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Abstract

This dissertation addresses the problem of distributed anomaly detection in Wireless Sensor

Networks (WSN). A challenge of designing such systems is that the sensor nodes are battery

powered, often have different capabilities and generally operate in dynamic environments.

Programming such sensor nodes at a large scale can be a tedious job if the system is not

carefully designed. Data modeling in distributed systems is important for determining the

normal operation mode of the system. Being able to model the expected sensor signatures

for typical operations greatly simplifies the human designer’s job by enabling the system

to autonomously characterize the expected sensor data streams. This, in turn, allows the

system to perform autonomous anomaly detection to recognize when unexpected sensor

signals are detected. This type of distributed sensor modeling can be used in a wide

variety of sensor networks, such as detecting the presence of intruders, detecting sensor

failures, and so forth. The advantage of this approach is that the human designer does not

have to characterize the anomalous signatures in advance.

The contributions of this approach include: (1) providing a way for a WSN to au-

tonomously model sensor data with no prior knowledge of the environment; (2) enabling a

distributed system to detect anomalies in both sensor signals and temporal events online;

(3) providing a way to automatically extract semantic labels from temporal sequences; (4)

providing a way for WSNs to save communication power by transmitting compressed tem-

poral sequences; (5) enabling the system to detect time-related anomalies without prior

knowledge of abnormal events; and, (6) providing a novel missing data estimation method

that utilizes temporal and spatial information to replace missing values. The algorithms

have been designed, developed, evaluated, and validated experimentally in synthesized

data, and in real-world sensor network applications.
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Chapter 1

Introduction

An emerging class of Wireless Sensor Network (WSN) applications involves the acquisition

of large amounts of sensory data from battery-powered, low computation and low memory

wireless sensor nodes. Examples of such applications include volcano monitoring [Werner-

Allen et al., 2006], animal habitat monitoring [Naumowicz et al., 2008], structural moni-

toring [Xu et al., 2004], etc. These systems share the same goal of detecting “interesting”

events in an unknown environment over a period of time. The systems must acquire data

at a constant rate and transfer high-fidelity data across a network. Moreover, the systems

are also subject to unpredictable constraints on radio bandwidth, computational power,

and energy usage over long periods of time. Given these constraints, it is typically not

feasible to send all collected sensory data to a central location for processing and decision

making. As a result, the sensor nodes should strive to process the raw sensor signal lo-

cally and perform local decision making to determine the most “interesting” signals/events,

such as detecting anomalous events. Local processing and decision making avoids wasting

resources on “uninteresting” data, such as avoiding sending normal raw sensor readings

to a human operator for interpretation. Currently, most research in the WSN area has

focused on hardware design, self-organization, various routing algorithms, or energy saving

patterns [Naumowicz et al., 2008]. Practical distributed decision making algorithms for

anomaly detection in a natural environment are still lacking.

In anomaly detection applications, a wireless sensor node in the network can monitor

its local region and communicate through a wireless channel with other nodes to collabo-
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ratively produce a high-level representation of the environment. Using such a network, a

large area can be monitored at a relatively low cost. The fundamental challenge is how to

use the limited resources of wireless sensor nodes to deliver the most valuable information.

The goal of this research was to develop a practical, scalable, autonomous and robust

anomaly detection system that is able to detect time-related anomalies and impute missing

data in an unknown environment using a WSN and mobile robots. Although, much research

exists that addresses some aspects of this problem, there is no single system that addresses

all of the properties of this system. In order to understand the properties better, the basic

characteristics of the WSN are first discussed in the following subsection.

1.1 Wireless Sensor Network characteristics

The term Wireless Sensor Network refers to a network of small, low-cost, low-power devices

that can sense, actuate, and communicate information about their environment. Below is

a summarized list of some fundamental characteristics of a WSN [Akyildiz et al., 2002],

[Marrón et al., 2006], [Barrenetxea et al., 2008], and [Karl and Willig, 2005]:

1. Application specific: WSNs are conceivable for various applications with different

spatial deployments that range from being very sparse to very dense. In sparse

deployment with non-overlapping sensing ranges, the sink (sensor node to which in-

formation should be delivered) needs to collect sensory data from all sensor nodes in

order to monitor the entire environment. On the other hand, if the sensor deploy-

ment is dense with overlapping sensing ranges, approximations of neighboring nodes’

sensory data can be used to save communication costs.

2. Responsive to the environment: WSNs generally have to respond to the environment;

their traffic characteristics can be expected to be very different from traditional wired

networks, mobile ad hoc networks, etc. WSNs are likely to have long periods (e.g.,

months) of inactivity that can alternate with short periods (e.g., seconds or minutes)

of very high activity when an event of interest occurs.

3. Wireless ad-hoc in nature: WSNs are often required to self-configure into connected

networks. One basic scenario includes a fixed topology of sensor nodes, together
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with a limited number of more powerful base stations, in which no maintenance

or recharging is allowed after deployment. Therefore, cost minimization and au-

tonomous behavior are desirable.

4. Physically distributed: WSNs are composed of a large number of nodes, each of

which has an autonomous computational unit, and communicates with its neigh-

bors via data packets. Data is also distributed throughout the nodes of the network

and can be gathered at a central station only with high communication costs. Con-

sequently, algorithms requiring global information from the entire network become

very expensive.

5. Scable to large numbers of nodes: WSNs have to scale to large numbers (hundreds

or perhaps thousands) of nodes in order to cover a large geographical area. This

requires scalable learning and communication structures.

6. Energy restricted: WSNs are usually powered by batteries; therefore, energy is a

scarce resource. When there are no “interesting” events, it is better to reduce the

activities of the sensor nodes.

7. Simple and inexpensive: WSNs are inexpensive because the nodes have a small pro-

cessing unit (typically, 8 MHz), and the memory of the sensor node is small (typically,

512 KB). The operating and networking software must be kept orders of magnitude

simpler compared to modern desktop computers.

8. Low dependability: WSNs transmit data at low reliability mainly due to the unstable

wireless channel. The use of a machine learning approach with local processing and

decision making capabilities will lessen the impact of unreliable wireless communica-

tion.

9. Static: WSNs usually are composed of non-mobile (static) sensor nodes. However,

in some applications, the sensor node can be mobile or partially mobile. There

are two additional aspects of mobility to be considered in WSNs. First, the sensor

network can be used to detect and observe a physical phenomenon that moves, e.g.,

to track chemical clouds. Second, the sinks of information in the sensor network can

3



be mobile as well. This mobility adds a dynamic element to the applications and

can cause some difficulties for communications, which otherwise operate efficiently in

fully static scenarios.

Because of these fundamental characteristics, WSNs hold the promise of revolutionizing

sensing in a wide range of application domains. This dissertation research has been devel-

oped with these fundamental characteristics in mind while designing the anomaly detection

system.

1.2 Problem statement and challenges

This dissertation developed the design of a practical, scalable, autonomous, and robust

anomaly detection system that is able to detect time-related anomalies and estimate missing

data in a previously unknown environment using a WSN and at times mobile robots. The

term “unknown environment” means that there is no possibility of pre-programming the

state of the environment and the types of anomalies before the system deployment. Both

the state of the environment and the types of anomalies must be learned by the system

autonomously over an initial period of time.

Aside from being able to detect time-related anomalies and impute missing values, a

set of desired characteristics of the system have been identified. Specifically, the desired

characteristics of the system are as follows:

1. Able to detect anomalies in an unknown environment with minimum human super-

vision. The system should able to learn to detect anomalies “online” and “unsuper-

vised” (minimum human supervision). This characteristic makes supervised, offline

learning algorithms, such as Bayesian networks [Janakiram et al., 2006], unsuitable

for the WSN.

2. Able to easily scale to large numbers of nodes. Since a WSN typically has a large

number of sensor nodes, tuning the parameters of learning algorithms can be a long

and tedious process. Therefore, the learning algorithm should have as few parameters

to adjust as possible.
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3. Able to support a hierarchical structure. Heinzelman, et al., show in [Heinzelman

et al., 2000] that a hierarchical structure in a WSN is able to decrease communication

requirements by reducing the size of the data transmitted; this in turn saves energy.

4. Able to continuously monitor the environment. In the developed approach, human

intervention is not required to reset the system after an anomaly has been detected.

The system can reset itself.

5. Able to perform sensor fusion. Motes generally contain multiple sensors. The learning

system should be able to detect anomalies from abnormal combinations of sensory

data, instead of making decisions based only on readings from individual sensors.

6. Computationally inexpensive. The sensor nodes generally have limited computational

resources and limited power. Typically, machine learning techniques like Expecta-

tion Maximization (EM)-based and gradient-based algorithms are computationally

expensive, and thus are not appropriate for WSNs.

7. Memory efficient. The learning algorithm has to be small enough to be implemented

and installed on sensor nodes with limited memory. Thus, learning algorithms that

require large amounts of memory during the learning process, such as those that use

particle filters, might not be a good choice.

8. Modular. The system should be designed to serve as many applications as possible

without reprogramming. Each component can be removed if its capability is not

required. For example, if time-related anomalies are not of interest, then one should

be able to turn off the time model; the system would then simply detect anomalies

in the sensor signatures.

9. Decentralized. The sensor nodes should be able to process data locally and support

local decision making.

1.3 The approach

To address the problem and challenges, a novel anomaly detection system is designed

and developed for WSNs. The WSN consists of a set of static sensor nodes that are
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pre-deployed into the environment. The sensor nodes first learn an initial model of the

environment using a classifier. In addition to the classifier, a time analysis model is built

to represent the time state of the environment. Together these models define the normal

model of the environment. After a period of deployment (the training phase), all deviations

from the normal model are treated as anomalies. Upon detection of an anomaly, an alert is

generated. At this point, for some applications, an autonomous mobile robot responds to

the anomaly alert by traveling to the location where the anomaly has occurred. In future

work, the mobile robot may use additional sensors (e.g., microphones, cameras) to verify

that there is indeed an anomaly in the area, in order to make the system more autonomous

and robust. If there was indeed an anomaly in the environment, the robot could notify its

upper level supervisor, i.e., a human operator. Moreover, the mobile robot could move to

different locations to provide more coverage and perform various tasks that static sensors

cannot, such as locating power sources, seeking out repair, or requesting the dispatchment

of other nodes. However, these additional mobile robot tasks are beyond the scope of this

dissertation.

One of the challenges in this research is to determine a systematic procedure to train the

sensor nodes so that they are sensitive only to “unique” events that are of interest in specific

applications — for example, the use of a microphone sensor for the purpose of detecting

volcanic activities. In addition, there is generally more than one type of sensor mounted on

a sensor board, which means that fusion of sensor data is needed. To address this challenge,

a machine learning technique has been incorporated into the WSN so that the networks can

automatically learn to recognize normal and abnormal modes of operation. The approach

makes use of a classifier to categorize the environmental states and perform sensor fusion,

specifically, the Fuzzy Art Resonance Theory (ART) [Carpenter and Grossberg, 1991]

neural network. The Fuzzy ART system is an unsupervised Artificial Neural Network

(ANN) that can perform dimensionality reduction and pattern classification simultaneously.

There is no off-line training phase required by the Fuzzy ART neural network. Moreover,

the algorithm is simple enough to be implemented on the small platform of the Crossbow

motes [Crossbow, 2008], while maintaining a good performance level. Fuzzy ART was first

implemented in the WSN area by Kulakov and Davcev in [Kulakov and Davcev, 2005]. The

developed approaches build upon this Fuzzy ART model, and improve anomaly detection
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performance by incorporating temporal and spatial information.

One shortcoming of the baseline Fuzzy ART neural network presented by Kulakov and

Dacev is that it cannot detect time-related changes. Therefore, to detect time-related

anomalies in WSNs, the developed approach makes use of a three-step detection scheme.

First, the system extracts semantics out of the temporal sequence using a symbol com-

pression technique called Lempel-Ziv-Welch (LZW) [Welch, 1984]. Then, it uses a Variable

Memory Length Markov Model (VMM), i.e., a Probabilistic Suffix Tree (PST) [Ron et al.,

1996], to model the compressed temporal sequence. Finally, the system uses a Univer-

sal Background Model (UBM) [Reynolds et al., 2000] likelihood-ratio detector to detect

anomalies in the time patterns. The symbol compression module makes the system more

flexible when deciding the type of time related anomalies to detect in different applica-

tions. For example, if it is important to only model the sequences of events rather than the

time duration of each event, symbol compression can be used to map the same consecutive

categories into a new symbol for the PST to model. The PST models contain information

on the state transitions as well as the time duration in a state using a variable number of

states. The UBM detector is a likelihood-ratio detector to match the current observation

sequences against the normal PST model. If the probability of the observation sequence is

below a threshold, an abnormal alert is raised.

Due to unreliable wireless communication, missing data can be a major problem pre-

venting a classifier from performing accurately. Missing data may also be due to synchro-

nization problems, sensor faults, communication malfunctions, or malicious attacks. This

issue is indeed unavoidable in a system based on WSNs. This problem was not addressed

by Kulakov and Davcev in their implementation [Kulakov and Davcev, 2005]. In this study,

around 40% of sensor data are found missing on average; it is not uncommon to lose 85%

of the readings in a multi-hop sensor network [Manjhi et al., 2005]. Therefore, it is hard

for a classifier to learn and categorize the state of the environment with so many missing

values. With the high rate of missing values, an imputation algorithm1 to estimate the

missing values is preferred instead of ignoring them. The imputation technique is needed in

sparse WSNs where every sensor reading is important and/or with limited amount of train-

ing data and the system cannot afford to lose any information. Additionally, when dense

1To substitute for missing data is called imputation in statistics.
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WSNs can become sparse as sensor nodes wear out over time, such imputation technique

is also envisioned to make the learning algorithm more robust. Different ways to impute

the missing values are studied in this research. It is commonly known that environments

are correlated in time and space [D’Costa et al., 2004]. This study has shown that utiliz-

ing spatial and temporal information to impute missing values yields good performances.

The developed approach makes use of Nearest Neighbor (NN) imputation technique that

uses a kd-tree [Friedman et al., 1977] data structure to automatically learn space and time

correlations. A kd-tree is a space-partitioning data structure for organizing points in a

K-dimensional space. Each space data is represented by a vector of K dimensions; the

nearest neighbors to a specified data vector can be searched according a distance measure.

This research designed a weighted Euclidean distances and variances to make the kd-tree

search more suitable for WSNs with missing data. The goal of using a kd-tree to model

the space correlations is to reduce the amount of data examined while searching for the

closest match.

1.4 Contributions

The contribution of this thesis is the development of an anomaly detection system — a

novel general approach that autonomously detects anomalies in an unknown environment

using sensor data that is collected by a Wireless Sensor Network in a distributed fashion.

This research makes several important contributions to Wireless Sensor Network research,

including:

1. Makes PST practical for time modeling in WSNs by extracting semantics out of tem-

poral sequences. This is the first work that makes use of symbol compression tech-

niques to compress temporal signals in WSNs.

2. Enables the system to save communication costs by compressing temporal sequences

in WSNs. Transmitting decisions at a lower frequency can potentially reduce com-

munication costs in WSNs.

3. Enables the system to detect anomalies without prior knowledge of the types of anoma-

lies in the environment. Typical formulations for detecting time-related anomalies
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require models of anomalies. An UBM likelihood-ratio detector enables the system to

detect time-related anomalies without prior knowledge of different types of anomalies.

4. Enables the system to organize time and space correlated data into a kd-tree data

structure. This is the first work that makes use of a kd-tree to autonomously represent

temporal and spatial relationships among the sensor nodes in WSNs.

5. Provides a new spatial-temporal missing data imputation technique that is practical

for WSNs. The system takes advantage of spatial and temporal correlated data in

WSNs to estimate missing data. Additionally, this is a non-parametric approach

which does not assume any distributions of the data.

6. Presents weighted Euclidean distance and variance metric for kd-tree construction

that takes into account missing data in WSNs. This is the first work that has devel-

oped the weighted metric for kd-trees, which makes the search tree more suitable for

WSNs when handling missing data.

7. Compares and contrasts different missing data imputation techniques for WSNs. Al-

though there are some existing works on missing data estimation for WSNs, some

developed algorithms are not practical for implementation on sensor nodes. Other

works only state the way they handle missing data instead of formally analyzing the

results, explaining the approach’s validity, and comparing it with other techniques.

8. Uses an anomaly detection system that is modular and flexible in design. The devel-

oped anomaly detection system is designed to serve as many applications as possible

without rewriting the learning program. The modular design allows us to separate

different kinds of detection as much as possible. For example, consider a system with

three major components: a missing data estimator, a classifier, and a time model.

If detecting time-related anomalies is not of interest for some applications, the op-

erator can simply turn off the time model learning. If in some environment wireless

communication is very stable, the missing data estimator can be turned off to save

energy.
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The organization of this dissertation is as follows: Chapter 2 reviews the related work in

WSNs including its applications, anomaly detection systems, time-series analysis, and miss-

ing data. Chapter 3 presents the novel distributed anomaly detection approach developed

in this dissertation. Chapter 4 presents novel approaches to modeling temporal sequences

and detecting time-related changes. Chapter 5 presents novel missing data imputation

techniques developed for WSNs. Chapter 6 presents an intruder detection application us-

ing a WSN and autonomous mobile robot. Chapter 7 summarizes the main contributions

of this dissertation and describes potential extensions of the anomaly detection approach

in WSNs.
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Chapter 2

Literature review

The objective of this research is to design a practical, efficient, scalable, and robust anomaly

detection system using Wireless Sensor Networks (WSN) in an unknown environment. As

mentioned in the introduction, the system should be able to detect anomalies in an unknown

environment with minimal human supervision. To achieve this objective, research and

results from several fields of study are required. In this chapter, the research and results

that are relevant to the research objective are reviewed. Although there are several aspects

of anomaly detection systems addressed in the existing WSN literature, no system has

addressed all the objectives of the system developed in this dissertation.

First, applications of WSNs used for environment monitoring and intrusion detection

are reviewed in Sections 2.1 and 2.2. Then, Section 2.3 reviews machine learning techniques

used in WSNs. Finally, time-related analysis and missing data techniques used in WSNs

are reviewed in Sections 2.4 and 2.5.

2.1 Application of WSNs for environment monitoring

A wide range of applications make use of Wireless Sensor Networks for environment mon-

itoring, such as monitoring animals, monitoring building structures, monitoring volcanic

activities, flood or leak detection, etc. Many of the systems are deployed for data collection

with no learning involved. This section discusses key examples of this work.

Mainwaring, et al., developed a system for habitat monitoring [Mainwaring et al., 2002].
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They described design requirements that cover the hardware design of the nodes, the design

of the sensor network, and the capabilities for remote data access and management. A

system architecture is presented to address the requirements for habitat monitoring in

general, and an instance of the architecture for monitoring seabird nesting environment

and behavior is presented. The deployed network consists of 32 nodes on a small island off

the coast of Maine streaming live data to the web. The system collects the temperature

data from the environment to a central server. There is no learning in the data gathering

process. Some of the same authors provided an in-depth study of applying WSNs to real-

world habitat monitoring in [Polastre et al., 2004]. They analyzed the environmental and

node health data to evaluate system performance. They showed that the sensor data is also

useful for predicting system operation and network failures. Based on over one million data

readings, they analyzed the node and network design and developed network reliability

profiles and failure models. In [Naumowicz et al., 2008], the authors describe a design

and deployment of a WSN that delivered high resolution sensor data while monitoring

seabirds on a UK National Nature Reserve. However, unlike the system presented in this

dissertation, these systems collect sensory data at a central location on a continuous basis

over a long period of time. Furthermore, there is no learning involved during the data

collection or transfer of sensory data. It generally takes a significant amount of power to

transfer multi-dimensional data across a large network over a long period of time.

