765 research outputs found

    Automatic Finding Trapezoidal Membership Functions in Mining Fuzzy Association Rules Based on Learning Automata

    Get PDF
    Association rule mining is an important data mining technique used for discovering relationships among all data items. Membership functions have a significant impact on the outcome of the mining association rules. An important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata (CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The spreads and centers of the TMFs were taken into account as parameters for the research space and a new approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to increase the convergence speed of the proposed approach and remove bad shapes of membership functions, a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed algorithm improves the efficiency of the extracted rules by finding optimized membership functions

    WAQS : a web-based approximate query system

    Get PDF
    The Web is often viewed as a gigantic database holding vast stores of information and provides ubiquitous accessibility to end-users. Since its inception, the Internet has experienced explosive growth both in the number of users and the amount of content available on it. However, searching for information on the Web has become increasingly difficult. Although query languages have long been part of database management systems, the standard query language being the Structural Query Language is not suitable for the Web content retrieval. In this dissertation, a new technique for document retrieval on the Web is presented. This technique is designed to allow a detailed retrieval and hence reduce the amount of matches returned by typical search engines. The main objective of this technique is to allow the query to be based on not just keywords but also the location of the keywords within the logical structure of a document. In addition, the technique also provides approximate search capabilities based on the notion of Distance and Variable Length Don\u27t Cares. The proposed techniques have been implemented in a system, called Web-Based Approximate Query System, which contains an SQL-like query language called Web-Based Approximate Query Language. Web-Based Approximate Query Language has also been integrated with EnviroDaemon, an environmental domain specific search engine. It provides EnviroDaemon with more detailed searching capabilities than just keyword-based search. Implementation details, technical results and future work are presented in this dissertation

    A Survey on Graph Database Management Techniques for Huge Unstructured Data

    Get PDF
    Data analysis, data management, and big data play a major role in both social and business perspective, in the last decade. Nowadays, the graph database is the hottest and trending research topic. A graph database is preferred to deal with the dynamic and complex relationships in connected data and offer better results. Every data element is represented as a node. For example, in social media site, a person is represented as a node, and its properties name, age, likes, and dislikes, etc and the nodes are connected with the relationships via edges. Use of graph database is expected to be beneficial in business, and social networking sites that generate huge unstructured data as that Big Data requires proper and efficient computational techniques to handle with. This paper reviews the existing graph data computational techniques and the research work, to offer the future research line up in graph database management

    Anomaly detection in unknown environments using wireless sensor networks

    Get PDF
    This dissertation addresses the problem of distributed anomaly detection in Wireless Sensor Networks (WSN). A challenge of designing such systems is that the sensor nodes are battery powered, often have different capabilities and generally operate in dynamic environments. Programming such sensor nodes at a large scale can be a tedious job if the system is not carefully designed. Data modeling in distributed systems is important for determining the normal operation mode of the system. Being able to model the expected sensor signatures for typical operations greatly simplifies the human designer’s job by enabling the system to autonomously characterize the expected sensor data streams. This, in turn, allows the system to perform autonomous anomaly detection to recognize when unexpected sensor signals are detected. This type of distributed sensor modeling can be used in a wide variety of sensor networks, such as detecting the presence of intruders, detecting sensor failures, and so forth. The advantage of this approach is that the human designer does not have to characterize the anomalous signatures in advance. The contributions of this approach include: (1) providing a way for a WSN to autonomously model sensor data with no prior knowledge of the environment; (2) enabling a distributed system to detect anomalies in both sensor signals and temporal events online; (3) providing a way to automatically extract semantic labels from temporal sequences; (4) providing a way for WSNs to save communication power by transmitting compressed temporal sequences; (5) enabling the system to detect time-related anomalies without prior knowledge of abnormal events; and, (6) providing a novel missing data estimation method that utilizes temporal and spatial information to replace missing values. The algorithms have been designed, developed, evaluated, and validated experimentally in synthesized data, and in real-world sensor network applications

    Scalable Mining of High-Utility Sequential Patterns With Three-Tier MapReduce Model

    Get PDF
    High-utility sequential pattern mining (HUSPM) is a hot research topic in recent decades since it combines both sequential and utility properties to reveal more information and knowledge rather than the traditional frequent itemset mining or sequential pattern mining. Several works of HUSPM have been presented but most of them are based on main memory to speed up mining performance. However, this assumption is not realistic and not suitable in large-scale environments since in real industry, the size of the collected data is very huge and it is impossible to fit the data into the main memory of a single machine. In this article, we first develop a parallel and distributed three-stage MapReduce model for mining high-utility sequential patterns based on large-scale databases. Two properties are then developed to hold the correctness and completeness of the discovered patterns in the developed framework. In addition, two data structures called sidset and utility-linked list are utilized in the developed framework to accelerate the computation for mining the required patterns. From the results, we can observe that the designed model has good performance in large-scale datasets in terms of runtime, memory, efficiency of the number of distributed nodes, and scalability compared to the serial HUSP-Span approach.acceptedVersio

    Mining for behavioural information in creative processes.

    Get PDF

    Comparative Uncertainty Visualization for High-Level Analysis of Scalar- and Vector-Valued Ensembles

    Get PDF
    With this thesis, I contribute to the research field of uncertainty visualization, considering parameter dependencies in multi valued fields and the uncertainty of automated data analysis. Like uncertainty visualization in general, both of these fields are becoming more and more important due to increasing computational power, growing importance and availability of complex models and collected data, and progress in artificial intelligence. I contribute in the following application areas: Uncertain Topology of Scalar Field Ensembles. The generalization of topology-based visualizations to multi valued data involves many challenges. An example is the comparative visualization of multiple contour trees, complicated by the random nature of prevalent contour tree layout algorithms. I present a novel approach for the comparative visualization of contour trees - the Fuzzy Contour Tree. Uncertain Topological Features in Time-Dependent Scalar Fields. Tracking features in time-dependent scalar fields is an active field of research, where most approaches rely on the comparison of consecutive time steps. I created a more holistic visualization for time-varying scalar field topology by adapting Fuzzy Contour Trees to the time-dependent setting. Uncertain Trajectories in Vector Field Ensembles. Visitation maps are an intuitive and well-known visualization of uncertain trajectories in vector field ensembles. For large ensembles, visitation maps are not applicable, or only with extensive time requirements. I developed Visitation Graphs, a new representation and data reduction method for vector field ensembles that can be calculated in situ and is an optimal basis for the efficient generation of visitation maps. This is accomplished by bringing forward calculation times to the pre-processing. Visually Supported Anomaly Detection in Cyber Security. Numerous cyber attacks and the increasing complexity of networks and their protection necessitate the application of automated data analysis in cyber security. Due to uncertainty in automated anomaly detection, the results need to be communicated to analysts to ensure appropriate reactions. I introduce a visualization system combining device readings and anomaly detection results: the Security in Process System. To further support analysts I developed an application agnostic framework that supports the integration of knowledge assistance and applied it to the Security in Process System. I present this Knowledge Rocks Framework, its application and the results of evaluations for both, the original and the knowledge assisted Security in Process System. For all presented systems, I provide implementation details, illustrations and applications
    • …
    corecore