 4.1.2 Data Acquisition and Interface Electronics 65

4.2 Software ... 66
4.2.1 Architecture ... 66
4.2.2 Execution Control ... -67

4.2.2.1 Asynchronous Processes ... 67
4.2.2.2 Endpoint and Joint Position Control 68
4.2.2.3 Joint Torque Control ... 69
4.2.2.4 Watchdog Process ... 69

... 4.2.3 Shared Memory Interface 70

.. 4.2.4 User Interface -7 1
... 4.2.5 Data Logging and Plotting 71

.. 4.3 Operating the Manipulator .72
5.0 Control System Evaluation .. 75

5.1 Subsystem Performance75
... 5.1.1 Joint Torque Servoing -75

... 5.1.2 Position / Rate Servoing -81
.. 5.1.3 Backlash Elimination -84

.. 5.1.4 Endpoint Algorithm .84
.. 5.2 Manipulator Performance -85

5.2.1 Mechanical Design Goals .. 85
.. 5.2.2 Payload Capability -85

.. 5.2.3 Endpoint Speed 86
... 6.0 Conclusions and Recommendations 87

.. 6.1 Observations 87
... 6.2 Further Development Activities .87

6.2.1 Noncollocated Flexible Dynamics Compensation 88
.. 6.2.2 Unilateral and Bilateral Teleoperation.. -88

.. 6.2.3 Path Planner Integration .89
... 7.0 References 90

4
LEE OR DIS(LOSURti OF DATA CONT- ON TMlS SHEET B SlJBJRT 'IHti RETJRICIION ON ll5 TITLE PAQE W TIUS DOCUMPIT.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 3 1
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39

LIST OF FIGURES
.. The Odetics Dexterous Manipulator 1 2

.. System Architecture -17
... Control Algorithm Structure 1 9
.. Endpoint Algorithm Structure -26

... Joint Actuator Schematic 30
... Lumped Motor / Drivetrain Model -32

... Generic Torque Servo -34
... Torque Servo Design Plant -36
... Torque Servo Compensator -37

... Continuous Compensated Plant 37
... Discrete Compensated Plant -38

Continuous Compensated Plant (Nichols Plot) 38
Continuous Closed Loop Torque Response ... 39
Discrete CIoscd Loop Torque Response .. 39

..................................... Open Loop Position Response with Torque Loop 40
.. Anti-backlash Algorithm 4 1

........................*........... Position/Rate Feedback Loop -42
Plant with PD Position Loop Compensation ... 43
Nichols Plot, Compensated Plant.. A
Position Response to External Torque .. .44

... Closed Loop Velocity Response -45

... Closed Loop Position Response 45
Position Step Response .. 46
Plant with PID Position Loop Compensation ... 47
Position Response to External Torque with PID Comp 47
Closed Loop Position Response with PID Comp 48

.. Simulation Run 1 -54

.. Simulation Run 2 -54
Simulation Run 3 ... 55
Adaptive Control, Run 1; Joint Tracking .. 57

... Adaptive Control, Run 1; Position Error Gains 57
Adaptive Control, Run 1; Velocity Error Gains ... 58
Adaptive Control, Run 2; Joint Tracking ... 59
Adaptive Control, Run 2; Position Error Gains .. .59
Adaptive Control, Run 2; Velocity Error Gains ... 60
Same Motion, Model-Based PD Control; Joint Tracking 61
Control System Physical Layout 63

.. Control Hardware Architecture -64
... Sofrware Architecture -67

5
168 OR DECLOSURB OF DATA CONTMNB) ON THIS SHEm LS SUB- TO TIE REYIWCITON ON 'IHti lTllI PAGE OF'XYfIS -.

Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50

RDOFB State Diagram ... 69
Control Station Main Panel. .. 72
Single Joint Mode Panel73
Configuration Control Parameter Panel .. .73
Torque Sensor Data, Shoulder Module .. 76
Power Spectnun, Shoulder Module ... 76
Torque Sensor Data, Upper Arm Roll Module, Instm. Ring Gear 78
Power Spectnun, Upper Arm Roll Module, Instnunented Ring Gear 79
Power Spectrum, Upper Arm Roll Module, Solid Ring Gear 80
Upper Ann Roll Module Vibration; Bench Test 8 1
Manipulator Vibration Power Spectrum ... -82

V

1.0 Introduction

1.1 Background

For years, researchers in robotics have focused a large effort on the study of manipulators
with redundant degrees of freedom. Spatial manipulators with more than six degrees of
freedom promise improved performance over their more conventional counterparts
because the additional freedom of movement can be exploited in ways beyond positioning
a tool, following a path, or applying a force. Due to their superior mobility, these machines
are referred to as dexterous manipulators. Many variations on a few basic approaches have
yielded numerous control algorithms for dexterous manipulators. Joint limit avoidance,
singularity avoidance, joint torque optimization, and configuration control have been
extensively studied as means to utilize redundancy. Much of this work has been theoretical
in nature, utilizing simulation to demonstrate results. More recently, dexterous
manipulators have appeared in laboratories, providing testbeds for the theoretical work
and the only truly valid means for evaluating the performance of new control methods.
This experimental work will eventually reveal the best approaches, which will be adopted
by manipulator manufacturers.

Currently, very few dexterous manipulators are available commercially. While
manufacturers of current industrial manipulators may have R&D programs to study
advanced concepts, very few have been motivated to bring such machines into production.
Current "factory robotics" ipplications do not require (or arc perceived not to require) the
capabilities of dexterous manipulators. Therefore, the current conventional applications
market does not justify a large R&D expenditure. It is the newer, more demanding
applications in the space, defense, and nuclear industries that will drive the development
of high performance dexterous manipulators. One viewpoint is that new technology which
precedes a specific application or market can help create that market by showing end users
a new set of capabilities that they can apply to problem solving. A manufacturer that can
create such a market with its products will enjoy a significant base technology lead over
the competition and will be positioned to address new applications quickly.

For the past eight years, Odetics Inc. has been developing robotic and sensor systems and
technology for applications in the space, defense, nuclear, and commercial markets.
Delivered systems and systems in development include:

several six-legged walking machines, spread over three development generations

several sophisticated laser imaging systems

a location identification system for outdoor navigation, and an autonomous
observatioIJreconnaiSsance system for military applications

systems for navigation within cluttered environments and path planning for
autonomous manipulators

a high strength-to-weight ratio (1:l) electric manipulator

a 155 millimeter howitzer autoloader.

In addition, the company has conducted much government and internally sponsored
robotics research, particularly in manipulator dynamics and control. Given these
capabilities and the potential market for dexterous manipulators, Odetics has chosen to
develop an advanced dexterous manipulator with IR&D funding. This Phase 11 SBIR
develops and implements the control system and software for the manipulator system.

1.2 Motivation

One promising application for the Odetics Dexterous Manipulator is in space telerobotics.
Significant work that defines and specifies telerobotic operations in space is ongoing in
both government and commercial research organizations. Space assembly and servicing is
one active area. While much of the research in space telerobotics concentrates on activities
such as assembly and satellite servicing, a capable space telerobot will be useful for a
wider variety of tasks, serving as a general purpose space mechanism. Docking and
berthing activities could employ such a mechanism. Principal motivators for space
telerobots include increased safety and reduced costs through EVA reduction. Important
requirements for space telerobots include dexterity, fault tolerant/redundant systems, low
weight (high strength to weight ratio), and a design that can reasonably evolve from a 1 G
prototype to a space qualified version.

An important near term terrestrial application area is environmental restoration and waste
management. Robotics applied to these tasks can make the tasks safer via reduced worker
exposure, as well as faster and cheaper through increased productivity and reduced life
cycle costs. While special purpose hard automation or simple modifications of existing
technology will be appropriate for many tasks, there will be particularly demanding tasks
requiring dexterity, strength, and adaptability. An example is waste storage tank
remediation, which requires a way to maneuver and position various tools for sampling,
mapping, and retrieving waste in constrained and hazardous surroundings.

1.3 Phase I Work

The objective during Phase I of this program was to develop an endpoint control algorithm
for a seven degree of freedom manipulator, determine its performance through simulation,
and verify that its computational requirements were within the bounds of embedded
processor capability. The Phase I control algorithm addresses kinematics only, that is, it
transforms endpoint commands into joint commands. System dynamics and servoing are
not included. The algorithm resolves the redundancy via a modified pseudoinverse
technique that smoothly adds and removes a singularity avoidance tern, as required. As a
pseudoinverse technique, it provides a differential, or "rate" solution rather than a
"position" solution. Simulation results show that the algorithm's singularity avoidance
feature improve manipulator performance: with the singularity avoidance active, the

manipulator executes the commanded endpoint trajectories while avoiding singularities,
resulting in lower joint velocities and more accurate motion. Sensitivity of the algorithm
performance to various numerical parameters is discussed. The simulation model is a
precursor to the Odetics Dexterous Manipulator. A computer graphics simulation depicts
manipulator motion.

1.4 Phase I1 Proposal

The proper follow-on to the Phase I simulation is a hardware implementation. Three
principal tasks were identified as required to achieve this goal: an enhancement of the
Phase I algorithm to include configuration control, design and simulation of servo control
algorithms to include system dynamics, and integration of the algorithms with an actual
manipulator and its embedded processor hardware/software environment. While a Phase
I1 SBIR contract is large enough to complete these tasks, it does not come close to
supporting a simultaneous manipulator design, fabrication, and delivery. Some other
source of funds would be required to obtain a manipulator for the control system
implementation.

Odetics started an internal research and development effort on dexterous manipulators
during 1988. While this effort included conceptual design of the manipulator itself,
funding limitations precluded any significant control system design. Fortunately, timing
worked out advantageously. Odetics submitted a Phase I1 proposal to NASA for a
dexterous manipulator contiol system implementation. Odetics would fund the design and
fabrication of the manipulator, white the contract would support control system design,
simulation, and implementation. While no hardware would be delivered, Odetics would
provide a hardware demonstration. This approach would enable Odetics to develop a
complete dexterous manipulator system, despite limited IR&D funding. In turn, NASA
would benefit by receiving more than a "paper study" from the contract. It would have a
significant interest in a system that addresses its need for space telerobot hardware, as well
as specific rights to control system technology developed during the program.

1.5 Contract Deliverables

The Phase I1 contract deliverables include:

this final rtport, which describes in detail the project objectives, worked carried out,
results obtained, and recommendations for future work.

a software tape that contains the control system source code.

2.0 The Odetics Dexterous Manipulator

This section of the report describes the Odetics Dexterous Manipulator. The manipulator
is being developed by Odetics with internal funding; its development is not part of this
SBIR contract. However, the concurrent UUD and SBIR funding enables Odetics to
develop a complete manipulator and control system at tolerable cost, providing Odetics
with a new product and NASA with both a space manipulator alternative (very few are
available) and specific rights to the manipulator control technology.

2.1 Objectives

Odetics is developing this manipulator in order to address new space, defense, and
environmental markets in which current manipulator technology is inadequate. Although
these applications are embryonic and do not translate into well-defied specifications,
current manipulators clearly lack the general performance capabilities these tasks will
require. The general approach guiding this design is to build an advanced manipulator
which use the best ideas from existing designs and has new features that meet the general
requirements for advanced applications in both the space and commercial arenas.

Another important design objective was to create a system that could operate both
terrestrially and in a microgravity environment. Previous space manipulators were not
operational in 1 G and required special equipment for ground testing. Within the financial
scope of this effort, the Media te objective was to develop a system that is a reasonable
design evolution away from becoming a spacequalified machine.

2.2 Design

Applications such as satellite servicing and environmental remediation will require
autonomous and teleoperated manipulation in unstructured, dynamic environments. The
capabilities of the manipulator system will ultimately determine the success or failure of
these operations. As with most system developments, cost and development time
requirements must balance performance and reliability goals. Since definitions of the tasks
to be performed are still evolving, a reconfigurable system that could be easily adapted to
various applications would be attractive.

These considerations led to the adoption of a modular manipulator architecture. A set of
self-contained manipulator modules with standard interfaces provides lower cost and
minimizes development time of specialized systems. In addition, modularity allows easy
transportation to a remote location, fast on-site assembly, and quick repairs in-the-field.
Useful configurations are not limited to manipulators. Self-contained actuator modules
can be configured into various reduced degree of freedom mechanisms for highly
structured tasks, or hyper-redundant mechanisms with motion capability beyond that of
manipulators.

Some specific mechanical design challenges arising from the modular architecture
approach include:

Mechanical and electrical module interface design

Component packaging and wire harness design

Scalable actuator topologies.

More general mechanical design and engineering goals include:

Maximum payload to weight ratio and compact design

High dexterity

Fault tolerant sensing and actuation

Fully enclosed mechanisms and wiring

Accurate joint torque sensing.

Design issues specific to the'control of a high performance kinematically redundant
manipulator include:

Providing sensing for advanced control techniques

Redundancy management, including singularity avoidance and configuration (pose)
control

Robustness and fault tolerance

Table 1 summarizes the principal performance goals.

Table 1 Manipulator Performance Goals

Len&@

Weight (1 G)

Max Endpoint Speed

55 in.

165 lb.