In addition to animal habitat morning, WSNs have also been applied in structural

monitoring applications. For example, Wisden [Xu et al., 2004] has presented the first

wireless structural monitoring system. The Wisden system continuously collects structural

response data from a multi-hop network of sensor nodes, and then displays and stores the

data at a sink for processing. However, this is a centralized system; a distributed system

where each node is able to monitor and process information by itself is more desirable. The

works of [Stoianov et al., 2007] and [Schulz et al., 2008] addressed a water leaking moni-

toring system. Challenges of this system include sampling at high data rates, maintaining

aggressive duty cycles, and ensuring tightly time-synchronized data collection. Santini, et

al., have showed the feasibility of WSNs for assessment of noise pollution in urban en-

vironments in [Santini et al., 2008]. They presented a prototype for the collection and

logging of noise pollution data based on the Tmote platform, which they used to perform
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indoor and outdoor noise pollution measurements. Furthermore, they presented tinyLAB,

a Matlab-based tool developed in the context of this work, which enables real-time acqui-

sition, processing and visualization of data collected in WSNs. Li and Liu [Li and Liu,

2007] have presented a coal mine monitoring system that is named Structure-Aware Self-

Adaptive system (SARA). SARA employs a hole-detection algorithm to monitor the inner

surface of tunnels by utilizing radio signals among sensor nodes to model the structure of

the sensor network. Experiments have shown that with proper deployment, the system is

able to rapidly detect structural variations caused by underground collapses. These sys-

tems all operate in a centralized fashion. They collect sensor data to a sink node and let

the node post-process collected data. In addition, the systems have no learning involved

when detecting structural changes. Thus, these systems are not general or flexible enough

to apply in other places or to other application areas.

In the works of [Werner-Allen et al., 2005] and [Werner-Allen et al., 2006], the authors

described their experiences using a WSN to monitor volcanic eruptions with low-frequency

acoustic sensors. They developed a wireless sensor array and deployed it at Volcan Tingu-

rahua, an active volcano in central Ecuador. The network collected low-frequency acoustic

signals at 102 Hz, transmitting data over a 9km wireless link to a remote base station. In

addition to continuous sampling, they developed a distributed event detector that auto-

matically triggers data transmission when a well-correlated signal is received by multiple

nodes. They used linear regression to predict missing data. They used a threshold-based

detector and an Exponentially Weighted Moving Average (EWMA)-based detector. The

EWMA detector calculates two moving averages with different gain parameters, represent-

ing short-term and long-term averages of the signal. The missing data estimator component

makes the system robust. Additionally, intelligence is added to the local data collectors.

However, the system is a data collection system rather than a distributed anomaly detec-

tion system. The authors made the volcano dataset available for this research. Chapters 4

and 5 make use of this data to test the developed anomaly detection system and missing

data estimator.
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2.2 Intrusion and outlier detection in WSNs

Many intrusion and outlier detection systems that are implemented in the area of WSNs

focus on detecting network intrusion instead of detecting intruders in the physical environ-

ment, e.g., [Techateerawat and Jennings, 2006], [Hai et al., 2007], [Loo et al., 2006], [Eskin

et al., 2002], [Onat and Miri, 2005], [Banerjee et al., 2005]. Existing detection systems

either use a statistical based detection technique or a swarm intelligence-based technique.

The works of [Techateerawat and Jennings, 2006] and [Hai et al., 2007] presented Intru-

sion Detection Systems (IDS) for a sensor network that is based on the network activities

(e.g., number of success and failure of authentications). The system compares event data

with signature records to find harmful attacks from an intruder. Additionally, the authors

of [Hai et al., 2007] applied the detection system in a cluster-based sensor network very

much like the developed system in this dissertation. This type of detection system can

only identify the anomalies that it has seen before. However, this research is interested in

detecting anomalies in unknown environments, in which there are no abnormal prototypes

available for the system to learn.

The authors of [Onat and Miri, 2005], [Loo et al., 2006], and [Eskin et al., 2002],

presented intrusion detection schemes that build a model of normal traffic behavior, and

then use this model of normal traffic to detect abnormal traffic patterns. Their approaches

are able to detect attacks that have not been previously seen. The detection system also

has a feature selection phase where the features are specific to network traffic activities.

The anomaly detection system presented in this dissertation takes a similar approach by

building a normal model of the environment; sensor signals that do not match the normal

models are considered as anomalies. However, this prior research does not address the issue

of detecting time-related anomalies.

In [Banerjee et al., 2005], an ant colony based intrusion detection mechanism that

could keep track of the intruder trails is presented. This technique can work in conjunction

with conventional machine learning based intrusion detection techniques to secure sensor

networks. This work tracks the paths of intrusion after anomalies are detected. Tracking

the path of an intruder is one of the future directions of this research. However, it is not

included in the scope of this dissertation.
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There is limited existing research that detects anomalous sensor signals in wireless

sensor networks. An outlier detection algorithm based on Bayesian Belief Networks (BBN)

is presented in [Janakiram et al., 2006]. The system is also able to estimate missing

values in the sensor data. The BBNs are able to capture the relationship between the

attributes of sensor nodes as well as spatial temporal correlations that exist among the

sensor nodes. However, the technique requires offline training and human knowledge of the

environment. [Branch et al., 2006] addressed the problem of unsupervised outlier detection

in wireless sensor networks. The authors have used a Nearest Neighbor algorithm. Both

centralized and distributed algorithms were implemented and examined using a simulator

and real sensor data streams. However, none of the systems mentioned above detect time-

related anomalies in the environment or deal with the missing data problem.

2.3 Machine learning techniques in WSNs

Various machine learning techniques are used in WSNs. However, many of them have

focused on improving the communication protocols of the WSNs. In general, they usually

use one of the following three techniques: swarm intelligence, reinforcement learning or

statistical-based learning.

The most widely used routing protocol that uses ant colony optimization is AntNet

[Di Caro and Dorigo, 1998], which is an online Monte Carlo technique. There are many

variations of this work, such as AntHocNet [Caro et al., 2005], ARS [Oida and Sekido,

1999], MANSI [Shen and Jaikaeo, 2005], UniformAnts [Subramanian et al., 1997], etc. All

of these algorithms use the notion of stigmergy, which is indirect communication that takes

place among individuals through modifications induced in their environment. Moreover,

attempts to solve classification or detection problems have been carried out using this

optimization technique [Holden and Freitas, 2004]. However, the classifiers based on ant-

colony optimization generally extract a set of class rules from the data. This process

requires knowledge of the environment, and needs to be carried out offline.

Q-Routing [Boyan and Littman, 1994] is a type of reinforcement learning, and is one of

the earliest works in packet routing. A simple Q-learning approach used in multicast pro-

tocol is called Feedback Routing for Optimizing Multiple Sinks (FROMS) [Egorova-Förster
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and Murphy, 2007]. Other variations of the Q-learning technique used for routing protocols

include [Sun et al., 2002], DRQ-Routing [Kumar and Miikkulainen, 1997], SAMPLE [Dowl-

ing et al., 2005], TPOT-RL [Stone, 2000], etc. The drawback of using Q-learning is that it

is only tractable for small environments with relatively few states and actions. However,

reinforcement learning in real-world problems requires coping with large (possibly infinite)

states, observations, and action spaces [Langford and Zadrozny, 2005]. Therefore, the rein-

forcement learning technique is not suitable for the environment that is considered in this

research.

Other distributed classification algorithms in sensor networks are based on statistical

techniques, such as [Loo et al., 2006], [Eskin et al., 2002], [Rabbat and Nowak, 2004],

[Guestrin et al., 2004], [Duarte and Hu, 2004], [Kulakov and Davcev, 2005], etc. Rabbat,

et al., presented a Distributed Expectation-Maximization (DEM) algorithm for density

estimation and clustering for a wireless sensor network. However, the training phase is

computationally expensive, and requires prior knowledge of the number of classes [Rabbat

and Nowak, 2004]. Guestrin, et al., presented a general framework in which the nodes in

the sensor network collaborate to fit a global function to each of their local measurements

[Guestrin et al., 2004]. The algorithm is based upon a kernel linear regression model, where

the model takes the form of a weighted sum of local basis functions. Regression models

generally suffer from problems such as model uncertainty and bias-variance trade-off. There

are methods based on fix-width clustering, such as K-Nearest Neighbor, Gaussian and

Support Vector Machine (SVM) [Loo et al., 2006], [Eskin et al., 2002], [Duarte and Hu,

2004]. The fixed-width clustering algorithm has been shown to be highly effective for

anomaly detection in IP networks. However, the clusters in sensor signals may come with

different widths. Techniques like K-Nearest Neighbor and C-means generally require a

priori knowledge of the number of classes or an estimation of K. A Gaussian classifier

based on the Maximum-Likelihood approach can be sensitive to the choice of starting

values. Additionally, the likelihood equations need to be specifically worked out for a given

distribution and estimation problem. This is often non-trivial. A problem with SVM is that

the technique is designed to solve a 2-class problem. Extending SVM classifiers to solve

multi-class problems remains as an open research question. The research in this dissertation

is addressing the issue of anomaly detection, which can be formulated as 2-class problem,
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i.e., normal and abnormal. These approaches need prior knowledge of abnormal events. In

addition, the ability to model the unknown environment into natural states helps the human

understand and analyze the events that occurred. Kulakov and Davcev implemented ART

and Fuzzy ART neural network algorithms in a WSN to detect unusual events [Kulakov and

Davcev, 2005]. The neural networks are unsupervised learning methods for categorization

of sensory inputs. The presented neural networks classifiers have distributed short-term

and long-term memory of the sensory inputs. Since it is small enough to be implemented

on the sensor nodes, and supports a hierarchical learning structure, the developed anomaly

detection system makes use of this Fuzzy ART neural network as the baseline classification

algorithm to detect anomalies.

Heinzelman, et al., presented a well-known energy-efficient data routing protocol in

a WSN called LEACH (Low Energy Adaptive Clustering Hierarchy) [Heinzelman et al.,

2000]. LEACH divides the nodes into clusters, and clusterheads aggregate data from their

cluster members. Moreover, the membership of a cluster is adaptive in LEACH. With

this hierarchical structure, the system is able to decrease communication requirements

by reducing the size of the data transmitted; this in turn saves energy. The research in

this dissertation also uses a hierarchical learning and communication structure. However,

adaptive cluster membership selection is not implemented at the current time.

Hierarchical Cluster Based-Routing (HCR) [Matin and Hussain, 2006] is an extension

of the LEACH clustering algorithm, which uses a genetic algorithm to form the clusters. It

is assumed that the base station has complete knowledge of the network (e.g., topology and

battery status of all nodes). It then uses a genetic algorithm to compute the best clusters

for this network and sends a broadcast with the full cluster information to all nodes in

the network (wide-range one-hop broadcast). The algorithm has several severe drawbacks.

First, it drains the batteries of clusterheads quickly, which is inefficient. Second, it as-

sumes global knowledge about the network topology and cannot handle topology changes

or asymmetric links. Using a genetic algorithm is also unsuitable, since it is time- and

computation-intensive. The learning system should function in a fully distributed fashion.

Furthermore, the system should be able to respond in real time. Lastly, it should be prac-

tical to be implemented on the sensor nodes. Therefore, HCR is not considered for this

research.
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2.4 Time-related analysis in WSNs

Various regression models have been presented for time-related analysis WSNs, such as

autoregressive models [Tulone and Madden, 2006], Least-Square-Error based Linear fore-

cast method [Lim and Shin, 2005], and the Non-seasonal Holt-Winters Linear forecast

method [Lim and Shin, 2005]. Most of these systems are linear regression models; these

time series models have been widely used outside the wireless sensor network domain as a

way to approximate and summarize time series with applications in finance, communica-

tion, weather prediction, and a variety of other areas. However, as mentioned earlier, using

regression models to detect time-related anomalies normally involve a complex parameter

estimation process. They may suffer from model mismatch and bias-variance trade-off

problems.

There has been some work on the use of probabilistic time-series models in WSNs, e.g.,

Kalman Filter-based models. These systems rely on a combination of local and global prob-

abilistic models, which are kept in synchronized to reduce communication between sensor

nodes and the network sink [Zarchan and Musoff, 2000], [Jain et al., 2004], [Chu et al.,

2006]. Moreover, Kalman Filter-based models are sophisticated and require significant

computation.

The fixed length Markov model is another commonly used technique for time series

analysis [Kedem and Fokianos, 2002]. Examples of fixed order Markov models include the

Markov Chain, Hidden Markov Model, etc. Due to the limited resources in WSNs, building

high and fixed order Markov models is not feasible. Mazeroff et al., [Mazeroff et al., 2008]

implemented Variable Memory Markov model (VMM) in the forms of Probabilistic Suffix

Tree (PST) models and Probabilistic Suffix Automata (PSAs) to build models of benign

application behavior with the goal of detecting malicious applications in Windows XP. Note

that in practice, the VMM is usually implemented in the form of either a PST or a PSA

model. The two models are proven to be equivalent [Ron et al., 1996] and a PSA model

can be inferred directly from a PST model by using the algorithm described in [Mazeroff

et al., 2008]. PST models depend on a fixed number of random variables; in PST models

this number of conditioning random variables may vary based on the specific observed

realization. The PST model is a data-driven technique, which can be easily applied to
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WSNs. This dissertation research makes use of the PST to model time sequence data and

to detect time-related anomalies. The PST models have been applied in WSNs for object

tracking in [Peng et al., 2006] and [Tsai et al., 2007]. PST models can be expensive in

both space and time if not implemented carefully. Many researchers developed algorithms

to build PST models in linear time and space [Kurtz, 1999], [Apostolico and Bejerano,

2000], [Sun and Deogun, 2004]. Lin et al., have developed an online PST-based time-series

visualization tool to aid aerospace analysts [Lin et al., 2004]. In addition, the method is

automatic, and can be applied without assuming any preliminary information. The PST

model has been shown in applications involving prediction in [Begleiter and Yona, 2004]

as well. This dissertation does not use prediction; however, it is a nice feature to have for

sensor networks, since by predicting the values, the system can use the predicted values

instead of constantly querying the network.

2.5 Missing data techniques in WSNs

Some initial experiments of this dissertation showed that on average about 40% of the

sensor readings were missing. Several researchers working with WSNs (e.g., [Zhao et al.,

2003], [Fletcher et al., 2004], [Werner-Allen et al., 2005]) have also encountered missing

sensor reading problems. Several solutions have been suggested to tolerate this error at

the communication level, such as link quality profiling [Zhao et al., 2003] or reliable data

transportation protocols. This type of solution usually requires retransmitting the lost

data, which costs additional transmission power. Moreover, the retransmission process

causes delays in the anomaly detection decision process. There are higher-level algorithms

developed to estimate missing sensor data, such as Fletcher, et al., [Fletcher et al., 2004].

They have estimated missing sensor data using a jump linear system and Kalman filtering.

However, these regression models usually require extensive computation and an offline

training process, in addition to large storage capabilities. Also, the presented approach

was not tested on sensor nodes. Werner-Allen, et al., [Werner-Allen et al., 2005] built a

simple linear Autoregressive model to estimate missing values based on collected historical

sensory readings. Granger et al., [Granger et al., 2000] have suggested three different ways

to modify the Fuzzy ART neural network to compensate for missing input data. Their
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developed solutions were not tested on sensor network data, which tends to have high

correlations both in time and space. In this dissertation, this approach was compared

with the developed spatial-temporal imputation technique; the result was presented in [Li

and Parker, 2008]. Although missing data is not a well-studied area in WSNs, missing

data in general is a well-studied subject in statistics. Little and Rubin [Little and Rubin,

1986] wrote an excellent introduction on statistical missing data techniques, such as Least

Squares Estimates, Bartlett’s ANCOVA, and likelihood-based approaches. The imputation

technique is needed in sparse WSNs where every sensor reading is important and/or with

limited amount of training data and the system cannot afford to lose any information.

This dissertation also developed a Nearest Neighbor (NN) imputation technique. It

overcomes some limitations posed by the previously developed spatial-temporal imputation

technique. NN classifiers were first introduced by Fix and Hodges [Fix and Hodges, 1951].

The NN methods gained popularity in machine learning through the work of Aha in [Aha,

1992], who showed that instance-based learning can be combined with attribute-weighting

and the pruning of noisy instances. The resulting methods perform well in comparison with

other learning methods. The use of the kd-tree to improve nearest-neighbor classification

time was introduced by Friedman et al., [Friedman et al., 1977]. The approach used in this

dissertation was directly modified from the algorithm given by Andrew Moore [Moore, 1990]

and Friedman et al., [Friedman et al., 1977]. Moore along with Omohundro [Omohundro,

1987], pioneered kd-tree usage in machine learning.
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Chapter 3

The overall architecture

This chapter gives an overview of the WSN anomaly detection system developed in this

dissertation. First, the overall learning and communication architecture is introduced in

Section 3.1. Then, the basic Fuzzy ART neural network is briefly described in Section 3.2.

An overview of the approach to time analysis is presented in Section 3.3. Finally, Sec-

tion 3.4 gives a brief description of the missing data imputation approaches developed in

this research.

3.1 Overall architecture

In the developed learning system, sensor nodes are arranged in a hierarchical structure, as

shown in Figure 3.1. In a static WSN, sensor nodes are divided into clusters. Each cluster

has a clusterhead and multiple cluster members. Each cluster covers a geometric region

and is responsible for detecting the environmental changes in that region. Both cluster

members and clusterheads run an identical detection system — a missing data estimator,

a classifier and a time-series model. Cluster members read in raw sensor readings si (e.g.,

light and sound) from the environment as input, and then classify data into categories ci by

using a Fuzzy ART neural network. Note that if the data dimensions of different sensors

are different, then the Fuzzy ART neural network is applied to individual sensors first,

then the resulting data is fused together to produce one class label. After the classification

process, cluster members send their category labels to their clusterheads. Due to unstable
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Figure 3.1: Overall communication and learning architecture, extended to estimate missing

data and perform time analysis.

wireless communications, clusterheads often cannot receive category labels from all of their

cluster members. Thus, the clusterheads first pre-process the collected category labels by

estimating and replacing the missing values by using a spatial-temporal technique. Then,

the processed categorizations are used as input to their classifiers and are fused together

to reduce the size of the raw sensory data. The output of the Fuzzy ART neural network

is a category label ci. If the category label does not match one of the existing prototypes,

a change is detected by the system. After the classification process is finished, the system

performs further checks for time-related changes. The learning system has a hierarchical

structure — clusterheads may have higher level clusterheads which classify their output

class labels. Finally, the root node obtains the final model of the environment. With this

architecture, the WSN can be easily scaled to large numbers of sensors. At the same time,

this hierarchical approach reduces communication, which in turn saves energy in the WSN.

The Fuzzy ART neural network alone cannot detect time-related abnormal events.

For example, if people turning on the lights during the day and turning off the lights

when they leave work is considered as a normal event, then an intruder turning on the

lights only briefly in the evening should trigger an alarm. As another example, if people

turning on the lights then making noise inside of the room is normal, then the opposite

22



sequence of making noise before turning on the lights should also trigger an alarm. The

time analysis model detects these types of time-related changes by taking a stream of

output class labels c from the Fuzzy ART neural network and comparing it against a

learned time model M . If the querying temporal sequence is unlikely to occur, an alarm

is raised. To achieve this, two temporal analysis models have been studied. The first

time analysis approach is a heuristic Finite State Automaton (FSA) that models the time

duration in each environmental state as a normal distribution. In addition, the FSA also

models the state transition probabilities. The second temporal modeling approach is a

significant enhancement of the first approach. It uses a symbol compression technique to

extract the semantic symbols from the temporal sequences. It then uses a Probabilistic

Suffix Tree to model the temporal semantic events. Both approaches analyze time using

a discrete representation. Discrete modeling and processing have several advantages over

continuous measurements and models, including: 1) sensor data is often discrete (e.g.,

certain radar systems [Wang and Krishnamurthy, 2008]); 2) environments that are modeled

with discrete states have clear physical interpretations and are therefore natural and easy

for humans to interpret (e.g., eruption or no eruption vs. vibration measurements); and 3)

data compression techniques, which the system uses to reduce the size of the observations,

typically require discrete state representations. The details of both temporal modeling

techniques are presented in Chapter 4.

Missing sensor values add noise to the data, which degrades the performance of the

classifier if not handled properly. To make the learning process more robust to this type

of noise, the system pre-processes the data by estimating the missing values. A novel

spatial-temporal imputation technique has been developed to solve this problem. This

research has compared and contrasted different missing data imputation techniques with

the developed technique. The system is able to achieve high accuracy by taking advantages

of temporal and spatial correlations in WSNs. To overcome some limitations that are posed

by the spatial-temporal imputation technique, another Nearest Neighbor (NN) imputation

technique has been developed. The NN imputation technique utilizes a kd-tree to organize

temporal and spatial correlated data and search the tree efficiently to fill in missing values.

A detailed study is given in Chapter 5.

With this communication and learning architecture, the system is able to detect both
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abnormal environmental changes and time-related changes. The developed design is flexible

because it allows the operator to turn off the time module if time anomaly detection is not

of interest.

