
1

Scalable Mining of High-Utility Sequential Patterns with Three-Tier
MapReduce Model

JERRY CHUN-WEI LIN∗,Western Norway University of Applied Sciences, Norway

YOUCEF DJENOURI, SINTEF Digital, Norway
GAUTAM SRIVASTAVA, Brandon University, Canada, Canada and China Medical University, Taiwan

YUANFA LI, Harbin Institute of Technology (Shenzhen), China

PHILIP S. YU, University of Illinois at Chicago, USA

1

High-utility sequential pattern mining (HUSPM) is a hot research topic in recent decades since it combines both sequential and 2

utility properties to reveal more information and knowledge rather than the traditional frequent itemset mining or sequential 3

pattern mining. Several works of HUSPM have been presented but most of them are based on main memory to speed up 4

mining performance. However, this assumption is not realistic and not suitable in large-scale environments since in real 5

industry, the size of the collected data is very huge and it is impossible to fit the data into the main memory of a single machine. 6

In this paper, we first develop a parallel and distributed three-stage MapReduce model for mining high-utility sequential 7

patterns based on large-scale databases. Two properties are then developed to hold the correctness and completeness of 8

the discovered patterns in the developed framework. In addition, two data structures called sidset and utility-linked list are 9

utilized in the developed framework to accelerate the computation for mining the required patterns. From the results, we can 10

observe that the designed model has good performance in large-scale datasets in terms of runtime, memory, efficiency of the 11

number of distributed nodes, and scalability compared to the serial HUSP-Span approach. 12

Additional Key Words and Phrases: High-utility sequential pattern mining, MapReduce, large-scale, parallel and distributed. 13

ACM Reference Format: 14

Jerry Chun-Wei Lin, Youcef Djenouri, Gautam Srivastava, Yuanfa Li, and Philip S. Yu. 2021. Scalable Mining of High-Utility 15

Sequential Patterns with Three-Tier MapReduce Model. ACM Trans. Knowl. Discov. Data. 1, 1, Article 1 (January 2021), 25 pages. 16

https://doi.org/10.1145/3487046 17

1 INTRODUCTION 18

Data mining, which also can be referred as Knowledge Discovery in Databases (KDD) [1, 8], has been widely 19

studied and utilized in many applications and domains. The fundamental knowledge in KDD can be classified 20

as many representations, e.g., association-rule mining (ARM) [2, 17], sequential pattern mining (SPM) [3, 14, 21

16, 33, 35], high-utility itemset mining (HUIM) [9, 15, 20, 22, 28, 43], among others. For generic ARM, it only 22

takes the occurrence frequency of the items into account, but the other factors, such as interestingness, weight, 23

or importance are not considered; the discovered information from ARM may become incomplete. To address 24

∗
This is the corresponding author

Authors’ addresses: Jerry Chun-Wei Lin, Western Norway University of Applied Sciences, Bergen, Norway, jerrylin@ieee.org; Youcef Djenouri,

SINTEF Digital, Oslo, Norway, Youcef.Djenouri@sintef.no; Gautam Srivastava, Brandon University, Canada, Brandon, Canada and China

Medical University, Taichung, Taiwan, srivastavag@brandonu.ca; Yuanfa Li, Harbin Institute of Technology (Shenzhen), Shenzhen, China,

liyuanfa@stu.hit.edu.cn; Philip S. Yu, University of Illinois at Chicago, Chicago, USA, psyu@uic.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2021 Association for Computing Machinery.

1556-4681/2021/1-ART1 $15.00

https://doi.org/10.1145/3487046

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3487046
https://doi.org/10.1145/3487046

1:2 • Lin al.

this problem, HUIM considers two factors such as unit profit of the items and the quantity of the items into25

account to find more meaningful patterns than that of ARM. It thus has become an important topic in the field of26

KDD; however, it is not suitable for time-series or sequential data in many realistic domains and applications,27

for example, stock market analysis or DNA sequence analysis. Besides, there is a large number of time-series28

and sequence characteristic data with different meanings and effects at different times in fields like consumer29

behaviour analysis, business intelligence, fault risk prediction, and medical diagnosis, that cannot be analyzed by30

the traditional HUIM nor ARM.31

To solve the limitation of the traditional ARM or HUIM, SPM is used to find the interesting subsequences in a32

set of sequences, where the interestingness of a subsequence can be measured in terms of various criteria such as33

its occurrence frequency, length, and profit. SPM shows numerous real-life applications because data is naturally34

encoded as sequences of symbols in many fields such as bio-informatics, e-learning, market basket analysis,35

texts, and web-page click-stream analysis. SPM has, however, the limitation by only considering the occurrence36

frequency of the sequence, thus if a sequence is with low frequency but high utility, it could be ignored in SPM.37