> 40 in./s

shoulder pitch to toolplate -
actual weight - 150 Ib.

for task space moves

Payload

Lateral Force

Dexterity

Repeatability

End Effector Support

50 Ib.
20 lb.
135 1b.

7 active degrees of free-
dom

peak - short duration
continuous duty

at toolplate, fully extended

0.025 in.

72 wires 72 to forearm; 40 to tool-
plate

Note in particular the payload to weight ratio, which is just under 1/3. For comparison, the
Puma 762 is rated for a maximum dynamic payload of 44 lb., and weighs approximately
1200 lb.

2.2.1 Kinematics

Figure 1 shows the Odetics Dexterous Manipulator. This kinematic arrangement of joint
modules includes two shoulder modules, an upper arm roll module, an elbow module, and
a three degree of freedom wrist module. Neither the shoulder nor the wrist axes are
collocated. Although, from the control viewpoint, collocated axes are highly desirable,
they require many poor trade-offs in size, packaging, strength, and weight, and thus make
other manipulator performance attributes unreachable. The elbow (joint 4) offset allows
the lower arm to actually fold up against the upper arm, providing excellent manipulator
stowage.

Fiaure 1 The Odetics Dexterous Manipulator

Shoulder Azimuth

Table 2 shows the Denavit-Hartenberg parameters for the manipulator in the straight-out
pose shown. Lengths are in inches and angles are in radians. The unusual parameters for
links 4 and 5 result from the elbow offset.

Table 2 Denavit - Hartenberg Parameters

The manipulator has two internal kinematic singularities. One occurs when the plane
formed by the upper and lower arm links is vertical and the shoulder pitch (joint 2) axis
lies in this plane. In this configuration, e2 = 0, rc e3 = h / 2 . The second
singularity occurs when the upper arm link is vertical and the wrist roll (joint 7) axis is
normal to the upper arm-lower arm plane. I n this configurat ion,
e2 = 0, A O6 = 0, rc .'While both singularities occur within the useful manipulator

workspace, the second one is close to the wrist yaw (joint 6) axis joint limits, making it
less problematic than the first singularity.

2.2.2 Joint Modules

Many of the innovative and unique features of the Odetics Dexterous Manipulator are
apparent in the joint module design. Each module contains motors, sensors, wiring,
transmission elements, and structure in a compact package. Each module uses exactly the
same drivetrain concept, scaled according to that joint's torque requirements. Module
interfaces consist of both positive mechanical connection and self-mating electrical
connectors held together with simple clamping collars. This quick disconnect design
allows the manipulator to be assembled or disassembled in approximately seven minutes.

As shown in Figure 1, there are four different types of modules. The two shoulder modules
are identical. They provide the greatest output torque and finest position sensing
resolution. The upper arm roll module rotates the plane formed by the upper and lower
arm links, providing the ability to alter the manipulator configuration. The elbow module
allows the manipulator to fold back on itself for stowage. The wrist module is a single unit
containing three axes in a pitch-yaw-roll arrangement. This design is necessarily a
compromise betwwn codicting kinematic, strength, and packaging requirements. There

are approximately 40 wires brought out to the toolplate for auxiliary devices such as
grippers. The modules have few fastener penetrations and provide clean surfaces that are
easy to decontaminate and have no wires or protrusions to snag on the environment. Table
3 shows the pertinent characteristics of each module type.

Table 3 Module Performance Characteristics

2.2.3 Actuators and Transmission

Shoulder
Ele

upper A m
Roll

Elbow

Pitch

Wrist Yaw

Roll

One of the more diflicult challenges in the Odetics Dexterous Manipulator design was to
obtain very high torque levels while simultaneously producing a high precision
mechanism, and fitting the result into as small a package as possible. The actuator
transmissions use spur gear technology with special mesh geometries and materials to
obtain high torque capability. These modifications conflict with the high precision
requirement. In particular, the modified spur gears and planetary gear reducers used have a
fairly large amount of backlash, which would make servo control problematic.

The solution to this problem is a unique transmission concept that uses two actuators
connected to parallel gear trains, both of which drive a single output. This topology allows
one actuator to be the "prime mover" while the second provides a small bias torque in the
opposite direction to remove all backlash from both branches of the transmission. When
large torques are required, the biasing actuator can "turn around" and provide torque to
move the load. The algorithm for backlash management is described in Section 3.2.3.3.
The additional actuator also provides tolerance to motor and motor driver failures. If one
motor or its driver fails, the remaining motor is still capable of driving the joint, obviously
at reduced bandwidth and torque capability. After the task at hand is completed, a fully

5.67

12.51

4.10

4.15

3.63

5.93 ;

34.5

27.5

24.5

27.5

8000

4000

4000

1300

1300

1300

1.25

1.59

1.59

2.62

2.62

2.62

10.9

12.2

12.2

13.2

13.2

95.9

functional module can be swapped with the degraded one, which could in turn be repaired
off -line.

Each parallel drivetrain branch begins with a brushless D.C. motor. The motors are the
frameless design, and are built with three phases connected in a "wye" configuration. Hall
sensors arc included for six step commutation. The custom windings operate at a nominal
300 VDC. Thermistors buried in the motor windings provide temperature information.
Each motor is also equipped with its own fail-safe brake so that the manipulator can be
stopped in any configuration. The motor shaft is geared to a planetary reducer. The reducer
output pinions both drive a large internal ring gear that is connected to the joint output
member.

2.2.4 Sensors

Each joint provides absolute joint position, derived joint velocity, and torque sensing for
semo control, as well as motor winding temperature sensing for safety monitoring.

The joint position sensing scheme uses two sensors for each joint. The current manipulator
design uses a potentiometer and a brushless resolver. Both are geared to the joint output
using precision anti-backlash gears. These devices operate in a "two-speed" mode,
providing much higher resolution than can be obtained from either one individually. In
addition, the dual sensing scheme provides recovery from single point failures. If the
resolver fails, the potentiometer can provide joint position feedback, with reduced semo
bandwidth to compensate for the reduced resolution. If the potentiometer fails, the joint
can continue to operate normally until the next power cycle, when the absolute joint
position must be detennined.

The very high position resolution makes it feasible to obtain velocity information by
discrete differentiation (back differences) of the position information. Although the
manipulator electronics includes circuitry to derive an analog velocity signal from the
motor hall sensors, this circuit was not intended for feedback control and suffers from high
ripple content at low velocities. Back differences of the position signal provides superior
results at both low and high velocities. Space constraints within the joint modules make it
infeasible to include velocity sensing devices such as tachometers.

The output member of each joint includes special structures instrumented with strain
gauges such that joint axis torque measurements can be obtained. The strain gauge signals
are amplified using a full bridge amplifier circuit that resides within the joint module. The
joint torque information can be used for advanced control techniques such as force
reflection or joint torque servoing. A D conversion in the manipulator controller provides
12 bit resolution of the joint torque signals.

3.0 Control System Technical Description

The Odetics Dexterous Manipulator control system is the product of several successful
embedded control system implementations for high performance robots, years of in-house
research into different aspects of manipulator control, and the academic community's
research results. A few principles guided the design; whenever possible, we have tried to:

leverage off previous work, implementing some of what has already been tested in
simulation

exploit sensor/actuator redundancy to provide a highly fault tolerant system

use modular design and include the interfaces ("hooks") required to integrate other
hardware and software subsystems for expanded capability, e.g., teleoperation and path
planning

make design choices that facilitate use of improved computer hardware, as it becomes
available.

3.1 Architecture

At an abstract level, a control system architecture defines information flow between
system and environment and within the system, and shows how the system takes action
based on this information. The Dexterous Manipulator control system must capture
information from external sources, such as an operator interface, and internal sensors,
process this information, and produce physical signals to cause manipulator motion. It
must perform these operations both in response to asynchronous external events and at
regular, repeatable time intervals.

Figure 2 shows an overview of the system architecture. The embedded control computer,
referred to as the "target" system, consists of three single board computers, data
acquisition hardware, and memory, which share a VME backplane residing in a card cage.
The section labeled "DATA ACQ, 110" actually consists of several separate boards.
Various processes and algorithms arc allocated to the three processors. Processors B and C
perform time critical control processes. These processors execute their processes
synchronously: processor B executes at 50 Hz, and processor C executes at 500 Hz.
Processor A executes non-critical dgorithms and handles communications between the
host computer and the target system. Data passes among the three target processors via
shared memory, which includes each processor board's on-board memory as well as the
separate memory expansion board. Data acquisition and digital I/O channels are memory
mapped, and each processor accesses 40 with simple memory reads and writes. The target
system is linked to a Sun workstation host computer via an Ethernet local area network.
The host computer is used for development and to run the graphical user interface.

This architecture provides great flexibility in both hardware selection and software
development. Many vendors sell processors, memory, data acquisition boards, and other
special purpose hardware for VME systems. It is relatively simple to upgrade the control
hardware as higher performance processors, memory, and data acquisition equipment
become available. The inherent portability of the C programming language means that
there is little difficulty porting the application code to the new hardware.

3.2 Algorithms

The control system algorithms are arranged hierarchically. Figure 3 shows the algorithm
structure and information flow. The two dashed vertical lines divide the figure into three
regions. The left most region contains non-real-time processes, the center region contains
real time processes that execute at a 50 Hz. frequency, and the right most region contains
processes that execute at a 500 Hz. frequency. The trajectory generator produces smooth
endpoint/configuration trajectories, with setpoints spaced at the servo update rate. The
endpointlconfiguration control algorithm transforms endpoint positiodorientation and arm
configuration commands into joint positiodrate commands. Note that this algorithm does
not use feedback from the manipulator joints - it is decoupled from the servo algorithms
and is thus unaffected by their dynamics. Inputs to this algorithm can come from several
different sources. In the current implementation, prior to manipulator motion, the operator
specifies either a set of trajectory pass-through points or a "delta" from the current arm
positiodorientation. The appropriate routine converts these inputs to a set of endpoint/
configuration commands, discretized at the 50 Hz. positiodrate servo update frequency.

The joint positionlrate servo calculates and shapes position and rate errors to yield joint
torque commands. The compensation is parameterized by the manipulator effective joint
inertias in order to attain approximately configuration-independent dynamics.
Feedforward compensation helps to reduce gravity disturbances and improve transient
response. Both the inertia and gravity calculations use commanded rather than sensed joint
positions.

The summed torque commands become input to the high bandwidth torque servos. These
servos calculate and shape the joint torque errors to produce combined motor torque
commands, discretized at the 500 Hz. torque servo update frequency. These commands are
the motor torques that would be commanded in a single actuator system. Since the
Dexterous Manipulator joints use dual actuators, another algorithm divides the combined
motor torque commands into dual motor commands, biasing one motor against the other
(when torque levels allow) to eliminate drivetrain backlash. The dual motor commands are
converted to analog signals, which command the motor drivers.

--
m A -
Ti-

3.2.1 Trajectory Generation

The trajectory generator produces smooth endpoint commands, with setpoints spaced at
the 50 Hz. servo update frequency. The trajectory generation process occurs before any
motion, and thus does not execute in real time. While there are a couple of different
methods to specify endpoint and configuration goals for the manipulator, the trajectory
generation method is the same. A quintic polynomial, parameterized by time, is fitted to a
set of pass-through points, which are spaced relatively widely in time. Setpoints spaced at
20 ms are then calculated from the quintic and stored in memory prior to actual motion.

The user can specify a trajectory by the following methods:

1. As a "delta" from the current manipulator position, i.e., as a vector
, along with a configuration command, if desired. The speed
a percentage of the manipulator's approximate maximum

endpoint speed.

2. As a set of pass-through points, with the time between the points specified.

3. Single joint trajectories can be specified as a "delta" from the current joint position at
some percentage of that joint's maximum speed. They can also be specified as
sinusoids of a certain amplitude and frequency, primarily for testing purposes.

4. Joint space moves are supported as well. The user indicates the 7 desired joint angles
and the percentage of maximum joint speed that he wishes the manipulator to move.

3.2.2 Endpoint / Configuration Control

The main characteristic that sets redundant manipulators apart is the ability to control
manipulator configuration as well as endpoint position. As described in the introduction,
configuration control provides a means to exploit the dexterity of a redundant manipulator.
The manipulator configuration (pose) is altered via "self motion", which is manipulator
joint motion that causes no endpoint motion. With manipulator pose control, movement in
tightly constrained or obstacle strewn environments becomes tractable. In addition to
specifying configuration, criteria involving proximity to joint limits or joint torques can be
optimized to increase the manipulator's effective operating range.

Early approaches to redundancy resolution concentrated on optimization methods.
Kinematic singularity avoidance is a goal used to formulate many optimization criteria.
Many of the algorithms are based on the Moore-Penrose pseudoinverse, which yields a
least squares solution for the inverse of a non-square matrix. Essentially, these algorithms
yield a particular solution to:

T -l de = Rm, R = J ~ (J J)

where dx and de are differential endpoint and joint motions, J is the nonsquare
manipulator Jacobian matrix, and fi is its pseudoinverse. The solution that the
pseudoinverse method generates is the minimum norm solution of (I), which yields a set
of joint motions that have no contribution to self-motion of the manipulator. However, self
motion is required to modify manipulator configuration. To obtain self motion, a second
homogeneous solution term is added to (2):

where I is the identity matrix, H is a function to be optimized, and k is a weighting factor.
In Phase I of this project, this technique was used to control a redundant manipulator with
a 4 DOF wrist [I]. The function H quantifies proximity to wrist singularity, and the weight
k was a function of time and proximity to this singularity.