3.2 Fuzzy ART neural network

Adaptive Resonance Theory (ART) is a neural network architecture developed by Gross-

berg and Carpenter [Carpenter and Grossberg, 1991]. The Fuzzy ART neural network

was first implemented in a WSN by Kulakov and Davcev in [Kulakov and Davcev, 2005].

The baseline Fuzzy ART neural network used in this dissertation is implemented in the

same way. The motivation for choosing this Fuzzy ART model lies in its simplicity of

computation. The Fuzzy ART neural network system is an unsupervised artificial neural

network that can perform dimensionality reduction and pattern classification. The Fuzzy

ART neural network is able to take analog input. It is able to discover both regularities and

irregularities in the redundant input data by an iterative process of adjusting weights of

interconnections between large numbers of simple artificial neurons. The Fuzzy ART neu-

ral network considers signal readings from all sensors simultaneously, and is able to learn

continually. The neural network creates a new category when the input vector is signifi-

cantly different from existing categories. The sensitivity of the categorization process can

be controlled by a vigilance parameter ρ; higher vigilance produces highly detailed memo-

ries (many fine-grained categories), while lower vigilance results in more general memories

(fewer, more general categories). When the vigilance value is equal to one, all the data

will be “remembered” and assigned into different categories. In practical scenarios, the

vigilance parameter is set to a certain threshold to capture only the representative fea-

tures/signatures of the environment. Figure 3.2 gives a representation of their Fuzzy ART

neural network. A typical Fuzzy ART neural network has three layers: an input layer (F0),

a comparison layer (F1) and a category layer (F2). The learning process of the Fuzzy ART

neural network is presented in detail as follows.

Each input vector I (Ij ∈ [0, 1]; and j = {1, 2, ..., N}) is compared with each category

(node) in the F2 layer to classify it with its best match. The choice function Aj is defined
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Figure 3.2: A typical Fuzzy ART architecture (from [Kulakov and Davcev, 2005]).

as:

Aj(I) =
|I ∧ wj |

ǫ + |wj |
(3.1)

where parameter wj is the binary weight vector of category j, and parameter ǫ ∈ [0, 1].

The ǫ parameter is generally used to make the denominator not equal to zero. The fuzzy

AND operator ∧ is defined by I ∧ wj = min(I, wj) and the operator | · | is defined by

|x| ≡
∑M

i=1 xi, where x is an arbitrary variable. Then, the approach selects the node J in

the F2 layer that has the highest match (AJ = max{Aj |j = 1, ..., N}). The weight vector

of the winning node (wJ) is compared to the current input at the comparison layer. The

training process starts if the match function of the chosen category exceeds the vigilance;

that is:
|I ∧ wJ |

|I|
≥ ρ (3.2)

where parameter ρ ∈ [0, 1] represents the vigilance level. The number of developed cate-

gories can be controlled by the vigilance level. The higher the vigilance level is, the more

sensitive the network is to changes in the environment. This can result in a larger number

of finer categories. When ρ = 1, the network creates a new category for every unique input

pattern.

The node J in the F2 layer captures the current input, and the network learns by
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modifying the weight vector wJ according to:

wnew
J = γ(I ∧ wold

J ) + (1− γ)wold
J (3.3)

where parameter γ ∈ [0, 1] is the learning rate. Fast learning occurs when γ = 1. If

the stored prototype wJ does not match the input sufficiently (i.e., Equation (3.2) is not

satisfied), the winning node in the F2 layer will be inhibited until a new input vector is

applied. Then, another node in the F2 layer is selected with the highest Aj value, and will

be matched against the input. This process is repeated until the network either finds a

stored node whose value matches the input, or selects the uncommitted F2 layer node if

all nodes result in mismatches. In this case, learning a new category is initiated according

to Equation (3.3).

The Fuzzy ART system has a category proliferation problem. The category proliferation

problem refers to a situation in which the number of classes increases too quickly in a neural

network. Complement coding can be used to overcome this problem [Sapojnikova, 2003].

The complement of input I can be achieved by preprocessing each incoming vector a by

ac ≡ 1−a. After the complement coding process, input I becomes a 2M -dimensional vector,

I = (a, ac) ≡ (a1, ..., aM , ac
1, ...a

c
M ). Note that normalization of input I can be achieved

by preprocessing each incoming vector a, I = a/|a|. The input vectors are automatically

normalized after being preprocessed into complement coding form.

Labeling the sensory data during the testing phase occurs as follows. Given N distinct

category prototypes denoted by W = {w1, · · · , wN} learned during the training phase, and

a series of T observations O = {ot : t ∈ T} made over time, where t denotes time, the

system finds the closest match of the current observation ot to a category prototype in wi.

Formally, the formulation is defined as follows,

ot ∈ wi if i = arg max
k

P (wk|ot) (3.4)

where P (wk|ot) < ρ, which means that if the difference between ot and the closest match

P (wk|ot) is less than a vigilance parameter ρ, then the observation ot is labeled as i. Note

that i denotes the index of the category label. If the difference is larger than ρ, then an

abnormal alert will be generated. Let ct denote the category label learned from observations

ot at the time t. There is a one-to-one mapping from observations to category labels. Thus,
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a sequence of observations, O becomes a sequence of category labels, C = {ct : ct ∈W, t ∈

T}.

3.3 Time models

The baseline Fuzzy ART neural network cannot detect time-related changes. Two time

modeling methods have been studied to detect time-related changes. The first model is a

heuristic Finite State Automaton (FSA). The environment can naturally be described by

environmental states (i.e., categorized by the Fuzzy ART neural networks). The developed

FSA model assumes the time duration that the system remains in a state is a Gaussian

distribution. The FSA model uses an empirical rule (i.e., three-sigma rule) to identify

abnormal time duration in a state. Whenever a transition in or out of a state occurs,

the FSA model further checks whether the transition is probable. However, the FSA

model poses some limitations. Such as, it is difficult to restart the detection process after

an anomaly is detected. In addition, the FSA model assumes that the time duration in

each state follows Gaussian distribution. To enhance the FSA model, a likelihood-ratio

detector scheme is studied. The system uses a two-step temporal modeling technique to

model temporal sequences. It first compresses the temporal sequence into shorter semantic

temporal events. Then, the system uses a Probabilistic Suffix Tree (PST) [Mazeroff et al.,

2008] to model the temporal semantics. Finally, a likelihood-ratio detector is used to

detect time-related anomalies. The likelihood-ratio detection approach is online, fully

autonomous, distributed, and data-driven. A detailed description in given in Chapter 4.

3.4 Missing data imputation

It is common to have missing data problems in WSNs. Different ways of estimating missing

data have been contrasted and compared in this study. The studies show that utilizing

spatial and temporal correlations to impute missing values yields high accuracies. A novel

spatial-temporal imputation technique is first developed. The spatial-temporal imputa-

tion technique replaces a sensor node’s missing values using the most common neighbors’

sensor reading or its past sensor reading. However, the spatial-temporal imputation tech-
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nique poses some limitations. To overcome these limitations, a novel Nearest Neighbor

(NN) imputation technique is developed for estimating missing values in WSNs. The NN

imputation method organizes the temporal and spatial correlated data into a kd-tree data

structure [Hughey and Berry, 2000]. When estimating missing sensor values, the NN im-

putation technique uses the nearest neighbors found from the kd-tree traversal. One of the

traditional kd-tree construction and search methods uses a Euclidean distance metric. Due

to the missing values, a weighted Euclidean metric is developed for kd-tree construction

and search; the new weighted metric takes into account the missing data percentage of

each sensor, which is more suitable for WSNs. A detailed description of the missing data

study is presented in Chapter 5.
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Chapter 4

Semantic temporal modeling

Wireless Sensor Networks (WSNs) are widely used in environment monitoring applications.

For example, a WSN can be used to monitor volcanic activities, thus saving researchers

from the long trips and frequent returns to the deployment site. Each sensor in the network

can monitor its local region and communicate wirelessly with other sensor nodes to col-

laboratively produce a high-level representation of the environmental states. With limited

power resources, it is important to reduce the amount of data to be transferred through the

wireless network. In Chapter 3, a hierarchical, distributed, and modular anomaly detection

system is introduced that does not require centralized decision making. The system uses a

neural network to perform sensor fusion from multiple sensors. This chapter investigates

two time analysis models that are able to detect time-related anomalies. The first time

model uses a heuristic Finite State Automata (FSA) to capture some aspects of time mod-

eling. The second one extends the time model work by significantly enhancing the discrete

state machine through the use of a more robust, high performance and memory efficient

anomaly detection method. This method consists of symbol compression technique that

extracts the semantic meaning from the temporal sequence data, along with a Probabilistic

Suffix Tree that is a more efficient method for anomaly detection.
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4.1 Initial time analysis using Finite State Automata

As the first step, a Finite State Automata (FSA) time model is developed. For each

state, it records the average time and the variance of the time spent in a state during the

initial training period. This model can detect abnormal transitions by using the transition

probabilities; it can detect abnormal time durations spent in a state by using the recorded

average time. In this model, the states of the FSA correspond to the class labels ci that

are output from the classifier. At each time increment, the system may either remain in

the same state, or move to a new state. Note that in this implementation, the probability

of the system remaining in the current state is not maintained; instead, the system retains

the average time spent in the state.

In a WSN setting, the FSA is built autonomously during the training phase using

Algorithm 1. Sensor motes periodically sense the environment at a fixed rate, and feed the

normalized sensor readings to the classifier to build classes/states of the environment. For

each state (ci) in the FSA, an average time and the variance of the time the system remains

in that particular state are recorded. Additionally, the state transition probabilities, pij ,

from one state to the next set of states are also calculated. Therefore, an alarm will trigger

if the amount of time in a state is either too short or too long. In a similar fashion, if a

state transition is not probable, then this may also trigger an abnormal alarm. Thus, an

anomaly from state transitions and from state occupancy time can be captured.

The algorithm is flexible because the FSA captures both the transition and time dura-

tion in a systematic way. If one is only interested in capturing the abnormal state transi-

tions, the algorithm can simply turn off the functionality of calculating the average time

spent in a state. It assumes the time duration in each state follows a normal distribution

and uses the three-sigma rule to detect anomalies (outliers).

There are some limitations of using this FSA-based model. First, classes are assumed

to be independent of each other. In practice, statistical tests have to be performed in order

to verify the independence between classes for a given set of learning samples. These tests

generally require human involvement, and are not feasible for online applications. Second,

it is hard to find an automatic way to determine the restarting state for the FSA model

once an anomaly is detected. Because of this limitation, the system is not able to detect
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Algorithm 1 Building the FSA

1: for each time step do

2: if the current state is the same as the last time step then

3: Record the time spent in this state.

4: else

5: Record the state transition.

6: end if

7: end for

8: for each state i do

9: Find the mean µi and standard deviation σi of the time the system remains in state

i.

10: Find the transition probability pij for each possible state j.

11: end for

multiple time-related anomalies in the environment during the monitoring period. Finally,

this approach assumes the time duration in each state follows a Gaussian distribution.

Normality testing is generally required for this approach, or the system may risk having a

model mismatch problem.

4.2 The enhanced semantic temporal modeling in WSN

To address some of the issues posed by the FSA model, an enhanced time modelling ap-

proach is developed to solve time-related anomalies. In order to model the temporal events

with different lengths, a system should be able to model the time duration in each state.

Additionally, the system should be able to automate the detection process when multiple

time-related anomalies occur. In general, a high order fixed length Markov model is able

to achieve this. However, given the constraints of WSNs, it is infeasible to use a traditional

high order Markov chain, since an L-th order Markov model requires |Σ|L states, where

|Σ| denotes the number of alphabet symbols and L is the length of past history/memory

being modeled. In addition, Markov models look at all states simultaneously and use a

well-known backward/forward algorithm to find the most likely sequence and its probabil-
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ity. Therefore, the problem of finding a restarting point after an anomaly is detected is

naturally solved.

For a large variety of time-related sequential data, statistical correlations decrease

rapidly with the distance between symbols in the sequence. If the statistical correlations

are indeed decreasing, then there exists a “memory” length M such that the empirical prob-

ability changes very little if conditioned on subsequences longer than M . Ron et al. [Ron

et al., 1996] presented an elegant solution to this problem. The underlying observation in

their work is that in many natural sequences, memory length depends on the context and

is therefore not fixed. Therefore, as in Ron et al. [Ron et al., 1996], the system developed

in this dissertation uses a Variable Memory Markov (VMM) model to preserve the mini-

mal subsequences (of variable lengths) that are necessary for precise modeling of the given

statistical source. This results in a more flexible and efficient sequence representation. It

is particularly attractive in cases where the system needs to capture higher-order temporal

dependencies in some parts of the behavior and lower-order dependencies elsewhere. The

VMM model can be implemented in the form of a Probabilistic Suffix Tree (PST) model.

A PST is a tree whose nodes are organized such that the root node gives the probability of

each symbol of the alphabet while nodes at subsequent levels give next-symbol probabilities

conditioned on a combination of one or more symbols having been seen first.

The constructed PST model is essentially a symbolic predictive model: the underlying

continuous time signals are first abstracted to a discrete space, analogous to a set of finite

categories. In some cases, this has the advantage of being more immune to the problems of

noise while still preserving the essential underlying patterns or dependencies that govern

behavior in the observed domain. Arguably, it also produces a more understandable model

since its components are higher level abstractions. All these advantages of the PST model

make it suitable to model temporal sequences in WSNs. One of the challenges of using a

PST model on resource constrained sensor nodes is that the model complexity may grow

exponentially with the memory, depending on the data. For example, the top part of

Figure 4.1 shows the raw seismic sensor readings recorded over a 24-hour time period at

Volcano Reventador, collected by Werner-Allen et al., [Werner-Allen et al., 2006]. The

Fuzzy ART neural network (described in Chapter 3.2) is used to classify the sensor signals

into 13 distinct classes/categories (refer the bottom part of Figure 4.1). The categories are
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assumed to carry the higher semantic meaning of the data, such as different levels of volcanic

activities. Then the system can analyze the sequence of activities to understand their

temporal semantic meanings. Observe that in the data of Figure 4.1 there are more than

15 hours of no activity followed by an eruption which lasts less than a minute. An active

volcano may have days or months of inactivity followed by an eruption lasting only minutes.

A WSN that is designed to model time sequences should be able to model this process and

be able to detect eruptions. In many environmental monitoring applications, it is common

to have a period of inactivity that extends over several days, weeks, or months. Using PST

models directly to model the sensor data is computationally prohibitive. Thus, the system

uses a data-driven approach to automatically infer discrete and abstract representations

(symbols) of primitive object interactions. These symbols are then used as an alphabet

to infer the high level structures of typical interactive behaviors using PST models. The

approach used in this research is called the Lempel-Ziv-Welch (LZW) [Welch, 1984] symbol

compression method. After compressing the temporal sequences, the system then uses a

PST to model the semantic class sequence. The PST model now represents high level

semantic notions. These environment feature descriptors are invariant of the sensor classes

and time dependencies. They constitute the input to a statistical learning framework where

discrete representations of interactive behaviors can be learned by modeling the probability

distribution of the feature vectors within the interaction feature space.

Symbol compression methods can extract semantics from temporal sequences. There-

fore, the WSNs could save power by transmitting and receiving the compressed temporal

sequences. By adding a symbol compression module, the system addressed in Chapter 3

requires some modifications. Like the system architecture presented earlier, it uses a hier-

archical learning/communication structure for the WSN. The sensor nodes in the WSN are

divided into clusters, as shown in Figure 4.2. Each cluster has a clusterhead and multiple

cluster members. Each cluster covers a geometric region and is responsible for detecting

the environmental changes in that region. Both cluster members and clusterheads run an

identical detection system — a classifier, a symbol compressor, a time analysis model, and

a missing data estimator. Cluster members read in a raw sensor signal, oi, (e.g., light

and sound) from the environment as input, and then perform sensor fusion and classify

the data into a category ci. If an anomaly is detected by the classifier, an abnormal alert

33



Figure 4.1: Top: raw seismic readings over a time period of 24 hours. Bottom: the Fuzzy ART categorizations/classifications based

on the raw seismic readings.
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is raised. After the classification process, cluster members compress their category labels

and send the compressed category labels si (i.e., higher-level semantic symbols in temporal

sequences) to their clusterheads. Note that in the intruder detection system discussed in

Chapter 6, the cluster member would send the class labels after each time step. By com-

pressing the class label sequence into a shorter temporal sequence, the network is able to

save communication costs by removing the redundancies in the temporal sequence. The

amount of redundancy removed depends on the compression ratio of the original temporal

sequence. Then, the clusterhead analyzes the compressed sequences at a higher level. If

an anomaly is detected by the time analysis module, an abnormal alert is raised. Clus-

terheads often cannot receive complete labels from all of their cluster members, due to

unstable wireless communications. Ignoring missing data would result in too many false

positives (as justified later in Chapter 5). Thus, the clusterheads first pre-process the

collected category labels by identifying and estimating the missing values (described in

Chapter 5). The learning system has a hierarchical structure — clusterheads may have

higher level clusterheads which classify their output (compressed) class labels. Finally, the

root node obtains the final model of the environment. With this learning architecture, the

system is able to detect both abnormal environmental changes and time-related changes.

The system uses modular design to give the human operators the flexibility of turning

off the modules that are not needed. For example, the operator can turn off the time

analysis module if analyzing time is not of interest. In addition, the WSN can be easily

scaled to a large numbers of sensors. At the same time, this hierarchical approach reduces

communication, which in turn saves energy in the WSN. Specifically, to reduce the amount

of data transmitted through the sensor network, the system can transmit the semantic

representation of the sensor data instead of the raw sensor signals. In addition, transmitting

the semantics from temporal events can further reduce communication costs.

The flow of the sensor signals of an individual sensor node in the new enhanced time

model is demonstrated in Figure 4.3. This is a significant extension over the previous

FSA design for temporal modeling. Each sensor node takes in multi-dimensional raw sen-

sor vectors from the environment as input, and then performs sensor fusion and classifies

the raw sensor signals into categories using a classifier. If the new category does not

match one of the existing normal categories, a sensor level anomaly is detected by the
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Figure 4.2: The overall sensor network architecture for learning semantic information from

temporal sequences.

system. As previously described, the classifier that the system uses is the Fuzzy ART

neural network [Carpenter and Grossberg, 1991]. The raw sensor signals are processed

through the Fuzzy ART neural network to produce a sequence of meaningful environmen-

tal states/classes. After the sensor fusion and categorization process is completed, the

system further checks whether there are time-related changes. The temporal sequence

model is a two-step process. First, the sequence of classes/categories is compressed with a

symbol compressor. Then the compressed events are built into a PST model. In order to

detect time-related changes, the system measures the likelihood of the current compressed

sequence, compared to the PST model(s) learned during the training phase.

The symbol compressor that the system uses is a lossless, dictionary-based symbol com-

pressor called the Lempel-Ziv-Welch (LZW) [Welch, 1984] encoder. It operates efficiently

by sampling the string statistics in a manner that allows a compressed representation

and exact reconstruction of the original string. Depending on the implementation, learn-

ing and generating can be off-line or on-line, real-time or non-real-time. Note that this

two-step structure is developed to make the system more flexible when capturing the tem-

poral sequence information. For example, system designers may substitute another symbol
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Figure 4.3: Signal processing flow on a single sensor node. The system first uses a symbol

compression technique to extract semantics out of temporal sequences. Then, the temporal

semantics are modeled using a PST model.

compression method or Markov-based model as desired. When modeling the temporal se-

quence, if time duration within a state (class) is not of interest, the designers can simply

remove all consecutive repeated categories in the symbol compression stage and let the

PST model only the state sequences.

The rest of this section is organized as follows. First, Section 4.2.1 addresses the issue of

extracting semantic symbols from temporal sequences using the symbol compression mod-

ule. Next, Section 4.2.2 presents a PST approach for modeling time events. A likelihood-

ratio based anomaly detector is presented in Section 4.2.3. Finally, in Section 4.2.4, the

approach is tested on a volcano monitoring dataset, and the results are analyzed.

4.2.1 Identifying temporal semantics from sequences

Compression algorithms can roughly be categorized into lossless or lossy compression [Say-

ood, 2000]. Lempel-Ziv77/78 and Lempel-Ziv-Welch (LZW) are the most widely used

dictionary-based compression techniques [Sayood, 2000]. The main mechanism in both

schemes is pattern matching: find string patterns that have occurred in the past and com-

press them by encoding a reference to the previous occurrence. The temporal sequence

compression process is defined as follows. The encoder/compression algorithm takes a

sequence of category labels C = {c1, · · · , cT } and compresses it into another sequence

denoted by S, which encodes higher-level semantic meaning.

