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Abstract—This work considers real-time fault-tolerant control of kine-
matically redundant manipulators to single locked-joint failures. The
fault-tolerance measure used is a worst-case quantity, given by the
minimum, over all single joint failures, of the minimum singular value of
the post-failure Jacobians. Given any end-effector trajectory, the goal is to
continuously follow this trajectory with the manipulator in configurations
that maximize the fault-tolerance measure. The computation required to
track these optimal configurations with brute-force methods is prohibitive
for real-time implementation. We address this issue by presenting algo-
rithms that quickly compute estimates of the worst-case fault-tolerance
measure and its gradient. Comparisons show that the performance of the
best method is indistinguishable from that of brute-force implementations.
An example demonstrating the real-time performance of the algorithm
on a commercially available seven degree-of-freedom manipulator is
presented.

Index Terms—Fault/failure tolerance, kinematics, kinematically redun-
dant, locked joint failure, manipulators, redundant robots/manipulators,
robots.

I. INTRODUCTION

Robot failures are not uncommon. A report from the Japanese
Ministry of Labor indicates that over 60% of the industrial robots
studied had a mean-time-between-failure of less than 500 h; indeed,
28.7% had mean-time-between-failure of 100 h or less [1]. Similar
numbers can be derived for robots in nonindustrial environments,
by deducing mean-time-between-failure from reliability data for
individual components. Table I gives the mean-time-to-failure and
reliability R(x) (probability that the component is still functioning
afterx hours) for typical robot components and subsystems employed
in a ground mobile environment [2]. Assuming that the components
fail independently of each other, it can be shown that eight out of ten
robots will likely fail after 1000 h of operation (for six-DOF robots,
with each joint consisting of a servo amplifier, servo motor, gear box
and optical encoder). More severe environmental conditions will, of
course, result in even worse failure rates.

Failures in robots have significant consequences, ranging from
economic impact in industrial applications to potentially catastrophic
incidents in remote and/or hazardous environments. A direct approach
toward increasing robot reliability is to improve the reliability of
the individual components; however, achieving acceptable reliability
rates is often prohibitively expensive, and sometimes technologically
impossible. An alternate approach is to consider failure-tolerant
robot designs. These typically incorporate a failure detection and
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TABLE I
EXAMPLE RELIABILITY DATA FOR TYPICAL ROBOT COMPONENTS

identification scheme [3] followed by failure recovery [4]. Designing
the robot with redundant systems increases the options available for
failure tolerance. Redundancy can be in the form of duplication of
actuators and sensors [5], [6], or in the form of kinematic redundancy
[7]–[9]. Proper utilization of kinematic redundancy provides greater
dexterity prior to failures, minimizes the immediate impact of a
failure, and guarantees task completion by ensuring a reachable
post-failure workspace.

This work presents real-time implementations of schemes for
utilizing kinematic redundancy to maximize the tolerance of robots
to single locked-joint failures. The fault-tolerance measure used
is a worst-case quantity, given by the minimum, over all single
joint failures, of the minimum singular value of the post-failure
Jacobians. Maximizing this measure corresponds to configuring the
robot to minimize the worst-case post-failure joint velocity over
all single locked-joint failures. This is also equivalent to maximiz-
ing a local measure of the distance to the worst-case post-failure
workspace boundary. (The issue of computing a guaranteed post-
failure workspace is discussed in [10].) The main contribution of this
work is a computationally efficient scheme for computing the fault-
tolerance measure and its gradient, which in turn enables real-time
optimal configuration of robots in anticipation of failures. In addition,
the computational techniques presented here can be used to efficiently
identify regions in the workspace with high failure-tolerance.