For example, although the sales volume of a sequence behaviour A (= buying diamond rings first then buying38

necklaces afterward) is lower than the sales volume of a sequence behaviour B (= buying bread first then buying39

milk afterward), the profit of a sequence A is much higher than the profit of a sequence B. Clearly, A sequence40

behaviour is more conducive to merchants. However, in general, the frequency of A sequence is very low, and41

frequent sequence pattern mining cannot find such important information.42

High-utility sequential pattern mining (HUSPM) [42, 46, 48] has broader application prospects and needs when43

compared with traditional SPM and HUIM. For example, HUSPM can find a high-margin product sequence by44

analyzing sales data of a supermarket, thereby helping the supermarket to formulate commodity promotion45

strategies and provide a more reasonable commodity procurement plan. In bio-informatics [51], HUSPM can46

simultaneously consider temporal characteristics and importance of genes, and it can analyze the relationship47

between the top-k efficient gene sequences and diseases (such as pneumonia) through inter-gene interactions in48

disease diagnosis. As HUSPM is an emerging field that has attracted the attention of an increasing number of49

researchers, several works [42, 46] have been initiated on HUSPM. However, the existing methods are memory-50

based, which means it is assumed that all the data can fit into the main memory of a single machine. Current51

trends show that high volumes of data are produced in real-life applications. Memory-based algorithms are not52

realistic for application areas with large-scale datasets. However, mining high-utility sequential patterns (HUSPs)53

from large-scale datasets is an emerging topic but not a simple task. The limitations of the current works are54

stated below, which are the motivation of this paper for further improvement.55

• It is impossible to carry out the task of mining HUSPs in one machine due to the rapid growth of data.56

Designing distributed and parallel methods plays an important role in dealing with this large-scale problem.57

• The utility of a sequence needs to be calculated and the input sequences are distributed in different work58

nodes; the local utility of a sequence of each node cannot determine whether a sequence is a global high-59

utility pattern or not in an entire database. Therefore, a method to sum all the local utilities of a sequence60

needs to be designed so that the global utility value of a sequence can be obtained efficiently.61

• Traditional memory-based algorithms are mostly “generate-and-test”; that is, first, they produce the62

candidates, and then it is tested as to whether it is a HUSP or not. The above procedure is recursively63

performed until the set of candidates is empty (level-wise approach). Thus, the computational cost and64

memory usage to mine the required patterns are relevant high.65

In HUIM, the distributed and parallel methods are Apriori-based [26] or using sampling model [10] to mine66

HUIs. The former is the same as the methods in frequent itemsets mining using iterative MapReduce that requires67

higher computational cost. The latter parallelizes the HUI-Miner algorithm by adopting the sampling model68

to obtain the approximate number of HUIs. To better solve the above limitations for efficiently and accurately69

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:3

revealing the number of HUSPs in the large-scale datasets, we firstly propose a distributed and parallel high-utility 70

sequential pattern mining framework to handle large-scale datasets. Four contributions of this paper are then 71

stated below: 72

• A three-stage MapReduce framework based on the Spark platform is first designed to efficiently and 73

accurately mine HUSPs from big datasets. 74

• Two properties are then investigated and designed to ensure the correctness and completeness of the 75

discovered HUSPs from distributed and parallel environments, which can greatly improve mining efficiency. 76

• Two data structures named sidset and Utility-Linked List are developed in this paper to reduce the 77

time complexity, as well as speed up mining performance. 78

• Extensive experiments on various large-scale datasets are conducted to show that the proposed MapReduce- 79

based model and utilized two structures achieve better performance than the generic and serial HUS-Span 80

algorithm. 81

Section 2 provided a detailed survey of the relevant works in this paper. Section 3 stated the basic preliminary 82

and problem statement of this paper. Section 4 mentioned the proposed MapReduce models and the developed 83

algorithms. Section 5 showed the experiments to evaluate the performance of the designed model compared to 84

the other works. Finally, section 6 concluded the achievements of this paper and extended directions for future 85

works. 86

2 LITERATURE REVIEW 87

Agrawal et al. [2] and Han et al. [17] respectively presented the Apriori and FP-growth algorithms to solve the 88

