
Mining for Behavioural

Information in Creative Processes

Ph.D. Thesis

Sascha Westendorf

This thesis is submitted in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

Software Technology Research Laboratory

De Montfort University

March 2011

Publications

H. Zedan, A. Cau, K. Buss, S. Westendorf, S. Thomas, and A. Hugill, Mapping human

creativity, In Proceedings of the 12th Serbian Mathematical Congress, Novi Sad, 2008.

H. Zedan, S. Westendorf, K. Buss, The effect of collaboration and co-creation on the

creative processes, In Proceedings of Second International Conference of Creativity and

Innovation in Software Engineering, Ravda (Nessebar), Bulgaria, 2009.

K. Buss, S. Westendorf, H. Zedan, Mining for behavioural knowledge and information in

the creative processes, In Proceedings of Second International Conference of Creativity

and Innovation in Software Engineering, Ravda (Nessebar), Bulgaria, 2009.

Declaration

I declare that the work described in this thesis is original work undertaken by me between

April 2007 and September 2010 for the degree of Doctor of Philosophy, at the Software

Technology Research Laboratory (STRL), De Montfort University, United Kingdom.

Acknowledgements

I would like to express my deepest gratitude to my supervisors Prof. Hussein Zedan,

Prof. Sue Thomas and Prof. Stephen Brown for their advice, experienced guidance and

encouragement during the last years. It was surely one of the most challenging and

important periods of my life. I would also like to thank De Montfort University (DMU),

the Institute of Creative Technologies (IOCT) and especially Prof. Andrew Hugill for the

financial support.

Furthermore, I would like to thank all colleagues of the Software Technology Research

Laboratory (STRL) at De Montfort University (DMU) for their valuable discussions and

suggestions. Especially Keno Buss, with whom I worked together for the last years, Peer

Bartels, Stefan Natelberg and Matthias Ladkau.

I am particularly grateful to my parents for their invaluable love and support, which gave

me the courage to continue my studies - I could not have done without them.

Abstract

Creativity is a topic of high interest in a variety of domains; many innovations, discoveries

and developments are the result of creative ideas. A prerequisite for the identification of

creativity is an artefact, which needs to be evaluated by the domain that receives it. The

involved actions during the creation of this artefact represent the creative process of a

creator and include essential information about the involved creativity. Structuring and

analysing this data are important steps for a better understanding of its nature. A domain

independent framework, which allows to represent the mentioned structures and provides

a set of sound mathematical rules for its study is used as a formal underpinning for the

presented approach.

Each sequence of actions, which is included in a creative process describes a behaviour. It

contains a rich set of information, like the particular order or duration of the creation steps

and can be analysed to gain insight into the process. This data might then eventually

be used for the creativity support. The creative process itself is usually non-linear, as

previous stages or ideas can be revisited by the creator. It instead describes a complex

structure with multiple branches, which is called a creativity map. This map builds the

essential preliminaries for this thesis. The proposed research presents an approach for the

recording of creative processes and construction of creativity maps.

Especially if an extensive observation of the creative process is undertaken, it is possible

that a creativity map grows large. It might then contain information, which are irrelevant

or even disturbing for the current view. This can include particular subsets or sequences of

actions as well as insignificant time periods or other items that are related to the particular

process. It would be beneficial for the support of an aim oriented analysis to conceal this

information at least temporarily. The proposed approach therefore introduces the concept

of a Partial Creativity Map (PCM), which allows to hide subsets of the originally recorded

behaviours. A creativity map can then be modified with respect to the requirements of

the analysis.

Each behaviour in a creativity map possesses a particular frequency, which allows for a

detailed insight into the creator’s preferences as well as common or uncommon activi-

ties. This range of frequency related information can be useful for the creativity support,

for instance in situations where the creator is ”stuck”. Behaviours that were performed

frequently in similar situations might be helpful in this case. The proposed research in-

troduces a classification of frequent behaviours and explains its use for the description of

their dynamics, which enable to reason about temporal properties of behaviours.

An initial version of the De Montfort Creativity Assistant (DMCA) is implemented for

the prototype tool support of this research. Its aim is the construction of an open and

extendible framework that allows to study the collected data and support creative pro-

cesses. It is designed as a pluggable system which provides a convenient environment

for the creation, sharing and communication of artefacts. Clear and domain-independent

interfaces provide the required structures for a seamless integration of new components.

The included tools and particularly the De Montfort Creativity Mapper (DMCM) are ca-

pable of observing, constructing and modifying the creative process and the corresponding

creativity map.

The presented approach is evaluated with three case studies. They illustrate the recording

of creative processes, construction of creativity maps and information hiding and extrac-

tion strategies. The thesis is finally summarised, limitations are explained and suggestions

for future directions are presented.

Mining for Behavioural Information in Creative Processes Sascha Westendorf

Table of Contents

1 Introduction 1

1.1 Motivation and Aim of Research . 1

1.2 Research Methodology . 3

1.3 Research Questions . 4

1.4 Research Hypotheses . 4

1.5 Scope of the Thesis . 5

1.6 Original Contributions . 6

1.7 Organisation of Thesis . 6

2 Background and Related Research 9

2.1 Introduction . 9

2.2 Creativity and Creative Processes . 10

2.2.1 Wallas’ Stage Model . 10

2.2.2 Boden’s P-/H- Creativity and Conceptual Spaces 12

2.2.3 Csikszentmihalyi’s Systems View of Creativity 14

2.3 Creativity Enhancement . 16

2.3.1 Creative Problem Solving (CPS) . 17

2.3.2 The Six Thinking Hats . 18

2.3.3 Walt Disney’s Method . 19

2.4 Computational Creativity . 20

2.5 Computational Creativity Support . 23

2.6 Data Mining . 25

I

Mining for Behavioural Information in Creative Processes Sascha Westendorf

2.6.1 Data Mining Process . 27

2.6.2 Mining Sequential Data . 30

2.6.3 Similarity of Data . 32

2.7 Summary . 33

3 Preliminaries 35

3.1 Introduction . 35

3.2 Axioms of Creativity . 36

3.3 Creativity Mapping Model . 37

3.3.1 Hopping . 40

3.3.2 Collaboration . 41

3.4 Summary . 42

4 Creativity Maps and Behaviours 43

4.1 Introduction . 43

4.2 Creation of Creativity Maps . 44

4.2.1 Capturing of the Creative Process 45

4.2.2 Similar States in the Creative Process 46

4.2.3 Creativity Map Structure by Transition Repositioning 49

4.3 Classification of Creativity Maps . 50

4.4 Data, Information and Knowledge in Creativity Maps 54

4.5 Behaviours in Creativity Maps . 57

4.5.1 Specification of a Behaviour . 58

4.5.2 Granularity . 60

4.5.3 Unification . 61

4.6 Summary . 62

5 Information Hiding 63

5.1 Introduction . 63

5.2 Observability of Behaviours . 64

II

Mining for Behavioural Information in Creative Processes Sascha Westendorf

5.2.1 Observable and Non-Observable Behaviours 64

5.2.2 Partial Creativity Map (PCM) . 65

5.3 Description of Behaviours for Information Hiding 66

5.3.1 Behaviour Description Language (BDL) 66

5.3.2 State Conditions . 69

5.3.3 State Marker . 71

5.4 Operations for Information Hiding . 71

5.4.1 Hiding Operation . 72

5.4.2 Restriction Operation . 73

5.4.3 Revealing Operation . 74

5.4.4 Restrictive Revealing Operation . 76

5.5 Behaviour Hiding . 77

5.5.1 Behaviour Description Automaton (BDA) 78

5.5.2 Construction of the BDA . 79

5.5.3 Behaviour Matching . 84

5.6 Minimising Partial Creativity Maps (PCMs) 87

5.7 Summary . 89

6 Frequent Information Extraction 91

6.1 Introduction . 91

6.2 Frequent Information in Creativity Maps . 92

6.2.1 Specification of Frequency . 93

6.2.2 Search Space for Frequent Information 94

6.3 Frequency Categories . 95

6.3.1 Preferred . 97

6.3.2 Common . 97

6.3.3 Uncommon . 98

6.3.4 Zero . 99

6.4 Frequent Behaviour Categories . 100

III

Mining for Behavioural Information in Creative Processes Sascha Westendorf

6.4.1 Minimal/Maximal Alternating . 101

6.4.2 Emergent . 103

6.4.3 Disappearing . 104

6.5 Extraction of Frequent Behaviours . 105

6.5.1 Frequency Calculation . 107

6.5.2 Behaviour Extraction . 109

6.6 Summary . 111

7 Tool Support 112

7.1 Introduction . 112

7.2 De Montfort Creativity Assistant (DMCA) 113

7.2.1 Requirements . 113

7.2.2 Layer Based Design . 114

7.3 De Montfort Creative Environment (DMCE) 116

7.3.1 Collaboration Components . 117

7.3.2 Client/Server Architecture . 118

7.4 Collaborative Editor . 119

7.4.1 Graphical User Interface (GUI) . 119

7.4.2 Revision History . 122

7.4.3 Design . 123

7.5 De Montfort Creativity Mapper (DMCM) 128

7.5.1 Graphical User Interface (GUI) . 128

7.5.2 Design . 130

7.6 Creativity Map Construction Engine (CMCE) 135

7.7 Information Mining Engine (IME) . 137

7.7.1 Information Hiding . 137

7.7.2 Frequent Information Extraction . 140

7.8 Knowledge Repository . 142

7.8.1 Version Control . 142

IV

Mining for Behavioural Information in Creative Processes Sascha Westendorf

7.8.2 Creativity Map Repository (CMR) 144

7.8.3 External Repository . 146

7.9 Summary . 147

8 Case Studies 148

8.1 Introduction . 148

8.2 Creative Writing Workshop . 149

8.2.1 Creativity Map Construction . 150

8.2.2 Feedback from the Workshop Participants 156

8.3 Conference Paper . 157

8.3.1 Creativity Map Construction . 157

8.3.2 Information Hiding . 159

8.4 Software Development . 167

8.4.1 Creativity Map Construction . 167

8.4.2 Frequent Information Extraction . 169

8.5 Summary . 176

9 Conclusion and Future Work 177

9.1 Summary of the Thesis . 177

9.2 Evaluation . 179

9.3 Advantages of the Proposed Approaches . 181

9.4 Validation . 182

9.5 Limitations . 183

9.6 Future Directions . 184

Bibliography 186

A Creativity Maps of the Creativity Workshop 195

V

Mining for Behavioural Information in Creative Processes Sascha Westendorf

List of Figures

2.1 Csikszentmihalyi’s Systems View of Creativity 14

2.2 Creative Problem Solving . 17

2.3 Liu’s Dual Generate-and-Test Model of Creativity 21

2.4 Communication of Evaluations between Individuals 22

2.5 Data Mining Process . 28

3.1 Examples of Creative Processes . 38

3.2 Creative Process with Coloured Viewpoints 39

3.3 Examples of Creativity Maps . 40

3.4 Hopping between Different Domains . 41

3.5 Collaboration . 41

4.1 Captured Creative Process . 46

4.2 Recorded Sequence with Values . 48

4.3 Transition Repositioning . 50

4.4 Creativity Map Categories . 51

4.5 Knowledge Creation Process . 56

5.1 Creativity Map with Highlighted Artefact Behaviours 69

5.2 Information Hiding . 73

5.3 Information Restriction . 74

5.4 Information Revealing . 75

5.5 Restricted Information Revealing . 76

5.6 Information Hiding Process . 77

VI

Mining for Behavioural Information in Creative Processes Sascha Westendorf

5.7 Non-deterministic Finite Automaton with ε-transitions (ε-NFA) for an Edge 81

5.8 ε-NFA for an Edge with Several Actions . 81

5.9 ε-NFA for a Transition with State Conditions 82

5.10 ε-NFA for a Factor with * operator . 83

5.11 ε-NFA for a Behaviour . 83

5.12 Depth First Traversal for the Behaviour Matching 85

5.13 Collapsing Behaviours . 88

5.14 Pruning Behaviours . 89

6.1 Frequency Categories . 96

6.2 Frequent Behaviour Categories . 101

6.3 Frequent Behaviour Extraction Process . 106

6.4 Frequency Calculation . 108

6.5 Behaviour Extraction . 110

6.6 Development of a Behaviour . 111

7.1 Architecture of the De Montfort Creativity Assistant (DMCA) 115

7.2 GUI of the Project Management Facility . 118

7.3 GUI of the Collaborative Editor . 120

7.4 GUI of the Revision History Facility . 123

7.5 Unified Modeling Language (UML) Class Diagram of the Collaborative Ed-

itor Client . 124

7.6 UML Class Diagram of the Collaborative Editor Server 127

7.7 Screenshot of the DMCM . 128

7.8 Screenshot of the DMCM Configuration Dialogue 129

7.9 Screenshot of the DMCM Visualiser . 130

7.10 UML Class Diagram of the DMCM Client 132

7.11 UML Class Diagram of the DMCM Server 134

7.12 UML Class Diagram of the CMCE . 136

7.13 UML Class Diagram of the Behaviour Hiding Component 138

VII

Mining for Behavioural Information in Creative Processes Sascha Westendorf

7.14 UML Class Diagram of the Behaviour Extraction Component 141

7.15 UML Class Diagram of the Version Control 143

7.16 Entity-Relationship Model (ERM) of the CMR 145

8.1 GUI of the Collaborative Editor with integrated DMCM 151

8.2 Fragment of a Captured Creative Process 152

8.3 Fraction of a Captured Creative Process with Revert Transitions 153

8.4 Fraction of a Constructed Creativity Map 154

8.5 Creativity Map of a Workshop Participant 155

8.6 DMCM Configuration for the Research Paper 158

8.7 Creativity Map of Research Paper . 160

8.8 BDA in Deterministic Finite Automaton (DFA) Representation 163

8.9 Collapsed Creativity Map of Research Paper 165

8.10 Collapsed Creativity Map with Time Information 166

8.11 DMCM Configuration for the Software Projects 168

8.12 Behaviour Distribution on a Percentage Base for Several Frequency Thresh-

olds . 171

8.13 Development of Three Behaviours . 173

A.1 Creativity Map - Participant 1 . 196

A.2 Creativity Map - Participant 2 . 197

A.3 Creativity Map - Participant 3 . 198

A.4 Creativity Map - Participant 4 . 199

A.5 Creativity Map - Participant 5 . 200

A.6 Creativity Map - Participant 6 . 201

A.7 Creativity Map - Participant 7 . 202

A.8 Creativity Map - Participant 8 . 203

A.9 Creativity Map - Participant 9 . 204

VIII

Mining for Behavioural Information in Creative Processes Sascha Westendorf

List of Tables

4.1 Observable and Non-Observable Viewpoints 47

4.2 Similar States . 49

5.1 Observable and Non-Observable Actions . 64

8.1 Similar States with Respect to Document Versions 153

8.2 Highlighted Lowest Timestamp . 154

8.3 Details of the Creativity Map Corpus of the Software Development 170

8.4 Sizes of the Frequency Categories . 172

IX

Mining for Behavioural Information in Creative Processes Sascha Westendorf

List of Acronyms

BDA Behaviour Description Automaton

BDL Behaviour Description Language

CMCE Creativity Map Construction Engine

CMR Creativity Map Repository

CPS Creative Problem Solving

DFA Deterministic Finite Automaton

DMCA De Montfort Creativity Assistant

DMCE De Montfort Creative Environment

DMCM De Montfort Creativity Mapper

DMU De Montfort University

EBNF Extended Backus-Naur Form

ERM Entity-Relationship Model

GUI Graphical User Interface

IME Information Mining Engine

IOCT Institute of Creative Technologies

JDK Java Development Kit

X

Mining for Behavioural Information in Creative Processes Sascha Westendorf

JRE Java Runtime Environment

KDD Knowledge Discovery in Databases

NLP Natural Language Processing

PCM Partial Creativity Map

STRL Software Technology Research Laboratory

UML Unified Modeling Language

WWW World Wide Web

ε-NFA Non-deterministic Finite Automaton with ε-transitions

XI

Chapter 1

Introduction

Objectives

• Explain the motivation and aim of the proposed research.

• Formulate the research questions.

• Present the scope of the thesis.

• Emphasise original contributions.

• Illustrate a brief overview of the thesis organisation.

1.1 Motivation and Aim of Research

The high interest in creativity resulted in a large number of models for creativity and

creative processes. Most of them lead to specifications of subconscious activities, without

the ability to be manipulated actively. They describe the creative process at an abstract

level, mainly happening inside the head of the creators, resulting in some kind of creative

outcome. These models often try to map different roles and specify their interactions. They

are usually unable to represent detailed information about the individually performed steps

and therefore difficult to utilise for computational creativity assistance. For an active

support of the creative process, it is necessary to analyse the steps that are performed

1

Introduction

during the creation of an artefact, as they include valuable information about the creator

as well as the creative process and are essential for a better understanding of creativity.

The mentioned activities represent the behaviours of a creator and the observable influ-

ences on the creative process. In order to reason about creativity and study the steps of the

creative process, it is necessary to introduce a model that maps this process into a struc-

tured form. A sound set of rules and laws is needed to support its analysis. The previously

mentioned approaches do not specify any structures, which satisfy these requirements. Es-

pecially the absence of a mathematically underpinned model of the creative process was

a major reason that motivated this research. The presented approach, which is used for

the mapping of the process, is based on a generalised transition system [15]. It allows for

the capturing and representation of behavioural information about the creator.

The model enables a fine grained representation of the artefact creation. Especially for

large projects, it is possible that the creative process becomes complex and difficult to

handle. Some of the performed steps might be irrelevant for the analysis. The concealment

of these activities would benefit the extraction of useful information. Particularly the

preprocessing phase needs to allow for the modification of the creative process in order

to enable an aim oriented analysis. As a solution, the thesis presents a behaviour based

information hiding approach for the creative process, which allows to specify and hide any

of its parts.

Another issue especially for large creative processes is the extraction of frequency related

information. It enables an insight into the relationship between actions and the personal

preferences of the creator. For this reason, a behaviour extraction approach will be intro-

duced, which concentrates on the range of frequent information that is contained in the

creative process. Not only the most frequent behaviours, but also common, uncommon

and rarely used ones are useful for the analysis. They enable to describe the dynamics of

the creative process and can be used for tracking purposes.

The described model additionally allows the mentioned approaches to be integrated into

software tools for the observation and study of the creative process. This enables the com-

putational analysis of the captured data in order to extract valuable information about the

involved creativity. Results might then be used to create assisting feedback and support

the creation. In order to process this material, well designed data, information and knowl-

edge representations are needed. They build the foundation for creativity mining. The

presented research aims at the discovery of possibilities, which allow for a computational

analysis and support of the creative process.

2

Introduction

1.2 Research Methodology

The presented thesis belongs to the research area of software engineering. This field par-

ticularly refers to the development and contribution of knowledge in the form of new

algorithms, methods, models, frameworks and theories that are evaluated through a num-

ber of case studies. The presented research aims to develop techniques that support the

analysis of creative processes. A generalised transition system as the formal mathematical

underpinning is the foundation for the presented methods and tools. It allows to rea-

son about creative processes and their modifications by referring to a set of defined rules

and laws. These rules are used for the introduction of information hiding and extraction

approaches. The presented research was realised as follows.

Identification of the Problem, Research Question and Hypotheses

The first stage of the research started with the problem identification. Related literature

was studied to gain sufficient background knowledge for the understanding of this problem

in its full scope. The presented research crosses different domains, which made it necessary

to study related research projects and literature about creativity and creative processes

as well as data and information mining. Most helpful for the first part were the models of

Boden [11], Csikszentmihalyi [22] and Wallas [97]. A useful overview of the data mining

process and its relation to knowledge discovery is presented in [32].

Construction of a Model and Implementation of the Approach

An essential requirement was a sound model for the mapping of creative processes, which

allows for their analysis. It was used as a formal underpinning for the development of the

information hiding and extraction approach. Both techniques are based on the profound

set of rules and laws. Models for a Partial Creativity Map (PCM) together with frequency

and frequent behaviour categories were developed for their realisation. A prototype soft-

ware has been developed to demonstrate and evaluate the need and practical applicability

of the proposed approach.

Evaluation of Hypotheses

The presented hypotheses were evaluated with the help of three different case studies. It

was demonstrated that the conducted approach is applicable and produces reliable results.

Each case study focussed on particular criteria. The first one tackled the construction

process of creativity maps, the second one demonstrated the information hiding approach

and the third one illustrated the extraction of frequent information and the tracking of

three different behaviours to emphasise their dynamics.

3

Introduction

Interpretation and Future Directions

The results of the evaluation have been interpreted and conclusions were drawn. Lim-

itations of the presented approach were identified and future research directions in this

field were formulated. Both affected the presented models as well as the demonstrated

prototype tool support.

1.3 Research Questions

The motivations and aims described before explain the problems in current research of

creativity and creativity support which the proposed research addresses. The following

research questions are answered by this thesis.

1. Is it possible to record the creative process computationally?

2. How can the creative process be used to mine for behavioural information?

3. Can (temporarily) irrelevant information of the creative process be hidden?

4. What kind of frequency related information can be extracted from the creative pro-

cess and how can it be used to describe the dynamism of behaviours?

5. How can the proposed research be used to implement initial tools for computational

creativity support?

Chapter 9 presents a summarised evaluation and refers to the particular locations of this

thesis, where the questions are answered in their full scope.

1.4 Research Hypotheses

1. A model for the representation of the creative process together with a formal under-

pinning will allow for the analysis of behaviours. This is beneficial for computational

creativity support and the design of tools that provide assistance during the creative

process.

2. When capturing the creative process, it is necessary to record as many steps as

possible for a detailed representation. The creative process can grow very large and

4

Introduction

the analysis will become time consuming. Techniques to hide irrelevant parts of it

are needed to enable an aim oriented analysis.

3. The frequency of behaviours can be utilised for the representations of preferences,

common or uncommon activities of a creator. This information is useful for the

further study and can help to build behavioural patterns. Techniques for frequent

behaviour extraction will support the analysis and allow to gather essential informa-

tion about the creative process.

4. The creative process is dynamic and information will continuously change over time.

The representation of this dynamism will enable the tracking of behaviours for one

or more creative processes, which can be utilised for the computational creativity

support.

1.5 Scope of the Thesis

This thesis will propose an approach to modify creative processes and extract information

for the support of their analysis. A technique for information hiding based on behaviours

will be introduced. Together with this, a frequency metric and an information extraction

approach will be presented, which enable the mining for frequency related information and

its dynamism. The scope of this thesis includes:

1. Description of a dynamic construction procedure for creativity maps.

2. Definition of data, information and knowledge and identification of behaviours.

3. Introduction of Partial Creativity Maps (PCMs).

4. Specification of a formal language for the description of behaviours.

5. Explanation of a strategy to hide behaviours from creativity maps in order to reduce

their size and support the analysis.

6. Specification of frequency and frequent behaviour categories, which allow for the dis-

tinction and extraction of frequent behaviours from creativity maps and the tracking

of their dynamics.

7. Implementation of the De Montfort Creativity Assistant (DMCA) and De Mont-

fort Creativity Mapper (DMCM) as tool support to enable collaboration and the

recording, visualisation and modification of the creative process.

5

Introduction

8. Evaluation of the approach based on three case studies. Each of them presents a

different scenario.

1.6 Original Contributions

The original contributions of this thesis are the following.

1. Specification of data, information, knowledge and behaviours in the creativity map-

ping model. These components are essential for the information hiding and extrac-

tion approaches.

2. Specification of a formal language for the description of behaviours. This enables a

convenient definition of behaviours for the information hiding process.

3. Introduction of information hiding, restriction, revealing and restrictive revealing

operations, which work seamlessly together with the formal language for the descrip-

tion of behaviours. Collapsing and pruning approaches for further size reduction of

creative processes are discussed.

4. Specification of frequency and a corresponding classification of behaviours. This is

used for the introduction of frequent behaviour categories that represent the dy-

namism of behaviours and are utilised for their tracking. A technique for the ex-

traction of frequency related information, which allows for an individual adjustment

based on three frequency thresholds is presented.

5. Development of a prototype tool for the creation and sharing of artefacts and the

recording, visualisation and modification of the creative process to demonstrate the

applicability of the described approach.

1.7 Organisation of Thesis

Chapter 1 - Introduction

The motivation and aim for the proposed research are described in this chapter. This

includes the research methodology, research question, research hypothesis, scope of the

thesis, original contributions and the outline.

6

Introduction

Chapter 2 - Background and Related Research

This chapter discusses the related research and background information. It reviews mod-

els for creativity and creative processes, discusses creativity enhancement techniques, ad-

dresses computational creativity support and illustrates data mining approaches, which

are all related to the presented research.

Chapter 3 - Preliminaries

The creativity mapping model is introduced in this chapter as preliminaries for this re-

search. Creativity maps are discussed informally, their ability to represent collaboration

is explained and the hopping phenomenon is presented.

Chapter 4 - Creativity Maps and Behaviours

This chapter explains the construction process of creativity maps. The three entities data,

information and knowledge are furthermore defined with respect to creative processes and

their relationship is explained. A hierarchical classification of creativity maps is discussed

and behaviours, which are a major component of the proposed research, are introduced.

Chapter 5 - Information Hiding

The information hiding approach, which is used to dismiss irrelevant behaviours of creativ-

ity maps is explained in this chapter. This includes the introduction of Partial Creativity

Maps (PCMs), which represent only a subset of the original information, the specification

of a formal language, namely Behaviour Description Language (BDL), for a convenient

expression of behaviours and the definition of essential operations for information hiding

and revealing.

Chapter 6 - Frequent Information Extraction

This chapter discusses the extraction of frequent information. It introduces four frequency

categories, which represent preferred as well as common and uncommon behaviours. The

dynamism of the creative process is expressed with additional frequent behaviour cat-

egories. It is illustrated how the information hiding and extraction approaches can be

combined to build one overall step.

Chapter 7 - Tool Support

The prototype tool support for the proposed approach is presented in this chapter. Initial

versions of the De Montfort Creativity Assistant (DMCA), the collaboration framework

De Montfort Creative Environment (DMCE) and the Collaborative Editor are described.

The prototype of the De Montfort Creativity Mapper (DMCM), which allows for the

recording and study of the creative process is introduced.

7

Introduction

Chapter 8 - Case Studies

Three case studies are presented in this chapter to demonstrate the applicability of the

proposed approach.

Chapter 9 - Conclusion and Future Work

This chapter summarises the thesis. It evaluates the presented research, illustrates limi-

tations and suggests directions for future studies.

8

Chapter 2

Background and Related Research

Objectives

• Discuss different models for creativity and the creative process.

• Present common techniques for the enhancement of creativity.

• Review approaches for computational creativity.

• Discuss related research in the area of computational creativity support.

• Explain data and sequence mining techniques.

2.1 Introduction

This chapter presents an overview of the background and related research in the fields of

creativity, creativity support and data mining. It explains and reviews some very popular

models for creativity and creative processes. The area of computational creativity is

described shortly and it is shown how the previously mentioned models are transformed

into processable representations. An overview of computational creativity support, which

is a relatively new area of interest and research, is presented. Furthermore, some popular

creativity support techniques that are already used in businesses and other organisations

are explained. Data mining techniques are presented in the last part of this chapter and

it is described how patterns are recognised and frequent information can be identified.

9

Background and Related Research

2.2 Creativity and Creative Processes

Creativity has been a topic of high interest for many years [7][100] and a lot of models

for the creative process and particularly the steps during the construction of creative

ideas were introduced. They try to identify general sequences of, in many cases, abstract

steps, which result in a creative outcome. These steps are often difficult to observe and

complicate the evaluation of creativity, which is usually influenced by subjective factors.

A mathematician might describe a new solution for a differential equation as creative,

whereas an artist thinks the Mona Lisa is a creative painting. More importantly, the

domain that receives the artefact instead of the creator decides about its creativity. This

domain or its experts provide sufficient knowledge to determine novelty and usefulness.

The book Creativity [96], which was edited by Vernon and published in 1970 includes a

good overview of some major contributions to the field of creativity. It contains a very

early model of the creative process from Graham Wallas [97]. A review of current research

in creativity is provided in the Handbook of Creativity [92] that was published in 1999.

It covers several aspects and collects influencing models, like the Conceptual Spaces from

Margaret Boden [11] or the Systems View of Creativity from Mihaly Csikszentmihalyi

[21]. These two models and the previously mentioned one from Wallas are reviewed in

this section.

2.2.1 Wallas’ Stage Model

Graham Wallas presented one of the first models of creativity [97]. He analysed a talk

from the German physicists Hermann von Helmholtz and identified four distinct stages,

namely Preparation, Incubation, Illumination and Verification. In [97], Wallace firstly

described his model in the following way.

The first in time I shall call Preparation, the stage during which the prob-

lem was ’investigated ... in all directions’; the second is the stage during which

he was not consciously thinking about the problem, which I shall call Incu-

bation; the third, consisting of the appearance of the ’happy idea’ together

with the psychological events which immediately preceded and accompanied

that appearance, I shall call Illumination. And I shall add a fourth stage, of

Verification, which Helmholtz does not here mention.

10

Background and Related Research

The problem is investigated in all directions during the preparation stage. Task specific

information as well as a wide overview are gathered to receive a large variety of impressions.

Wallas mentions that an educated person is able to focus on ideas. This allows for a better

thinking process, especially when the attention is directed to smaller sub-elements of a

problem.

The mind is unconsciously thinking about the problem during the incubation stage. This

time can be spent either with contemplating on other problems or simply with relaxing.

Wallas points out that of course the first way uses the time more efficiently. However, it is

sometimes necessary to relax and let nothing else interfere with the unconscious process

of the mind.

The illumination phase describes the stage, where a new idea arises. It is illustrated as a

successful train of associations that may be preceded by an unsuccessful one. This stage

cannot be influenced by direct effort or will, as Wallas points out.

[...] the evidence seems to show that both the unsuccessful trains of associa-

tion, which might have led to the ’flash’ of success, and the final and successful

train are normally either unconscious, or take place (with the ’risings’ and

’fallings’ of consciousness as success seems to approach or retire), in that pe-

riphery or ’fringe’ of consciousness which surrounds our ’focal’ consciousness

as the sun’s ’corona’ surrounds the disk of full luminosity.

Wallas furthermore distinguishes a specific phase called the intimation that precedes the

rising of a creative idea. It is the moment, where possible associations are made and

which indicates that a conscious ’flash’ of success is coming. If the brain is able to identify

associations, the intimation automatically creates the new and creative idea that is then

recognised consciously.

The last phase in Wallas’ model describes the conscious verification of the idea, for instance

by using mathematical or logical rules. Wallas describes this stage as being very similar

to the first one, which was introduced as preparation. For example, the same set of rules,

which was used during the preparation is also utilised to verify an idea. A good and deep

preparation is therefore necessary for a successful evaluation and verification process.

The creative process as specified in Wallas’ model describes creativity as an unconscious

process. It is first of all difficult to recognise and determine when the actual creative idea

arises and furthermore hardly possible to actively influence the process. This complicates

11

Background and Related Research

the retrieval of information about the events during the illumination, which seems to be

essential for the understanding of human creativity. It also restricts the usability of Wallas’

model for the support of creativity and creative processes, as a detailed understanding of

the performed actions in each of the phases is essential.

2.2.2 Boden’s P-/H- Creativity and Conceptual Spaces

Margaret Boden, a Professor of Philosophy and Psychology, starts to describe creativity

in [11] as a mysterious phenomenon, which cannot be explained or identified at all.

Creativity is a puzzle, a paradox, some say a mystery. Inventors, scientists,

and artists rarely know how their original ideas arise. They mention intuition,

but cannot say how it works. Most psychologists cannot tell us much about it,

either. What’s more, many people assume that there will never be a scientific

theory of creativity - for how could science possibly explain fundamental nov-

elties? As if all this were not daunting enough, the apparent unpredictability

of creativity seems to outlaw any systematic explanation, whether scientific or

historical.

Boden firstly distinguishes between two senses of creativity. On the one hand the psycho-

logical creativity (P-Creativity), which involves the rising of novel ideas that are new to

the person who created them. It implies a very personal understanding of creativity and

it is irrelevant, if someone else had the same idea. On the other hand the historical cre-

ativity (H-Creativity), which involves ideas that are firstly P-creative, but necessarily no

one else came up with them before. Where P-Creativity can be valued, although it might

not always be regarded as worth having, H-Creativity cannot be methodically explored.

A systematic explanation for H-creativity is impossible, as Boden describes in [11].

[...] there can be no systematic explanation of H-creativity, no theory that

explains all and only H-creative ideas. Certainly, there can be no psychological

explanation of this historical category. But all H-creative ideas, by definition,

are P-creative too. So a psychological explanation of P-creativity would include

H-creative ideas as well.

This quote illustrates that the evaluation or measurement of creativity are impossible, due

to the existence of various unrelated and unforeseeable factors. What is valued by one

12

Background and Related Research

group to be creative, will not necessarily be estimated in the same way by a different group

or person. However, for the study of creativity, it is crucial to understand P-creativity,

since it is not relevant who had the idea first, but what lead to its creation.

The specification of P- and H-creativity does not provide insight into the emergence of

creativity. Therefore, Boden developed a model of three ways of creativity [12]. The first

includes the creation of unfamiliar ideas by combination of familiar ones. An example

is a journalist who compares a politician with some kind of animal. The combination

procedure requires knowledge in a variety of areas, as the journalist must be informed

about politics as well as animals. Every combination itself needs to be sensible, especially

if presented to others, so that relationships between both concepts are evident even if

combined randomly. The second and third way of creativity are related to conceptual

spaces, which are specified as styles of thought and ”any disciplined way of thinking that’s

familiar to (and valued by) a certain social group” [12]. A variety of thoughts is possible

within a given space, of which only some were actually thought. An example is chess,

where a finite, astronomically high number of possible moves exists, but probably not all

of them were performed yet.

The second way of creativity is based on the exploration of these conceptual spaces. Cre-

ating a new and also unexpected idea is to a certain degree creative in an explorative

sense. It reveals possibilities that would have stayed hidden otherwise. An example is

a car journey on a motorway in an unknown country that reveals unexpected buildings

whenever the road is left and small ways are followed. Boden mentions that the exploration

of conceptual spaces often leads to new ideas and additionally shows their limitations. To

overcome these limitations, it is necessary to change the conceptual spaces.

The third way of creativity is based on the transformation of conceptual spaces. With

respect to the example above, the majority of the roads is fixed and cannot be changed.

However, it is possible to modify the thinking styles. A new idea arises, if a preexisting

style is changed in a specific way. By tweaking or complete transformation, creative ideas

can develop which were previously impossible. Creating a new route on the motorway in

mind is difficult, but may for example result in a journey to a surprisingly new country.

For the transformation of a conceptual space, it is necessary to think in different ways

than the previously possible and existing ones. This allows for thoughts that were literally

inconceivable before [12].

Boden’s different ways of creativity can be used to describe the creative process in an ab-

stract fashion. Combining ideas or exploring and transforming spaces are activities on a

13

Background and Related Research

higher level, which need to be broken down to more personal actions, such as reading, writ-

ing or programming. This means that the model requires more specificity to support the

study of creativity. The introduced P- and H-Creativity are useful for a description of the

relationship between creator and domain. Especially P-Creativity seems to be important

to understand the generation of creative ideas and artefacts. Analogies to these elements

can also be identified in other models, such as the one from Mihaly Csikszentmihalyi [21].

The idea of conceptual spaces and their exploration or modification sometimes raises the

questions, how computers themselves can be creative or how computational creativity can

be produced. However, this is not relevant for the support of human creativity. It is more

important to focus on a person’s creative process and provide assistance.

2.2.3 Csikszentmihalyi’s Systems View of Creativity

Mihaly Csikszentmihalyi [21] developed The Systems View of Creativity, which is based on

the idea that creativity does not emerge from the individual alone, but from its interaction

with the social-cultural environment. His model includes the three entities domain, field

and individual and specifies their interplay as shown in Figure 2.1, according to [21].

Domain

IndividualField

Transmits

Information

Produces

Novelty

Selects

Novelty

Stimulates

Novelty

CULTURE

SOCIETY
PERSONAL

BACKGROUND

Figure 2.1: Csikszentmihalyi’s Systems View of Creativity

Domain The domain specifies the part of an environment that the individual lives in. It is

similar to a repository which contains all existing patterns and the knowledge of the

environment. A domain is essential, as an artefact or product can only be determined

as being new in relation to something existing or old. For instance, new experiments

14

Background and Related Research

in chemistry can only be creative, if it is possible to evaluate and compare them with

respect to existing knowledge and previously performed experiments.

Field The field represents a group of experts with sufficient domain knowledge in order to

determine if an idea or artefact should be included into the domain. Csikszentmihalyi

describes the field as gatekeepers, which he narrows down to the social organisation of

a domain, like journal editors or foundation directors. These people decide about the

domain and its content. He mentions the example of Einstein’s theory of relativity,

where the field is represented by a couple of university professors, who decided that

his idea is creative. As a result, the majority of people also considered Einstein to

be (highly) creative, without necessarily understanding his theory.

Individual The individual specifies the person who generates a possibly creative idea or

artefact. In contrast to the overall judgement that is performed by the field, the

individual is only able to evaluate on a personal basis.

From Csikzentmihalyi’s point of view, especially the interplay of these three entities repre-

sents the essential component of creativity. In his book Creativity: Flow and the Psychology

of Discovery and Invention [22], he defines creativity in the following way.

[...] Creativity is any act, idea, or product that changes an existing domain,

or that transforms an existing domain into a new one. And the definition of

a creative person is: someone whose thoughts or actions change a domain, or

establish a new domain. It is important to remember, however, that a domain

cannot be changed without the explicit or implicit consent of a field responsible

for it.

According to Csikszentmihalyi’s view, a typical process starts with the individual who uses

information provided by the domain. The person transforms this information to create

something novel and creative. If the transformation is estimated as valuable by the field,

it will be included in the domain that is held by the culture. The manipulated domain

and therefore extended knowledge repository then becomes the foundation for the next

cycle. Instead of the particular elements themselves, the essential part of creativity in this

model can be identified as the described interactions.

The domain entity is required to provide a sort of symbolic system, which enables the

identification of improvement. If the current creation does not improve the domain, it is

usually not considered to be creative. Especially if the system does not implement this

15

Background and Related Research

notion sufficiently, the judgement can become difficult. Furthermore, Csikszentmihalyi

identifies a difference in the accessibility of domains and the simplicity of their modifica-

tion. The reason for this is usually the protection of a domain by a group or class of people.

It was for instance very difficult for Galileo to change the domain of astronomy, because

of the church which did not accept his ideas. However, the accessibility of domains has

improved in the last couple of years due to the development and growth of the internet.

It allows to publish and distribute vast amounts of information that are in turn accessible

for a large number of people.

The field entity represents an essential element in the systems view of creativity, which

allows to infer that an objective estimation or measurement of creativity is impossible. The

determination process will always be subjective, as it relates to the personal knowledge,

experience and background of the judges in order to identify a creative artefact. The field

is usually independent from the creator. However, if being a castaway on a desert island,

the creator can only decide himself about the creativity and therefore becomes one of the

judges. This does not necessarily mean, that the constructed artefact is determined to be

creative by others, for example when returning from the island. Csikzentmihalyi’s model

specifies that creativity is not directly stored in the creation itself, but rather in its effect

on others. He compares his view with the model of evolution, where organisms mutate

and only the best ones are selected for the next generation.

Csikszentmihalyi’s model of creativity focusses on the interaction of the three entities

domain, field and individual. It describes the creative process of a person in an abstract

way as the exchange of information between them. As mentioned before, the creation of

a creative outcome changes the domain and simultaneously establishes a communication

between the domain and individual. However, the steps which lead to the product or

artefact are not further considered in the presented model. Especially their determination

and analysis are important for the support of the creative process, as they allow for the

creation of valuable and assisting feedback.

2.3 Creativity Enhancement

Apart from the previously presented models for creativity and the creative process, re-

searchers are also interested in possibilities for the enhancement of creativity [72]. One of

these strategies is brainstorming, which was developed by Osborn [74][75] in the 1950’s. It

describes a process that is especially used by groups in order to create a large number and

variety of ideas for a particular topic. The main purpose of brainstorming is to generate

16

Background and Related Research

and express thoughts without any evaluation, as criticism probably reduces the amount of

ideas quickly to only sensible ones. In contrast, brainstorming enables the expression of

any thoughts, with the ulterior motive to stimulate other team members, who then create

new, maybe peculiar ideas themselves. It is very popular and can sometimes be identified

in other models, such as Creative Problem Solving (CPS). This section presents three

creativity enhancement techniques.

2.3.1 Creative Problem Solving (CPS)

Brainstorming builds the foundation for the development of another technique, namely

Creative Problem Solving (CPS) [75] [53] [54] that also aims for the creation of creative

ideas. CPS consists of three major components, each including a individual set of steps

[35]. They are depicted in Figure 2.2, according to version 4.0 that is specified in [53].

Understanding

the Problem

Generating

Ideas

Planning

for Action

Mess Finding

Data Finding

Problem Finding

Idea Finding

Solution Finding

Acceptance Finding

Figure 2.2: Creative Problem Solving

The first major component is Understanding the Problem. It is divided into the three

steps Mess Finding, Data Finding and Problem Finding. Mess Finding is used for the

identification of challenges. It is necessary to understand the opportunities and goals that

should be achieved at the beginning. Data Finding identifies data that is related to and

relevant for the current situation. Sources are examined from different viewpoints and

the essential and most important facts are revealed. This is similar to a preprocessing

step, which is performed in order to ”hide” irrelevant data and focus on the relevant

parts. Problem Finding explores the issues and generates possible problem statements.

The most relevant and promising ones are extracted and further processed.

17

Background and Related Research

The second major component is Generating Ideas, which contains the single step Idea

Finding. It generates a large set of ideas that tackle the previously specified problem. The

brainstorming technique which was described above is one possibility for their creation.

It is important that a large variety of ideas arises to offer a wide range of perspectives,

which includes potential ideas for the solution of the problem.

The third major component is Planning for Action, which is divided into two distinct

steps. The first step is specified as Solution Finding and describes the application of

strategies and criteria that support the development of ideas and solutions. These strate-

gies should support the discovery of the best solution that can be generated. The last

step is specified as Acceptance Finding and is responsible for the generation of support

and acceptance. It is necessary to understand and fully support the problem solution to

provide an implementation in the best possible way. Any resistant needs to be broken.

CPS represents a probably common process that can be identified during the creation of

ideas and solution. It is first of all necessary to read related literature and ideas, specify

a problem, search for possible concepts and then define a solution based on the gained

knowledge. A similar process can be identified in Wallas’ four stages model of the creative

process.

2.3.2 The Six Thinking Hats

Another technique that is used to enhance creativity is called the Six Thinking Hats and

was developed by Edward de Bono [25]. This strategy assumes that a group of people is

working on the solution of a problem. The thinking process is divided into six distinct

categories, each represented by a single hat. Every team member ”wears” one of these

hats and similarly represents one category during the discussion. This creates different

viewpoints of the problem and possibly enhances the efficient generation of new and useful

ideas. The team can become more productive and generate better results. De Bono

introduced the following six thinking hats.