One difficulty with the pseudoinverse solution is that it is merentid. The solution of (3)
must be integrated numerically; therefore, the solution's accuracy will depend on the
magnitude of the desired endpoint motion and the integration step size. An often discussed
redundancy resolution algorithm characteristic is cyclicity, which is the property that
closed endpoint trajectories in task space have closed joint space trajectories. In general,
pseudoinverse solutions do not have the desirable cyclicity property because the
differential solution does not yield an inverse function 0 = F' (x) 121.

The endpoint/configuration control algorithm used with the Dexterous Manipulator solves
both of these difficulties. It was presented in [3] and will be referred to as the "Chang"
algorithm. The Chang algorithm provides an inverse kinematic solution 0 = F' (x)
rather than the differential solution of (3). This solution is numerical rather than analytic.
As in (3), the algorithm optimizes an auxiliary function while achieving the endpoint
command. However, algorithm convergence guarantees that the function H is at a local
minimum for every trajectory point, which is not the case with the differential solution.
Thus, the Chang algorithm provides a cyclical solution, except in the unusual case that the
objective function contains separate local minima for configurations that are "close". Such
behavior has not been observed in simulations of the Dexterous Manipulator.

It is important to note that this approach provides an exact endpoint position while
optimizing an auxiliary function that specifies manipulator configuration. The algorithm
will use manipulator self-motion to minimize the difference between the commanded and
achieved configuration subject to attaining the exact endpoint position. If self-motion will
not place the manipulator in the desired configuration, the manipulator will not reach that
configuration.

An important feature of the endpoint algorithm implementation is that the endpoint
algorithm is "decoupled" from the lower level servo control. Endpoint algorithm
calculations that require joint coordinates use the current commanded joint angles, rather
than the measured joint angles. Endpoint algorithm response is thus made independent of
joint servo response.

3.2.2.1 Endpoint Algorithm Development

The following algorithm development follows that of [3] . The essence of the algorithm is
to augment the underdetermined problem

with additional equations to make the solution unique. For the Dexterous Manipulator, x
is a 6x1 vector of desired endpoint coordinates, 8 is a 7x1 vector of joint coordinates, and
f is the forward kinematics transformation. In order to obtain the additional equation
requind, an optimization problem is posed and solved with Lagrange multipliers:

minimize H (8) subject to F (8) = f (8) - x = 0 (5)

Defme the Lagrangian function

where k is a 6x1 vector of Lagrange multipliers. The minimum of H occurs at a stationary
point of L, determined as

aF
Note that = J , the maqipulator Jacobian. Equation (7) can be rewritten as

T h T ~ = -h , (8)

T aH
where 1 = [hl, h2, ..., h,,] , hi = , i = 1,2, ..., n , where n = 7 manipulator

degrees of freedom. Note that Equation (8) is a system of 7 linear equations with 6
unknowns. Using Chang 's notation, (8) can be re-written as

. T
where (1) represents the transpose of column i of the Jacobian, and m = 6. Since this
system is underdetermined, we can remove any one equation, solve the resulting system
for the Lagrange multipliers, and substitute the result back into Equation (9). By removing
the last row of (9), we obtain

Solving for the Lagrange multipliers yields

and substituting this result back into the remaining n - m = 1 equations of (9) yields

At this point, Chang makes some notational simplifications:

By using these substitutions and collecting terms, Equation (12) becomes

J n - m ~ l h m - h n - m = o

Re-writing this equation in matrix form, we obtain

23
USE OR -OF DATA COKTNNED ON THIS SHE3T B SUBJKI TD lHE RESlWCnON ON 'LHE l T l U PAOE OFTHIS -.

where I, -, is the n - m (in the 7 DOF case, one) dimensional identity matrix. In order to
further simplify the equations, let

Then Equation (15) becomes

Note that, for the current case, J,, -, is 1x6 and is 6x6, so that r is 1x7. Since h is
7x1, Equation (17) is scalar. Taken together, Equations (4) and (17) provide seven
equations in seven unknowns that solve Equation (5), fully specifying the 7 joint angles:

Equation (18) is solved numerically at each endpoint trajectory point using the Newton-
Raphson technique. Taking a Taylor Series expansion of Equation (18) and neglecting
higher order terms, we obtain

Note that a/ = J , the manipulator Jacobian, and that x - f (8) is the error between the ae
desired and actual endpoint positions, which we call Ax. We can thus re-write Equation
(19)

The joint angles 8 are iteratively updated with the solution to the linear system (20) until
(18) is satisfied to a desired tolerance. Figure 4 summarizes the procedure. First, a forward
kinematics calculation provides the endpoint position/orientation and the manipulator
Jacobian. The new endpoint command (x in (18)) is compared to f (8) , the endpoint
position corresponding to the current set of joint angle commands, which yields an
endpoint

ah error. Next, the functions h and are calculated. The left partition of z is calculated by
solving ae

using gaussian elimination with partial pivoting and back substitution. For the 7 DOF

case, the right partition of z is -1. The products z and zh are calculated next. Then

joint angles are updated by A 0 .
the system (20) is formed and solved by the same sian elimination technique, and the

The objective function H is the sum of several functions that are designed to have minima
for desired manipulator behavior and grow large during undesirable behavior. In addition,
these functions have simple fonns so that obtaining their fist and second derivatives and

calculating these derivatives in real time are tractable problems. When these functions are
summed into H , it is possible for the various behaviors to conflict. Scale factors
("weights") multiply terms in each of the functions in H and allow the operator to control
the contribution of each optimization criterion to the summed function.

Inverse square potential functions serve well for joint limit avoidance and velocity
minimization. For joint limit avoidance, the objective function is

where BbiaS makes the joint range of motion symmetrical, Bmax is the absolute value of

the joint maximum (or minimum) angle, and Kli, is a scale factor. For joint velocity
minimization, the objective function is

where Binit is the joint angle at the start of an endpoint algorithm iteration, 0 is the joint
angle after the iteration, and Kve, is a scale factor.

For singularity avoidance, a trigonometric form of H is useful. Recall that the two
manipulator internal kinematic singularities occur at

The objective function should become large near these joint configurations and remain
small at other configurations. For the first case, a function with the proper behavior is

It is possible to derive an even simpler function for the second case:

In practice, the second singularity rarely occurs because joint 6 is near its limits. The
objective function's joint limit avoidance component serves to keep the arm away from
this singularity.

Configuration control (or more precisely, configuration optimization) takes two different
approaches. One approach is to specify the orientation of the plane formed by the "upper
arm" and "lower arm" links of the manipulator. Joint axis 4 (the elbow joint axis) is a
normal to this plane. A simple way to specify the plane's orientation is to specify the
vertical direction cosine @ of the arm plane normal:

= cosy - sine2sine, . (26)

The vertical direction cosine @ is an easily calculated function whose range [-I, 11
provides an intuitive way to specify the arm plane as vertical or horizontal, as well as to
specify on which side of th; shoulder to place the arm plane. Specifying a direction cosine
of the arm plane angle rather than the arm plane angle itself also eliminates the need to
take derivatives of inverse trigonometric functions in the objective function. A simple
objective function for this configuration optimization method is

where Yd is the desired arm plane angle.

An alternative method of configuration control is to construct an inverse square potential
function whose center will repulse a set of points on the manipulator. An example is

where (xc,yc,zc) is the potential function center, and (x,y,z) is a point on the
manipulator to be repulsed. Currently, this point is at the center of the elbow.

28
USE OR DISCLOSUR6 OF DATA CONTAINED ON THIS SHW E SUBJECT To rwti RESIRICnON ON nrti l T l U PAf3K OF THIS DOCUMENT.

3.2.3 Joint Level Control

Conventional robotic manipulators generally use linear feedback control laws to
independently servo each joint to a desired position. The performance of this method
depends on various factors related to the manipulator design, control system
implementation, and operation conditions. Some of these factors include:

magnitude of nonlinear behavior, such as joint friction, motor torque disturbances, and
dynamic coupling, relative to linear behavior

bandwidth-limiting constraints, such as sensor noise, structural/actuator resonant
frequencies, and other unmodeled dynamic behavior

control computer performance, as measured by achievable sample rate for a desired
control law

expected variations in required speed, payload, and accuracy for different tasks.

Some of these factors are quantifiable during the design phase, while others cannot be
determined until the hardware is built or specific tasks are defined. For example, it
appeared clear early in the development that dynamic coupling between the joints would
be relatively insignificant because of the large reduction ratios. The joint torque loops
would help to reduce friction and improve the joint dynamics. For these reasons, it
appeared that linear control laws with some nonlinear compensation for inertia variations
and gravity would provide good dynamic response. Simulation would help verify this
belief, and it would also provide a good means to compare the performance of a more
advanced adaptive controller to the design method.

Several options for joint position/rate servoing were considered during the project's
conceptual design phase. Some of the techniques considered include:

linear feedback control

model-based decoupling feedback control

model-based feedforward compensation

performance-based adaptive control.

Modelling

Figure 5 shows a simple schematic diagram of the joint actuator system. The two identical
motorlreducer drivetrain branches drive a common output ring gear that is attached to the
output member. The motor drivers operate in "current loop" mode: the motor winding
current is proportional to the motor driver input command. Reducers N1 are planetary spur
gear reducers, while reduction N2 consists of two pinions driving a ring gear. The two
motors can drive antagonistically to remove all backlash from the drivetrain, or
synergistically to provide maximum torque. Most of the backlash occurs at the output
mesh; drivetrain inertia before this mesh is lumped into the two drivetrain branch inertias
JA and JB. Joint position, rate, and torque sensing occur at the load.

Figure 5 Joint Actuator Schematic

I

Two simplifications were made for control design:

1. The antagonistic motor action effectively eliminates all drivetrain
backlash.

2. Drivetrain component stiffnesses are high enough so that drivetrain
flexibility and the ensuing resonant mode of this non-collocated
actuator/sensor system are beyond the desired servo bandwidth.

The first assumption has been proven out in implementation. During the design phase, the
second assumption seemed reasonable. There are no clearly "soft" components, such as
harmonic drives, in the drivetrains. In implementation, this assumption has proven
inappropriate. Finite drivetrain stiEness effects are discussed further in Section 5.1.1.

By using these two simplifications, we can develop the simplified linear model for servo
synthesis shown in Figure 6. Note that the motor electrical dynamics and disturbance

inputs for the two drivetrain branches are lumped into the single path at the top of the
figure. Table 4 defines the model nomenclature.

Table 4 Lumped Motor 1 Drivetrain Model Nomenclature

Note that torques Tcmdl Ti, Tstic, and Tmc are measured in motor coordinates, as is the
viscous damping coefficient K* Also, the product of the gains Kl and K23 has the units
A/V, rather than the individual gains.

- -- -- -- --

3 1
USE OR MSdOSURB OF DATA COW- ON THIS SHBJT IS SUBJECT TO THE REXWCIION ON ?HE lIIU? PA06 OPTWIS DOCUMENT.

Figure 6 Lumped Motor I Drivetrain Model

For servo design, we will derive a state space plant model of the form

where x is the state vector, u is the input vector, and y is the output vector. For this 5th
order plant, a state space model with the appropriate inputs and outputs is

The fist two states are the bad position and velocity. Motor torque is the third state. The
states xpl and xp2 correspond to the two motor driver electrical poles. The first input,
Tcmd, is the motor driver command, while the latter three inputs represent disturbances.
The outputs are sensed load torque, load position, load velocity, and actual load torque.

3.2.3.2 Joint Torque Servo Control

Figure 7 shows a generic block diagram of a "generic" closed loop joint torque controller.
We will describe torque servo design goals by referring to the transfer functions for the
various system inputs.

33
Usti OR D5CUJSVRE OF DATA CONTAP4ED ONnaS -IS SUBEXT M ?HE RESWCIION ON ?HE lllU PAOF. OPTHIS w.

2 L/'

Figure 7 Generic Torque Servo

T
ext

I

The figure's symbols have the following meanings:

C = compensator

P =plant

Tc = torque command

T,, = external load torque disturbances

TL = load torque

Tsn = torque sensor noise

The transfer function from commanded torque to load torque is

Ideally, this transfer function would be unity for frequencies up to the desired closed loop
bandwidth, which requires that CP >> 1 over this frequency range. Above the desired
closed loop bandwidth, the transfer function magnitude should roll off as quickly as
possible. The closed loop bandwidth should be selected so that it

encompasses torque signals in the expected frequency range

is high enough to make the actuator system appear as an ideal torque source to the
positiorJrate servo lwp

is limited for good torque sensor noise rejection and to achieve a sample rate 10X
higher than the bandwidth.

Based on these criteria, the design closed loop torque bandwidth was chosen as 50 Hz.

The transfer function from extemal load disturbances to load torque is

34
US6 OR DISCLOSURE OF DATA CONTUNED ON 'IHZS lS SUBJECT TO TIE RKSIRICIION ON TIE RTLG PA- OF'IHZS -.

TL 1 - = -
Text 1 +CP

This transfer function should be small at all frequencies in order to reject this input's
contribution to the load torque output, which requires that CP w 1.