II. FRAMEWORK FOR FAILURE-TOLERANT CONTROL

The forward kinematics of manipulators are frequently represented
as

_x = J _q (1)

where _x is an m-dimensional vector representing the end-effector
velocity, _q is ann-dimensional vector describing the joint velocities,
and J is the m by n manipulator Jacobian matrix [11]. For a
redundant manipulator,n>m so the equation is underconstrained
and there are an infinite number of solutions which can be expressed
as

_q = J
+ _x+ (I � J

+
J)z (2)

whereJ+ is the pseudoinverse of the Jacobian, andz 2
n: The first

term on the right in (2) corresponds to the least-squares minimum-
norm solution, while the second is the projection of the vectorz onto
the null space of the Jacobian. The vectorz is frequently chosen as
z = rh(q) in order to optimizeh; under exact end-effector tracking
[12]. Other methods for optimizingh; such as those based on the
extended Jacobian [13] (for tracking critical points) or the augmented
Jacobian [14], [15] (for tracking a desired value ofh); also require
its gradient.

1042–296X/99$10.00 1999 IEEE



1110 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 6, DECEMBER 1999

The singular value decomposition (SVD) provides a mathematical
framework for describing both the optimization scheme (2), as well
as the failure-tolerance measure considered here. The SVD of the
Jacobian is the matrix factorization

J = U�V T (3)

whereU 2 m�m is an orthogonal matrix of the left singular vectors
ûi; and V 2 n�n is an orthogonal matrix of the right singular
vectorsv̂i: The matrix� is m by n; with � = [�d 0]; where�d =
diag(�1; � � � ; �m) and0 is anm by n�m zero matrix. The�i are
called the singular values ofJ; and satisfy�1 � �2 � � � � � �m � 0.
The rankr of J is simply the number of its nonzero singular values.
The SVD can be used to compute the pseudoinverse of the Jacobian

J+ = V �+UT (4)

as well as the null space projection

(I � J+J) =

n

i=r+1

v̂iv̂
T
i : (5)

The SVD has long been a valuable tool for quantifying various
dexterity measures: manipulability [16] (product of the singular
values), isotropy [17] (ratio of the maximum singular value to the
minimum), task compatibility [18] (weighted combination of singular
values) and proximity to singularities [19] (minimum singular value).
Each of these measures has its own physical interpretation. In
particular, the minimum singular value, besides defining the distance
from singularity, also has the property that its reciprocal gives the
worst-case joint velocity norm over all desired unit-norm end-effector
velocities. Worst-case measures are arguably the most appropriate
for fault-tolerance studies, since guarantees of a certain level of
performance are required. These observations motivate the following
definition of the kinematic fault-tolerance measure:

K = min
f=1���n

�m(fJ) (6)

where

fJ = [j1 j2 � � � jf�1 0 jf+1 � � � jn] (7)

is the Jacobian following the locked-joint failure of thef th joint,
obtained by simply zeroing out thef th column of the original
Jacobian [8]. We also define the index of the most debilitating joint
failure as

F = arg min
f=1���n

�m(fJ): (8)

The gradient1 of the functionK can be computed and used in the
gradient projection scheme suggested by (2), thereby maximizing the
manipulator’s failure tolerance while exactly tracking_x [21]. The
kinematic fault-tolerance measure can be re-expressed in terms of
the singular vectors of the failed JacobianFJ as

K = F
û
T

m
FJF v̂m: (9)

The change ofK with respect toqi is then given by2

@K

@qi
= F

û
T

m

@FJ

@qi

F
v̂m: (10)

1Note thatK is not differentiable whenF is not unique. However, this is
addressed through standard numerical techniques [20].

2Here we have used the fact that the first order change in a singular vector
is orthogonal to the vector itself.

For rotary-jointed robots,3 the partial derivative of thekth column
of the Jacobian with respect toqi can be efficiently computed as
follows [22]:

@jk=@qi =

(ẑTi pk)ẑk � (ẑTi ẑk)pk
ẑi � ẑk

; i < k

(ẑTk pi)ẑi � (ẑTi ẑk)pi
0

; i � k
(11)

where ẑl is the axis of rotation of thelth joint andpl is the vector
from thelth joint axis to the end effector. The gradient ofK can then
be computed from (10) and (11)

rK =
@K

@q1

@K

@q2
� � �

@K

@qn

T

: (12)

The various steps in a numerical implementation of the proposed
failure-tolerant control algorithm are as follows.