White Hat The white hat focusses on the analytical thinking. The person who is ”wear-

ing” this hat is concentrating on the given facts and possibilities to achieve the goal.

This thinking hat also considers missing data and its retrieval.

Red Hat The red hat is the ”emotional” viewpoint. The person who is ”wearing” it needs

to focus on emotions, for example the feeling about the project or possible solutions.

This thinking hat does not need to be rational or require a logical foundation.

18

Background and Related Research

Black Hat The black hat represents the critical point of view on the problem. It is a

defensive position, which mainly tries to identify possible flaws, problems or weak-

nesses. This thinking hat intervenes and prevents the group from wrong decisions.

Yellow Hat The yellow hat represents a positive viewpoint. The person who is ”wearing”

it is rather optimistic and addresses the advantage of a solution. This thinking hat

does not consider disadvantages or possible risks and tries to identify opportunities.

Green Hat The green hat represents creative thinking. It looks at the proposed ideas

from different viewpoints and tries to modify and vary them for a new and possibly

useful outcome. This thinking hat illustrates an associative thinking that combines

existing ideas in order to identify new solutions.

Blue Hat The blue hat guides the whole idea finding strategy. The person who is ”wear-

ing” it organises, summarises and plans the discussion in order to manage the current

process. It is probably worn by the moderator or leader of the group debate.

The six thinking hats are primarily interested in different viewpoints of an idea. Among

other things, they reveal possible opportunities, flaws or boundaries. The comments of

the team members stimulate and encourage other participants to create new ideas.

2.3.3 Walt Disney’s Method

Robert Dilts studied the creative process of Walt Disney [29]. He realised that Walt Disney

had three distinct phases in his creative process, in particular the Dreamer, Realist and

Critic phase. They are specified in the following way.

Dreamer The dreamer phase represents a visionary understanding of the project and is

responsible for the specification of possible aims. It does not criticise the collected

ideas and is therefore similar to the yellow hat of de Bono’s six thinking hats. The

prohibition of any boundaries or restrictions enables this mode to think about strange

and possibly non-logic thoughts and solutions. It supports the creation of creative

ideas that can then be processed in the other two phases.

Realist The realist phase is responsible for the realisation of ideas. It tries to identify

boundaries and steps that need to be performed in order to achieve the previously

specified goals. These steps should be practical and most important executable

under realistic circumstances. The realist phase considers existing ideas as well as

solutions and identifies possible evaluations.

19

Background and Related Research

Critic The critic phase represents a pessimistic or critical point of view. It reveals flaws,

communicates advancements that need to be considered and also addresses possible

risks and chances of the proposed ideas.

It is not mandatory that these three phases or viewpoints are represented by the same

person. Similar to the two previously described techniques for creativity enhancement, it

is also possible that they are distributed to the members of a team.

The three presented techniques for the enhancement of creativity (Creative Problem Solv-

ing (CPS), Six Thinking Hats, Walt Disney’s Method) are probably very popular, but still

only a subset from a large variety of strategies. They usually try to distinguish between

different viewpoints, which are then used for the stimulation of new ideas and the guid-

ance of the thinking process. Their ultimate aim is the identification of creative problem

solutions. Some of the models also share similar components, such as the yellow thinking

hat (de Bono) and the dreamer phase (Dilts). However, none of them directly integrates

evaluation techniques or any kind of guidance for the production of creative results, which

might also be very difficult, as the strategies are not bound to any domain or field.

2.4 Computational Creativity

Computers are able to efficiently produce a variety of new outcomes by combining existing

input. The result may be novel but not always creative with respect to Margaret Boden’s

first way of creativity [12]. Links between two concepts need to be sensible, which can only

be evaluated with the help of additional knowledge. This in turn means that computers

cannot generate creative outcomes in the described way without an awareness of the

environment. Existing systems are to a certain degree able to explore and transform a

conceptual space [101, 102], as it was previously specified in Boden’s model. For instance,

AARON [67] is a software that creates original artistic images. It is able to use a particular

style for the drawing of distinct paintings, which is equivalent to the exploration of a

conceptual space. New styles cannot be learned automatically and need to be translated

into source code and integrated manually. An example of a self transforming program is

Automated Mathematician [63], which discovers mathematical concepts and relationships.

It analysis and transforms short LISP programs and links them, for example, by nesting

their functions inside each other.

20

Background and Related Research

Saunder and Gero’s framework for computational creativity [82] adapts Liu’s Dual Ge-

nerate-and-Test Model of Creativity [65] that itself is partly based on Csikszentmihalyi’s

systems view of creativity. The model from Liu includes two so called generate-and-

test loops, one for the individual and one for the socio-cultural level. The individual level

contains creative thinking, problem finding, solution generation and a creativity evaluation

test. The socio-cultural level converts the interactions of Csikszentmihalyi’s model into

computationally processable elements. Figure 2.3 depicts Liu’s Dual Generate-and-Test

Model, according to [65].

Field

Socio-cultural recognition of creative ideas by a group

of authorised people

Individual

Personal creative solution generation and recognition

Problem

Finding
Generate

Creativity

Test

no

no

yes

Domain

Source of initial

data and

knowledge in the

domain

yes

Figure 2.3: Liu’s Dual Generate-and-Test Model of Creativity

It can be observed that the three entities field, individual and domain in Csikszentmihalyi’s

model are used for the description of an evaluation strategy. The individual starts with

the problem finding and continues with the generation of a new solution, which is at

first evaluated based on the personal creativity test. If the solution passes this test, it

is transported to the field, which represents a group of authorised experts. A successful

evaluation from the field leads to a communication of the solution to the domain. It is

then accessible for all individuals. An unsuccessful evaluation will return the solution to

the individual, who can then perform modifications.

The model of Saunder and Gero addresses the presented socio-cultural creativity test to

map the behaviour of creative societies. Their main approach is the use and combination

of several individual’s creativity tests. The socio-cultural creativity test can be realised by

permitting communication of evaluations between individuals. An example for this is the

interaction of individuals A and B as depicted in Figure 2.4 (according to [82]). A forwards

a piece that passed its creativity evaluation and is therefore considered to be creative to

individual B. This process is illustrated with the arrow going from the ”Creativity Test”

of Individual A to Individual B (labelled with ”yes”). B then evaluates this item itself and

sends the results back to A. This is displayed with the arrow that is labelled with ”yes”

and going from B’s ”Creativity Test” to Individual A. B additionally adds the piece to the

21

Background and Related Research

domain if it is creative. This means that individual B is able to reward A and therefore

influence its creativity test. This can for instance affect the creation of future artefacts

by A. On the other hand, A can also influence the behaviour of B since the evaluation of

creativity involves an evaluation of novelty. By a reduction of novelty, A is able to alter

B’s evaluation process and change its notion of creativity.

Individual A

Problem

Finding
Generate

Creativity

Test

yes

yes

Individual B

Problem

Finding
Generate

Creativity

Test

yes

yes

To

Domain

no

no

Figure 2.4: Communication of Evaluations between Individuals

Each individual in Saunder’s and Gero’s model is implemented as an agent [83][37] that is

able to communicate with other agents and the domain. This interaction represents socio-

cultural behaviour in a creative society as the collective of individual evaluations. The

group of agents is similar to the field that was introduced in Csikszentmihalyi’s systems

view of creativity. Saunder’s and Gero’s system is of dynamic nature and the notion

of creativity can change, if the domain is modified or new individuals join or leave the

socio-cultural network.

The models for computational creativity that were presented can be utilised for the con-

struction of computer programs which produce creative artefacts. However, this is a very

difficult task and especially the judgement about creativity by the field in terms of novelty

and usefulness can cause problems. For the support of the human creative process, it is

furthermore irrelevant that a computational system is able to construct these outcomes

itself. It should rather be able to analyse the creative process and assist the user during

the creation of an artefact.

22

Background and Related Research

2.5 Computational Creativity Support

Creativity support [88] and especially creativity support tools [87] are research topics that

gained much interest during the last years. New technologies and increasing computational

power together with the growth of the internet and social communities opened a research

area with high potential and risks. Shneiderman et al. [31] mentions that it is necessary to

study creativity for the production of reliable outcomes in order to enhance an individual’s

creativity as well as a group’s creative potential. However, there is also much scepsis,

justified by the believe that creativity is beyond every scientific process or innate.

Shneiderman et al. [31] developed a set of design principles and patterns for the develop-

ment of creativity support tools. They focus on ”composition tools”, which are computer

systems for the generation, modification, interaction and sharing of media like texts, im-

ages or music. The principles are vague and can be stated more precisely or extended

for particular cases. They concentrate on easy exploration, rapid experimentation and

fortuitous combinations to support creative thinking and innovation. The following 12

principles have been specified.

1. Support exploration

2. Low threshold, high ceiling, and wide walls

3. Support many paths and many styles

4. Support collaboration

5. Support open interchange

6. Make it as simple as possible - and maybe even simpler

7. Choose black boxes carefully

8. Invent things that you would want to use yourself

9. Balance user suggestions with observations and participatory processes

10. Iterate, iterate - then iterate again

11. Design for designers

12. Evaluate your tools

23

Background and Related Research

The illustrated principles cover a variety of thoughts. The first one is to try many different

alternatives through exploration, as the outcome cannot be known in advance. According

to the second point, tools need to support an easy entry and the possibility for investiga-

tion together with the ability to work on sophisticated projects. They should provide an

immediate confidence that the project can succeed and should also be easily understand-

able. Collaboration is very important and is mentioned in the fourth and fifth principle.

Creative work can be performed in interdisciplinary teams and tools should enable a con-

tribution of knowledge from different fields. Systems should be as transparent as possible

(seventh principle). The identification of the lowest manipulable elements needs to be

defined in advance to guarantee a clear and convenient artefact creation. User interaction

needs to be integrated thoughtful and balanced. Feedback is important on the one hand,

but too much integration and suggestions will hinder the development process. The last

three principles point out that the process is always unfinished and improvements are pos-

sible at any stage. Creativity support tools should be flexible and allow others to design,

create and invent. It is also necessary to evaluate the tools themselves for improvements

and the development of future features.

The design principles are vague and leave room for interpretation. A particular and

essential problem of interdisciplinary collaboration that needs to be addressed is the syn-

chronisation of artefacts across distances. Synchronous or asynchronous communication

are two examples. Evaluation mechanisms for creativity support tools should be defined

during the design process. They might result in improvements and the development of

future features. Socio-technical environments for the enhancement of creativity are other

important factors that need to be considered.

Collaboratively created projects ought to be saved during their creation and should be

retraceable to support the study of creative processes. A version control system can be

considered for this task. As the user represents the central role in a creative process,

tools must offer facilities to react on feedback and process it adequately. An environment

that seamlessly integrates multidisciplinary tools would satisfy at least some of the design

principles mentioned above.

The issue of collaboration is addressed by Fischer [34]. He introduces two types of commu-

nities, namely Communities of Practice (CoP) and Communities of Interest (CoI). A CoP

is a homogeneous community that includes collaborators who work together for the ac-

complishment of a similar task. Examples are software developers, architects or research

groups. The internal vocabulary for their communication is problem and area specific,

which allows for accurate problem specifications on the one hand but represents a high

24

Background and Related Research

boundary for outsiders on the other hand. A CoI is defined as the stakeholders of differ-

ent CoP, who work together in order to solve a particular problem of common concern.

An example is a team of software designers, programmers and marketing specialists, all

interested in the development of a software product. A CoI has multiple centres of knowl-

edge and more potential to be innovative and creative than CoPs. It provides a shared

understanding of the problem, but lacks of a consistent communication, due to several

vocabularies.

The communication problems of collaborators can be overcome by boundary objects. They

represent externalisations of ideas that are used to communicate and facilitate shared un-

derstandings across spatial, temporal, conceptual, or technological gaps [34]. Boundary

objects are used to establish a shared context for communication and help to identify break-

downs. Examples are documents, rules or unspoken norms. They are evolving, develop

audibility over time and are conversation elements for the communication of knowledge

instead of simple knowledge containers. Fischer justifies their importance by explaining

that boundaries are the places where knowledge is being produced, unorthodox and in-

novative solutions are identified and the unexpected is converted into the expected. If

they should be used intuitively, it is necessary to keep them clear and structured to also

support a convenient construction.

The presented approaches for computational creativity support leave room for interpre-

tation. Especially Shneiderman’s design principles need to be implemented according to

the domain requirements. However, it is probably impossible to define a fixed set of rules

for the construction of creativity support tools which guarantees beneficial outcomes. It

might also be necessary to integrate feedback into the development process and let the

users decide about missing features. This enables a steady modification and adaptation

to the personal needs and might support the successive creation of a convenient environ-

ment. The Communities of Practice (CoP) and Communities of Interest (CoI) illustrated

that collaboration might be an important factor for the enhancement of creativity. It

is essential to establish a communication between the different team members and allow

them to collaboratively modify an artefact or boundary object. However, the influence of

collaboration on creativity is still difficult to determine.

2.6 Data Mining

Creativity and creative processes provide a large variety of data and information that

can be studied. The identification of patterns and frequent information is important for

25

Background and Related Research

a better understanding of these processes. It enables the analyser to provide useful in-

formation for the assistance of creativity. The area of Data Mining [89][66][58] describes

techniques that realise the previously mentioned tasks and can be adapted for creative

processes. They were mainly developed to analyse large amounts of data, which require

profound techniques for the extraction of subjectively important information. One exam-

ple is the Quest project, which was started by IBM in 1996 [4] in order to build a system

for data-intensive decision support. It should accelerate and improve the decision process.

As the data is usually stored in databases, Data Mining is often used synonymously with

the terms Knowledge Discovery in Databases (KDD) or Knowledge Mining [45]. In [84]

James G. Shanaham specifies knowledge discovery in the following way.

Knowledge discovery is commonly viewed as the non-trivial general process

of discovering valid, novel, understandable, and ultimately useful knowledge

about an application domain from observation data and background knowl-

edge, in which the discovered knowledge is implicit or previously unknown.

The field of knowledge discovery has a long history and it developed from techniques based

on clean and statistical data to techniques for exploitation of multidisciplinary alternatives,

which are able to deal with imperfect data. A major part of this change is grounded on

the perception that humans are mandatory to solve practical real world problems. These

complex tasks are for example image detection, Natural Language Processing (NLP) or

the creation of an artefact in general, where uncertainty and background knowledge are

key elements in the process of pattern recognition.

Data mining was developed from studies in the areas of computing, marketing and statis-

tics [39]. For the field of computing, it is placed in the area of machine learning [109][50],

as it has a lot in common with pattern recognition. Machine learning includes the detec-

tion of patterns in order to insert and categorise data as well as derive previously unknown

information. The essential idea of statistics is the analysis of data for the extraction of

numerical information. Statistical methods are usually developed in close relation to the

data that is going to to be studied. Even if this enhances the efficiency on the one hand,

it makes the process static and limits the ability to adapt to other data sets on the other

hand. Data mining utilises parts of the described techniques and develops solutions to

overcome their weaknesses.

Most of the main data mining techniques were developed in computer science rather

than in statistics. They differ in their parameters and their methodologies of the data

exploration. Classification is a technique that tries to recognize new patterns or insert

26

Background and Related Research

them into predefined categories. Common patterns of a specific class can be tested against

the new data set to reveal previously unknown information and knowledge. Another

technique is the mining for association rules, which is based on the representation of

knowledge as rules. It explores data for the identification of links between items like

it is commonly used in market basket analysis to reveal relationships between products

in customer purchases. Clustering techniques [56][18] are useful for data visualisation

and explorative data analysis. They build clusters of similar data sets and try to reveal

previously unknown similarities [78]. The human explorer is considered to be a major part

of this technique. Other techniques try to predict values of certain variables by exploring

patterns in the data sets. These patterns are then analysed with the help of mathematical

strategies in order to derive new values. The process is mainly used for numerical data

sets.

2.6.1 Data Mining Process

The data mining process starts with data and ends with previously unknown patterns and

knowledge. It can be broken down into a number of steps that are performed to realise

this conversion process. Figure 2.5 depicts 5 distinct activities, according to [32]. Raw

data is selected and pre-processed, before it is further transformed and analysed to reveal

patterns that can finally be interpreted for the creation of new knowledge.

Selection The vast amount of raw data needs to be preselected for the succeeding steps

in order to decrease its quantity. It is necessary to define project aims, to be able to

select data based on features, observations or background knowledge and possibly

highlight data deficiencies. Data understanding and background knowledge are cru-

cial requirements for the selection phase. Irrelevant data sets can be eliminated, if

factors like quality, nature and relation to the previously defined aim were specified.

Data selection is mostly automated and its result represents a subset of the overall

data set that fulfils necessary requirements and supports following analysis steps.

Preprocessing The preselected data is verified during the preprocessing step to iden-

tify inappropriate values and necessary modifications. The verification may discover

missing data as a result of non or wrongly measured values or instrument malfunc-

tions. Missing values can be completed for example by human input, averaged values

or fuzzy set values. It is necessary to chose this techniques with respect to the ap-

plication and project aims. The result of the data preprocessing step is a structured

and complete data set.

27

Background and Related Research

Figure 2.5: Data Mining Process

Transformation The transformation step is executed after the preprocessing to create a

descriptive data model that allows for computer based processing. This model needs

to suit to the application. Furthermore, there are general requirements every model

needs to satisfy. It should be parsimonious to decrease the computational costs and

consider only necessary data values. When the data set is decreased, it is necessary

to keep the content as similar as possible in order to to not distort possible results

of an analysis. Data transformation is an important step, as succeeding algorithms

may only be capable of handling normalised data.

Data Mining The Data Mining step is responsible for the recognition and extraction of

patterns from the transformed data set. A data mining technique (e.g. clustering)

fitting best to the application requirements needs to be chosen. This is of course one

of the first steps, since it affects the model construction and the initial steps of the

data mining process. One possibility for the implementation of pattern recognition

is a visual data analysis, which allows for the extraction of structural information.

An evaluation process for the identified results is needed for the development of

further enhancements and to guide the knowledge discovery process. This ensures a

dependable validation of the revealed patterns and supports the learning process.

28

Background and Related Research

Interpretation The interpretation is the final step of the data mining process. The

results and extracted patterns are interpreted to create new knowledge. Human

interaction is probably required to produce reliable results, as fixed strategies for

automatic data interpretation might be difficult to specify. This phase can therefore

be influenced by subjective decisions of the observers.

The arrows in Figure 2.5 illustrate that the results of a single step can be affected by

every other step of the overall process. For instance, if the accuracy of the outcome

is not sufficient, it might be traced back to a partly ill defined model or a non fitting

data selection algorithm, which can then be corrected in the transformation phase or the

selection step, respectively.

The data mining process finishes with the creation of knowledge, as depicted at the top

right corner in Figure 2.5. This knowledge can be stored in different forms and especially

the area of knowledge representation [8, 24] tries to build models that transform domain

specific knowledge into a computer processable format. Many representation of knowl-

edge have been developed but only few have proven to be advantageous and it quickly

emerged that a generally applicable model cannot be designed. A lot of the knowledge

representations, for example in the fields of Artificial Intelligence (AI) or Natural Lan-

guage Processing (NLP) are based on the assumption that a problem can be mapped onto

entities and their relations. One example is the words of a language, which are linked to

build sentences or even larger structures.

Other knowledge representations include rule-based systems, semantic nets, or ontologies.

One possibility for the description of knowledge in a rule based manner is the use of logical

operators (AND, OR). Terms are linked with these operators to express a formula that can

be processed with the help of computer systems. An example is the field of market basket

analysis, where baskets of customers are analysed for the extraction of knowledge about

product relationships and buying habits. Certain products might be bought together

frequently, like bread and cheese. To generate this information, it is necessary to analyse

a variety of market baskets. The following syntax illustrates a general structure for the

representation of knowledge as rules.

IF <condition> THEN <action>

IF <premise> THEN <conclusion>

29

Background and Related Research

It is illustrated that rules can be expressed in the form of if - then statements. If the

condition is satisfied, then the action is executed. Similarly, if the premise is complied,

the conclusion can be drawn. For the market basket analysis described above this means

that if a costumer buys bread (premise), this person also buys cheese (conclusion).

The production rules are a very common way for the description of knowledge in the data

mining process [3]. In knowledge based systems, inference engines are used to interpret

these rules and execute them depending on the information that is supplied [90]. One

method is forward chaining, which takes facts as input and draws conclusion based on

satisfied conditions. The corresponding actions are then performed. Another method is

backward chaining, which works in the opposite direction. It starts with actions and tries

to identify conditions based on additional user input. Both methods do not explore new

conditions or actions, they instead try to validate information.

One advantage of the knowledge representation as production rules is the possibility to

split a knowledge base into several independent pieces. Rules are modular and describe a

relatively small amount of knowledge. They can be stored separately and then be com-

posed into chains if necessary. It is easily possible to extend the knowledge base by adding

new rules or reducing its complexity by removing irrelevant ones. Rule based systems are

usually used for the validation of input values, but not to derive new conclusions. For

instance, they might help a medical doctor in diagnosing a particular disease, but only if

the symptoms are covered in the knowledge base.

The described knowledge representation illustrate an overview of a very popular model.

Similar to the rule-based approach, the creative process or a creative behaviour can be

represented as a chain of actions. However, its structure is far more complex and therefore

needs a further elaborated model for its representation. It might also be necessary to

consider and maybe reuse existing information.

2.6.2 Mining Sequential Data

Sequential data mining is a sub-area of data mining, which describes techniques for the

identification of frequent patterns in sequential data sets. It is for example widely used

in biology in order to search for specific sequences in gene and protein structures, like the

DNA. Sequence mining is relevant for the proposed research, as the creative process of

a creator also contains sequences of the actions, which are called behaviours. Extracting

frequency related information from this process is a main part of this thesis.

30

Background and Related Research

An initial and influencing work in the area of frequent sequence mining was introduced by

Agrawal and Skrikant [5][6]. They described the idea of mining large amounts of sequential

data, in particular transactions. One example is the analysis of traversal patterns that

were recorded during the visits of web pages [17]. The problem of frequent sequence mining

as explained by Agrawal and Skrikant and others [110] can be specified in the following

general way. Let I = {i1, i2, . . . , im} be a set of items. An itemset X is a set of items of I.

A sequence s =< t1, t2, . . . , tn > is a ordered set of transactions, where each transaction ti

is an itemset. The number of items contained in a sequence s defines the length of it. The

length is denoted by |s|. Given two sequences s1 = 〈a1, a2, . . . , an〉 and s2 = 〈b1, b2, . . . , bl〉,
then s1 contains s2 if there exist integers j1, j2, . . . , jl, so that l ≤ j1 < j2 < · · · < jl ≤ n

and b1 ⊆ aj1 , b2 ⊆ aj2 , . . . , bl ⊆ ajl . A sequence is maximal if it is not a sub-sequence of

any other sequence.

Given a set D of sequences, the support count of a sequence s is defined as the number

of sequences in D that contain s. The support count is denoted by δsD. The fraction of

sequences in D that contain s is called the support of s. If the support of s is higher than

or equal to a user defined threshold, then s is frequent. The aim is to find all maximal

frequent sequences in D.

As the problem definition illustrates, the aim of frequent sequence mining is the identifi-

cation of high frequent patterns in a sequence database. Every sequence which contains

a pattern at least a single time is considered. A number of approaches that solve this

issue have been developed. A strategy that was introduced by Agrawal and Skrikant is

the apriori approach [6]. It describes one of the standard techniques, which is realised

as a bottom-up approach, starting with a set of frequent items (itemset) of length 1 and

steadily extending the length in each step. Non-frequent items are dismissed after each

step. The apriori algorithm terminates, if the itemset cannot be extended any more. Sev-

eral improvements of this approach, especially to decrease the number of database scans

have been introduced [30].

Another approach that tries to overcome the described problems is the frequent pattern

tree [46]. It does not construct the large sets of sequences, which occur during the apriori

approach and also stores the frequent patterns in a compressed tree structure. This saves

space and allows for an efficient pattern mining technique. The tree saves identical prefixes

of frequent patterns only once and lets behaviours branch afterwards. The construction

of the frequent pattern tree needs two database scans. The first one identifies the set of

frequent items and the second one inserts them into the tree. Additional post-processing

in the form of tree mining is required for the extraction of all maximal frequent patterns,

31

Background and Related Research

like described in [46]. An advantage of the frequent pattern tree is the reduced number of

database scans compared to the apriori strategy. Suffix trees [43] are also sometimes used

for data mining and searching [111]. They represent another tree structure that is able to

store sequences in a compressed form.

The described approaches for frequent sequences mining are only capable of identifying

the most frequent sequences. These are the ones with a frequency higher than the prede-

fined threshold. In contrast to this, the frequent information extraction approach that is

presented in this research is interested in a large variety of frequent information. This also

includes less frequent behaviours, or even the least frequent ones. However, the described

techniques are highly adapted for the extraction of the most frequent sequences. Especially

the simplified understanding of frequency is not applicable for the creative process that is

explained in this research. The succeeding chapters describe very detailed that a creativity

map usually represents a complex structure and also differs from the previously mentioned

data source, namely a sequence database. Even if it contains creative behaviours in the

form of sequences, they are not stored separately and may instead share common prefixes.

The described general techniques are therefore not usable as such.

2.6.3 Similarity of Data

In order to identify patterns, it is essential to specify a metric that is used for the compar-

ison of data. With respect to the creative process, it needs to allow for the identification

of similar stages that the creator went through. This enables to search for behaviours and

construct branches inside the process. It might also help to predict behaviours of unknown,

but similar objects. The creative process itself is domain independent, because every per-

son is able to be creative. A similarity metric needs to consider this as a requirement and

must not be bound to a single field.

One of the most common measurements for similarity is the geometric metric, as exempli-

fied by the Multidimensional Scaling (MDS) [85][86]. Each feature of an object describes

one dimension in a feature space, so that the whole object is represented by exactly one

point. It is assumed that points which are not far from each other are more similar than

distant ones. The most common way to calculate the distance d between two objects A

and B is the Euclidean distance, which is specified as d(A,B) =
√

(ai − bi)2.

Another similarity measurement is the Feature Contrast Model [94]. It assumes that

objects can be represented based on their features. Tversky distinguishes between features

32

Background and Related Research

that both objects share and ones that only one of them possesses. Common features

increase and individual ones decrease the similarity. This is formalised as S(A,B) =

α ∗ f(A ∩ B) − β ∗ f(A − B) − γ ∗ f(B − A). In this definition, A ∩ B represents the

common features of the objects A and B, A − B describes the unique features of object

A and B − A are the unique features of object B. The variables α, β, γ are non negative

parameters that determine the weight of these components. They provide adaptability

and can be freely chosen, depending on the context.

Transformation Similarity [44] is another model, which defines the similarity of two objects

A and B as the number of transformation steps it takes to get from A to B. The particular

transformations needs to be defined in advance. It is important to specify them according

to the objects and required study, as they can have a major influence on the model.

The similarity measurements described above present a small overview of some approaches.

It was mentioned before that the similarity of objects in the creative process needs to be

adaptable to the domain of interest. Especially for the construction of creativity maps,

it is necessary to identify similar stages by comparing data that was recorded during the

creative process. This data varies between domains, creators and projects. A writer needs

a different metric for the comparison of documents than a software engineer or musician.

It can even vary for a single domain or creator. The analyser should be able to specify the

metric that is used for the comparison, to guarantee an adaptable similarity determination.

This can also include one of the previously described measurements.

2.7 Summary

This chapter reviewed, summarised and commented on related work in the fields of creativ-

ity, creativity support and data mining. It explained the problem of identifying a generally

accepted definition of creativity. However, it was also emphasised that creativity is usually

related to new and useful ideas or other outcomes. Three popular models for the descrip-

tion of creativity and the creative process were reviewed. Similarities between them were

shown, like Boden’s H-creativity, which is to some extend related to the field component

in Csikszentmihalyi’s Systems View of Creativity. It was pointed out that these models

consider creativity as a kind of undirected and unconscious component. A number of

techniques for the practical enhancement of creativity were discussed. They mainly try to

identify different viewpoints of a problem, which are then used for the stimulation of new

ideas during group discussions. The techniques are therefore mainly applicable for groups

or organisations. A number of examples from the field of computational creativity were

33

Background and Related Research

explained and it was shown how some of the previously presented models are mapped into

a computationally processable form. However, it was also mentioned that computational

creativity tries to build programs which are creative themselves. This is not the main aim

of the proposed research. The chapter furthermore reviewed some of the latest research

in the area of computational creativity support and creativity support tools. A variety of

requirements for their construction, which were developed during a workshop from Ben

Shneiderman have been discussed. It was illustrated that all of them leave room for in-

dividual interpretation. The last part of the chapter covered strategies and techniques in

the field of data mining. The overall process as well as each individual step were described

and some main approaches in the field of frequent sequence mining were discussed. It was

explained that these techniques are only interested in the most frequent sequences and

also use a rather simplified definition of frequency. The importance of similarity for the

identification of patterns was emphasised together with a number of metrics for its deter-

mination. It was explained that the creative process, as described in this thesis, requires

a domain independent and exchangeable similarity metric in order to identify the stages

that a creator revisited.

34

Chapter 3

Preliminaries

Objectives

• Introduce three axioms of creativity that describe the fundamental understanding

of creativity and the creative process.

• Present an informal description of the creativity mapping model and creativity maps.

• Describe the hopping phenomenon for creative processes.

• Explain the ability to represent collaboration with creativity maps.

3.1 Introduction

This chapter explains the preliminaries of the research. It introduces three axioms of

creativity, which describe the understanding of creativity and are essential for the intro-

duction of the creativity mapping model. These premises emphasise that a product as

well as a domain are indispensable for the identification of creativity. The model is then

explained informally, specifying a creation zone that records the observed creative pro-

cess and explaining all of its components. The hopping phenomenon and the ability to

represent collaboration are presented towards the end of this chapter.

35

Preliminaries

3.2 Axioms of Creativity

The perception of creativity in the presented research is based on three premises, which

build the necessary foundation for the creativity mapping model that is introduced in this

chapter. According to [107], these axioms are specified as follows.

A0. Creativity is identified only by its product.

The creativity that is involved in the creation of an artefact, for instance a painting, piece

of software or written document can only be captured by the artefact itself. Without this

artefact, it is impossible to decide about the creativity of its creator. Particularly the

observation of its construction allows to study the effects of creativity. A concrete and

tangible artefact is therefore a necessary precondition for the identification of creativity.

A1. The value of creativity is determined only by the society that receives it.

The value of an artefact can only be determined by the people who belong to the same

domain as the creation. These are the experts with sufficient background knowledge,

who are able to decide about it and give feedback to the creator. The committee of

the Nobel Prize for example decide about the most significant developments and decide

that an innovation A in physics involved more creative thinking than an innovation B or

any other discovery. This might be the case, because the area of research is very new,

the received artefact seems to be a milestone in the current research or as a result of

other reasons. However, despite the used metric, it is always the society that receives the

artefact, which determines its value. This society shows similarities to the field component

in Csikszentmihalyi’s Systems View of Creativity [21].

A2. Creativity is an emergent phenomenon.

The creative process describes a complex system, which is composed of many intercon-

nected parts (creation steps). The emergence of a new state and a new creative behaviour

occurs abruptly as a specific threshold is passed. For instance, altering the brushes will let

a painter use another sequence of colours. This is unexpected and the observed emergent

behaviour can lead to an insight, resulting in a creative painting. However, emergence

cannot be planned or predicted and emergent behaviours occur abruptly, spontaneously

and suddenly.

36

Preliminaries

3.3 Creativity Mapping Model

The creativity mapping model that will be introduced focusses on the description and

mapping of the creative process. This process is perceived as the steps that are involved

in the construction of an artefact, which describes the essential part for the determination

of creativity, as mentioned before. It is therefore necessary for the model to record and

map all actions that were performed in the creative process. A generalised transition

system is used for its representation. This transition system differs from the traditional

one [38], which only uses a fixed relation between states with a set of actions to label

transitions. The system for the creative process is a generalisation and enables multiple

relations between states, each associated with its own set of actions. An example is

the time transition, which always runs in parallel with any other relation. This section

introduces the model and its components in an informal way and describes its utilisation

for the mapping of creative processes [107][15]. It is important to note that the model

itself does not evaluate the creativity of an artefact, as this is assumed to be realised by

the domain that receives it.

The origin is a zone of creation, where the observed actions (e.g. editing, thinking, etc.)

and behaviours of a creator are recorded. It is of course only possible to capture observ-

able actions. The zone is represented as a rectangle and recorded activities are mapped

into states and transitions. A state can informally be described as an entity that saves all

information with respect to the creation process of an artefact, including its current ver-

sion. A set of states can then be used as a history for the tracking of changes. Transitions

represent the actions of a creator [26] and connect two states to illustrate the modification

that happened between them. The meaning of states and transitions for the mapping of

the creative process can be illustrated with an example of a writer who creates a story.

This writer will continuously work on the document (the artefact) and edit it (e.g. in-

serting, deleting, changing the format) for a certain time period. Whenever this happens,

the document is modified and a new version is created. To capture these actions and

changes, the artefact is encoded inside the states. The editing action itself is transformed

into a directed transition that connects two states and changes the document from one

version to the other. Figure 3.1(a) depicts the described scenario. However, editing is

not the only action that the writer performs. Meetings with colleagues and discussions

about the story or other topics and also brainstorming sessions [74] take place, which then

create new ideas for the plot and point out sections for revision. Each state now addi-

tionally stores the information about this discussions and whenever a meeting happens, a

new discussion transition will be added to the creation zone. The writer also performs a

37

Preliminaries

reading action, together with the information about the read literature being stored inside

the states. Figure 3.1(b) depicts a creative process with the three previously mentioned

actions (editing, discussing, reading). The dots inside each state represent the different

types of information, in particular the document, record of discussion and list of read

literature.

editing

(a) Creative Process with one Edit-
ing Action

editing

di
sc

us
si
ng

reading

Document

List of

literature

Record of

discussion

(b) Creative Process with different
Actions

Figure 3.1: Examples of Creative Processes

The different types of information, which are encoded inside the state (artefact, discussion,

literature) are the viewpoints of the creative process and represent its different perspec-

tives [107]. For instance, the artefact viewpoint stores the current document, a list of read

literature is saved in the literature viewpoint and the discussion viewpoint contains records

of discussions. Each viewpoint has a set of actions that are performed by a creator. For

instance, a writer performs an editing action that belongs to the artefact viewpoint. An

action in turn modifies the viewpoint that it is part of. These dynamics and changes of the

different viewpoints describe the creative process. The model furthermore distinguishes

between external and internal viewpoints. External viewpoints are part of the creative

process’ environment [77] and may include social, political or psychological forces. A

deadline or the restriction of materials are only two examples [103]. Internal viewpoints in

contrast are directly involved in the creative process, like the described artefact viewpoint.

To better distinguish different internal viewpoints, their transitions can be coloured ac-

cordingly, as depicted in Figure 3.2. It illustrates the three viewpoints artefact, discussion

and literature coloured in red, green and blue, respectively. If the name of the viewpoint

is relevant, it can be additionally displayed underneath a transition.

The figure shows the creative process as a linear sequence of actions. However, a creator

probably returns to a previous state during the creation of an artefact. For example, a

38

Preliminaries

editing

di
sc

us
si
ng

reading

= Artefact

= Discussion

= Literature

Figure 3.2: Creative Process with Coloured Viewpoints

writer who is dissatisfied with the newly written paragraph can revert to an older version

of the document. When this happens, the current state is left and the creative process

continues from the state that the creator moved to. A new branch is created in the

previously sequential structure of the creative process. As this scenario probably occurs

many times, the structure changes to a Creativity Map. A simple example is depicted in

Figure 3.3(a). The viewpoints (coloured dots) are hidden in this figure to simplify the

illustration of the states. It can be observed that a creativity map does not possess a

distinct final state, because every state may be considered by the creator to be final in the

creation life cycle of an artefact. The creativity map in Figure 3.3(a) contains a number of

possible final states. In contrast, each map has exactly one start or root state where the

creative process begins. Additionally to the presented transitions, it can be inferred that

all actions consume time, which is represented by time transitions (orange) as depicted in

Figure 3.3(b). These are additional transitions, which represent the amount of time that

was spent for the activity. They are usually not displayed in order to keep the creativity

map clear. The tool support, which is discussed in Chapter 7, shows that time transitions

are realised with timestamps, which are stored in the creativity map states. Each of

them illustrates the moment, when the action of a state’s outgoing transition begins. The

consumed time of an activity is therefore described by the difference between the end and

start state of the corresponding transition. If multiple outgoing transition exists, the state

stores a timestamp for each of them.

A creativity map normally grows to a more complex structure than the example maps

that are described above illustrate. Especially if the creative process is captured for a long

time period, the creator is able to perform a larger quantity of actions. Projects that last

for some weeks or months will ultimately lead to more data that is being captured. Each

map allows for several types of analyses, such as clustering, classification or optimisation.

By comparing different creativity maps of the same creator, it might also be possible

39

Preliminaries

editing

di
sc

us
si
ng re

a
d
in

g

editin
g

=̂

(a) Simple Creativity Map

editing

di
sc

us
si
ng re

a
d
in

g

editin
g

time

(b) Simple Creativity Map with Time
Transitions

Figure 3.3: Examples of Creativity Maps

to explore characteristic patterns. These can additionally be studied across domains to

analyse how creativity crosses the boundaries of disciplines.

3.3.1 Hopping

The creator is not necessarily bound to a single creation zone and especially the interac-

tion with other creators and collaboration allow for the alternation between different zones.

This phenomenon of the creative process, which enlarges the creator’s state space and ac-

cessible information is called hopping [107]. Interdisciplinary teams can cross boundaries

by hopping between different creation zones. Their domains will be linked and the previ-

ously separated knowledge will be connected and maybe enhanced. Figure 3.4 depicts an

example of the hopping phenomenon, which is represented with the help of dotted arrows.

The creator started in the creation zone at the left-hand side and performed two reading

activities. He then ”hopped” into the creation zone that is illustrated on the right-hand

side, edited a document followed by a discussion with some colleagues. Another hopping

back into the left zone followed. After a discussing action, the creator returned to a

previous state and performed discussing and editing activities. He then ”hopped” into

the right zone and read an article. The result of this process are the two creativity maps,

which are depicted above.

40

Preliminaries

3. Hopping

editing

di
sc

us
si
ng re

a
d
in

g

reading

di
sc

us
si
ng re

a
d
in

g

e
d

itin
g

d
is

c
u

s
s
in

g

2. Hopping

1. Hopping

Figure 3.4: Hopping between Different Domains

3.3.2 Collaboration

The creativity mapping model is also capable of representing collaboration [108]. It is

modelled with one creation zone that is divided into several sub zones. Each of these

sub-zones is used for the recording of a collaborator’s creative process, similar to the

observation of a single process. As collaborators work on the same artefact, they share the

state of the creation, which therefore needs to be kept consistent in all zones. Collaboration

is not restricted to this single viewpoint and creators might share other information as

well. Figure 3.5 depicts a collaboration between two creators, where the individual creation

zones are separated by a dotted line.

editing

di
sc

us
si
ng re

a
d
in

g

editin
g

reading

di
sc

us
si
ng re

a
d
in

g

e
d

itin
g

d
is

c
u

s
s
in

g

Figure 3.5: Collaboration

41

Preliminaries

The figure illustrates two small creativity maps in each of the sub-zones. Collaborators are

able to hop between them if necessary, as explained in the example above. This enlarge-

ment of a creator’s state space includes additional information and knowledge that can be

utilised for the following steps in the creative process. For instance, an interdisciplinary

team of creators can share knowledge and support the creative process by enabling the

hopping between domains.

3.4 Summary

This chapter introduced creativity maps as a model for the mapping of creative processes.

Three axioms of creativity were introduced, which are fundamental for the understanding

of creativity as used in the proposed research. The informal description of creativity maps

explained the creation zone and the transition system that is used to record the performed

actions of a creator. It was illustrated how collaboration and the phenomenon of hopping

create possibilities for the interaction of several persons.

42

Chapter 4

Creativity Maps and Behaviours

Objectives

• Describe the creation process of creativity maps.

• Present a classification of creativity maps into a hierarchical structure.

• Specify data, information and knowledge with respect to creativity maps.

• Specify behaviours in creativity maps.

• Describe the unification and granularity of behaviours.

4.1 Introduction

This chapter explains the construction process of creativity maps and specifies behaviours.

A similarity measurement for states that enable this construction is introduced. The role

of data, information and knowledge is specified and the relationship between these three

entities is explained. A knowledge creation process, which illustrates the steps that are

performed for the conversion of data into information and knowledge will be presented.

Furthermore, a classification of creativity maps into a hierarchical structure is introduced

and it is explained how these levels can be combined in a customised way. A detailed

description and specification of behaviours follows. Their unification and granularity are

discussed towards the end of this chapter.

43

Creativity Maps and Behaviours

4.2 Creation of Creativity Maps

To capture the initial creative process, it is necessary to observe and record all activities

that are performed by a creator during the construction of an artefact. Each of these ac-

tions modifies one particular viewpoint, like for example editing that changes the artefact

viewpoint. The result of the observation is a sequence of chronologically ordered actions,

which describes the initial creative process. However, this structure is probably an in-

correct representation. The process is usually not linear, as the creator rethinks ideas

and returns to old stages. Moving between states and continuing at different positions

leads to several branches and the construction of the previously defined creativity map.

For instance, a writer who dislikes a paragraph returns to a previous stage of the creative

process where this text did not exist. The process then continues from this position and

creates a new branch.

A creativity map was specified as a structure consisting of a set of states and a set of

transitions. The states contain the different viewpoints of the creation. The artefact view-

point for instance stores the versions of the created artefact. Possible other viewpoints are

discussion or contemplation. As described above, a creator might jump inside the creative

process and go back to an old position and continue from this state. However, the person

does not always consciously return. A writer for example deletes a previously written

paragraph and therefore unconsciously jumps back to an old version of the document. It

is necessary to identify these similar states in the creative process to reveal all branches

of the creativity map. A creative process otherwise remains a linear sequence of actions.

The identification process probably requires additional information about the previously

described cases. It is for example hardly possibly to observe situations where the creator

returned to old ideas. A combination of an automatic viewpoint comparison with user

provided information will therefore help to build the creativity map that represents the

creative process best.

The construction process of creativity maps can be divided into three steps. Firstly the

capturing of the creative process, which is responsible for the recording and creation of the

initial linear structure. Secondly the identification of similar states, which was mentioned

above with the example of a writer. The third step is responsible for the construction

of the creativity map structure by repositioning transitions. This section explains these

three steps.

44

Creativity Maps and Behaviours

4.2.1 Capturing of the Creative Process

As mentioned in Section 3.2, creativity is identified only by its product. It is necessary to

capture and save the steps that were involved in its creation to allow for the construction

of creativity maps and an analysis of the creative process. However, recording these

actions can become a difficult task which can be performed automatically [104] or with

the interaction of the creator. The advantages and disadvantages of both approaches are

discussed in this section.