Finally, the transfer function from sensor noise to load torque is

As with the previous disturbances, this transfer function should be small at all fkquencies,
which requires that CP << 1. Since the magnitude of this transfer function is the same as
command to load torque transfer function magnitude, sensor noise cannot be rejected at
frequencies below the desired closed loop bandwidth without also rejecting the command
signal.

In the actual design process, the plant model was programmed into a Matlab script that
calculates closed loop response and generates Bode, Nichols, and time response plots.
Using nominal parameter values, a continuous time compensator design was developed
and evaluated. The most important evaluation factors were stability and stability
robustness. As the compensator design evolved from one design iteration to the next, the
design's stability margins were evaluated first. Next, command tracking was examined,
using the frequency response and step response of the closed loop system. External torque
disturbances, stiction, cogging, and ripple response were examined, using their transfer
functions. Nonlinear torque limiting and velocity limiting effects were ignored for this
analysis. Known parameters were varied over their ranges and the design re-checked for
acceptability. Once the continuous compensator design was acceptable, it was discretized,
using a bilinear transformation with pre-warping, and converted to a difference equation
for software implementation.

The form of the torque loop compensator is

The quadratic lag quickly rolls off the open loop gain (due to the gear ratio) at frequencies
above the design open loop crossover frequency. The zero, placed below the crossover
frequency, provides lead for an adequate phase margin. The gain sets the crossover
frequency. This fixed gain and shaping stabilizes the design despite plant inertia
variations. There is little variation in bandwidth and damping with payload or pose
variation.

The following figures depict the design process. F igm 8 is a Bode plot of the continuous
plant response from Tmd to T,,,d, from Equation (30). Figure 9 shows the continuous
compensator response. Figure 10 and Figure 11 show the continuous and discrete open
loop compensated plant. The crossover frequency is approximately 40 Hz. Figure 12 is a
Nichols plot of the compensated plant response. The design provides conservative
stability margins: the phase margin is 60 degrees, and the gain margin is 25 dB. Figure 13
and Figure 14 show the continuous and discrete closed loop torque response. These plots
show that the system behaves as an ideal torque source out to the closed loop bandwidth.
The position response of the closed torque loop system, shown in Figure 15, also
illustrates this behavior. Over the closed torque loop bandwidth, the position response
rolls off at 40 dB/decade, with 180 degrees of phase lag. In essence, the torque servo loop
makes the plant behave as a simple double integrator, which simplifies the positionlrate
servo design.

Figure 8 Torque Servo Design Plant

. 70 ! ! ! ! ! ! ! ! ! ! ! ! ! ! : I : ! : ! ! : ! ! ! ! : - ,

.

30- ' """" ' """" I ""'LIL_cJ"l"" ' ""-
10-1 .' lo lo' lo= 103 104

Figure 9 Torque Servo Compensator

Figure 10 Continuous Compensated Plant

Figure 11 Discrete Compensated Plant

Figure 12 Continuous Compensated Plant (Nichols Plot)

Figure 13 Continuous Closed Loop Torque Response

Figure 14 Discrete Closed Loop Torque Response

Figure 15 Open Loop Position Response with Torque Loop
- -

lo-' 100 10' 102 10' lo'

3.2.3.3 Backlash Elimination

The antagonistic actuator arrangement provides the means to eliminate drivetrain
backlash. In essence, the method is to use one motor as the prime mover, while the second
motor exerts a small torque of opposite sense which keeps the drivetrain components on
one side of the backlash. The dual motor drivetrain is neither new nor unique. This
implementation's unique feature is to switch between antagonistic operation with no
backlash and cooperative operation, based on torque demand. With this feature, each
joint operates backlash-fret over a large part of its range. When necessary, backlash-free
operation can be traded for maximum torque. Figure 16 illustrates the method. The
principal parameters are:

Tbias - the antagonistic torque that keeps the drivetrain on one side of the backlash

T, - the torque level at which the algorithm transitions from "zero backlash" mode to
"maximum torque" mode.

The horizontal axis is total commanded torque (in motor coordinates), and the vertical axis
is corresponding motor torques. The light and dark line segments represent the two
individual motor torques. The continuous line represents the summed motor torques,
which should equal the total commanded motor torque, up to the motors' limits.

In region I, the commanded motor torque magnitude is below T,, - Tbi,. One motor
maintains a constant bias torque, and there is no backlash. In region 11, commanded torque

exceeds T, - Tbias, and the biasing motor "turns around" to help the prime motor, which
continues to torque at Tcont. In region 111, the torque command magnitude exceeds 2 X
T,,,. Both motors torque to one half the commanded value, up to 2 X TFa, where the
torque command is clipped. In each case, the sum of the two motor torques always equals
the torque command, up to the level 2 X Tpeak.

Figure 16 Anti-backlash Algorithm

Parameter T,, controls the trade-off between a large region of no backlash (region I) and
an acceptable motor duty cycle. For the most conservative operation, T, is set equal to
Tm, and the motors will never overheat while operating in regions I and IT. Of course, a
less conservative value of T, may be chosen.

A more sophisticated method of backlash and motor duty cycle management is to make
T, a function of time and commanded torque:

The parameter s is a counter (equivalent to time) that increments when the commanded
torque exceeds the rated motor continuous torque, and decrements when the commanded
torque is less than the rated motor continuous torque. The parameter a is the motor
thermal time constant. When the motors arc cool, the maximum joint torque can be twice
the rated peak motor torque (multiplied by the reduction). As the motor duty cycle
increases, the maximum torque decreases to twice the rated continuous torque. This
function provides constraints on motor torque without being overly conservative, which
limits the backlash free operating region.

L
3.2.3.4 Linear PositiontRate Feedback Control

Linear positiodrate feedback control drives a joint under closed loop torque control along

- the desired motion trajectory. This control law is implemented as

where T is a joint torque command vector, E is a joint position error vector, and K and fb K,, are constant diagonal feedback gain matrices. Joint velocity commands are newfed to
calculate joint velocity errors. The endpoint control algorithm generates velocity
commands using first back differences. Since the endpoint algorithm and position/rate
servo algorithm execute synchronously, the differentiation is exact and does not introduce
disturbances such as sawtooth waveforms into the control loop. Figure 17 shows a block
diagram of the linear position/rate feedback control loop for a single joint. Note that the
joint inertia parameterizes the feedback gains, which helps to maintain configuration-
independent response throughout the manipulator workspace. This parameterization is
discussed further in Section 3.2.3.5.

Figure 17 PositionlRate Feedback Loop

Linear position/rate feedback compensator design begins with the closed torque loop
system. The response from torque input to position output was shown in Figure 15. The
plant has 180 degrees of phase lag at the desired 5 Hz. crossover frequency, which
requires lead compensation. Simple PD feedback will provide this compensation. Then
the gain may be adjusted to achieve the proper crossover frequency.

Figure 18 shows the compensated plant response. The crossover frequency is 30 radls.
The Nichols plot in Figure 19 shows a 25 dB gain margin and 70 degree phase margin.
Figure 20 shows the position response to an external torque input, which is a measure of
the servo stiffness. Lower low frequency gain implies higher stiffness. With this
compensation, the position response will have finite steady state error to external torque

disturbances, such as gravity. Figure 21 and Figure 22 show the closed loop velocity and
position responses. Finally, Figure 23 shows the position step response.

Figure 18 Plant with PD Position Loop Compensation

. i i ; ;;;i:i ; : : :::::: _ : : ; ;;;;.;: ; ; , ' ; : : i i i i : : : ::::::: : : : : :
-150-

lo-' 100 10' 10' 10' lo'

Figure 19 Nichols Plot, Compensated Plant

Figure 20 Position Response to External Torque -

Figure 21 Closed Loop Velocity Response

20- ! ! ! ! ! ! ! ! ! ! ! l Q l L n -r
. ! V ! ! !

. ! !
. : : :

. : : . a : : : :

.

lo-' 10' 101 10'

Figure 22 Closed Loop Position Response

45
OR MSCZOSVRB OF DATA CONTAINED ON THE IS SUB= 'ZT) 'LHB REYRUCnON ON 'LHB TrITE PAOB W TWS DOCUMENT.

Figure 23 Position Step Response

Integral compensation will improve the joint's steady state response by nulling errors due
to gravity disturbances and joint friction, with some penalty in phase loss and reduced
stability margins. Figure 24 shows the PID-compensated plant response. Figure 25 shows
the corresponding position response to external torque input. Finally, Figure 26 shows the
closed loop position response with PID compensation.

Figure 24 Plant with PID Position Loop Compensation

Figure 25 Position Response to External Torque with PID Comp
-

Figure 26 Closed Loop Position Response with PID Comp

3.2.3.5 Model ~ a s e d Compensation

Linear feedback control (individual joint position and velocity feedback) works well to the
extent that the manipulator dynamics are approximately linear, decoupled, and time-
invariant. Of course, none of these ideal characteristics are true. Joint friction is a
significant nonlinear effect. Properly operating torque servo loops reduce this effect to
some degree. Since the joint reductions are large, dynamic coupling effects are relatively
insignificant. However, some of the effective joint inertias undergo substantial variations
with manipulator configuration and payload. These variations are most significant at the
shoulder, and become negligible towards the wrist. This observation indicates that, while a
model-based decoupling control law may be unnecessary, "effective joint inertia" control
[4] could be useful. Effective joint inertia control is implemented as

where M is an estimate of the manipulator inertia matrix, obtained from the manipulator
equations of motion. Using the full inertia matrix in Equation (34) provides decoupling
control, while using only the diagonal elements provides effective joint inertia control.

Model-based feedforward compensation provides a means to generate open loop torque
commands that move the payload through the desired trajectory while compensating for
gravity and velocity dependent disturbance torques. The open loop feedforward

commands provide most of the torque necessary to move the joints along the commanded
trajectories. The feedback component of the torques serves to correct any errors due to
modelling errors. Good joint tracking can thus be achieved with reduced feedback loop
bandwidth, which provides better stability margins and reduced noise sensitivity. The
model-based feedforward compensation is implemented as

M is the manipulator inertia matrix estimate, C is the centripetal and coriolis term matrix
estimate, and G is the gravity term vector estimate. Since most commanded trajectories
involve relatively low joint velocities, the C term is dropped to simplify the calculations
for real time implementation.

3.2.3.6 Adaptive Control

Model-based approaches suffer from several well-known shortcomings. Model
parameters are often inaccurate, and unmodeled portions of the system dynamics may
have a significant effect. The computational cost of implementing model-based
compensation is high. A potential alternative is an adaptive controller, and in particular, a
performance-based controller that does not use a complex system model. A large body of
research and literature on adaptive controllers exists, and it includes many implementation
studies and evaluations. In particular, Seraji's work at the Jet Propulsion Laboratory [5]
has some attractive properties. The algorithm does not use a complex dynamic
manipulator model - in fact, its computational burden is minimal. The method uses
indirect adaptation based on tracking performance; there is no parameter estimation,
which again greatly simplifies the implementation. Finally, the algorithm has been tested
experimentally and shown to improve manipulator performance in that particular case.

A detailed development of the algorithm can be found in [S]. The control and adaptation
laws are shown here without derivation. The control law is

The control law's hrst term is a fixed gain "auxiliary signal" which improves tracking
performance. The second term is the adaptive feedback component of the control law, and
the third term is the adaptive feedforward component. The feedback gain adaptation laws
are

49
U!3E OR DISCZOSURB OF DATA ONVMNPD ON THGP SHW B SUBJECT TO THB REsIWCnON ON ntG 'Zmb PA06 OFTIIlS DOCUMENT.

and the feedforward gain adaptation laws are

Testing through simulation could indicate whether or not the adaptive control approach
was likely to provide performance to the linear feedback/nonlinear feedforward approach.
Section 3.3.4 discusses testing results.

3.3 Simulation

Simulation is a vital part of a complex control system development. The Odetics
Dexterous Manipulator's hierarchical control system design lends itself to simulation of
independent components followed by complete dynamic simulation of various
components together. During the control system development, simulations verify that
control designs are reasonably accurate and that modelled behavior is as anticipated. Of
course, simulations cannot illustrate unrnodeled behavior. There is a continual trade-off
between the degree of detail desired in the system model and the cost of adding and
simulating more detail.

Factors and behavior deemed most important to include in the dynamic simulation include
the following:

a rigid body model of the full seven degree of f'reedom manipulator

the endpoint control algorithm

joint positiohte servo loops

model-based compensation algorithms, and the effects of modelling error

adaptive control

quantization effects, including multiple sampling rates

actuator torque/spted and power requirements for various motions.

The most significant item missing from this list is flexible body modelling. Flexible body
modelling of the manipulator was determined to be highly difficult and costly, while
analysis performed during the manipulator mechanical design indicated that the
manipulator would have high stiffness. In light of these two factors, it made sense to leave
out flexible body modelling and simulation. The joint torque servos are not simulated
either, principally because the actual hardware would be available well before the
simulation could be completed.

33.1 Manipulator Modelling

The well-known rigid body manipulator equations of motion are

where M (8) is the manipulator inertia matrix, C (8, 6) is the centripetal and coriolis
term matrix, G (8) is the gravity term vector, and z is an applied torque vector. These
equations form the core of the manipulator dynamic model. Generating these equations
manually is a very costly task. Fortunately, software is available to generate and solve
Equation (39) automatically. The program SDPAST [6] takes kinematic and mass
properties information for a general mechanical linkage and generates Fortran subroutines
that calculate and solve Equation (39). The dynamic simulation passes the subroutines a
set of joint angles 0 and joint torques 7. The subroutines solve the equations of motion
and return the joint angle accelerations 0, which the simulation integrates to obtain the
joint velocities and positions. SDFAST has other useful analysis capabilities that are
described in the user manual.