Association-rule mining (ARM) problem. To handle the realistic situations regarding sequence ordering, Agrawal 89

et al. [3] then first proposed the concept of sequential-pattern mining (SPM) and designed the AprioriSome, 90

AprioriAll, and DynamicSome algorithms for SPM. Srikant et al. [35] proposed a GSP algorithm that uses a hash 91

tree to keep the candidate sets for improving the efficiency of the AprioriAll algorithm. The FreeSpan [16] and 92

PrefixSpan [33] were also respectively presented to speed up the mining performance of SPM. 93

Since ARM and SPM only explore the occurrence frequency of the items in the database, it ignores many 94

important factors, e.g., importance, interestingness, weight, unit profit of items, among others, to mine the 95

association rules. Chan et al. [9] first introduced the concept of utility into frequent itemset mining to help 96

decision-makers develop more favourable strategies. Yao et al. [45] proposed a formal definition of efficient 97

itemset mining, using utility values instead of support as a measure of itemsets. Liu et al. [20] proposed the 98

transaction-weighted utility (TWU) concept for estimating the upper bound of the itemset utility value. Tseng 99

et al. extended the FP-tree and proposed the UP-growth+ [40] algorithm to exploit the nature of the tree for 100

compressing the search space. Lin et al. [21] proposed HUP-tree, which is based on the TWU concept and FP-tree, 101

and they used the tree structure to save the database, which speeds up the mining process of the proposed 102

HUP-growth algorithm. Liu et al. [22] proposed the HUI-Miner algorithm, which converts the original database 103

into a list structure and mines efficient itemsets from the list and thus avoids the generation of candidate sets. 104

Zida et al. [50] designed a novel algorithm EFIM, proposed two new utility upper bounds, and more effectively 105

reduced the search space. Presently, the research on high-utility itemset mining is still in development. Kim et 106

al. [18] then developed a utility model for handling the large-scale stream data for discovering the high-utility 107

patterns. The designed model divides the stream data into several fixed-sized data and processes each batch of 108

data in a window according to the added time by the designed decaying factor to differently show its importance. 109

Vo et al. [41] suggested having the dynamic profit tables for the itemsets in real applications and presented a 110

multi-core framework for efficiently mining the high-utility itemsets. The designed model can then greatly reduce 111

the cost of database rescans thus the performance can be improved. Nam et al. [32] considered the influence of the 112

recent data compared to the old one, a model focused on finding the high-utility itemsets from the time-sensitive 113

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 • Lin al.

databases was presented by applying the damped-window model. Mai et al. [31] presented a model to mine the114

high-utility association rules, which enables users to iteratively choose the preferred weights for the discovered115

rules based on the developed semi-lattice structures. To speed up mining performance, Yun et al. [47] presented116

a pre-large-based concept for mining high-utility itemsets in dynamic databases. The deletion operation is117

considered here to maintain and update the discovered patterns by 9 cases of the pre-large concept to reduce the118

number of database rescans. Moreover, the pre-large concept is also adapted to the sensor network situation [38]119

to combine all the discovered high-utility itemsets in a fusion model, which is applicable in industrial applications.120

Several works [7, 15, 27, 29, 43] in the direction of HUIM have been extensively presented and discussed but most121

of them can only be performed on a single machine for running small datasets.122

High-utility sequential-pattern mining (HUSPM) is a field that has emerged in recent years. HUSPM was123

first used in the sequence mining of website logs [49]. Shie et al. proposed the UMSP [36] algorithm and the124

UM-span [37] algorithm for mining high-utility mobile sequences in mobile business applications. To exploit the125

usefulness of web page access sequence data, Ahmed et al. [4] proposed two tree structures, called UWAS-tree and126

IUWAS-tree, for processing static and dynamic databases, respectively. Subsequently, Ahmed et al. [5] proposed127

a high-utility sequential pattern mining algorithm for processing general sequences, namely, the layer-by-layer128

search UL algorithm and the pattern-extended US algorithm. Yin et al. [46] officially defined high-utility sequential129

pattern mining and proposed an efficient algorithm, USpan, for mining general sequence patterns with utility130

values. To simplify the parameter setting, Yin et al. [48] then proposed the TUS algorithm for discovering the131

top-k high-utility sequential patterns. Lan et al. [25] first introduced the concept of fuzziness into sequence132

mining and then proposed a high-utility sequential pattern mining algorithm to simplify the mining results and133

reduce the search space. Alkan et al. [6] proposed a high-utility sequential pattern extraction (HuspExt) algorithm.134