Automatically capturing [71][70] the creative process of a creator is advantageous, because

the person is able to continue with the creation of the artefact without the necessity to

interact with the capturing system. One possible realisation of this automatic recording

process is a simple camera that records the gestures of the creator. The recorded gestures

can then be used for the derivation of the performed actions, like thinking, reading or

editing. This approach [36] is probably advantageous for the creator, but difficulties occur

with respect to the analysis of the captured material. The gesture recognition has to

function very well and it is hardly possible to recognise all actions and distinguish them.

A writer might read something on the screen but the system is unable to recognise the

document which is being read. It is additionally impossible to record actions that are

performed outside of the recording scope. For instance, a possible discussion with some

colleagues cannot be observed. Gestures might also differ between creators. The capturing

system needs to be adjusted for every person and training sessions might be necessary

[68]. Although this describes only one approach of an automatic capturing process, it

emphasises some general disadvantages with these kinds of systems. If the actions are

not identified by the creator, it is necessary to derive them during post-processing of the

captured material. This is a difficult and time consuming task which requires human

assistance and knowledge.

An alternative approach is a user interactive capturing systems. The creator is required to

report the currently performed actions to the system. When the action switches, the sys-

tem needs to be informed about it. The advantage in contrast to the automatic capturing

described above is the lack of extra post-processing, in particular the action derivation.

Every creator can have a personal set of actions, which are configured in advance and

then recorded by the system. This enables a flexible design without the need of additional

training sessions for new users. These kinds of systems can also be realised very easily

and without additional knowledge about the actions. The creator can for instance write

the activities down with a text editor or use a simple program for the recording. Inde-

pendent from the recording technique, the system depends on the interaction of the user,

45

Creativity Maps and Behaviours

who is responsible for the correct observation of the creative process. If a creator forgets

to inform the system about the current action, it is simply not captured. To prevent

this scenario, the user interface [55] needs to be simple and intuitive for a less distractive

recording process.

The approach that is realised in the presented research is an user interactive capturing

system. It is implemented as a toolbar, representing viewpoints and actions. When an

activity (e.g. editing) is started, the creator needs to click the corresponding button and

the system captures it. Every newly started action automatically stops the current one.

Details of the user interface and its functionality are described in Chapter 7. Figure 4.1

depicts a small sequence of a creative process that was recorded with the tool. It illustrates

6 sequentially ordered transitions, in particular one review, three editing and two reading

actions. This example is used in the following two steps to illustrate the transformation

into a map structure.

S0 S1

edit
S4S2

review
S5S3

editread
S6

readedit

Figure 4.1: Captured Creative Process

4.2.2 Similar States in the Creative Process

As mentioned before, the states of creativity maps store the different viewpoints of the

creation, which can be either observable or non-observable. It is possible to keep track of

the observable viewpoints during the creative process, for instance the artefact viewpoint.

The way a writer edits a document (i.e. insertion, deletion) or a musician edits a piece of

music can be observed and modifications can be measured. In contrast to the observable

viewpoints there are also non-observable ones, for example knowledge. It is hardly possible

to observe if a creator has gained or maybe lost knowledge during the creative process.

However, the observability of a viewpoint depends very much on its particular definition.

If the knowledge viewpoint represents the amount of literature that was read, it can be

described as a list of books or papers and therefore becomes observable.

Observable viewpoints are captured inside variables and each of their actions modifies

one variable in a particular way. Non-observable viewpoints are static during the creative

process, as they cannot be measured. Table 4.1 illustrates examples of observable and

non-observable viewpoints.

46

Creativity Maps and Behaviours

Observable Viewpoints Non-Observable Viewpoints

Artefact Knowledge
Discussion Mood
Concept Personal Background
Model Political Background
Evaluation
Time

Table 4.1: Observable and Non-Observable Viewpoints

Observable viewpoints are essential for the identification of similar states in the creative

process. In order to measure the similarity [48] between them, a flexible and yet repre-

sentative metric is needed. The similarity metric for documents in the writing domain is

probably inappropriate to measure the similarity between two composition in the music

domain. It can also be different for viewpoints of the same state. A metric that determines

the similarity of two documents from the artefact viewpoint is different from the metric

that is used for the comparison of two discussion viewpoints. It is therefore hardly possible

to specify a similarity metric, which can be used in general. The analyser instead needs

to define one or more viewpoints, which are used for the comparison of two states and a

metric for each viewpoint to identify if two states are similar. This specification allows

states to be compared with respect to multiple viewpoints, each being assigned a different

metric. For example, the artefact viewpoint probably needs a different measurement than

the discussion viewpoint.

The choice of a metric is essential for the following processes. For instance, if a writer

changes a colon ”:” into a dash ”-” in a document, this has probably no major effect on

the intention and the documents are still very similar. In contrast, if the word ”alive”

is replaced by ”dead”, this might change the intention in parts of the document. If the

similarity metric M is based on the number of words that were inserted and deleted, then

one word was deleted and one was inserted in both cases. Therefore the states in the

examples are still equally similar. The importance of the metric becomes more obvious, if

the same metric M is used for the comparison of source code. If only the term ”true” is

replaced by ”false” in the condition of an if-statement, it can modify the whole behaviour

of this program. However, based on the number of edited words, the two source code files

are very similar. Another example is the detection of a ”mostly undone” editing activity,

in particular the deletion of a long paragraph and its replacement by a short sentence.

The states prior and after this action might be similar, depending on the comparison

process. Examples for similarity metrics of documents as described in [62] are binary

similarity measurements based on the occurrence or absence of words. Other ones utilise

the amount of keywords and their occurrences in a document. The source code of software

47

Creativity Maps and Behaviours

can be measured with the same metric or for instance the more popular metric Lines of

Code (LoC) [59]. These are only some examples and it clearly depends on the purpose of

the analysis to chose adequate measurements and viewpoints for the state comparison.

It is very important to note that additional information is (usually) required for the

identification of similar states. For example, situations where the creator returned to an

old idea are very difficult to observe and it is therefore necessary that the person provides

this data. It can then be integrated into existing viewpoint or used as external data

during the construction process. This allows the capturing system or analyser to use this

additional information in combination with the previously discovered states. Only both

the similarity understanding for the automatic discovery and the individual data allow

for the construction of a creativity map that illustrates the creative process best. An

automatic identification of similar states for the construction of a creativity map itself is

limited.

The example that is depicted in Figure 4.2 illustrates the recorded values for the previ-

ously mentioned creative process. It shows the two observable viewpoints Artefact (Art.)

and Literature (Lit.) and their modifications according to the performed actions. The

first editing action modifies the artefact viewpoint from a1 to a2. After this, the review

action leads to a change of the literature viewpoint from l1 to l2 and so on. Every action

additionally consumes time and a time transition would usually occur in parallel with each

of the depicted transitions. However, it is not displayed in any example of this thesis to

allow for a clear representation of the creativity maps.

S0 S1

edit
S4S2

review
S5S3

editread
S6

readedit

Art. = a1

Lit. = l1

Art. = a2

Lit. = l1

Art. = a2

Lit. = l2

Art. = a2

Lit. = l3

Art. = a3

Lit. = l3

Art. = a2

Lit. = l3

Art. = a2

Lit. = l4

Figure 4.2: Recorded Sequence with Values

It is assumed that only the artefact viewpoint was chosen for the comparison of two states

in the depicted example. The measurement that is used for the comparison of states

defined them as similar, if they are identical, which means that they need to contain

identical values. Table 4.2 illustrates the results of this step.

It is important to note that a sequence of identical values for a particular viewpoint, which

does not contain any of the viewpoint’s actions, is represented by its first state, as this is the

48

Creativity Maps and Behaviours

Artefact Viewpoint States

a1 S0
a2 S1, S5
a3 S4
a4 S6

Table 4.2: Similar States

first time, when the value appears. For instance, the artefact viewpoint in Figure 4.2 does

not change between the states S1, S2 and S3, as only actions of the literature viewpoint

have been performed. All states are therefore represented by S1. This is essential for the

following step that constructs the creativity map structure.

4.2.3 Creativity Map Structure by Transition Repositioning

After similar states in the creative process are identified based on a proper comparison

process, it is necessary to reposition their transitions in a second step for the construction

of the creativity map structure. As described above, the similarity operation compares

two states based on certain viewpoints, which means that similar states can still differ

in one or more other viewpoints. They need to remain in the creativity map, as they

can possibly be important for the further analysis. Each state contains a timestamp,

which specifies the moment when the action of the incoming transition ends and the

action of the outgoing transition starts. The sequence that is depicted in Figure 4.2

contains the timestamps t(S1), t(S2), . . . , t(S6). They are ordered chronologically so that

t(S1) < t(S2) < · · · < t(S6). The timestamp t(S0) is the moment when
editing−→ starts, t(S2)

specifies the time when
editing−→ ends and

review−→ starts and t(S3) describes the moment when
review−→ ends. If the creator returns to a previous state of the creative process, this means

that the timestamp of this then similar state is lower than the one of the current state. For

a set of similar states, the creator always returned to the one with the lowest timestamp.

This means that each outgoing transition needs to change its source to this state. For

the states that are illustrated in Table 4.2, this means that the outgoing transition of S5

changes its source to S1. The result is depicted in Figure 4.3.

It can be observed that the state S5 is still present in the map, only without an outgoing

transition. Whenever all outgoing transitions of a state are repositioned, it automatically

becomes a final state of this branch. Every behaviour which contains the state ends at this

position. It is possible that multiple branches start from a single state, which means that

the creator went back to this state several times. As mentioned before, similar states can

49

Creativity Maps and Behaviours

S0 S1

edit
S4S2

review
S5S3

editread

S6

read

edit

Figure 4.3: Transition Repositioning

still differ in one or more of the viewpoints that have not been used for the comparison. It

is therefore necessary to add a reference to each of the original states to be able to track

the reverting process.

The construction process of creativity maps finishes with the previously described transi-

tion repositioning action, resulting in a creativity map that includes all steps which were

involved in the creation of an artefact. This map contains the different behaviours of a

creator and consists of a rich set of information for further studies. A precise specification

of behaviours is presented later in this chapter.

4.3 Classification of Creativity Maps

A corpus of creativity maps describes the set of all maps that were recorded and might be

relevant for a later scenario. This can be for instance all creativity maps from a domain,

creator, project or even only a single one. The analysis needs to specify which particular

subset should be considered. It is also possible that maps from different domains or

projects occur in the corpus. For example, 10 different writers, each creating 10 different

books with one creativity map for each book create a total of 100 maps. They can then be

analysed based on the particular book, creator, or any combination. These are different

viewpoints on the data which allow for several types of analyses.

The previous example illustrated the ability of the corpus to represent different and distinct

sets of data. Each of these sets is called a category, as for example writer or book. Based

on them, it is possible to hide or extract information and compare maps. Categories [2]

represent a hierarchy and can possibly be nested. The books are part of the project,

which belongs to a creator. As each creativity map belongs to at least one category,

each behaviour that is stored in this map automatically belongs to it as well. It is of

course possible that similar behaviours from different creativity maps belong to different

categories.

50

Creativity Maps and Behaviours

Categories allow to structure and preprocess the corpus of creativity maps, which enables

the dismissal of irrelevant maps or the construction of subsets. There are in particular

three different categories that are introduced in this section, namely Project, Creator and

Domain. They build a hierarchy that organises the creativity maps into different sets and

allows for their distinction based on simple properties. Each creativity map that is recorded

belongs to a single project, creator and domain. It is possible that several maps belong to

a project or that multiple creators participate in the same project as collaborators. Each

creator furthermore belongs to at least one domain. Figure 4.4 depicts the relationship of

the stated categories.

Domain A Domain B

Map

A

Map

F

Map

E

Map

D

Map

C

Map

B

Map

G

Creator A Creator B Creator C Creator ECreator D

Project A Project B Project C Project D Project E

Figure 4.4: Creativity Map Categories

The figure shows the two domains A and B that are both linked to the root node, which

represents all possible domains, creators and projects and therefore the whole corpus of

creativity maps. It might be similar to all maps that are stored in a database, like it

is discussed in Chapter 7. The first domain contains three creators, the second domain

two. The first creator worked on two projects and created a creativity map for each of

them. The second one constructed a single creativity map for one project. The third one

worked on a project in collaboration with another creator from a different domain. Each

of them created a single creativity map, which both belong to the same project. Another

collaboration between the two creators of domain B can be detected.

The previously mentioned categories can be identified at each level of the hierarchy. Each

domain, each creator and each project build a distinct category. The creativity map A

for example belongs to Project A, Creator A and Domain A. The creativity maps D and

51

Creativity Maps and Behaviours

E both belong to the same project category, but different creators and different domains.

Each creativity map can therefore be labelled with three distinct labels. One label D for

the domain, one label C for the creator and one label P for the project. Map F, which is

depicted in the previous figure can then be specified as [P = Project E, C = Creator D,

D = Domain B]. This section describes each of the previously mentioned categories and

explains their purpose for the analysis.

Project Category

Each artefact that is constructed by a creator represents one particular project. A writer

for example edits a book, a software engineer implements an application or a painter

creates a piece of art. It is assumed that one creativity map is constructed for every

of these projects and every time a new project is started, a new creativity map will be

recorded. If projects grow large, they can possibly be further divided into sub-parts, such

as the chapters of a book or the different components of a piece of software.

Instead of arranging each of these sub-parts into a separate category, it is assumed that

either the set of creativity maps can be represented by a single one or a project category is

represented by multiple maps. The project category is the lowest component in the hier-

archy. Information that is stored in this category is useful for the analysis and comparison

of creative behaviours and the extraction of sequences that are frequent for one particular

project or across a range of projects. This is relevant, if for instance the creative process

for a particular book should be compared with the one for another, previously written

book.

The results of this study are beneficial for a better understanding of project related be-

haviours, which can be utilised for the assistance of the creative process. It will be de-

scribed in Section 4.5.3 that behaviours of creativity maps can be unified for a better

analysis. This means that terms which belong to the same creator or domain need to

be identified. The simplicity of this process depends on the granularity of the recorded

actions (Section 4.5.2).

Creator Category

The previously described project category represents the lowest level of the hierarchy. As

each project was created by at least one creator, it enables the definition of the next

52

Creativity Maps and Behaviours

level in the hierarchy to be the creator category. This allows for a simple distinction

between different creators on the one hand and summarises projects into groups for one

corresponding creator on the other hand. If all projects that were constructed by a single

person are relevant for the analysis, it is possible to retrieve all recorded creativity maps

by addressing the particular creator category.

Whenever a creator collaborated with other creators, they are all linked to an identical

project. It then contains a separate creativity map for each of them. For example, if

writers A and B both edited book X, they each possess their own creativity map which is

stored separately in the corpus. A creator category, or even the whole level can be analysed

for the retrieval of frequent behaviours to allow for the comparison of different persons.

This might be helpful when situations are entered that were previously encountered at

creative processes of different individuals. Patterns that were identified might be reused

by other creators of the same domain or even across domains. Each creator belongs to

one or more domains, which specifies the next category in the hierarchical structure.

Domain Category

The previously described creator level summarises all persons, who recorded their creative

process. Each of them has at least created one project, which can also be shared across

collaborators. Creators are grouped into distinct domains at the top most hierarchical

level. The previously mentioned book example would for instance create a writing domain

that summarises all writers. Possible other categories are software engineering, music or

mathematics.

One creator can be present in more than a single domain. If the writer of the previous

example also develops software, the person is present in at least two categories. A creator

can be kept redundant in all domains or multiple domains can be linked to the same

creator, which is similar to the relationship between projects and creators. The domain

category represents the highest abstraction level. It might be possible to group similar

domains to some kind of super-domain, such as a technical domain that includes computer

science, electrical engineering and other similar areas. However, this is also possible by

adapting the domain definition to the needs of the analysis. A technical domain can then

substitute the set of domains it includes.

As the domain categories represent an abstract viewpoint on the particular creativity

maps, they can be analysed for the extraction of frequent behaviours from a large data

53

Creativity Maps and Behaviours

set. This is useful for the identification of similarities between existing projects or creators

and a domain. They can also be utilised for the extraction of abstract domain patterns that

are shared between a number of creators and projects. These patterns, which probably

need preprocessing in the form of behaviour unification (Section 4.5.3) may reveal useful

and domain independent information about creative processes.

Customised Set

The three previously described categories enable a simple retrieval of predefined sets of

creativity maps. They can be utilised for instance to compare two domains, creators or

different constellations of projects. This distinction might be sufficient for many cases,

but if the analyser is interested in a custom subset of creativity maps which is not directly

described by any of the groups, it is necessary to create a personalised set. It contains

any map without a particular link to creators, domains or projects. For instance, if some

chapters of one book and some chapters of another book should be analysed and each

book defines a project, these chapters build a customised set.

This set does not necessarily fit into the hierarchy, it furthermore allows to link maps of

different hierarchical categories. It is not situated at a particular level in the creativity

map corpus. The customised set is always adapted to the conditions of the analysis.

4.4 Data, Information and Knowledge in Creativity Maps

A distinction between the entities data, information and knowledge is essential for the un-

derstanding of the information mining approach that is presented in this thesis. Data has

a very unspecific meaning that describes nearly everything. It is usually collected through

measurements, experiments or just produced by theoretical considerations. It is raw, can

either be structured or unstructured and has no meaning on itself. Interpretation of this

data leads to information and knowledge. The role of data, information and knowledge

[112] allows for the illustration of their linkage and ways to derive one from the other.

This section explains the three entities with respect to creativity maps.

54

Creativity Maps and Behaviours

Data

The actions that are described by the creative process and every single transition in the

creativity map specify data. Every time a new action is performed by the creator (e.g.

editing, discussing), a new piece of data in the form of a transition is added to the creativity

map. Data represents the atomic units that are used for the map construction. Each

transition consists of an action label, a start state and an end state. The number of

distinct transitions that are used in a creativity map is usually rather small, but can

increase during the creative process. This also means that its structure can grow quite

complex. However, from the data viewpoint, a creativity map is simply a large set of

transitions that are ordered to build a particular structure.

Data itself has no meaning without additional information or semantics [1]. Only the

information that the transitions in a creativity map represent the actions of a creator

allow to analyse them for particular purposes. Otherwise, it would hardly be possible

to distinguish the map from any other labelled transition system or graph. However,

requirements of the representation or purpose of the creativity map are always specified

in advance. The analysis of the relationship between atomic transitions allows to retrieve

additional information that is useful for the further processing.

Information

Information is derived from the interaction of data in the creativity map. It is specified as

sequences of transitions, which represent the behaviours of a creator. Each one contains

information about the specific order in which a particular set of actions was performed. A

creativity map consists of a large set of possible behaviours, even if the number of distinct

actions is small. Information has specific features, such as the length that is similar to

the number of transitions or the particular distribution of actions. These are only two

examples and it is of course possible to define more features based on specific purposes of

the information.

Since the creativity map describes a complex structure, it contains many different paths

[28] (including transitions) and a rich amount of information. Every single branch contains

a number of behaviours of different lengths. This information is the first result of the data

analysis and might reveal behavioural patterns that were used by a creator. However,

knowledge is required for its interpretation. For instance, the information that a particular

creator uses a reading transition followed by an editing transition is useful, but a further

55

Creativity Maps and Behaviours

analysis to possibly reveal that this behaviour always leads to inappropriate results is

necessary. External information is needed for the transformation of this information into

knowledge.

Knowledge

Knowledge is created with the help of semantics that are added to information. The

analysis of the behaviours in a creativity map allows to construct patterns of transitions

for each creator or collaborator of a team. These patterns contain knowledge such as the

amount of transitions from a particular viewpoint or their relative probability. It includes

personal information about the creator and the particular set of behaviours. Once these

patterns are revealed, they might be stored in a knowledge database [105], which can for

instance be divided into patterns that were useful in terms of efficiency [13] and ones that

were not useful. This allows to compare incoming information with this database and

create feedback for the creativity support.

The extracted knowledge can be encapsulated and reused for further studies. Rich sets

of data and information allow to construct large amounts of knowledge about the creator

and the creation itself. They represent an interpretative environment that enables a link-

age between knowledge components. This is for instance useful for the generalisation of

patterns to domain patterns (e.g. writers, musicians or mathematicians).

Knowledge Creation Process

The three previously defined entities data, information and knowledge are closely linked

to each other. The relationship between them, as described above, builds the knowledge

creation process that is depicted in Figure 4.5.

KnowledgeInformationData

Behaviour

Identification

Pattern

Identification

Figure 4.5: Knowledge Creation Process

56

Creativity Maps and Behaviours

Data has been specified as the transitions in the creativity map. It is analysed for the

identification of sequences, which are known as behaviours. These behaviours describe

information and enable the construction of knowledge in the form of behavioural patterns

for a creator in a second step. The relationship between data, information and knowledge

[80] is very often visualised as a pyramid [73], showing data at the bottom, followed by

information and knowledge. It represents a similar understanding of the three elements

to the explanation that is given above. The role of data, information and knowledge is

important for the understanding and analysis of the creative process. Especially when

techniques for information hiding and extraction are described, a specification of these

entities becomes essential.

This thesis discusses the role of data and information in the creative processes and focusses

on the first step of the creation process. It explains the linkage of transitions for the con-

struction of creativity maps and introduces behaviours. The steps for the transformation

of information into knowledge via the identification of behavioural patterns is discussed

in a different thesis [14].

4.5 Behaviours in Creativity Maps

As mentioned before, creativity maps contain a variety of information about the creative

process, which is represented as sequences of transitions. The order of these actions and

the duration of each of them generate specific sets of sequences and represent the particular

and personal preferences of the creator. A writer for instance might start to conceptualise

a document at the beginning, followed by a discussion with others and an editing action.

This is one particular sequence of this person. Another writer who chooses the same set

of actions uses them in a different sequential order. However, it might be possible that

both of them share some sequences. Conceptualising is probably more frequent at the

beginning of the creation than towards the end. In contrast, the amount of discussions

might stay constant over time or even increase as the process continues. This depends on

the individual creator and also maybe the domain.

Each sequence of actions specifies one creative behaviour, or simply behaviour. It can be

used for the construction of a behavioural pattern, which illustrates frequent sequences in

the creativity map. A comparison of these patterns possibly leads to the identification of

similarities between the creations of one or more creators. As the creative process is of

dynamic nature, behaviours will probably develop and change over time.

57

Creativity Maps and Behaviours

4.5.1 Specification of a Behaviour

A creativity map contains one root state where the creation starts. It describes the moment

when the observation of the creative process begins. Each branch in a creativity map

contains one final state. It specifies the situation, where the creator stopped the creation

or returned to a previous stage of the creative process (different state) and continued from

there. A transition inside the creativity map connects two states, belongs to one viewpoint

which is part of the set of viewpoints V and has one action label that is part of the set of

actions A. These four components build a quadruple (r, s, a, v) consisting of:

• A start state (r)

• An end state (s)

• An action (a ∈ A)

• A viewpoint (v ∈ V)

Each action belongs to exactly one viewpoint. The operation a(ti) returns the action and

v(ti) the viewpoint of the transition ti. A transition t that connects the states r0 and

s0, is labelled with the action editing and belongs to the viewpoint artefact is specified

as t = (r0, s0, editing, artefact). This allows for the specification of a behaviour b as a

sequence of connected transitions t0t1 . . . tn−1 in the following way.

b = (r0, s0, a0, v0)(r1, s1, a1, v1) . . . (rn−1, sn−1, an−1, vn−1)

where si = ri+1 for all 0 ≤ i ≤ n− 2 with si, ri ∈ Σ.

The illustrated form might not always be a suitable representation of a behaviour. It is

very often unnecessary or impossible to specify it in the complete way with all start and

end states. The actions of a creator is probably the most important information in most

of the cases and usually the required component for the further study. A more abstract

definition, which only represents a sequence of labelled transitions is introduced for this

reason.

A transition is stated as an arrow labelled with an action, e.g.
editing−→ . It is also possible

but not necessary to additionally label the arrow with the corresponding viewpoint, which

is presented at the bottom right corner. A behaviour can then be specified as a sequence

58

Creativity Maps and Behaviours

of arrows that are labelled with actions (ai) and possibly viewpoints (vi) in the following

way.

b =
a0−→v0

a1−→v1 . . .
an−1−→vn−1

or simply

b =
a0−→ a1−→ . . .

an−1−→.

The latter case reduced a behaviour to its essential information and is used in this thesis.

It is usually not necessary to specify the viewpoints additionally to the actions. However,

if the former specification is needed in the following chapters, it is explicitly stated.

Length

The length of a behaviour b =
a0−→ a1−→ . . .

an−1−→ is determined by the number of its

transitions, in particular

|b| = n.

This property is important for the analysis and can be used as a threshold for certain

tasks. A determination of the relationship between transitions from the beginning and

the end of a sequence might be especially difficult for long behaviours. Lengths thresholds

enable the reduction of behaviours to a subset with a particular maximum or minimum

length. The longest possible behaviours that can be identified in the creativity map start

at the root state and end at one of the branches’ final states. They illustrate a decomposed

representation of the creativity map. Especially large behaviours can for example be used

to identify different creation stages in the creative process. The rather small creativity

map that was constructed for the transition repositioning example in Figure 4.3 contains

the final states S5 and S6. The two longest behaviours b1 and b2 are specified in the

following way.

1. b1 :
edit−→ read−→

2. b2 :
edit−→ review−→ read−→ edit−→ edit−→

59

Creativity Maps and Behaviours

4.5.2 Granularity

Each transition of a creativity map contains one action label, which as previously defined,

belongs to one viewpoint. This label determines the activity that was performed by the

creator during the creation of an artefact. Some of the actions might have been defined

more abstract, like reading and others very specific, for instance reading book X. These

examples differ in their level of detail, which specifies the granularity of a behaviour.

The granularity is higher in the latter case and a behaviour is able to represent a range of

granularities. The action set of the artefact viewpoint for instance can be described with a

high granularity to enable a profound analysis of these behaviours, whereas the knowledge

viewpoint might contain actions that are specified less detailed.

The granularity of actions depends very much on the recording process. If this process

is able to observe the performed actions with a high level of detail, the behaviours auto-

matically become more specific. The corresponding map grows more complex at the same

time. If the observation is only able to determine an abstract action like the previously

mentioned reading, the construction of such a detailed creativity map is not possible. A

creator can also contribute or even remove details, which in turn influences the granularity.

The recording process that is used in this approach, as it was described above enables the

creator to define the actions and therefore the granularity on a personal basis. Chapter 7

explains the tools that are used for the recording in more detail. It shows how new actions

can be added and existing ones can be changed or removed during the recording process,

which enables a dynamic adjustment of the accuracy.

If the granularity of the recorded actions is high, the number of recorded behaviours

grows. However, it is not always necessary to analyse the transitions at a high level of

detail. Similar transition, like for instance reading book X and reading book Y can be

collapsed into a single, more abstract reading action. This might then be sufficient for

the current study. It is of course possible to revert this process by expanding the action

again. As these operations are performed, the creativity map is able to represent different

levels of detail for distinct actions or viewpoints. The granularity does not necessarily

illustrate the quality of the recording process. Especially as large creativity maps can

become difficult to handle, it should be chosen with caution.

The granularity of behaviours is not further discussed in this thesis. It is assumed that

the actions of a creator are recorded with an appropriate level of detail. The creativity

maps that are used in the examples of the succeeding chapters do usually not differen-

tiate between very similar actions, like reading book X or reading book Y. It is instead

60

Creativity Maps and Behaviours

expected that these actions were either collapsed or the granularity does not allow for

their distinction.

4.5.3 Unification

The mapping of creativity is not restricted to any particular domain, as creativity maps

allow for the representation of creative processes from any field. They possibly differ

between creators, groups or even domains as the set of actions is different. It is obvious

that a writer performs different activities than a musician or a software engineer. Even

in a single domain, members use different terms and actions to describe their creative

process. One software engineer might use the term programming, whereas another one

uses coding. Although these two actions are different in their description, they are very

similar or even identical in their meaning.

The previous example illustrated the similarity of terms even if they are initially consid-

ered to be different. For the analysis of creativity maps and behaviours that origin from

different creators, it might be necessary to identify these similarities for the creation of

useful knowledge and behavioural patterns. The knowledge creation process illustrated

a possible necessity for the integration of external knowledge to perform the transforma-

tion from information to knowledge. One major problem is the unification of different

terms, which is especially important if external sources access creativity maps. Natural

Language Processing (NLP) [64] provides a solution to this problems, mainly in the form

of text analysis techniques. Additionally to this, databases of synonyms like Wordnet [69]

for the English language can be used to detect similarities.

An unification of behaviours from different domains can in some cases be necessary as

well. The previously mentioned synonyms might not be sufficient for this task, as a more

abstract unification is needed. For instance, the action editing of a writer and the action

painting of an artist can both be identified as activities that change the artefact. Even

if the artefact differs in both domains, the relationship between these actions might be

helpful for the identification of shared behavioural patterns. However, it was mentioned

before that the analysis of creativity maps or behaviours is not part of this thesis and it

will therefore not elaborate on the unification of these entities. This section should just

emphasise possibilities for a broader study, if a sufficient unification of behaviours from

either the same domain or distinct ones is supported.

61

Creativity Maps and Behaviours

4.6 Summary

This chapter presented the creation process of creativity maps, introduced their classifica-

tion and defined behaviours. It was described how the initial sequential creative process is

recorded and converted into a map structure. Similar states are identified in the first step,

based on a process that compares viewpoints. It was emphasised that additional informa-

tion about the situations when the creator returned to a previous stage is usually required

to assist this step. The outgoing transitions of these similar states are then repositioned

to construct a creativity map. The role of data, information and knowledge was defined

and these three entities were identified with respect to creativity maps. A classification of

creativity maps into a hierarchical structure was introduced. Behaviours were defined as

sequences of transitions and different possibilities for its expression were illustrated.

62

Chapter 5

Information Hiding

Objectives

• Explain the observability of behaviours.

• Introduce Partial Creativity Maps (PCMs)

• Introduce hiding, restriction, revealing and restrictive revealing operations for the

information hiding process.

• Introduce the Behaviour Description Language (BDL) for the description of be-

haviours.

• Describe techniques for information hiding with the help of the Behaviour Descrip-

tion Automaton (BDA).

• Explain collapsing and pruning techniques to reduce the size of PCMs.

5.1 Introduction

This chapter explains information hiding with respect to creativity maps. A distinction

between observable and non-observable behaviours is illustrated, followed by the intro-

duction of hidden transitions and Partial Creativity Maps (PCMs) as the result of the

hiding process. The Behaviour Description Language (BDL) as a formal language for

63

Information Hiding

the convenient specification of behaviour descriptions is specified. It seamlessly integrates

with the hiding, restriction, revealing and restrictive revealing operations that are defined

for the modification of creativity maps. The concept of a Behaviour Description Automa-

ton (BDA) is illustrated and its use in the hiding process is demonstrated. Collapsing and

pruning techniques for the size reduction of PCMs are introduced towards the end of this

chapter.

5.2 Observability of Behaviours

Creativity maps usually grow with the recording time, as more actions are being performed

and observed. For instance, if the creative process is observed for 30 days and 30 actions are

preformed each day, the corresponding map contains 900 transitions. If this project would

last a couple of month, the structure can easily grow to a couple of thousand transition.

It is difficult to handle very large maps, in particular display or analyse them. They can

additionally contain irrelevant information which might hinder the analysis. This section

introduces a PCM as a solution to the described problems.

5.2.1 Observable and Non-Observable Behaviours

The previous chapter illustrated the differences between observable and non-observable

viewpoints. In a similar fashion, it is possible to distinguish between observable and

non-observable actions and similarly behaviours. Examples for the former ones might be

insert, delete or change font with respect to the artefact viewpoint and the latter ones can

contain gain knowledge or forget from the knowledge viewpoint. Observable actions are

related to observable viewpoints and non-observable actions to non-observable viewpoints.

Table 5.1 illustrates some examples.

Observable Actions Non-Observable Actions

Editing Gaining Knowledge
Discussing Losing Knowledge
Conceptualising Being Happy/Sad
Reading Through Influences of the Creator’s Background(s)
Comparing
Painting

Table 5.1: Observable and Non-Observable Actions

64

Information Hiding

Some non-observable behaviours might be indirectly identifiable. If a writer increases the

use of adjectives as for instance ”scary” or ”dark”, this allows to infer that he or she

is in a bad mood. However, a writer of crime stories might be in a good mood when

the same development is observed. A software developer who starts to use a particular

design pattern possibly had a discussion with a software architect. The source code in a

later stage of the creative process can still contain new appearances of it. This allows to

indirectly infer that knowledge about the use of design patterns was gained.

Non-observable behaviours can have long term influences on the creative process. A new

design pattern needs to be learned and understood by a software developer once and

can be used afterwards. A similar assumption can be made for the first example, when

a writer changes the mood and becomes sad. Observable reactions can also be related

to non-observable actions that were performed in the past. If a behaviour varies during

the creative process, it might be a result of interfering non-observable activities. How-

ever, these assumptions need to be made very carefully, especially if they are going to be

generalised for projects, creators or domains.

A creativity map only displays the observable viewpoints and behaviours. However, it is

possible to convert them into their non-observable counterparts. Irrelevant behaviours can

be hidden from a map, so that they are no longer recognisable afterwards.

5.2.2 Partial Creativity Map (PCM)

Information was previously defined as a sequence of transitions, called behaviour. This

in turn means that the information hiding process aims at stashing irrelevant behaviours

of a creativity map. It is a process of concealing actions [49] so that they are no longer

recognisable for external observation. This enables to reduce the visual size [61] on the

one hand and allows for a more focussed study on the other hand. Invisible actions are

sometimes specified as silent actions [33], especially in process algebra.

It is important to note that hidden actions are still existent in the creativity map. If a

particular behaviour with hidden transitions would be replayed, then all actions including

the concealed ones are performed. However, the difference in this situation is that the

hidden actions are not visible to external observers. It is almost as if they are not existent.

Let for example the creativity map of a musician contain singing transitions, which are

irrelevant for the current analysis and will therefore be hidden. External observers will

not be able to hear the person singing when the behaviours are replayed afterwards, even

65

Information Hiding

if this activity is still performed. This is similar to placing the musician into a soundproof

box.

It is crucial for the analysis to distinguish between hidden and visible behaviours inside

a creativity map. Hidden transitions therefore carry the unique label α and no other

visible transition is allowed to be labelled identically. A creativity map that contains both

visible and hidden behaviours is called a Partial Creativity Map (PCM). The transition

set R of a PCM is extended with the hidden transition
α−→, which leads to the following

specification.

PCM = (Σ ; R ∪ { α−→})

A PCM can for example be used as input for a frequent information extraction process, as

it is described in Chapter 6, in order to produce only relevant patterns. It is furthermore

not necessary for the analysis to distinguish between creativity maps and PCMs as both

definitions are based on states and transitions. Hidden α transitions can simply be ignored

when needed.

5.3 Description of Behaviours for Information Hiding

In order to hide irrelevant information, the analyser should be able to specify it in a

convenient way, which allows to address any component of a behaviour, in particular

the transition labels and the state values of the different viewpoints. A formal language

for the description of behaviours, namely the Behaviour Description Language (BDL) is

introduced for this reason. The aim is to provide a simple and yet powerful tool that allows

for the convenient definition of (complex) behaviour descriptions without being necessarily

familiar with it.

5.3.1 Behaviour Description Language (BDL)

As mentioned before, a behaviour is specified as a sequence of transitions. Each transition

belongs to a viewpoint and is labelled with an action. Together with the start and end

state of a transition, these are the major components the analyser should be able to express

with the BDL. A choice between different transitions should be possible to allow for a

simple specification of more than a single behaviour. The BDL contains all these options

to conveniently specify a set of behaviours, which is called behaviour description.

66

Information Hiding

The following Extended Backus-Naur Form (EBNF) [51] illustrates the syntax of the BDL.

Square brackets [] delimit optional constructs, braces { } indicate zero or more repetitions

of the enclosed construct, parentheses () represent simple grouping of constructs and a

vertical bar | expresses a choice of one from many.

BehaviourDescription ::= Behaviour { "|" Behaviour }

Behaviour ::= Factor { Factor }

Factor ::= (Transition | SubDescription)

[Quantifier]

Quantifier ::= "[" N ".." (M | "*") "]" | "*"

SubDescription ::= "(" BehaviourDescription ")"

Transition ::= "<" State "-" Edge "-" State ">"

Edge ::= AnyEdge | MapEdge ["\{" Exclusion "}"]

MapEdge ::= "V=" Viewpoint | "A=" Action

Exclusion ::= MapEdge { "," MapEdge }

State ::= AnyState | StateMarker

| [StateMarker]

(StateCondition { "," StateCondition })

StateCondition ::= Condition for one or more viewpoints,

specified by the analyser

StateMarker ::= Refers to the currently visited state of

the creativity map

Viewpoint ::= One viewpoint of the Creativity Map,

e.g. Artefact, Literature, Discussion, etc.

Action ::= One action of the creator, e.g. Editing,

Reading, Discussing, etc.

AnyEdge ::= "E" (Place holder for any edge of the

Creativity Map)

AnyState ::= "S" (Place holder for any state of the

Creativity Map)

N ::= Natural Number >= 0

M ::= Natural Number, so that M >= N

The BDL specifies a BehaviourDescription as a sequence of Behaviours, divided by a

vertical bar ”|”, which is interpreted as a choice. A Behaviour is a sequence of one or

more Factors. Each Factor is either a Transition or a SubDescription, followed by an

optional Quantifier. A quantifier can either be a range of two values [n..m] which refers

67

Information Hiding

to minimum n and maximum m repetitions, or an open range [n..∗], which specifies

minimum n repetitions and no maximum boundary or a star operator ∗, which refers to

zero or more repetitions of the previous construct and is similar to [0..∗]. A SubDescription

is a BehaviourDescription construct surrounded by a pair of parentheses, which enables

the grouping of transitions. Each Transition is described as an Edge consisting of a start

and end State. Each Edge can either be described by an AnyEdge, which is simply a place

holder for any edge of the map, or a specific Viewpoint or Action (Section 4.5.1), specified

as MapEdge. This allows for the description of transitions that belong to a viewpoint or

are labelled with particular actions. An Edge is followed by an optional Exclusion, which

allows to specify one or more MapEdges that should not be included in the previously

specified MapEdge. It allows for instance to exclude particular actions from a viewpoint.

A State can be described in three different ways. First of all as an AnyState, which is

a place holder for any state similar to the AnyEdge construct for edges. Secondly as a

StateMarker, which saves a reference to the currently visited state and thirdly as a list

of StateConditions that are seperated by ”,” with an optional preceding StateMarker. A

condition for a viewpoint needs to be satisfied by the value that this viewpoint stores. A

possible condition could specify that the word count of a document needs to be less than

500. Conditions are always referred to by their names, for example C1 = word count <

500. In this example, the word count refers to the number of words, which the document

contains. It is one feature of the artefact.

The described syntax enables the specification of behaviours in a convenient way. Espe-

cially the combination of transition labels and state conditions allows for the representation

of any behaviour of a creativity map. The place holder for transitions and states can be

used to define patterns of behaviours. A good example of a behaviour description is the

specification of all behaviours that start and end with an action which modifies the arte-

fact. It is stored inside the artefact viewpoint of the state and all of its changes are recorded

during the creative process. Each process contains actions that are directly and indirectly

involved in this modifications. For example, an editing action changes the document that

is observed during the creative process of a writer and a discussion action edits the record

of discussions, but not directly the artefact itself. Although the artefact is not modified,

it might happen at a later stage as a result of the previous action. A behaviour that

changes the artefact indirectly is described as the sequence of actions between two direct

modifications. Figure 5.1 depicts a creativity map with highlighted ”artefact behaviours”.

All the behaviours that are marked in Figure 5.1 can be described in a convenient way

with the help of the BDL. The start and end transition of these behaviours need to belong

to the artefact viewpoint and any quantity of arbitrary transitions, except for the ones of

68

Information Hiding

read

dis

edit

edit

read

con

edit

read

edit

dis

edit

con

dis

Figure 5.1: Creativity Map with Highlighted Artefact Behaviours

the artefact viewpoint, is allowed to occur between them. The behaviour description d1

represents the corresponding expression in BDL.

d1 = <S-V=Artefact-S><S-E\{V=Artefact}-S>*<S-V=Artefact-S>}

The first and last elements <S-V=Artefact-S> describe the set of transitions that belong

to the artefact viewpoint. It is not necessary that their states satisfy any conditions.

The element in between <S-E\{V=Artefact}-S>* describes any transition that occurs in

the creativity map and does not belong to the artefact viewpoint. The additional star

operator * determines zero or more repetitions of it. The ”artefact behaviour” can be

further refined with the BDL. For example, if at least 2 and at most 5 transition should

occur between two actions from the artefact viewpoint, this is specified in the following

behaviour description.

d2 = <S-V=Artefact-S><S-E\{V=Artefact}-S>[2..5]<S-V=Artefact-S>

The quantifier [2..5] restricts the preceding construct <S-E\{V=Artefact}-S> to a quan-

tity between 2 and 5. None of the marked behaviours in Figure 5.1 is represented by d2.

The following two section will explain the use of state conditions and state markers to

allow for the integration of state information into the behaviour description.

5.3.2 State Conditions

Especially the state conditions are powerful possibilities, which enable the analyser to

additionally consider the viewpoints and values that are stored inside the states. An

69

Information Hiding

example especially for the creative process of a writer is a behaviour which starts with

any transition that leads to a document version with less than 500 words, followed by

a discussion or reading transition. In other words, the artefact viewpoint of the first

transition’s end state needs to store a document with less than 500 words. Exactly this

constraint is represented by the condition C1 = word count of the document < 500. The

following behaviour description d2 expresses this example.

d3 = <S-E-C1>(<S-A=Discussion-S>|<S-A=Reading-S>)

The first element <S-E-C1> describes any transition which ends with a state that satisfies

the condition C1. The second element (<S-A=Discussion-S>|<S-A=Reading-S>) is a

SubDescription which describes a choice between a discussion and reading transition. No

particular conditions are specified for this SubDescription, which means that any transition

with the described labels that follows a state with word count < 500 is accepted.

One viewpoint which can be identified in any creativity map is time. It was mentioned

before that each creativity map contains time transitions, which run in parallel with the

other ones. Every state in the creativity map also stores a timestamp that describes the

moment when the action of the incoming transition ends and the action of the outgo-

ing transition starts. As this is similar in all maps, it can for example be used for the

construction of time-dependent PCMs. If the analyser is interested in different creation

stages, the creativity map can be divided into according PCMs. The behaviours at the

beginning are possibly different to the behaviours that are performed towards the end.

The time viewpoint therefore becomes a powerful information source for the behaviour

hiding approach.