The manipulator's kinematic description is easily generated from engineering drawings.
Mass properties information is estimated from CAD modelling and engineering data.

3.3.2 Simulation Code

Rather than developing and debugging a complete dynamic simulation program manually,
the simulation program ACSL [7] was used to build up the simulation. Various code

modules, such as those containing the endpoint control algorithm or the equations of
motion, are linked with the ACSL simulation code so that functions within these modules
may be called from the simulation. This method enables the simulation to use the same
code that executes critical functions in the real time embedded system. Conceptually, the
simulation functions are quite simple: generate the joint torques to be applied to the
manipulator (via control algorithms, disturbances, etc.), call the manipulator model
subroutines (equations of motion), and integrate the resulting joint accelerations to obtain
joint velocities and positions for the next simulation time step. Of course, the details of
performing these tasks become quite complex. ACSL provides many features to simplify
the details, such as built-in functions for modelling quantization. implementing digital
filters, and including noise effects.

The full dynamic simulation provides results in the form of numerical data which can be
plotted. While this data is useful for engineering analysis, it does not provide much
intuitive feel for the manipulator motion during simulation runs. A simple animation
program that uses the Silicon Graphics Personal Iris platform was developed to provide a
better way to observe the simulated motion. The program reads a set of joint angles from a
simulation run and displays a graphical manipulator model fast enough so that the motion
appears continuous.

3.3.3 Manipulator Inertial Properties

One of the preliminary analysis results is the manipulator mass matrix, which is obtained
from the SDFAST subroutines. The Odetics Dexterous Manipulator uses high gear
reductions, so effective joint inertia variations are largely masked by reflected drivetrain
inertia. However, there arc some significant inertia variations for the fist few joints. ?Lvo
particular cases illustrate the variations. The first case is the manipulator fully outstretched
and carrying the maximum payload (50 lb., on-axis). The inertia matrix is

For the second case, the manipulator is close to the stowed position, and carries no
payload. The corresponding inertia matrix is

The effective inertia at the shoulder azimuth varies by a factor of just over 6. For the
shoulder elevation, the variation is nearly a factor of 5. For the remaining joints, the
variations are considerably less. It is also important to note that these variations represent
the maximum possible. 'I).pically, variations occurring during manipulator motion will be
less.

Another characteristic that can be determined from the manipulator inertia matrix is the
degree of dynamic coupling between joints. In the first example, there is substantial
dynamic coupling between the shoulder elevation joint and the elbow. In the second
example, there is a lesser degree of coupling between the shoulder azimuth and shoulder
elevation. In general, substantial coupling occurs mainly at high payloads, where the
acceleration capability of the manipulator is limited.

33.4 Dynamic Simulation Results

Many simulation runs under a multitude of conditions were run during the control system
development. This section contains only a few sample cases that illustrate how the
simulation was used to verify control system performance and examine dynamic behavior.

One of the more important determinations from simulation is the model-based
feedforward compensation performance. The manipulator, carrying an 8 lb. payload, was
placed in a nominal configuration well within the workspace and driven with a rapid
sinusoidal endpoint trajectory. Endpoint speed in the vertical direction reached 40 inches
per second. This scenario is probably near the maximum demand that would be placed on
the manipulator. Plots of the endpoint position error indicate manipulator tracking
performance. In the first run, the joint servos use PD shaping with full feedforward
(including velocity dependent terms) and decoupling compensation. Figure 27 shows that
the maximum position errors are approximately 0.05 in. in the X and Y directions and 1.0
in. in the Z direction. The next run uses similar compensation, except that the velocity
dependent terms in the feedforward compensation are zeroed. Figure 28 shows that the X
and Y tracking errors have nearly doubled and the Z tracking error is about the same. In
the third run, decoupling compensation is turned off. Endpoint position tracking errors are
about the same as in the previous run, as shown in Figure 29.

Figure 27 Simulation Run 1

Figure 28 Simulation Run 2

54
U56 OR LXWLfBlrRE OF DATA COKTMNBD ONTTUS IS SUBJECT TO 1W RlSlWCnON ON lX6 lTIIJ3 PAQE OFllUS DoCUM3T.

Figure 29 Simulation Run 3

In less demanding simulations, the model-based compensation had corresponding lesser
effect on dynamic (transient) tracking. The results indicate that decoupling compensation
will probably not be required for most motions. In contrast, the gravity compensating
terms in the feedforward compensation greatly reduce steady-state gravity errors, and
should be included.

Another area to be examined with simulation was the adaptive control algorithm's
performance with this manipulator. The discrete version of the algorithm found in [S] was
coded into the simulation. As in the PD algorithm case, the sample rate is 50 Hz., and the
desired closed loop position bandwidth is approximately 5 Hz.

When the various weights are tuned properly, the algorithm works correctly and stably.
Overall, good steady-state response is easy to achieve. Good transient response is more
difficult. One key factor is the magnitude of the auxiliary signal. As the auxiliary signal
gains 6 and p are increased, the magnitude of the auxiliary signal becomes much greater
than that of the adaptive feedback signal, and the algorithm approaches fixed gain PID
feedback. The adaptive feedback gains are still able to compensate for the effective inertia
variations in the system, and the large (fixed) feedback gains provide good transient
response. Without large auxiliary signal gains, fast and stable transient response could not
be achieved.

If an integral component is included in the auxiliary signal (6 > 0) , gravity torque error is
quickly eliminated. Without an integral component in the auxiliary signal, the adaptive

feedback gains will rise exponentially in the steady-state to try and null this error. Large
values of the adaptation gains wp and w, will speed up the adaptation, but tend to drive the
algorithm unstable.

Three simulation xuns illustrate the behavior described above. For each run, the endpoint
trajectory is an orientation motion with fixed position. Data is shown for the first four
manipulator joints only. Joints 2,3, and 4 are under gravity load, while joint 1 is not.

In the first run, the adaptive control algorithm parameters are:

Figure 30 shows the joint angle commands and joint angles plotted together. Note the
transient response shows large errors. Figure 31 and Figure 32 show the adaptive position
and velocity feedback gains. The joints that are gravity-loaded show relatively long
convergence times for these gains.

56
US3 OR DBCLOSURB OP DATA CONT- ON TTES !THE3 B SUBm 'Kl rWE RESlWCIlON ON 'IHE 'ITlLE PAGE OP TIDS -.

Figure 30 Adaptive Control, Run 1; Joint Tracking

Figure 31 Adaptive Control, Run 1; Position Error Gains

Figure 32 Adaptive Control, Run 1; Velocity Error Gains

8 Decentralized Adaptive Controller

1 I I

In the second run, the auxiliary signal gains have been increased and the error weights
decreased:

The other gains remain the same. The transient and steady-state response are much
improved - the maximum tracking error is 0.13 rad. Figure 34 and Figure 35 show that the
magnitudes of Kp and Kv remain small, and therefore the adaptive component of the
torque command, remain small. The torque command is almost totally composed of the
auxiliary signal contribution, making the algorithm essentially fixed gain PID.

Figure 33 Adaptive Control, Run 2; Joint Tracking

Decentralized Ada t ive Controller

0

v

Figure 34 Adaptiye Control, Run 2; Position Error Gains

X O I Decentral ized Adapt ive Controller I I I I 1

Figure 35 Adaptive Control, Run 2; Velocity Error Gains

The last run shows the same motion, using a model-based PD controller. An error of 50%
has purposely been introduced into the mass properties of the payload. Figure 36 shows
the The maximum transient error is 0.005 rad, on joint 3. Joint 2 has a steady-state gravity
error of 0.001 rad.

- Decentralized A d a p t i v e Controller
0

-
s b -
>
Y,

-

4

Figure 36 Same Motion, Model-Based PD Control; Joint Tracking

Model-based PD Controller

r
U

4.0 Control System Implementation

Control system implementation involves providing computer and electronics hardware
with sufficient performance to execute control algorithms, and developing software to
implement those algorithms in a correct, efficient, and maintainable manner. As with any
engineering design, the implementation is a compromise of performance, cost, flexibility,
and other attributes. For the Odetics Dexterous Manipulator control system
implementation, several of important trade-off considerations were:

Use commercially available (rather than custom) processors, data acquisition, and
control hardware. Although custom hardwark has advantages in size and reduced
number of interfaces, the cost, development time, and difficulty in making
configuration changes are major disadvantages for a prototype system.

Use the VME bus and Motorola 680x0 family processors. The wealth of vendors that
provide hardware for VME systems increases design options and reduces risk.
Similarly, there is a friendly software development environment with many software
development tools (compilers, real time operating systems, etc.) available for the 680x0
archi tme. Although other processor architectures such as SPARC and DSP's may
provide higher performance, they do not have the 680x0 family's rich set of
development tools.

Adopt a host/target strategy for real time code development and implementation. In this
strategy, software development takes place on a host computer rather than on the
embedded control computer. Ideally, the host computer has very good facilities for
software development, debugging, testing, and documentation. Working code is then
loaded into the embedded control computer, known as the "target", for actual system
control. The target is optimized for real time processing, and typically has rather poor
facilities for software development. With the hostltarget strategy, both development and
execution take place in a near optimal environment, rather than in some compromised
environment that works sub-optimally.

4.1 Hardware

The control system hardware is a multiprocessor computer system designed for
mechanical system control. At the heart of the system is the VME bus, which provides
high bandwidth communications, shared memory, and a large set of readily available
hardware and software tools for system development. Figure 37 shows the physical
layout. A VME cardcage with a 22 slot backplane holds the various processor, data
acquisition, and UO boards. The cardcage is rack mounted in a large cabinet, which also
holds power supplies and an interface electronics enclosure. A second cabinet contains
servo amplifiers. Both cabinets are connected to the manipulator via an umbilical cable.
An emergency "E-stop" button is mounted in the cabinet containing the card cage, and
there are additional connectors for connecting remote E-stop buttons to the system. A
person entering the manipulator workspace while the manipulator is active carries one of
the remote buttons with him so that he can quickly disable the manipulator if required.

62
US6 OR DLS(LOSURB OF DATA CONT- ON TW SHBBT B SUBJECT 70 1HE WSIRJCnON ON 'R[E Rnti PA= OPTXB b6CUMPNT.

Figure 38 shows the control hardware architecture in detail. Three single board computers
execute algorithms, control hardware devices, and perform executive functions. There is
an additional 1 Meg of battery backed SRAM for programs and data. A programmable
(68010-based) AD converter with expansion units processes analog signals. Resolver to
digital and Synchro to digital converters handle joint position sensor signals. Digital UO is
available for joint brakes as well as enable, fault, and reset operations. A D/A converter
provides the analog command signals for the servo amplifiers. The Transition Module
provides connectors for Ethernet and serial interfaces used to connect the target system to
other systems sharing the same network.

Figure 38 Control Hardware Architecture

umnx roR13 m PORTS I N n W A u i X)
32 Ma CH A M A CH A HOST DEV.

OVrtVrS CUB CHI QiB SYSITM
M C CHC QIC

4.1.1 Processors

Each of the three system processors is a 680x0 family single board computer that is
dedicated to serving at one of the three control hierarchy levels. The first processor, known
as RDOFA, is a Motorola MV-147 single board computer. It uses a 25 MHz MC68030
CPU with a 25 MHz MC68882 floating point coprocessor. It also includes an Ethernet
transceiver interface for communications with other computers on a network, as well as
serial ports. This processor primarily serves as the system executive. It provides the
interface to the network for loading code and communicating with the host computer,
which runs the user interface.

The second processor, referred to as RDOFB, is a Synergy Microsystems SV3 1S single
board computer. This is a very high performance computer that uses a 50 MHz MC68030
CPU with a 50 MHz MC68882 floating point'coprocessor. RDOFB performs all algorithm

calculations at the middle level of the control hierarchy. These include trajectory
generation, endpoint control, joint position/rate servo control, and model based
feedforward compensation. In addition to algorithm calculations, RDOFB monitors sensor
values and internal variables and disables the manipulator if they leave safe ranges.

The third processor, referred to as RDOFC, is a Motorola MV-133XT single board
computer that uses a 25 MHz MC68020 CPU with a 25 MHz 68881 floating point
coprocessor. RDOFC's primary function is to execute the joint torque servo loop
algorithm. It also generates a VME interrupt every 20 milliseconds for RDOFB execution
timing.

4.1.2 Data Acquisition and Interface Electronics

Data conversion devices in the control system include an A/D converter, resolver to digital
(R/D) and synchro to digital (S/D) conveners, and discrete inputfoutput. Each of these is a
board or board set that resides in the VME card cage. An analog output board and the
discrete outputs provide hardware control signals. A separate enclosure houses the
interface and signal conditioning electronics.