It calculates a Cumulated Rest of Match (CRoM) to obtain a smaller upper bound to reduce the complexity of the135

algorithm. Wang et al. [42] subsequently proposed the HUS-Span algorithm to reduce useless candidate sets by136

two utility upper bound PEUs and RSUs. The HUS-Span is the generic and serial algorithm that can be used to137

discover the set of HUSPs from the database based on the developed high sequence weighted utility (SWU) to138

maintain the downward closure property, which is the standard and the state-of-the-art algorithm for HUSPM.139

Their paper also proposes a TKHUS-Span algorithm based on top-k and its performance was tested under three140

search strategies.141

MapReduce [11], which was proposed by Dean and Ghemawat, is a programming framework designed to142

handle big datasets. It is a parallel and distributed algorithm on a cluster and contains two major procedures,143

Map and Reduce. Overall, MapReduce provides a reliable, dynamic, and parallel programming framework to deal144

with big data environments. Regarding the MapReduce framework in pattern mining, Lin et al. [24] proposed145

three algorithms, respectively named SPC, FPC and DPC, by implementing the Apriori in MapReduce framework.146

The SPC algorithm is used to find the frequent k-itemsets at each level based on the generate-and-test model.147

The FPC is used to improve the performance of the baseline SPC model using a mapper to calculate k, (k+1), and148

(k+2) itemsets altogether, and the DPC is used to collect the candidates at different lengths. Those three models149

are based on the Apriori-like approach thus more execution time is required. Li et al. [19] then proposed PFP150

algorithm, which parallelizes the FP-Growth algorithm on distributed machines without candidate generation.151

This developed model is based on novel data with the distribution scheme and MapReduce framework to virtually152

eliminate the communication among several parallel and distributed computers. Moens et al. [30] introduced153

Dist-Eclat and BigFIM algorithms for mining the frequent itemsets based on the MapReduce framework. The154

first Dist-Eclat is used to speed up mining performance and the latter BigFIM is then used to optimize the155

execution progress on the large databases. Duong et al. [12] presented a two-phase approach for frequent itemset156

mining in large-scale databases based on the MapReduce and distributed Apriori-like approach. The projection157

model is also used in the developed model to gradually reduce the database size during the MapReduce phase.158

In addition to frequent itemset mining, Ge et al. [13] considered the uncertainty in sequential databases and159

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:5

presented a MapReduce framework for mining the uncertain sequential patterns iteratively. A vertical data 160

structure is then used to keep the necessary information of the uncertain sequence databases that can greatly 161

reduce the computational complexity. For HUIM, Lin et al. [26] proposed PHUI-Growth for mining HUIs from big 162

data, which is Apriori-based Apache Hadoop framework. However, this approach requires huge computational 163

costs, thus it lacks the efficiency to handle very large databases. Chen et al. [10] presented a parallel algorithm 164

of HUI-Miner implemented based on Apache Spark using sampling technologies to reduce the size of input 165

data and approximately mine the HUIs. Based on this model, the approximate set of HUIs is then discovered 166

but the performance can be greatly improved by the sampling model. However, this model could not provide 167

accurate results in terms of the number of HUIs or even the utility of the itemset. It is thus a limitation for 168

making the accurate and precise decision. Wu et al. [44] then applies the Hadoop framework for mining the fuzzy 169

high-utility patterns, which is the first work to adapt the fuzzy-set theory into the high-utility itemset mining. 170

However, this model cannot handle large-scale databases. As the rapid growth for the research of HUSPM, it is 171

necessary to develop an efficient model to discover the set of HUSPs from a large-scale efficiency. Sumalatha and 172

Subramanyam [39] then presented a distributed high utility time interval sequential pattern mining (DHUTISP) 173

algorithm based on the MapReduce framework. Two upper-bound models are then designed to reduce the 174

computational cost. However, this model is mainly focused on distributing data into several nodes and the two 175

designed upper-bounds mainly replied on the past works. 176

3 PRELIMINARIES AND PROBLEM STATEMENT 177

Let I = {𝑖1, 𝑖2, . . . , 𝑖𝑚} be a set of m different items. A quantitative sequence database (q-sequence database) is a 178

set of transactions (or 𝑠𝑖𝑑 in the running example, where id is the transaction id in the database) D = {𝑠1, 𝑠2, . . . , 179