1) Compute the pseudoinverse and the null space projection of
the Jacobian.

2) Compute the kinematic fault-tolerance measureK and the
associated failed columnF of the Jacobian.

3) Compute the gradient of the kinematic fault-tolerance measure
rK:

The most computationally intensive step in the algorithm is the second
step, since it requires the computation of the minimum singular value
for then possible joint failures. This makes a naive implementation
of (6) unsuitable for real-time applications. In addition, as with any
gradient optimization technique applied to this measure, the most
debilitating joint failure will typically be nonunique. From a practical
standpoint, this leads to “chattering” (i.e., switching back and forth
between multiple worst-case joint failures). This can be addressed by
keeping track of all “near worst-case” joints, thus exacerbating the
computational cost. Therefore the issue of real-time implementation is
a significant one; this will be the focus of the remainder of the paper.

III. REAL-TIME CALCULATION OF K AND rK

Fundamental bounds on the change in the singular values of the
Jacobian following a locked-joint failure can be derived. In particular,
the decrease in any singular value of a matrix following the removal
of a column is bounded by the norm of that column. Results such as
these can in turn be used to derive useful lower bounds forK; and
possibly eliminate candidateFs.

We present three techniques for real-time computation ofK and
its gradient. The first two use a Taylor series approximation to
extrapolate the singular values and singular vectors from their pre-
failure values. The third approach relies on the fact that the changes in
the joint variables along any trajectory are continuous, and therefore
for small increments along a trajectory, power methods can be used
for efficient tracking.

For all three techniques presented here, it is assumed that the full
SVD of the pre-failure Jacobian is available, as a result of completing
Step 1. (Note that the full SVD can be computed efficiently using
Givens rotations [23].)

A. First Order Polynomial Approximation

Let

fJ(�) = [j1 � � � jf�1 (1� �)jf jf+1 � � � jn]: (13)

The case when� = 0 corresponds to a healthy manipulator, while
� = 1 corresponds to a locked-joint failure of thef th joint. A linear

3Prismatic joints simplify the expressions.



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 6, DECEMBER 1999 1111

Fig. 1. An example of the change in singular values of a typicalJ6�7 as
a column is removed.

approximation of the the singular values forfJ(1) can be obtained
from the SVD ofJ(0) as

f�i(1) =
f�i(0) +

d f�i
d�

�=0

(14)

where

d f�i
d�

= f
û
T

i

d fJ

d�
f
v̂i (15)

and

d fJ

d�
= [01 � � �0f�1 � jf0f+1 � � �0n]: (16)

Substituting (16) and (15) into (14) yields
f�i(1) = �i(0)� û

T
i (0)jf v̂fi(0): (17)

Since ûi(0) and v̂i(0) are available, the estimate of eachf�i(1)
requires only2m+1 flops.4 We use (17) to determine the worst-case
joint failure indexF ; this requires using (17) to obtain estimates of
all the singular values for all possible single locked-joint failures, and
picking the failure that is the worst case. Note that for every joint
failure, estimates of all the singular values need to be computed, since
the ordering of the singular values may change. Once the worst-case
joint-failure indexF is estimated, we compute the minimum singular
value and the associated singular vectors ofFJ; required to calculate
the gradient from (10).

The accuracy of the first-order approximation of the change in the
singular values may be quite poor. For the example illustrated in
Fig. 1, a strong interaction between the singular valuesf�3 andf�4
can be seen. This is largely due to the fact that they are “close” to each
other. The singular valuesf�1 andf�6 show considerable interaction
as well. It turns out that in this example, the failed joint contributes
considerably to the singular valuef�1; and therefore the local linear
estimate of this singular value predicts a large drop. However, other
joints also contribute to this singular value; in particular, as the
column associated with the failed joint is zeroed out, the singular
vectors associated withf�1 andf�6 rotate, “transferring” the effect
of the failed joint from one to the other. This rate of change of the
singular vectors is not considered in (17); this motivates retaining
more terms in the Taylor series expansion off�i(�): We explore
this in the next section.