The developed approach uses the LZW algorithm to construct semantic symbols. LZW

is an improved implementation of the Lempel-Ziv78 algorithm. The algorithm is designed
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Table 4.1: Dictionary built by LZW algorithm

Dictionary

Index Entry Index Entry

(code) (categories) (code) (categories)

0 1 7 33

1 2 8 31

2 3 9 123

3 12 10 32

4 22 11 2222

5 222 12 21

6 23 13 13

to be fast to implement but is not usually optimal because it performs only limited analysis

of the data. With the limited resources of a WSN, it is important to reduce the amount

of processing. In a typical compression run, the algorithm takes a string as input, and

processes the string using a dictionary of distinct substrings. The algorithm encodes the

string (and builds the dictionary) by making a single left to right traversal of a sequence.

Initially, the dictionary contains the alphabet with its corresponding encoding. Then it

sequentially adds every new substring that differs by a single last character from the longest

match that already exists in the dictionary. This repeats until the string is consumed.

The idea is that, as the string is being processed, it populates the dictionary with longer

strings, and allows encoding of larger blocks of the string at each replacement. For example,

suppose there is a source temporal sequence with a three-letter alphabet Σ = {1, 2, 3}, and

the temporal sequence that needs to be compressed is C={1, 2, 2, 2, 2, 3, 3, 1, 2, 3, 2, 2,

2, 2, 1, 3}. Based on knowledge about the source sequence C, LZW algorithm builds the

dictionary shown in Table 4.1. The output encoded string of S is {0, 1, 4, 1, 2, 2, 3, 2, 5,

1, 0, 2}.

Note that with the developed two-step temporal modeling process, it is not necessary

to keep all entries in the dictionary. Especially with limited memory in the wireless sensor

nodes, the system can only afford to build a small dictionary. If a system can afford to
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build a PST with order up to M , dictionary entries with length shorter than M can be

pruned, since they can be modeled by an M th order PST. System designers may choose

to further prune the dictionary entries based on their knowledge of the application. To

further prune the dictionary, system designers may select relevant features based on the

application. The relevant features are the dictionary entries with real-world meanings

that are relevant to the specified application. The interpretation of the temporal sequence

compression process is as follows. Each entry in the dictionary denotes a sub-sequence in

the initial temporal sequence to be compressed, while the corresponding index is the “new”

compressed temporal symbol with higher semantic meaning. The compressed sequence

carries the higher level semantic meaning of the initial temporal sequence. The length of

each dictionary entry corresponds to a real-world event in discrete time. Specifically, the

length of a single-alphabet entry in the dictionary denotes the time duration of the event’s

occurrence and the corresponding index carries that semantic meaning. For example, the

entry “2222” in Table 4.1 indicates the environment is in state “2” for 4 time units. The

corresponding index “11” indicates 4 time units of state “2” in the compressed temporal

sequence. Dictionary entries with multiple alphabets may have a real world meaning as

well. For example, the entry “12” could correspond in the real world to a person taking

one minute to add coffee powder and water into a coffee machine, and then it takes the

machine one minute to make a pot of coffee. The whole process is now associated with an

index “3” that has the real semantic meaning “making-coffee”. Therefore, the compressed

temporal sequence is able to carry higher-level semantics of the initial temporal sequence

with a shorter length.

4.2.2 Modeling semantic interactions using PSTs

Another significant extension to the previously described FSA approach is modeling se-

mantic interactions using PSTs. The PST model, which was originally designed for clas-

sification purposes, has the advantage of improved extraction of statistical information

from sequences. The trade-off is that it deliberately throws away some of the original

sub-sequences during the analysis process to maintain a compact representation. In re-

source constrained WSNs, compact data models save energy in sensor nodes by reducing
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the amount of data being transferred among the nodes. In order to make the system easy

to use, the system should build models of the environment that are able to support both

interpretation and anomaly detection. This is achieved by using PSTs to efficiently encode

the sequences of the categories corresponding to observed interactive behavior in the fea-

ture space. In the following, the definition of the PST is given first. Then, an explanation

of how the PST is used to detect time-related anomalies in the WSN is described.

The PST is a stochastic model that uses a suffix tree as the index structure. This

approach is based on the “memory” of natural sequences. That is, the root node of the

PST gives the empirical probability of each symbol in the alphabet while each node at

subsequent levels is associated with a vector that gives the probability of the next symbol

given the label of the node as the preceding segment. For example,

P (si+1|s0...si) = P (si+1|si−M ...si), i > M ,

gives the empirical probability distribution P of the next symbol si+1 given the last M

symbols in the preceding segment. Furthermore, a tree of order M has M levels beyond

the root.

To illustrate, consider a (compressed) sequence S = {1, 2, 3, 1, 2, 3, 2, 1, 3} with a three

letter alphabet Σ = {1, 2, 3}. Fig. 4.4 shows the order-2 PST inferred from the observation.

Beginning with the root node, which represents the empty string, each node is a suffix of

all its children. The probability vector below the nodes gives the conditional next-symbol

probabilities. Moreover, all symbols are shown on the same level of the tree. Next symbol

“transitions” jump from one branch to another, not from a parent node to its children.

This transition pattern is due to the suffix format of the node labels. Some branches

typically die out early while other branches propagate to the maximum depth of the tree.

Additionally, if a child node carries an identical next-symbol probability distribution as its

parent node, the child node is pruned. Detailed PST inference and pruning procedures can

be found in Mazeroff [Mazeroff et al., 2008].

Let S = {su : u ∈ U} denote a compressed temporal sequence of size U , where u

denotes the discrete time unit after compression. To model the normal behavior using the

Maximum Likelihood criterion, the system finds a model that maximizes the probability of

a given sequence of observations. Given a PST λ, the total likelihood of the observations

can be expressed mathematically as L = P (S|λ). If the probability of the observation
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(1/2, 1/2, 0) (1/2, 1/2, 0)
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(0, 0, 1)

(0, 1, 0)

(0, 0, 1)

Figure 4.4: An example: an order-2 PST based on a compressed sequence S = {1, 2, 3, 1,

2, 3, 2, 1, 3}

sequence given the model is below a threshold θ, then an anomaly is detected by the

system. A likelihood-ratio detector is addressed in detail in the following subsection.

The computation for this procedure is fast and inexpensive. The PST model has been

shown to be implementable in linear time and space [Apostolico and Bejerano, 2000]. Let

the length of the training sequence be n, the memory length of PST be M , the alphabet

be Σ, and the length of a testing sequence be k. Apostolico and Bejerano’s PST building

algorithm takes O(n|Σ|) time [Apostolico and Bejerano, 2000]. This procedure is a one-

time overhead cost to the system during the initial period (unless the PST needs to be

updated). To detect anomalies after the PST is constructed, the system has to calculate

the likelihood that the testing sequence matches the built PST. The sequence matching

procedure is a simple tree traversal, and the detection procedure takes O(mk) time. Thus,

it is practical for sensor nodes that have limited resources.

41



4.2.3 Likelihood-ratio detection scheme

A typical approach to anomaly detection is to build normal and abnormal event mod-

els, then classify the query instance into one of these built normal and abnormal classes.

However, as previously emphasized this research is interested in detecting anomalies in an

unknown environment, without no a priori knowledge of anomalies. The designed system

achieves this by using a likelihood-ratio detector; the detection process is described in detail

as follows.

Let S denote the entire (compressed) sequence of environmental states S = {S̃, Ŝ},

where S̃ denotes the training sequence, and Ŝ denotes the target testing sequence. Given a

segment of observations/class labels S̃ = {s1, · · · , sv}, and a segment of observations/class

labels Ŝ = {sv+1, · · · , sU}, the task of detecting anomalies in the sequence Ŝ is to determine

if Ŝ is the same as S̃. (Note that in some applications the types of anomalous events are

known; in that case S̃ can represent abnormal observations, and an anomaly is detected

when Ŝ matches S̃.) The likelihood-ratio detector is similar to that presented by Reynolds,

et al., in [Reynolds et al., 2000] for speaker verification problems. The anomaly detection

problem is formulated as determining if sequence Ŝ is different from the normal sequence

S̃. The anomaly detection task can be restated as a hypothesis test between:

H0 : Ŝ is normal and H1 : Ŝ is abnormal. (4.1)

The likelihood ratio test to decide between these two hypotheses is given by:

p(Ŝ|H0)

p(Ŝ|H1)







≥ θ accept H0

< θ reject H0

(4.2)

where p(Ŝ|Hi), i = 0, 1, is the probability density function for the hypothesis Hi evaluated

for the observed sequence Ŝ, also referred to as the likelihood of the hypothesis Hi given

the sequence. The decision threshold for accepting or rejecting H0 is θ. For the temporal

anomaly detection, the null and alternative hypothesises use PST models λ. Hence, the

PST model for the null hypothesis is denoted as p(Ŝ|H0; λ0) and for the alternative hy-

pothesis as p(Ŝ|H1; λ1). The likelihood ratio detector is p(Ŝ|H0; λ0)/p(Ŝ|H1; λ1). Usually,

the logarithm of this statistic is used giving the log-likelihood ratio,

Λ(Ŝ) = log p(Ŝ|H0; λ0)− log p(Ŝ|H1; λ1) (4.3)
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During the training period, the system may encounter various event sequences that are

normal, abnormal and/or undetermined. The model for H0 can be estimated using a nor-

mal event sequence. However, the model for H1 is less well defined since it potentially must

represent every abnormal situation possible. Since the environment that WSNs operate in

are typically unknown, it is not possible to train H1 with every abnormal situation. There-

fore, the universal background model (UBM) [Reynolds, 1997], which uses all hypothesized

sequences of events, is more suitable. The UBM in the anomaly detection application is

the entire set of training data, which may include normal, abnormal and undetermined

event sequences.

4.2.4 Experiment: Monitoring volcano activities

A volcano monitoring dataset is used to evaluate the developed anomaly detection system.

The dataset was collected by Werner-Allen, et al., from Harvard University at the Volcano

Reventador [Werner-Allen et al., 2006]. The use of WSNs greatly simplifies the data

gathering task, because the lack of road access prevents frequent trips to the deployment

site. A detailed data collection process is described in [Werner-Allen et al., 2006]. The

data used in the following experiments is obtained from one of the seismic stations, which

samples the environment at 120 Hz. Since the data is voluminous, one day’s worth of

data, which is approximately 200 megabytes, has been analyzed. This data is from a single

sensor node, rather than from a complete sensor network. The following experiments do

not involve clusters or clusterheads. The detection process for the WSN is described in

Section 4.2. In addition, an intruder detection system with multiple layers of clusters of

sensor nodes, with each sensor node using multiple sensors is demonstrated in the lab

environments (refer Chapter 6 for details). The intruder detection system uses heuristic

discrete states to model time. Since the two-step temporal modeling approach developed

here also uses discrete state representations, this should work with the existing system

architecture when being implemented on the nodes. The current approach is more robust

when detecting multiple anomalies in the environment and involves less communication by

transmitting compressed temporal sequences. The volcano dataset here is used as proof-

of-concept to illustrate how the enhanced time modeling module works on a real world
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dataset.

Preprocessing

The top part of Figure 4.1 presents the raw seismic readings recorded over a 24-hour time

period on August 1, 2005. The raw seismic data O is normalized and categorized by the

Fuzzy ART neural network as shown in the bottom part of Figure 4.1. The raw sensor

data O is classified into |Σ| = 13 categories by setting the vigilance parameter ρ of the

Fuzzy ART system to 0.93. Hence, the output temporal categorization sequence C has an

alphabet size |Σ| of 13. Note that the physical meaning of these 13 categories is unknown.

In future work, if the ground truth of the seismic data is available, the Fuzzy ART neural

network can assign more meaningful categories (e.g., magnitudes of eruptions) by adjusting

its vigilance parameter ρ. The data is grouped into hour-long subsets. Based on visual

inspection, there are no volcanic activities during the period between the 1st hour and

the 15th hour; this period is regarded as the normal period. There is an anomaly/eruption

between the 15th hour and the 16th hour. Thus, this hour is regarded as an abnormal period.

It is not possible to determine whether the periods following the eruption are “normal after

eruption” or “abnormal”. As a result, the data after the 16th hour is discarded. Due to the

limited amount of the available “abnormal” data, and since “normal” and “abnormal” is

relative. Therefore, hour 16 is treated as the “normal” period and hours 1-15 are treated

as “abnormal” periods. The following experiments intend to demonstrate the usage of the

developed techniques on real application data.

Performance metrics

The following performance metrics are used to evaluate the anomaly detection system:

compression ratio, True Positive Rate (TPR), True Negative Rate (TNR), False Posi-

tive Rate (FPR), and False Negative Rate (FNR). The compression ratio refers to the

ratio of the size of data before compression and the size of data after compression, i.e.,

uncompressed data/compressed data. The TPR or sensitivity is defined as the fraction of

positive examples predicted correctly by the model, i.e., TPR = TP/(TP + FN), where

True Positive (TP) corresponds to the number of positive examples correctly predicted by
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the model and False Negative (FN) denotes the number of positive examples wrongly pre-

dicted as negative by the model. Similarly, the TNR or specificity is defined as the fraction

of negative examples predicted correctly by the model, i.e., TNR = TN/(TN +FP ), where

True Negative (TN) corresponds to the number of negative examples correctly predicted

by the model and False Negative (FP) denotes the number of negative examples wrongly

predicted as positive by the model. Finally, The FPR or false alarm rate is the fraction

of negative examples predicted as positive class, i.e., FPR = FP/(TN + FP ), while the

FNR or miss rate is the fraction of positive examples predicated as a negative class, i.e.,

FNR = FN/(TP +FN). Ideally, the values of sensitivity and specificity are at 100%; the

values of false alarm rate and miss rate are at 0%.

PST vs. Fixed length Markov model

The performances of the PST model and the traditional fixed length Markov model are

evaluated on the volcano monitoring dataset. In this experiment, the “normal” period

(hour 16) category sequence is used as training data, and “abnormal” periods (hours 1-15)

category sequences are used as testing data. The performance is measured by the nega-

tive log-likelihood of the normal category sequence given the observation of the abnormal

category sequence. Specifically, the system has constructed both PST and fixed length

Markov models from the training data with Markov orders 1, 2, 3, 4, 5, and 10. For each

PST/fixed length Markov model, the negative log-likelihood P (C|λ) of the testing sequence

C given the PST/fixed length Markov model λ is obtained. The larger the negative log-

likelihood value is, the more dissimilar are the compared sequences. The hypothesis is that

the dissimilarity between the normal and the abnormal period grows as the memory order

grows.

The experimental results are summarized in Table 4.2. The empirical results indicate

that the sizes of PST models are much smaller than the traditional fixed length Markov

models as the order increases. For example, observe that the 10th order fixed length

Markov model uses 981 states, while the order-10 PST model only uses 205 states. The

negative log-likelihood is the same between a sequence given a PST model and a fixed

length Markov model with the same order, since the system eliminates nodes that have the
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Table 4.2: Comparison of fixed length Markov models versus PST models in terms of

number of nodes and negative log-likelihood

Model Number of Negative

Order Nodes Log-

Likelihood

Fixed 1 12 −0.0141

length 2 45 −0.0112

Markov 3 104 −0.0092

4 190 −0.0078

5 296 −0.0069

10 981 −0.0046

PST 1 12 −0.0141

2 41 −0.0112

3 76 −0.0092

4 116 −0.0078

5 146 −0.0069

10 205 −0.0046

same probabilities as their parent nodes when constructing the PST models. The model

is lossless in terms of capturing the information of the training data. Therefore, a PST

model is preferred over a fixed-length Markov model because it is purely data-driven, it

is flexible, and most importantly, it takes less space. Note that the PST models can be

pruned to remove some low probability nodes (see [Ron et al., 1996]); however, this will

lead to information loss. In future work, the detection system could be evaluated based

on PST models with thresholds to remove low probability nodes. Investigation would be

needed to determine the threshold values for these PST models in the developed detection

system.
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PST model with compressed temporal sequence

As shown in the previous subsection, using the PST model directly on the volcano moni-

toring dataset is still impractical for the resource limited sensor nodes; that is, it takes 205

states to build a PST model with a memory of 10 observations. An observation with 10

samples can hardly capture any meaningful sequences in the environment monitoring type

of applications. In reality, daily life activities usually take more than 10 observations to

capture. If modeling such a long sequence of actions is important to an application, the

PST model will not be a practical solution if used directly on the raw samples. A practical

two-step solution is developed to solve this problem. First, the temporal sequences are

compressed into a higher level temporal symbol representation. After that, the PST model

is built from the higher level symbol representation of the original sequence.

The system uses the standard LZW symbol compression on the category sequences of

the dataset. The average dictionary size for 16 hours (excluding the pre-built characters in

the dictionary) is approximately 61 entries per hour. Table 4.3 shows some sample entries.

Based on the given data, one can observe that there are long periods of inactivity, which

are denoted by sequences of category “1”. The system compresses all 16 hours of temporal

sequences independently. The average compression ratio for the 16 hours is approximately

33:1. The compressed representation of data saves on both processing power and reduces

the amount of storage on the sensor nodes. Most importantly, when the local sensor nodes

transmit the temporal models to the clusterheads, the WSN is able to save the transmission

power as well.

To detect anomalies in the temporal sequence, a likelihood-ratio detection scheme as

given in Equation (4.2) is employed. The detection procedure works as follows: during the

training period, semantics (compressed symbols) from hours 1-16 are used to obtain the

alternative hypothesis p(S|H1), and hour 16 is used to obtain the null hypothesis p(S|H0).

In order to determine the detection threshold θ, a Receiver Operating Characteristic (ROC)

graph can be used. ROC is a graphical plot of the TPR/sensitivity vs. the FPR/false

alarm rate for a binary classifier system as its discrimination threshold is varied. Two

PST models have been built for the dataset with orders 5 and 10. Figure 4.5 shows the

ROC curve for the order-5 PST model. Figure 4.6 shows the ROC curve for the order-10
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Table 4.3: Partial dictionary of the volcano data

Entry (categories)

...

155

6115

5122

21211

1111111122

211111115

51511

111112111111

111111111111111111111111111111...111111111115

51111111

...

PST. Note that each prediction result (or one instance of a confusion matrix) represents

one point in the ROC space. The best possible prediction method would yield a point in

the upper left corner representing no false negatives and no false positives. As shown in

Figure 4.5, the optimal operating point for the order-5 PST model is with a TPR of 84%

and a FPR of 14%. As shown in Figure 4.6, the optimal operating point for the order-10

PST model is with a TPR of 93% and a FPR of 4%. The ROC curves also show that

order-10 PST model has better operating point than order-5 PST model. This implies

that longer memories can better discriminate between normal and abnormal sequences.

The optimal operating points are used as references to choose likelihood-ratio threshold θ

values in Equation (4.2). Table 4.4 shows the confusion matrix obtained when adjusting

the threshold θ. Based on the detection performances, the FPR for the order-5 PST model

is 16.8% when θ = 0, which is the closest value to the order-5 PST ROC optimal point.

The FPR for the order-10 PST model is 3.4% when θ = 1.1, which is the closest value

to the order-10 PST ROC optimal point. Therefore, θ values of 0 and 1.1 are chosen for

PSTs of orders 5 and 10, respectively. In addition, the miss rates for PST orders 5 and 10
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Table 4.4: Performance results for PST orders 5 and 10 with compression

PST Threshold FNR FPR

order θ (Miss rate) (False alarm rate)

5 0 17.5% 16.8%

0.25 0% 91.5%

0.5 0% 85.9%

0.9 8.8% 34.9%

1.1 22.2% 10.7%

1.5 99% 1.8%

10 0 1.8% 6.8%

0.5 0% 77%

0.9 0% 17.6%

1.1 2.3% 3.4%

1.5 97.7% 0.9%

PST models are 17.5% and 2.3%, respectively. The miss rates and false alarm rates are

relatively low for both PST models. This indicates the ROC curves provide good reference

when choosing the values for threshold θ. The tree sizes for the orders 5 and 10 PST

models are 186 and 241 nodes, respectively. Note that the nodes on PST models that are

built from compressed sequences represent higher semantic temporal meanings. Therefore,

the nodes represent much longer observations compared to the nodes on the PSTs that

are built from the uncompressed sequences, (i.e., the order 10 PST is modeling a sequence

with approximately 330 observations compared to 10 observations). The detection results

show that the developed PST model with symbol compression method is able to detect

anomalies with high performance. Additionally, the UWB-based likelihood ratio detector

is robust and able to detect multiple anomalies in a time sequence with high performance.

