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Short Paper

Real-Time Failure-Tolerant Control of Kinematically TABLE |
Redundant Manipulators ExAaMPLE RELIABILITY DATA FOR TypPICAL ROBOT COMPONENTS
o _ Device MTTF | R(1000) | R(10,000)
Kenneth N. Groom, Anthony A. Maciejewski, Servo Amplifier | 136,054 | 0.993 0.999
and Venkataramanan Balakrishnan DC Servo Motor | 31,519 | 0.969 0.728
Gear Box 53,319 0.981 0.829
Optical Encoder 4,845 0.814 0.127
Abstract—This work considers real-time fault-tolerant control of kine- Tachometer 9,606 0.901 0.353

matically redundant manipulators to single locked-joint failures. The

fault-tolerance measure used is a worst-case quantity, given by the

minimum, over all single joint failures, of the minimum singular value of  identification scheme [3] followed by failure recovery [4]. Designing
the post-failure Jacobians. Given any end-effector trajectory, the goalisto  {ha yophot with redundant systems increases the options available for
continuously follow this trajectory with the manipulator in configurations . . L

that maximize the fault-tolerance measure. The computation required to failure tolerance. Redundancy an be in the fqrm of QUpllcatlon of
track these optimal configurations with brute-force methods is prohibitive ~ actuators and sensors [5], [6], or in the form of kinematic redundancy
for real-time implementation. We address this issue by presenting algo- [7]-[9]. Proper utilization of kinematic redundancy provides greater
rithms that quickly compute estimates of the worst-case fault-tolerance dexterity prior to failures, minimizes the immediate impact of a

measure and its gradient. Comparisons show that the performance of the _. . .
best method is indistinguishable from that of brute-force implementations. failure, and guarantees task completion by ensuring a reachable

An example demonstrating the real-time performance of the algorithm post—failure workspace. _ _ _
on a commercially available seven degree-of-freedom manipulator is  This work presents real-time implementations of schemes for

presented. utilizing kinematic redundancy to maximize the tolerance of robots
Index Terms—Fault/failure tolerance, kinematics, kinematically redun- 0 Single locked-joint failures. The fault-tolerance measure used
dant, locked joint failure, manipulators, redundant robots/manipulators, IS a worst-case quantity, given by the minimum, over all single
robots. joint failures, of the minimum singular value of the post-failure
Jacobians. Maximizing this measure corresponds to configuring the
robot to minimize the worst-case post-failure joint velocity over
all single locked-joint failures. This is also equivalent to maximiz-
Robot failures are not uncommon. A report from the Japaneggy a local measure of the distance to the worst-case post-failure
Ministry of Labor indicates that over 60% of the industrial rObOtWorkspace boundary. (The issue of computing a guaranteed post-
studied had a mean-time-between-failure of less than 500 h; indeggiyre workspace is discussed in [10].) The main contribution of this
28.7% had mean-time-between-failure of 100 h or less [1]. Similgfork is a computationally efficient scheme for computing the fault-
numbers can be derived for robots in nonindustrial environmeni{gjerance measure and its gradient, which in turn enables real-time
by deducing mean-time-between-failure from reliability data fogptimal configuration of robots in anticipation of failures. In addition,
individual components. Table | gives the mean-time-to-failure aﬂﬁre computational techniques presented here can be used to efficiently

reliability 12(:x) (probability that the component is still functioningjgentify regions in the workspace with high failure-tolerance.
afterz hours) for typical robot components and subsystems employed

in a ground mobile environment [2]. Assuming that the components I,
fail independently of each other, it can be shown that eight out of ten
robots will likely fail after 1000 h of operation (for six-DOF robots,

with each joint consisting of a servo amplifier, servo motor, gear b&¥
and optical encoder). More severe environmental conditions will, of x=.Jq 1)

course, result in even worse failure rates. L. di . | ¢ ting th d-effect
ranging fr(w‘t?erex is an m-dimensional vector representing the end-effector

