Real-time failure-tolerant control of kinematically redundant manipulators

Abstract

Includes bibliographical references.This work considers real-time fault-tolerant control of kinematically redundant manipulators to single locked-joint failures. The fault-tolerance measure used is a worst-case quantity, given by the minimum, over all single joint failures, of the minimum singular value of the post-failure Jacobians. Given any end-effector trajectory, the goal is to continuously follow this trajectory with the manipulator in configurations that maximize the fault-tolerance measure. The computation required to track these optimal configurations with brute-force methods is prohibitive for real-time implementation. We address this issue by presenting algorithms that quickly compute estimates of the worst-case fault-tolerance measure and its gradient. Real-time implementations are presented for all these techniques, and comparisons show that the performance of the best is indistinguishable from that of brute-force implementations.This work was supported by Sandia National Laboratories under contract number AL-3011

    Similar works