The robustness and the ability of detecting multiple anomalies are significant enhancements

from the previous heuristic Finite State Automata approach.
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Figure 4.5: ROC curve for order-5 PST model. The optimal operating point for the order-5

PST model is with a TPR of 84% and a FPR of 14%.

4.3 Summary

This study has explored two temporal modeling techniques for detecting time-related

changes in WSNs. The first approach is an heuristic Finite State Automata (FSA). The

FSA models the time duration in each state as a normal distribution and uses an empirical

rule to detect time duration anomalies. In addition, the FSA model records state transition

probabilities. If an event sequence is not probable, an anomaly is detected. This approach

is simple and flexible. However, because the FSA model assumes that time duration in each

state follows a normal distribution, it is difficult to find a restarting point when multiple

time-related anomalies occur. To overcome these limitations, an enhanced time modeling

technique that uses the likelihood-ratio detection method is used. In the likelihood-ratio

method, the system first extracts the temporal semantics using the Lempel-Ziv Welch
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Figure 4.6: ROC curve for order-10 PST model. The optimal operating point for the

order-10 PST model is with a TPR of 93% and a FPR of 4%.

(LZW) encoding method. Then, it uses a Probabilistic Suffix Tree to model the semantic

sequences. Finally, the system uses a Universal Background Model likelihood-ratio detec-

tor to detect time-related changes. This two-step time modeling technique is suitable to

enable resource constrained sensor nodes to perform time analysis. Additionally, the LZW

compression method allows the system to transmit temporally compressed data across the

WSN, resulting in energy savings. One major advantage of using the UBM likelihood-ratio

detector is that it requires no prior knowledge of the anomalies. In summary, the devel-

oped temporal anomaly detector is autonomous, distributed, data-driven, modular, and

requires no a priori knowledge of anomalies. All of the above characteristics are suitable

for resource constrained WSNs.
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Chapter 5

Missing data estimator

Wireless Sensor Networks (WSNs) are widely used for monitoring environments. The main

challenge with WSNs research is to determine a systematic procedure to train these net-

works so that they are sensitive only to “unique” events that are of interest in specific

applications. To address this challenge, machine learning techniques are incorporated into

a WSN so that the networks can automatically learn to recognize normal and abnormal

modes of operation. However, satisfactory performance of the WSNs is not attainable when

too many of the sensor readings are missing. Missing sensor readings may be caused by syn-

chronization problems, sensor faults, sensor power outage, communication malfunctions,

malicious attacks, packet collisions, signal strength fading, or environmental interference

(e.g., a microwave, walls, or human blockage). When decisions have to be made using

machine learning techniques, missing data becomes a hindering factor because most ma-

chine learning techniques rely on complete data to maintain high performance. However,

unstable wireless communications may create many false positives in detection applica-

tions. Imputation procedures that estimate missing sensor readings are generally required.

Estimation and replacement of the missing data is generally performed before the use of

machine learning techniques. Thus, better estimation of the missing data should improve

the performance of machine learning techniques and the overall system in general. These

estimation technique is important in sparse WSNs where every sensor reading is critical

and/or with limited amount of training data and the system cannot afford to lose any in-

formation. Many missing data imputation methods have been developed in the literature,
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including Nearest Neighbors (NN) imputation [Chen and Shao, 2001], [Rancourt, 1999],

Bayesian based imputation techniques [Jr. et al., 2007], [Amelia II, 2010], regression-based

imputation [Fox, 2008], and so forth.

This chapter is organized as follows: First, initial findings about missing data in WSNs

are presented in Section 5.1. Then, a nearest neighbor imputation technique is presented

in Section 5.2. Finally, Section 5.3 summarizes the missing data imputation technique.

5.1 Missing data in WSNs

Incomplete data is common in WSNs and experimental findings show that, on average,

approximately 40% of data from the sensor nodes are missing when presented to the clus-

terheads’ classifier. The existence of missing data degrades the performance of the classifier.

A formulation of the missing data problem in a WSN is as follows. Let c denote the

class decision made by an arbitrary classifier F ; t denotes time and i denotes the sensor

node ID number. Let sj denote observations made by sensors j on each sensor node i. For

each cluster member node i at time t, the node takes the raw observation sj and maps it

into a class ci, i.e., F (st
j) −→ ct

i. For each clusterhead node i at time t, the node takes a

vector of categories cj from its cluster members and maps it into a higher level class ci,

i.e., F (ct
j) −→ ct

i. ct
i = “NA” means the category of node i at time t is missing. The data

is assumed missing at random (MAR); note that this assumption does not mean that the

pattern itself is random, but rather the probability of the data missing is independent of

the data values.

Due to the limited computational resources on the sensor nodes, the missing data

imputation techniques should be simple and memory efficient. However, there are many

possible simple strategies for imputation, and it is not clear in advance which strategy

might be best for the Fuzzy ART classifier. The hypothesis is that they do not have the

same performances. Therefore, a novel spatial-temporal imputation strategy is developed.

In addition, this dissertation compares and contrasts several alternative strategies.
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5.1.1 Existing techniques

Several missing data replacement strategies, such as those listed in Table 5.1, have been

used to improve the performance of the classifiers. The first strategy is called “doing

nothing”. When new sensor data comes in, the new sensor data replaces the old data. If

the sensor values are missing, the system keeps the last available data. Specifically, for

received sensor observations a, if at
i=“NA”, let at

i = bt−1
i , where b is the processed input

used for the Fuzzy ART algorithm, t is the current time instance and t− 1 is the previous

time instance. This strategy is used as the base strategy in comparison to the other missing

data strategies. The computational and space complexities of this imputation strategy for

each node are O(1).

Strategies 2 and 3 use a fixed constant to replace the missing data. Specifically, strategy

2 uses the minimum non-existing value (i.e., 0) and strategy 3 uses the maximum non-

existing value (i.e., 1). “Non-existing values” means that the missing sensor readings or

class labels are numbered as 0 or 1. The Fuzzy ART algorithm remains unchanged.

Strategies 4 and 5 use a moving average to replace the missing data. Specifically,

strategy 4 uses the mean of the past 5 sensor values used, including the estimated missing

values. Strategy 5 uses the mean of the past 5 seen observations of the current sensor i,

excluding the processed missing values. Note that strategy 4 is different from strategy 5

when the past 5 sensor values contain data that are estimated. The computational and

space complexity of both strategies for each node are constant, therefore, O(1).

Strategies 6, 7 and 8 are designed by Granger, et al., in [Granger et al., 2000]. These

three strategies were implemented exactly as designed. Strategy 6 replaces the missing

data with a fixed minimum value (like strategy 2). In addition, strategy 6 modifies the

original Fuzzy ART system by setting the complement coding of the missing data to the

minimum value as well. Strategy 7 replaces the missing data with a fixed maximum

value (like strategy 3). The complement coding of strategy 7 is also set to the fixed

maximum value. However, as the number of prototypes grows, it becomes harder and

harder to pass the vigilance testing. Thus, strategy 7 changes the vigilance testing rule

to |ai∧A′|
M

≥ ρ. Instead of using fixed constant values for missing data, strategy 8 uses an

indicator vector. When a sensor value is missing, the indicator sets the missing data to “0”
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and the complement coding to “1”. The new prototype choice become, Tj(A, δ) =
|wj∧A′∧δ|
α+|wj∧δ| .

The new vigilance level testing become,
|wj∧A′∧δ|
α+|wj∧δ| ≥ ρ, and the new prototype learning is

w
′

J = β((A ∨ δc) ∧ wJ) + (1 − β)wJ . The computational and space complexities of these

strategies are O(1) for each node. Since these strategies only modify the vigilance testing

rules and/or learning rules from the original Fuzzy ART algorithm, there are no additional

time and space requirements for these strategies.

To further test the imputation strategy, the standard missing data imputation strategy

from the literature of statistics, i.e., the Expectation Maximization (EM)-based imputation

strategy, was also applied to the same data. It is important to note that this EM-based

imputation strategy is computationally intensive and, thus, is not practical in a WSN.

However, it is considered here for comparison purposes.

Little and Rubin [Little and Rubin, 1986] provide a detailed explanation of the EM

algorithm. The EM algorithm is an iterative procedure that finds the Maximum Likelihood

(ML) estimation of the parameter vector by repeating the following steps:

• The E-step (expectation step): Given a set of parameter estimates, such as a mean

vector and covariance matrix for a multivariate normal distribution, the E-step cal-

culates the conditional expectation of the complete-data log-likelihood given the ob-

served data and the parameter estimates. Specifically, let θ(t) be the current estimate

of the parameter θ. The E-step of EM algorithm finds the expected complete-data

log-likelihood if θ were θ(t):

Q(θ|θ(t)) =

∫

L(θ|y)f(Ymis|Yobs, θ = θ(t))dYmis (5.1)

where observation Y = (Yobs, Ymiss), Yobs represents the observed part of Y , and Ymis

represents the missing part of Y .

• The M-step (maximization step): Given a complete-data log likelihood, the M-step

finds the parameter estimates to maximize the complete data log-likelihood from the

E-step. The M-step of EM algorithm determines θ(t+1) by maximizing the expected

complete-data log likelihood:

Q(θ(t+1)|θ(t)) ≥ Q(θ = θ(t)), for all θ (5.2)
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Table 5.1: Comparison of missing value imputation strategies. The time and space com-

plexities are calculated based on a single node, where n is the number of observations made

from time 1 and k is the number of the node’s neighbors.

Imputation strategies Time Space

1. Doing nothing If at
i=“NA”, set at

i = bt−1
i ,

where b is the processed input used

for the Fuzzy ART algorithm.

t is the current time instance and

t− 1 is the previous time instance. O(1) O(1)

2. Replace by If ai=“NA”, set ai = 0 and

the minimum value complement coding ac
i = 1− ai.

Note: Neither 0 or 1 are used as

normal category numbers. O(1) O(1)

3. Replace by If ai=“NA”,

the maximum value set ai = 1 and ac
i = 1− ai. O(1) O(1)

4. Replace by 5 average used If ai=“NA”, set at
i =

(bt−1

i
+...+bt−5

i
)

5 . O(1) O(1)

5. Replace by 5 average seen If ai=“NA”, set at
i =

(at−1

i
+...+at−5

i
)

5 . O(1) O(1)

6. Replace by “0”

[Granger et al., 2000] If ai=“NA”, set ai = ac
i = 0. O(1) O(1)

7. Replace by “1” If ai=“NA”, set ai = ac
i = 1.

[Granger et al., 2000] New vigilance testing becomes

|ai∧A′|
M

≥ ρ. O(1) O(1)

8. Replace by If ai=“NA”, δi = 0; otherwise δi = 1.

indicator vector (δ = (δ1, δ2, ..., δ2M )).

[Granger et al., 2000] New prototype choice becomes

Tj(A, δ) =
|wj∧A′∧δ|
α+|wj∧δ| .

New vigilance testing is

|wj∧A′∧δ|
α+|wj∧δ| ≥ ρ.

New prototype learning is

w
′

J = β((A ∨ δc) ∧ wJ) + (1− β)wJ). O(1) O(1)

9. EM imputation See Equations (5.1) - (5.2). O(kn) O(n)

10. Replace by

spatial-temporal data See Algorithm 2. O(k) O(1)
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These two steps are iterated until convergence. In the iterations, the observed data log-

likelihood is non-decreasing at each iteration. Initially, the missing values are filled in with

a guess which is estimated from available observed data. The E-step and M-step iterate

until the maximum change in the estimates from one iteration to the next does not exceed

a threshold.

5.1.2 Spatial-temporal imputation technique

Existing missing data imputation strategies do not take into account spatial-temporal

information. The hypothesis is that if an environment is highly correlated in time and space,

which could be true in sufficiently dense WSNs, using spatial and temporal information

to estimate missing observations should have high accuracy. To confirm this hypothesis,

one has to show that the environment is highly correlated both in time and space. To do

this, this dissertation has utilized techniques from statistics, i.e., space and time correlation

testing.

Two time-series tests are used to determine if the data are correlated in time, namely,

the Durbin-Watson test and the Partial AutoCorrelation Function (PACF). The Durbin-

Watson test determines whether or not the data set is time correlated, and the PACF gives

us information on how the sensor data are correlated in time with each other. The value

of the Durbin-Watson statistic lies in the range of [0, 4]. A value of 2 indicates that there

appears to be no autocorrelation. If the Durbin-Watson statistic d is substantially less

than 2, there is evidence of positive serial correlation. On the other hand, large values of

d indicate that successive error terms are, on average, much different in value from one

another, or are negatively correlated.

For space correlation testing, the Pearson correlation coefficients and R2 testing are

used. The Pearson correlation coefficient is a common measure of the correlation between

two random variables X and Y . Pearson’s correlation reflects the degree of association

between two variables. Its values range from −1 to +1. A correlation of +1 means that

there is a perfect positive association between variables, while a correlation of −1 means

that there is a perfect negative association between variables. A correlation of 0 means

there is no linear relationship between the two variables. R2 is a statistical measure of how
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Algorithm 2 Spatial-temporal imputation approach

1: for each missing input sensor si do

2: for all sensors sj within one hop of communication range of si do

3: if the sensing distance between si and sj < α then

4: at
i = the most common reading of at

j

5: else

6: at
i = at−1

i

7: end if

8: end for

9: end for

well a regression line approximates data points. R2 is a descriptive measure between 0 and

1. An R2 value of 1.0 indicates a perfect fit. Therefore, the closer it is to 1, the better the

model.

In order to deal with the missing data, in addition to the time and space replacement

models, different ways of modifying the Fuzzy ART algorithm that require only minor

changes to the current Fuzzy ART network were studied. A simple replacement algorithm

is needed which runs online and still has satisfactory performance. Thus, Algorithm 2

to estimate the missing data was developed. The developed missing data estimator first

checks if a neighbor is within the missing sensor’s minimum sensing range. If there are

neighbors within the sensor’s range, the neighbor’s observation can be used, resulting in a

spatially correlated replacement. If there are multiple neighbors within the sensor’s range,

and they do not have the same readings, the majority reading is chosen. Otherwise, use

the last seen sensor-temporal reading. This strategy is employed because in WSNs, sensor

data in the environment tends to be highly correlated for sensors that are geographically

close to each other (spatially correlated), and also highly correlated for a period of time

(temporally correlated).

The computational requirement for an individual node to estimate missing data using

this algorithm is a linear function of the number of nodes, k, within the communication

range. In this application, k is also the number of cluster members within one cluster.

Therefore, the computational complexity for the developed imputation technique is O(k).
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Let m denote the number of nodes in a WSN, R denote the radius of the WSN, and S denote

the communication range or sensing range of each sensor. In this problem, The assumption

is that the sensing range is the same as the communication range and all sensors have the

same communication/sensing range. If R is much larger than node i’s communication

range S, then k is much smaller than m. In the worst case, k = m. In general, sensor

nodes are deployed such that each of them covers a local region, and together they cover

the entire environment. Thus, searching within a local cluster of k nodes is typically not

computationally intensive. The space requirement for the developed approach is O(1),

since only one previous observation needs to be stored.

5.1.3 Experiments

In this section, experimental results of the developed missing data technique and nine other

missing data techniques are compared and contrasted using real world data and artificially

generated data.

Performance metrics

Accuracy is used as the performance measure in these studies. A mismatch between the

Fuzzy ART algorithm’s categorization and the true category is considered an error. Accu-

racy (A) is defined as:

A = C/T (5.3)

where C denotes the number of correct categorizations, and T denotes the total number

of observations. To ensure a fair comparison, the vigilance parameter of the Fuzzy ART

algorithm has been readjusted for each replacement strategy until the best performance is

obtained.

In the conducted experiments, the developed technique is compared against other tech-

niques. To determine the significance of the difference in the results, the Student’s T-test is

applied. The assumption of the test is that the underlying distributions of accuracies/errors

are Gaussian, because of the Central Limit Theorem — as the number of testing sets ap-

proaches infinity, the distribution of the mean of accuracy/error approaches a Normal

distribution.
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Table 5.2: The partial autocorrelations

Lag 1 2 3 4 5

Correlation 0.997 -0.002 -0.002 -0.002 -0.002

Missing data experiment with real sensor data

In this experiment, a network of five cluster members and one clusterhead are used to test

the approaches. The five cluster members are uniformly deployed around the clusterhead.

The cluster members use light and microphone sensors, and the clusterhead uses the cluster

members categories as input. In addition, all cluster members are within communication

range of the clusterhead. Experimental results are obtained from three sets of trials. In

each trial, each sensor node has made 6500 observations. For testing time and space

correlations, only the first trial of collected data is used, since the other two trials repeat

the first trial and the environment settings do not change. For the purposes of correlation

testing, samples with missing values are removed. All testing results have been made from

a data set of approximately 1500 samples with no missing values. The sensory data under

the lab setting passed the Durbin-Watson test with a value of 0.0059 with 99.5% confidence

level. A DW value of less than 2 indicates there is a high correlation in time. The DW

value obtained from the lab setting is near 0, which is evidence that the sensory data does

have time correlation.

The next step is to determine the sensory data’s time correlations using partial auto-

correlations. The partial autocorrelations are shown in Table 5.2. The result shows that

the sensor data has high correlation with one previous data point, i.e., lag 1 value is close

to 1; however, there is little association with 2 or more sensory observations made in the

past, i.e., low lag 2-5 values.

To show space correlation, the correlation coefficients between the sensors at each ob-

servation as well as R2 are calculated. The Pearson correlation coefficients between nodes

are shown in Table 5.3. The correlation coefficients between sensor nodes are close to 1.

Therefore, there are high positive associations between sensor nodes.

This study further tested the goodness of fit of the model of one sensor’s observations

replaced by other sensor’s observations. As an example, the entire observations made by
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Table 5.3: Pearson correlation coefficients

sensor1 sensor2 sensor3 sensor4 sensor5

sensor1 1.0 0.998 0.997 0.995 0.995

sensor2 0.998 1.0 0.998 0.996 0.997

sensor3 0.997 0.998 1.0 0.996 0.998

sensor4 0.995 0.996 0.996 1.0 0.996

sensor5 0.997 0.997 0.998 0.996 1.0

sensor 1 are used to against the entire observations made by sensor 2 to obtain the R2

value. The R2 value is almost perfect (close to 1), which means if sensor 1’s reading is used

to replace sensor 2’s reading when sensor 2’s observation is missing, it should result in high

accuracy, due to the model fitness being high. The sensory data under this setting passed

both the time and space correlation tests, therefore, the sensory data is highly correlated

in time and space.

The averaged accuracy and standard deviation of different imputation techniques are

shown in Figure 5.1. The “do nothing” (strategy 1) is used as a baseline for comparison.

To determine the significance of these results, the Student’s T-test was applied to the accu-

racy results for the spatial-temporal scheme compared against other imputation strategies.

This test confirms that the differences in these results are statistically significant, with

a confidence level of 99.5%. The spatial-temporal imputation strategy outperformed the

other strategies. The results suggest that the spatial-temporal imputation strategy (strat-

egy 10) and EM (strategy 9) imputation work better than the “do nothing” as well as other

replacement strategies. This is due to the fact that this application involves continuous

data gathering for large scale and distributed physical phenomena using a dense wireless

sensor network which results in high correlation both in time and space. If the nodes are

densely deployed, the readings from nearby nodes are likely to be highly correlated and

hence contain redundancies. By using this combination of spatial and temporal replace-

ment for the missing input, the system is able to achieve good performance with relatively

low computational cost.

The “do nothing” strategy has a better performance than moving average 5 (strategies
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Figure 5.1: Accuracies of different imputation techniques, with the x axis indicating the

strategy number. Error bars indicate one standard deviation. (Refer to Table 5.1 for the

definitions of the strategies.)
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4 and 5). This is because the partial autocorrelation results indicate that the sensory data

is highly correlated with 1 past history data point, not 5 data points. If the partial autocor-

relation indicates that the sensory data is highly correlated with 5 past history data points,

(i.e., a high lag 5 value), the performance of strategies 4 and 5 may outperform “do noth-

ing”. This shows that the correct time model directly affects the performance. Strategies

2 and 3 just use a fixed value for missing data. As the missing data pattern changes, the

Fuzzy ART treats the data as different classes as the number of classes/categories increase,

resulting in more false alarms. Strategies 7 and 8 tried to learn the missing data patterns

with a fixed value or an indicator. These strategies do better than strategies 2 and 3, but

still have high mis-classifications due to changing missing data patterns. The EM imputa-

tion has a relatively high accuracy since it finds the best distribution for the observations in

terms of likelihood. However, it is computationally expensive and requires offline learning.