The A/D converter is a Datel DVME-601 "smart" A/D board. It includes a 68010
processor to control A/D conversion, relieving the host processor of that task. The board
features 16 single ended inputs with 12 bit conversions down to 2 p. The board includes
numerous other features, including an on-board timer and VME bus interrupt capability
that are used to synchroni'ze algorithm execution. Two Datel DVME-641 expansion
boards provide the additional input channels required for the complete manipulator
system. The 641 boards interface to the 601 board via a channel expansion bus that is
separate from the VME bus.

The R/D and S/D converters are Transmagnetics 5410C-8-12 boards that include three
separate 16 bit tracking converters. The boards provide 45 arc-second accuracy. While
some R/D converters provide an analog velocity output, high accuracy units such as this
one typically do not due to the difficulty in producing a usable signal with reasonable
ripple at low velocities.

Discrete YO is provided by a VME Microsysterns VMTVME 25 10B digital UO board, a 64
channel model. The discrete inputs connect to the servo amplifier fault lines, which show
conditions such as a shorted motor winding or AC power loss. The discrete outputs control
the servo amplifier enables and the joint brakes. A VME Microsysterns VMIVME 4100
16-channel D/A board provides analog commands for the servo amplifiers.

The interface electronics provides many functions and circuits:

routing of signaIs between the manipulator, card cage, servo amplifier enclosure, and
host computer

reference voltages for various circuits, and level shifting as required for discrete signals

anti-aliasing filtering of analog inputs, such as joint torque sensor signals

latching for critical discrete signals, such as E-stops and amplifier faults

indicator LEDs to display the system state

brake driver circuitry.

Most of this circuitry is modular, e.g., individual boards exist for each brake driver, so that
spares can be added quickly in the event of a failure. The design gives primary
consideration to low cost implementation and simple debugging and modifications, and
little consideration to compactness and interface minimization. This design approach is
correct for a prototype system, and would certainly be modified for a production system.

4.2 Software

Various goals and constraints have guided the software design and implementation for the
Dexterous Manipulator control system. Principal among these criteria are:

provide good real time performance (high sample rates and detemrinacy)

insure robustness to error conditions and failure modes; protect hardware and degrade
in a controlled manner

finish the project with structured, maintainable code that can be extended to test new
algorithms and hardware as they become available

maintain an efficient development environment, using available software tools to
generate and maintain code when possible.

4.2.1 Architecture

The software architecture integrates the three level algorithm hierarchy described in
Section 3.1 with a set of real time executive and hardware interface (driver) functions.
Together, these components provide the embedded control software. The real time
executive and interface functions may be thought of as the two innermost levels of the
software architecture, while the application code fonns the outer levels, as shown in
Figure 39.

- - - ~ -

66
U S OR JIBCLOSURE OF DATA mNTm ON THIS SHEET IS= TO ?Hti RESXWCTION ON lXE mLs P M E O F l W DWUM@NT.

The application code reflects the three level algorithm hierarchy. Functions and data for
each level are linked into single modules, which are loaded and executed on the
appropriate processor. Data used by more than one processor is shared over the VME bus,
using dual ported RAM controlled by a double buffering scheme. Code running on
processor A is primarily responsible for communication with the host workstation, which
controls the user interface. The design uses UNIX Remote Procedure Calls to recognize
events at the user interface and transfer the appropriate control signals and data from the
host to the target system, where the target processors have access to the data via shared
memory. This processor cxecutes its code asynchronously. Processors B and C run
synchronously, executing time-critical control and servo functions. Functions running on
these processors use the lower level interface functions for data acquisition and 40 and
the real time operating system services for synchronization and execution control.

4.2.2 Execution Control

Process execution in the control system can be divided into real time and non-real time
processes. Real time processes include data acquisition, algorithm execution, and data
logging, while non-real time processes include communication with the host computer,
trajectory generation, and parameter modifications. A reasonable way to describe the
system is to describe the three execution levels separately.

4.2.2.1 Asynchronous Processes

As described in the software architecture, processor RDOFA executes asynchronously,
and is responsible for communications with the host computer and calculating the
manipulator mass matrix. Communications with the host computer is implemented with
Unix Remote Procedure Calls. It is a one-way path: as implemented, the RPC interface
passes data from the host system to the target system, but not the other way. Currently,

-

67
USE OR -OF DATA CONTAINED ON TNIS SHWIS S V B m TO l Y E m C I T O N ON IME rmE PA- 0F"IW DO-.

messages fiom the target system to the host are sent over a serial line and appear on the
host computer in a window running a simple serial communication program. Information
that can be passed to the target system includes motion parameters and commands,
algorithm parameters, and feature enabling/disabling switches for debugging. The data
structure that contains all of this information is a union of C structures, each of which
contains structure elements for the various system parameters and commands. Once the
RDOFA processor has obtained the pertinent data from the control station, it makes the
necessary function calls to place the data into shared memory, where the other processors
have access to it.

The mass matrix function calculates the manipulator mass matrix approximately 30 times
per second. It retrieves the manipulator joint angle commands from shared memory,
calculates the mass matrix entries, and places the results into shared memory. The C code
that performs the calculations is generated automatically using the Mathematica
programming language. The Mathematica mass matrix script uses a recursive Newton-
Euler method to generate the mass matrix.

Both the mass matrix process and the RPC communications processes are spawned after
initialization of the RDOFA processor, and both continue to execute asynchronously
forever, sharing the processor resources.

4.2.2.2 Endpoint and Joint Position Control

Most of the time-critical and computation-intensive processes occur at the RDOFB
processor level. There are also some non-real time tasks, such as trajectory generation and
loading a stored trajectory from a file. The real time tasks are organized as a state machine,
and implemented as an interrupt handler. This interrupt handler services a VME interrupt
generated every 20 ms by the RDOFC processor. All endpoint control, model-based
compensation, and joint position servo algorithms execute in this time period.

Figure 40 shows the organization of the RDOFB state machine. The system starts up in the
"wait for active mode" state, where the brakes are set and servos de-energized. When the
user switches the system to "active mode", the servos are energized, the brakes released,
and the manipulator servoed to its current position. The system is now in the "wait for
command" state. When the user chooses a manipulator motion mode (endpoint, joint,
playback) and presses the "move" button, the motion command is parsed, and the system
enters the "execute command" state. In addition to retrieving motion parameters, the
parsing function sets a pointer to a function to point at the particular function that
implements the motion mode desired. As the manipulator moves, this function is called
repeatedly, until its return value indicates that the motion is complete. The system then
enters the "go to inactive mode" state, in which the servos are de-energized and brakes set.
The system can also go directly to this state if the user presses the abort button on the
control panel, or the watchdog process detects an enor condition.

Figure 40 RDOFB State Diagram

i I

There are several function that are called from within the intermpt handler regardless of
the state. If the system is not in the execute command state on entry to the handler, the
non-real time tasks are serviced. The manipulator joint angles are sampled, either for
current joint servoing or so that joint servoing can begin at the manipulator's current
position. After executing code corresponding to the current manipulator state, the
watchdog and data logging functions are called, and the new set of joint torque setpoints
produced by the joint position servo algorithm are placed into global memory so that the
torque servo control level has access to them.

4.2.2.3 Joint Torque Control

The RDOFC processor executes the code for joint torque servo control. Since torque
servoing is this processor's only real time task, there is no need for a state machine. The
torque servo algorithm code is called from an interrupt handler that services the A/D
board's end of scan interrupt, which occurs every 2 ms. At every tenth entry to the handler,
it generates a VME intermpt for the RDOFB level intermpt handler to service.

The processor's non-real time function is to initialize the data acquisition at system start-
UP.

4.2.2.4 Watchdog Process

The watchdog process performs several checks to insure that the manipulator is within its
operating limits and that the control system is functioning properly. The first check is a
joint oriented limit test that is coded as a C macro. A C structure defines the checks for
each joint; an array of these structures defines the numerical limits. If any of the checked

quantities is outside of the watchdog limits, the manipulator servos are disabled and an
explanatory message is printed. Checked quantities include joint position, velocity, sensed
torque, motor temperature, and motor current. One joint is completely tested each time the
limit check function is called, so that test frtquency for a joint is 7.14 Hz.

A second set of checks verify that the three processors are alive and functional. Processors
RDOFA and RDOFC are deemed functional if the global variables that their processes
update are being xefieshed in shared memory, as indicated by flags. If these flags indicate
that this critical data is not being updated, the servos are disabled and the RDOFB
processor is halted. Processor RDOFB is monitored by verifying that its synchronization
interrupt is alive. If it is not, the sentos are disabled and the RDOFB processor is halted.

4.2.3 Shared Memory Interface

The shared memory interface enables the three processors to read and write data to the
VME bus memory space. Data structures that pass through the interface include single
items (C types int, short, double), structures and arrays, and double buffered data. Data
that requires double buffering includes the manipulator mass matrix, joint angles, and
torque commands for the joint torque servos. The interface is implemented as a set of
source code modules whose objects are linked and loaded into each of the three
processors. The interface design goals were:

cleanly encapsulate the interface implementation

hide specific VME memory locations from interface users

allow different sections of the interface to be located in different VME memory spaces

provide standard access functions for interface data items, and allow no data items to be
visible outside of the code modules implementing the interface; only function interfaces
are visible

hide the implementation details of double buffered data from interface users.

Sections of code that need data available through the interface simply make the
appropriate function calls, which nturn either the data itself (for single items) or a pointer
to the data. A section of code that uses double buffered data could look something like the
following:

if (mat-avail() = NO)
mat-not-ready++;

else (
get-mat(&mat-local [O] [O]);
mat-not-ready = 0;

1
if (mat-not-ready > MAX-NO-CYCLES)

shutdownqrocessor();

Double buffering insures that critical sections of code use only fresh data that has not been
previously used.

4.2.4 User Interface

The user interface program executes on the host computer, a Sun workstation. It manages
a set of windows that provide manipulator control, parameter entry, and status display
functions. As the user chooses different operating modes or makes requests to set
parameters, the appropriate windows are displayed. Controls w i t . these windows are
enabled and disabled depending on the manipulator and control system state.

There are two distinct parts of the user interface code. One part is a set of modules that
control the actual window configuration and display. Functions in these modules display
and hide windows, control their size and placement, and operate the graphical devices
within the windows (buttons, switches, and slider bars). This part of the interface is
written using the Sunview user interface toolkit, which is a library of C functions for
graphical applications. A code-generating program called Autocode is used in conjunction
with Sunview. Autocode enables a programmer to design user interfaces graphically. The
programmer arranges windows, panels, and graphical devices as desired, and then
Autocode generates modules of Sunview code that may be compiled, linked with
application code, and executed. Automatic Sunview code generation reduces graphical
interface development and maintenance time and effort dramatically.

The second part of the user'interface code captures the control signals and data from the
user interface running on the host system and transfers it to processor RDOFA in the target
system. These functions are called when the user presses a button or sets a parameter
value. When such an event occurs, the target must be notified that something has happened
and take action to service the event. UNIX remote procedure calls provide the means to do
both these tasks. Once RDOFA receives the data, it makes the necessary function calls to
place the data into shared memory so that the other processors have access to it.

4.2.5 Data Logging and Plotting

Originally, custom software to perform data logging and plotting functions was to be
developed. During code development, a commercially available software package for real
time data capture and presentation was discovered. The program, called Stethoscope, is
designed to work the host/target system architecture, and is compatible with Sun
workstation hosts and target systems running the VxWorks operating system. These
features, and the software's low cost compared to the cost of a software development
effort to achieve the same functionality, make it an ideal choice for this control system.

The program is divided into two parts. One part executes on the target system and
performs the real time data capture, with the goal of minimizing time impact on the critical
real time application. The other part of the program executes on the workstation. It

receives the captured data from the target system over the local area network (Ethernet)
and displays it in near-real time. The software has many additional capabilities and
features that arc described in its manual [8].

4.3 Operating the Manipulator

To operate the manipulator, the user logs into the Sun workstation host and powers up the
electronics cabinet. When the cabinet is powered up, the three processors boot VxWorks,
load their application code, and start executing it. The manipulator is initialized to the
disabled state, of course. Once the booting process is complete, the user types a single
command at the workstation which starts the user interface and StethoScope.

Figure 41 Control Station Main Panel

Figure 41 shows the control station main panel. The user selects the operating mode with
the cycle switch in the center, clicking on it until reaching the desired motion mode. The
"active mode" button enables the manipulator servos and prepares it to move. The lower
three buttons allow the user to set control system parameters.

Figure 42 shows the "Single Joint Mode" panel. The user selects which joint to move, how
far to move it from its current position, and how fast to move it, as a percentage of its
maximum speed. Pressing the "move" button when the system is in active mode starts the
joint's motion. The "Release Brake" button allows the joint to be moved manually. Similar
panels exist for sinusoidal single joint motion (for testing), coordinated joint space moves,
and endpoint moves. The user can immediately stop manipulator motion by pressing the
"abort" button, which appears on the main panel when the system enters active mode.

Figure 43 shows the algorithm parameter panel that is displayed when the "configuration"
button on the main panel is pressed. This panel enables the user to set endpoint/
configuration control parameters. New values can be typed into the numerical fields and
the cycle switch set to choose the codguration control method. When the settings are as
desired, the "accept" button initiates the RPC that sends the new settings from the panel to
processor RDOFA in the target system, which in turn writes them to global memory for
access by the other processors. A Similar panels exists for the anti-backlash algorithm
parameter settings.