Failures in robots have significant consequences, \oCity. ¢ i di ional tor d bing the ioint velociti
economic impact in industrial applications to potentially catastrothée omtx,q IS ahn-dimensional vector describing the joint velociies,
J is the m by n manipulator Jacobian matrix [11]. For a

incidents in remote and/or hazardous environments. A direct appro dant ioulat th tion i d trained
toward increasing robot reliability is to improve the reliability of councant manipulator, >m so the equation Is underconstraine

the individual components; however, achieving acceptable reliabili nd there are an infinite number of solutions which can be expressed
rates is often prohibitively expensive, and sometimes technologica
impossible. An alternate approach is to consider failure-tolerant a=J"x+ T -J )z 2)

robot designs. These typically incorporate a failure detection an ereJ™ is the pseudoinverse of the Jacobian, ar@lR" . The first

Manuscript received October 26, 1998; revised May 19, 1999. This par}grrm on the right in (2) corresponds to the least-squares minimum-
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I. INTRODUCTION

FRAMEWORK FOR FAILURE-TOLERANT CONTROL
The forward kinematics of manipulators are frequently represented
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The singular value decomposition (SVD) provides a mathematidabr rotary-jointed robot8,the partial derivative of théith column
framework for describing both the optimization scheme (2), as walf the Jacobian with respect tp can be efficiently computed as
as the failure-tolerance measure considered here. The SVD of toows [22]:
Jacobian is the matrix factorization T T
(Z; Pr)Zx — (% %r )Pk i<k
J=usv’ 3) 91 /9us — Zi X 2 o 1

/00 = 0\ Nalpom — 20| (1)
0 , 1>k

whereU € R™*™ is an orthogonal matrix of the left singular vectors
1;, andV € R"*" is an orthogonal matrix of the right singular

vectorsv;. The matrixS is m by n, with T =[S, 0], whereS, = wherez; is the axis of rotation of théth joint andp; is the vector

diag(c1, -+, om) andO is anm by n — m zero matrix. Thes; are from thelth joint axis to the end effector. The gradient/6fcan then

called the singular values of and satisfyr, > o5 > --- > o,, > 0. D€ computed from (10) and (11)
The rankr of .J is simply the number of its nonzero singular values.

The SVD can be used to compute the pseudoinverse of the Jacobian VK = { (12)

8q1 0g2  Ogn |

+ _ vyt T
JT=VETU (4) The various steps in a numerical implementation of the proposed

failure-tolerant control algorithm are as follows.
1) Compute the pseudoinverse and the null space projection of
the Jacobian.
2) Compute the kinematic fault-tolerance measiéfeand the
associated failed columf’ of the Jacobian.
The SVD has long been a valuable tool for quantifying various 3) Compute the gradient of the kinematic fault-tolerance measure
dexterity measures: manipulability [16] (product of the singular VK.
values), isotropy [17] (ratio of the maximum singular value to th&he most computationally intensive step in the algorithm is the second
minimum), task compatibility [18] (weighted combination of singulastep, since it requires the computation of the minimum singular value
values) and proximity to singularities [19] (minimum singular value)or the » possible joint failures. This makes a naive implementation
Each of these measures has its own physical interpretation. dh(6) unsuitable for real-time applications. In addition, as with any
particular, the minimum singular value, besides defining the distangeadient optimization technique applied to this measure, the most
from singularity, also has the property that its reciprocal gives thiebilitating joint failure will typically be nonunique. From a practical
worst-case joint velocity norm over all desired unit-norm end-effectgtandpoint, this leads to “chattering” (i.e., switching back and forth
velocities. Worst-case measures are arguably the most approprisggveen multiple worst-case joint failures). This can be addressed by
for fault-tolerance studies, since guarantees of a certain level kafeping track of all “near worst-case” joints, thus exacerbating the
performance are required. These observations motivate the followiggmputational cost. Therefore the issue of real-time implementation is

as well as the null space projection

(I-J%J)= vl (5)

i=r+1

definition of the kinematic fault-tolerance measure: a significant one; this will be the focus of the remainder of the paper.
K= min on('J) (6) 3 ]
f=tn lll. REAL-TIME CALCULATION OF K AND VIC
where Fundamental bounds on the change in the singular values of the
; Jacobian following a locked-joint failure can be derived. In particular,
J=0r J2 0 dr—1 0 g ol (7)  the decrease in any singular value of a matrix following the removal