State conditions can also be used for example to detect similar situations during the

creative process. If particular behaviours that result in a modification of the artefact

were previously identified as disadvantageous or ineffective, they might be irrelevant. The

artefact viewpoint would be used for the definition of a behaviour description, which can

then be utilised for the concealment of these parts. This reduces the amount of information

and enables the analysis to focus on the remaining behaviours. However, this is only one

example for the use of state conditions and the described situations can also be interpreted

differently.

70

Information Hiding

5.3.3 State Marker

The previously described state conditions are only able to refer to the values of the actual

state and compare them with predefined values. It might in some situations be necessary

to allow conditions to refer to previous states, to creates a larger range of possibilities for

their use. For example, a sequence of three transitions should be hidden from the creativity

map of a writer. The document that is stored in the end state of the last transition should

not contain more words than the document of the start state of the first transition. It is

impossible to describe this scenario with the conditions only.

State markers are introduced in the BDL for this reason. Instead of satisfying a condition,

they simply refer to a previous state so that it can be used later in the information

hiding process. This allows to create conditioned sequences of transitions. The previously

described example can then be realised in the following way. Let the condition C state

that the word count of the document needs to be less than the one that M refers to. These

two components can now be used to create the following behaviour description.

d4 = <M-E-S><S-E-S><S-E-C>

It is also possible to create behaviour descriptions, which combine multiple markers. For

instance, the previous example can be extended, so that the document of the end state

of the last transition needs to contain more words than the document of the start state

of the second transition. Let M2 describe a second marker and let C2 describe a second

condition, which states that the word count of the document needs to be higher than the

one that M2 refers to. This then leads to the following behaviour description.

d5 = <M-E-S><M2-E-S><S-E-C,C2>

The two examples illustrate that state markers extend the language with a useful facility

to create conditions that relate to previous state values.

5.4 Operations for Information Hiding

To allow behaviour descriptions to be used in the information hiding process, the four dis-

tinct operations hiding, restriction, revealing and restrictive revealing will be introduced.

71

Information Hiding

All of them work seamlessly together with the BDL and allow to either hide, keep or reveal

the specified behaviours.

5.4.1 Hiding Operation

The hiding operation, which uses the hiding operator ”\” is performed in order to conceal

transitions of a creative process. It uses a creativity map in conjunction with a behaviour

description that is specified in the BDL. Each described behaviour that can be identified

in the creativity map will then be hidden by relabelling its transitions with α, which might

result in a PCM. The hiding operation is specified in the following way.

<Creativity Map> \ { <Behaviour Description> } = <Creativity Map>’

It is possible that the specified behaviours are not present in the creativity map, or in-

cremental hiding processes are performed, so that both maps <Creativity Map> and

<Creativity Map>’ can describe a PCM. The following example illustrates the use of

the hiding operation. Let the behaviour description d in BDL describe all behaviours

which start with a reading transition, followed by an editing transition and a transi-

tion from the artefact viewpoint, in particular d = <S-A=Reading-S><S-A=Editing-S>

<S-V=Artefact-S>. Let the artefact viewpoint contain the two actions editing and cor-

recting. Accordingly, d describes the following two behaviours b1 =
reading−→ editing−→ editing−→

, b2 =
reading−→ editing−→ correcting−→ . As mentioned before, a viewpoint is similar to a category,

which allows the set of actions to be grouped into labelled sub-sets. For a creativity map

M, the hiding operation

M \ { <S-A=Reading-S><S-A=Editing-S><S-V=Artefact-S> }

hides every occurrence of these two behaviours. An example is depicted in Figure 5.2,

together with the PCM as a result of the hiding operation. The PCM, which is shown at

the right-hand side illustrates that the transitions of the two behaviours b1 and b2 have

been relabelled with α. There are in total one reading, one editing and one correcting

transition that were relabelled.

The PCM might be further minimised by collapsing or pruning hidden transitions after the

information hiding process. It can increase the clarity and remove irrelevant information

from the view or even the whole map. These techniques are explained in Section 5.6.

72

Information Hiding

read

dis

edit

corr

read

corr

α

dis

α

corr

read

α

C \ {<S-A=Reading-S>

<S-A=Editing-S>

<S-V=Artefact-S>}

Figure 5.2: Information Hiding

5.4.2 Restriction Operation

The hiding operation enables the concealment of any behaviour that is specified with

the BDL. However, depending on the number of different transitions that should be

hidden, the behaviour description can become large or unclear and it is often easier and

more convenient to describe the behaviours that should remain in a creativity map. For

example, to hide all transitions but the ones that belong to the artefact viewpoint, it is

necessary to specify all remaining ones in combination with the hiding operation in order

to create the correct PCM. An operation that hides all transitions, but the ones of the

artefact viewpoint would allow for a more convenient process. The restriction operation,

which uses the restriction operator ”/” is introduced for this reason. It is specified in the

following way.

<Creativity Map> / { <Behaviour Description> } = <Creativity Map>’

For similar reasons that were mentioned before, any of the creativity maps <Creativity

Map> and <Creativity Map>’ can describe a PCM. The argument of the restriction op-

eration is also a behaviour description expressed in the BDL, with the difference that

behaviours which are not specified will be hidden. Given the identical behaviour descrip-

tion d = <S-A=Reading-S><S-A=Editing-S><S-V=Artefact-S> that was also used in the

previous example. For a creativity map M, the restriction operation

M / { <S-A=Reading-S><S-A=Editing-S><S-V=Artefact-S> }

results in a PCM where all occurrences other than the ones specified in d are concealed. If

the same creativity map as in the previous example is used, this operation would relabel

all visible transition with α on the one hand and keep the original labels of all hidden

behaviours on the other hand. Figure 5.3 depicts the result of this process. The original

creativity map is shown on the left-hand side together with the PCM on the right-hand

73

Information Hiding

side after the restriction operation has been performed.

read

dis

edit

corr

read

corr

read

α

edit

α

α

corr

C / {<S-A=Reading-S>

<S-A=Editing-S>

<S-V=Artefact-S>}

Figure 5.3: Information Restriction

There are in total three transitions which were hidden, in particular one discussing, one

reading and one correcting action. To construct a similar PCM with the hiding operation,

it is necessary to specify all behaviours that were relabelled, which in many cases results

in a larger and unclear behaviour description. It is therefore very often more convenient

to specify the description as previously explained and use the restriction operation.

For a creativity map M and a behaviour description d, the hiding operation M \ { d }

creates a PCM that is equivalent to the restriction of this map M / { Bvis } to all be-

haviours Bvis of M that are still visible after the hiding process.

5.4.3 Revealing Operation

Once a PCM with α transitions has been constructed, it can be used for further aim

oriented studies. However, the original labels of these transitions might be required at

some point and it is then necessary to reveal them again. This can be the case, if the

PCM was only created temporarily and the original creativity map should be restored

afterwards. To keep the revealing process flexible and enable the analyser to uncover only

parts of the previously hidden transitions, a revealing operation, which uses the revealing

operator ”\̃ ” is introduced. It is specified in a similar way to the hiding and restriction

operations that were defined above.

<Creativity Map> \~ { <Behaviour Description> } = <Creativity Map>’

It is again possible that any of the creativity maps <Creativity Map> and <Creativity

Map>’ describe a PCM. However, the revealing operation usually uses a PCM that contains

α transitions instead of a regular creativity map. The argument is a behaviour description

which enables the analyser to exactly specify the parts that should be revealed. It is

74

Information Hiding

possible to reconstruct the original creativity map by using this operation in combination

with the behaviour description d = <S-E-S>*, which specifies sequences of zero or more

transition of any viewpoint or action. The result (<CreativityMap>’) of the revealing

operation can therefore be a regular creativity map as well as a PCM.

The following example illustrates the use of the operation. Given the simple behaviour

description d = <S-A=Discussing-S><S-E-S>*, which describes all behaviours that start

with a discussing transitions followed by zero or more arbitrarily labelled transitions. To

be able to reveal an α transition, it is of course necessary to access its original label. This

can for example be realised with an additional variable in the concrete implementation of

a creativity map. For the PCM that was constructed in the previous restriction example,

the revealing operation

PCM \~ { <S-A=Discussing-S><S-E-S>* }

results in a map where one discussing and one correcting transition have been revealed,

as depicted in Figure 5.4. The original PCM is shown on the left-hand side together with

the result of the revealing operation on the right-hand side.

C \
~
 {<S-A=Discussing-S>

<S-E-S>*}

read

dis

edit

corr

α

corr

read

α

edit

α

α

corr

Figure 5.4: Information Revealing

Only two transitions were revealed in the resulting PCM. It was mentioned before

that the original creativity map can be reconstructed by using the identical behaviour

description in combination with the revealing operation. For example, the operation

PCM \~ { <S-A=Reading-S><S-A=Editing-S><S-V=Artefact-S> } for the PCM on the

right-hand side in Figure 5.2 would revert the process and result in the creativity map on

the left-hand side in the same figure. This relationship can be specified in the following

way.

For all M: (M \ { d }) \~ { d } = M

75

Information Hiding

However, the statement is only true, if the original creativity map M did not contain

hidden transitions prior to the first hiding process. Otherwise it is possible that these

transitions are also revealed, which results in a different creativity map or PCM.

5.4.4 Restrictive Revealing Operation

The revealing operation that was introduced before, allows to unveil any behaviour that

is specified by a behaviour description. Similar to the restriction operation that was intro-

duced to limit the behaviours of a PCM, a restrictive revealing operation will be specified.

For example, to reveal all behaviours but the ones of one particular viewpoint, it is nec-

essary to specify the transitions of all other viewpoints in combination with the revealing

operation. The restrictive revealing operation, which uses the restrictive revealing operator

”/˜” simplifies this task. It is specified in the following way.

<Creativity Map> /~ { <Behaviour Description> } = <Creativity Map>’

The syntax is very similar to the previous operations and any of the creativity maps

<Creativity Map> and <Creativity Map>’ can describe a PCM. However, it is sensible

to use a PCM on the left side. The argument of the restrictive revealing operation is

a behaviour description expressed in BDL. Any behaviour that is not specified by this

description will be revealed. To enable a better comparability, the behaviour description

d = <S-A=Discussing-S><S-E-S>* is chosen identically to the previous example. For the

same PCM, the restrictive revealing operation

PCM /~ { <S-A=Discussing-S><S-E-S>* }

results in a map where a single reading transition is uncovered, as depicted in Figure 5.5.

The left-hand side shows the original PCM and the right-hand side illustrates the result

of restrictive revealing operation.

C /
 ~

 {<S-A=Discussing-S>

<S-E-S>*}

read

α

edit

α

read

corr

read

α

edit

α

α

corr

Figure 5.5: Restricted Information Revealing

76

Information Hiding

5.5 Behaviour Hiding

It was mentioned before that the information hiding process precedes the actual study

and is used for the support of an aim oriented analysis. Two different roles exist in this

process. On the one hand the creator, who is observed for the construction of creativity

maps and on the other hand the analyser who is responsible for the construction of be-

haviour descriptions which are then used in combination with any of the hiding or revealing

operations. Figure 5.6 depicts the structure of the information hiding process.

Creativity Map

Filter

M1 M3

M2 M4

M5 M1

PMC2 M4

PMC5

Relevant

Creativity Map(s)

Analysis

AnalyserCreator(s)

Corpus of recorded

Creativity Maps

Filtered Maps /

PCM

Satisfaction of

State Conditions

/

Behaviour

Matching

Behaviour

Description

(BDL)

S0

S1

S3

S2
δS[C2]

δS[C4]

δE[C3]

Figure 5.6: Information Hiding Process

The figure shows that one or more creator(s) record their creative processes, which then

build the corpus of creativity maps. An analyser is now responsible for the concealment

of irrelevant information with the aid of behaviour descriptions. It is necessary to convert

this description into a processable form that can be used for pattern matching. One

representation which satisfies these conditions and is used in the presented approach is an

automaton [38]. It illustrates a structure similar to the creativity map and is therefore able

to map any behaviour description in a convenient and reusable way. The automaton that

is used in this thesis is called Behaviour Description Automaton (BDA). Specifications

in the BDL are therefore transformed into BDAs which are then used in the information

hiding process, as illustrated in the figure.

Creativity maps can additionally be filtered beforehand. The creativity map filter uses

a pre-selection of maps, which can for instance be described with the categories that

were explained in Section 4.3. This allows to reduce the corpus to those maps that are

77

Information Hiding

relevant for the analysis, like the ones that belong to a particular project, creator, a whole

domain or any combination that is specified as a customised set. This section describes

the hiding process with the help of a BDA, including the specification and construction

of the automaton from a behaviour description and the behaviour matching that includes

the satisfaction of state conditions.

5.5.1 Behaviour Description Automaton (BDA)

The BDA needs to allow for the representation of any structure which can be described

with the BDL, in particular actions, state conditions and markers. Actions are represented

with regular transitions, whereas conditions and markers are transformed into special

transitions, one for the start state δS(c) and one for the end state δE(c). Here, c represents

a particular set of conditions, a marker or a mix of both, as the specification of a State

in the BDL (Section 5.3.1) illustrates. The ANY transition that was described in Section

5.3.1 is also used in the BDA and every performed action of the creator is contained in

the set A. The BDA in ε-NFA form is defined as a 5-tuple (S,Σ, T, sI , F), containing:

1. A finite set of states (S)

2. A finite set of actions (Σ ⊆ A)

3. A transition function (T : S × (Σ ∪ {ε, δS(c), δE(c), ANY })→ P (S))

4. An initial state (sI ∈ S)

5. A set of final states (F ⊆ S).

A main disadvantage of the ε-NFA representation is the non-determinism of the transition

function T. It allows to reach a set P (S) of states for a single input symbol, which compli-

cates the matching process of a behaviour and therefore the determination if it is accepted

by the BDA. A ε-NFA also reduces the comparability of different behaviour description

representations. Therefore, a DFA representation of the BDA is introduced, eliminating

the previously mentioned disadvantages [60]. A BDA in DFA form is defined as a 5-tuple

(S,Σ, T, sI , F), containing:

1. A finite set of states (S)

2. A finite set of actions (Σ ⊆ A)

78

Information Hiding

3. A transition function (T : S × (Σ ∪ {δS(c), δE(c), ANY })→ S)

4. An initial state (sI ∈ S)

5. A set of final states (F ⊆ S).

The definition of a behaviour description as an automaton allows for the specification of

accepted behaviours, which describe the matched transitions of a creativity map. A be-

haviour has been defined as a sequence of transition in Section 4.5. Let D = (S,Σ, T, sI , F)

be a BDA in DFA form and b be a particular behaviour. It is accepted, if there exists

a representation of b in the form t0 . . . tn−1 where ti ∈ (Σ ∪ {δS(c), δE(c), ANY }) and a

sequence of states s0, . . . , sn−1 where si ∈ S, so that:

1. s0 = sI

2. si = T (si−1, ti−1), i = 1, . . . , n− 1

3. sn−1 ∈ F .

This definition of an accepted behaviour is used for the information matching process,

which will be described in this section.

5.5.2 Construction of the BDA

A common technique for the construction of an ε-NFA from regular expressions is the

Thompson construction [93], which creates small ε-NFAs for simple expressions first and

connects them successively. It specifies 5 distinct constructs. These are two basic ones

for the ε- and action-transition together with one choice, one star and one sequence con-

struct. An adaptation of this technique that allows for the conversion between behaviour

description and BDA is described in the following. Necessary elements for this creation are

transition, factor, behaviour, behaviour description and sub-description, which are iden-

tical to the components of the BDL that was specified in Section 5.3.1. Their conversion

into ε-NFAs is illustrated and the successive construction process that finally results in

the ε-NFA for the whole behaviour description is presented.

Preprocessing of Viewpoints, Exclusion Statement and Quantifiers

The BDL furthermore allows for the specification of edges in the form of viewpoints or

place holders. As mentioned before, a viewpoint is a category that contains a set of actions.

79

Information Hiding

However, the alphabet Σ of the automaton contains only actions, so that a viewpoint needs

to be substituted by a choice between each of the actions that it contains. The first step of

the BDA construction is the preprocessing of the Viewpoint and AnyEdge constructs that

were used in the behaviour description. Given a viewpoint v ∈ V with actions a0, . . . , an−1

where ai ∈ v, the BDL construct

<S-V=v-S> is substituted by <S-A=a0|...|A=an−1-S>.

The two expressions are equivalent and the automaton accepts any action ai which be-

longs to the viewpoint v. The AnyEdge does not necessarily need to be substituted in the

way described above. Instead, it is transformed into a transition of the automaton that

is labelled with ”ANY”. Otherwise, it would need to be substituted with a choice of all

actions that are part of the set A, which probably creates a more complicated construct.

The Exclusion statement is substituted in a similar way, considering only the remaining

actions. For instance, if the viewpoint Artefact with actions Editing and Conceptualis-

ing and the viewpoint Literature with actions Reading and Comparing are defined, the

construct

<S-E\{A=Editing,A=Comparing}-S> is substituted by <S-A=Concept.|A=Reading-S>

and

<S-V=Literature\{A=Reading}-S> is substituted by <S-A=Comparing-S>.

The BDL allows for the specification of quantifiers, which represent different numbers of

repetitions for constructs of the behaviour description. They need to be preprocessed as

well to enable a simple construction process of the BDA. Given a Factor f, as defined in

the BDL, the following cases are distinguished.

• f [n..m] where n = m. This case is simply substituted by a sequence of n Factors f

surrounded with parentheses. For example <S-E-S>[2..2] becomes

(<S-E-S><S-E-S>)

• f [n..m] where m > n. This case is substituted with choices between sequences of

Factor f starting from length n and increasing until m, surrounded with parentheses.

For example <S-E-S>[2..4] becomes

(<S-E-S><S-E-S>|<S-E-S><S-E-S><S-E-S>|<S-E-S><S-E-S><S-E-S><S-E-S>).

• f [n..∗] where n = 0. This case is simply substituted by f∗.

80

Information Hiding

• f [n..∗] where n > 0. This case is substituted by a sequence of n Factors f, followed

by a Factor f with the * operator, all surrounded by parentheses. For example

<S-E-S>[2..*] becomes (<S-E-S><S-E-S><S-E-S>*)

Transition

Transitions build the fundamental parts of behaviours. A transition consists of a start and

end state, which are connected via an edge. An edge can either describe a single action

or the choice between many actions, if a viewpoint has been substituted as a result of

the previously described preprocessing step. Any edge with a single action is specified as

A=a, where a describes the action label. The constructed ε-NFA of the specified edge is a

simple transition also labelled with a, as depicted in Figure 5.7.

a
S0 S1

Figure 5.7: ε-NFA for an Edge

If a viewpoint has been preprocessed, it results in an edge with a choice between n actions,

which is specified as A=a0|...|A=an−1. This edge is created with a slightly adapted choice

construct of the Thompson construction, as depicted in Figure 5.8.

S2nS2n-1

Ɛ-NFA(en-1)

a0

S2S1

Ɛ-NFA(e0)

a0

Ɛ

S2n+1

Ɛ

Ɛ

Ɛ

...S0

Figure 5.8: ε-NFA for an Edge with Several Actions

One new start state that is connected to all start states of the edges via ε transitions and

one new final state that is connected with the final states of the edges via ε transitions

were added. After the ε-NFA for the edge of a transition has been constructed, the start

and end state of that transition need to be processed. Every state that is specified as a

list of one or more state conditions with an optional preceding state marker is converted

81

Information Hiding

into a δ-transition and concatenated with the edge transition afterwards. Conditions and

markers for the start state are converted into a δS(c) and for the end state into a δE(c)

transition. The ε-NFA for the transition <C1-...-M,C2,C3>, with a state condition C1 for

the start state and a state marker M together with list of conditions C2, C3 for the end

state is depicted in Figure 5.9.

S1S0

Ɛ-NFA(Edge)

S2 S3

δS(C1) δE(M,C2,C3)

Figure 5.9: ε-NFA for a Transition with State Conditions

The δS(c) and δE(c) transitions are both appended to the edge transition in order to

reduce the possibility of non-deterministic choices for the condition of the start state.

For instance, the behaviour description <S-A=Editing-S>|<C1-Reading-S> specifies the

choice between an editing transition without any conditions and a reading transition with

a condition C1 for the start state. The transition without a condition already includes C1,

which would lead to a non-deterministic choice when adding this condition in front of the

ε-NFA for this particular edge.

Factor

A Factor is a choice between a Transition and a SubDescription followed by an optional

* operator, which indicates zero or more repetitions of one of these components or an

optional natural number, which specifies the exact number of repetitions. The construction

of the ε-NFA for a transition was described above and the SubDescription ε-NFA will be

discussed later. It is assumed that the automaton for any of these two elements e has

been constructed. If the * operator is used, the construction process will create the

corresponding ε-NFA for the expression e*, as depicted in Figure 5.10. A new initial and

final state are added to the element e, both connected to the according old states with

ε transitions. Furthermore, the new states are connected with an ε transition as well as

the old initial and final state of element e. This guarantees the possibility of zero or more

repetitions.

Behaviour

A Behaviour is defined as a sequence of the previously described Factors. Each one is

transformed into a corresponding ε-NFA as mentioned before. If more than a single Factor

82

Information Hiding

S2S1

Ɛ-NFA(e)

S0 S3

Ɛ Ɛ

Ɛ

Ɛ

Figure 5.10: ε-NFA for a Factor with * operator

is used in the behaviour description, they will be concatenated with additional ε transitions

to represent this sequence. Final states of a previous automaton are connected with initial

states of the following one. The ε-NFA for the Behaviour b = f0 f1 . . . fn−1 with Factors

fi is created with the sequence element of the Thompson construction, as depicted in

Figure 5.11

S1S0

Ɛ-NFA(f0)

S3S2

Ɛ-NFA(f1)

Ɛ Ɛ
S2n-2

Ɛ-NFA(fn-1)

Ɛ
... S2n-1

Figure 5.11: ε-NFA for a Behaviour

BehaviourDescription

A BehaviourDescription is specified as a choice between a number of Behaviour compo-

nents. This is similar to the choice construct that was described above for several actions

of the Transition element. One new start state that is connected to all start states of the

Behaviours via ε transitions and one new final state that is connected with the final states

of the Behaviours via ε transitions needs to be added. The ε-NFA for the Behaviour-

Description d = b0|b1| . . . |bn−1 with Behaviours bi is constructed similarly to the choice

between a number of actions for the Transition construct, as depicted in Figure 5.8 above.

SubDescription

A SubDescription element allows for the encapsulation of BehaviourDescriptions. This is

for instance important if a transition is followed by the choice between two other transi-

tions, where surrounding parentheses (...) can be used for the grouping of the choice

construct. The ε-NFA for the SubDescription element is created similarly to the Be-

83

Information Hiding

haviourDescription and is then integrated into the overall ε-NFA, according to the whole

behaviour description. It is handled as one component that can for example be integrated

into a sequence or choice with the help of ε transitions, as it was described before. This is

similar to the other components that were explained above.

The previously described specifications allow for the construction of a BDA as ε-NFA from

a behaviour description in BDL. Every BDA is created with this set of rules, beginning

with small constructs like transitions and successively continuing to larger constructs such

as factors, behaviours or sub-descriptions, until the behaviour description is fully mod-

elled into an automaton. It was mentioned before that an ε-NFA is inconvenient for the

behaviour matching, as its transition function T returns a set of states P (S). This clearly

complicates the pattern matching process, as it needs to check each of these paths in the

automaton, which possibly requires backtracking whenever a successful or failed match-

ing process finishes. For this reason, the ε-NFA needs to be converted to a DFA, which

eliminates this disadvantage. The transition function of a DFA returns only a single state

for one input symbol and therefore creates a deterministic choice. A common technique

for the conversion between ε-NFA and DFA is the powerset construction. It maps a set of

states that is part of the original ε-NFA onto a single state of the resulting DFA and there-

fore removes non-deterministic choices. The powerset construction is not further discussed

in this thesis, as it can be used in its standard form [95] without any modifications.

5.5.3 Behaviour Matching

After the creation of the Behaviour Description Automaton (BDA), the creativity map

will be traversed to search for matching behaviours. A behaviour is identified in the

creativity map if it is accepted by the BDA, as defined in Section 5.5.1. Every accepted

behaviour is marked and can be further processed based on whether the restriction, hiding,

revealing or restrictive revealing operation is used. When the behaviour matching process

traverses the creativity map, it needs to ensure that every transition is visited. Sequences

of transitions, which describe the behaviours of a creator, should be visited until the final

state first. Therefore, the traversal technique chosen for the behaviour matching is the

depth-first search. It starts at the root state and stops, if the final state of a branch

is reached in order to backtrack and traverse the next unvisited transition. A branch

is therefore always traversed to its end first, before the next one is visited. Figure 5.12

depicts the depth-first search strategy.

84

Information Hiding

S0 S1

read

dis

S2

S10

edit

S12

S3

S11

edit

read

S13

con

edit

S8

S7

read

S9

edit

dis

S4 S5
edit

con

S6

dis

Figure 5.12: Depth First Traversal for the Behaviour Matching

As illustrated in the figure, the depth-first search starts at the root state S0 and continues

to visit the branches of the creativity map. After one branch is traversed, it tracks back

to the starting state of the next branch. For example, after the state S3 was visited and

the traversal reaches S6, which does not possess any outgoing transitions, the states S6, S5

and S4 are backtracked until S3. This state contains unvisited outgoing transitions, so

that the traversal continues with S7.

Behaviour Identification

The behaviour identification process splits into two depth-first traversals. The inner one

is responsible for the behaviour matching. It checks each visited transition with the

BDA. Every time a behaviour of the creativity map is accepted by the automaton, a

matching behaviour of the behaviour description has been identified. The length of this

accepted behaviour describes the number of transitions that need to be backtracked until

the beginning of the matched sequence is reached. To identify the correct length, a counter

will be incremented during the traversal process whenever a valid transition is visited and

the BDA is able to move. If the automaton is unable to move, because the current

transition of the creativity map cannot be processed, the depth first traversal for this

branch is aborted and the backtracking starts. During this phase, the length is decreased

by 1 with every step and the currently visited transition is marked as long as the length is

still greater than 0. The beginning of the matching behaviour is reached when the length

is equal to 0, which means that no further markings are necessary for this behaviour. Due

85

Information Hiding

to the tree structure of the creativity map, behaviours can share a common prefix until

the map branches. It is therefore necessary to remember the current state of the BDA

at every branching node to be able to continue from this state when the next branch is

visited. This means that whenever an unvisited branch is traversed, the BDA needs to be

configured to the state that was active when the branching state was reached.

It was mentioned before that state conditions and state markers are mapped into δ-

transitions. Whenever a state marker is reached during the traversal, its identifier is

stored together with the current state label. This allows to retrieve the referred state

from the creativity map, whenever it is needed at a later stage in the matching process.

Conditions that are reached during the traversal can then either refer to a value that needs

to be satisfied or to one or more markers. If a condition is not satisfied, the BDA is unable

to move, which automatically leads to an abortion of the process. This is similar to a

transition that is not accepted, as described above.

The previously described steps need to be performed starting from every state of the

creativity map. This is realised with a second outer depth-first search that visits each

state and then invokes the described steps. The information hiding process finishes, when

all states have been visited by this second traversal.

The behaviour matching processes for the information revealing and restrictive revealing

operations are executed in a very similar way, with the difference that they only consider

hidden behaviours. Each sequence that is accepted by the BDA must therefore only

contain α transitions. It was mentioned before that the original transition label is stored

in an additional variable, so that it can be recalled if necessary. The traversal process

itself can then easily be adapted by letting the BDA only move, if the original label is

accepted and the transition is labelled with α. Any behaviour that satisfies these condition

is marked, similar to the previously described technique.

Behaviour Processing

The last step of the behaviour matching process handles the marked behaviours with

respect to the chosen hiding or revealing operation. This requires to traverse the transition

of the creativity map a second time. The following four cases are distinguished.

• If the hiding operation has been used then all marked behaviours that are visited

will be relabelled with α.

86

Information Hiding

• If the restriction operation has been used then all transition that are not marked

will be relabelled with α during the map traversal.

• If a revealing operation has been used then all marked transition will be relabelled

with their original labels.

• If the restrictive revealing operation has been used then all hidden behaviours that

are not marked will be relabelled with their original labels.

The final result can either be a creativity map or a PCM with a mix of visible and hidden

transitions.

5.6 Minimising Partial Creativity Maps (PCMs)

The four operations described above are able to create a PCM that can contain high

amounts of α-transitions. They can be hidden from the view for a compressed repre-

sentation of the map structure which supports a better visibility and clearness. For the

realisation of this procedure, it is necessary to identify all connected sequences of α transi-

tions, also called α closures. An α closure for a state s describes all states and transitions

that are reachable via sequences of α transitions. It is necessary to consider both compo-

nents, as the revealing operations need to process the transitions and additionally access

their original labels. A closure is not constraint to a sequential structure and can of course

contain branching states. Once all of them were identified, they can be utilised to reduce

the size of the creativity map, as described in the following collapsing/expanding and

pruning approaches.

Collapsing / Expanding

Every α-closure that was identified in a PCM can be summarised into a single state, which

then represents any collapsed sequence. This allows to reduce the visual size of a creativity

map. An advantage of collapsing is that a map still contains all transitions, which enables

the expansion of hidden parts if required. Figure 5.13 depicts an example of this collapsing

process and illustrates how the visual size of a creativity map can be reduced. Especially

for large creativity maps with many hidden transitions, the resulting map is very often

much simpler to display. Relevant behaviours remain visible at the same time.

87

Information Hiding

α

dis

α

corr

read

α

Collapsing
dis

corr

read

Expanding

Figure 5.13: Collapsing Behaviours

The arrows in the figure illustrates the two directions of the collapsing and expanding

operations. To distinguish states that contain collapsed closures from the regular map

states, they are represented as squares. This highlights the existence of hidden transitions,

which can become important for the analysis. Expanding a collapsed PCM will usually

reconstruct the original PCM. However, it might not always be necessary to expand

all transitions, like the revealing operations emphasised. This obviously depends on the

requirements of the further processing.

The hidden α transitions are in many cases at least temporarily irrelevant. This means

that the hiding process as described above and the collapsing of hidden transitions are very

often performed straight after each other. Instead of displaying the creativity map with

relabelled α transitions first, the collapsed PCM can directly be presented as the result. It

was mentioned before that the collapsing operation only reduces the visual size of a PCM.

Collapsed α closures are still part of the map, although they are possibly irrelevant for the

analysis. If the hidden transitions are no longer needed, it is therefore disadvantageous to

keep them in the map as they demand unnecessary storage space, especially if the size of

the PCM is large. A pruning approach is introduced for this reason.

Pruning

A problem of the previously described collapsing approach is that the resulting PCM

always has the same size as its original counterpart. Especially as hiding precedes the

actual analysis and describes a preprocessing step, concealed information might not be

relevant at all. The aim is therefore to reduce the map to only the visible states and

transitions and remove any behaviour that is stored inside a collapsed state.

88

Information Hiding

To minimise a creativity map, it is necessary to prune the identified α closures. This in

turn means that these parts will be completely removed, with the disadvantage that they

cannot be recalled or expanded later on. However, the advantage is that a map can be

reduced in its physical size. This saves disc space and is beneficial for storage or copying

activities. For instance, if several PCMs are created from one creativity map, pruning is

able to prevent the storage of irrelevant and also redundant information. However, even

if pruning produces an identical result as collapsing, whenever only observable behaviours

are relevant, it is always important to remember that certain elements of a PCM have

been removed. Especially the analysis might need to consider or even highlight this.

It was illustrated in the previous example that states which contain collapsed α closures

are marked differently to distinguish them from the remaining ones. If the behaviours of

these states are pruned, they will be marked differently as well. Pruning the map that is

shown in Figure 5.13 produces the result which is depicted in Figure 5.14.

α

dis

α

corr

read

α

Pruning
dis

corr

read

Figure 5.14: Pruning Behaviours

The illustrated PCM on the right-hand side looks very similar to the result of the collapsing

process that is depicted above. However, the states which are represented as squares and

contain hidden transitions in the previous example are now displayed as triangles. It

emphasises the fact that actions were performed during this stage of the creative process,

even if they are no longer part of the map. As mentioned before, this can be relevant for

the analysis and allows to integrate additional and maybe useful information.

5.7 Summary

This chapter explained the information hiding approach. Observable and non-observable

behaviours were distinguished and Partial Creativity Maps (PCMs), which contain a mix-

ture of visible and invisible actions, were introduced. The Behaviour Description Lan-

guage (BDL) has been developed and it was shown how this formal language enables a

89

Information Hiding

convenient specification of behaviours in the form of behaviour descriptions. It also al-

lows for the specification of state conditions, which is important whenever the value of a

viewpoint should be considered. Hiding, restriction, revealing and restrictive revealing op-

erations were introduced for the realisation of the approach. They all seamlessly integrate

with the BDL and allow to hide or reveal any specific part of the creativity map. The

conversion of a behaviour description into a Behaviour Description Automaton (BDA)

was demonstrated and its utilisation for the hiding process was explained in detail. It was

shown how the BDA is used to search for a set of input behaviours in a creativity map

and how the backtracking phase of the depth-first traversal can be modified to mark any

accepted behaviour. Collapsing and pruning techniques for the size reduction of creativity

maps were presented towards the end of this chapter.

90

Chapter 6

Frequent Information Extraction

Objectives

• Specify frequency and the search space for frequent information.

• Present four frequency categories which are used for the analysis of the creative

process.

• Introduce five frequent behaviour categories which describe the dynamism of the

creative process.

• Describe the information extraction process and its combination with the information

hiding process.

• Present the behaviour tracking process.

6.1 Introduction

This chapter explains frequent information extraction from creativity maps. It starts

with the specification of frequency and the search space for frequent information. A

model of four different frequency categories is introduced, which utilises three frequency

thresholds for their distinction. It is then explained how these categories are relevant

for the analysis of creative processes. Additionally to these categories, the dynamics of

behaviours are specified with five distinct frequent behaviour categories. The importance

of these categories is explained and their impact on the creativity support is presented.

91

Frequent Information Extraction

6.2 Frequent Information in Creativity Maps

Frequent information is represented as frequent behaviours inside the creativity map,

according to the specification of data, information and knowledge in Section 4.4. Creativity

maps contain large amounts of this information and can grow quickly as mentioned before.

However, each behaviour in a creativity map is built from a relatively small set of actions,

which are freely chosen and can also change during the observation process. As this set is

used in the creative process, some behaviours will occur more frequently than others. A

writer for example starts to conceptualise a document first, followed by a discussion and

an editing action, which is described by the behaviour b =
concept−→ discuss−→ edit−→. This common

pattern of a particular writer occurs frequently in the creative process and indicates that

it is preferred over other behaviours.

Every pattern that is identified in one or more creativity maps has a particular frequency.

The example behaviour described previously is a common sequence that can probably be

identified often. A creation usually starts with a concept and discussions with colleagues,

before the actual process begins. However, this is not mandatory and some writers listen to

music before writing or other artists drink a glass of wine to gain some inspiration. Every

creator has an own, personal set of frequent or even infrequent behaviours, which can be

used for the assistance of the creative process. For example, if frequent behaviours can be

categorised into ”supporting” and ”non-supporting” ones and stored in a database so that

they are retrievable for comparison tasks, it is possible to utilise this information in order

to assist the creator during the creation process. Hints that help in situations where the

creator is ”stuck” give a helping advice for solving current issues. Frequent information

additionally describe the essential behaviours of the creativity map. Comparing creativity

maps based on this core information allows to identify the dynamism of behaviours and

can help to generate an useful overview for the construction of patterns.

Not only the most frequent behaviours are relevant for the analysis. It might be possible

that a creator used a sequence of actions only rarely, but it describes a very efficient

process. This still represents a personal behaviour that refers to the creator similar to a

highly frequent sequence. Hints about this can help to increase the frequency and support

the creative process. The difference between frequencies allows to describe the dynamics of

behaviours. For instance, a preferred behaviour disappears, others emerge or previously

infrequent ones are suddenly used commonly. Reasons for this might include a change

of the work environment, collaboration, deadlines or other even external circumstances

[81]. It is therefore essential to consider the dynamics of creative behaviours in parts of

a single creativity map or also across a corpus of maps. This allows to observe behaviour

92

Frequent Information Extraction

developments, which might be helpful to evaluate the creativity support. Results can

possibly be analysed with respect to frequency alternations.

Once frequent behaviours were extracted from creativity maps, they can also be sorted

or filtered based on the purpose of the analysis and post-processing. This can include

particular actions, viewpoints, sequential orders or other properties of interest. Especially

the previously described information hiding is able to conceal irrelevant information in

a preprocessing phase. Information extraction can then be used as a major behaviour

mining step that is built on top of it.

6.2.1 Specification of Frequency

The complexity and structure of a creativity map are essential properties that need to

be considered for the frequency measurement. This includes its size as well as shared

prefixes of two or more branches. For the calculation of frequency, it is therefore crucial

to compare the occurrence rates of behaviours with similar length, as these have an equal

chance of occurring. For example, longer behaviours are less probable, but also occur less

often in a creativity map. In contrast, small sequences of actions occur more frequently.

A particular behaviour of length n is therefore compared to the quantity of all behaviours

of length n. This described metric normalises the frequency and adapts to the size of the

creativity map. The following elements define the frequency of a behaviour.

• The behaviour count c(b) specifies the quantity of a behaviour b in a creativity map.

Any occurrence of b is counted. The value might be higher for larger creativity maps,

as more occurrences are possible. However, it is not mandatory, as large maps also

contain behaviours that occur rarely.

• The occurrence set Bn contains the occurrences of every length n behaviour that can

be identified in a creativity map. For example the set B3 describes the occurrences

of any behaviour b where |b| = 3. |Bn| is the size of Bn, in particular the number of

occurrences of length n.

• The frequency f(b) describes the relative frequency of a behaviour b in a creativity

map. As mentioned before, the frequency of a behaviour needs to consider the size of

the creativity map for a meaningful result. It is determined as the relation between

the behaviour count c(b) of a behaviour b and the amount of all occurrences of the

same length |b|.

93

Frequent Information Extraction

f(b) =
c(b)

|B|b||

The proposed frequency metric implies that a behaviour needs to occur more often in a

large creativity map than in a small one in order to gain an identical frequency. Common

approaches in data mining and especially in frequent sequence mining [76] use a more

simplistic definition of frequency [106], which disregards this information. Different re-

quirements are usually the reason for this. These approaches are only interested in the

number of sequences, which contain a certain pattern, without considering the quantity of

this pattern in a single sequence. Hence, only a distinction between sequences without any

occurrences and those with one or more occurrences is made. However, as creativity maps

represent complex structures, it is necessary to ensure that the frequency is determined in

a suitable way. The use of frequency thresholds for the further classification of frequent

behaviours is discussed in Section 6.3.

6.2.2 Search Space for Frequent Information

The search space for frequent information specifies all behaviours that are relevant for

the frequent information extraction process. It should be kept as small as possible to not

consider irrelevant information which might distort the results. However, a size reduction

during the extraction process is difficult, as a variety of frequencies is relevant for the

analysis. It is also impossible to define a relationship between the frequencies of behaviours

and sub-behaviours [57], because of the previously defined frequency metric. For instance,

a length 2 behaviour that occurs 10 times in a creativity map has a different frequency

than a behaviour of length 3 with identical behaviour count in the same creativity map,

because the sets B2 and B3 contain different amounts of occurrences. It is therefore

always necessary to determine the total number of occurrences Bn to be able to calculate

the frequency of a particular behaviour of length n.

The original search space for frequent information can become very large and might con-

tain at least temporarily irrelevant behaviours. It was described in detail in the previous

chapter how this information in the form of viewpoints and actions can be hidden from

a creativity map. This hiding process can be used prior to the frequent information ex-

traction in order to reduce the amount of behaviours. It is additionally possible to further

restrict the search space to behaviours of a particular length. Very long information, like

for instance sequences with 10 or more transitions are probably irrelevant, as they are

94

Frequent Information Extraction

difficult to handle and analyse. On the other hand, it is also possible that small be-

haviours of length 1 and 2 are not relevant. They are usually very frequent and hardly

usable for the extraction of valuable information. The search space that is used for the

frequent information extraction process is therefore restricted and specified by a number

of conditions.

• The behaviour description that is used for the information hiding. It allows for the

reduction of the search space to a particular and relevant subset of behaviours.

• The minimum length condition lmin, which specifies the minimum length of a be-

haviour. A behaviour is only extracted, if its length is equal to or greater than this

threshold.

• The maximum length condition lmax which specifies the maximum length of a be-

haviour. A behaviour is only extracted, if its length is equal to or less than this

threshold.

These restrictions allow the analyser to reduce and adapt the search space to the personal

needs. Irrelevant behaviours can be hidden first and the remaining ones can then be

further limited. A behaviour b is only extracted if lmin ≤ |b| ≤ lmax. The search space

additionally constitutes only those creativity maps of the corpus, which are interesting for

the analysis. They can be filtered in a preceding step, for instance by using the hierarchical

categories that were described in Section 4.3. It enables to extract valuable information

about a creator, certain projects or possibly a whole domain. This also saves storage space

that would be needed otherwise to keep all maps in the corpus. It is always possible to

further reduce or also enlarge the search space during the information extraction. Any of

the previously defined conditions can be changed, which then leads to a modification of

the corpus.

6.3 Frequency Categories

The frequency of a behaviour has been defined as the relationship between the behaviour

count and the amount of all occurrences of similar length. It was mentioned before that not

only the most frequent behaviours are relevant, but also uncommon sequences might be

important for the analysis. This information can be used for a classification of behaviours,

which illustrates the variety of frequencies that is present in a creativity map.

95

Frequent Information Extraction

The four frequency categories Preferred, Common, Uncommon and Zero are introduced

for this reason. They are depicted in Figure 6.1, each coloured differently. A distinction

between them is realised with three thresholds. The maximum frequency threshold fmax,

which describes the upper boundary, the minimum frequency threshold fmin, which is the

lower boundary and the zero threshold fzero, which specifies the lowest boundary. The

four categories were chosen for the frequency mapping according to the semantics. For

example, a behaviour that occurs very often is preferred by the creator and one that can

be identified only rarely is uncommon. This allows each category to represent a particular

frequency range and therefore the creator’s personal behaviour preferences.

f(b) = fmax

f(b) = fmin

f(b) = fzero

Common

Uncommon

Preferred

Zero

Existing

Non-Existing
f(b) = 0

Figure 6.1: Frequency Categories

The categories build a hierarchy with the less frequent behaviours at the bottom and

increasing frequency towards the top. The dotted lines represent the three previously

mentioned frequency thresholds that are used for their distinction. The provided vari-

ability allows for an adaptation to the particular situation, search space and creativity

maps. It might for instance be necessary to configure the thresholds differently for specific

projects, creators or domains. Sufficient background knowledge about the creative pro-

cesses needs to be provided by the analyser for their initialisation. This section explains

the four illustrated categories in detail together with their purposes for the analysis and

creativity support.

96

Frequent Information Extraction

6.3.1 Preferred

The previously defined maximum frequency threshold fmax separates preferred behaviours

from the remaining ones. This includes all behaviours with a frequency higher than or

equal to fmax, which allows to specify the set of preferred behaviours BPr in the following

way.