Other panels include the "Debug" panel, which allows the user to selectively disable and
enable joint torque servoing, the anti-backlash algorithm, and feedforward gravity and
acceleration compensation on a joint-by-joint basis. A "Playback" panel provides a means
to execute a joint or endpoint trajectory that has been stored on disk.

5.0 Control System Evaluation

The primary system evaluation is a comparison of the performance goals listed in Table 1
with the actual manipulator performance. Schedule and cost constraints limited the
amount of testing that could be performed during this Phase XI contract. Although contract
support has been exhausted, work to characterize the system's performance and
implement improvements continues.

5.1 Subsystem Performance

This section describes the joint torque servo, joint position servo, backlash elimination,
and endpoint algorithm performance at the subsystem level. Section 3.2 of the report
details the design and analysis of these subsystems.

5.1.1 Joint Torque Servoing

The high payload to weight ratio and compactness design goals and subsequent
achievements have a significant impact on the manipulator's structural dynamics and
control system performance. This impact first became clear during torque servo
implementation.

After assembling the first shoulder module and testing its actuator, brake, and sensor
subsystems, the first attempt at joint torque servoing was made. The module was mounted
to a test stand and fitted with a large hollow tube to approximate the load corresponding to
an intermediate inertia configuration of the manipulator. Typical torque sensor data
collected while driving the system open loop is shown in Figure 44. Figure 45 shows the
power spectrum of this data. Clearly, the sensor is picking up vibration from lightly
damped flexible modes in the system. For this test inertia, the lowest resonant frequency is
at approximately 16 Hz. Since the torque loop compensation was not designed for this
flexible mode within its bandwidth, the torque loop is unstable. The shoulder resonant
frequency varies between 40 Hz. at minimurn inertia and 6 Hz. at maximum inertia.

Figure 44 Torque Sensor Data, Shoulder Module

Figure 45 power Spectrum, Shoulder Module

A quick way to determine if the torque loop works properly apart from the unmodeled
dynamics is to lower the closed loop bandwidth well below the resonant frequency. The
loop compensation was redesigned for a 15 Hz. bandwidth and the joint tested with a low
inertia load. The resonant mode for this low inertia load is at 40 Hz. The torque loop
response was stabilized. With the torque loop operational, apparent joint friction is greatly
reduced; when commanded to zero torque, a very light push on the joint will move it
through most of its range of motion. Much of the joint's friction is servoed out, and the
resulting dynamic response is close to a 1 /s2 rigid body, over the torque loop bandwidth.

Non-collocated control through a flexible structure is a well known problem [9] . This
problem motivated joint torque feedback, which could (to some degree) actively damp the
flexible mode while servoing out friction. The method has been detailed analytically for a
single degree of freedom testbed [lo]. The approach is to use lead compensation to damp
the resonant mode. In subsequent experimental work by the same researchers, the testbed
resonant frequency was above the torque loop bandwidth, so the active damping
compensation was not tested [ll].

There are several difficulties with this solution to the problem. The first is that the
frequency of this flexible mode is load-dependent. For outstretched manipulator
configurations and large payloads, this frequency wiU drop substantially. For example, the
Dexterous Manipulator's shoulder joint resonant frequency varies from 40 Hz. in the
unloaded state down to 6 Hz. for the maximum joint inertia. The load dependence makes
strategies such as lead compensation or notch filtering at the resonant frequency non-
robust.

A second problem with the reduced bandwidth/notch filtering approach involves phase
loss. The original torque loop compensation bandwidth insured that the system
approximated an undamped rigid body out to the 50 Hz. closed loop bandwidth. The
torque to position frequency response has 180 degree phase shift out to this frequency, as
shown in Figure 15. With reduced torque loop bandwidth or extra attenuation from
filtering, the phase loss is much faster in the torque to position response, requiring
additional lead in the positionlrate loop compensation design. Depending on the closed
loop bandwidth and/or filter order, the position loop may have to compensate over 100
degrees more of phase loss to achieve a position bandwidth close to the original 5 Hz.
design, which is impractical.

The second shoulder joint module was assembled next. It exhibited nearly identical
behavior. The upper arm roll joint was assembled and tested next. Torque sensor data
collected while the joint was driven open loop show a similar resonance at approximately
25 Hz., using a load corresponding to a relatively low joint inertia. Clearly, the problem is
not limited to the shoulder joints. The next logical step was to determine if any particular
drivetrain members contribute unduly to the low stfiess and damping.

One of the initial suspects was the instrumented ring gear that serves as output member
and torque sensor in each of the joints. Although this gear is designed to be exceedingly
stiff, the actual part may not have the high design stiffness, or it may contribute to the
flexibility in some unknown manner. A spare solid ring gear that did not have webs and

strain gauges was available for testing. Testing the joint with this ring gear required an
alternative means of torque sensing. A JR3 Inc. six degree of freedom force/moment
sensor of compatible diameter was available. ' b o adapters were fabricated: one to mount
the sensor to the roll module output, and the second to mount the test load to the sensor.
Figure 46 shows the force/rnoment sensor signal (axial axis moment component) with the
instrumented ring gear, and Figure 47 shows its power spectrum. These plots verify that
the external forceboment sensor can observe the flexible mode.

Figure 46 Torque Sensor Data, Upper Arm Roll Module, Instru. Ring Gear

Figure 47 Power Spectrum, Upper Arm Roll Module, Instrumented Ring Gear

The instrumented ring gear was replaced with the solid ring gear, and the measurements
repeated. Figure 48 shows the corresponding power spectrum. Note that the results are
quite similar.

Figure 48 Power Spectrum, Upper Arm Roll Module, Solid Ring Gear

Another hypothesis was that flexibility in the test stand was contributing to the flexible
mode. The test stand's lowest structural resonant frequency is approximately 80 Hz. In
order to test this hypothesis, the upper arm roll module was mounted to a large 1 inch steel
plate, which was in turn clamped to a large welding table, which provided a very rigid
base for testing. This equipment is located in a different part of the facility, so the
manipulator controller was unavailable for open loop testing. An alternative test setup
using an inductive velocity sensor was devised. A small magnet was mounted to the test
load at a sufficient radius from the joint axis so that joint vibration would cause the magnet
to move. A coil was positioned close to the magnet so that as the magnet moved, a
measurable voltage would be induced in the coil. This voltage is proportional to the
velocity of the magnet, and it can be captured and measured using a storage oscilloscope.
Although this method is crude, it provides good time/fiequency data on the joint vibration.
Figure 49 shows the measured voltage in response to a mallet tap on the side of the test
load. The waveform has two hquency components; the lower component is just over 19
Hz. The much higher second component probably represents the audible ring of the
tubular test load. The plot also clearly shows the light damping associated with this
vibrational mode. This result shows that mounting the joint to a very rigid base has little
effect on the resonant mode.

Fimre 49 Upper Arm Roll Module Vibration; Bench Test - -- - A - --- - - . - - - - - . - - - - - - - -.---.- - - ---.-. -

A_- L--- -- - I

Elbow and wrist module tedting yielded similar results. In each case, the joint has a very
lightly damped flexible mode whose frequency varies between approximately 6 and 40
Hz., depending on loading. Strategies for ameliorating the effects of the low frequency
joint vibrational mode include raising the joint stiffness, increasing the damping, or both.
The flexible mode frequency increases only as the square root of the stiffness; thus, great
efforts to increase drivetrain stiffness appear unattractive. As a first attempt to increase
damping, one of the shoulder module transmissions was packed with viscous grease, and
the previous measurements were repeated. The measurements showed practically no
difference in the joint dynamics. At this point in the project, great effort had been applied
to identifying and understanding the resonance problem. The strategy that made the most
sense was to leave the torque loops disabled and to include additional positiodrate loop
shaping to compensate the resulting joint dynamics.

5.1.2 Position 1 Rate Servoing

Developing position loop shaping for the individual joints (without torque loops) is
relatively straightforward. Typically, the open loop data shows that, at the desired
crossover frequency, the non-torque servoed joint has somewhat more attenuation and
phase loss than that in the original torque servoed case. When the flexible mode
frequencies are in the upper part of their range, it is not difficult to obtain good stability
margins, bandwidth, and low frequency gain (integral compensation) for each joint. The

compensator design yielded closed loop dynamics similar to the example in Section
3.2.3.4. The real difficulty arises when the individual modules are joined into a seven
degree of freedom manipulator, and the resonant frequencies drop close to the servo
bandwidths. The vibrational dynamics of the manipulator as a whole is a combination of
the actuator structural dynamics. Further measurements were taken in order to
characterize the complete mechanism's flexibility. The manipulator, carrying no payload,
was extended to its full reach, which would produce the lowest resonant frequency. The
brakes were set, and the toolplate was tapped with a mallet. The response was measured
with the shoulder elevation joint torque sensor. Figure 50 shows the power spectrum of
such a measurement. The lowest frequency mode is at about 7 Hz., and the second mode is
at about 25 Hz.

Figure 50 Manipulator Vibration Power Spectrum

Again, the vibrational modes are very lightly damped and only slightly above the desired
position loop bandwidth. The initial attempts to use the position loop shaping that worked
with the joints as individuals proved unstable for the manipulator as a whole. The
manipulator vibrational modes were almost immediately excited by the servos. Once
again, the resonant frequency is a function of manipulator configuration and load. In order
to drive the manipulator stably, the position loop bandwidth of the joints was reduced
down to approximately 1-2 Hz. The manipulator operates stably at this bandwidth, but
tracks rather poorly due to the low authority control. In particular, the steady state tracking
is well below the performance required to achieve the repeatability goals, primarily due to
high joint friction combined with low control authority.

The model-based compensation's performance was examined somewhat more
quantitatively, although only rudimentary measurements were made. Ideally, this
compensation maintains even servo response throughout the workspace and under the full
range of payloads. In order to evaluate variations in position servo response, the major
joints' position servo bandwidth was tested for three payload/configuration conditions:

1. No payload, minimum joint inertia pose.

2. No payload, maximum joint inertia pose.

3. 35 Ib. payload, intermediate joint inertia pose.

The elbow and wrist joints see little configuration-dependent inertia variations, so they
were tested in an intermediate configuration with no payload and 35 Ib. payload. Once
again, high joint friction, uncompensated due to the lack of torque loops, made the
measurements very difficult, particularly for the heavily-loaded shoulder joints. Table 5
summarizes the results.

Table 5 Position Servo Bandwidth Testing

The table entries marked "x" indicate that the friction effects dominated the test, making
the measurement invalid. The parenthesized measurements indicate that high friction
tends to "clip" the response and make the apparent bandwidth lower than the servo design
indicates.

Elbow

Wrist Yaw

Wrist Pitch

Wrist Roll -

These results show that there is some variation in the servo response over the various joint
inertia conditions. It is important to note that the current servo tuning yields much lower
bandwidths than the original design called for (- 5 Hz). In addition, the mass properties
used in the feedforward compensation are estimates that are somewhat in error with the
manipulator's true mass properties (the manipulator is 15 Ib. lighter than the design goal).

1.6

2.0

2.0

2.2

1.4

1 .O

1.5

2.0

5.1.3 Backlash Elimination

On the positive side, the backlash elimination technique's performance is superb. As
assembled, the joints have a fairly large amount of backlash. The elbow, for example, has
about 0.5 degrees. Using the debugging switches provided in the user interface, the user
can enable/disable the joint torque biasing "on the fly" and watch the response. Once
disabled, a motion command or external disturbance will cause the joint to vibrate;
enabling the biasing immediately stops the vibration.

5.1.4 Endpoint Algorithm

Since the endpoint algorithm is decoupled from the lower levels of servo control and thus
unaffected by their dynamics (refer to Section 3.2.2, page 21), its behavior is not
compromised by the difficulties described earlier. This fact means that kinematic
simulations provide a good measure of the algorithm's performance in implementation.

The factors that actually determine the implemented algorithm's performance involve
hardware and software implementation. The algorithm solves the manipulator kinematics
using an iterative numerical solution. Iteration continues until the algorithm achieves a
soIution within a specified tolerance, or reaches the maximum number of iterations
allowed. The algorithm update rate limits the maximum number of iterations allowed for
each trajectory point. Clearly, fast hardware and efficient software implementation will
increase the number of allowable iterations. The important question is, "How many
algorithtn iterations art required for good algorithm performance?"

The two principal factors that determine what this maximum should be are:

I. The commanded endpoint speed

2. The condition of Equation (20).

For relatively low commanded endpoint speeds, Ax in (20) is small and the numerical
solution will be close to exact on the first iteration. At higher speeds, Ax will be larger,
requiring more iterations for solution. As the manipulator approaches kinematic
singularity, (20) becomes ill-conditioned. Again, more iterations are required to achieve
convergence to a given tolerance.

The current computer hardware and dgorithm software implementation yield an endpoint
algorithm iteration time of approximately 5 ms. In order to execute the endpoint
algorithm, joint position servo, and gravity feedforward compensation synchronously with
20 ms updates, the maximum number of iterations is set to 3. The corresponding tolerance
on endpoint position and orientation error is 0.005 inches and 0.005 radians. Note that this
tolerance is held throughout trajectory tracking, including the fastest, most demanding
sections of a move. If desired, a much tighter end of move tolerance could be specified
without increasing the required number of iterations.