) ) ) o ) o of a column is bounded by the norm of that column. Results such as
is the Jacobian following the locked-joint failure of thi¢h joint, {hese can in tum be used to derive useful lower boundsfoand
obtained by simply zeroing out thgth column of the original possibly eliminate candidat&'s.

chobian [8]. We also define the index of the most debilitating joint \yq present three techniques for real-time computatioi aind
failure as its gradient. The first two use a Taylor series approximation to
extrapolate the singular values and singular vectors from their pre-
failure values. The third approach relies on the fact that the changes in

the joint variables along any trajectory are continuous, and therefore

The gradic_en"t of the functionk’ can be computed and used in thg,r small increments along a trajectory, power methods can be used
gradient projection scheme suggested by (2), thereby maximizing ¥ efficient tracking.

manipulator’s failure tolerance while exactly tracking[21]. The For all three techniques presented here, it is assumed that the full
kinematic fault-tolerance measure can be re-expressed in termssQip of the pre-failure Jacobian is available, as a result of completing
the singular vectors of the failed Jacobiad as Step 1. (Note that the full SVD can be computed efficiently using
Givens rotations [23].)

F= argfinlin om(1T). (8)

K=" . )

The change ofC with respect tog; is then given by A. First Order Polynomial Approximation
Let

a ' . 10
v (10) TTa) =l ij1s (L= )iy dper--iul-  (13)

INote thatk is not differentiable wherF is not unique. However, this is The case whem = 0 corresponds to a healthy manipulator, while
addressed through standard numerical techniques [20]. a = 1 corresponds to a locked-joint failure of tifiéh joint. A linear

2Here we have used the fact that the first order change in a singular vector
is orthogonal to the vector itself. 3Prismatic joints simplify the expressions.
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3r B. Third Order Polynomial Approximation
— actual We have already seen how the interaction between the singular
values can be intuitively explained in terms of rotation of the
associated singular vectors. These comments can be made more
precise with an explicit derivation of the rate of change in the singular
vectors
M o1~ il Z ST (18)
o do w7 (7',%, — (7;-2
© k=1 ‘
ki
(%0 7)
v, U A
=(1- > - v
do ( o) gy ; gl —o?
ki
0.5F n
AT Vik
a; jy Z o vk (19)
k=m+1
o o1 02 03 04 05 06 o7 08 09 ! Two of the major factors that we discussed as influencing the rate

of change of the singular vectors associated with a particular singular
Fig. 1. An example of the change in singular values of a typikal7 as  value can now be clearly seen: how close other singular values are
a column is removed. to this singular value (thé/(c? — o2) factors), and how much the
failed joint contributes to that singular value (thé j; term).
approximation of the the singular values ff)f(l) can be obtained  This additional information about the rate of change _Of singular
from the SVD of J(0) as vectors can be used to derive higher order estimates dofa).
From (15) (and noting that* /.7 /da* = 0), we have

dd o
f f i
(1) ="0o;
="+ 5 4 @ loi a0 Ty g ord!Tdle (20)
where do? —  da da ‘ “da da
It can be shown, using standard arguments from linear algebra that
dloi _ g rd Ty (15) g8t g g
da ' da ! clfai( ) 0 1)
(a3 = U.
and do -
a’'y _ (0101 —jsOp11 -+ 0], (16) Using the four boundary conditions
o da . . 1) 4,(0), given by the pre-failure SVD;
Substituting (16) and (15) into (14) yields 2) d¥o;/do ata = 0, given by (15);
o1y — oo ( STV o 3) d'o;/do at o = 1, given by (21);
i(1)=0;(0) —1; (0)j;vsi(0). 17 . ‘ -
a ( ) g ( ) ( )J[ f ( ) ( ) 4) dz fo_l_/daz ato = O, given by (20)
Sincg 1;(0) and v;(0) are available, the estimat.e of eath:(1) e derive a third-order approximation fér; ():
requires only2m + 1 flops? We use (17) to determine the worst-case , L ,
joint failure index F; this requires using (17) to obtain estimates of Toi(a) =a:(0) + 7o (0)a+ § T a; (0)a”
Il the singul lues for all ible single locked-joint fail d i P 3
all the singular values for all possible single locked-joint failures, an — L a0)+ 75l (0))a (22)