In a WSN application, if the sensory data is highly correlated in time and/or space (i.e.,

passes the time and space statistical tests), the developed spatial-temporal strategy works

the best. Note that the time and space models in the algorithm are subject to change

based on the environment. It is important to use the appropriate time and/or space model

to estimate the missing values.

Missing data experiment with artificial data

An artificial data with no time and space correlations are generated to determine the

performance of the developed imputation technique when the data is not time and space

correlated. There are 4 classes of 2-dimensional data with 1024 data values for each class

and giving a total of 8192 data samples. Each class has 2 Gaussian mixtures, each with a

weight of 0.5. The sample means are shown in Figure 5.2. The reason for using Gaussian

distribution for AI data is because not only is the Gaussian model the simplest model, but

it also assumes the least of its data; therefore, it has the most information compared to

other models. All mixtures have an identical covariance matrix (e.g. {1, 0} and {0, 1}).

This indicates that the generated data have no spatial correlations. Missing values have

been randomly placed at 40% of the entire set. Since the data has been randomly sampled

from different classes each time, this guaranteed that there are no temporal correlations in

63



0 5 10 15 20 25 30
0

5

10

15

20

25

30
Generated data with no correlations in time and space

Sensor 1

S
en

so
r 

2

class 1
class 2
class 3
class 4

Figure 5.2: Generated 2-dimensional sensory data with no missing values. The true model

contains 4 classes, and each class has 2 mixtures, each mixture has weight 50%.

the data. After the missing data values have been imputed by different techniques, they

are put into the Fuzzy ART neural network for classification. The class categorizations

from the Fuzzy ART neural network are compared against the ground truth to obtain the

correct classification C.

The accuracies of different imputation techniques averaged over 10 sets of data are

shown in Figure 5.3. All missing data imputation strategies performed relatively close to

each other and all of them performed poorly (under 40%), due to the fact that there are

no time or space correlations. To determine the significance of these results, the Student’s

T-test is applied to the accuracy results for the spatial-temporal imputation scheme com-

pared against other imputation strategies. This test confirms that the differences in these

results are statistically significant, with a confidence level of 99.5%. The spatial-temporal
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imputation strategy performed better than the other strategies. This is because this gener-

ated data contained many observations that have the same sensor 1 and sensor 2 readings

(notice the middle section of Figure 5.2). However, if the generated data did not have

as many observations that have the same sensor 1 and sensor 2 readings, the developed

spatial-temporal strategy would perform about the same as the other approaches. The

EM approach (strategy 9) did not perform better than other imputation strategies, since

it assumes that there is one Gaussian distribution in the generated data. In addition, the

EM imputation’s performance is dependent on the initial values. To explain this situation,

one needs to recall that the Fuzzy ART neural network builds the prototype online accord-

ing to observations collected. In other words, different prototypes are kept in the Fuzzy

ART neural network if the data is presented in a different order. The Fuzzy ART neural

network has lower accuracy if the time correlation is removed from the data presented to

the neural network. In summary, all the imputation strategies have similar accuracy per-

formance (except for the spatial-temporal imputation) when the data have no correlations

in time or space. The spatial-temporal imputation outperforms others because the data is

slightly biased (i.e., many data instances have the same x and y values). Nevertheless, some

imputation strategies require less computation and space, and thus they are preferred in

actual implementation. The developed algorithm outperformed the other strategies under

all testing conditions.

5.2 Nearest neighbor missing data imputation for WSNs

As shown in the initial missing data study, environmental data tends to correlate in space

and time. Therefore, searching nearest neighbors from spatial and temporal datasets yields

good performance. In the previous spatial-temporal missing data technique, the system

makes use of the spatial property of the WSN and imputes the missing sensor value with the

most common sensor reading within the same cluster. If no spatial data is available at the

current time instance, the algorithm uses the missing sensor’s latest known value (temporal

correlation assumption of the environment). However, the spatial-temporal imputation

poses some shortcomings. First, the right time and space models have to be used in order

for this technique to have good performance. Additionally, the developed time and space
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Figure 5.3: Accuracies of different imputation techniques. Error bar indicates one standard

deviation. (Refer to Table 5.1 for the definitions of the strategies.)
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Sensor1 Sensor2
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Figure 5.4: Example: correlations between sensors are not necessarily equal to their Eu-

clidean distance. Sensors 1, 2 and 3 are deployed into two offices. Even though the

Euclidean distance between sensors 1 and 2 is smaller than sensors 2 and 3, the sensor

correlation between sensors 1 and 2 is lower than the correlation between sensors 2 and 3.

correlations tests must be performed offline. Further, it requires a brute-force search on

available time and space correlated data, which can be expensive as the data size increases.

Finally, the approach assumes sensors within a cluster have the same sensor readings, and

the distances between the sensors are proportional to the sensor value correlation. However,

these assumptions may not be true in certain environments. For example, Figure 5.4 shows

that sensors 1, 2 and 3 are deployed in two offices. Even though the Euclidean distance

between sensors 1 and 2 is less than the distance between sensors 2 and 3, the sensor

correlations between sensors 2 and 3 is higher than the sensor correlations between sensor

1 and 2, since sensors 2 and 3 are located in the same room and sensors 1 and 2 are located in

two different rooms. The spatial-temporal algorithm assumes that the Euclidean distance

is the same as the sensor correlations. This research explores an automatic and efficient

Nearest Neighbor (NN) imputation for missing data in WSNs.

The K-Nearest Neighbor (K-NN) method is a common hot-deck imputation method, in

which K candidates are selected from the neighbors such that they minimize some similarity

measure [Jonsson and Wohlin, 2004]. The hot-deck imputation is one of the most commonly

used missing data imputation techniques, where it fills in missing values on incomplete

records using values from similar, but complete records of the same dataset [Rubin, 1987].

Thus, the NN imputation approach used in this study is performed on a complete dataset,

which is obtained by removing all the data instances with missing values in them. The
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K-NN imputation approach has many attractive characteristics [Rubin, 1987]: 1) it is a

non-parametric method, which does not require the creation of a predictive model for each

feature with missing data; 2) it can treat both continuous and categorical values; 3) it

can easily deal having cases where there are multiple missing values; and 4) it takes into

account the correlation structure of the data. The most important characteristic is its

capability of using auxiliary information, such as space and/or time correlation between

sensor node values. As shown in earlier missing data findings, using spatial correlations to

impute missing data yields high performances.

It is important to search for closest match of the missing values efficiently. This study

explores an efficient data structure for nearest neighbor imputation — kd-tree. The kd-

trees are one of the earliest and most popular data structures for NN retrieval. They were

initially introduced by Bentley [Bentley, 1975]. The kd-tree improves the previous spatial-

temporal missing data imputation by automatically learning the sensor data correlations in

time and space. For example, each sensor node in the network can store observations from

their nearby sensor nodes in a kd-tree. When the querying node sees a missing attribute,

it can retrieve the missing value by searching the nearest neighbor(s) from the built kd-

tree. The advantages of using a kd-tree to store the sensor data are that the tree building

process is simple and data-driven, and the search process for each observation vector is

a localized search with computation time of O(lg n), where n is the size of the training

data. In the designed WSN sensor imputation process, the kd-trees are able to capture

the spatial-temporal correlations automatically without human supervision; hence, human

operators do not need to have any initial knowledge of the environment or the sensor

network deployment.

Traditional mean-variance kd-trees use variance and Euclidean distance to split k-

dimensional data, since the search time can be greatly reduced by starting from the dimen-

sion that varies the most (i.e., the largest variance) and skipping dimensions that do not

change much. The underlying assumption of using Euclidean distance is that all dimensions

have equal weights. One problem with using the same weights for all dimensions is that

when the range of values for each dimension are different, the estimated distance differs

from the actual distance. In WSNs, some parts of the region may have more missing values

than others. In the presence of missing values, the variance estimated from the incomplete
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data may not correctly represent the true distribution. Therefore, the system should also

consider the missing rates. To overcome this problem, a weighted variance and weighted

Euclidean distance measure are developed. The weight factors can be used to control the

order of dimensions to be searched.

The main contributions of this imputation method are two-fold: First, a K-NN missing

data imputation technique is developed that enables the system to utilize space and/or time

information; second, a weighted function is defined to make the kd-tree data structure

more suitable for missing data in WSNs. In the remainder of this section, the overall

imputation procedure is described in Subsection 5.2.1. Then, the developed approach

is described in detail in Subsection 5.2.2. The time and space complexity analysis of the

developed approach is given in Section 5.2.3. Finally, the experimental results are presented

in Section 5.2.4.

5.2.1 Overall NN imputation technique

Sensor nodes in a WSN normally have two roles — sensing the environment and gathering

data from other nodes in the network. The developed missing data imputation technique

is mainly designed for nodes that gather data from other nodes (i.e., clusterheads, data

hops, or a sink), because re-transmitting the missing values via wireless communication

costs battery life on sensor nodes.

As illustrated in Figure 5.5, the imputation procedure works as follows. Each data

gathering node builds a kd-tree using the partial dataset with no missing values during

the initial training period. As mentioned earlier, removing training instances with missing

values is a well established hot-deck imputation technique. The incomplete data set is not

useful for imputation, since adding them in the tree would slow the search time. Therefore,

training instances with missing values are discarded during construction of the kd-tree.

This approach assumes some reasonable upper bound on the percentage of missing data.

The kd-tree construction algorithm chooses the largest weighted variance of all dimensions

and uses the mean value of the chosen dimension as the splitting point. The splitting

process iterates until all data points have been separated in the plane. After the kd-tree

is fully constructed, imputation begins. When the current observation has missing values,
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Figure 5.5: Overall view of the NN imputation approach. Top: the training procedure

for constructing the kd-tree. Bottom: the imputation process when part of the current

observation values are missing. The imputation procedure is a NN kd-tree search.

the algorithm searches for its nearest neighbor(s) by traversing the kd-tree and replacing

the missing values in the current observation with the nearest neighbor values. The kd-tree

search uses the designed weighted Euclidean distance to find the nearest neighbor values.

Finally, the observation instance with no missing values can be evaluated using a classifier.

The following section describes the developed metric for constructing and searching the

kd-tree in detail, along with the definitions of the weighted variance and distance measure.

5.2.2 kd-tree data structure for NN imputation

In order to search for K-nearest neighbors, a kd-tree data structure is utilized. The con-

ventional kd-tree data structure assumes that each dimension has equal importance. Thus,

the dimension with the largest variance will be split. The conventional kd-tree data struc-

ture is constructed by splitting the dimension with the largest variance. The variance σ2

is defined as follows:

σ2 =

∑N
n=1 x2

n − (
∑N

n=1 xn)2/N

N − 1
(5.4)

where x is a random variable and N is the size of the dataset. The distance used is the

conventional Euclidean distance, defined as follows:

d(xi, xj) =

√

√

√

√

K
∑

k=1

(x
(k)
i − x

(k)
j )2 (5.5)
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where, xi and xj are two data vectors with K dimensions. The average squared distance

between objects across all K dimensions is given by:

D̂ =
1

N2

K
∑

k=1

N
∑

i=1

N
∑

j=1

(x
(k)
i − x

(k)
j )2 (5.6)

Due to missing data, the variance computed from the complete data is not accurate. Thus,

in the presence of missing data, one can choose the dimension to split the kd-tree by using

weighted Euclidean distance, defined as follows:

d̂(xi, xj) =

√

√

√

√

K
∑

k=1

w(k)(x
(k)
i − x

(k)
j )2 (5.7)

where w is the weight factor. The average squared distance between objects for all K

dimensions is given by:

D̂w =
1

N2

K
∑

k=1

w
(k)
i

N
∑

i=1

N
∑

j=1

(x
(k)
i − x

(k)
j )2 (5.8)

In kd-tree construction, there are many ways to choose which dimension to split from.

The system should split a dimension/sensor in which the observations are well spread,

since in general, the sensor with the largest size may have the most influence on the

classification process. One possibility is to choose the dimension with the largest variance

value. Specifically, each sensor k would compute the variance from its training observations.

With missing values in a WSN, the system also needs to set weights to account for missing

values in that dimension. The weights are used to control sensors with different variances.

The weighted variance of dimension k can be viewed as the scoring function of dimension

k, in which the score is proportional to the variance and inversely proportional to the

percentage of missing data. In general, as the variance increases, the score increases as

well; and, as the amount of missing data increases, the score should decrease. In this

research, the weight of dimension k is set to wk = (1−Mk), and the score of dimension k

is σk ×wk, where σk is the variance and Mk is the percentage of missing data for sensor k.

This score function automatically accounts for both missingness and variance values. Note

that the actual function depends on the application; system designers can choose a proper

weight function. After choosing the split dimension, the system needs to determine the

splitting value. Generally, it is good to choose a k such that the split is in the middle of the
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points along the splitting dimension. There are many ways to accomplish this. Splitting

at the mean results in square hyper-rectangles, but may lead an unbalanced tree. Splitting

at the median ensures a balanced tree. An unevenly distributed tree can result in long and

skinny hyper-rectangles. The developed system chooses the splitting value to be the mean

of the training observations of the splitting sensor, since it is determined by the distribution

of the data.

To find nearest neighbors, a tree search needs to be performed based on the defined

distance metric. The following are some well-known properties of a weighted Euclidean

distance:

• If the w(k) for each dimension is set to be the identity matrix, then the weighted

Euclidean distance is equivalent to the conventional Euclidean distance.

• If the w(k) is set to be the inverse of the variance squared at dimension k, then the

weighted Euclidean distance is proportional to the Mahalonobis distance with the

diagonal covariance matrix.

If the system sets the weight to be two times the inverse of the variance squared at dimen-

sion k, then the system has demoted the importance of dimension k by half. The weighted

variances and Euclidean distance measure are illustrated through examples in the tree con-

struction and NN imputation. If the system uses inaccurate estimation of the variance to

construct the kd-tree data structure, then searching for the nearest neighbor takes longer.

The kd-tree construction

A kd-tree is a multidimensional data structure that decomposes a multidimensional space

into hyper-rectangles. The constructed tree is a binary tree with both a dimension number

and a splitting value at each node. The procedure for constructing the kd-tree takes a

set of training points P as input, where P contains k dimensions and n numbers of train-

ing instances. The procedure returns a kd-tree storing the training data P . Each node

corresponds to a hyper-rectangle, which contains the following fields: splitting dimension

number, splitting value, left kd-tree, and right kd-tree. A detailed kd-tree construction

algorithm is given in Algorithm 3. The developed implementation closely follows the algo-
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rithm that is presented by Friedman in [Friedman et al., 1977], except the added CHOOS-

ESPLIT function. The developed CHOOSESPLIT function chooses the splitting order

based on weighted variances instead of variances.

Algorithm 3 BUILDKDTREE(P )

Input: A set of observations P , and a weight vector w. Output: a kd-tree storing P .

1: if P is empty then

2: return NULL.

3: end if

4: if P contains one observation then

5: return a leaf storing this observation.

6: end if

7: s← CHOOSESPLIT(P, w ), where s is the splitting dimension.

8: µs ← get mean of dimension s.

9: pLeft← {x ∈ P : xs < µs}.

10: pRight← {x ∈ P : xs ≥ µs}.

11: kdLeft← BUILDKDTREE(pLeft).

12: kdRight← BUILDKDTREE(pRight).

13: return kd-tree with fields [s, µs, kdLeft, kdRight]

CHOOSESPLIT(P, w)

1: σ ← get variances of all dimensions in P .

2: score← apply weights to all variances (i.e., σi × wi).

3: return j ← dimension of the max score.

In WSN applications, the training data P contains n observation vectors made by k

sensor nodes from time 1 to time tn. Each vector has k dimensions, and each dimension

corresponds to one sensor node in the WSN. When there are missing values from the current

observation, the system can traverse the kd-tree and find which is the closest match to the

current observation, and impute the missing values with the closest match. The training

vectors in P are recursively split into two subsets. One subset contains observations smaller

than the splitting value µs, the other contains the observations larger than or equal to the
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splitting value µs. The splitting value µs is stored at the root and the two subsets are

stored recursively in two subtrees.

The following is an example to demonstrate the use of weight factors for missing data

in a WSN during kd-tree construction. Suppose there are two sensor nodes observing the

environment. The system collects a set of 2-dimensional data points over time (shown

in Figure 5.6(a)), where dimension/sensor x has a variance of 4.62 and dimension/sensor

y has a variance of 1.64. Sensor x has a larger variance than sensor y. Therefore, the

kd-tree first splits dimension x, then dimension y when no weights are used. Suppose

sensor y has approximately 52% missing values at both the beginning and the end of the

data collection period. A new kd-tree constructed by using the remaining data instances is

shown in Figure 5.6(b). With no weights included, the new variances become 0.39 and 0.58

for sensors x and y, respectively. The new kd-tree first splits dimension y, then dimension

x. This split is not consistent with the complete data case. This is because sensor y

has missing values and its variance obtained from incomplete data is different from the

complete data. By adding weights (i.e., w1 = (1 − 0%) = 1 and w2 = (1 − 52%) = 0.42),

and reconstructing the tree, the splitting order of the kd-tree is changed back to its original

form (see Figure 5.6(c)). The final scores (weighted variances) are 0.39 × 1 = 0.39 and

0.42× 0.58 = 0.28 for dimensions x and y, respectively.

NN imputation

When the current observation has missing values, the developed NN imputation algorithm

is activated. The imputation works as follows: First, find the current observation’s closest

match from the built kd-tree by using a NN search algorithm. Then, fill in each missing

value with the corresponding value in the best match found. The developed kd-tree search

algorithm closely follows the common NN searching implementation [Friedman et al., 1977]

with slight modifications: the algorithm uses the weighted Euclidean distances given in

Equation (5.8) instead of the Euclidean distance. The algorithm needs to search both

sides of the subtrees when the current dimension has missing values, because without any

information on that dimension, the nearest neighbors could reside on both sides of the

(sub)tree. Therefore, keeping the dimensions with the most missing values towards the
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(b) Incomplete data
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(c) Incomplete data with weight

Figure 5.6: An example illustrates the usage of applying weights in the kd-tree construction.

Subfigure (a) shows the kd-tree built with complete training data and this is the desired

splitting. Subfigures (b) and (c) are the implications of using partial missing data and

partial missing data with weighted variances, respectively. The green box represents the

root partition, the blue box represents the left node of the root partition and the red

box represents the right node of the root partition. The variances are 4.62 and 1.64 for

dimensions x and y, respectively. The kd-tree first splits from the widest dimension x

on the root, then dimension y on the second level; the process continues until all nodes

are separated. The green region denotes the top node, the black region denotes the left

branches, and the red region denotes the right branches. Subfigure (b) shows a kd-tree

constructed with incomplete data from Subfigure (a). With incomplete data, the new

variances become 0.39 and 0.58 for dimensions x and y, respectively. With some missing

values, dimension y is the widest dimension. Hence, the new kd-tree splits from the widest

dimension y at the root, then dimension x on the second level. Subfigure (c) shows a

kd-tree with weighted variances using incomplete data. the variances are set based on

the designed weight function, hence, the new variances are 0.39 and 0.28 for dimensions

x and y, respectively. With the weighted variance, dimension x is adjusted to be the

widest dimension. The kd-tree split from dimension x on the root, then dimension two on

the second level and so on. Therefore, using weights to re-rank the dimension with more

missing values is very important.
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bottom of the tree can help the system localize the search, which can improve the search

time.

5.2.3 Complexity analysis

To find the best matches from the constructed kd-tree, the designed algorithm is a direct

modification of the algorithm presented in [Friedman et al., 1977]. The algorithm time

complexity is O(kn lg n), where k is the number of sensor nodes that the data gathering

node is listening from and n is the number of training instances. The kd-tree searching time

is constrained by the amount of data that the algorithm can eliminate in each dimension.

As shown in Figure 5.7, based on the distance and mean (split point) for each dimension,

the tree search algorithm decides to traverse the left or right side of the kd-tree; hence,

at each iteration, one side of the subtree can be eliminated. It is important to choose the

top levels of the kd-tree wisely, since they determine the tree search order and can help

the system limit the amount of search early on. In the K-NN missing data imputation

approach, each missing value corresponds to a data point in a dimension. If the dimension

is at the top of the tree, the traversal can be expensive, since the search algorithm must

continue to search both sides of the tree. If the missing value dimension is towards the

bottom of the built kd-tree, the NN search is faster, since the system searches both sides

of the subtree with fewer data points. Therefore, by using weights to lower the dimensions

that have high missing rates toward the bottom of the kd-tree, the system can speed up

the nearest neighbor searching process. The assumption made here is that if sensor nodes

tend to miss values during the training period, they are likely to have similar missing rates

online. The more one can constrain the search to part of the subtrees, the faster the system

can find the NNs for the missing values.