5.2 Manipulator Performance

There is a wide spectrum of performance criteria and testing applicable to robotic
manipulators. Examples include accuracy, repeatability, speed, payload capability, force
capability, efficiency, and power consumption. Contract cost constraints prohibit extensive
testing of each of these criteria. In addition, the current system performance level is
tainted by the unresolved low frequency structural dynamics problem and the
corresponding servo bandwidth reduction forced on the system. Much of the effort near
the contract's end was applied toward solving this problem and improving the manipulator
performance, rather than toward extensive testing. This effort is continuing, although
without contract support. Once the problem is relieved, the subsystem performance
described in the previous sections will improved substantially, and the system will achieve
the design performance level.

5.2.1 Mechanical Design Goals

The design-oriented goals outlined in Table 1 were, for the most part, achieved or
exceeded. The manipulator length to toolplate is 55 inches. The actual 150 lb. weight is
9% less than the design weight. Difficulty in routing the wire harness reduced the wire
count emerging at the toolplate connector to 40 wires. The remaining 72 wires terminate
in the hollow forearm tube.

5.2.2 Payload Capability

The maximum payload that the Dexterous Manipulator can statically support is related
more to the manipulator's mechanical design than to the control system. However, the
ability to move this large payload smoothly throughout the workspace is a function of both
mechanical properties and control system robustness. The manipulator's flexible
dynamics complicates control at higher payloads, where the resonant mode frequency is
close to the servo bandwidth.

Basic qualitative testing characterized the payload capability. The manipulator was loaded
to 35 lb. and moved around the workspace in endpoint control mode. With the current 1-2
Hz. joint position servo bandwidth, the manipulator moved the load in a stable manner
through most of the workspace, but became unstable near the outer workspace border,
where the resonant frequency is lowest. This behavior indicates that, even at this low
servo bandwidth, the current servo tuning does not shape the response such that the
manipulator can operate stably at high load near the workspace edge. While "rolling off'
the response at a somewhat lower frequency would stabilize the manipulator response
under the fully loaded condition, the lower bandwidth would reduce performance in the
remainder of the workspace unacceptably. Once again, the proper course of action is to
resolve the structural dynamics problem.

4

5.2.3 Endpoint Speed

Maximum endpoint speed depends on both the maximum achievable joint speeds and the
particular manipulator pose. From a theoretical standpoint, the maximum endpoint speed
occurs when the manipulator is outstretched (for maximum radius), and all joints with
parallel axes are moving at their maximum angular speed. Of course, this is a singular
manipulator configuration at the workspace edge and is thus useless for manipulation. The
design goal in Table 1 is obtained by considering each major joint alone. Multiplying the
joint's maximum speed by its distance to the toolplate yields approximately 40 in./s. This
method is more reasonable, but considers joint space moves rather than coordinated
endpoint moves. A useful endpoint speed measurement considers coordinated endpoint
moves and thus exhibits both physical and control capabilities.

Limited endpoint speed testing consisted of moving the manipulator and a 10 Ib. payload
to various positions in the workspace, commanding linear endpoint moves, and measuring
the achieved endpoint velocity. The endpoint trajectories are quintic polynomials; the peak
speed occurs around the trajectory center. Table 6 shows some of the results.

Table 6 Endpoint Speed Testing Results

86
USE OR MSCLdSURE OF DATA CONTINB) ON THIS I5 SWBm TO 'WE RESIWCIlON ON 'IHE TITLE PA05 OFTHIS MXUMENT.

d

6.0 ConcIusions and Recommendations

6.1 Observations

The Odetics Dexterous Manipulator has extended the state of the art in manipulator design
in several significant areas:

The manipulator achieves extensive modularity with its simple mechanical and
electrical interfaces, clean exterior, and totally internal wire harness from base to
toolplate.

The high strength to weight ratio will enable the manipulator to dexterously
manipulate significant payloads for its size.

Careful attention to packaging has yielded compactness that allows the mechanism to
stow into a small volume, which is an important requirement for space applications.

Redundant actuation and sensing provide fault tolerance that is important to any
application and crucial to space operations.

Significant accomplishments in algorithms and control have also been made during the
project:

An advanced endpoint control / redundancy resolution algorithm has been
successfully demonstrated on real hardware.

The dual motor drives combined with the anti-backlash technique has been proven to
eliminate backlash that would otherwise destabilize a closed loop position servo.

A multiprocessor-based hierarchical control system has been successfully integrated
with the manipulator mechanism. The open control system implementation uses
commercially available hardware and structured software that enables users to tailor the
system to specific applications, test new advances in control algorithms, and upgrade
hardware as more powerful computers become available.

Another important observation is that the system's modularity will allow it to be
configured in kinematic arrangements other than a 7 degree of freedom manipulator.
Applications that don't require dexterous motion could still benefit from the modules'
high strength and fault tolerance by using them in a simpler system. One example is a very
high performance pointing @an and tilt) unit.

6.2 Further Development Activities

The salient fact to bear in mind when considering further development is that the starting
point is a working system that includes the tools required to support evolution to a
product. Ideally, the space and commercial communities' needs will drive further design
and implementation choices for the system's form and function. How expediently a

product evolves depends primarily on funding. Whatever entity funds continuing
development will be able to leverage its dollars off the solid accomplishments obtained
during this research.

6.2.1 Noncollocated Flexible Dynamics Compensation

The final step to finish this stage of the development is to enhance the control algorithms
to compensate for the combined actuator flexibility and noncollocation. Once properly
compensated, the system's true performance level can be achieved and measured. While
work in this area is currently ongoing, funding limitations keep the level of effon low. A
few principal activities defme the continuing work:

Properly characterize the system's flexible modes, using experimental techniques.

Analyze the experimental data and design control compensation to actively damp the
flexibility.

Test the compensation on the manipulator hardware.

Measure the performance and report the results.

The specific methodology to accomplish this work is outlined as follows. First, a single
joint's flexible dynamics would be characterized, using spectral analysis techniques. A
two body joint model that represents the noncollocated system would be tuned to reflect
the measured dynamics. Torque loop compensation that properly damps the flexible mode
over some nominal frequency range would be developed. A simple single joint nonlinear
simulation would verify that this compensation works when torque ripple and stiction
effects are present. This nominal compensation must then be generalized to damp the
resonant mode over its entire frequency range, that is, for the full range of manipulator
payloads and configurations. Once the compensation is verified, it would be implemented
and tested on the actual manipulator. When the compensation is properly tuned, the
positionlrate servo bandwidth can be increased to the design level, improving the
manipulator's tracking capability. Finally, the improved manipulator performance would
be measured and the results reported.

6.2.2 Unilateral and Bilateral Teleoperation

Odetics has previously implemented teleoperator systems and continues active
development in the area. Since, by definition, space telerobotics will utilize teleoperation
as a means of manipulator control, it makes sense to add teleoperator control capability to
the Dexterous Manipulator system. The control system includes hardware and software
provisions to support teleoperation. Unilateral control (no force feedback) can be added to
the current system with a relatively limited effort. Bilateral teleoperation could also be
implemented, with substantially greater effort.

88
USE OR ISCLOSURE OF DATA COmADlBD ON TMS -LS SUBJtiCTM ME RBIRICIION ON lMB 7IlIEPAOE OFTHlS bOCUMFNT.

The master controller would normally be the most costly system hardware component.
Fortunately, one master controller is already available, and a more sophisticated one is
under development. As part of another project, a JPL Model C Force Reflecting Hand
Controller was fabricated and tested. This hand controller is currently available for
integration with the Dexterous Manipulator System. The company is also developing a 7
degree of freedom universal Exoskeleton Control under an Air Force SBIR contract [13].
While the prototype exoskeleton will be delivered to the customer, another could be
fabricated if adequate funding was available. This kinematically redundant exoskeleton
would provide valuable control capabilities that are relevant to a kinematically redundant
manipulator and unavailable !?om a 6 degree of freedom hand controller.

Teltoperation would be added to the system using a phased approach. The initial activity,
which could be called phase 0, would center on carefully defining system requirements
and developing a concept for implementation based on both previous work at Odetics and
the extensive research in teleoperator system implementation conducted at NASA ([12],
for example). In the first phase, unilateral control would be added. After unilateral control
is successfully demonstrated, the more challenging bilateral control would be
implemented and tested.

6.2.3 Path Planner Integration

Odetics is currently working on another Phase II SBIR contract, also sponsored by JPL, to
develop path planning and ~ajectory generation algorithms for the Dexterous Manipulator
[14]. The path planning algorithms will find the shortest path around obstacles in the
manipulator workspace to a goal position for the manipulator end effector. The trajectory
generation algorithms use a potential field approach to guide the end effector along this
path while simultaneously avoiding collisions between the end effector, the links of the
manipulator, and obstacles in the manipulator workspace. The resulting trajectory can be
converted to joint angle commands and input to the joint servo control algorithms. This
project includes an animation of the Dexterous Manipulator being driven by the Path
Planner algorithms.

Some of the groundwork is already in place for integration of the Path Planner algorithms
into the Dexterous Manipulator control system. These algorithms fit cleanly into the
control hierarchy. They would reside at the same level as the endpoint control algorithm
and would serve roughly the same purpose, which is to produce commands for the joint
servo algorithms. Once again, with some initial conceptual work, this integration could be
encapsulated into a well-defined project scope that could be completed with a high
probability of success, once funding becomes available.

7.0 References

[I] Odetics, Inc., "Phase I Final Report - Control Algorithm for a Redundant Degree of
Freedom Manipulator", NASA Contract NAS7- 1006, September 1988

[2] Klein, C.A., and Huang, C.H., "Review of Pseudoinverse Control for Use with
Kinematically Redundant Manipulators", IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-13, No. 3, March/April 1983, pp. 245-250

[3] Chang, P.H., "A Clostd-Form Solution for Inverse Kinematics of Robot Manipulators
with Redundancy", IEEE Journal of Robotics and Automation, Vol. RA-3, No. 5,
October 1987, pp. 393403

[4] Craig, J.J., to R o b o t i c s : , Addison-Wesley, 1986

[5] Seraji, H., "Decentralized Adaptive Control of Manipulators: Theory, Simulation,
and Experimentation", IEEE Transactions on Robotics and Automation, Vol. 5, No. 2,
April 1989, pp. 183-201

[6] SD/FAST User's Manual, Symbolic Dynamics, Inc., Mountain View, CA

[7] Advanced Continuous Simulation Language (ACSL) Reference Manual, ~ i t c h e o
and Gauthier Associates, Concord, MA

[8] Stethoscope User's Manual, Real Time Innovations, Sunnyvale, CA

[9] Franklin, G.F., nad Powell, J.D., W t a l C o n w of DMlamic S v s t a , Addison-
Wesley, 1980

[lo] Tilley, S. W., Francis, C. W., Emerick, K., Hollars, M.G., "Preliminary Results On
Non-Collocated Torque Control of Space Robot Actuators", Proceedings of the
NASA Conference on Space Telerobotics, January 1989, Vol. II, pp. 143-152

[ll] Tilley, S.W., Hollars, M.G., he r i ck , K. S., "Experimental Control Results In A
Compact Space Robot Actuator*', Proceedings of the ASME Winter Annual
Meeting, Anaheim, CA, December, 1989

[12] Lee, T.S., "Implementation and Design of a Teleoperation System Based on a
VMEbus/68020 Pipelined Architecture", Proceedings of the NASA Conference on
Space Telerobotics, January 1989, Vol. 11, pp. 97-107

[13] Odetics, Inc., "Phase II Interim Report - Exoskeleton Master Arm, Wrist, And End
Effector Controller With Force Reflecting Telepresence", Dept. Of Defense Contract
F33615-89-C-0587, April 1991

[14] Odetics, Inc., "Phase 11 Final Report - Path Planner for Redundant Degree of
Freedom Manipulator", NASA Contract NAS7- 1 108, January, 1992

.d -u-
Report Documentation Page

i 2. Govetnnent ~ccess ;on No.

I
1 3. Recip~eqr's Carrlop No.

I I -- I
1 4. T11le and Sut:l:k

I .
5. Report Date

I
1 I

I
Control Algorithm Implementation for a
Redundant Degree-of-Freedom Manipulator

I

1 October 13, 1991 I
6. Performing O r ~ r n i ~ r r i o n Code I,

I

7. Aurhorlsl I 0. Perlorrning Organizrrion Repon No. I Steve Cohan I
10. \York Unit No. I

1515 S. Manchester venue‘
Anaheim, CA 92802

9. Performing Or~anitrrion Name and ~ d d i

Odetics, Inc.

113. Tvae of Resort and Period Coveted 1

11. Conrract or Grant NO.

12. Sponsoring Agency Name and Address 1 Final . Report, 13 J U ~ Y -1

Not applicable

National Aeronautics & Space Administration
Washington, DC 20546-0001
NASA JPL, 4800 Oak Grove Dr., Pasadena, CA

91109

17. Key Words ISugpcs:td by Av~horlsl)

~ o t applicable

. .

-
89 - 13 bct 91

14. Sponsoring Agency Code

15. Supplemen:ary Worts

13. Srcurhy Ckssif. [of this ~ p o r r l
I

~nclassifi~ed

NASA FORM 1626 OC? Y
1 20. Security Cbss~l. lol lhk page)

unclassified
21. No. of pages

90
22. Price