4A flop is defined as one floating point operation (add or multiply).

B. Third Order Polynomial Approximation

We have already seen how the interaction between the singular
values can be intuitively explained in terms of rotation of the
associated singular vectors. These comments can be made more
precise with an explicit derivation of the rate of change in the singular
vectors

dûi
d�

=2(1� �)ûTi jf

m

k=1
k 6=i

ûTk jf

�2k � �2i
ûk (18)

dv̂i
d�

=(1� �)ûTi jf

m

k=1
k 6=i

ûTk jf
�i
�k

+
�k
�i

�2k � �2i
v̂k

� û
T
i jf

n

k=m+1

vfk
�i

v̂k: (19)

Two of the major factors that we discussed as influencing the rate
of change of the singular vectors associated with a particular singular
value can now be clearly seen: how close other singular values are
to this singular value (the1=(�2k � �2i ) factors), and how much the
failed joint contributes to that singular value (theuTi jf term).

This additional information about the rate of change of singular
vectors can be used to derive higher order estimates forf�i(�):
From (15) (and noting thatd2 fJ=d�2 = 0), we have

d2 f�i
d�2

=
d f û

T

i

d�

d fJ

d�
f
v̂i +

f
û
T

i

d fJ

d�

d f v̂i
d�

: (20)

It can be shown, using standard arguments from linear algebra that

d f�i
d�

(�)
�=1

= 0: (21)

Using the four boundary conditions

1) �i(0); given by the pre-failure SVD;
2) d f�i=d� at � = 0, given by (15);
3) d f�i=d� at � = 1, given by (21);
4) d2 f�i=d�

2 at � = 0, given by (20)

we derive a third-order approximation forf�i(�):

f�i(�) =�i(0) +
f�

0

i(0)�+ 1

2

f�
00

i (0)�
2

�

1

3
(f�

0

i(0) +
f�

00

i (0))�
3 (22)

where “0” denotes differentiation with respect to�:
The behavior of the third order polynomial approximation as

compared to the first order is illustrated in Fig. 1. The third-order
approximations are in general more accurate, particularly for large
singular values as in the case of�1; however, large discrepancies
in their estimates of small singular values are not uncommon. This
is once again due to the complex interaction between singular
values that have strong contributions from the failed joint. The
fundamental problem is that the failure of a column can be a
significant perturbation, and can require a large number of terms
in the Taylor series expansion. This motivates the exploration of an
alternate technique.

C. Power Method Approximation

Since the underlying objective is one of tracking the singular
values and vectors of manipulator Jacobians, which varies smoothly
with the joint variablesq; it is natural to consider power methods.
Power methods have been successfully applied to track the minimum
singular value and the associated singular vectors for the purpose
of traversing singular configurations [24]. These iterative methods
converge very rapidly—typically in one or two iterations—if a



1112 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 6, DECEMBER 1999

good initial estimate of the SVD is available (which is the case
here). However, each iteration of the power method is usually quite
expensive. It will be shown that for our application, a computationally
efficient scheme can be devised, making real-time implementation
feasible.

In order to computeK and its gradient, we need to track the index
of the failed jointF; as well as the minimum singular value and one of
the associated singular vectors ofFJ: In general,F will change along
a trajectory, and therefore, we need to track the minimum singular
values and one of the associated singular vectors of alln post-failure
Jacobians.