picking the failure that is the worst case. Note that for every joint

failure, estimates of all the singular values need to be computed, sindgere “” denotes differentiation with respect te

the ordering of the singular values may change. Once the worst-caséhe behavior of the third order polynomial approximation as

joint-failure indexF is estimated, we compute the minimum singulacompared to the first order is illustrated in Fig. 1. The third-order

value and the associated singular vector§ #f required to calculate approximations are in general more accurate, particularly for large

the gradient from (10). singular values as in the case @f; however, large discrepancies
The accuracy of the first-order approximation of the change in tfiie their estimates of small singular values are not uncommon. This

singular values may be quite poor. For the example illustrated i once again due to the complex interaction between singular

Fig. 1, a strong interaction between the singular valuesand’s, values that have strong contributions from the failed joint. The

can be seen. This is largely due to the fact that they are “close” to edghdamental problem is that the failure of a column can be a

other. The singular valuésr; and’ ¢ show considerable interaction significant perturbation, and can require a large number of terms

as well. It turns out that in this example, the failed joint contributei the Taylor series expansion. This motivates the exploration of an

considerably to the singular valde |, and therefore the local linear alternate technique.

estimate of this singular value predicts a large drop. However, other

joints also contribute to this singular value; in particular, as the. Power Method Approximation

column associated with the failed joint is zeroed out, the singularSince the underlying objective is one of tracking the singular
vectors associated withr; andf ¢ rotate, “transferring” the effect

Wy

more terms in the Taylor series expansion’ef;(«). We explore

o : singular value and the associated singular vectors for the purpose
this in the next section.

of traversing singular configurations [24]. These iterative methods
4A flop is defined as one floating point operation (add or multiply). converge very rapidly—typically in one or two iterations—if a
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good initial estimate of the SVD is available (which is the cas€he matrix-vector product in the first step is performed using (30) and
here). However, each iteration of the power method is usually quiteerefore requires at mostn + 2n flops (while direct implementa-
expensive. It will be shown that for our application, a computationallyons of the inverse power method ¢fA.J f.]T)—1 are considerably
efficient scheme can be devised, making real-time implementatigtore expensive).
feasible. At the start of the power iteratiod W, is initialized to its value

In order to computéC and its gradient, we need to track the indexrom the end of the previous power iteration (performed for the
of the failed jointF, as well as the minimum singular value and one ofonfiguration at the previous cycle time). Note thait,. is the only
the associated singular vectors‘of. In general,F’ will change along quantity that has to be carried along from one cycle to another. At
a trajectory, and therefore, we need to track the minimum singulesich cycle time, once the power iterations are completed (one
values and one of the associated singular vectors of pbist-failure for each failure),C, and its corresponding” can be immediately
Jacobians. calculated. The associated left singular vedtér,, can be computed

To estimate the current minimum singular valdie,, and the using (26); the right singular vector can be computed using
associated left singular vectdrii,.., we need to apply the power

method to the matrix’J7J")~1. We write Tm = 7 (Fufn It (31)
Fg8 g0 — gqT _ s 5T
ST =TT =iy (23) Using these quantities and (10), the gradienofan be computed.

which can be re-expressed in terms of the SVDJoas
IV. PERFORMANCE COMPARISON OF TECHNIQUES

The three techniques proposed for real-time implementation of
Therefore optimizing failure tolerance were first tested on 10000 Jacobians of
size 6x 7, randomly distributed throughout the range of physically

realizable rotary-jointed robots. Each column of these Jacobians is

The matrices(/J /7" )~" and (SS7 - U7j,j%1U)~" have the ©f the form
same singular values, and their singular vectors are related by the L v
coordinate transformation Ji =