BPr = {b|f(b) ≥ fmax}

Preferred behaviours specify sequences of actions that are performed more frequently than

most of the other ones in a creativity map. For example, a behaviour such as
implementing−→

testing−→ might be used often in the software development domain and can therefore be

identified with a high frequency. However, this is not mandatory and cannot be generalised

so easily, as some software developers might reject to use this particular pattern. Reasons

for this can include different development models or given work flows that prohibit these

activities. Personally preferred sequences can behave similarly, as they probably not share

a high quantity among different creators. This is important to be considered in the study

of the creativity maps.

The quantity of short behaviours is probably rather high in the preferred frequency cate-

gory. Especially behaviours of length 1 or 2 have a high chance of repetition, which allows

them to easily gain a higher frequency. However, as the number of short behaviours in

a creativity map is higher than the amount of long behaviours, high frequent short be-

haviours need to occur more often, according to the frequency definition that was described

above.

The amount of preferred behaviours will probably decrease with increasing lengths of the

sequences. On the one hand, longer behaviours do not occur as often as short ones in

the creativity map and on the other hand, more possibilities exist for their construction.

Therefore, the preferred frequency category presumably contains only a small amount of

longer behaviours, although this assumption also depends on the length constraint lmax.

For example, if this condition is set to 2, long behaviour will not be extracted at all.

6.3.2 Common

The two frequency thresholds fmin and fmax that were mentioned before are used for

the specification of the common frequency category. This includes all behaviours with

97

Frequent Information Extraction

a frequency between these two boundaries, which allows to specify the set of common

behaviours BCo in the following way.

BCo = {b|fmin ≤ f(b) < fmax}

Common behaviours describe sequences which were performed with an average frequency,

where average in this case means a frequency between the minimum and maximum thresh-

olds. An example of a common behaviour might be
conceptualising−→ implementing−→ testing−→ , which

extends the previously described preferred behaviour with an additional
conceptualising−→ tran-

sition. The software developer commonly needs to conceptualise during the development

process, but not as often as implementing or testing. Common behaviours can describe

a wide variety of sequences and it is not necessarily the quantitative majority, as a lot

of behaviours occur very rarely and are therefore categorised differently. However, they

describe common activities of a creator or even a particular subset of creativity maps,

such as a whole domain, a project or another constellation.

In contrast to the preferred frequency category, it is rather difficult to further specify the

behaviours of this set. Common sequences can be shared in a domain or across creators

with similar backgrounds, as they might be used to solve shared problems [10]. The

distribution with respect to the lengths of these behaviours is probably similar to the

preferred category. This means that the quantity decreases with an increasing sequence

length. However, as the frequency threshold is lower than for the preferred set, more long

behaviour are able to join this category.

6.3.3 Uncommon

The next category according to the descending order is the uncommon frequency category.

The zero and minimum frequency thresholds fzero and fmin that were mentioned before

are used for its specification. It includes all behaviours with a frequency between fzero

and fmin, which allows to specify the set of uncommon behaviours BUn in the following

way.

BUn = {b|fzero ≤ f(b) < fmin}

Uncommon behaviours describe sequences that were not performed very frequently by the

creator. An example can be the behaviour
conceptualising−→ testing−→ , which describes a probably

uncommon sequential order of actions for a software developer. However, this particular

behaviour is still performed in certain situations. These can be rarely occurring moments

98

Frequent Information Extraction

or the creator might have performed the actions unconsciously. The uncommon frequency

category usually grows larger than the previously specified ones, as a lot of behaviours are

performed with a low frequency. Especially long sequences are often uncommon, as the

chance of their repetition is very low. However, if the difference between the two frequency

thresholds fmin and fzero is well defined, it allows to keep this category small, which is

beneficial for the extraction of useful information and knowledge.

Further assumptions about the behaviours of this category are difficult, as nearly any

sequence of actions can be uncommon for a particular creator. They can describe the

unusual treatment of a situation or just generally any behaviour which does not describe

a common sequence, as it was mentioned before. The category will probably be larger and

also contain more longer behaviours than the two previously defined ones. The amount of

sequences also not necessarily decreases with an increasing length. However, this depends

on the specification of the two frequency thresholds, which can have fundamental influence

on the results.

6.3.4 Zero

Behaviours with a frequency less than fzero or those that do not occur in any of these sets

and therefore have a frequency of 0 belong to the zero category BZe. It is specified in the

following way.

BZe = {b|f(b) < fzero}, or more detailed

BZeE = {b|0 < f(b) < fzero} : existing set

BZeN = {b|f(b) = 0} : non-existing set.

The zero frequency category splits into two different sets. On the one hand the existing

behaviours which are present in the creativity map. They allow to keep the uncommon

frequency set small, as behaviours which occur only very rarely can be assigned to the

zero category with an appropriate fzero threshold. On the other hand the non-existing

behaviours, which describe all activities that were not performed by the creator(s). This

set does not specify any particular sequence as such and is empty. Whenever a behaviour

occurs in a creativity map which cannot be identified in a another map that is used for a

comparison, it belongs to the non-existing part of the zero category. Otherwise all possible

sequences that can be constructed from the set of actions would be assigned to this set,

of course without the ones that belong to the other frequency categories. It would in turn

99

Frequent Information Extraction

become infinite (unless lmin and lmax are specified) and be difficult or even impossible

to handle. The non-existing part of the zero category therefore describes a symbolic set

and its behaviours can only be determined in combination with the sequences of other

frequency categories.

The existing subset of the category probably contains more behaviours than any of the

previously defined sets. Especially long sequences that occur only very rarely are assigned

to it and can then be treated similarly to the activities that were not performed at all.

A main purpose of the zero category, as mentioned above, is to reduce the size of the

uncommon frequency category and support the analysis of behaviour dynamics. It can

for example be used for the identification of behaviours, which emerged from one creative

process to the other. Especially if these behaviours were only performed very rarely, it

might be relevant for the analysis. These dynamisms will be explained in the following

section, which introduces five frequent behaviour categories based on the four frequency

sets that were described in this section.

6.4 Frequent Behaviour Categories

Creativity maps can describe highly dynamic structures. The behaviours that are per-

formed by a creator are able to change their frequency between several maps or even

inside different time periods of a single map. Dynamics can be analysed and tracked

through the creative process to reveal interesting information about the creator. When

did a particular behaviour occur very frequently (preferred), or why did it suddenly change

its frequency and occur only infrequently (uncommon) are only two examples of relevant

questions that might be asked during the analysis. The four previously defined frequency

categories are utilised for the introduction of frequency related behaviour sets. Figure 6.2

depicts five frequent behaviour categories.

The figure shows the different categories of frequent behaviours, in particular Minimal

(fmax)/Minimal (fmin)/Maximal Alternating, Emergent and Disappearing. All of them

are based on the dynamics in the frequency of a sequence in two or more creative processes

or parts of it. A behaviour is then categorised based on an increasing or decreasing num-

ber of occurrences. The three Alternating categories describe the changes of behaviour

frequencies in two directions, the Emergent category specifies increasing and the Disap-

pearing category decreasing frequencies.

100

Frequent Information Extraction

Emergent ↑

/

Dissapearing ↓

Minimal

Alternating (fmax)

Minimal

Alternating (fmin)

Maximal

Alternating
Common

Uncommon

Preferred

Zero

Existing

Non-Existing

Figure 6.2: Frequent Behaviour Categories

For the specification of the frequent behaviour categories, it is assumed that the frequency

categories which were introduced in the previous section were constructed for two creativity

maps. In particular, Pr1, Co1, Un1 and Ze1 for the first map and Pr2, Co2, Un2 and Ze2

for the second one. Each frequent behaviour category is identified as FC1−C2 , where C1

describes the frequency category of the first map and C2 the one of the second map.

6.4.1 Minimal/Maximal Alternating

Minimal Alternating (fmax)

The minimal alternating (fmax) category describes behaviours that change their frequency

and alter between the frequency categories preferred and common. Particularly two dif-

ferent cases exist for this behaviour type. Firstly a previously common sequence that

increases its frequency so that is becomes preferred and secondly the same scenario in the

opposite direction. Minimal alternating (fmax) behaviours, as illustrated in Figure 6.2,

are specified in the following way.

FCo−Pr = {b|b ∈ (BCo1 ∩BPr2)} : Minimal Alternating (fmax) Increasing

FPr−Co = {b|b ∈ (BPr1 ∩BCo2)} : Minimal Alternating (fmax) Decreasing

101

Frequent Information Extraction

This category represents very fine grained dynamics in the behaviour development, which

means that the actual difference in the frequency is probably not very high. The set

FCo−Pr represents behaviours with a higher preference than before. Reasons for this,

such as environmental situation or problems during the creative process may occur more

often and lead to a repetition of these activities. In contrast, the set FPr−Co describes

behaviours that are performed less often.

Minimal Alternating (fmin)

The minimal alternating (fmin) category describes behaviours that change their frequency

and alter between the frequency categories common and uncommon. Similar to the mini-

mal alternating (fmax) set, two different cases exist. Firstly a previously common sequence

that decreases it frequency and becomes uncommon and secondly the same scenario vice

versa. The minimal alternating (fmin) behaviours, as illustrated in Figure 6.2, are specified

in the following way.

FUn−Co = {b|b ∈ (BUn1 ∩BCo2)} : Minimal Alternating (fmin) Increasing

FCo−Un = {b|b ∈ (BCo1 ∩BUn2)} : Minimal Alternating (fmin) Decreasing

Minimal alternating (fmin) behaviours are very similar to the minimal alternating (fmax)

ones and can be studied for the same fine grained changes in the behaviour development,

which allows to determine low dynamics of activities. The set FUn−Co contains behaviours

that were possibly used in some rare situations and developed to become more frequent.

In contrast, the FCo−Un set represents sequences of actions, which are not performed

regularly any more. Alternative ones may have been identified or previous problems and

situations in the creative process are no longer treated in the common way. The creator

might have also dismissed some of the common behaviours.

Maximal Alternating

The maximal alternating category describes behaviours that change their frequency and

alter between the frequency categories uncommon and preferred. Differences in the fre-

quencies of these behaviours need to be higher than for the minimal alternating sequences

to allow them to skip over the common category. The specification is similar to the two

previously defined sets and a behaviour b is categorised as maximal alternating if any of

102

Frequent Information Extraction

the following two conditions is satisfied.

FUn−Pr = {b|b ∈ (BUn1 ∩BPr2)} : Maximal Alternating Increasing

FPr−Un = {b|b ∈ (BPr1 ∩BUn2)} : Maximal Alternating Decreasing

Maximal alternating behaviours describe particularly high dynamics in the behaviour de-

velopment. For example, if a creator performed an action very rarely (uncommon) and

changes it to become very frequent (preferred) towards the end of the project, possible

effects might be revealed. If a linkage between the changes and an enhancement in the

efficiency [13] is possible, these patterns become useful for the creativity support. Abrupt

changes of an activity might additionally be the effect of creativity assistance. For ex-

ample, if support tools illustrate possible flaws in the creative process, sudden frequency

increase as well as decrease of some behaviours can be the result.

6.4.2 Emergent

The emergent category contains behaviours that previously belonged to the zero category

and are now part of one of the three categories uncommon, common or preferred. They

were only rarely or not at all used in the previous creativity map and can now be identified

due to an increasing frequency. The zero set distinguishes between existing and non-

existing behaviours, which is considered in the emergent category as well. The letter ”X”

is used as a place holder and represents one of the three sets uncommon, common or

preferred. A behaviour is emergent, if any of the following conditions is satisfied.

FZe−X = {b|b ∈ (BZe1 ∩ (BUn2 ∪BCo2 ∪BPr2))}, or more detailed

FZeE−X = {b|b ∈ (BZe1E ∩ (BUn2 ∪BCo2 ∪BPr2))} : existing set

FZeN−X = {b|b ∈ (BZe1N ∩ (BUn2 ∪BCo2 ∪BPr2))} : non-existing set.

The second and third line specify more detailed versions of the emergent behaviours, which

distinguish between the existing and non-existing set in the zero category. Sets marked

with ”E”, like BZe1E specify existing behaviours and sets marked with ”N”, like BZe1N
specify non-existing ones. Figure 6.2 illustrates three possibilities for emergent behaviours

with respect to their destination set. It allows for a further refinement of this category

into Uncommon Emergent, Common Emergent and Preferred Emergent. This distinction

supports a more detailed analysis but might increase its complexity at the same time. In

103

Frequent Information Extraction

particular, the following three cases exist for a more detailed determination of emergent

behaviours.

FZe−Pr = {b|b ∈ (BZe1 ∩BPr2)}

FZe−Co = {b|b ∈ (BZe1 ∩BCo2)}

FZe−Un = {b|b ∈ (BZe1 ∩BUn2)}.

Similar to the previous distinction between existing and non-existing behaviours in the

zero category, it is also possible to further distinguish each of the detailed emergent be-

haviours that are shown above. One example is the Preferred Emergent category, which

is additionally related to existing behaviours. It is specified in the following way.

FZeE−Pr = {b|b ∈ (BZe1E ∩BPr2)}

The remaining behaviours can be constructed analogously. An emergent behaviour might

be studied for the identification of environmental or other external events that influenced

the creative process. One example is collaboration [99], which possibly leads to unexpected

activities and behaviours that were not present whilst the creator was working in isolation.

Creativity, as it was mentioned in the third axiom of creativity (Section 3.2) is an emergent

phenomenon. Exactly this property can be analysed and evaluated with the definition of

the emergent behaviour category. Solutions to previously non-existing problems might be

revealed, leading to an extraction of new information about the creative process. Another

reason for emergent sequences of actions can be the hopping phenomenon, which was

described in Section 3.3.

6.4.3 Disappearing

The disappearing category describes behaviours that change their frequency and alter

between any of the three frequency categories preferred, common or uncommon and the

zero set. A sequence of actions disappears, if its frequency decreases to less than fzero. If

two creativity maps are compared, then all behaviours which cannot be identified in the

second map but in the first one automatically belong to this category as well. A behaviour

is therefore disappearing, if any of the following conditions is satisfied.

FX−Ze = {b|b ∈ (BUn1 ∪BCo1 ∪BPr1) ∩BZe2)}, or more detailed

104

Frequent Information Extraction

FX−ZeX = {b|b ∈ (BUn1 ∪BCo1 ∪BPr1) ∩BZe2E)} : existing set

FX−ZeN = {b|b ∈ (BUn1 ∪BCo1 ∪BPr1) ∩BZe2N)} : non-existing set.

Similar to the emergent behaviour category, the letter ”X” is used as a place holder and

represents any of the three sets uncommon, common or preferred, ”E” stands for the ex-

isting and ”N” the non-existing subset of the zero category. A further distinction between

Preferred Disappearing, Common Disappearing and Uncommon Disappearing is possible,

which might be helpful for a fine grained and detailed analysis. These disappearing be-

haviours are defined in the following way.

FPr−Ze = {b|b ∈ (BPr1 ∩BZe2)}

FCo−Ze = {b|b ∈ (BCo1 ∩BZe2)}

FUn−Ze = {b|b ∈ (BUn1 ∩BZe2)}

Similar to the distinction between between existing and non-existing behaviours in the zero

category, it is possible to further distinguish each of the detailed disappearing behaviours

that are shown above. One example is the Preferred Disappearing category, which is

additionally related to existing behaviours. It is specified in the following way.

FPr−ZeE = {b|b ∈ (BPr1 ∩BZe2E)}

The remaining behaviours can be constructed analogously. Disappearing behaviours can

be studied for the extraction of information about the creator and actions that were

neglected. The dismissal of these activities was maybe advantageous, but it is also possible

that behavioural patterns changed and efficient sequences of actions with a major impact

on the creative process became irrelevant. Creativity support tools can remind the creator

about them to allow for a review of specific creation periods. Disappearing and emergent

behaviours may also be closely linked, as new or more efficient behaviours possibly replace

old ones. This relationship might as well be identified in the previously defined alternating

behaviour categories.

6.5 Extraction of Frequent Behaviours

It was mentioned at the beginning of this chapter that frequent information represents

the essential behaviours of creativity maps. Frequency and frequent behaviour categories

105

Frequent Information Extraction

are utilised for the specification of a creator’s behaviour development. For example, it

is possible to construct several PCMs from a single creativity map, each representing a

different creation stage. Comparing these maps based on frequent behaviours empha-

sises differences and similarities, which enable to reason about the dynamics of a creative

process. It is of course necessary to construct the frequency categories first, before the

frequent behaviour categories can be studied. Figure 6.3 illustrates the process of frequent

information extraction.

Frequency

Calculation

Cr. Map Filter

/

Hiding

M1 M3

M2 M4

M5 M1

PMC2 M4

PMC5

Creativity Map(s)

/

Behaviour

Description (BDL)

Different

Analyses

Analyser

Behaviour

Extraction

Creator(s)

Corpus of recorded

Creativity Maps

Filtered Maps /

PCM

Common

Uncommon

Zero

Preferred

Common

Uncommon

Zero

Preferred

Common

Uncommon

Zero

Preferred

Common

Uncommon

Preferred

fzero , fmin , fmax

lmin , lmax

Zero

Existing

Non-Existing

Figure 6.3: Frequent Behaviour Extraction Process

The figure shows that the corpus of creativity maps is constructed by one or more cre-

ator(s). Relevant creativity maps can be filtered beforehand, based on the purpose of the

analysis and an additional corpus reduction is possible through information hiding, which

was explained in detail in the previous chapter. Partial Creativity Maps (PCMs) can

be constructed for an aim oriented information extraction approach with the help of be-

haviour description. Once the filtered and reduced corpus is created, the creativity maps

can be further analysed. Other possible analyses, for instance visual exploration [27] are

illustrated by the arrow that points to the bottom of the figure. This is one reason for a

separate description of the hiding process, as it not necessarily interacts with the informa-

tion extraction approach. The frequency calculation component uses the reduced corpus

for the extraction of behaviours and their storage into the frequency categories preferred,

common, uncommon and zero. These sets are constructed for each single creativity map

or group of maps.

After the frequency calculation and the categorisation into the different frequency sets,

the extraction of the behaviour dynamics follows. This step compares a number of

categories for the determination of behaviour developments, which are represented by

106

Frequent Information Extraction

any of the previously mentioned frequent behaviour categories Minimal (fmax)/Minimal

(fmax)/Maximal Alternating, Emergent or Disappearing. Creativity support tools can

utilise this information, as the examples that were described in the previous sections il-

lustrated.

6.5.1 Frequency Calculation

The frequency calculation is responsible for the construction of different frequency cat-

egories and the extraction and classification of the corresponding behaviours from the

reduced corpus of creativity maps.

Behaviour Identification

Each map is traversed with the depth-first search [91] and any identified behaviour is

inserted into a frequency category. The length constraints lmin and lmax additionally

reduce the number of behaviours in the search space and also affect the depth-first traver-

sal. Instead of visiting only single transitions, a window of length lmax is sliding through

the map and determining all behaviours with a length between lmin and lmax. They are

identified by creating all suffix-behaviours which are present in the current window. Let

suffix(b,n) describe the suffix of b, starting from position n, including the action label at

n. For example, for the behaviour b =
edit−→read−→ dis−→ edit−→ dis−→, the operation produces suf-

fix(b, 3) =
dis−→ edit−→ dis−→ or suffix(b,5) =

dis−→. The window that slides through the creativity

map usually contains a behaviour b of length lmax. Whenever this sequence changes, the

sub-behaviours suffix(b,1), suffix(b,2), . . . , suffix(b,|b| − lmin + 1) are inserted into the

frequency categories. This is only one technique for the behaviour extraction and it might

also be possible to use the prefix instead. However, if the suffix is used, the sliding window

never needs to leave the creativity map and it is only necessary to fill it successively one

time at the very beginning. If the prefix is used, the window always needs to slide until

the last transition of every branch occurs at its beginning.

The creativity map usually contains several branches that need to be traversed. Two or

more of them can share a common prefix, which needs to be considered only once to avoid

counting certain behaviours again. It was mentioned before that the depth-first traversal

returns to a state, whenever it is the source of an unvisited branch. The first transition

of this branch adds up to an unvisited behaviour with the previous lmax − 1 transitions,

going backwards from the branching state. Instead of revisiting these parts, the frequency

107

Frequent Information Extraction

calculation process will store the last lmax−1 transitions of the sliding window into a hash

map, whenever a state with multiple outgoing transitions is reached. The key is the state

label and the value specifies the window content. Every time a new branch is visited, the

transitions are requested from the hash map and recopied into the window.

Construction of the Frequent Behaviour Categories

As the traversal continues, the behaviours are inserted into the frequency categories accord-

ing to the previously mentioned suffix calculation technique. Every sequence is initially

stored in the zero category and will then successively raise up into the other sets, as its

map count increases. Figure 6.4 depicts this process.

f(b) = fmax

f(b) = fmin

f(b) = fzero

Common

Uncommon

Preferred

Existing

Non-Existing

Zero

Figure 6.4: Frequency Calculation

The figure illustrates how the different frequency categories are filled successively as the

behaviour count increases, whenever a sequence is identified. If any of the thresholds fzero,

fmin or fmax is reached, a behaviour moves up one level into the next set. Sequences will

successively ascend from the bottom, which means that the Uncommon, Common and

Preferred categories are empty at the very beginning. The size of the arrows represents

the number of behaviours that change between the levels. It was mentioned before that

the zero category is partly symbolic so that the transition to the uncommon set is depicted

as a transparent arrow. Obviously, a large number of sequences that can be identified in

a creativity map moves from the zero to the uncommon class, which is indicated by the

largest arrow. A moderate amount of the behaviours in the uncommon category moves

upwards one level. Some of the common sequences might be performed more frequently

108

Frequent Information Extraction

and therefore become a member of the preferred category. This arrow is illustrated very

small, as probably only few activities are preferred.

The arrows do not necessarily illustrate the correct amount of behaviours for each cate-

gory, as this depends on the configuration of the three frequency thresholds. It can be

assumed that the zero set and particularly the existing subset contain the most items,

as especially long sequences of actions have a very low chance of occurring. In contrast,

the preferred category possibly contains the fewest behaviours. The specification of the

frequency thresholds might require additional knowledge and experience, as the third case

study in Chapter 8 illustrates. It emphasises that these boundaries need to be configured

rather small in order to gain useful results.

6.5.2 Behaviour Extraction

The next step in the information extraction process is the determination of the frequent

behaviour categories. It was mentioned before that they describe the dynamics of the

creative process for a creator or a specific combination of creativity maps. The extraction

of frequent behaviour categories can only be performed if two maps are compared. The

previously described step finished with the construction of the frequency categories for

each creativity map. These are now combined and checked for overlapping sequences.

The particular set that is being extracted depends on the purpose of the analysis. If

for example the impact of collaboration [47] with respect to new behaviours should be

studied, it is possible to determine all behaviours that emerged from one creativity map

to the other. As mentioned before, it is also possible to specify emergent or disappearing

behaviours in greater detail. Figure 6.5 depicts two examples for the behaviour extraction.

The figure shows the four frequency categories that were constructed for each creativity

map. It highlights minimal alternating (fmax) behaviours that are part of the preferred

set for the first map and become common in the second map as a result of a frequency

reduction. The second example shows emergent behaviours, which were not present in the

first map but belong to the uncommon frequent behaviour set of the second map. This

particular type of behaviours can be specified more detailed as FZeN−Un.

109

Frequent Information Extraction

Common

Uncommon

Preferred

Common

Uncommon

Preferred

Existing

Non-Existing

Zero

Existing

Non-Existing

Zero

Minimal

Alternating (fmax)

Emergent

Figure 6.5: Behaviour Extraction

Behaviour Tracking

The previous example illustrated the dynamics of two behaviours for two distinct creativ-

ity maps. It is also possible to track one or more sequence(s) through a corpus of maps,

which enables an exact determination of a behaviour development. The analyser might for

instance be alerted, if an ”uncommon” change is discovered to allow for the extraction of

additional information like environmental influences. It can be utilised for the creativity

support, when similar situations occur or related changes in the frequency of other be-

haviours are discovered. This might also be relevant for teams of creative individuals [9].

Figure 6.6 depicts an example of five creativity maps together with the illustration of one

behaviour development. It is marked as a read line and alternates between the frequency

categories as it is performed more or less frequent in the respective map.

The presented behaviour is uncommon in the first two maps and becomes maximal alter-

nating afterwards, in particular FUn−Pr, as its frequency increases. A decreasing frequency

between M3 and M4 lets this sequence become minimal alternating (fmax). No change

of the frequency category can be determined for the last two creativity maps. Especially

the abrupt change between M2 and M3 might become important for the analysis in or-

der to identify its reasons. However, the particular information that will be extracted

and compared depends on the requirements and aims of the analysis, which is not part

of this approach. The specified framework and processes allow for the extraction of any

previously defined frequency and frequent behaviour category.

110

Frequent Information Extraction

Emergent ↑

/

Dissapearing ↓

Minimal

Alternating (fmax)

Minimal

Alternating (fmin)

Maximal

Alternating
Common

Uncommon

Preferred

M1 M2 M3 M4 M5

Existing

Non-Existing

Zero

Figure 6.6: Development of a Behaviour

6.6 Summary

This chapter explained the frequent information extraction approach. A metric for fre-

quency was introduced and the search space for frequent behaviours was specified. It was

explained how the two length thresholds lmin and lmax are used for a further limitation

of relevant sequences. The four distinct frequency categories Zero, Uncommon, Common

and Preferred were defined with the aid of the three thresholds fzero, fmin, fmax and their

purpose for the analysis was discussed. It was shown how a slightly modified depth-first

traversal that utilises a sliding window can be used for the frequency calculation. Further-

more, the five frequent behaviour categories Minimal (fmax)/Minimal (fmin)/Maximal

Alternating, Emergent and Disappearing were introduced and is was explained how they

are used to determine the dynamism of a creative process. The frequent behaviour extrac-

tion process was discussed and its combination with the previously introduced information

hiding approach was illustrated. An example of a behaviour development was illustrated

in the last part of this chapter.

111

Chapter 7

Tool Support

Objectives

• Introduce the De Montfort Creativity Assistant (DMCA) and its layer based archi-

tecture.

• Describe the Collaborative Editor and its design.

• Introduce the De Montfort Creativity Mapper (DMCM) and explain its architecture

and implementation.

• Present the Creativity Map Construction Engine (CMCE) together with its imple-

mentation and design.

• Describe the Information Mining Engine (IME)

• Present the Knowledge Repository and its architecture.

7.1 Introduction

This chapter explains the prototype tool support for the presented research. It discusses

the implementation and design of the De Montfort Creativity Assistant (DMCA), which

represents an extendible framework that has been developed for the support of creativity

and creative processes. Its layer based architecture is explained and each of the layers

112

Tool Support

is presented in detail. The DMCA offers a pluggable design, which allows for the inte-

gration of tools from other domains. Architectures and implementations of the default

components are explained and it is illustrated how they become part of the overall de-

sign. The facilities for the construction of creativity maps and information mining are

presented. They illustrate the implementation of the proposed approaches. A mapping

facility, particularly the De Montfort Creativity Mapper (DMCM), which is responsible

for the observation of creative processes is introduced and its design and implementation

are discussed.

7.2 De Montfort Creativity Assistant (DMCA)

The DMCA constitutes the overall tool support and implements the techniques and pro-

cesses that were introduced in this thesis. It is designed to computationally support

creativity and the creative process. The idea is to create a facility that is not restricted

to a single domain, but allows to develop creative ideas in a multidisciplinary context. As

the creator moves through the different stages of the creative process, the tool helps to

analyse the gathered data and support the creation. The creative process and the artefact

that is being created will be captured. Especially the performed actions must be present

at any time to enable a creator the returning to previous stages.

7.2.1 Requirements

Ben Shneiderman introduced a number of design principles for creativity support tools,

which were discussed in Section 2.5. The design of the DMCA follows similar principles

and satisfies the following requirements.

Web-Enabled The DMCA should support a time and place independent access to allow

for convenient work conditions. It should not be bound to any platform or workplace

to gather a wide variety of creators. To fulfil these requirements, the DMCA has

been designed as a web-enabled tool. The server side is responsible for the data

storage and handling, the client side allows users to create and retrieve artefacts. A

web-enabled tool has is advantageous, as clients are always using the latest version.

No updates need to be distributed, they are instead integrated into the tool once and

then automatically downloaded by each client. In contrast, a standalone application

113

Tool Support

would need to apply patches and it is never guaranteed that all users are installing

them.

Data-Centric The previous chapter illustrated that data is the essential part in creativity

support. It needs to be treated as a first-class citizen, which means that its creation,

sharing and modification should be realised as conveniently as possible. A centralised

data storage ensures that client information is saved in one place and allows external

tools to access it for analysis purposes. It was mentioned before that the artefact

and the creative process should be visible to the entire system.

Collaboration One design principle for creativity support tools, which is also mentioned

by Shneiderman is collaboration. Tools should provide possibilities to collaboratively

create artefacts and share them with others. This needs to be possible for a variety

of domains, or even across them. It is therefore necessary to integrate facilities for

different types of creators, like writers, artists or musicians. These tools need to be

seamlessly integrated into the overall design and support team work.

7.2.2 Layer Based Design

The DMCA is designed as a modular, layer-based system, which provides the needed flex-

ibility for a convenient handling and an easy adaptation to different domains. Each of

these layers is responsible for specific tasks and is explained in the following. Figure 7.1

depicts the DMCA design, which splits into the components De Montfort Creative Environ-

ment (DMCE), De Montfort Creativity Mapper (DMCM), Data Presentation, Creativity

Mining Engine and Knowledge Repository.

De Montfort Creative Environment (DMCE) The DMCE represents the tools that

are mainly used by the creators. It contains facilities which allow for collaboration

and data creation. These components are able to link several collaborators and

enable them to work together time and place independent. It is an essential part

of the system that collects and stores data in a centralised repository for further

analysis.

De Montfort Creativity Mapper (DMCM) The DMCM is a separate component of

the DMCA, which is used for the recording and visualisation of creative processes.

It stores the constructed creativity maps in the Creativity Map Repository (CMR)

of the Knowledge Repository. The DMCM can be invoked as an integrated facility

inside the Collaborative Editor or as a standalone application.

114

Tool Support

Data Presentation

Creativity Mining Engine

Chat System
Pend-It

Notes
Whiteboard

Collaborative

Editor

De Montfort Creative Environment

Version

Control

Creativity Map

Repository

External

Repository

Knowledge Repository

De Montfort

Creativity

Mapper

Information

Mining Engine

Creativity Map

Construction

Engine

Figure 7.1: Architecture of the De Montfort Creativity Assistant (DMCA)

Data Presentation The Data Presentation layer transforms the user input into a com-

putationally processable structure. It works bidirectionally and structures the data

from the Knowledge Repository so that it can be displayed and vice versa. This is

essential for the storage and retrieval of creativity maps. One part of the Data Pre-

sentation layer is the CMCE, which is responsible for the construction of creativity

maps from the recorded creative processes.

Creativity Mining Engine The Creativity Mining Engine analyses the generated user

data and creates new information and knowledge for the creativity support. One

part of the Creativity Mining Engine is the Information Mining Engine (IME), which

realises the hiding and extraction techniques that were described in this thesis.

Knowledge Repository The Knowledge Repository saves the data that is handled by

the DMCA. It is responsible for the storage of any generated content, especially the

creativity maps and artefacts. The Knowledge Repository splits into three subcom-

ponents. Firstly the version control that stores the different versions of the artefact,

secondly the CMR which contains all constructed creativity maps and thirdly the

external repository that is linked to external resources like the internet or libraries

in order to extend the internal knowledge and enable a broader analysis.

Each layer of the DMCA is flexible and can be extended with new components, for instance

new links to external knowledge for the Knowledge Repository. The key concept of the

115

Tool Support

tool is to allow creators of any domain to capture their creative processes and generated

artefacts in all stages of the creation processes. The collected data is then analysed to

create valuable information and knowledge for the user feedback. It allows to assist the

creative process of a creator and possibly improves and accelerates the process of artefact

creation.

The development of the DMCA and its tools, as depicted in Figure 7.1 were developed by

myself and Keno Buss, who is another Ph.D. student at the STRL. The components that

I developed are in particular:

• Collaborative Editor

• De Montfort Creativity Mapper (DMCM)

• Creativity Map Construction Engine (CMCE)

• Information Mining Engine (IME)

• Version Control

• Creativity Map Repository (CMR)

It needs to be mentioned that the initial idea of designing the DMCM as a toolbar with

several buttons was given by my supervisor Prof. Hussein Zedan. Issues regarding the

components mentioned above were also sometimes discussed during meetings with Keno

Buss and Prof. Hussein Zedan.

7.3 De Montfort Creative Environment (DMCE)

The DMCE is the top most layer of the DMCA. It integrates several collaboration com-

ponents, which create a convenient environment for the creation of artefacts. One re-

quirement at an early stage of the design was the integration of a collaborative editing

facility, which allows to create, share and modify documents. Together with this, several

other facilities were developed for the DMCE, namely a Chat System, Whiteboard and

Pend-It Notes. This section presents an overview of the current DMCE components and

explains their client/server architecture. The Collaborative Editor will be described in

greater detail in the following section and is therefore not further mentioned here.

116

Tool Support

7.3.1 Collaboration Components

Chat System A Chat System enables the communication between creators to discuss

modifications of the artefact (i.e. document) or give feedback. It distinguishes

between several channels. On the one hand a global one, where all creators are able to

communicate with each other and on the other hand special project channels. They

allow for conversations about particular projects without interrupting or disturbing

other collaborators.

Whiteboard The Whiteboard is a collaborative drawing space that enables the creation

and sharing of sketches. It is more convenient in some situations to illustrate an

idea or problem with a quick sketch. The Whiteboard can for instance be used as a

storyboard where scenes and characters are designed. Collaborators have the choice

between several shapes like rectangle, square or circle and can also draw freely with

the pen tool.

Pend-It Notes Pend-It Notes enable collaborators to hold the results of the day, write

down initial ideas or store reminders for important information. They represent a

personal and unshared repository.

Additionally to the previously described collaboration components, a Project Management

Facility that is responsible for the creation and management of projects was developed.

It represents the main user interface element, which summarises and invokes the collabo-

ration components and provides convenient access to them. As the initial version of the

DMCA was developed mainly for the writing domain, projects are realised as hierarchies

of documents. This allows to create and structure them in a flexible and customised way.

Figure 7.2 depicts a screenshot of this facility.

The file operations implement functionalities for the creation and deletion of projects, files

and folders. The important and export of files is currently not integrated, but might be

realised in future developments. The task of the access control management is to provide

mechanisms for file sharing with other collaborators and to manage their access during

collaboration. The next two buttons start the Chat System and Whiteboard and the

right-most button invokes the Pend-It Notes component. A double-click on a document,

for instance introduction or chapter1, opens it in the Collaborative Editor. All previously

described collaborative components are invoked from the Project Management Facility. If

a new one is added, a new button should be integrated into this tool.

117

Tool Support

File Operations

(create, delete)

Access Control

Management
Chat System and

Whiteboard

Pend-It Notes

Project Browser

Figure 7.2: GUI of the Project Management Facility

7.3.2 Client/Server Architecture

Each of the collaboration facilities splits into a client and a server component. This satis-

fies the required web-enabled design, which was mentioned before. The client component

allows for (collaborative) modification of an artefact and possibly links several collabora-

tors. It enables the observation and capturing of the creative process and represents the

interface between the user and the whole system. User input and feedback for creativity

support are given through this component. Some parts of the client application depend

on the domain, which it is used for so that its appearance can change. A writer might

need different tools than a musician or a painter. This is realised via customisation of the

DMCE layers.

The server component enables collaboration and is responsible for the handling of client

requests and the storage and processing of user generated data. Any created content is

transported from the client to the server and will be stored in the Knowledge Repository. It

is furthermore processed by the Creativity Mining Engine for the creation of user feedback

and support if necessary. To allow for collaboration, the server manages and exchanges all

changes to an artefact. This information needs to be processed and distributed in the right

order to keep the creators synchronized. This essential feature is realised via a centralised

server that receives and processes any form of communication. To allow for a standardised

information exchange between collaborators, any kind of data is first wrapped into events

118

Tool Support

and then transported. This encapsulates the data and supports a clear and convenient

interface. It also allows for an easy extension, as new components can simply define new

events.

7.4 Collaborative Editor

The Collaborative Editor is a required tool that needed to be integrated into the DMCE. It

implements an editing facility, which enables writers to create, share and collaboratively

edit of documents. Especially the synchronisation of a document that was opened by

several users is an essential task, which can easily lead to different versions amongst

the collaborators if not being performed correctly. This section presents the GUI of the

Collaborative Editor and explains its design.

7.4.1 Graphical User Interface (GUI)

The Graphical User Interface (GUI) of the Collaborative Editor is kept clear and only

the main editing features are implemented. This allows writers to focus on the document,

instead of spending time for familiarising with the software. As a document can be shared

for collaboration, additional features for a convenient handling of multiple clients were

implemented. For instance, a collaborator list displays all creators with their current status

(online or offline) and text passages of particular authors can additionally be highlighted

with distinct colours. Figure 7.3 depicts a screenshot of the GUI. The DMCM is explained

later in Section 7.5.

Editing Modes

One aim of the DMCA is to support the creative process of a creator. The Collabora-

tive Editor implements this requirement in the form of multiple document modes. They

model different periods that a writer joins during the creation of a document. Robert

Dilts studied the creative process of Walt Disney [29] and developed the idea of these

three modes. He realised that Walt Disney had three distinct phases in his creative pro-

cess, the Dreamer, Realist and Critic phases. The model from Dilts was adapted for the

Collaborative Editor and is called the Dreamer, Maker Critic model.

119

Tool Support

Editing Modes Editing Facilities Collaborator ListCollaborator Colours DMCM

Figure 7.3: GUI of the Collaborative Editor

Dreamer Mode The Dreamer mode involves remembering, imagining, fantasising and

inventing. One possible imagination is a stroll on the beach, enjoying the views

and imagining distant countries across the ocean. The dreamer mode itself does not

create the document, it collects material that is used in the construction process.

Maker Mode The Maker mode includes using this material and crafting, building, syn-

thesising, interpreting, constructing and organising a document from it. This is

similar to returning home from the beach, recalling the walk and using it as the

basis of a story, poem or other work.

Critic Mode The Critic Mode validates the created work, forms the document and re-

moves failures. For instance, the spelling is checked or paragraphs are rewritten.

The presented phases usually correspond to specific situations. For example, the Dreamer

mode may occur in those circumstances that can usually be described as inspirational or

meditative. This might be the case, when the writer is alone or in particular locations.

120

Tool Support

The Maker mode is often associated with the use of patterns, such as certain kinds of

notebooks, pens, computers, or other tools. The Critic mode is the most distant phase,

which is entered when the document or parts of it are finished. It describes situations,

where the text is edited and rechecked to create the final result. Writers can cycle between

the described modes several times, repeating this process in different permutations.

The Collaborative Editor supports these modes by splitting a document into three inde-

pendent texts. To be able to distinguish between them, each mode is implemented as a

separate pane. The resulting three panes are added to one tabbed pane for a convenient

switching, as depicted in Figure 7.3. Text which is written in one mode cannot be over-

written by another one. Each of the modes is stored as a separate document in the version

control system, which is described in Section 7.8.1. The Collaborative Editor implements

a copy and paste functionality that allows to combine the modes or parts of them. The

Collaborator List additionally displays the current mode of a creator with one of the let-

ters (D)reamer, (M)aker or (C)ritic in front of the name. This enables users to identify

which of the three documents each of the other creators is currently editing.

Editing Facilities

The editing facilities that are used to modify the appearance of the text are displayed in a

toolbar at the top. From left to right, the buttons implement the following functionalities:

save the document, print the document, cut, copy, paste text, change the font of the

selected text, change the size of the selected text, format the selected text bold, italic and

underline. They enable quick access to the most important editing features.

Collaborator Colours

Each collaborator is assigned a unique and randomly chosen colour when joining an editing

session. It is a system-wide colour, which can also be used in other components if necessary.

Double-clicking on a collaborator name in the Collaborator List highlights the text that

was written by this creator in the particular colour. It enables other collaborators to get

an overview of the document’s composition. Once the colour for a collaborator has been

switched on, newly inserted text will be marked in real time to enable a tracking of the

editing activities.

121

Tool Support

The Collaborator List

The Collaborative Editor includes a Collaborator List that contains all creators who have

ever edited the document. An additional status for each user (online or offline) allows

to identify the current collaborators. Offline clients are not working on the document at

the moment, but have previously edited it. They have the term ” - Offline” appended

to the names; otherwise only the name is displayed. New collaborators are added to the

list, when they join a shared document the first time. As mentioned in Section 7.3 and

particularly illustrated in Figure 7.2, collaborators can be added to a file with the Access

Control Management.

7.4.2 Revision History

It was mentioned before that the created documents are stored in the version control

system of the Knowledge Repository. Every time the document is saved by a user, a

new version is created. To review this information, the Collaborative Editor includes

a facility that allows to retrieve data from the version control. This enables to review

different revisions and compare them in order to get an overview about their similarities

and differences. Figure 7.4 depicts a screenshot of the previously described component.

The figure illustrates that the revision history facility is seamlessly integrated into the

Collaborative Editor. The list on the right-hand side, next to the DMCM shows all

revisions that were saved by the user or other participating collaborators. Each of them

is displayed with a timestamp, allowing for the tracking of the document creation.

The revisions can be selected and displayed in the editor, with the possibility to revert

to previous document versions. This is a flexible way to return to preceding stages of

an artefact, as it was for example mentioned in the construction process of creativity

maps. The facility provides the necessary information that are required in addition to

the automatic comparison of states. Whenever a creator uses it, the creative process

automatically returns to the corresponding state and continues from there.

It is furthermore possible to compare two document revisions in order to reveal similarities

and differences. This scenario is illustrated in the screenshot. The two texts are shown

beside each other at the top, labelled with the according revision numbers. A comparison

of the documents based on characters, words and paragraphs is shown underneath. Each

of the bar diagrams presents one of these properties. The pie chart illustrates the relation

122

Tool Support

Figure 7.4: GUI of the Revision History Facility

between old and new content that can be identified in the newer revision of the comparison.

7.4.3 Design

It was mentioned before that each component of the DMCE splits into a client and server

element. The communication between both components is realised via standardised events,

which encapsulate the data and ensure a convenient communication. The UML class

diagrams that are presented in this section illustrate only the most important classes and

methods; parameters are additionally omitted to keep them clear.

Collaborative Editor Client

The client of the Collaborative Editor is represented by the GUI of the word processing

tool that was described previously. Its editing operations are sent to the editor server,

which is responsible for their correct distribution to the other users in order to ensure

synchronised documents at all sides. Whenever events are received from the editor server,

123

Tool Support

the client needs to process them and integrate the results into the document in order

to keep it synchronised. Figure 7.5 depicts the UML class diagram of the Collaborative

Editor Client.