To estimate the current minimum singular valuef�m and the
associated left singular vectorf ûm; we need to apply the power
method to the matrix(fJ fJ

T
)�1: We write

fJ fJ
T
= JJT � jf j

T
f (23)

which can be re-expressed in terms of the SVD ofJ as

(fJ fJ
T
) = U(��T � UT

jf j
T
f U)UT : (24)

Therefore

UT (fJ fJ
T
)�1U = (��T � UT

jf j
T
f U)�1: (25)

The matrices(fJ fJ
T
)�1 and (��T � UT jf j

T
f U)�1 have the

same singular values, and their singular vectors are related by the
coordinate transformation

f
ûi = Uf

ŵi (26)

wherefŵi are the singular vectors of the latter matrix.
It turns out that applying the power method to the matrix on

the right-hand side of (25) is significantly more efficient. Using the
identity

(A+ ab
T )�1 = A�1 �

(A�1a)(bTA�1)

1 + bTA�1a
(27)

we get

(��T � UT
jf j

T
f U)�1

= (��T )�1 +
((��T )�1UT jf )(j

T
f U(��T )�1)

1� jTf U(��T )�1UT jf
:

(28)

We have assumed that��T is nonsingular;5 otherwise, we know
that K = 0. Noting that

j
T
f U = [�1vf1 �2vf2 � � ��mvfm] (29)

we get

(��T � UT
jf j

T
f U)�1 = diag(1=�21 ; � � � ; 1=�

2

m)

+
1

n

i=m+1

v2fi

vf1=�1
...

vfm=�m

� [vf1=�1 � � � vfm=�m]: (30)

The fundamental power iteration is then given by the following
pseudo-code:

f
wm := (UT (fJ fJ

T
)�1U)fŵm;

f�m := jjfwmjj;
f
ŵm := f

wm=
f�m:

5This case implies that the manipulator is already at a kinematic singularity;
under our control scheme, this will occur only at a workspace boundary where
there is no nonsingular configuration that achieves this task point.

The matrix-vector product in the first step is performed using (30) and
therefore requires at most5m+ 2n flops (while direct implementa-
tions of the inverse power method on(fJ fJ

T
)�1 are considerably

more expensive).
At the start of the power iteration,fŵm is initialized to its value

from the end of the previous power iteration (performed for the
configuration at the previous cycle time). Note thatfŵm is the only
quantity that has to be carried along from one cycle to another. At
each cycle time, once then power iterations are completed (one
for each failure),K; and its correspondingF can be immediately
calculated. The associated left singular vectorF ûm can be computed
using (26); the right singular vector can be computed using

F
v̂m =

1
F�m

(F û
T

m
FJ)T : (31)

Using these quantities and (10), the gradient ofK can be computed.

IV. PERFORMANCE COMPARISON OFTECHNIQUES

The three techniques proposed for real-time implementation of
optimizing failure tolerance were first tested on 10 000 Jacobians of
size 6� 7, randomly distributed throughout the range of physically
realizable rotary-jointed robots. Each column of these Jacobians is
of the form

ji =
vi
!̂i

where!̂i is of unit length, and pointing uniformly over all directions.
Given !̂i; the vectorsvi have directions uniformly distributed over
the subspace orthogonal tô!i; with a length that is uniformly
distributed over [0, 2]. This distribution is intended to represent a
reasonably normalized Jacobian that has accounted for the disparity
in units between linear and rotational velocities.

Since the power method uses information from the Jacobian of
the previous cycle time, a single Jacobian does not provide enough
information for testing this technique. To address this issue we
generate a plausible configuration for the cycle time previous to that
of each randomly generated Jacobian. This is done by first converting
the random Jacobian to the corresponding manipulator defined by
Denavit and Hartenberg parameters [25]. The previous configuration
for this manipulator is then determined by applying a perturbation of
0.01 rads to each of the joints.6 Finally, the SVD of the Jacobian for
this configuration is computed to obtain the previousfŵm required
by the power method.

Fig. 2 compares the accuracy of the three approximation methods
for estimating the minimum singular value for each of the seven
possible joint failures on the 10 000 test Jacobians. An analysis of this
data can be summarized by noting that the performance of the power
method was vastly superior to either of the polynomial approximation
methods; resulting in estimates that are within 0.0005 of the actual
value in 98% of the test cases. An arguably even more important
measure of the performance of the three techniques is the percentage
of cases where the correct worst-case joint failureF is determined.
For the 10 000 test cases, the power method was correct 99.98% of
the time while the first and third order approximations were correct
33.6% and 35% of the time, respectively.7

6The magnitude of this perturbation is meant to reflect reasonable values
for the maximum joint velocity and the controller cycle time, e.g., 1 rad/s and
10 msec, respectively.