𝑠𝑛}, where each transaction 𝑠𝑞 ∈ D is a quantitative sequence (q-sequence) and q is its unique identifier (= id). A 180

quantitative itemset (q-itemset) denoted as X = [(𝑖1, 𝑞1), (𝑖2, 𝑞2), . . . , (𝑖𝑡 , 𝑞𝑡)] is a subset of 𝑠𝑞 and each item in a 181

q-itemset is a quantitative item that is a pair of the form (i, q), where i ∈ I and q is a positive integer representing 182

the internal weight locally associated with an item in a transaction/sequence (internal utility). The quantity of 183

a q-item i in a q-itemset X is denoted as q(i, X). Each item 𝑖𝑘 ∈ I (1 ≤ k ≤ m) is also associated with a weight 184

denoted as pr(𝑖𝑘) representing the external weight globally associated with an item (external utility). In addition, 185

without a loss of generality, since the items are unordered in an itemset, it is assumed that q-items in a q-itemset 186

are sorted in lexicographical order. A quantitative sequence (q-itemset) is composed of multiple itemsets in 187

an ordered arrangement, which is denoted as s = <𝑋1, 𝑋2, . . . , 𝑋𝑑>. The order of q-itemsets in a q-sequence, 188

containing temporal order and spatial order, can represent the order of purchase, building order, among others. 189

Table 1 shows a quantitative sequential database. This database has five quantitative sequences and six items. 190

Table 2 shows a utility table of the items that appear in Table 1. In Tables 1 and 2, (a), (b), (c), etc., represent the 191

items; (a: 2) indicates that the purchased quantity of item a is 2 (q-item for short); [(a: 2) (c: 3)] indicates a set of 192

items with a purchased quantity 2 of item a and purchased quantity 3 of item c (referred to as q-item set); and 193

<[(a: 2)(c: 3)], [(e: 3)]> means that it is a sequence containing two q-itemsets [(a: 2)(c: 3)] and [(e: 3)] (q-sequence 194

for short), where [(a: 2)(c: 3)] and [(e: 3))] have a sequential relationship in the sequence. 195

Take 𝑠1 in Table 1 as an example to give the concrete explanations, apple(a) is purchased with cake(c) together 196

respectively with the amounts of 2 and 3 (e.q., [(a:2)(c:3)]). After that, apple(a), bread(b) and cake(c) are purchased 197

together respectively with the amounts of 3, 1, and 2 (e.q., [(a:3)(b:1)(c:2)]). In addition, apple(a), bread(b), and 198

donuts(d) ae purchased together respectively with the amounts of 4, 5, and 4 (e.q., [(a:4)(b:5)(d:4)]). Finally, egg(e) 199

is then purchased with the amount of 3 (e.q., [(e:3)]). Thus, it can be seen that four sequential orders are in 𝑠1. 200

First, the utility of an item 𝑖𝑟 in a q-itemset X can be defined as follows. 201

Definition 1. 𝑢 (𝑖𝑟 , 𝑋) is used to denote the utility of an item 𝑖𝑟 in a q-itemset X, and is defined as follows: 202

𝑢 (𝑖𝑟 , 𝑋) = 𝑞(𝑖𝑟 , 𝑋) × 𝑝𝑟 (𝑖𝑟), (1)

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 • Lin al.

Table 1. A quantitative sequence database
𝑠𝑖𝑑 sequence
𝑠1 <[(a:2)(c:3)],[(a:3)(b:1)(c:2)],[(a:4)(b:5)(d:4)],[(e:3)]>
𝑠2 <[(a:1)(e:3)],[(a:5)(b:3)(d:2)],[(b:2)(c:1)(d:4)(e:3)]>
𝑠3 <[(e:2)],[(c:2)(d:3)],[(a:3)(e:3)],[(b:4)(d:5)]>
𝑠4 <[(b:2)(c:3)],[(a:5)(e:1)],[(b:4)(d:3)(e:5)]>
𝑠5 <[(a:4)(c:3)],[(a:2)(b:5)(c:2)(d:4)(e:3)]>

Table 2. A profit table
item a b c d e f
profit 5 3 4 2 1 6

where 𝑞(𝑖𝑟 , 𝑋) is the quantity in a q-itemset X and 𝑝𝑟 (𝑖𝑟) is the profit of an item 𝑖𝑟 .203

Example 1. The utility of an item a in 𝑠1 of Table 1 is calculated as: u(a,[(a:2)(c:3)]) = q(a,[(a:2)(c:3)])×pr(a) =204