7

CIiah =vEs vttt (24)

vty = (287 - Uliroy)T. (25)

Wi

w=U'w, (26)  wherew; is of unit length, and pointing uniformly over all directions.
Given w;, the vectorsv; have directions uniformly distributed over

he subspace orthogonal to;,, with a length that is uniformly
éistributed over [0, 2]. This distribution is intended to represent a
reasonably normalized Jacobian that has accounted for the disparity

where’+; are the singular vectors of the latter matrix.
It turns out that applying the power method to the matrix o
the right-hand side of (25) is significantly more efficient. Using th

identity B in units between linear and rotational velocities.
(A_Fabyv)_l — 4 _ (Afla)(blfrl) @7) Since _the power _method _uses information from the Jacobian of
1+bTA1a the previous cycle time, a single Jacobian does not provide enough
we get information for testing this technique. To address this issue we
e generate a plausible configuration for the cycle time previous to that
(X" =U"jsiyU) of each randomly generated Jacobian. This is done by first converting
_ eyt (==""'UTinGrueEsT)Th the random Jacobian to the corresponding manipulator defined by
=27+ 1 _jif‘U(ggz‘)—l UTj; : Denavit and Hartenberg parameters [25]. The previous configuration

(28) for this manipulator is then determined by applying a perturbation of
0.01 rads to each of the jointsrinally, the SVD of the Jacobian for
We have assumed that=? is nonsingulaf: otherwise, we know this configuration is computed to obtain the previdwe,, required
that £ = 0. Noting that by the power method.
Fig. 2 compares the accuracy of the three approximation methods

L = ] ) fe oo ) . . .. .
JrU=lowp oovp T fm] (29 for estimating the minimum singular value for each of the seven
we get possible joint failures on the 10 000 test Jacobians. An analysis of this
. . data can be summarized by noting that the performance of the power
(2' — U U) T = diag(1/07, -+ 1/ 00) i i - imati
=~ Jrdy agll/ o, s m method was vastly superior to either of the polynomial approximation
ver /o methods; resulting in estimates that are within 0.0005 of the actual
+ — : v /o1 vim/om]. (30) value in 98% of the test cases. An arguably even more important
Z N measure of the performance of the three techniques is the percentage
= Fo Lom of cases where the correct worst-case joint failfirés determined.

I _ ~ For the 10000 test cases, the power method was correct 99.98% of
The fundamental power iteration is then given by the followinghe time while the first and third order approximations were correct

pseudo-code: 33.6% and 35% of the time, respectivély.
Fw = (UL T IV I o -
W = (U7 (PT 0T ) U) W 6The magnitude of this perturbation is meant to reflect reasonable values
for the maximum joint velocity and the controller cycle time, e.g., 1 rad/s and
s P p 10 msec, respectively.
Wi =" Wn /! om. "These percentages can be somewhat misleading since in many cases, the
minimum singular value after the failure of a joint other th&rcan be close
5This case implies that the manipulator is already at a kinematic singularitg; X, making the calculation of ill-conditioned. However, this is not a
under our control scheme, this will occur only at a workspace boundary wheneblem as our algorithm uses a combination of the gradients corresponding
there is no nonsingular configuration that achieves this task point. to the two worst-case joint failures.

fO_?n = ||jw77’7||ﬂ
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Fig. 2. Comparison of the error in the estimated minimum singular valdgg. 4. Comparison of the actual value &f along the trajectory displayed

for the three approximation techniques. in Fig. 3.
. TABLE I
DENAVIT-HARTENBERG PARAMETERS AND JOINT LIMITS FOR THE RRC K-1207i
150 ARM. THE LAST Two Rows CORRESPOND TO THEPARAMETERS FOR
A TooL OFFSET. LENGTHS IN METERS ANGLES IN RADIANS
Joint a d o 0 f min | # max
100 1 -0.102 | 0.000 | -1.570 #y -3.141 | 3.141
2 0.102 | 0.000 | 1.570 g, -3.051 | -0.054
o 3 -0.086 | 0.546 | -1.570 03 -6.280 | 0.000
P o0 4 0.086 | 0.000 { 1.570 04 -3.051 | 0.000
5 -0.0569 | 0.546 | -1.570 s -6.280 | 6.280
6 0.059 | 0.000 | 1.570 s -2.967 | 0.610
o 7 0.000 | 0.178 | -1.570 67 -6.280 | 6.280
8 0.000 | 0.000 | 1.570 fs
9 0.000 dy 0.000 | 0.000
-501