7These percentages can be somewhat misleading since in many cases, the
minimum singular value after the failure of a joint other thanF can be close
to K; making the calculation ofF ill-conditioned. However, this is not a
problem as our algorithm uses a combination of the gradients corresponding
to the two worst-case joint failures.
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Fig. 2. Comparison of the error in the estimated minimum singular value
for the three approximation techniques.

Fig. 3. Comparison of the joint space trajectories obtained using the three
approximation techniques for maximizingK: The trajectories are displayed
over a contour map ofK:

In addition to the above statistical analysis, the performance of the
three approximation techniques was evaluated in a real-time control
implementation. The familiar three-link planar manipulator with equal
link lengths is presented as an illustrative example. The manipulator’s
end effector is commanded to follow a straight-line trajectory starting
from its base and extending to its reach singularity. Fig. 3 shows
the joint-space trajectories obtained by using the three techniques
along with a contour map ofK: The trajectory obtained by using the
power method clearly tracks the optimal value ofK and is in fact
indistinguishable from the closed-form optimal solution given in [8].
The trajectories obtained by using the polynomial approximation tech-
niques deviate noticeably from the optimal; however, the actual value
of K along these trajectories is quite high, as shown in Fig. 4. Since
all three techniques are suitable for real-time control the superior
accuracy of the power method makes it the obvious method of choice.

V. A SPECIFIC SEVEN-DOF EXAMPLE

The proposed fault-tolerance control scheme is now demonstrated
on a task requiring three dimensional positioning and orienting of the

Fig. 4. Comparison of the actual value ofK along the trajectory displayed
in Fig. 3.

TABLE II
DENAVIT–HARTENBERG PARAMETERS AND JOINT LIMITS FOR THE RRC K-1207i

ARM. THE LAST TWO ROWS CORRESPOND TO THEPARAMETERS FOR

A TOOL OFFSET. LENGTHS IN METERS, ANGLES IN RADIANS

end-effector. The manipulator chosen for the example is the Robotics
Research Corporation K-1207i, a commercially available spatially
redundant manipulator, whose Denavit-Hartenberg parameters (Paul’s
convention [26]) are shown in Table II. The parameters of length are
given in meters in the table; the linear portion of the Jacobian was
scaled by dividing by 0.3 m, which is consistent with the characteristic
length [27] of the manipulator, rendering it very close to isotropic
(condition number 1.43) for a tool offset of�8 = 4.50 rad andd9 =

0.34 m.
In this example, we consider several issues associated with failure

tolerance. The first is the design of the offset between the end-
effector coordinate frame and the wrist mounting plate. The second is
mapping the task into an optimally failure-tolerant workcell location.
(We assume that errors in all six task dimensions are equally
important.) The third is the actual operation of the manipulator
for the prescribed task in an optimally failure-tolerant manner, and
comparing its performance to pseudoinverse control (the latter is used
as a representative example). The first two issues are design problems
and can, therefore, be performed off-line, however, the third requires
that the calculations be performed in real time.

The first two issues can be considered simultaneously by maximiz-
ingK over the manipulator’s configuration (the vector� = [�1 � � � �7])
and the tool-offset parameters (�8 and d9). For convenience, we
define q = [�1 � � � �8 9]: Unfortunately, maximization ofK is a
very difficult problem, owing to the fact thatK has a large number
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Fig. 5. K of the best 1000 configurations out of 20 mil randomly generated
manipulator configurations after gradient optimization. Each configuration is
shown using a different shade of gray. Note that the value ofK is independent
of �1:

of local maxima. The dimension of the search space precludes an
exhaustive search method, such as gridding. We therefore applied a
standard Monte Carlo method to perform the maximization.