+receiveEvents() : Event

+dispatchEvents() : void

+sendOutgoingEvents() : void

EditorUpdater

+setDocument() : void

+getDocument() : ConcurrentDocument

EditorPane

+init() : void

+update() : void

+setVisible() : void

+getEditorPane() : EditorPane

+getEditorMenuBar() : EditorMenuBar

+getColList() : CollaboratorList

+getEditorToolBar() : EditorToolBar

EditorGUI

+init() : void

+setCollaborators() : void

+getCollaboratorNames() : Vector

+changeMode() : void

+setColoured() : void

CollaboratorList

+selectBoldButton() : void

+selectItalicButtn() : void

+selectUnderlineButton() : void

EditorToolBar

+actionPerformed() : void

+insertUpdate() : void

+removeUpdate() : void

EditorListener

+init() : void

+addClientEvent() : void

+executeClientEvents() : Event

ClientProxyManager

+transform() : Event

+transformFormatEvent() : Event

OperationalTransformation

+transform() : Event

+transformFormatEvent() : Event

ClientStateSpaceManager

+incrementClientState() : void

+incrementServerState() : void

+getState() : Integer[]

StateSpace

+insertString() : void

+remoteInsertString() : void

+setAuthor() : void

+getAuthor() : <unspecified>

+boldText() : void

+italicText() : void

+underlineText() : void

+setBackgroundColour() : void

+isModified() : bool

+setModified() : void

ConcurrentDocument

Figure 7.5: UML Class Diagram of the Collaborative Editor Client

The diagram in the figure illustrates how the Collaborative Editor Client splits into a

number of elements. These are only the main classes which are necessary to describe its

main functionalities. There exist additional classes for the GUI that are not described in

further detail, as they are not essential for the understanding of the editor. The depicted

components realise the following tasks.

EditorUpdater The EditorUpdater component of the editor client handles incoming

events from the server. These events usually represent the editing actions, like insert

or delete, which were performed by the other collaborators. The EditorUpdater

integrates them into the document.

124

Tool Support

ClientProxyManager The ClientProxyManager is used by the EditorUpdater for the

document synchronisation. It keeps track of the local and remote modifications to

ensure updated documents on both sides. The component is also responsible for the

construction and sending of events, which need to be broadcasted to the connected

clients.

OperationalTransformation The OperationalTransformation synchronises the incom-

ing editing events and adjusts them for a correct integration into the document.

For instance, insert and delete operations need to be preprocessed as previously

performed events are able to interfere. This mainly includes recalculating their po-

sitions.

EditorGUI The EditorGUI represents the wrapper component of the Collaborative Edi-

tor, which keeps all elements at a centralised place. This design protects components

from unauthorised access and supports a clear and simple structure.

EditorPane The EditorPane contains the document and implements all editing and han-

dling functionalities. For instance, it implements possibilities to change the text

format or export the document to the local hard disc.

ConcurrentDocument The ConcurrentDocument represents the written text. It in-

cludes functionalities to insert text remotely or locally, which is important for the in-

tegration of modifications into the document. This component also allows to change

the text appearance, like bold, italic or underline.

CollaboratorList The CollaboratorList is the list of all collaborators who have previ-

ously worked on the document or are currently editing it. It allows creators to

identify collaborators and all users that have edited the document so far. The col-

laborator list explicitly displays the current online status of each creator.

EditorToolBar The EditorToolBar represents the tool bar that contains selected func-

tionalities of the menu to enable a more convenient and probably faster access. It

includes different buttons for format modifications like bold, italic and underline.

These features are well known from other editors. As mentioned before, the Col-

laborative Editor implements the main functionalities of a word processor and the

EditorToolBar contains only the essential editing facilities.

EditorListener The EditorListener implements the listener for all actions that are per-

formed by the EditorGUI components. It is responsible for the transformation of

these editing actions into events, which are then sent to the editor server.

StateSpace The StateSpace keeps track of local and remote document modifications.

125

Tool Support

ClientStateSpaceManager The ClientStateSpaceManager manages the state space and

tracks the number of performed client and server operations.

Collaborative Editor Server

The Collaborative Editor Server represents the counterpart of the Collaborative Editor

Client. It handles the communication between clients and is responsible for the document

processing. This includes for instance loading or saving and the modification and distri-

bution of client events. Every loaded document creates an editing session at the server

side. Collaborators who decide to work on the document are able to join it. A session is

responsible for the communication between the server and its clients and encapsulates the

information from unauthorised access.

The Collaborative Editor Server keeps track of the document modifications and stores

them in a version control system, which enables clients to recall any particular version if

needed. Figure 7.6 depicts the UML class diagram of the Collaborative Editor Server.

The diagram in the figure shows the different components of the Collaborative Editor

Server. Some of the elements, like the OperationalTransformation or StateSpace are shared

between the client and server. The components that are depicted above implement the

following tasks.

EditorServer The EditorServer is the central component that receives all editing events

from the Collaborative Editor clients. It analysis each received event and invokes

the SessionManager for the further processing.

SessionManager The SessionManager handles the sessions that are constructed for each

loaded document on the server side. It is responsible for the construction and removal

of all editing sessions as well as their user management, in particular adding and

removing clients.

Session The Session encapsulates the (collaborative) editing activity into a component

that manages one document and its collaborators. It processes the editing events of

the clients, synchronises them with the document on the server side and distributes

the resulting events to the collaborators. Each session is identified by a unique ID.

ServerDocument The ServerDocument implements the shared document of an editing

session on the server side. It is split into three separate documents, each representing

a different mode as it was explained in Section 7.4.1.

126

Tool Support

+receiveEvents() : Event

EditorServer

+join() : void

+leave() : void

+shutdown() : void

+receiveEvent() : Event

+broadcastEvent() : void

+multicastEvent() : void

#loadDocument() : Event

#saveDocument() : Event

Session

+joinSession() : Event

+leaveSession() : Event

+getSession() : Session

+logoutFromAllDocuments() : void

SessionManager

+receiveEvent() : void

+getUsername() : String

+setUsername() : void

+enqueueOutgoingEvent() : void

+enqueueOutgoingEditingEvent() : void

ClientProxy

+setDocuments()

+getDocuments() : Vector

+isModified() : bool

+setModified()

ServerDocument

+transformEvent() : Event

+transformFormatEvent() : Event

OperationalTransformation

+incrementClientState() : void

+incrementServerState() : void

+getState() : Integer[]

StateSpace

+insertString() : void

+remoteInsertString() : void

+setAuthor() : void

+getAuthor() : String

+boldText() : void

+italicText() : void

+underlineText() : void

+setBackgroundColour() : void

+isModified() : bool

+setModified() : void

ConcurrentDocument

3

1

Figure 7.6: UML Class Diagram of the Collaborative Editor Server

ConcurrentDocument The ConcurrentDocument represents the written text. It in-

cludes functionalities to insert text remotely or locally, which is important for the in-

tegration of modifications into the document. This component also allows to change

the text appearance, for instance bold, italic or underline.

ClientProxy The ClientProxy is an implementation of a single client on the server side.

It monitors the modifications and keeps both the client and server document syn-

chronised to ensure a failure free collaboration.

OperationalTransformation The OperationalTransformation synchronises the incom-

ing editing events and adjusts them for a correct integration into the document.

For instance, insert and delete operations need to be preprocessed as previously

127

Tool Support

performed events are able to interfere. This mainly includes recalculating their po-

sitions.

StateSpace The StateSpace keeps track of local and remote document modifications.

7.5 De Montfort Creativity Mapper (DMCM)

The De Montfort Creativity Mapper (DMCM) is the component of the DMCA which

observes and visualises the creative process of a creator. It captures the actions that were

performed during the creation of an artefact and stores them in the Knowledge Repository.

As mentioned in Section 4.2.1, the approach for the creative process observation is a

user interactive capturing system. A creator needs to interact with this tool and keep

it updated about the currently performed action. The DMCM is then able to calculate

and incrementally generate the creativity map for the momentary creation. This section

presents the GUI of this tool and discusses its design afterwards.

7.5.1 Graphical User Interface (GUI)

The facility is designed as a toolbar that provides various buttons, each representing a

single action (e.g. contemplating, reading, discussing). A user is required to press the

button that most accurately describes the current mood. Actions are customisable and

can be modified with a configuration tool. The DMCM can be used as an integrated

facility within the Collaborative Editor, like shown on the right-hand side in Figure 7.3 or

as a stand-alone application along with any other software or working environment. This

section focusses on the latter use case.

De Montfort Creativity Mapper (DMCM)

Figure 7.7: Screenshot of the DMCM

128

Tool Support

Figure 7.7 depicts a screenshot of the main DMCM facility. The buttons of the DMCM

represent the personalised actions of a creator. A number of default buttons, which were

defined according to the purposes of the writing domain are provided by the facility. They

specify the actions Conceptualising, Contemplating, Editing, Comparing and Other. The

Other button allows to quickly add new actions to the DMCM. Any currently performed

activity is displayed at the right-hand side. The colour of a button represents a viewpoint,

which means that the DMCM in the figure contains three distinct ones. A customisation

of the DMCM is possible with the creativity mapper configuration dialogue.

Creativity Mapper Configuration

Figure 7.8: Screenshot of the DMCM Configuration Dialogue

Figure 7.8 illustrates a screenshot of the DMCM configuration dialogue. The creativity

mapper configuration dialogue allows to modify the buttons of the DMCM. As it is

shown in the figure, the dialogue contains a drop-down menu at the top that includes all

viewpoints. Once a viewpoint was selected, the corresponding set of actions is displayed

in the list field underneath. The creator can then use the buttons at the bottom of the

dialogue to modify these elements. As illustrated, new viewpoints and actions can be

added and existing ones can be removed or renamed. Each action creates a coloured

button in the DMCM.

129

Tool Support

Figure 7.9: Screenshot of the DMCM Visualiser

Creativity Map Visualiser

The creativity map visualiser, as depicted in Figure 7.9, displays the creativity map for the

current creation. It shows the transitions and states and allows clients to visually analyse

a map. The majority of the window is used for the illustration in the white area. Buttons

in the toolbar at the top implement browsing facilities. Starting from the left, the first

button switches to picking mode, which enables the selection of one or more nodes and

allows to drag them around. The second button switches to transformation mode in order

to move the whole map in any direction and navigate to a particular position. The third

button arranges the creativity map in a tree layout, which enables the visual identification

of hierarchical structures. The fourth button arranges the nodes in a circle layout. The

next two buttons implement zooming operations and the last two switch the transition

labels on and off.

7.5.2 Design

The DMCM is designed as a client/server system similar to the collaboration components

of the DMCE. It uses the existing structures for the communication between client and

server, in particular the events. An action listener on the client side observes any action

that is performed by the creator. Each action is wrapped into an event and send to

130

Tool Support

the DMCM server. This component construct several mapping sessions, similar to the

editing session of the Collaborative Editor. The events are forwarded to these sessions

and the corresponding creativity maps are constructed. The DMCM-Server is furthermore

linked to the Creativity Map Repository (CMR) to enable a permanent storage of the

collected data. This section illustrates the design of both the client and server component.

The presented UML class diagrams show only the most important classes and methods;

parameters are additionally omitted to keep them clear.

DMCM Client

The DMCM client includes the three components that were discussed previously. The

UML class diagram of this component is depicted in Figure 7.10.

CreativityMapperGUI The CreativityMapperGUI represents the wrapper component

of the DMCM, which keeps all GUI elements at a centralised place. This design

protects components from unauthorised access and keeps the structure clear and

simple.

CreativityMapperMenuBar The CreativityMapperMenuBar represents the menu of

the DMCM.

CreativityMapperToolBar The CreativityMapperToolBar is the main component that

is responsible for the recording of the creative process. A creator is required to

press one of its buttons for every performed action in order to guarantee a correct

observation.

CreativityMapperListener The CreativityMapperListener is the listener for the per-

formed actions. This component transforms the observed activities into events and

forwards them to the EventHandler.

EventHandler The EventHandler sends the observed events to the server component of

the DMCM, where the creativity map is constructed and stored in the CMR.

CMConfigGUI The CMConfigGUI is a GUI for the customisation of the DMCM. It

allows to add, remove or rename viewpoints and actions, which in turn modifies the

appearance of the mapper.

CMConfigManager The CMConfigManager manages the action and viewpoint con-

figurations of the DMCM. They are stored on the local hard disc to allow for a

131

Tool Support

+getMenuBar() : CreativityMapperMenuBar

+getToolBar() : CreativityMapperToolBar

+setVisible() : void

+updateLayout() : void

CreativityMapperGUI

+addButton() : void

+addOtherButton() : void

+setCurrentAction() : void

+setEnabled() : void

CreativityMapperToolBar

+addProjectName() : void

+deleteProjectName() : void

CreativityMapperMenuBar

+actionPerformed() : void

CreativityMapperListener

+init() : void

+actionPerformed() : void

CMVisualiserGUI

+init() : void

CMVisualiserToolBar

+getCreativityMap() : CreativityMap

+setCreativityMap() : void

CreativityMapManager

+parseConfiguration() : CMConfig

+constructConfiguration() : Element

CMConfigParser

+addViewpoint() : void

+removeViewpoint() : void

+renameViewpoint() : void

+addAction() : void

+removeAction() : void

+renameAction() : void

+getViewpoints() : Vector

+getActions() : Vector

CMConfig

+loadConfig() : CMConfig

+saveConfig() : void

+setConfig() : void

+getConfig() : CMConfig

CMConfigManager

+init() : void

+actionPerformed() : void

CMConfigGUI

+buildToolBar() : void

+updateToolBar() : void

CreativityMapperGUIBuilder

+addEvent() : void

+getEvents() : Vector

+getCurrentEvent() : Event

+exit() : void

EventHandler+addState() : void

+addTransition() : void

+getStates() : void

+getTransitions() : void

+getRootState() : void

+setRootState() : void

CreativityMap

+getViewpoint() : Viewpoint

+setViewpoint() : void

+addIncomingTransition() : void

+getIncomingTransitions() : Vector

+addOutgoingTransition() : void

+getOutgoingTransitions() : Vector

CMState

+getSource() : CMState

+setSource() : void

+getDestination() : CMState

+setDestination() : void

+getActionLabel() : String

+setActionLabel() : void

+getViewpoint() : String

+setViewpoint() : void

CMTransition

Figure 7.10: UML Class Diagram of the DMCM Client

continuous work with a customised DMCM after it has been configured once. The

CMConfigManager is the only component that is able to access a configuration.

CMConfigParser The CMConfigParser parses a configuration and constructs a CMCon-

fig object as representation. It is also used vice versa for the creation of a storable

configuration from a CMConfig object.

CMConfig The CMConfig represents the configuration of viewpoints and actions for the

DMCM. It stores the name of each viewpoint together with its set of actions.

CreativityMapperGUIBuilder The CreativityMapperGUIBuilder creates the GUI of

the DMCM. It is responsible for its initial construction and modification, whenever

132

Tool Support

the configuration was modified. It guarantees a dynamic and interactive adaptation

of the user interface.

CMVisualiserGUI The CMVisualiserGUI implements the main window that is used to

visualise the creativity map on the client side. It allows users to zoom in and out of

a map, display and hide transition labels and arrange it according to different graph

layouts [52] [79]. Actions that are performed by the creator are added and visualised

in real time.

CMVisualiserToolBar The CMVisualiserToolBar is the tool bar that implements the

previously mentioned functionalities.

CreativityMapManager The CreativityMapManager is a major component that con-

tains and manages all creativity maps during runtime. Access to the maps is only

granted by this component.

CreativityMap The CreativityMap represents the corresponding data structure of a

creativity map. It contains CreativityMapStates and CreativityMapTransitions.

CreativityMapState The CreativityMapState represents a state of the creativity map.

It contains the viewpoints of the creation, for instance artefact or time. As mentioned

in Section 3.3, time is realised as a timestamp, representing the moment when the

activity of the state’s outgoing transition begins.

CreativityMapTransition The CreativityMapTransition represents a transition of the

creativity map. It contains a start and end state, an action label and the name of

its viewpoint. An additional variable that stores the original action label during a

hiding process is included as well.

DMCM Server

The DMCM server stores and manages the creativity maps that were constructed for the

users of the DMCM client. Figure 7.11 depicts the UML class diagram of the DMCM

server.

CreativityMapperServer The CreativitMapperServer receives the events that are sent

from a DMCM client. Each received event is analysed and processed by the CMSes-

sionManager.

133

Tool Support

+receiveEvents() : Event

CreativityMapperServer

+join() : void

+leave() : void

+shutdown() : void

+receiveEvent() : void

+getSessionID() : int

+getFilename() : String

CMSession

+joinSession() : Event

+leaveSession() : Event

+getSession() : CMSession

CMSessionManager

+getCreativityMap() : CreativityMap

+loadCreativityMap() : void

+saveCreativityMap() : void

+removeCreativityMap() : void

CreativityMapManager

+loadCreativityMap() : CreativityMap

+saveCreativityMap()

CreativityMapDBHandler+addState() : void

+addTransition() : void

+getStates() : void

+getTransitions() : void

+getRootState() : void

+setRootState() : void

CreativityMap

+getViewpoint() : <unspecified>

+setViewpoint() : void

+addIncomingTransition() : void

+getIncomingTransitions() : Vector

+addOutgoingTransition() : void

+getOutgoingTransitions() : Vector

CMState

+getSource() : CMState

+setSource() : void

+getDestination() : CMState

+setDestination() : void

+getActionLabel() : String

+setActionLabel() : void

+getViewpoint() : String

+setViewpoint() : void

CMTransition

Figure 7.11: UML Class Diagram of the DMCM Server

CMSessionManager The CMSessionManager handles the sessions that are created for

each creativity map construction. If the DMCM is executed as an integrated facility

within the Collaborative Editor, a creativity mapping session is started together with

every editing session. It automatically contains all collaborators. If the DMCM is

invoked as a standalone application, a unique session is constructed for each user.

The CMSessionManager is responsible for the creation and removal of sessions as

well as their user management, in particular adding and removing clients.

CMSession The CMSession encapsulates all necessary information of the creativity map-

ping process. It can be joined by several clients and receives actions from the session

manager. These events are processed by the CreativityMapManager.

134

Tool Support

CreativityMapManager The CreativityMapManager incrementally creates and man-

ages the creativity maps for every client of a mapping session with the help of the

CMCE. It invokes the CreativityMapDBHandler whenever a map should be stored

in or loaded from the CMR.

CreativityMapDBHandler The CreativityMapDBHandler represents the link to the

CMR. It is responsible for the transformation of a CreativityMap object into a

storable format and vice versa.

CreativityMap The CreativityMap represents the corresponding data structure of a

creativity map. It contains CreativityMapStates and CreativityMapTransitions.

CreativityMapState The CreativityMapState represents a state of the creativity map.

It contains the viewpoints of the creation, for instance artefact or time. As mentioned

in Section 3.3, time is realised as a timestamp, representing the moment when the

activity of the state’s outgoing transition begins.

CreativityMapTransition The CreativityMapTransition represents a transition of the

creativity map. It contains a start and end state, an action label and the name of

its viewpoint. An additional variable that stores the original action label during a

hiding process is included as well.

7.6 Creativity Map Construction Engine (CMCE)

The CMCE is a component of the Data Presentation Layer. It is responsible for the

construction of creativity maps from the initial sequential creative process, as explained

in Section 4.2. It is necessary for this process to identify similar states and redirect their

outgoing transitions to create a map structure. A main requirement of the CMCE is

flexibility in order to enable the comparison of several viewpoints and the use of different

metrics. Figure 7.12 depicts the UML class diagram of the CMCE. It represents only

the most important classes and methods; parameters are additionally omitted to keep the

diagram clear.

StateComparatorInterface The StateComparatorInterface defines an interface that

needs to be implemented by any concrete state comparator. It contains one com-

pareStates method, which is responsible for the comparison of two states. This design

allows for a flexible exchange of comparators and their metrics.

135

Tool Support

+constructCreativityMap() : CreativityMap

CreativtyMapConstructor

+compareStates() : int

«interface»

StateComparatorInterface

+addState() : void

+addTransition() : void

+getStates() : void

+getTransitions() : void

+getRootState() : void

+setRootState() : void

CreativityMap

+getViewpoint() : <unspecified>

+setViewpoint() : void

+addIncomingTransition() : void

+getIncomingTransitions() : Vector

+addOutgoingTransition() : void

+getOutgoingTransitions() : Vector

CMState

+getSource() : CMState

+setSource() : void

+getDestination() : CMState

+setDestination() : void

+getActionLabel() : String

+setActionLabel() : void

+getViewpoint() : String

+setViewpoint() : void

CMTransition

+compareStates() : int

StateComparator1

+compareStates() : int

StateComparator2

+compareStates() : int

StateComparatorN

...

+compareViewpoints() : int

«interface»

ViewpointComparatorInterface

+compareViewpoints() : int

ViewpointComparator1

+compareViewpoints() : int

ViewpointComparator2

+compareViewpoints() : int

ViewpointComparatorN

...

*

Figure 7.12: UML Class Diagram of the CMCE

StateComparator The StateComparator is a concrete implementation of the StateCom-

paratorInterface that needs to implement the compareStates method. It utilises

ViewpointComparator objects for the concrete comparison of viewpoints.

ViewpointComparatorInterface The ViewpointComparatorInterface defines an inter-

face that needs to be implemented by any concrete viewpoint comparator. It contains

one compareViewpoints method, which is responsible for the comparison of two val-

ues from the same viewpoint. This design enables a flexible exchange and reusability

of concrete ViewpointComparators.

ViewpointComparator The ViewpointComparator is a concrete implementation of the

ViewpointComparatorInterface that needs to implement the compareViewpoints me-

thod.

136

Tool Support

CreativityMapConstructor The CreativityMapConstructor creates the creativity map

from the initial sequential creative process. It utilises StateComparators objects

for the comparison of states. The transitions of similar states are repositioned as

described in Section 4.2.3.

CreativityMap The CreativityMap represents the corresponding data structure of a

creativity map. It contains CreativityMapStates and CreativityMapTransitions.

CreativityMapState The CreativityMapState represents a state of the creativity map.

It contains the viewpoints of the creation, for instance artefact or time. As mentioned

in Section 3.3, time is realised as a timestamp, representing the moment when the

activity of the state’s outgoing transition begins.

CreativityMapTransition The CreativityMapTransition represents a transition of the

creativity map. It contains a start and end state, an action label and the name of

its viewpoint. An additional variable that stores the original action label during a

hiding process is included as well.

The presented design of the CMCE provides a high degree of flexibility. Viewpoint com-

parators can be exchanged between multiple state comparators. These can themselves be

reused for different creativity map constructions.

7.7 Information Mining Engine (IME)

The Information Mining Engine (IME) is a component of the Creativity Mining Engine.

The whole layer is responsible for the analysis of creative processes as well as creativity

maps and realises the steps that were described in the knowledge creation process. It splits

into several elements that are all designed to perform specific actions. One of them is the

IME. It implements the information extraction and hiding approaches that were discussed

in this thesis. The UML class diagrams that are presented for both implementations show

only the most important classes and methods; parameters are additionally omitted to keep

them clear.

7.7.1 Information Hiding

The information hiding process was presented in Chapter 5. It conceals irrelevant be-

haviours of a creativity map and possibly reduces its size, which is for instance important

137

Tool Support

for a compact visualisation. The resulting PCM enables aim oriented analyses as only

relevant states and transitions need to be processed. It was mentioned before that the in-

formation hiding process converts a behaviour description into a BDA, which is then used

to identify behaviours in a creativity map. This process is realised with the Thompson

and powerset constructions. Figure 7.13 depicts the UML class diagram of the information

hiding component.

+epsilonClosure() : Vector

+setInitialState() : void

+getInitialState() : AutomatonState

+getFinalStates() : Vector

+getStates() : Vector

+getActions() : Vector

+move() : Vector

Automaton

+parse() : Automaton

BDLParser

+getSource() : AutomatonState

+setSource() : void

+getDestination() : AutomatonState

+setDestination() : void

+getLabel() : String

AutomatonTransition

+addConstraint() : void

+getConstraint() : Vector

+addIncomingTransition() : void

+getIncomingTransitions() : Vector

+addOutgoingTransition() : void

+getOutgoingTransitions() : Vector

+isFinal() : bool

+setFinal() : void

+isInitial() : bool

+setInitial() : void

AutomatonState

+constructDFA() : Automaton

PowersetConstruction

+basicConstruct() : Automaton

+choiceConstruct() : Automaton

+concatenationConstruct() : Automaton

+startConstruct() : Automaton

ThompsonConstruction

+addState() : void

+addTransition() : void

+getStates() : void

+getTransitions() : void

+getRootState() : void

+setRootState() : void

CreativityMap

+getViewpoint() : Viewpoint

+setViewpoint() : void

+addIncomingTransition() : void

+getIncomingTransitions() : Vector

+addOutgoingTransition() : void

+getOutgoingTransitions() : Vector

CMState

+getSource() : CMState

+setSource() : void

+getDestination() : CMState

+setDestination() : void

+getActionLabel() : String

+setActionLabel() : void

+getViewpoint() : String

+setViewpoint() : void

CMTransition

+setCreativityMap() : void

+setDFA() : void

+hideBehaviours() : void

+restrictBehaviours() : void

+addCondition() : void

+addMarker() : void

+revealBehaviours() : void

+restRevealBehaviours() : void

BehaviourHiding

+conditionSatisfied() : bool

«interface»

ConditionInterface

+conditionSatisfied() : bool

Condition

Figure 7.13: UML Class Diagram of the Behaviour Hiding Component

138

Tool Support

BehaviourHiding The BehaviourHiding represents the behaviour hiding process. It

realises the four operations hiding, restriction, revealing and restrictive revealing that

were introduced in this thesis. This component uses a DFA as a representation of the

BDA and traverses the creativity map to identify and mark matching behaviours,

which are then processed based on the used operation.

ConditionInterface The ConditionInterface defines the interface for the state condi-

tions. It contains the single method conditionSatisfied, which returns if a viewpoint

of the state satisfied this condition. This interface needs to be implemented by any

concrete state condition.

Condition The Condition is a concrete implementation of the ConditionInterface. An ex-

amples for a condition that was mentioned in this thesis was a word count restriction

for the artefact viewpoint. The component needs to implement the conditionsSatis-

fied method.

BDLParser The BDLParser parses a behaviour description that is expressed in the Be-

haviour Description Language (BDL) and constructs an ε-NFA based on the elements

that were described in Section 5.5.2. The powerset construction is used afterwards

to convert the ε-NFA into a DFA.

ThompsonConstruction The ThompsonConstruction creates an ε-NFA from a beha-

viour description. The automaton is created from a set of constructs that are com-

bined to build the ε-NFA for the whole behaviour description.

PowersetConstruction The PowersetConstruction converts the ε-NFA that was created

with the Thompson construction into a Deterministic Finite Automaton (DFA). As

mentioned before, DFAs represent more convenient tools for the behaviour hiding

process.

Automaton The Automaton represents any finite automaton that is needed in the hiding

approach. This includes the ε-NFA after the modified Thompson construction as well

as the DFA after the powerset construction. The Automaton contains a number of

AutomatonStates and AutomatonTransitions.

AutomatonState The AutomatonState is a state of the automaton, which contains an

action label.

AutomatonTransition The AutomatonTransition represents a transition of the au-

tomaton. It contains a label that is used for the behaviour matching. Special δ

transitions include additional state conditions and ε transitions do not require an

input symbol.

139

Tool Support

CreativityMap The CreativityMap represents the corresponding data structure of a

creativity map. It contains CreativityMapStates and CreativityMapTransitions.

CreativityMapState The CreativityMapState represents a state of the creativity map.

It contains the viewpoints of the creation, for instance artefact or time. As mentioned

in Section 3.3, time is realised as a timestamp, representing the moment when the

activity of the state’s outgoing transition begins.

CreativityMapTransition The CreativityMapTransition represents a transition of the

creativity map. It contains a start and end state, an action label and the name of

its viewpoint. An additional variable that stores the original action label during a

hiding process is included as well.

7.7.2 Frequent Information Extraction

The frequent information extraction process was explained in Chapter 6. Frequent be-

haviours contain essential information about the creator and are important for the further

study. The input of the extraction process is a corpus of creativity maps, which is used for

the construction of the frequency categories Preferred, Common, Uncommon and Zero.

These categories are then utilised during the behaviour extraction to build the frequent be-

haviour categories Minimal (fmax)/Minimal (fmin)/Maximal Alternating, Emergent and

Disappearing. Figure 7.14 depicts the UML class diagram of the information extraction

component. It illustrates the integration of both the frequency categories and frequent

behaviour categories into the design.

BehaviourExtraction The BehaviourExtraction implements the techniques for the fre-

quent behaviour extraction. It creates both the frequency categories based on the

thresholds fzero, fmin and fmax and the frequent behaviour categories. This compo-

nent also allows to track behaviours, as described in Section 6.5.2.

FrequencyCagtegory The FrequencyCagtegory represents one of the four frequency

categories Preferred, Common, Uncommon or Zero. One object is constructed for

each of these sets. It stores all behaviours that belong to this category and allows to

remove, modify and retrieve them. The categories are constructed for each creativity

maps or PCMs that should be analysed.

FrequencyCategorySet The FrequencyCategorySet summarises the four frequency cat-

egories for a creativity map into one component. Any of these categories can be

140

Tool Support

+setFMin() : void

+getFMin() : float

+setFMax() : void

+getFMax() : float

+setFZero() : float

+getFZero() : float

+getLMin() : float

+setLMin() : float

+getLMax() : float

+setLMax() : float

+setCreativityMap() : void

+buildFrequencyCategories() : void

+getFrequencyCategories() : Vector

+getPreferredBehaviours() : Vector

+getCommonBehaviours() : Vector

+getUncommonBehaviours() : Vector

+getZeroExBehaviours() : Vector

FrequencyCategorySet

+addState() : void

+addTransition() : void

+getStates() : void

+getTransitions() : void

+getRootState() : void

+setRootState() : void

CreativityMap

+getViewpoint() : Viewpoint

+setViewpoint() : void

+addIncomingTransition() : void

+getIncomingTransitions() : Vector

+addOutgoingTransition() : void

+getOutgoingTransitions() : Vector

CMState

+getSource() : CMState

+setSource() : void

+getDestination() : CMState

+setDestination() : void

+getActionLabel() : String

+setActionLabel() : void

+getViewpoint() : String

+setViewpoint() : void

CMTransition

+setName() : void

+getName() : String

+addBehaviour() : void

+removeBehaviour() : void

+getBehaviours() : Vector

+containsBehaviour() : bool

+getBehavioursBySize() : Vector

FrequencyCategory

+setFreqCatSet1() : void

+setFreqCatSet2() : void

+buildFreqBehCategories() : void

+getFreqBehCategories() : Vector

+getEmergent() : Vector

+getDisappearing() : Vector

+getMinAltFMin() : Vector

+getMinAltFMax() : Vector

+getMaxAlt() : Vector

FreqBehCategorySet

+setName() : void

+getName() : String

+addBehaviour() : void

+removeBehaviour() : void

+getBehaviours() : Vector

+getIncBehaviours() : Vector

+getDecBehaviours() : Vector

+containsBehaviour() : bool

+getBehavioursBySize() : Vector

FreqBehCategory

+setCorpus() : void

+buildFrequencyCategorySet() : void

+buildFrequencyCategorySets() : void

+getFrequencyCategorySet() : Vector

+getFrequencyCategorySets() : Vector

+buildFreqBehCategorySet() : void

+buildFreqBehCategorySets() : void

+getFreqBehCategorySet() : Vector

+getFreqBehCategorySets() : Vector

BehaviourExtraction

Figure 7.14: UML Class Diagram of the Behaviour Extraction Component

retrieved separately or all together as a set. The component allows to configure the

length and frequency thresholds according to the personal needs.

FreqBehCategory The FreqBehCategory represents one of the frequent behaviour cat-

egories Minimal (fmax)/Minimal (fmin)/Maximal Alternating, Emergent or Disap-

pearing. Similar to the FrequencyCategory component, one object is constructed

for each of these categories. It allows for the distinction between incrementing and

decrementing behaviours, which are present in all categories except for Emergent

and Disappearing.

FreqBehCategorySet The FreqBehCategorySet summarises the five frequent behaviour

categories that were created for two creativity maps into one component. Any of

these categories can be retrieved separately or all together as a set.

CreativityMap The CreativityMap represents the corresponding data structure of a

creativity map. It contains CreativityMapStates and CreativityMapTransitions.

141

Tool Support

CreativityMapState The CreativityMapState represents a state of the creativity map.

It contains the viewpoints of the creation, for instance artefact or time. As mentioned

in Section 3.3, time is realised as a timestamp, representing the moment when the

activity of the state’s outgoing transition begins.

CreativityMapTransition The CreativityMapTransition represents a transition of the

creativity map. It contains a start and end state, an action label and the name of

its viewpoint. An additional variable that stores the original action label during a

hiding process is included as well.

7.8 Knowledge Repository

The Knowledge Repository represents the storage space for all data that is handled by the

DMCA. It is divided into the three distinct components: version control system, Creativity

Map Repository (CMR) and external repository. The version control system stores the

different revisions of the documents that are created with the Collaborative Editor and

manages their access. The CMR stores the creativity maps that are generated with the

DMCM. Every map is saved in this database, which enables a convenient and centralised

access for the analysis. The external repository is a dynamic connection to knowledge that

exists outside of the DMCA. This includes for instance external libraries or documents

that can be queried for artefacts which are not present in the current creation zone.

7.8.1 Version Control

The documents that are created with the Collaborative Editor are stored in a subversion

[16] version control system. It is able to save different revisions of a file, which in this case

allows to track the creation process of documents. Versions can easily be retrieved and

compared for the emphasis of modifications. The version control system of the Knowledge

Repository is the only part of the DMCE that has access to the subversion system, which

prevents it from unwanted harm. Access to the version control system within the tool is

realised with the SVNKit library. It is a free client library for subversion that is purely

written in Java [41]. Figure 7.15 depicts the UML class diagram of the version control

component. It represents only the most important classes and methods. Parameters are

additionally omitted to keep it clear.

142

Tool Support

+createRepositoryDir() : void

+commit() : int

StorageHandler

+createDocument() : int

+createDirectory() : void

+deleteEntry() : void

+renameEntry() : void

+getDocument() : Event

+saveDocument() : int

+getFileRevisions() : Event

+setFileGlobal() : void

RepositoryManager

+addFile() : void

+createWCDirectory() : void

+deleteEntry() : void

+getWCProperty() : void

+setWCProperty() : void

+isNewestRevision() : bool

WCHandler

+updateWorkingCopy() : void

+checkout() : void

+switchToURL() : void

CheckoutHandler

+getAllFileRevisions() : Vector

VersionTracer

Figure 7.15: UML Class Diagram of the Version Control

RepositoryManager The RepositoryManager executes all operations that need to ac-

cess the version control system. Its functionalities are encapsulated into several

components. Each of them implements a set of functionalities from the subversion

system. This design creates one central component that delegates access to the

version control and prevent the subversion system from unwanted access.

StorageHandler The StorageHandler is responsible for committing changes to the ver-

sion control system. When a document is modified with the Collaborative Editor

and saved afterwards, the SvnServer component eventually commits these changes,

which then automatically creates a new version.

CheckoutHandler The CheckoutHandler loads a document from the repository to the

local working copy of the server, which is defined as a checkout operation. If it is

necessary to revert to an old revision of the document, the CheckoutHandler needs

to checkout this version from the subversion system. It can then be communicated

to the client and used afterwards.

VersionTracer The VersionTracer allows for the collection of version numbers and infor-

mation of a document that can then be presented in the Collaborative Editor. The

user can review these information before reverting to a previous document revision.

143

Tool Support

WCHandler The WCHandler manages the working copy of the version control system.

A working copy represents the locally stored files that were checked out from the

subversion system to the hard disc of the DMCA server. The WCHandler is respon-

sible for the creation or deleting of new files and folders inside the working copy and

enables the attachment of additional information, so called properties to files. A

property that every document possesses for its identification is the ”author”. The

files inside the working copy are committed to the version control system by the

StorageHandler.

7.8.2 Creativity Map Repository (CMR)

The Creativity Map Repository (CMR) represents a storage space that saves all creativity

maps which were captured with the DMCM. It keeps the maps at a central place in the

system to guarantee a convenient access for other components. All necessary information

about the creative process of a person, domain or other group of users can be retrieved

from this repository. It can then be used for the creativity support and behaviour mining.

The repository can possibly be opened for external resources, which enables additional

processing by experts from several domains. A relational database [20][19], in particular

the open source database management system PostgreSQL [42] is used to implement the

CMR. Figure 7.16 depicts the Entity-Relationship Model (ERM).

user The user entity (primary key = userID) represents any user who works on a project

and records the creative process with the DMCM. It consists of a user name and a

password.

project The project entity (primary key = projectID) represents a project that a user is

working on. It stores a userID as foreign key to refer to its creator together with a

projectName. Various projects can be stored for each user.

creativityMap The creativityMap entity (primary key = cmID) describes a creativity

map. This entity contains the current state currState, which specifies the state where

the creative process stopped when the map was saved the last time. The creative

process continues from this state after the map was loaded. The creativityMap entity

additionally stores an initial state, which is the root state of the creativity map and

the projectID of the project it belongs to.

transition The transition entity (primary key = transitionID) represents a creativity

map transition. It stores the id of the start state (start1ID), end state (state2ID)

144

Tool Support

state

PK stateID

FK1 cmID

 timestamp

 revision

transition

PK transitionID

FK1 state1ID

FK2 state2ID

FK3 cmID

 action

 viewpoint

 note

 timestamp

has start state

has end state

1

1

creativityMap

PK cmID

FK1 currStateID

FK2 initStateID

FK3 projectID

has current state

1

has initial state

1

belongs to

*

belongs to

*

user

PK userID

 username

 password

project

PK projectID

FK1 userID

 projectName

belongs to
1

belongs to

1

belongs to

1

Figure 7.16: ERM of the CMR

and creativity map it belongs to (cmID), together with an action, a viewpoint, a

timestamp and a note for additional information.

state The state entity (primary key = stateID) represents a state of a creativity map.

It contains the id of the creativity map it belongs to (cmID), a timestamp and the

revision number of one particular document that is stored in the version control

system of the Knowledge Repository. The last component is a representation of the

artefact viewpoint.

The state entity of this initial ERM contains the two viewpoints time and artefact. It needs

to be further adapted, if additional viewpoints should be observed during the creative

process. They can for instance be stored directly in the database, like the timestamp, or

as a reference to another system, like the revision number of the version control system.

145

Tool Support

7.8.3 External Repository

The External Repository extends the knowledge that is stored inside the DMCA via con-

nections to external facilities. One possible resource is the World Wide Web (WWW),

which contains large amounts of information from different domains. It has grown to a

platform of (collaboratively) generated data that is stored centralised for an enhanced

accessibility. Its representations are diverse and include for instance documents in online

libraries or journals or simple web-pages that are build with the help of user content. The

External Repository integrates tools that query data from these resources and present it

in a processable format. This assists the creative process during situations where a cre-

ator is ”stuck” and needs support. If needed, users can also actively utilise the external

repository to search for artefacts or other information.

External resources are outside of the user’s creation zone. To integrate them into the

creative process, they need to be stored in any of the viewpoints. One example is a list

of literature that was read from an external library during the creative process. It can be

stored in a literature viewpoint, if the creator specified it accordingly. Another example is

a paragraph that was cited in the document, or other parts of an external text which was

used. The latter resources are already present in the artefact viewpoint and integrate into

the existing structures. However, whenever this kind of data is used in the own creative

process, it might be necessary to cite the original appearance. This helps other creators

to identify original sources and avoids plagiarism. The system can assist this process by

reminding the user when content is copied from an external resource. Another issue is the

quality of external resources. Only the developer is able to maintain a high standard by

checking these objects prior to an integration into the DMCA.

The use of external data requires some kind of interface that allows for a standardised

access. For instance, search engines and other data repositories sometimes offer web service

that can be queried remotely to access these resources. Developers can then build tools

and integrate them into the Knowledge Repository. The main advantage of the described

approach is the use of external elements within the DMCA, without the necessity to switch

between tools and possibly deflect the user’s attention from the creative process. This is

one main requirement of the DMCA and the reason for its pluggable design. However, if

no such interfaces or services are provided, the creator is required to switch to external

tools like a web browser to access these resources.

146

Tool Support

7.9 Summary

This chapter explained the prototype tool support for the proposed research. It was

shown how the motivation and aim for a creativity support tool are implemented in the

initial version of the DMCA. Each of its layers was discussed in detail. It was illustrated

that the DMCA and especially the DMCE offer a flexible and extendible environment,

which enables collaboration without being confined to a single domain. The design and

GUI of the Collaborative Editor illustrated the simplicity and adaptation to the needs

of a collaborative word processor. The De Montfort Creativity Mapper (DMCM) was

introduced as a powerful tool for the observation and mapping of the creative process. Its

flexible design enables a convenient adaptation to the custom requirements of its users.

Architecture and implementation of the Creativity Map Construction Engine (CMCE),

which manages the construction of creativity maps were introduced. The Information

Mining Engine (IME) that is part of the Creativity Mining Engine was explained and the

realisation of the information mining approaches that were discussed in this thesis was

presented. It was explained how the components of the behaviour hiding and extraction

processes were transformed into corresponding software components. The Knowledge

Repository was described at the end of this chapter.

147

Chapter 8

Case Studies

Objectives

• Present a case study of a creativity workshop, where the creative processes of all

participants were recorded. Problems with the developed prototype tools are also

identified.

• Present a case study with long recording time of the creative process and a large

creativity map to demonstrate the information hiding approach.

• Present a case study that uses a corpus of creativity maps to demonstrate the infor-

mation extraction approach.

• Demonstrate and evaluate the need and practical applicability of the presented re-

search.

8.1 Introduction

This chapter demonstrates and evaluates the applicability of the presented research with

the help of three case studies. The first one illustrates the use of the DMCA by a group

of people during a workshop that was held at the Software Technology Research Lab-

oratory (STRL) in cooperation with the Institute of Creative Technologies (IOCT). It

demonstrates the construction process of creativity maps and the flaws during the obser-

vation of the creative process. The second case study presents a long recording time of the

148

Case Studies

creative process. It shows how a creativity map grows large and demonstrates the infor-

mation hiding approach to conceal irrelevant behaviours. The third case study presents

the extraction of frequency related information from a corpus of 10 creativity maps. It

explains behaviour tracking and demonstrates its use for the analysis and assistance of

the creative process.

8.2 Creative Writing Workshop

The first case study presents a workshop that was held at the Software Technology Re-

search Laboratory (STRL) at De Montfort University (DMU) and demonstrates the cre-

ativity map construction process. It shows how the DMCA is used simultaneously by

several users to capture their creative processes with the DMCM. Individual sets of ac-

tions were used for the recording during the workshop and the DMCM was customised by

each user to satisfy the personal requirements.