The kd-tree construction can be performed online as well. The simplest way of con-

structing the kd-tree online works as follows: for each complete data instance, add the new

instance to the tree as in other search trees. Then, use the kd-tree construction algorithm

as shown in Algorithm 3. This is a simple modification to the existing algorithm. Assume

there are j complete instances in the kd-tree. Then, the online construction algorithm

takes O(lg j) time to traverse and add the new instance to the tree. Reconstructing the
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…

Figure 5.7: An example of a kd-tree search. At each level/dimension, eliminate some part

of the tree based on the distance.

Table 5.4: Comparison of EM and kd-tree imputations.

Imputation Time Space

EM-based E-step: O(mkn) O(kn + m2)

M-step: O(mkn)

Iterate E and M step until converge

kd-tree Construct: O(kn lg n) O(kn)

Search: O(lg n)

kd-tree takes O(j lg j) time.

The space cost of storing a kd-tree is linear, i.e., O(kn) where k is the number of sensors

in a cluster and n is the number of observations in the past history. A system designer can

always trade off space for time. Suppose one tree is constructed for each combination of

missing sensor values. When an observation has a missing pattern in it, the tree with only

that missing pattern can be searched. The total possible number of trees for k sensors is

K1
k + ... +Kk

k × k!. For example, suppose there are four sensor nodes, there are 64 possible

complete trees. Storing data into different trees may limit the search time; however, the

space grows quickly with this method.

To compare with the EM-based imputation, time and space complexity is analyzed

and presented in Table 5.4. The time and space complexities are calculated based on a

single sensor node and find one imputation value, where n is the number of observations

made from time 1 and k is the number of sensor nodes within proximity (dimensions). m

is the number of Gaussian mixtures used for EM-algorithm. Both imputation strategies
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use space linear in k and n. The time complexity for EM-based imputation is much more

than the kd-tree based imputation technique. Suppose EM-based imputation assumes m

mixtures of Gaussian models are used, resulting in O(mkn) for the E-step, and O(mkn)

for the M-step. The EM procedure continues until convergence. The space cost for EM-

based imputation is O(kn+2m+m2), which includes storing all data points and Gaussian

mixture models.

In a brute-force NN searching method (like the previous spatial-temporal imputation

method in Section 5.1), assuming no sorting is performed, then searching may require that

each data vector be examined. To find the nearest neighbor of each point in a data set of

n vectors requires O(n2) time using a brute-force method. With k sensor nodes, and an

O(n lg n) sorting algorithm, the brute-force search has a total search time of O(kn2).

The additional computational and space costs help to save communication costs in

WSNs. If the developed missing data algorithm were not in place, the WSN would need

to continue to broadcast and query the data transmitting sensor nodes repeatedly until all

data are received.

5.2.4 Experiment

A volcano monitoring dataset is used to test the developed missing data algorithm. The

dataset was collected by Werner-Allen, et al., at the Volcano Reventador. The detailed

data collection process can be found in [Werner-Allen et al., 2005]. The data used in

the experiments was obtained from a network of 16 Crossbow sensor motes. Each of the

sensors continuously sampled acoustic data at 100 Hz over a 19-day deployment. Motes

used an event-detection algorithm to trigger on interesting volcanic activity and initiate

data transfer to the base station. Each data collection event is “triggered” when the

event-detection algorithm exceeds a threshold. The 60 second download window contains

approximately 30 seconds before the trigger and 30 seconds after the trigger. Note that the

trigger may not be exactly centered at the intended event within the download window.

The kd-tree software with weighted variance and distances is modified from the kd-tree

implementation from the WEKA [WEKA, 2010] open source machine learning software.

All of the following experiments have been conducted on a PC with an Intel Core duo
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(a) Training data
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(b) Testing data

Figure 5.8: Acoustic sensor readings from all 16 sensors. Part (a) shows the training data

to build kd-trees, and part (b) shows the testing data.
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processor E6320 running at 1867 MHz, and 2 GB of main memory.

Preprocessing

During the deployment, the network recorded 229 earthquakes, eruptions, and other acous-

tic events; however, only eight events have complete readings from all 16 sensor nodes. After

discarding the data that does not have all 16 sensor’ readings, only 8 minutes of data are

left; this data is selected as the training and testing data. With this complete data and

all 16 sensors’ readings, the ground truth can be obtained for the following missing data

experiments.

Two one-minute events are chosen (one minute as training and one minute as testing

data) to evaluate the developed imputation method in the following experiments. The

training and testing of the 16 sensor nodes’ acoustic signals are plotted in Figure 5.8. The

training data contains 7950 observations, and the testing data contains 4415 observations.

To evaluate the developed K-NN missing data technique, the ground truth is created by

training an unsupervised classifier using the training data and the testing data, respectively.

There are 16 discrete categories obtained from the training and testing data.

The system then removes data from the complete testing set to create new testing

sets with missing sensors. Based on observing the volcano dataset, if a sensor has missing

values at the beginning of the fetch procedure, the values in that sensor would stay missing

during the entire procedure. Therefore, 15 missing datasets are generated from the testing

data by randomly removing sensors. For example, the first missing dataset is created by

randomly removing one sensor from the original testing data. The second missing dataset is

created by randomly removing two sensors, and so on. The last missing dataset is created

by removing 15 sensors. Thus, the percentage of missing data for the newly generated

testing cases are chosen to be one of the following percentages: 1/16, 2/16, · · · 15/16. The

system also generated 9 other missing datasets with different missing data percentages (i.e.,

10%, 20%, · · · , 90%). The missing data are removed at random across the complete testing

dataset based on the missing percentage.

To compare the accuracies of the developed NN missing data imputation technique,

two EM-based imputation products. The first EM-based software is the state-of-art miss-
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ing data imputation software Amelia II [Amelia II, 2010]. Amelia II makes use of a

bootstrapping-based EM-algorithm, which is a parametric approach to estimate missing

values and that assumes the complete data (that is, both observed and unobserved) is

a multivariate Gaussian distribution. Note that NN imputation is a non-parametric ap-

proach, which makes no assumption of the data. Since Amelia II is installed under R (R is

a free software environment for statistical computing that runs under Linux), it is difficult

to compare run times of Amelia II and the developed NN imputation approach. Therefore,

the run time of another EM-based imputation software under WEKA is compared with

the developed NN imputation technique. Note that the WEKA EM-imputation software is

still under trial testing. Therefore, both EM-based techniques performances are included.

Performance metrics

To measure the quality of the imputed volcano data sets, micro-average accuracy and

macro-average accuracy metrics are used. Micro-average accuracy is defined as the ratio of

the observations that have been correctly categorized (A), to the total number of instances

that have been categorized (T ). Macro-average accuracy is defined as the average accuracy

for each class, i.e., the ratio of the number of correctly categorized observations in category

i to the number of observations in category i.

The two averaging procedures bias the results differently — micro-averaging tends to

over-emphasize the performance on the largest categories, while macro-averaging over-

emphasizes the performance of the smallest categories. Both of the averaging results are

often examined simultaneously to get a good idea of how the developed algorithm performs

across different categories.

To ensure a fair comparison, the parameters of the classifier have been readjusted for

each replacement strategy until the best performances are obtained.

NN imputation accuracies

As shown in Figure 5.9, the developed nearest neighbor technique has competitive perfor-

mances with the Amelia II missing data imputation software in terms of micro-averaging

accuracies. The kd-tree is constructed using approximately 8000 observations with 500
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Figure 5.9: Micro-averaging of K-NN (K ∈ {1, 3, 5, 7, 9}) vs. Amelia II.

splits. The Amelia II missing data imputation software’s performances are averaged over

30 trials.

As shown in Figure 5.10, the macro-average accuracies of the developed NN imputation

technique are about the same as Amelia II. A shortcoming of Amelia II is that it assumes

the underlying distribution is Gaussian. However, when the underlying distribution is not

Gaussian, parametric approaches have a model mismatch problem. Additionally, paramet-

ric based approaches generally require large numbers of training instances to estimate the

parameters of the models accurately. If the training instances are not sufficient to train

the model, the imputation results would not be accurate. The developed NN approach is

a non-parametric approach, with no assumptions of the data distribution. Therefore, its

performances could be better than the parametric approach in some applications. Note

that instead of replacing missing data with a single estimated value, K-NN imputation can
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Figure 5.10: Macro-averaging of K-NN (K ∈ {1, 3, 5, 7, 9}) vs. Amelia II.

also replace the missing value with K different values, when K is larger than one. This

technique is generally referred to as a type of Multiple Imputation (MI) methods. MI-

based approaches replace each missing value with a set of plausible values that represent

the uncertainty about the correct value to impute. In addition, the Amelia II imputation

procedures have to iterate over patterns of missingness (that is, all the possible ways that

a row has missing cells). Thus, the complexity grows quickly with the number of these pat-

terns. For the developed kd-tree imputation approach, the cost is still linear by searching

more nearest neighbors.

To obtain the statistical significance results on the comparisons between K-NN impu-

tation and EM-based imputation software, 10-fold cross-validations are performed on the

training data. The EM imputation technique used in the following experiments is from

WEKA machine learning software. The previous missing data accuracy results are deter-
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mined based on the Fuzzy ART neural network’s performance measure. In this experiment,

the Total Squared Error performance is used to compare the imputation results between

the NN imputation and the EM-based imputation algorithm. The Total Squared Error is

defined as
∑

(Y − Ŷ )2, where Y denotes the ground truth and Ŷ denotes the imputation

value. Figure 5.11 plots the mean and standard deviations of Total Squared Errors of

1-NN imputation and EM imputation over different percentages missing data. The mean

and standard deviations are obtained from 10 sets of testing data. The 1-NN imputation

has better performances than EM imputation technique in most cases except when 90% of

the data is missing. To determine the significance of these results, the Student’s T-test is

applied to the Total Squared Error results for the 1-NN imputation technique compared

against WEKA’s EM imputation strategy. This test confirms that the differences in results

are statistically significant (except for the 90% missing data case), with a confidence level of

99.5%. The NN imputation strategy performed better than EM-imputation in most cases

because the training data set correlates in time and space, whereas, the EM-based imputa-

tion technique assumes there is only one Gaussian distribution in the training data. When

there is too much data missing (e.g., 90% missing data), 1-NN imputation and EM-based

imputation technique perform about the same because it is hard to find solutions when

only a few sensors are available. In general, the distance error increases as the percentage

of missing data increases.

The imputation times for each data instance of different imputation techniques are

averaged over 10 sets of data and the results are shown in Figure 5.12. Nearest neighbor

imputation uses less time compared to the EM imputation method, due to the fact that NN

imputation does not have to iterate through all the data until convergence. To determine

the significance of these results, the Student’s T-test is applied to the time performances

for the 1-NN imputation scheme compared against the EM-based imputation strategy.

This test confirms that the differences in these results are statistically significant, with a

confidence level of 99.5%. Therefore, the K-NN imputation is preferred over the EM-based

imputation technique for solving the missing data problem in WSNs.
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Figure 5.11: The Total Squared Error of 1-NN vs. EM-based imputations. The averaged

total squared error and standard deviations are obtained from 10-fold cross validation

on the training data. 1-NN imputation has less total squared errors than the EM-based

imputation method except in the case of 90% missing data.
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Figure 5.12: The imputation times of 1-NN imputation vs. EM-based imputation for

estimating each data instance. The average time and standard deviations are obtained

from 10-fold cross validation on the training data. For all missing percentages, 1-NN

imputation has better imputation time than the EM-based imputation method.
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Timing comparisons of searching different NNs

Figure 5.13 shows the average search time for K-NN (K ∈ {1, 3, 5, 7, 9}) per observation

on the pre-built kd-tree, where Figure 5.13(a) plots the searching time for a different

number of missing sensors, and Figure 5.13(b) plots the searching time for a different

percentage of missing data. Note that the missing data is randomly selected at different

percentages in Figure 5.13(b), and combinations of sensors missing are also randomly

selected in Figure 5.13(a). The searching times for each nearest neighbor are averaged over

10 trials, and the variance to the searching time is plotted as error-bars. In most of the

cases, the variances are too small to notice. All searching times per observation are between

1 to 5 ms. In general, the search time shows an upward trend as the volume of missing

data increases. This includes both the different number of sensors missing and the different

percentage of data missing. The searching time for finding 9 nearest neighbors is usually

slightly longer than the rest in both missing data cases. The searching time for finding

1, 3, 5, and 7 NN are approximately the same. The search time curves in Figure 5.13(a) are

not as smooth as the curves in Figure 5.13(b). This is due to the combinations of missing

sensors that are selected at random. Different combinations of the missing sensors create

different search patterns for the kd-tree approach. Figure 5.13(b) shows much smoother

curves than Figure 5.13(a), because the missing sensors for all the testing sets are selected

at random. Depending on the sensor and combinations of sensors missing, some may take

longer to traverse than others.

Timing comparisons after adding weights

To test the effect of the weight factor, the variances for all 16 dimensions (sensors) are

evaluated. The sensor with the most variance (sensor 12) is selected, a very small weight

is applied to its variance, and a kd-tree is built with the weighted variance. This selection

is empirical and intended to demonstrate the usage of the designed weight factor. In the

original kd-tree, sensor 12 has the highest rank; however, by adding the weight factor,

sensor 12 ranks the last among all 16 dimensions in the new weighted kd-tree construction.

The hypothesis is that the system uses more time to traverse the non-weighted kd-tree to

find the nearest neighbors.
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Figure 5.13: Average searching time per observation for K-NN (K ∈ {1, 3, 4, 5, 7, 9}), where

Part 5.13(a) shows the search time for different numbers of sensors missing. The missing

sensors are selected at random. Part 5.13(b) shows the search time for different percentage

of missing data. The searching time are averaged over 10 trials. Error bars plot the

standard deviations of searching time. The missing data are selected at random.
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Figure 5.14 shows the average search time and standard deviation per observation for

different percentages of missing data. The solid lines denote the average search time for

traversing kd-trees with added weights, while the dashed lines denote the average search-

ing time for traversing regular kd-trees with no weights added. The searching times are

averaged over ten trials and most of the variances are too small to notice. The perfor-

mances are evaluated based on finding 1-NN with tree size d where d ∈ {50, 500, 1000}.

The weighted kd-trees take less searching time than non-weighted kd-trees, because sensor

12 has the largest variance during training time; however, the testing data has missing

values and the distributions are changed from the training data. It takes the system less

time to localize its searches, because the system is able to eliminate more data as compared

to the non-weighted kd-tree. Therefore, if the weights are used correctly, the system can

localize the search faster.

The average search times for searching 1-NN on regular kd-trees are 2.9ms, 3.8ms, and

4.2ms for tree sizes of 50, 500 and 1000 splits, respectively. The average search times for

searching 1-NN on weighted kd-trees are 2.8ms, 3.4ms, and 4.1ms for tree sizes of 50, 500,

and 1000 splits, respectively. Thus, the percentage that the search time differs between the

regular kd-trees and the weighted kd-trees are approximately 3%, 10%, and 2% for tree

sizes of 50, 500, and 1000 splits, respectively. Note that the weight of only one dimension

is changed (out of a total of 16 dimensions). Depending on the data distribution, re-

ranking more dimensions may have more influence on the search time. The ranking of the

dimensions in kd-tree construction according to the missing percentage is likely the most

influential factor in the searching time.

This experiment shows that using weights are very important to retrieve nearest neigh-

bors from the kd-tree data structure. The weight factors require some knowledge of the

environment’s and sensors’ behaviors. For example, if a sensor constantly misses values,

or transmits noisy data, the system can re-rank the search tree by applying small weights

to the noisy sensor, saving search time. The designed weighted variance and Euclidean

distance offer an automatic way of changing the importance of each sensor in the network.

With changes in the environment and sensor nodes (i.e., power outage, replacements of

new sensors, etc.) the system designers can choose any functions to calculate weights as

desired. The weighted variance of dimension i should be proportional to the variance of
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Figure 5.14: Searching time per observation for finding 1-NN from kd-tree sizes. The

regular kd-trees are plotted using dashed lines and the weighted kd-trees are plotted using

solid lines.
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dimension i and inversely proportional to the missing percentage of dimension i. In sum-

mary, using a weight parameter allows the system to control the ranking of the kd-tree. As

the environment or the network structure changes, the system can re-evaluate the weights

and construct a new kd-tree easily without re-programming all sensor nodes in the WSN.

5.3 Summary

The environments in which WSNs operate in tend to be both time and space correlated. A

novel spatial-temporal missing data imputation technique has been developed that takes

advantage of such correlations. Then, several different missing data imputation strategies

are compared and contrasted with the developed approach. The experimental results show

that making use of the time and space information to estimate missing values allows the

system to achieve high accuracy. A limitation of the spatial-temporal missing data imputa-

tion technique is that the process of finding the proper time and space models needs to be

performed offline. In addition, this technique assumes that distances between sensor nodes

correspond to the sensor correlations of those sensors. In order to overcome these limita-

tions, an enhanced Nearest Neighbor imputation technique is developed that utilizes the

temporal and spatial correlations among the sensor nodes. The NN imputation organizes

a set of temporal and spatial correlated data into a kd-tree. To impute missing values, the

system traverses the constructed kd-tree to find the nearest neighbor(s) of the querying

data instance and replaces the missing values with the nearest neighbors. As opposed to

traditional kd-trees, a weighted Euclidean metric is developed that considers the probabil-

ity of missing values during tree construction and searching. The weighted metric makes

kd-trees more suitable for WSNs. The overall approach to detecting time-related changes

is a non-parametric technique that makes no assumptions of the underlying distribution of

the data.
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Chapter 6

Anomaly detection application —

An intruder detection scenario

As a proof-of-concept, part of the anomaly detection system has been implemented on an

intruder detection application to demonstrate its use. In this chapter, an intruder detection

application is described.

6.1 Experiment: Intruder detection

The goal of this research is to design a robust anomaly detection system that is applicable

to as many applications as possible. One possible application of the developed anomaly

detection system is an intruder detector. This section presents an intruder detection system

as a proof-of-concept for the designed anomaly detection system.

6.1.1 Hardware platforms

The wireless sensor network consists of static sensors (Crossbow motes) and a mobile robot

(Pioneer 3 robots). A Crossbow [Crossbow, 2008] mote contains a processing unit, a sensor

module (see Figure 6.1), and a communication module. The processing board contains an

8-bit processor at 8 MHz, a 128 KB programming memory, and a 512 KB additional data

flash memory. The wireless transmission range is around 10 meters inside a building. In

future works, this communication range could be extended by using intermediate sensor
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Figure 6.1: MTS300 Sensing board

motes as data routers. The sensor board has a buzzer, a light sensor, a microphone, 2

magnetometers, and 2 accelerometers. For the experiments reported in this work, only

the light and sound sensing components are used. The sensor motes use TinyOS as their

operating system and nesC as their programming language.

The mobile robot used in these experiments is a Pioneer 3 robot. The Pioneer 3 is a

mobile robot with a two-wheel differential drive as shown in Figure 6.2. The CPU of the

Pioneer robot is an Intel Pentium III processor with an 850 MHz clock rate. The mobile

robot uses a Linux operating system and runs the Player-client/server device driver [Gerkey

et al., 2001]. The robot uses a SICK LMS-200 range-finding laser for localization. An

Orinoco wireless card is used for wireless communication with the base station at 916 MHz.

The mobile robot can communicate with the sensor motes by having a mote attached to an

MIB500 programming board (see Figure 6.3) through a serial connection. In the intrusion

detection application, the robot runs the same Fuzzy ART program as the sensor motes.

The robot takes the output from its cluster member motes and fuses them together to

get the highest level representation of the environment. Thus, the mobile robot is a root

mobile clusterhead with higher processing power and more sensing capabilities.