We first evaluatedK at 20 mil randomly generated values of
q: The average value ofK is 0.02, indicating that disregarding
possible failures will likely result in severely degraded post-failure
performance. To maximize our fault-tolerance measure, the values
of q corresponding to the top 1000 values ofK were chosen as
initial points for a simple gradient ascent algorithm. This resulted
in 185 distinct local maxima, withK values ranging between 0.27
and 0.37. These are illustrated in Fig. 5. Note that despite the fact
that a randomly selected configuration will likely have lowK; there
do exist a large number of configurations and tool-offset parameter
values that have relatively highK: Moreover, fixing the manipulator
configuration and tool-offset parameters to those corresponding to
the global maximum

q = [2:43 3:47 4:24 3:95 2:43 4:01 5:51 3:96 0:35]T

and varying the configuration� of the manipulator reveals that
relatively highK can be achieved over a fairly large portion of the
workspace (see Fig. 6). In general, an analysis such as the above
can be employed to first identify regions in the workspace with good
fault-tolerance. Other factors that affect workpiece location such as
collision avoidance and joint limits can then be incorporated to arrive
at the final workpiece location.

To illustrate the performance of our real-time fault-tolerant control,
we selected as an example task the painting of a 0.3 m� 0.4 m plate
with the K-1207i manipulator. Taking all design considerations into
account, the configuration

q = [2:41 3:63 4:31 4:10 2:54 4:23 5:05 1:57 0:1]T

with K = 0.31 was selected to map the paint gun to the center of
the plate. (The task and the selected manipulator configuration are
shown in Fig. 7.) The K-1207i is commanded to follow the indicated
trajectory with an end-effector speed of 0.085 m/sec. At precisely the
center of the plate, when the paint gun is making an upward vertical
motion (along the positivêz direction), a joint of the manipulator is
failed and locked into place. The controller responds to the failure

Fig. 6. Failure tolerance of the workspace surrounding the optimal point. The
robot’s base coordinate frame is located at [0.0 0.0 0.81]m and the axis of
rotation for joint one is oriented along Z. SinceK is independent of�1; these
values are rotationally symmetric about Z. Orientation of the end-effector
was held constant during mapping.

Fig. 7. Example task for demonstrating failure tolerance. The manipulator
is painting the flat plate using vertical motions of the paint gun. At precisely
the center of the plate, a locked joint failure occurs.

by removing the appropriate column of the Jacobian and continuing
the task with the remaining joints.

As a baseline for comparison, the task was performed using
standard pseudoinverse control,8 with the arm configuration at the
point of failure being

� = [1:78 5:32 5:98 4:48 0:40 6:05 5:43]T :

Fig. 8 illustrates the effect of a joint six failure on joint velocity
while using pseudoinverse control. At the point of failure, large
discontinuities are experienced as the functioning joints accelerate
to compensate for the lost joint. (Note that no dynamics have been
incorporated into the simulation for simplicity of illustration. In
reality, the manipulator dynamics will result in the acceleration being
finite, which will manifest itself in additional end-effector tracking
error.) The size of the discontinuities can be inferred from the SVD of

8Note thatany inverse kinematic solution which does not configure the arm
in anticipation of a failure can produce similar undesirable behavior.
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Fig. 8. Joint velocity during joint six failure while using pseudoinverse
control.

Fig. 9. End-effector error during joint six failure while using pseudoinverse
control (The scaling factor on the translational error is given by L= 0.3 m).

the post-failure Jacobian: The minimum singular value6
�6 is 0.034,

with the corresponding singular vectors of

6
û6 = [�0:03 0:29 0:22 �0:92 0:00 �0:11]T

and

6
v̂6 = [�0:15 0:05 0:20 0:02 �0:73 0:00 0:64]T :

The small value of6�6 indicates that the manipulator has low
dexterity along 6

û6: The projection of the desired end-effector
velocity on 6

û6 is simply its third element, i.e., 0.22, scaled by
jj _xjj: Thus the desired end-effector velocity is far from being the
“worst-case;” however, the very low value of6

�6 results in large joint
velocities along6v̂6; consistent with the discontinuities observed in
Fig. 8. After the initial discontinuity, there is a further rise in the joint
velocities, indicating that the manipulator is approaching a singularity.
The subsequent sharp drop in the joint velocities then corresponds to
the manipulator being at a post-failure workspace boundary, and no
longer being able to track the desired trajectory (see Fig. 9).