A group of 8-12 people with different backgrounds and a common interest in creative

writing should be found for this workshop. Invitations were sent beforehand via email

to specific persons and email-lists in general. The workshop was held on the 30th July

2009 at the STRL with 9 people, representing a mix between students, university staff and

people that were employed outside the university. It was organised as a 3 hour session in

the morning from 9.30 a.m. - 12.30 p.m., where the group used the DMCA and especially

the Collaborative Editor to create and edit documents. At the same time, each creative

process was recorded with the DMCM. The agenda of the workshop was divided into the

following three parts.

1. Starting the DMCA and writing a short text about oneself to get used to the software,

especially the Collaborative Editor (10 - 15 minutes).

2. Writing a short text about a stimulus item (e.g. watch, necklace, sunglasses, etc.),

which was provided by Prof. Sue Thomas (ca. 25 minutes) followed by a break (20

minutes).

3. Editing the written text to reduce the number of words by half (ca. 25 minutes).

Every participant worked on a separate PC and started the DMCA directly from the

webpage (http://dmu-ca.ioct.dmu.ac.uk/) in a single user mode, without any form of

collaboration. All necessary requirements like the installation of the latest Java Runtime

149

http://dmu-ca.ioct.dmu.ac.uk/

Case Studies

Environment (JRE) or Java Development Kit (JDK) [40] were finished and tested in

advance. Each stage of the workshop was followed by a short break, where the participants

had the possibility to talk to each other and discuss things in general. After the actual

exercises were finished, a group discussion about the session and the DMCA took place.

Valuable feedback on the tool and the whole workshop was given, which is also presented

in this case study.

8.2.1 Creativity Map Construction

Recording of the Creative Process

A presentation was held at the beginning of the workshop to introduce the DMCA and

the DMCM. The functionalities of these tools were presented and a short presentation

demonstrated the use of the software. During the first stage of the workshop, each partic-

ipant was able to familiarise with the DMCA for 10-15 minutes and no recording of the

creative process was performed. The documents which were generated with the Collabo-

rative Editor were not used for the analysis or construction of the creativity map. This

first stage was mainly for the collection of background information about the participants

and their interest in creative writing. As mentioned before, the task was to write a text

about oneself.

The DMCM was used during the second and third stage of the workshop to observe and

capture the creative processes of the participants. Each generated creativity map was

stored in the CMR of the Knowledge Repository and the documents that were created

with the Collaborative Editor were saved in the version control system. The participants

had to adapt the DMCM to the personal needs, before the second part started. In order to

help them, a predefined set of actions and viewpoints with respect to the creative writing

domain was used as the default configuration. These were in particular:

Editing The Editing action is performed when the user is editing the document. This

can be for instance writing new text, deleting existing text passages or copying and

pasting.

Conceptualising The Conceptualising action describes an activity where the user is

thinking about the concept of the document. Usually a first structure is created in

mind before the writing process starts.

150

Case Studies

Contemplating The Contemplating action is performed, when the user thinks about the

current topic. This includes the actual document as well as other related thoughts.

Contemplating is a domain independent action and can probably be identified in a

variety of creativity maps.

Comparing The Comparing action describes the situation where a user compares dif-

ferent version of the created document. The Collaborative Editor integrates a com-

parison functionality, which allows to display any two versions side by side with

highlighted differences. Whenever this facility is used, it is assumed that a compar-

ing action is performed.

A viewpoint is created for each of the previously described actions. This means that the

editing viewpoint includes the editing action, the conceptualising viewpoint the concep-

tualising action and so on. As the Collaborative Editor was used during the workshop,

the DMCM was invoked as an integrated facility. Figure 8.1 depicts the GUI of both

components with the default configuration of the DMCM, representing each viewpoint in

a different colour.

Figure 8.1: GUI of the Collaborative Editor with integrated DMCM

151

Case Studies

After the first stage of the workshop was finished, each participant had to choose one of

the stimulus items that were provided by Prof. Sue Thomas. This included for instance

sunglasses, a watch or a necklace. The Collaborative Editor was invoked as shown in

Figure 8.1 with a plain text document afterwards and the second phase of the workshop

started, where 25 minutes were spent to write about the stimulus item, followed by a

20 minutes coffee break for possible conversations. Each participant was instructed to

record the creative process during this period. In the 25 minutes of the third phase, the

participants were asked to reduce the previously created document by half and continue

with the recording of the creative process. After this stage ended, the recording and

writing was finished, the DMCA was closed and the captured creative process of the two

25 minute sessions was stored in the Knowledge Repository. All document versions that

were created with the Collaborative Editor were additionally saved in the version control

system. A fragment of one observed creative process of a participant is depicted in Figure

8.2.

S12 S13
cont

S14
edit

S15 S16
edit cont

S17
edit

S18 S19 S20
cont edit cont

Figure 8.2: Fragment of a Captured Creative Process

State Comparison

As mentioned before, the initial creative process describes a chronologically ordered se-

quence of actions. However, this does not necessarily describe the correct structure, as the

creator possibly moved back to a previous stage during the creation, resulting in several

branches and a creativity map structure. For the construction of this map, similar states

need to be identified in the first step. This process is based on the similarity measurement

of states that was described in Section 4.2.2 and additional information which is supported

by the creator. It was mentioned before that some situations where the creator returned

to a previous idea are difficult to record and require additional information. The described

comparison process is therefore only one part of the identification of similar states.

The metric that was chosen for this case study utilises the artefact viewpoint, which

stores the document about the stimulus item that was created during the second and

third phase of the workshop. This viewpoint was picked, because it is definitely present

in all captured creative processes and furthermore represents the essential information for

the observation of creativity, like mentioned in the first axiom of creativity A0 in Section

152

Case Studies

3.2. The comparison process of two artefact viewpoints defines the included documents

as similar if they are identical, implying that they refer to the same version in the version

control system.

The Collaborative Editor integrates a facility which enables the user to review every revi-

sion of the currently loaded document, as described in Section 7.4.2. It furthermore allows

for a reversion to any of these versions, which then loads the corresponding document into

the editor. Whenever this happens, the creator simultaneously returns to this stage in

the creative process. This additional information that is provided by the participant is

integrated into the construction process, which is responsible for the creation of a map

structure. Figure 8.3 depicts a small sequence of a creative process with additional tran-

sitions to emphasise the returning phases. These dotted arrows are only a visual aid and

not part of the actual creative process that is stored in the CMR. Each of the states

contains the two viewpoints artefact and time. The artefact viewpoint stores the revision

number of the version control system and the time viewpoint saves the timestamp that is

not further discussed in this example.

S12 S13
cont

S14
edit

S15 S16
edit cont

S17
edit

S18 S19 S20
cont edit cont

Figure 8.3: Fraction of a Captured Creative Process with Revert Transitions

All states of the creative process need to be checked for identical document versions. It is

necessary to integrate the provided information from the creator into this process. Table

8.1 illustrates the result of the state comparison phase for one participant. It lists all

version numbers of the document that are at least shared by two states.

Document Version States

2 S1, S2
6 S6, S8
9 S10, S11
10 S12, S14
14 S17, S19
17 S21, S25
23 S28, S32

Table 8.1: Similar States with Respect to Document Versions

The states that are not shown in Table 8.1 failed in the comparison process. This implies

that the participant of the workshop did not return to any of them in the creative process.

153

Case Studies

Transition Repositioning

The transition repositioning process is responsible for the construction of the map structure

from the initially sequential creative process. Outgoing transitions of similar states are

repositioned based on the results of the state comparison step. As described in Section

4.2.3, the state with the lowest timestamp becomes the source for these transitions. Table

8.2 illustrates these states coloured in red.

Document Version States

2 S1, S2
6 S6, S8
9 S10, S11
10 S12, S14
14 S17, S19
17 S21, S25
23 S28, S32

Table 8.2: Highlighted Lowest Timestamp

Any outgoing transition of a state that is not marked needs to be repositioned. For

example, the transitions of state S2 need to change its source to S1, the ones of S8 to

S6 and so on. Figure 8.4 depicts a small fraction of the creative process from one of the

workshop participants after the described step is finished. This is also the final phase that

ends the creativity map construction process.

S12

S13

cont

S14
edit

S15 S16
edit cont

S17
edit

S18 S19

S20

cont

edit

cont

Figure 8.4: Fraction of a Constructed Creativity Map

It is shown in Figure 8.4 that all states of the original sequential process are kept in the

resulting creativity map. This is necessary to retain all information, which can become

important for the analysis. The whole map that includes the presented fraction is depicted

in Figure 8.5. It is relatively small, due to the short recording time of 50 minutes. The

branches of the map are not very long, which allows to assume that the participant realised

very quickly, if the current behaviour leads to the desired result. Whenever this was not

the case, he returned to a previous stage.

154

Case Studies

S
0

S
1

S
3

S
4

S
5

S
6

S
9

S
1

0
S

1
2

S
1

5
S

1
6

S
1

7
C

C
t

C
t

E
E

C

E
C

t
E

C
t

E
S

2
0

C
t

S
2

1
E

S
2

6

C
S

2
7

C
t

E
C

t
C

t
E

E
C

t
E

E

S
2

E

S
7

S
8

E
S

1
1

E

S
1

3

C
t

S
1

4

E

S
1

8

C
t

S
1

9

E

S
2

2

C

S
2

3
S

2
4

S
2

5
C

t
E

C
t

C
t

C
t

E
E

C
t

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

E C
t

C

S
2

8

S
2

9
S

3
0

S
3

1
S

3
2

S
3

3
S

3
4

S
3

5
S

3
6

S
3

7
S

3
8

S
3

9

F
ig

u
re

8.
5:

C
re

at
iv

it
y

M
ap

of
a

W
or

k
sh

op
P

ar
ti

ci
p

an
t

155

Case Studies

The creativity maps of all workshop participants are located in Appendix A. Some of the

attendants added new actions to the DMCM before or during the two recording sessions.

A number of maps is very small and one even remains a simple sequence, which describes

the situation where the participant did not return to a previous stage of the creative

process at any time.

8.2.2 Feedback from the Workshop Participants

After the recording and editing phases of the creativity workshop were finished, all partic-

ipants met for a discussion session of about 1 hour, where they had the possibility to give

feedback on the De Montfort Creativity Assistant (DMCA) and especially the De Montfort

Creativity Mapper (DMCM). Although the time spent with the tools was rather short,

valuable information could be collected, which allowed for interesting insights and inspired

new ideas for future improvements.

The design and functionality of the Collaborative Editor were perceived positively by most

of the participants. As mentioned before, only the essential editing features are imple-

mented to keep the interface clear. All users liked the idea and added that most editing

facilities contain too many possibilities that are disturbing on the one hand and complicate

the location of certain configurations on the other hand. They also welcomed the fact of

having an integrated facility which allows them to keep track of the document and review

previous versions. The comparison feature was especially helpful for the identification of

modifications and the ability to revert to previous document versions.

Differentiated feedback was given on the DMCM. The idea of observing the creative

process of a person in order to build creativity maps was perceived positively by the par-

ticipants. However, different opinions existed for the interface and the recording technique.

As described in Section 4.2.1, the DMCM is realised as a user interactive tool, which allows

for a simple and flexible implementation without additional post-processing to determine

the performed actions. Some of the participant were satisfied with this approach, others

perceived the DMCM as being disturbing in a number of situations during the work-

shop. It was especially mentioned that the interaction with the DMCM was sometimes

distracting.

Summarising, it can be pointed out that the concept of creativity maps and the DMCA

as initial tool support were judged favourably. However, the different opinions about the

DMCM and especially the mentioned distraction from the creative process illustrated that

156

Case Studies

improvements are required. Possible directions for future developments are described in

Chapter 9, particularly in Section 9.6.

8.3 Conference Paper

The second case study demonstrates the information hiding process. It illustrates how

a longer recording period leads to a large creativity map which also contains irrelevant

information. This leads to the construction of a PCM as the condensed representation of

relevant viewpoints and actions. This time, the DMCM was used to record the creative

process during the creation of a research paper.

8.3.1 Creativity Map Construction

Only the main parts of the three construction steps are explained, as the previous case

study already illustrated this process in detail. The resulting creativity map is presented

at the end of this section.

Recording of the Creative Process

An external word processing tool was used during this case study for the creation of the

research paper, because it was written with the LATEX type setting system, which is not

supported by the Collaborative Editor at the moment. Each version of the document

was stored in an external version control system, which was accessible to allow for the

construction of the creativity map. The following actions were used by the person to

configure the DMCM.

Editing The Editing action is performed when the user is editing the document. This

can be for instance writing new text, deleting existing text passages or copy and

paste.

Conceptualising The Conceptualising action describes an activity where the user is

thinking about the concept of the document that is going to be created. Usually a

first structure is created in the mind before the writing process starts.

157

Case Studies

Comparing The Comparing action describes the situation where a user compares differ-

ent version of the created document.

Discussing The Discussing action represents conversations with the supervisor, other

authors or colleagues to agree on the current outcomes and talk about the further

development of the research paper.

Contemplating The Contemplating action is performed, when the user thinks about the

current topic. This includes the actual document as well as other related thoughts.

Contemplating is a domain independent action and can probably be identified in a

variety of creativity maps.

Reading The Reading action is performed when literature about the topic is read or

reviewed. For instance, the ”Literature Review” section of a research paper describes

one stage where the reading action is probably performed. However, it is also possible

that is does not occur at all.

The first three actions editing, conceptualising and comparing are grouped into the artefact

viewpoint. The next two actions discussing and contemplating build the review viewpoint

and the last action reading is stored in the reading viewpoint. Figure 8.6 depicts the

DMCM, which has been configured with the previously described actions. It is invoked as

a standalone facility, as the Collaborative Editor is not used in this case study.

Figure 8.6: DMCM Configuration for the Research Paper

State Comparison

It was mentioned before that an external version control system was used during the cre-

ation of the research paper. It is not part of the DMCA but was accessible afterwards.

The artefact viewpoint, which stores the document was therefore used to determine similar

states in the creative process. Two artefacts are compared based on the same measure-

ment, which was used in the first case study. This means that they are similar, if each

character matches so that the documents are identical. Similar to the previous case study,

additional information about the situations when the creator returned to a previous state

158

Case Studies

was provided. It was integrated into the overall construction process and combined with

the previously described identity measurement for artefacts.

Transition Repositioning

The transition repositioning step is similar in all creativity map constructions. As men-

tioned before, similar states are grouped into a set and the state with the lowest timestamp

becomes the source for all outgoing transitions. The particular map that was recorded

during the creation of the research paper contains 211 transitions and can barely be dis-

played on a single page. Especially the positioning of transitions and nodes to a more

structured form would require additional space. Figure 8.7 depicts this creativity map; an

illustration of the collapsed form will be presented later.

8.3.2 Information Hiding

One aim of information hiding is to reduce the size of a creativity map and display only

relevant transitions and states. The distinction between relevant and irrelevant is made in

advance and can always be adjusted for the particular purposes. For this case study, the

analyser is interested in three different creation phases of the conference paper. Firstly

from the beginning of the recording to the end of the first week, secondly from the begin-

ning of the second week to the end of the third week and thirdly from the beginning of

the fourth week to the end. A number of actions and viewpoints, which are irrelevant for

the further analysis are additionally hidden for each of these creation phases.

For the first stage from the beginning to the end of the first week, the analyser is especially

interested in the concept and the first creation steps of the research paper. In particular,

the actions discussing, conceptualising and reading should remain in the creativity map

for this period. These activities and their relations contain information about the early

creation process, which usually includes preparation in the form of discussions, concepts

and literature review.

For the second stage of the creation phase from the beginning of the second week to the end

of the third week, the analyser is interested in the main editing actions that are contained

in the artefact viewpoint and their relation to the discussing action. This phase probably

describes the main two weeks of the research paper editing and the period where most of

the content is created.

159

Case Studies

S1

c
o

n
c

S3

c
o

n
t

S4

S5
S6

S
9

S
0

S
1

S
3

S
4

S
5

S
6

S
9

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
5

S
6

S
9

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
5

S
6

S
9

S
4

S
5

S
6

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4 S4

S4

S4 S4

S4

S4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4S

4
S

4

S
4 S

4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

d
is

re
a

d

e
d

it

re
a

d

c
o

n
t

c
o

m
p

d
is

d
is

c
o

n
t

c
o

n
c

re
a

d d
is

e
d

it

c
o

n
c

c
o

m
p

d
is

c
o

n
t

c
o

m
p

c
o

n
c

d
is

c
o

n
t

e
d

it
re

a
d

e
d

it

d
is

re
a

d
c
o

n
c

d
is

c
o

n
tc
o

n
c

re
a

d
d

is
e

d
it

re
a

d

c
o

n
t

c
o

m
p

d
is

d
is

c
o

m
p

c
o

n
t

d
is

c
o

n
c c
o

n
t

c
o

n
c

d
is

c
o

n
t

e
d

it

re
a

dc
o

m
p

e
d

it

c
o

n
t

d
is

re
a

d

e
d

it
d

is

d
is

e
d

it

c
o

m
p

d
is

c
o

n
t

c
o

n
c

e
d

it

c
o

m
p

c
o

n
t

d
is

e
d

it

c
o

n
t

d
is

e
d

it

re
a

d

d
is

e
d

it

c
o

m
p

d
is

c
o

n
t

e
d

it

c
o

m
p

d
is

c
o

n
c

e
d

it

c
o

n
c

e
d

it
c
o

n
t

c
o

m
p

d
is

c
o

n
t

d
is

re
a

d
e

d
it

d
is

c
o

n
c

e
d

it
c
o

n
t

c
o

m
p

d
is

d
is

e
d

it

c
o

m
p

d
is

c
o

n
t

e
d

it

c
o

m
p

d
is

c
o

n
c

e
d

it

e
d

it

c
o

n
t

d
is

e
d

it

re
a

d

c
o

n
t

d
is

re
a

d e
d

it
d

is

c
o

n
c e

d
it

c
o

n
t

c
o

m
p

d
is

c
o

n
ce
d

it
c
o

m
p

c
o

n
c

d
is

d
ise
d

it

c
o

m
pd
is

c
o

n
t

c
o

n
t

d
is

re
a

d

e
d

it
d

is

re
a

d

d
ise

d
it

c
o

m
p

d
is

c
o

n
t

e
d

it
c
o

n
t

d
is

e
d

it
re

a
d

d
is

e
d

it

c
o

m
p

d
is

c
o

n
t

e
d

it

c
o

m
p

c
o

n
cc

o
n

t

e
d

it

c
o

m
p

re
a

d

c
o

n
t

c
o

m
p

d
is

e
d

it
re

a
d

e
d

it

re
a

d

c
o

n
t

c
o

m
p

c
o

n
c

c
o

n
t

e
d

it c
o

m
p

re
a

d

d
is

re
a

dc
o

m
p

e
d

it

c
o

n
t

c
o

n
t

c
o

m
p

d
is

e
d

it
re

a
d

d
is

re
a

d

c
o

m
p e

d
it

c
o

n
t

c
o

m
p

d
is

e
d

it

c
o

n
t

c
o

m
p

c
o

n
c

c
o

n
t

e
d

it

c
o

m
p

re
a

d

e
d

it

c
o

n
t re

a
d

c
o

m
p c

o
n

t

c
o

n
t

e
d

it
d

is

c
o

n
t

e
d

it

Figure 8.7: Creativity Map of Research Paper

160

Case Studies

For the third stage from the beginning of the fourth week to the end of the recording, the

analyser is interested in the review process of the research paper. The relevant actions for

this stage are comparing and any activity of the review viewpoint. This last stage of the

creation process probably includes a review of the generated content and the comparison

with previous versions.

Behaviour Description

The hiding process constructs a PCMs that reduces the original creativity map to the pre-

viously mentioned actions. To enable the distinction between the three different creation

periods, it is necessary to introduce a set of conditions for the time viewpoint. It was

mentioned before that a timestamp for each performed action is stored inside the states

of a creativity map, which allows to define the following four conditions.

1. Condition C1 : The timestamp needs to be less than or equal to the end of the first

week.

2. Condition C2 : The timestamp needs to be higher than the end of the first week.

3. Condition C3 : The timestamp needs to the less than or equal to the end of the third

week.

4. Condition C4 : The timestamp needs to be higher than the end of the third week.

The first condition C1 is used to restrict the behaviours to only the first week, which

was defined as the first important stage for the analysis. C2 and C3 specify the second

phase of the research paper creation, from the beginning of week 2 to the end of week 3.

Condition C4 is finally used for the specification of the fourth phase starting from week

4 to the end of the recording. These four conditions are utilised for the specification of

the following behaviour description B1 in the BDL, which also specifies the previously

mentioned relevant actions for each of the time periods.

B1 = (<S-A=Discussing-C1>|<S-A=Conceptualising-C1>|<S-A=Reading-C1>)|

(<C2-V=Artefact-C3>|<C2-A=Discussing-C3>)|

(<C4-V=Review-S>|<C4-A=Comparing-S>)

This behaviour description defines the behaviours that should remain in the creativity

map and is therefore used as a parameter of the restriction operation (/). Let M be the

161

Case Studies

recorded creativity map that is depicted in Figure 8.7. The restriction operation that

creates the desired PCM M ′ is expressed in the following way.

M’ = M / { B1 }

As mentioned before, it is in many cases more convenient to use this operation for the

hiding process. However, it is also possible to modify the behaviour description B1, so

that it can be used as a parameter of the hiding operation (\). The previously defined

conditions C1 to C4 can stay the same, but it is necessary to define the transitions that

are complementary to the ones described in B1. B2 represents the according behaviour

description.

B2 = (<S-A=Contemplating-C1>|<S-A=Editing-C1>|<S-A=Comparing-C1>)|

(<C2-A=Contemplating-C3>|<C2-A=Reading-C3>)|

(<C4-A=Conceptualising-S>|<C4-A=Editing-S>|<C4-A=Reading-S>)

The hiding operation with B2 as parameter leads now to the equivalent PCM that is

constructed with the restriction operation presented above. This can be expressed in the

following way.

M’ = M / { B1 } = M \ { B2 }

The example should only illustrate, how the restriction operation can be converted into a

hiding operation by an adaptation of the behaviour description. However, B1 is used as a

parameter of the restriction operation in the following.

Behaviour Description Automaton (BDA)

After the behaviour description B1 has been defined, it is converted into a BDA that is

then used during the hiding process in order to match the described behaviours in the

creativity map. An ε-NFA representation of the BDA is created first with an adapted

version of the Thompson construction and the components that were described in Section

5.5.2. The initial step of this process substitutes all viewpoints and AnyEdges with the

corresponding actions. This leads to the following behaviour description B′1

B1’ = (<S-A=Discussing-C1>|<S-A=Conceptualising-C1>|<S-A=Reading-C1>)|

162

Case Studies

(<C2-A=Conceptualising-C3>|<C2-A=Editing-C3>|

<C2-A=Comparing-C3>|<C2-A=Discussing-C3>)|

(<C4-A=Discussing-S>|<C4-A=Contemplating-S>|<C4-A=Comparing-S)

The ε-NFA representation of the BDA is not further explained, as it only represents an

intermediate step. It was mentioned before that this type of automaton is more difficult to

handle, due to a possibly non-deterministic choice of transitions. The powerset construc-

tion is therefore used to convert the ε-NFA into a DFA. The DFA that has been created

for the behaviour description B′1 is depicted in Figure 8.8.

S0

Conc

Read

Cont

Edit

Dis

Comp

δE(C1)

δS(C2)
δE(C3)

δE(C1) δE(C1)

δS(C2)

δS(C4)

δE(C3)

δS(C2)

δS(C4)

δE(C3)

δS(C2) δE(C3)

δS(C4)

S20

S15

S14

S5

S17S8

S9

S7

S1

S18

S10

S12

S16

S19

S11

S13

S2

S3

S6

S4

Figure 8.8: BDA in DFA Representation

The BDA in the figure illustrates a choice between the six transitions Conceptualising,

Reading, Discussing, Comparing, Contemplating and Editing immediately after the initial

state S0. Depending on the chosen transition, the conditions C1, C2, C3 or C4 or a

combination of them needs to be satisfied in order to reach a final state.

Behaviour Matching

The previously described BDA is used to search for the specified behaviours in the cre-

ativity map M. Any encountered sequence is marked and remains in the resulting PCM,

163

Case Studies

as the restriction operation is used. All unmarked behaviours are relabelled with α. As

these α transitions are not relevant for this case study, they are going to be collapsed in a

succeeding step. Figure 8.9 depicts the corresponding PCM. The states are displayed at

mostly identical positions compared to the original map in Figure 8.7 in order to emphasise

the size reduction as a result of the information hiding process.

Collapsed states are displayed as squares, similar to their specification in Section 5.6. The

PCM contains many of them, which implies that the hiding process was able to conceal a

lot of previously visible states and transitions. It was mentioned before that these elements

can also be pruned, if they are no longer needed in order to reduce the physical size of the

PCM.

Another possibility, which considers the amount of time that an activity consumed is

presented in Figure 8.10. It illustrates the same creativity map as shown in Figure 8.9.

However, the size of a node is proportional to the amount of time that the activity of an

incoming transition took. This additional information allows for instance to distinguish

between a short and long discussion that is followed by an editing activity. The information

can be integrated into further analysis and ultimately used to support the creative process.

164

Case Studies

c
o

n
c

S3

S4

S
3

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
6

S
9

S
4

S
4

S
4

S
5

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S4

S4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

d
is

re
a

d

re
a

d

d
is

d
is

c
o

n
c

d
is

c
o

n
c

d
is

c
o

n
c

d
is

re
a

d

d
is

c
o

n
c

c
o

n
c

d
is

re
a

d

d
is

d
is

c
o

m
p

d
is

c
o

n
c

c
o

n
c

d
is

e
d

it
c
o

m
p

e
d

it

d
is

e
d

it
d

is
d

is

e
d

it

c
o

m
p

d
is

c
o

n
c

e
d

it

c
o

m
p

d
is

e
d

it

d
is

e
d

it

d
is

e
d

it

c
o

m
p

d
is

e
d

it
c
o

m
p

d
is

c
o

n
c

e
d

it

c
o

n
c

e
d

it
c
o

m
p

d
is

d
is

e
d

it
d

is

c
o

n
c

e
d

it
c
o

m
p

d
is

d
is

e
d

it

c
o

m
p

d
is

e
d

it

c
o

m
p

d
is

d
is

c
o

n
t

d
is

d
is

c
o

n
t

c
o

m
p

d
is

c
o

n
ce
d

it
c
o

m
p c
o

n
c

d
is

d
ise
d

it

c
o

m
pd
is

d
is

e
d

it

d
is

d
is

e
d

it
c
o

m
p

d
is

e
d

it
d

is
e

d
it

d
is

e
d

it

c
o

m
p

d
is

e
d

it

c
o

m
p

c
o

n
c

c
o

n
t

c
o

m
p

c
o

n
t

c
o

m
p

d
is

c
o

n
t

c
o

m
p

c
o

n
t

c
o

m
p

d
is

c
o

m
p

c
o

n
t

c
o

n
t

c
o

m
p

d
is

d
is

c
o

m
p

c
o

n
t

c
o

m
p

d
is

c
o

n
t

c
o

m
p

c
o

n
t

c
o

m
p

c
o

n
t

c
o

m
p

c
o

n
t

c
o

n
t

d
is

c
o

n
t

S
4

re
a

d

S
4

S
4

re
a

d
S

4

S
4

c
o

n
t

S
4

S
4

Figure 8.9: Collapsed Creativity Map of Research Paper

165

Case Studies

c
o

n
c

S3

S4

S
3

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
6

S
9

S
4

S 4

S
4

S
5

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S4

S4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S
4

S 4

S
4

S
4

S
4

S
4

d
is

re
a

d

re
a

d

d
is

d
is

c
o

n
c

d
is

c
o

n
c

d
is

c
o

n
c

d
is

re
a

d

d
is

c
o

n
c

c
o

n
c

d
is

re
a

d

d
is

d
is

c
o

m
p

d
is

c
o

n
c

c
o

n
c

d
is

e
d

it
c
o

m
p

e
d

it

d
is

e
d

it
d

is
d

is

e
d

it

c
o

m
p

d
is

c
o

n
c

e
d

it

c
o

m
p

d
is

e
d

it

d
is

e
d

it

d
is

e
d

it

c
o

m
p

d
is

e
d

it
c
o

m
p

d
is

c
o

n
c

e
d

it

c
o

n
c

e
d

it
c
o

m
p

d
is

d
is

e
d

it
d

is

c
o

n
c

e
d

it
c
o

m
p

d
is

d
is

e
d

it

c
o

m
p

d
is

e
d

it

c
o

m
p

d
is

d
is

c
o

n
t

d
is

d
is

c
o

n
t

c
o

m
p

d
is

c
o

n
ce
d

it
c
o

m
p c

o
n

c

d
is

d
ise

d
it

c
o

m
p

d
is

d
is

e
d

it

d
is

d
is

e
d

it
c
o

m
p

d
is

e
d

it
d

is
e

d
it

d
is

e
d

it

c
o

m
p

d
is

e
d

it

c
o

m
p

c
o

n
c

c
o

n
t

c
o

m
p

c
o

n
t

c
o

m
p

d
is

c
o

n
t

c
o

m
p

c
o

n
t

c
o

m
p

d
is

c
o

m
p

c
o

n
t

c
o

n
t

c
o

m
p

d
is

d
is

c
o

m
p

c
o

n
t

c
o

m
p

d
is

c
o

n
t

c
o

m
p

c
o

n
t

c
o

m
p

c
o

n
t

c
o

m
p

c
o

n
t

c
o

n
t

d
is

c
o

n
t

S
4

re
a

d

S
4

S
4

re
a

d
S

4

S
4

c
o

n
t

S
4

S
4

Figure 8.10: Collapsed Creativity Map with Time Information

166

Case Studies

8.4 Software Development

The third case study demonstrates the frequent information extraction process. The cre-

ative processes that were involved in a number of software projects were recorded with the

standalone version of the DMCM for a time period of 6 month. Especially the amounts

of behaviours for several frequency thresholds are emphasised and it is explained how this

information is used for the configuration of fzero, fmin, fmax. Frequency and frequent be-

haviour categories are extracted and examples of behaviour tracking and its purposes for

the analysis are presented.

8.4.1 Creativity Map Construction

Recording of the Creative Process

The software development process that is described in this case study was performed in an

external environment, which is not part of the DMCA. An external version control system

was used for the storage of the different source code versions, similar to the previous case

study. The following actions were used by the software developer to configure the DMCM.

Implementing The Implementing action represents the creation of source code by the

software developer. This action is for instance similar to the editing action of a

writer, which was mentioned in the previous case study.

Comparing The Comparing action is performed, when the developer compares different

version of the created source code.

Testing The Testing action is performed when the software or parts of it are tested and

evaluated. This is a common activity in the software development process, which

can happen at any stage.

Designing The Designing action describes an activity that involves defining the software

design and architecture. This might be UML class diagrams or sketches. The design

of a software component should be defined before the implementation begins.

Conceptualising The Conceptualising action describes an activity where the require-

ments of the software and concepts are specified. They are usually determined

before the actual design or implementation starts. However, it might be necessary

to adjust the concept at some point during the development process.

167

Case Studies

Meeting The Meeting action is performed, when the software developer meets with team

members who are also working on the project.

Discussing The Discussing action represents informal discussions about the project.

Contemplating The Contemplating action is performed, when the software developer

thinks about the current topic. This includes the actual project as well as other

related thoughts. Contemplating is a domain independent action and can probably

be identified in a variety of creativity maps.

The first three actions implementing, comparing and testing are grouped into the artefact

viewpoint. The following two actions designing and conceptualising build the design view-

point and the last three actions meeting, discussing and contemplating are summarised

into the review viewpoint. Figure 8.11 depicts the DMCM that has been configured with

the previously described actions.

Figure 8.11: DMCM Configuration for the Software Projects

State Comparison

It was mentioned before that the version control system was not accessible during this case

study. In contrast to the previous two case studies, it was impossible to use the automatic

identification of similar states. Additional information about the situations when the

creator returned to previous stages was of essential importance. It was provided by the

software engineer, who was also instructed to collect this information. This situation

illustrates the difficulty of an automated creativity map construction process.

Transition Repositioning

The transition repositioning is executed identically to the process described in the last

case study. Outgoing transitions of similar states are repositioned to the state with the

168

Case Studies

lowest timestamp. The result of this construction process is a corpus of 10 creativity maps,

each containing between 800 and 2000 transitions. This set is used for the information

extraction process that is described in this case study.

8.4.2 Frequent Information Extraction

Information extraction creates valuable information about the frequent performance of

behaviours and the relationship between actions, which can be used in the analysis. It

was mentioned above that the search space for frequent information can become quite

large. Additional conditions were introduced for its reduction to only necessary behaviours

in order to support an aim oriented study. In this case study, the minimum behaviour

length was adjusted to lmin = 2 and the maximum behaviour length to lmax = 5. Short

behaviours of length 1 are usually not relevant, as they are probably preferred and long

behaviours with more than 5 transitions can become difficult to handle. The relationship

between transitions from the beginning and end might not be strong enough to extract

useful properties. Additional information hiding and filtering steps as depicted in Figure

6.3 were not performed, as all maps are relevant for the analysis.

Table 8.3 shows quantitative details of the creativity maps corpus. It illustrates the num-

ber of distinct behaviours between lengths 2 and 5 for each of the maps M1 to M10.

Furthermore, the amount of occurrences for these different sets is described. It can be

observed that the number of behaviours increases with the length, while the quantity of

occurrences decreases at the same time. However, the amount of occurrences does not

change very much due to the large size of the creativity maps, which allows even long

behaviours of length 5 to occur in every branch. The size of each map that is shown in

the second column is similar to the number of occurrences of length 1 behaviours. As

mentioned before, these sequences are not further considered in this case study.

The table illustrates that the smallest creativity map M5 contains 827 transitions and the

largest one M10 inludes 2119 transitions. It can be observed that the amount of different

behaviours of length 2 alternates between 46 and 54. This is only a slight variation, as the

number of possible behaviours of this size is 82 = 64 and therefore also relatively small. It

increases for longer behaviours, because a larger variety of them can be performed by the

software developer. The second part of the table illustrates the number of occurrences for

the different behaviour lengths, which is of course higher than the previously mentioned

counts, as every performance of a behaviour is considered. There is only a small difference

between the number of occurrences and the size of each creativity map.

169

Case Studies

Map Transitions Behaviours Occurrences |B|n||
2 3 4 5

∑
2 3 4 5

M1 979 46 109 168 223 546 977 975 973 971

M2 2066 54 152 230 315 751 2065 2064 2063 2062

M3 1536 50 115 178 237 580 1535 1534 1532 1530

M4 1262 47 106 170 240 563 1261 1260 1259 1257

M5 827 48 114 178 249 589 826 825 823 821

M6 1714 53 135 215 283 686 1713 1712 1711 1710

M7 1654 51 145 228 330 754 1653 1651 1649 1647

M8 1426 53 136 218 296 703 1425 1424 1422 1420

M9 2119 54 146 235 326 761 2118 2117 2116 2115

M10 1305 47 122 188 263 620 1304 1303 1302 1301

Table 8.3: Details of the Creativity Map Corpus of the Software Development

Frequency Categories

The first step of the information extraction process is the construction of frequency cate-

gories. It was mentioned before that the three thresholds fzero, fmin and fmax need to be

defined in advance by the analyser. They can be adapted for every creator or project; it

is however advantageous to keep the thresholds identical for the same creator to produce

useful and reusable results for the analysis. It is not always easy to determine them and

further adjustments might be necessary, considering circumstances like the corpus size.

The corpus which is used in this case study contains creativity maps that are relatively

large. Each of the maps consists of 827 to 2119 transitions. They obviously cannot be

displayed, which was already problematic for the creativity map of the previous case study.

The software developer chose eight distinct actions, which results in a variety of possible

behaviours especially for longer sequences. Long behaviours are therefore probably less

frequent than short ones, which needs to be considered during the configuration of the

frequency thresholds.

The previously mentioned facts illustrate, at least to a certain degree, how background

knowledge can support the information extraction process. If the frequency thresholds are

configured too high, only very few or no behaviours at all are able to become frequent.

In contrast, if they are adjusted very small, a large number and variety of behaviours

easily becomes common or even preferred. To illustrate this scenario, several frequency

thresholds were chosen and the quantity of behaviours with a frequency higher than this

boundary was calculated. Figure 8.12 depicts the according behaviour percentages. Each

bar represents one creativity map, for example ”1” stands for M1.

170

Case Studies

1 2 3 4 5 6 7 8 9 10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

 1/500

 1/200

 1/100

 1/ 75

 1/ 50

 1/ 40

 1/ 30

 1/ 25

 1/ 20

 1/ 10

Maps

Figure 8.12: Behaviour Distribution on a Percentage Base for Several Frequency Thresh-
olds

The figure illustrates that the parameters need to be adjusted rather small to receive

useful results. For example, for the frequency thresholds 1/10 or 1/20, the percentage of

behaviours with a frequency higher than this boundary is only very low. About 20% of the

behaviours in creativity map 2 have a frequency higher than or equal to 1/50. Especially

longer behaviours occur rarely, if the threshold is chosen too high. For this case study, the

three parameters fzero, fmin and fmax are specified in the following way.

fzero = 1
200

fmin = 1
100

fmax = 1
25

171

Case Studies

All three thresholds are chosen rather small, so that at least some behaviours are able to

reach the common and preferred categories. For example, if the parameter fmax would

have been configured to 1/10, only 3 behaviours of the whole corpus are able to join the

preferred frequency set. As mentioned before, background knowledge and some attempts

are helpful for the adjustment. Table 8.4 illustrates the amounts of behaviours according

to previously described configuration.

Map Preferred Common Uncommon Zero (Existing)

M1 19 44 131 352

M2 9 55 150 537

M3 18 55 109 398

M4 15 31 166 351

M5 13 35 154 387

M6 13 41 186 446

M7 11 31 184 528

M8 13 46 140 504

M9 12 36 194 519

M10 11 44 176 389

Table 8.4: Sizes of the Frequency Categories

Although the frequency thresholds were chosen very small, the quantity of behaviours for

the different categories is still not high. Only between 9 and 19 behaviours are classified

as preferred and between 31 and 55 as common. The results illustrate that the particular

configuration of these parameters is able to reduce or increase the size of the frequency

categories. It furthermore allows to adjust the number of behaviours that are classified as

zero, which can be used for frequencies that are irrelevant for the study.

Frequent Behaviour Categories

Which maps or frequency categories are compared in particular depends on the analy-

sis. The comparison of succeeding creativity maps allows for a fine grained study that

probably emphasises short term changes in behaviours. This can for example be used

for the monitoring of activities and the assistance of the user if specific variations are

revealed. Long-term changes in behaviours can be analysed, if succeeding creativity maps

are grouped, so that they represent a particular time period. It is then possible to compare

these sets and analyse the behaviour developments. The analyser can in both cases be

alerted if uncommon changes were identified, such as a sequence of actions that was mini-

mal alternating or even stayed in the same frequency category for a certain time period and

number of creativity maps and then became maximal alternating or disappearing. This

172

Case Studies

case study emphasises three behaviours of the software developer. It demonstrates the

classification, monitoring and extraction of information to support the analysis of creative

processes.

The different frequency categories for each of the 10 creativity maps were already con-

structed in the previous step. They are ordered chronologically, so that the first map

represents the earliest creative process, followed by the second map and so on. This al-

lows to generate the according frequent behaviour categories and track the development

of activites. The monitoring process that is presented in this case study starts at the

first creativity map and ends at the last one. It focusses on the short term dynamics of

behaviours and presents a number of different cases, which illustrate numerous interpreta-

tions of the results. Figure 8.13 depicts three distinct behaviours and their developments

from the first creativity map M1 to the last one M10.

Emergent ↑

/

Dissapearing ↓

Minimal

Alternating (fmax)

Minimal

Alternating (fmax)

Maximal

Alternating
Common

Uncommon

Zero

Preferred

M1 M2 M3 M4 M5 M10M6 M7 M8 M9

Figure 8.13: Development of Three Behaviours

Each of the three behaviours is represented as a coloured line in the figure. The illus-

trated developments allow for a visual analysis of the activities and a possible observation

of ”turning points” and uncommon changes. Reasons for this, such as environmental

conditions or other issues can then be revealed and utilised to assist the creative process.

The red behaviour
Discussing−→ Conceptualising−→ is preferred at the beginning. It is classified

as minimal alternating (fmax) between the maps M2 and M3 and also between M5 and

M6. The behaviour was used with a high frequency in the majority of the projects and

disappears after the map M8. A closer look at it reveals that the order of the actions

173

Case Studies

describes a very common sequence, which can probably be identified in many creative

processes of software developers. The sequence furthermore seems to be an important

part and its disappearing illustrates that no discussion or conceptualising steps in this

particular order were performed in any of the last two creativity maps.

Especially this radical change needs to be considered for the analysis and the creativity

support. It was pointed out that this behaviour was an essential part of the creative

process in the majority of creativity maps. If it is possible to determine its importance,

maybe in terms of efficiency or the quality of the artefact, it might be necessary to attract

the attention of the software developer to those behaviours that disappeared in order to

reveal problems or even positive developments. Whenever an decreasing frequency of a

behaviour between two creativity maps or PCMs can be identified, it is possibly be useful

to interact with the creator in order to influence the creative process. This can also be

realised in ”real-time”, for example when the creative process of map M9 is recorded.

One possible way to interact with the software developer can be a pop-up window showing

a message that illustrates the disappearing of a long time preferred and possibly essential

behaviour. The user can then inform the system about project related changes, such as

different team members or modifications of the environment, which lead to these dynamics.

Due to the importance of the particular sequence, this might have helped the software

developer in many situations. A reminder to have a discussion with colleagues would be

a first and possibly necessary step for the support of the creative process.

The green line in Figure 8.13 represents the behaviour
Contemplating−→ Discussing−→ Implementing−→ .

It is classified as uncommon at the beginning, which means that its frequency is between

fzero and fmin. The behaviour belongs to the minimal alternating (fmin) category between

the creativity maps M2, M3 and M4. It is then maximal alternating from map M5 to map

M6, as it changes from the uncommon to the preferred set. The behaviour finally changes

back to become uncommon and is classified as common in the last creativity map M10.

It is present in all maps and any of the frequent behaviour categories, except for the zero

set. A behaviour development of this kind can probably be identified in several creative

processes.

The interesting fact about this behaviour is that it leads to an implementation action,

which is part of the artefact viewpoint. It is therefore at least a part of an artefact be-

haviour, which was presented above in Section 5.3.1. As mentioned before, the sequence

abruptly became preferred from map M5 to M6. This means that the two actions contem-

plating and discussing are essential at least in this period in order to reach an implementing

174

Case Studies

action and modify the artefact. The behaviour is useful for the creativity support, as a

reminder about the preceding actions can be displayed, whenever the software developer

is ”stuck” and needs assistance. A stimulus, maybe in the form a message that reminds

the person to have a discussion with team members in order to get new ideas or evaluate

the current ones can be presented.