180

160

L L
80 120 140

6,

100 end-effector. The manipulator chosen for the example is the Robotics

Research Corporation K-1207i, a commercially available spatially
Fig. 3. Comparison of the joint space trajectories obtained using the thi@dundant manipulator, whose Denavit-Hartenberg parameters (Paul's
approximation techniques for maximizirig. The trajectories are displayed convention [26]) are shown in Table Il. The parameters of length are
over a contour map ok. given in meters in the table; the linear portion of the Jacobian was
scaled by dividing by 0.3 m, which is consistent with the characteristic
In addition to the above statistical analysis, the performance of tlength [27] of the manipulator, rendering it very close to isotropic
three approximation techniques was evaluated in a real-time contf@ndition number 1.43) for a tool offset 6f = 4.50 rad andiy =
implementation. The familiar three-link planar manipulator with equa.34 m.
link lengths is presented as an illustrative example. The manipulator'sn this example, we consider several issues associated with failure
end effector is commanded to follow a straight-line trajectory startinglerance. The first is the design of the offset between the end-
from its base and extending to its reach singularity. Fig. 3 shows$ector coordinate frame and the wrist mounting plate. The second is
the joint-space trajectories obtained by using the three techniquggpping the task into an optimally failure-tolerant workcell location.
along with a contour map df. The trajectory obtained by using the(we assume that errors in all six task dimensions are equally
power method clearly tracks the optimal valuefofand is in fact important.) The third is the actual operation of the manipulator
indistinguishable from the closed-form optimal solution given in [8)or the prescribed task in an optimally failure-tolerant manner, and
The trajectories obtained by using the polynomial approximation tecfsmparing its performance to pseudoinverse control (the latter is used
niques deviate noticeably from the optimal; however, the actual valyg 5 yepresentative example). The first two issues are design problems

of K along these trajectories is quite high, as shown in Fig. 4. Sing&q can, therefore, be performed off-line, however, the third requires
all three techniques are suitable for real-time control the superigizi the calculations be performed in real time.

accuracy of the power method makes it the obvious method of choiCexyg first two issues can be considered simultaneously by maximiz-
ing K over the manipulator’s configuration (the vecfos [0, - - - 67])
V. A SpEeCIFIC SEVEN-DOF ExamPLE and the tool-offset parameterss(and dy). For convenience, we
The proposed fault-tolerance control scheme is now demonstratifineq = [61 ---6s ]. Unfortunately, maximization ofC is a
on a task requiring three dimensional positioning and orienting of tivery difficult problem, owing to the fact that has a large number
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Fig. 5. K of the best 1000 configurations out of 20 mil randomly generated
manipulator configurations after gradient optimization. Each configuration fég. 6. Failure tolerance of the workspace surrounding the optimal point. The
shown using a different shade of gray. Note that the valué ifindependent robot’'s base coordinate frame is located at [0.0 0.0 0.81]m and the axis of
of 6. rotation for joint one is oriented along Z. Sinkeis independent of, these
values are rotationally symmetric about Z. Orientation of the end-effector
was held constant during mapping.

of local maxima. The dimension of the search space precludes an

possible failures will likely result in severely degraded post-failuré
performance. To maximize our fault-tolerance measure, the valu
of q corresponding to the top 1000 values of were chosen as

initial points for a simple gradient ascent algorithm. This resulte
in 185 distinct local maxima, withC values ranging between 0.27 |
and 0.37. These are illustrated in Fig. 5. Note that despite the fe_ s
that a randomly selected configuration will likely have léw there
do exist a large number of configurations and tool-offset paramet;
values that have relatively higki. Moreover, fixing the manipulator
configuration and tool-offset parameters to those corresponding
the global maximum

rd = LY v T
q=[2.43 347 424 3.95 243 401 551 3.96 0.33] Fig. 7. Example task for demonstrating failure tolerance. The manipulator