Fig. 10. Joint velocity during joint six failure while using failure-tolerant
control.

Fig. 10 shows the joint velocities with failure-tolerant control.9

Note the markedly lower discontinuity in the joint velocity at failure,
indicating that the remaining joints are able to compensate for the
failed joint with more practical acceleration requirements. In addition,
as suggested by the slowly varying joint velocities, the manipulator
is able to complete the task.

Indeed, since the minimum singular value of a matrix is the best
measure of its proximity to singularity, maximizingK is equivalent
to locally maximizing the distance to the post-failure workspace
boundaries.

We should point out that the example presented here is a rep-
resentative one; similar behavior is encountered with the failure of
other joints as well. Furthermore, it can be shown that for every end-
effector position, the manipulator can be in a configuration with zero
K: Details can be found in [20].

VI. CONCLUSION

The main conclusion of this work is that failure tolerance to locked-
joint failures is possible in a real-time control scheme. It has been
shown that a manipulator can be operated such that at all times it is
in an optimal configuration where, should a joint failure occur, the
deviation from the desired end-effector trajectory will be minimized
and the remaining joints will be able to compensate for the failed one.
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Self Calibration of Stewart–Gough Parallel
Robots Without Extra Sensors

Wisama Khalil and Śebastien Besnard

Abstract—This paper presents a method for the autonomous calibration
of six degrees-of-freedom parallel robots. The calibration makes use of
the motorized prismatic joint positions corresponding to some sets of
configurations where in each set either a passive Universal joint or a
passive Spherical joint is fixed using a lock mechanism. Simulations give
us an idea about the number of sets that must be used, the number of
configurations by set and the effect of noise on the calibration accuracy.
The main advantage of this method is that it can be executed rapidly
without need to external sensors to measure the position or the orientation
of the mobile platform.

Index Terms—Calibration, identification, optimization, parallel robot,
static accuracy.

I. INTRODUCTION

The aim of the kinematic calibration is to calculate accurately the
values of the kinematic parameters of the robot in order to improve
its accuracy.

The classical methods for parallel robot calibration need external
sensors to measure the position and orientation of the mobile plat-
form [1]–[4]. The calibration problem is formulated in terms of a
measurement residual that is the difference between the measured
and computed motorized joint variables, it uses the inverse kinematic
model that is easy to calculate for parallel robots.

Self calibration methods using extra sensors on the passive joints
have been also proposed for parallel robots.

1) The method presented by Wampleret al. [5] for Stewart–Gough
robot is based on using position sensors on the 5 passive joints
of one leg.

2) In the method of Zhuang and Liu [6], a limited number of
passive Universal joints are needed to be measured.

3) Nahviet al. [7] presented an autonomous calibration method for
a shoulder-joint robot with three degrees of freedom (d.o.f.) but
particular geometry with double joints on each platform point
must be verified.

4) Zhuang [8] has presented new methods based on the use of
extra sensors on some passive Universal joints.

The calibration methods based on redundant sensors on the passive
joints adjust the values of the kinematic parameters in order to
minimize a residual between the measured and the calculated values
of the angles of these joints. In order to get appropriate accuracy for
the identified parameters, big accuracy is needed on these sensors.
Putting sensors on an already manufactured robot is not a trivial
problem, it must be foreseen while designing the robot.

It is to be noted that redundant sensors on the U-joints have been
proposed also to get an analytical solution of the direct kinematic
model [9]–[11]. But in this case moderate accuracy is sufficient.

The calibration method presented in this paper uses only the
variables of the motorized prismatic joints corresponding to config-
urations where either one Universal joint or one Spherical joint is
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