The blue line represents the behaviour
Conceptualising−→ Discussing−→ Implementing−→ Comparing−→ . It

belongs to the zero category until creativity map M6 and occurs the first time in map M7,

where it emerges from M6 and is classified as common. The behaviour furthermore belongs

to the minimal alternating (fmax) category, as it changes its frequency from common to

preferred between the maps M8 and M9. A closer look reveals that this particular order

of actions describes a probably uncommon activity of a software developer. However, as

it is performed in the last four creativity maps, some circumstances might have changed.

The blue behaviour contains, similar to the green one, at least parts of an artefact be-

haviour, in particular
Conceptualising−→ Discussing−→ Implementing−→ . Its frequency increases steadily

after the creativity map M6. Compared with the green behaviour, it can be derived that a

discussing action before the implementation is important in many cases. Together with a

succeeding comparing action, it furthermore develops to a preferred activity of the creative

process. Especially the situation where the behaviour emerges can become relevant for

the analysis. It might be used to extract possible environmental factors for the creativity

support, like collaboration, which leads to new, previously not determined behaviours.

The ideas and considerations of collaborators can stimulate the software developer and

influence the creative process. If the described behaviour leads to better results or is as-

signed a particular importance, the person needs to be informed about it. However, this

kind of study always has to consider the created artefact, in particular the software or

source code.

The three previously described examples illustrate possible behaviour developments. It

was mentioned that the creator needs to be an integrated part of the creativity support

and interact with the system in order to gather useful information. However, the par-

ticular analysis of the behaviour developments is not part of this research. It should be

demonstrated how both the frequency and frequent behaviour categories are used for the

illustration and revelation of creative process dynamics.

175

Case Studies

8.5 Summary

This chapter illustrated the applicability of the proposed approaches. Three different case

studies were presented, each focussing on a particular part of the research. The first

one explained the use of the DMCA during a workshop with a group of 9 people and

emphasised the construction of creativity maps. The second case study demonstrated

the information hiding process, which lead to the construction of a PCM. A behaviour

description that included a mixture of state conditions and transition labels was used to

introduce three distinct time periods with respect to the creative process. A different set of

transitions was hidden for each of them, based on the specified purposes of the study. The

last case study illustrated the information extraction process for a software developer and

a corpus of 10 creativity maps. It was explained how the frequency and frequent behaviour

categories are used for the description of behaviours and their dynamics. Three example

behaviours were particularly emphasised and possible analyses of uncommon changes in

their developments were discussed. Reminders and notifications were briefly explained as

first ideas for the creativity support. The DMCM was used in all three case studies to

record the presented creative processes.

176

Chapter 9

Conclusion and Future Work

Objectives

• Evaluate and summarise of the presented work.

• Describe the limitations of the approach.

• Propose future work.

9.1 Summary of the Thesis

This thesis discussed the mapping of the human creative process onto creativity maps. It

was explained how irrelevant behaviours can be hidden on the one hand and frequency

related information can be extracted on the other hand. The presented approach explained

the construction process of creativity maps from the initial sequential creative process. It

was shown how an individual similarity measurement based on viewpoints is used for

its creation. A hierarchical classification of creativity maps into domain, creator and

project categories was explained and it was shown how a customised set can be used

for the retrieval of any personalised combination of maps. The role of data, information

and knowledge was identified and the knowledge creation process was presented. It was

especially emphasised in this context that information, with respect to creativity maps, is

represented as sequences of transition. These behaviours were defined and their granularity

and unification was discussed.

177

Conclusion and Future Work

The information hiding approach specifically illustrated how irrelevant behaviours of large

creativity maps can be concealed in order to reduce their size. Differences between observ-

able and non-observable behaviours were explained and Partial Creativity Maps (PCMs),

which contain both hidden and visible transitions were introduced. Furthermore, a formal

language, namely Behaviour Description Language (BDL) for the convenient definition of

behaviour descriptions was introduced. Different information hiding, restriction, revealing

and restrictive revealing operations, which all seamlessly integrate with the BDL were

specified. It was explained how a behaviour description is converted into a Behaviour

Description Automaton (BDA) and used for the behaviour matching. Additional min-

imisation techniques for PCMs, in particular collapsing and pruning were introduced to

further reduce the visual and physical map size.

The frequent information extraction approach defined a frequency metric for behaviours

of creativity maps. It was illustrated how these sequences of actions are classified into the

four distinct categories Preferred, Common, Uncommon and Zero. They are constructed

with the help of three frequency thresholds (fmax, fmin and fzero). The zero category

was further divided into an existing and non-existing set. All frequency categories were

then utilised for the extraction of behaviour dynamics, which specify changes that can

be identified between two or more creativity maps. This allowed for the introduction of

the five distinct frequent behaviour categories Minimal (fmax)/Minimal (fmin)/Maximal

Alternating, Emergent and Disappearing. It was explained how the information extraction

and hiding approach can be combined to build one overall process.

The prototype tool support of this research was presented in the form of the De Montfort

Creativity Assistant (DMCA). This initial tool illustrates the implementation of a frame-

work for creativity support; it allows collaborators to create and share artefacts and record

creative processes. A modular design realised as a pluggable system enables the integra-

tion of tools from any domain. Especially the Collaborative Editor was presented, as the

initial version of the DMCA was mainly constructed for the creative writing domain. The

De Montfort Creativity Mapper (DMCM), which represents a domain independent facil-

ity for the recording of creative processes was introduced. It was furthermore illustrated

how the constructed creativity maps are stored in the Creativity Map Repository (CMR).

The design of the Information Mining Engine (IME), which implements the presented

information hiding and extraction approaches and its integration into the whole tool were

explained.

The practical value of the presented approach was proven with the aid of three case

studies. The first one described a creative writing workshop with 9 participants that was

178

Conclusion and Future Work

held at the STRL. It focussed on the construction of creativity maps. The second case

study explained the construction of a behaviour description that allows for the distinction

of three time periods in a creativity map. It was shown how the information hiding

process is used to conceal irrelevant information in each of the phases. The frequent

information extraction process for a corpus of 10 creativity maps was demonstrated in the

third case study. It explained the dynamism of three distinct behaviours and the tracking

of unexpected changes in their developments. Interpretations for a possible creativity

support were presented.

9.2 Evaluation

Five research questions were specified in Section 1.3. They are evaluated based on the

presented thesis.

Is it possible to record the creative process computationally?

The recording of creative processes was discussed in Chapter 4. It was explained that a

user interactive recording process is preferred, because no additional knowledge for the

identification of the performed actions is necessary. The implementation of this system, in

particular the DMCM was discussed in Chapter 7. It was illustrated how its customisable

design allows creators to adapt the tool to the personal needs. The initially recorded

creative process describes a chronologically ordered sequence of actions. Section 4.2.2

introduced the strategy that is used for the identification of similar states, which are then

utilised for the construction of the creativity map structure. This comparison is kept

flexible and can be defined for any viewpoint of the creative process. However, it was

also emphasised that additional knowledge about situations when the creator returned

to previous stages is usually required to assist the identification of similar states. The

resulting creativity map represents the recorded creative process.

How can the creative process be used to mine for behavioural information?

The three entities data, information and knowledge were specified in Chapter 4. It was ex-

plained that data describes the transitions of a creativity map, information the connected

sequences and knowledge the behavioural patterns. The relationship between these three

elements was illustrated as the knowledge creation process, which describes the transfor-

mation from data to information and information to knowledge. Especially the specifi-

cation of information as behaviours in the form of consecutive sequences of actions was

emphasised. The information mining process is therefore interested in their extraction and

179

Conclusion and Future Work

processing. One possibility that was discussed in Chapter 6 is the extraction of frequent

information. Different representations of behaviours were explained and their unification

and granularity were discussed.

Can (temporarily) irrelevant information of the creative process be hidden?

Chapter 5 introduced a formal language for the specification of behaviour descriptions,

namely BDL. It allows to define every behaviour of a creativity map in the form of a be-

haviour description, which is then used for the information hiding process. The language

additionally contains possibilities for the specification of state conditions, which enables

the integration of state values into the information hiding process. A behaviour descrip-

tion integrates seamlessly with the presented hiding, restriction, revealing and restrictive

revealing operations, which describe flexible possibilities for the information hiding and

uncovering. It is converted into a BDA, which is used during the depth-first traversal of

a creativity map in order to hide irrelevant information and construct a PCM. Collapsing

and pruning techniques, which allow to further reduce the visual or physical map size were

also discussed in the last part of Chapter 5.

What kind of frequency related information can be extracted from the creative

process and how can it be used to describe the dynamism of behaviours?

The frequent information extraction process was discussed in Chapter 6. A frequency

metric that considers the length of a behaviour was introduced and it was explained how

it is utilised for the classification of behaviours into the frequency categories Preferred,

Common, Uncommon and Zero. These classes are distinguished with the help of the

three freely adjustable frequency thresholds fmax, fmin and fzero. The development of

a behaviour and the dynamics of creativity maps can be tracked with the aid of the

five frequent behaviour categories Minimal (fmax)/Minimal (fmin)/Maximal Alternating,

Emergent and Disappearing). They allow to analyse creative processes and recognise

unexpected changes. An example of this behaviour tracking was explained in the third

case study of Chapter 8.

How can the proposed research be used to implement initial tools for compu-

tational creativity support?

The DMCA and DMCM as the prototype tool support for this research were introduced

in Chapter 7. The former provides facilities for the collaborative creation, sharing and

modification of artefacts. Its different layers illustrated an initial and extendible design

of a creativity support tool. The DMCM creates possibilities for the recording, construc-

tion, storage and analysis of creative processes. It includes facilities for the visualisation

of creativity maps and integrates the approaches that were presented in this thesis. A

180

Conclusion and Future Work

number of ideas for possible creativity support were described in the third case study. It

was explained that assistance can be integrated in the form of messages or feedback as a

first step.

9.3 Advantages of the Proposed Approaches

It was mentioned in Chapter 2 and particularly in Section 2.2 that the creativity map

as a representation of the creative process has several advantages. The main problem in

existing models of creativity [97][11][21] is a non-tangible representation of the creative

process. It is usually described as an unconscious process, mainly tacking place inside the

head of a creator. Analysis processes that refer to this data, such as data or information

mining, become more difficult if not impossible. In contrast to this, a creativity map

represents the process in a format that can be stored and analysed. By recording the

activities of a creator, the whole process becomes tangible and allows for the creation

of reproducible results. The Creativity Map Repository (CMR), which was described in

Section 7.8.2 illustrates a reusable data repository. It can be utilised for several analysis

tasks, also addressing access outside the De Montfort Creativity Assistant (DMCA).

The described information hiding approach in Chapter 5 enables a convenient expression

of creative behaviours. It allows for the construction of behaviour descriptions, which

represent sets of behaviours, also containing place holders like the ANY transition or state

conditions and markers. Any behaviour of a creativity map can be addressed with this

formal language, which in turn enables a more aim oriented and focussed analysis. It is of

course developed based on the creativity mapping model and related to its components, in

particular states and transitions. The information extraction approach, which is described

in Chapter 6 introduces four frequency categories and is able to represent the dynamism

of creative processes. In difference to the existing data and sequence mining approaches

that were reviewed in Section 2.6.2, the approach focusses on the whole range of frequent

information. This includes rarely occurring behaviours as well as preferred ones, as not

only the most frequent ones are relevant for the support of the creative process.

A major advantage of creativity maps is the possibility to utilise them for computational

analysis and support. Especially as creativity is of high interest in academia and businesses

[23][98], these tools can for instance support the efficient production of (desired) outcomes.

The specification of data, information and knowledge in Section 4.4 helps in understanding

this process and can be integrated into analysis processes when required. Chapter 7

presented an initial tool support for the described approaches. The De Montfort Creativity

181

Conclusion and Future Work

Assistant (DMCA) is designed as an extendible software component with the aim to

support the creative process of a creator. Its different structures that were described,

emphasize the convenient integration and usability of the creativity mapping model. The

ability to share and collaboratively modify artefacts allows teams of creative individuals

to connect and work together [47].

Summarising, it can be pointed out that the creativity mapping model and its applica-

tions are advantageous over the models that were reviewed in this thesis. A tangible

representation, which also allows for the reproduction of outcomes, builds the foundation

for the information hiding and extraction approaches. Amongst other things, the initial

tool support illustrates the implementation of the proposed models and their advantages.

9.4 Validation

The developed models and algorithms were validated with the help of case studies and

experiments. The three case studies that were presented in this thesis are one major part

of the validation. They show creativity maps from creative writers as well as software

engineers. Two other experiments, which are not particularly mentioned here but need

to be considered are discussed in [107]. One of them illustrates the creativity map of a

musician and the other presents the map of a software engineer. The five experiments

therefore cover the distinct domains (creative) writing, music and software engineering.

They emphasize the adaptability to various circumstances and the possibility of integrating

the dynamics of creative processes. This application of creativity maps in different domains

demonstrate and validate the generality of the approach and its domain independence. The

particular scenarios, which are described in Chapter 8 illustrate a detailed evaluation of

the presented approaches.

It is important to note that the whole project is still in its initial stage and the presented

research is the first outcome. This means that further experiments and case studies need to

be conducted for the collection of additional data, information and knowledge. In turn, the

validation process becomes incremental, starting with the initial results that are presented

in this research. As new creative process are recorded and therefore creativity maps are

constructed, the Creativity Map Repository (CMR) grows and validation processes are

able to resort to larger data sets. New information and knowledge can be generated with

respect to the knowledge creation process that was described in Section 4.4 and stored in

the system. This might then help to further refine or extend the described approaches,

possibly leading to a more detailed validation. However, it is important to note that

182

Conclusion and Future Work

the existing data definitely allows for a validation of the proposed approaches, as it was

demonstrated in this thesis. The three case studies validate the model of the creative

process also elaborating the proposed approaches. A sufficient validation has therefore

been successfully conducted in the proposed research.

It was mentioned before that a creativity map records the activities during the creation

of an artefact. This rather personal data complicates the determination of correctness

of the presented approaches. For example, some creators prefer to work by themselves,

whereas others require collaboration for suitable results [47][99]. Approaches which are

supportive for the former might not necessarily lead to the same results for the latter.

Other circumstances such as a submission deadline or environmental restrictions can be-

come relevant as well. Especially the individual reactions might become essential and

possibly need integration into the existing structures and processes. It is then necessary

to adapt the described techniques for the most suitable support of the creative process.

The mentioned situations illustrate the difficulties of a general validation as a result of

individual and maybe even unpredictable circumstances.

To summarise the arguments mentioned before, the presented case studies, examples and

experiments have been used for a successful validation. It was illustrated that they build

a sufficient foundation for the described processes. In order to incrementally refine and

improve the validation, it is recommended to conduct further studies.

9.5 Limitations

Recording of the Creative Process

The approach for the recording of creative processes is designed as a user interactive

system. The reasons for this choice were discussed in detail in this thesis. However, it

was mentioned in the user feedback of the first case study that the system can lead to a

distraction of the creator. This means that some people will possibly not use the DMCM

at all. Alternative user interface designs or forms of user interaction might be necessary.

They can still integrate with the existing GUI of the DMCM.

State Conditions

The state conditions, which were defined in the BDL are used during the information

hiding process. They need to be specified by the analyser, as illustrated in the second case

study. Sufficient knowledge about the creative processes and the domains that are going

183

Conclusion and Future Work

to be studied is mandatory, as it is additionally necessary to implement the corresponding

metric for the comparison of viewpoints. The values that are stored in the states of a

creativity map must therefore be known.

Specification of the frequency thresholds fzero, fmin and fmax

The three frequency thresholds fzero, fmin and fmax, which are used for the distinction

of the four frequency categories Preferred, Common, Uncommon and Zero need to be

specified in order to enable the frequent information extraction. It was illustrated in the

third case study that these parameters must be chosen rather small. The thresholds prob-

ably change for different creators, projects or domains, which requires sufficient knowledge

about creative processes in order to guarantee meaningful results.

Tool Support

The implementation of this approach is still in the prototype stage and some of the de-

scribed components need further development and improvement. The components that

are integrated in the DMCE primarily focus on the Collaborative Editor and the writing

domain.

9.6 Future Directions

Improvements in the Recording Process

The recording of creative processes and its implementation in the form of the prototype

tool DMCM were presented. However, some of the participants perceived this particular

approach as disturbing, like the feedback of the creative writing workshop in the first case

study illustrated. It is therefore necessary to discuss about improvements in the recording

process or other maybe automated techniques that can be integrated into the DMCA.

Integration of Collaboration

The role of collaboration in creative processes and especially its importance for creativity

support were not addressed in this thesis. However, it was illustrated that creativity

maps and the underpinning mathematical model are capable of handling collaboration.

Research about collaborative creativity, for instance software development teams, is a

future direction that would benefit the DMCA development. The tool support already

offers interfaces for collaboration, which allows for a convenient integration of any results

into an existing structure.

184

Conclusion and Future Work

Unification of Behaviours

Creativity maps are used as a domain independent representation of creative processes.

To enable a comparison of these maps or alternatively frequent behaviours from different

domains, it is necessary to define a mapping between similar terms. As it was mentioned

in this thesis, domains probably use various words to express a similar action. Techniques

like NLP or even more advanced comparison approaches need to be integrated to enable

a unification. This would be beneficial for the comparison of creativity maps.

Integration of Tools from Different Domains

The prototype of the DMCA includes the Collaborative Editor, which was mainly de-

veloped for the writing domain. Additional tools that enable the collaboration between

creators from other domains would help to gather a larger number of users and in turn

more creativity maps. The analysis and extraction process would then be able to construct

knowledge about a variety of creative processes, which can be utilised for the creativity

support.

185

Bibliography

[1] R. L. Ackoff. From data to wisdom. Journal of Applied Systems Analysis, 16:3–9,

1989.

[2] Charu C. Aggarwal and Philip S. Yu. Data mining techniques for association, cluster-

ing and classification. In Methodologies for Knowledge Discovery and Data Mining,

volume 1574, pages 13–23, 1999.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules

between sets of items in large databases. pages 207–216, 1993.

[4] Rakesh Agrawal, Manish Mehta, John C. Shafer, Ramakrishnan Srikant, Andreas

Arning, and Toni Bollinger. The quest data mining system. In Evangelos Simoudis,

Jiawei Han, and Usama M. Fayyad, editors, Proc. 2nd Int. Conf. Knowledge Dis-

covery and Data Mining, KDD, pages 244–249. AAAI Press, 2–4 1996.

[5] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules. pages 487–499, 1994.

[6] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. pages 3–14,

1995.

[7] Silvano Arieti. Creativity: The Magic Synthesis. Basic Books, 1976.

[8] Franz Baader. Logic-based knowledge representation. KI, 3:8–16, 1996.

[9] Min Basadur. Leading others to think innovatively together: Creative leadership.

The Leadership Quarterly, 15(1):103 – 121, 2004.

[10] Min Basadur, Pam Pringle, Gwen Speranzini, and Marie Bacot. Collaborative prob-

lem solving through creativity in problem definition: Expanding the pie. Creativity

and Innovation Management, 9:54–76(23), March 2000.

186

Conclusion and Future Work

[11] Margaret Boden. Dimensions of Creativity. MIT Press Cambridge, Massachusetts,

1994.

[12] Margaret Boden. The Creative Mind: Myth and Mechanisms. Routledge, London,

2004.

[13] James T Brady. A theory of productivity in the creative process. IEEE Comput.

Graph. Appl., 6:25–34, May 1986.

[14] Keno Buss. Behavioural Patterns. PhD thesis, De Montfort University, 2010.

[15] Keno Buss, Sascha Westendorf, and Hussein Zedan. Mining for behavioural knowl-

edge and information in the creative processes. In Second International Conference

of Creativity and Innovation in Software Engineering. Ravda (Nessebar), Bulgaria.,

2009.

[16] Brian W. Fitzpatrick C. Michael Pilato, Ben Collins-Sussman. Version Control with

Subversion. O’Reilly Media, Inc., 2008.

[17] Ming-Syan Chen. Efficient data mining for path traversal patterns. IEEE Transac-

tions on Knowledge and Data Engineering, 10:209–221, 1998.

[18] Ming-Syan Chen, Jiawei Han, and Philip S. Yu. Data mining: an overview from a

database perspective. Ieee Trans. On Knowledge And Data Engineering, 8:866–883,

1996.

[19] E. F. Codd. Derivability, redundancy and consistency of relations stored in large

data banks. IBM Research Report, San Jose, California, RJ599, 1969.

[20] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,

13(6):377–387, 1970.

[21] M. Csikszentmihalyi. Implications of a systems perspective for the study of creativ-

ity. In R. Sternberg, editor, Handbook of creativity, 1999.

[22] Mihaly Csikzentmihalyi. Creativity: Flow and the Psychology of Discovery and

Invention. HarperCollins, 1996.

[23] Anne Cummings and Greg R. Oldham. Enhancing creativity: Managing work con-

texts for the high potential employee. California Management Review, 40(1):22–38,

1997.

[24] R. Davis, H. Shrobe, and P. Szolovits. What is a knowledge representation? AI

Magazine, 14(1):17–33, 1993.

187

Conclusion and Future Work

[25] Edward de Bono. Six Thinking Hats. MICA Management Resources, 1st edition

edition, 1985.

[26] Rocco De Nicola and Frits Vaandrager. Action versus state based logics for transition

systems. In Irène Guessarian, editor, Semantics of Systems of Concurrent Processes,

volume 469 of Lecture Notes in Computer Science, pages 407–419. Springer Berlin /

Heidelberg, 1990.

[27] Maria Cristina Ferreira de Oliveira and Ham Levkowitz. From vidual data explo-

ration to visual data mining: A survey. In IEEE Transactions on Visualization and

Computer Graphics, volume 9, pages 378–394, 2003.

[28] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer-Verlag,

Heidelberg, 4th edition, October 2010.

[29] Robert Dilts. Strategies of Genius. Meta Publications, 1995.

[30] Maged El-Sayed, Carolina Ruiz, and Elke A. Rundensteiner. Fs-miner: efficient

and incremental mining of frequent sequence patterns in web logs. In WIDM ’04:

Proceedings of the 6th annual ACM international workshop on Web information and

data management, pages 128–135, New York, NY, USA, 2004. ACM.

[31] Ben Shneiderman et al. Creativity support tools: Report from a u.s. national sci-

ence foundation sponsored workshop. International Journal of Human-Computer

Interaction, 20(2):61–77, 2006.

[32] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Knowledge

discovery and data mining: Towards a unifying framework. In Knowledge Discovery

and Data Mining, pages 82–88, 1996.

[33] Colin Fidge. A comparative introduction to csp, ccs and lotos. Technical report,

1994.

[34] Gerhard Fischer. Social creativity: Turning barriers into opportunities for collabo-

rative design. 2004.

[35] Isaksen G. and Treffinger D. J. Creative learning and problem solving. In A. L.

Costa, editor, Developing minds: Programs for teaching thinking, volume 2, pages

89–93, 1991.

[36] D. M. Gavrila. The visual analysis of human movement: A survey. Computer Vision

and Image Understanding, 73:82–98, 1999.

188

Conclusion and Future Work

[37] John S. Gero and Ricardo Sosa. Creative design situations - artificial creativity in

communities of design agents.

[38] Arthur Gill. Introduction to the Theory of Finite-State Machines. McGraw Hill,

1962.

[39] Paul Giudici. Applied Data Mining: Statistical Methods for Business and Industry.

John Wiley & Sons Ltd., 2003.

[40] James Gosling. The feel of java. Computer, 30:53–57, 1997.

[41] James Gosling and Henry McGilton. The Java Language Environment. A White

Paper. sun, 1995.

[42] The PostgreSQL Global Development Group. PostgreSQL 8.4.4 Documentation.

The PostgreSQL Global Development Group, 2009.

[43] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.

[44] U. Hahn, N. Chater, and L.B.C. Richardson. Similarity as transformation. Cognition,

87:1–32, 2003.

[45] J. Han, Y. Fu, K. Koperski, G. Melli, W. Wang, and O. Zaane. Knowledge min-

ing in databases: An integration of machine learning methodologies with database

technologies, 1995.

[46] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international

conference on Management of data, pages 1–12, New York, NY, USA, 2000. ACM.

[47] Andrew B. Hargadon and Beth A. Bechky. When collections of creatives become

creative collectives: A field study of problem solving at work. In Organization

Science, volume 17, pages 484–500, 2006.

[48] Evan Heit. Features of similarity and category-based induction. In Proceedings of the

Interdisciplinary Workshop on Categorization and Similarity, pages 115–121, 1997.

[49] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[50] Wang Hua, Ma Cuiqin, and Zhou Lijuan. A brief review of machine learning and

its application. pages 1 –4, dec. 2009.

189

Conclusion and Future Work

[51] International Organization for Standardization. ISO/IEC 14977:1996: Information

technology — Syntactic metalanguage — Extended BNF. International Organization

for Standardization, pub-ISO:adr, 1996.

[52] Peter Eades Roberto Tamassia Ioannis G. Tollis, Giuseppe Di Battista. Graph Draw-

ing: Algorithms for the Visualization of Graphs. Prentice Hall, 1998.

[53] D. J. Isaksen, S. G. Treffinger. Celebrating 50 years of reflective practice: Versions

of creative problem solving. Journal of Creative Behavior, 38:75–101, 2004.

[54] Scott G. Isaksen and Donald J. Treffinger. Creative Problem Solving: The Basic

Course. Bearly Limited, 1985.

[55] Hiroshi Ishii and Brygg Ullmer. Tangible bits: Towards seamless interfaces between

people, bits and atoms, 1997.

[56] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.

Surv., 31(3):264–323, 1999.

[57] Mortazavi-Asl B. Jianyong Jian Pei, Jiawei Han. Mining sequential patterns by

pattern-growth: the prefixspan approach. In IEEE Transactions on Knowledge and

Data Engineering, volume 16, pages 1424–1440, 2004.

[58] Micheline Kamber Jiawei Han. Data Mining. Concepts and Techniques.: Concepts

and Techniques. Morgan Kaufmann, 2000.

[59] Cem Kaner and Walter P. Bond. Software engineering metrics: What do they

measure and how do we know? In 10th International Software Metrics Symposium,

2004.

[60] Brian W. Kernighan and Rob Pike. Regular expressions: Languages, algorithms and

software. Technical report, Bell Laboratories, 1999.

[61] Doug Kimelman, Bruce Leban, Tova Roth, and Dror Zernik. Reduction of visual

complexity in dynamic graphs. In GD ’94: Proceedings of the DIMACS International

Workshop on Graph Drawing, pages 218–225, London, UK, 1995. Springer-Verlag.

[62] Michael D. Lee, Brandon Pincombe, and Matthew Welsh. An empirical evaluation

of models of text document similarity. In Proceedings of the 27th Annual Conference

of the Cognitive Science Society, pages 1254–1259, Mahwah, NJ, 2005. Erlbaum.

[63] Douglas B. Lenat and John Seely Brown. Why am and eurisko appear to work.

Artificial Intelligence, 23(3):269 – 294, 1984.

190

Conclusion and Future Work

[64] David D. Lewis and Karen Spärck Jones. Natural language processing for informa-

tion retrieval. Commun. ACM, 39(1):92–101, 1996.

[65] Yu-Tung Liu. Creativity or novelty?: Cognitive-computational versus social-cultural.

Design Studies, 21(3):261 – 276, 2000.

[66] Heikki Mannila. Methods and problems in data mining. In ICDT, pages 41–55,

1997.

[67] Pamela McCorduck. Aaron’s Code: Meta-Art, Artificial Intelligence and the Work

of Harold Cohen. W H Freeman & Co, 1990.

[68] Antonio S. Micilotta, Eng Jon, and Ong Richard Bowden. Detection and tracking

of humans by probabilistic body part assembly. In Proceedings of British Machine

Vision Conference, volume 1, pages 429–438, September 2005.

[69] George A. Miller. Wordnet: A lexical database for english. Communications of the

ACM, 38:39–41, 1995.

[70] Thomas B. Moeslund and Erik Granum. A survey of computer vision-based human

motion capture. Computer Vision and Image Understanding, 81:231–268, 2001.

[71] S. Moran and K. Nakata. Ubiquitous monitoring and human behaviour in intelli-

gent pervasive spaces. In Computational Science and Engineering, 2009. CSE ’09.

International Conference on, volume 4, pages 1082 –1087, aug. 2009.

[72] R. S. Nickerson. Enhancing creativity. In Robert J. Sternberg, editor, Handbook of

Creativity, pages 392–430, 1999.

[73] A. Nurnberger, R. Seising, and C. Wenzel. On the fuzzy interrelationships of data,

information, knowledge and wisdom. In Fuzzy Information Processing Society, 2009.

NAFIPS 2009. Annual Meeting of the North American, pages 1 –6, june 2009.

[74] Alex F. Osborn. Applied Imagination: Principles and Procedures of Creative

Problem-Solving. New York: Scribner’s, 1953.

[75] Alex F. Osborn. Applied Imagination: Principles and Procedures of Creative

Problem-Solving: Third Revised Edition. New York: Scribner’s, 1963.

[76] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas. Incremental and

interactive sequence mining. In Proceedings of the eighth international conference

on Information and knowledge management, CIKM ’99, pages 251–258, New York,

NY, USA, 1999. ACM.

191

Conclusion and Future Work

[77] Jonathan A. Plucker and Joseph S. Renzulli. Psychometric approaches to the study

of human creativity. In Robert J. Sternberg, editor, Handbook of Creativity, pages

35–61, 1999.

[78] A.J. Pretorius and J.J. Van Wijkk. Visual analysis of multivariate state transition

graphs. Visualization and Computer Graphics, IEEE Transactions on, 12(5):685

–692, sept.-oct. 2006.

[79] Ioannis G. Tollis Roberto Tamassia, editor. Graph Drawing: DIMACS International

Workshop, GD ’94, Princeton, New Jersey, USA, October 10 - 12, 1994. Springer,

1st edition, 1995.

[80] Jennifer Rowley. The wisdom hierarchy: representations of the dikw hierarchy. J.

Inf. Sci., 33(2):163–180, 2007.

[81] Mark A. Runco and Shawn Okuda Sakamoto. Experimental studies of creativity. In

Robert J. Sternberg, editor, Handbook of Creativity, pages 62–92, 1999.

[82] R. Saunders and J. S. Gero. Artificial creativity: A synthetic approach to the study

of creative behaviour. Computational and Cognitive Models of Creative Design,

V:113–139, 2001.

[83] Rob Saunders. Curious Design Agents and Artificial Creativity. PhD thesis, Uni-

versity of Sydney, 2002.

[84] James G. Shanahan. Soft Computing for Knowledge Discovery: Introducing Carte-

sian Granule Features. Kluwer Academic Publisher, 2000.

[85] R.N. Shepard. The analysis of proximities: Multidimensional scaling with an un-

known distance function: Part i. Psychometrika, 27:125–140, 1962.

[86] R.N. Shepard. The analysis of proximities: Multidimensional scaling with an un-

known distance function: Part ii. Psychometrika, 27:125–140, 1962.

[87] Ben Shneiderman. Creating creativity for everyone: User interfaces for supporting

innovation. Technical Report CS-TR-3988, 1999.

[88] Ben Shneiderman. Supporting creativity with advanced information-abundant user

interfaces. Technical Report CS-TR-4042, 1999.

[89] Usama Fayyad Gregory Piatesky-Shapiro Padhraic Smyth. From data mining to

knowledge discovery in databases. AI Magazine, pages 37–54, 1996.

[90] Rudi Studer Stefan Decker Dieter Fensel Steffen Staab. Situation and perspective

of knowledge engineering. 2000.

192

Conclusion and Future Work

[91] Mark Stefik. Introduction to Knowledge Systems. Morgan Kaufmann, 1st edition,

June 1995.

[92] Robert J. Sternberg, editor. Handbook of Creativity. Cambridge University Press,

1999.

[93] Ken Thompson. Programming techniques: Regular expression search algorithm.

Commun. ACM, 11(6):419–422, 1968.

[94] A. Tversky. Features of similarity. Psychological Review, 2:327–352, 1977.

[95] Gertjan van Noord. The treatment of epsilon moves in subset construction. In

Finite-Sate Methods in Natural Language Processing, Ankara. CMP-LG/9804003,

pages 61–76, 1998.

[96] P.E. Vernon, editor. Creativity. Penguin Books, 1970.

[97] Graham Wallas. The art of Thought. Jonathan Cape, 1926.

[98] Ching-Wen Wang and Ruey-Yun Horng. The effects of creative problem solving

training on creativity, cognitive type and r&d performance. R&D Management,

32(1):35–45, 2002.

[99] Andy Warr and Eamonn O’Neill. Understanding design as a social creative process.

In Proceedings of the 5th conference on Creativity & cognition, C&C ’05, pages 118–

127, New York, NY, USA, 2005. ACM.

[100] Robert W. Weisberg. Creativity: Beyond the Myth of Genius. W.H. Freeman &

Company, 2nd edition, 1993.

[101] G. A. Wiggins. Towards a more precise characterisation of creativity in AI. In

R. Weber and C. G. von Wangenheim, editors, Case-Based Reasoning: Papers from

the Workshop Programme at ICCBR’01, pages 113–120. Washington, DC: Naval

Research Laboratory, Navy Centre for Applied Research in Artificial Intelligence,

2001.

[102] Geraint Wiggins. Categorising creative systems. In Bento, Cardoso, and Gero,

editors, Proceedings of the IJCAI’03 Workshop on Creative Systems, 2003.

[103] Wendy M. Williams and Lana T. Yang. Organizational creativity. In Robert J.

Sternberg, editor, Handbook of Creativity, pages 373–391, 1999.

[104] Christopher Wren, Ali Azarbayejani, Trevor Darrell, and Alex Pentland. Pfinder:

Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19:780–785, 1997.

193

Conclusion and Future Work

[105] Lawrence F. Young. Knowledge-based systems for idea processing. SIGMIS

Database, 22:46–52, February 1991.

[106] Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent sequences.

In Machine Learning, volume 42, pages 31–60, 2001.

[107] H. Zedan, A. Cau, K. Buss, S. Westendorf, S. Thomas, and A. Hugill. Mapping

human creativity. In Proceedings of the 12th Serbian Mathematical Congress, Novi

Sad, 2008.

[108] Hussein Zedan, Sascha Westendorf, and Keno Buss. The effect of collaboration

and co-creation on the creative processes. In Second International Conference of

Creativity and Innovation in Software Engineering. Ravda (Nessebar), Bulgaria.,

2009.

[109] Du Zhang and J.J.P. Tsai. Machine learning and software engineering. pages 22 –

29, 2002.

[110] Minghua Zhang, Ben Kao, and Chi-Lap Yip. A comparison study on algorithms

for incremental update of frequent sequences. Data Mining, IEEE International

Conference on, 0:554, 2002.

[111] Bin Zhou, Daxin Jiang, Jian Pei, and Hang Li. Olap on search logs: An infrastructure

supporting data-driven applications in search engines. In Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD’09), pages 1395–1404, New York, NY, USA, 2009. ACM Press.

[112] Chaim Zins. Conceptual approaches for defining data, information, and knowledge:

Research articles. J. Am. Soc. Inf. Sci. Technol., 58(4):479–493, 2007.

194

Appendix A

Creativity Maps of the Creativity

Workshop

195

Conclusion and Future Work

C
E

E
C

C
C

t
E

C
t

C
t

E
C

t
E

C
t

E
C

t

E
E

E
C

C
t

C
E

C
t

E
C

t
E

C
t

E

C
t

E
C

t

C
t

C
t

C
t

E

C
t

C
t

E

E

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

E C
t

C

F
ig

u
re

A
.1

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
1

196

Conclusion and Future Work

C
E

E
C

t
E

E
C

t
E

R
t

E
C

t
B

r
E

E

R
t

B
r

E

R
t

E

R
t

R
t

R
t

E
R

t
E

E

E

E

E

R
t

E
E

E
E

E R
t

E
E

E
E

R
t

R
t

R
t

E
E

E
R

t
R

t
R

t
E

E
R

t
R

t
E

C
o

m
p

B
r

E

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

C
o

m
p

a
ri
n

g

R
e

a
d

in
g

 t
h

ro
u

g
h

B
re

a
k

E C
t C R
t

B
r

C
o

m
p

F
ig

u
re

A
.2

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
2

197

Conclusion and Future Work

S
0

S
1

S
3

S
4

S
5

S
6

S
9

S
1

0
S

1
2

S
1

5
S

1
6

S
1

7
C

C
t

C
t

E
E

C

E
C

t
E

C
t

E
S

2
0

C
t

S
2

1
E

S
2

6

C
S

2
7

C
t

E
C

t
C

t
E

E
C

t
E

E

S
2

E

S
7

S
8

E
S

1
1

E

S
1

3

C
t

S
1

4

E

S
1

8

C
t

S
1

9

E

S
2

2

C

S
2

3
S

2
4

S
2

5
C

t
E

C
t

C
t

C
t

E
E

C
t

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

E C
t

C

S
2

8

S
2

9
S

3
0

S
3

1
S

3
2

S
3

3
S

3
4

S
3

5
S

3
6

S
3

7
S

3
8

S
3

9

F
ig

u
re

A
.3

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
3

198

Conclusion and Future Work

C
L

tI
C

t
C

E
E

C
t

E
E

E

C
o

m
p

E
C

t

E

C
o

m
p

C
t

C
t

C
o

m
p

C
o

m
p

E
E

E
E

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

C
o

m
p

a
ri
n

g

L
is

te
n

in
g

 t
o

 I
n

s
tr

u
c
ti
o

n
s

E C
t C

C
o

m
p

L
tI

F
ig

u
re

A
.4

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
4

199

Conclusion and Future Work

C
O

t
E

C
C

C
t

E
C

t
E

C
t

Q
C

t
E

C
t

E
E

E

C
t

R

E
R

R
R

C
t

E
C

o
m

p
Q

C
t

E
E

R

E

E

E

E
E C
t

E
E

C
t

E

R

E
E

E

E
R

E
R

E
R

E
E

R

E

E
E

E

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

C
o

m
p

a
ri
n

g

R
e

a
d

in
g

Q
u

e
s
ti
o

n
in

g

O
th

e
r

E C
t

C

C
o

m
p

R O
t

Q

F
ig

u
re

A
.5

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
5

200

Conclusion and Future Work

C
C

t
C

t
E

C
t

C
t

C
t

E
C

t
E

C
t

C
t

E
C

t

C
t

E

E

E

C
t

C
t

E
E

C
t

C
t

E

C

C
t

C
t

E
C

t
E

E

C
t

C
t

E
C

t
E

E
C

t
C

t
C

t
C

t
E

E
E

C
t

C
t

E
C

t
E

E
E

E

C
t

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

E C
t

C

F
ig

u
re

A
.6

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
6

201

Conclusion and Future Work

C
E

E
C

t
C

t
C

t
E

C
t

E
C

t
E

C
t

E
C

t

E
C

t
E

C
t

E
C

t
E

E

E

C
t

C
t

E

C
t

E

E

E
E

C
t

C
t

C
t

E
E

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

E C
t

C

E

C
t

E
C

t

C
t

F
ig

u
re

A
.7

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
7

202

Conclusion and Future Work

C
E

E
C

C
E

C
t

E
C

C
E E

A
E

C

C
t

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

A
w

a
it
in

g

E C
t

C A

F
ig

u
re

A
.8

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
8

203

Conclusion and Future Work

C
C

t
C

E
C

t
C

t
E

C
t

E
C

t
E

C
E

A
c
ti
o

n
D

e
s
c
ri
p

ti
o

n

E
d

it
in

g

C
o

n
te

m
p

la
ti
n

g

C
o

n
c
e

p
tu

a
lis

in
g

E C
t

C

F
ig

u
re

A
.9

:
C

re
at

iv
it

y
M

ap
-

P
ar

ti
ci

p
an

t
9

204

	Introduction
	Motivation and Aim of Research
	Research Methodology
	Research Questions
	Research Hypotheses
	Scope of the Thesis
	Original Contributions
	Organisation of Thesis

	Background and Related Research
	Introduction
	Creativity and Creative Processes
	Wallas' Stage Model
	Boden's P-/H- Creativity and Conceptual Spaces
	Csikszentmihalyi's Systems View of Creativity

	Creativity Enhancement
	Creative Problem Solving (CPS)
	The Six Thinking Hats
	Walt Disney's Method

	Computational Creativity
	Computational Creativity Support
	Data Mining
	Data Mining Process
	Mining Sequential Data
	Similarity of Data

	Summary

	Preliminaries
	Introduction
	Axioms of Creativity
	Creativity Mapping Model
	Hopping
	Collaboration

	Summary

	Creativity Maps and Behaviours
	Introduction
	Creation of Creativity Maps
	Capturing of the Creative Process
	Similar States in the Creative Process
	Creativity Map Structure by Transition Repositioning

	Classification of Creativity Maps
	Data, Information and Knowledge in Creativity Maps
	Behaviours in Creativity Maps
	Specification of a Behaviour
	Granularity
	Unification

	Summary

	Information Hiding
	Introduction
	Observability of Behaviours
	Observable and Non-Observable Behaviours
	Partial Creativity Map (PCM)

	Description of Behaviours for Information Hiding
	Behaviour Description Language (BDL)
	State Conditions
	State Marker

	Operations for Information Hiding
	Hiding Operation
	Restriction Operation
	Revealing Operation
	Restrictive Revealing Operation

	Behaviour Hiding
	Behaviour Description Automaton (BDA)
	Construction of the BDA
	Behaviour Matching

	Minimising Partial Creativity Maps (PCMs)
	Summary

	Frequent Information Extraction
	Introduction
	Frequent Information in Creativity Maps
	Specification of Frequency
	Search Space for Frequent Information

	Frequency Categories
	Preferred
	Common
	Uncommon
	Zero

	Frequent Behaviour Categories
	Minimal/Maximal Alternating
	Emergent
	Disappearing

	Extraction of Frequent Behaviours
	Frequency Calculation
	Behaviour Extraction

	Summary

	Tool Support
	Introduction
	De Montfort Creativity Assistant (DMCA)
	Requirements
	Layer Based Design

	De Montfort Creative Environment (DMCE)
	Collaboration Components
	Client/Server Architecture

	Collaborative Editor
	Graphical User Interface (GUI)
	Revision History
	Design

	De Montfort Creativity Mapper (DMCM)
	Graphical User Interface (GUI)
	Design

	Creativity Map Construction Engine (CMCE)
	Information Mining Engine (IME)
	Information Hiding
	Frequent Information Extraction

	Knowledge Repository
	Version Control
	Creativity Map Repository (CMR)
	External Repository

	Summary

	Case Studies
	Introduction
	Creative Writing Workshop
	Creativity Map Construction
	Feedback from the Workshop Participants

	Conference Paper
	Creativity Map Construction
	Information Hiding

	Software Development
	Creativity Map Construction
	Frequent Information Extraction

	Summary

	Conclusion and Future Work
	Summary of the Thesis
	Evaluation
	Advantages of the Proposed Approaches
	Validation
	Limitations
	Future Directions

	Bibliography
	Creativity Maps of the Creativity Workshop