The base station is a laptop that can interact with the WSN by having a mote running

the “TOS Base” (part of TinyOS) program. This base node is attached to a programming

board with a serial cable. The Deluge [Deluge, 2008] network programming system was

integrated into the system, which allows a large number of sensor nodes to receive code

updates at the same time over the air, instead of manually loading programs into the

motes over a serial cable. Human operators can monitor the learning process of the WSN

through a monitoring program. Operators can also send commands to the network. Sample

commands include:
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Figure 6.2: Pioneer 3 robot

Figure 6.3: MIB510 programming board

• Set clusterhead configuration

• Set learning rate

• Set Fuzzy ART learning parameters

• Set sampling rate

• Pause the learning

• Restart the learning

• Clear Fuzzy ART’s memory of categories

• Set sampling rate
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• Set radio transmission power

• Set microphone sensitivity

• Report battery level

All interacting programs run on the laptop and are written in Java. Note that every

sensor node runs the same Fuzzy ART program image. Sensor nodes are assigned a role,

and can either be a cluster member or a clusterhead (using the clusterhead configuration

commands running on the laptop).

6.1.2 Intruder detection application setting

An intruder detection system is implemented using a wireless sensor network (WSN) and

a mobile robot. In order to detect abnormal events in a previously unknown environment,

the sensor network first learns what is normal for the environment. Abnormal states of

the environment are not kept in the sensor nodes due to memory limitations. Therefore,

events that do not match the existing normal model will be treated as abnormal events

by the sensor motes. When an intruder is detected, a mobile robot moves to the area to

investigate. In this scenario, the robot knows the location of each cluster in advance. If

the higher level clusterhead detects an anomaly (i.e., a class change after stabilization),

the robot moves to the location of the cluster that detected the change. The mobile robot

is the root clusterhead of the hierarchical learning system.

In order to navigate in the environment, the mobile robot first creates a laser map using

Simultaneous Localization and Mapping (SLAM) [Thrun et al., 1998]. An example of the

learned map is shown in Figure 6.4. After an intruder has been detected by the sensor

network, the mobile robot uses a wavefront path planning algorithm to plan a path from

its current position to the goal position. During motion, it localizes itself using Monte

Carlo localization [Gerkey et al., 2001].

The intruder detection system is implemented on real sensor nodes along with a mobile

robot and tested at both the University of Tennessee and Oak Ridge National Laboratory

(ORNL). Figure 6.5 shows snapshots from the experiments at ORNL. The WSN divides into

two clusters, four sensor motes in each cluster. Each cluster consists of one clusterhead and
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Figure 6.4: Robot-generated laser maps of Oak Ridge National Laboratory’s JICS building.

three cluster members. The first cluster was deployed into a conference room of ORNL’s

JICS building. The second cluster was deployed in a nearby auditorium. The mobile robot

is stationed in the hallway attached with the root clusterhead. The root sensor mote listens

to abnormal changes. The root detects abnormal changes by learning the combination of

changes of the two clusterheads (sensor motes) deployed in the two rooms. The mobile

robot ran the same learning algorithm as the sensor motes, namely, the Fuzzy ART system.

In the beginning, it was quiet and the lights were switched off in both rooms. The WSN

has learned that “quiet” and “dark” are normal in this environment. Then, an intruder

enters the conference room and turns on the lights. The WSN detects the abnormal event

and notifies the robot. The robot planned a path using its wavefront path planner and
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Figure 6.5: Snapshots of the intruder detection system in operation at ORNL. Motes and

the mobile robot are indicated by rectangles on the picture. The sound device carried by

the intruder is indicated by a circle (read left to right, top to bottom).

moved to the conference room to check on the abnormal event — “light on”. The intruder

then moved to the auditorium. He turned on the lights and a buzzer to make noise in the

auditorium. The robot detected the abnormal activities in the auditorium — “buzzer on”

and “lights on”. The robot then planned a path and moved to the auditorium to check on

the abnormal event. Once the robot arrived at the auditorium, it used its camera to track

the intruder.

A video of this experiment is available at http://www.cs.utk.edu/dilab/DILpicmovie.html.

6.1.3 Performance metrics

To evaluate the anomaly detection system, statistics on the miss rate, false alarm rate,

sensitivity, and specificity are collected. The miss rate is calculated as FN/(TP + FN),

where False Negative (FN) denotes the number of faults that the system failed to detect,

and True Positive (TP ) denotes the number of true faults that are detected by the system.

The false alarm rate is defined as FP/(FP + TN), where False Positive (FP ) denotes

the number of detected faults that were not true faults, and True Negative (TN) denotes

number of “no faults” that were detected by the system. The sensitivity is defined as
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TP/(TP +FN). Ideally, the values of sensitivity and specificity are at 100%, and the false

alarm rate and miss rate are at 0%.

To determine the significance of the difference in the results, the Student’s T-test is

applied. The assumption is that the underlying distributions of accuracies/errors are Gaus-

sian, because of the Central Limit Theorem — as the number of testing sets approaches

infinity, the distribution of the mean of accuracy/error approaches a Normal distribution.

Note that the following experiments are based on synthetic data generated under lab set-

tings. These experiments are only intended to show that by adding time analysis and a

mobile robot’s response, the system can improve its performances. The actual experimen-

tal result values can vary for different test data; however, the qualitative comparisons are

valid, and properly illustrate the relative performances of the studied approaches.

6.1.4 Temporal change detection experiment

One of the problems of the original Fuzzy ART neural network is that it cannot detect

time-related anomalies. This experiment is designed to demonstrate that the FSA model

is able to detect time-related anomalies whereas the Fuzzy ART system alone cannot.

In this experiment, the system first learns the normal model; then, the testing begins.

Both training and testing are performed online. All sensors sample the environment at a

rate of 1 sample per second. Six sensor nodes have been used during this experiment. One

sensor acts as a clusterhead, and the rest as cluster members of that node. The cluster

members are uniformly deployed around the clusterhead and all cluster members are within

communication range of the clusterhead. The vigilance level for cluster members is set to

0.90, which is sensitive enough to classify the environment into four distinct states: lights

off and microphone off, lights on and microphone off, lights on and microphone on, and

lights off and microphone on. The vigilance level for the clusterheads is set to 0.97, which

is sensitive enough to sense category changes in one of the six cluster members.

The training process takes approximately 1.5 hours per trial; a total of three trials are

performed. During the training period, states are visited multiple times. The average time

is computed over multiple visits of the same state; this is treated as a normal environment.

Two sensors are used by cluster member nodes — light and microphone. Raw light readings
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Figure 6.6: An example: normalized light and microphone readings collected by a sensor

node. From time 0 to 510, the light is on (0.5), and the microphone is on (1). From time

510 to 1200, the light is on (0.5), and the microphone is on (0). From time 1200 to 1800,

the light is on (0.5), and the microphone is off (1). From time 1800 to 2300, the light is off

(0.1), and microphone is off (1), etc.
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Table 6.1: Time duration in each state

Category C1 C2 C3

Mean time (seconds) 571 555 538

Standard deviation (seconds) 62 75 43

between 0 and 2000 indicate dark and light, respectively. Microphone readings came from

a hardware detection system onboard. The values were binary — 1 indicates no noise is

detected, and 0 indicates noise is detected. A buzzer is used as a sound source, which

operates at 4 KHz. The sound sensor can detect the buzzer within a radius of three to

four meters in the testing environment. Figure 6.6 shows an example of the typical sensor

readings collected from the environment. The light sensor readings are normalized between

0 and 1. Figure 6.7 shows the categories learned by the Fuzzy ART neural network from

the data shown in Figure 6.6 during the training period. After the classification process,

an FSA model has been built by using Algorithm 1. Figure 6.8 shows an FSA model built

from the data shown in Figure 6.6 and Figure 6.7. Table 6.1 shows the mean and standard

deviation values of the time the environment remained in each class/state before transiting

to a different class/state. The figures and table show one of the trials of the experiment. In

this particular example, the numbers on the FSA model are nicely rounded (e.g., 0.5 and

1). However, in more realistic situations, the Markov model can be much more complex;

these experiments are designed to illustrate the developed approach.

There are three different testing suites with four trials run for each testing suite. In test

suite 1, the environment starts from “light and quiet” (category 1), and remains in that

state for 600 seconds. Then, it transitions to “light and noisy” (category 2), and remains

in that state for 600 seconds. Finally, it transitions to “dark and noisy” (category 4), and

remains in that state for 600 seconds. Note that “dark and noisy” has never occurred before

during the training phase. This is an abnormal event. This testing suite only contains a

new abnormal state; however, it does not include any temporal-related changes.

In test suite 2, the environment starts from “light and noisy” (category 2), and remains

in that state for 600 seconds. Then, it transitions to “dark and noisy” (category 4), and

remains in that state for 300 seconds. Lastly, it transitions to “dark and quiet” (category

3), and remains in that state for 600 seconds. The environment starts with abnormal
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Figure 6.7: An example of the detected changes by the Fuzzy ART neural network for a

cluster of six sensor nodes during the training phase. The input is the sensory data shown

in Figure 6.6.

transitions to state 2, then the abnormal state 4 is detected. Lastly, an abnormal transition

occurs from abnormal state 4 to state 3. This testing suite contains both abnormal events

of a new abnormal state and abnormal time transitions.

In test suite 3, the environment starts from “light and quiet” (category 1), and remains

in that state for 300 seconds. Then, it transitions to “dark and quiet” (category 3), and

remains in that state for 900 seconds. The environment abnormally remains at state 1

too briefly and in state 3 for a longer period of time. This testing suite only contains

time-related abnormal changes.

These testing suites are used to compare the performance of the basic Fuzzy ART

system (Kulakov and Davcev’s implementation) and the enhanced Fuzzy ART system. The
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Figure 6.8: An example of a learned FSA model for the training phase. The model was

the normal model of the environment. States “S” and “E” denote the start and end states,

respectively. They were manually added to the system. State C1 denotes lights were on

and buzzer was off. State C2 denotes lights were on and buzzer was on. State C3 denotes

lights were off and buzzer was off.

experimental results are shown in Table 6.2, which are averaged over three testing suites

(for a total of 12 trials). Approximately 1500 observations were made from each sensor

for each trial. The experimental results illustrate that the enhanced Fuzzy ART system

is able to detect more anomalies than the original Fuzzy ART system (i.e., approximately

86% vs. 41%). This is due to the fact that the enhanced system learns a time series, and

is able to detect time-related anomalies, whereas the original Fuzzy ART system cannot.

Both the Fuzzy ART system and the enhanced Fuzzy ART system have a low false alarm

rate (approximately 6%). To determine the significance of these results, I have applied the

Student’s T-test to the miss rate and sensitivity results for the original Fuzzy ART system

and the enhanced Fuzzy ART system. The student’s T-test confirms that the differences

in these results are statistically significant, with a confidence level of 99.5%. Thus, the

enhanced Fuzzy ART approach provides a significant improvement over the original Fuzzy

ART approach.

In these experiments, the time duration in each state is manually selected to illustrate

the concept. The time duration could be very different in practical applications, such as
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Table 6.2: Performance evaluation between the basic Fuzzy ART and enhanced Fuzzy ART

False Miss Sensitivity Specificity

Alarm Rate

Original mean 6% 59% 41% 94%

Fuzzy ART stdev 12 38 38 12

Enhanced mean 6% 14% 86% 94%

Fuzzy ART stdev 12 20 20 12

for comparisons between daytime versus nighttime expectations. However, in general, the

developed FSA model would be implemented similarly. Additionally, in some applications,

if the duration of time within a state is not of interest, but, instead, the order of the states

is what is most important, the system would not have to maintain the time duration in

each state. For example, if people always turn on the light before making noise in the

room, regardless of the time duration in each state, then making noise in the dark room

would be abnormal. It can instead simply keep track of the expected state transitions.

As mentioned before, the exact values obtained from this experiment are not important;

if more time-related changes are introduced in the experiments, then the miss rate would

increase for the Fuzzy ART system. However, the relative performance comparisons are

valid. The purpose of this experiment is to show that by enabling the system to detect

time-related anomalies, the system is able to improve its performance.

6.1.5 Intruder detection application using mobile and sensor network

Unlike many other wireless sensor network applications, in this experiment, a mobile robot

is added to the anomaly detection system. This is because mobile robots are expected to

bring mobility and additional computation and sensor capabilities to make the detection

system more robust. The following experiment is designed to prove that including a mobile

robot can make the detection system more robust.

When a change is detected in the environment, it does not necessarily mean that an

intruder caused the anomaly. To determine if the anomaly is caused by an intruder, a mobile

robot is sent to investigate using an additional sensor (i.e., a camera). In the enhanced
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intruder detection system, the sensor motes run the developed anomaly detection system,

and a mobile robot serves as the root clusterhead. Once a change is detected by the mobile

robot, it travels to the area and checks for an intruder using the camera mounted on the top

of the robot. The camera tracks the intruder using a motion tracking program. The motion

tracking program only detects moving objects. Note that the mobile robot should carry

its own light source or use thermal images to detect a human in any lighting conditions,

rather than just a moving object.

In general, if the mobile robot detects the intruder, the alarm is confirmed by the mobile

robot. However, if the robot does not detect any (human) intruder within 120 seconds, it

turns off the alarm and claims that there is no change in the environment. Therefore, the

robot does not miss any abnormal events occurring in the environment and at the same

time reduces false alarms.

The intruder detection system is run for the same sets of experiments in Section 6.1.4

except the abnormal state number 4 (“light off and noise”) which is not caused by an

intruder. Instead, it is a normal state of the environment that never occurred in the initial

learning process.

The performances of the basic Fuzzy ART system, the enhanced Fuzzy ART system,

and the enhanced Fuzzy ART system with intelligent mobile robot responder are compared.

The results are shown in Table 6.3, which are averaged over three testing suites for a total

of 12 trials. The Student’s T-test is applied to the miss rate and sensitivity results for the

original Fuzzy ART and the enhanced Fuzzy ART. The Student’s T-test is also applied to

the false alarm rate and specificity for the enhanced Fuzzy ART and the enhanced Fuzzy

ART system with the intelligent mobile robot responder. The tests confirmed that the

differences in the results are statistically significant, with a confidence level of 99.5%. The

experimental results illustrate that the enhanced Fuzzy ART system and the enhanced

system with mobile robot is able to detect more anomalies than the original Fuzzy ART

system (i.e., 83% vs. 30%). This is due to the fact that the enhanced system learns

a time series and is able to detect time-related anomalies, whereas the original Fuzzy

ART cannot. The enhanced Fuzzy ART system with intelligent mobile robot responder

approach is able to reduce the false alarms compared to original Fuzzy ART system and

the enhanced Fuzzy ART system (i.e., 26% vs. 46%). Thus, the enhanced Fuzzy ART with
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Table 6.3: Performance evaluation of the intruder detection system

False Miss Sensitivity Specificity

Alarm Rate

Original mean 46% 70% 30% 54%

Fuzzy ART stdev 36 42 42 36

Enhanced mean 46% 17% 83% 54%

Fuzzy ART stdev 36 20 25 40

Enhanced

Fuzzy ART with mean 26% 17% 83% 74%

mobile robot stdev 19 25 24 19

mobile robot approach provides a significant improvement both in miss rate and false alarm

rate over the original Fuzzy ART approach. Again, the specific values of the experiment

are meaningless; the missing false alarm rate is influenced by the numbers of “artificial”

intruders introduced. This experiment is intended to show that the anomaly detection

system could reduce the false alarm rate by incorporating the mobile robot’s feedback.

The expectation is that if the mobile robot could provide feedback to the sensor motes

regarding false alarms and the motes could correct their learning models based on this

information, then the detection performance could be further improved. Additionally, the

mobile robots could save their battery power by avoiding repeated checks of similar false

alarms. Thus, in future work (not part of this dissertation), the detection system could

be enhanced by adding a feedback loop to the learning model, enabling learning from false

alarms.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

This dissertation makes several contributions to anomaly detection in an unknown environ-

ment using Wireless Sensor Networks. The most important contribution is the design of

anomaly detection — a novel approach that detects both sensor anomalies and time-related

anomalies in an online, unsupervised, and distributed fashion. The distributed learning

algorithms used are particularly suitable in a hierarchical, resource-constrained sensor net-

work for environment monitoring purposes. The system utilizes various machine learning

algorithms to model normal sensor data; this model is then used to detect anomalies. In

contrast to most learning algorithms, the algorithms that are developed do not require

large computational time or space and maintain high quality system performance. In some

versions of this work, a mobile robot serves as the root clusterhead of the sensor network.

Upon detection of an anomaly, this mobile robot can respond to further investigate the

anomaly. In addition, the learning algorithms can take advantage of time and/or space

correlations in the sensor data.

This approach has been shown to have the following characteristics:

• A hierarchical Fuzzy ART learning structure is appropriate for distributed anomaly

detection in a WSN. In the future, sensor motes will have more computational power;

the sensor nodes will also be smaller in size as compared to the present day sensor

nodes but with the same processing/communication capabilities that the current sen-
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sor nodes possess. Therefore, simple and effective algorithms like the one developed

in this research will continue to be needed for WSNs.

• A two-step temporal modeling procedure can be used to analyze and extract semantic

symbols from a sequence of observations. The algorithm is distributed, and supports

a hierarchical learning structure, which would scale to a large number of sensors and

will be practical for resource constrained sensor motes.

• The system detects time-related changes online by using a likelihood-ratio detection

scheme. The developed temporal modeling technique is able to capture high-order

temporal dependencies in some parts of the behavior and lower-order dependencies

elsewhere.

• An iterative temporal learning approach captures the temporal dependencies in data

and removes redundancies, which should translate into energy savings in the WSN.

• A non-parametric nearest neighbor missing data imputation technique for WSNs

utilizes temporal and spatial information from the environment to estimate missing

values.

• A kd-tree data structure is used to organize temporally and spatially correlated data,

which is able to speed up the search by localizing it. To make the traditional kd-tree

more suitable for WSNs, a novel weighted variance and weighted Euclidean distance

is introduced to give designers more control of the tree structure.

Using resource constrained WSNs for environment monitoring of applications such as

volcanic eruptions is challenging, because the event of interest is usually preceded by a long

period of inactivity and the event itself lasts only for a short period of time. The main ob-

jective of this research is to design a distributed anomaly detection system in an unknown

environment using a WSN. The detection system first detects sensory level anomalies by us-

ing the Fuzzy ART neural network. The classifier is also used to classify multi-dimensional

sensor data into discrete classes, where each class label represents a higher semantic mean-

ing of the sensory data. The labeled classes form a sequence of classes over a time period.

Then, the system detects time-related changes by using a likelihood-ratio detection scheme.
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Specifically, a symbol compressor is used to extract temporal semantics out of the original

time sequence, a PST is then constructed from the compressed temporal sequence, and

then a likelihood-ratio detector detects time-related anomalies in WSNs. The developed

temporal modeling technique is able to capture high-order temporal dependencies in some

parts of the behavior and lower-order dependencies elsewhere. The developed approach

is verified using a volcano monitoring data set. Results show that the detection system

yields a high performance. The iterative temporal learning approach captures the temporal

dependencies in data and removes redundancies, which potentially saves the transmission

and processing powers in the WSN. To make the learning more robust, the system uses a

novel nearest neighbor imputation technique that takes advantages of spatial and temporal

correlations in the sensor data. The NN imputation uses a kd-tree to organize time and

space correlated data. A weighted variance and Euclidean distance metric is introduced

to make the kd-tree more suitable for the missing data problem in WSNs. All learning

algorithms are distributed, support a hierarchical learning structure that scales to a large

number of sensors and will be practical for resource constrained sensor motes.

7.2 Future works

More work can be done to refine and extend the system. Several promising research

directions based on this work are as follows:

• Implement and evaluate the time analysis module and the missing data imputation

module on a real wireless sensor network rather than a single sensor on a single node.

• Incorporate an efficient data structure, (e.g., kd-tree) in the Fuzzy ART neural net-

work. When a new observation presented to Fuzzy ART’s neural network, the system

compares the observation with all available prototypes in the network and finds its

closest match. Instead of a brute-force search, the system can use a kd-tree to or-

ganize the learned prototypes and perform nearest neighbor search. By using an

efficient data structure, the searching time can be saved, which in turn saves power

in resource constrained nodes. The challenge here is to determine how to build the

kd-tree using Fuzzy rules. Additionally, if such a tree can be built, the system can
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combine the developed missing data module with the Fuzzy ART module to save

programming space and memory on the sensor motes.

• Incorporate Collaborative Filtering (CF) into the detection process. In contrast to

the existing approach that relies on local processing, different ways can be explored

to improve the decision making process by sharing information from other sensor

nodes/robots.

• Enable the system to adapt to feedback from upper level nodes, robots or a human

operator. An important way to improve the detection performance is to incorporate

feedback from other sources.
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