. ) . . is painting the flat plate using vertical motions of the paint gun. At precisely
and varying the configuratiod of the manipulator reveals thatthe center of the plate, a locked joint failure occurs.

relatively highXC can be achieved over a fairly large portion of the

workspace (see Fig. 6). In general, an analysis such as the above

can be employed to first identify regions in the workspace with gody removing the appropriate column of the Jacobian and continuing

fault-tolerance. Other factors that affect workpiece location such H task with the remaining joints.

collision avoidance and joint limits can then be incorporated to arrive AS & baseline for comparison, the task was performed using

at the final workpiece location. standard pseudoinverse contfolith the arm configuration at the
To illustrate the performance of our real-time fault-tolerant controPoint of failure being

we selected as an exe_lmple task the painting _of a 0>8Qm4 m _plate_ §=[1.78 532 598 448 0.40 6.05 5.43]7’.

with the K-1207i manipulator. Taking all design considerations into

account, the configuration Fig. 8 illustrates the effect of a joint six failure on joint velocity

while using pseudoinverse control. At the point of failure, large

discontinuities are experienced as the functioning joints accelerate

with K = 0.31 was selected to map the paint gun to the center t& compensate for the lost joint. (Note that no dynamics have been

the plate. (The task and the selected manipulator configuration g}(éorporated into the simulation for simplicity of illustration. In

shown in Fig. 7.) The K-1207i is commanded to follow the indicateﬁeality’ the manipulator dynamics will result in the acceleration being
trajectory with an end-effector speed of 0.085 m/sec. At precisely t 8

q=1[241 3.63 431 4.10 2.54 4.23 5.05 1.57 O.I]T

ite, which will manifest itself in additional end-effector tracking

center of the plate, when the paint gun is making an upward verti€lfor-) The size of the discontinuities can be inferred from the SVD of

motion (along the positivé direction), a joint of the manipulator is  8Note thatanyinverse kinematic solution which does not configure the arm
failed and locked into place. The controller responds to the failuhe anticipation of a failure can produce similar undesirable behavior.
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Fig. 8. Joint velocity during joint six failure while using pseudoinversézi@ 10. Joint velocity during joint six failure while using failure-tolerant

control control.

0.12 : ey s ; : : Fig. 10 shows the joint velocities with failure-tolerant conftol.
| | : : : . Note the markedly lower discontinuity in the joint velocity at failure,
' o : : : indicating that the remaining joints are able to compensate for the
o1k ] T Position [m/L] | [ ISR SR A . L. . . . . "
——  Orientation [rad] i : failed joint with more practical acceleration requirements. In addition,
: : ‘3 as suggested by the slowly varying joint velocities, the manipulator
is able to complete the task.

Indeed, since the minimum singular value of a matrix is the best
measure of its proximity to singularity, maximizirig is equivalent
to locally maximizing the distance to the post-failure workspace
boundaries.

We should point out that the example presented here is a rep-
resentative one; similar behavior is encountered with the failure of
other joints as well. Furthermore, it can be shown that for every end-
effector position, the manipulator can be in a configuration with zero
K. Details can be found in [20].

o
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Distance From Failure [cm] The main conclusion of this work is that failure tolerance to locked-
Fig. 9. End-effector error during joint six failure while using pseudoinversi®int failures is possible in a real-time control scheme. It has been
control (The scaling factor on the translational error is given by 0.3 m). shown that a manipulator can be operated such that at all times it is
in an optimal configuration where, should a joint failure occur, the
deviation from the desired end-effector trajectory will be minimized
and the remaining joints will be able to compensate for the failed one.

the post-failure Jacobian: The minimum singular vdlue is 0.034,
with the corresponding singular vectors of

S = [<0.03 029 0.22 —0.92 0.00 —0.11]" REFERENCES
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