2 × 5 = 10205

To calculate the utility of an itemset X (or q-itemset) in a q-sequence s, the following definition and an example206

are given below.207

Definition 2. 𝑢 (𝑋, 𝑠) is used to denote the utility of a q-itemset in a q-sequence s, and is defined as follows:208

𝑢 (𝑋, 𝑠) =
∑︁

𝑋 ∈𝑠∧𝑖𝑟 ∈𝑋
𝑢 (𝑖𝑟 , 𝑋) (2)

Example 2. The utility of a q-itemset [(a:1)(e:3)] in q-sequence 𝑠2 is calculated as: u([(a:1)(e:3)],𝑠2) = 1× 5+ 3× 1209

= 8210

Based on the above definitions, we can then calculate the utility of a q-sequence s in the database by the211

following definition.212

Definition 3. 𝑢 (𝑠) is used to denote as the utility of a q-sequence in a quantitative sequential database D, and is213

defined as follows:214

𝑢 (𝑠) =
∑︁

𝑠∈𝐷∧𝑋 ∈𝑠
𝑢 (𝑋, 𝑠) (3)

Example 3. The utility of the q-sequence 𝑠2 in Table 1 is calculated as: u(𝑠2) = u([(a:1)(e:3)],𝑠2) + u([(a:5)(b:3)(d:2)],𝑠2)215

+ u([(b:2)(c:1)(d:4)(e:3)],𝑠2) = 8 + 38 + 21 =67.216

To calculate the utility of a quantitative sequential database D, the following definition and its example are217

given below.218

Definition 4. 𝑢 (𝐷) is used to denote the utility of a quantitative sequential database D which is the sum of the219

utility of each q-sequence, and is defined as follows:220

𝑢 (𝐷) =
∑︁
𝑠∈𝐷

𝑢 (𝑠) (4)

Example 4. The utility of the quantitative sequential database D in Table 1 is calculated as: 𝑢 (𝐷) = 𝑢 (𝑠1) +221

𝑢 (𝑠2) + 𝑢 (𝑠3) + 𝑢 (4) + 𝑢 (𝑠5) = 94 + 67 + 56 + 67 + 76 = 360.222

To show all the elements (or item/sets) of an itemset, the formal definition and the relevant example are given223

below.224

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:7

Definition 5. Given two itemsets, 𝑥𝑎 = [𝑖𝑎1 , 𝑖𝑎2 , . . . , 𝑖𝑎𝑚] and 𝑥𝑏 = [𝑖𝑏1 , 𝑖𝑏2 , . . . , 𝑖𝑏𝑛], where 𝑖𝑎𝑘 ∈ 𝐼 (𝑖 ≤ 𝑘 ≤ 𝑚) 225

and 𝑖𝑏𝑘′ ∈ 𝐼 (𝑖 ≤ 𝑘 ′ ≤ 𝑛). If there exists positive integers 1 ≤ 𝑗1 ≤ 𝑗2 ≤ · · · ≤ 𝑗𝑚 ≤ 𝑛 such that 𝑖𝑎1 = 𝑖𝑏 𝑗
1

, 𝑖𝑎2 = 𝑖𝑏 𝑗
2

, 226

. . . , 𝑖𝑎𝑚 = 𝑖𝑏 𝑗𝑚
, then 𝑥𝑏 is said to contain 𝑥𝑎 , which is denoted as 𝑥𝑎 ⊆ 𝑥𝑏 . 227

Example 5. The itemset [a, c] contains the itemsets [a], [c] and [a, c]. 228

To show whether an itemset is contained in a sequence, the formal definition and the example are given below 229

to clearly show their relationships. 230

Definition 6. Given two q-itemsets such as 𝑋𝑎 and 𝑋𝑏 , then q-itemset 𝑋𝑎 = [(𝑖𝑎1 , 𝑞𝑎1) (𝑖𝑎2 , 𝑞𝑎2) . . . (𝑖𝑎𝑚 , 𝑞𝑎𝑚)] 231

and a q-itemset 𝑋𝑏 = [(𝑖𝑏1 , 𝑞𝑏1) (𝑖𝑏2 , 𝑞𝑏2) . . . (𝑖𝑏𝑛 , 𝑞𝑏𝑛)], where 𝑖𝑎𝑘 ∈ 𝐼 (𝑖 ≤ 𝑘 ≤ 𝑚) and 𝑖𝑏𝑘′ ∈ 𝐼 (𝑖 ≤ 𝑘 ′ ≤ 𝑛). If there 232

exists positive integers 1 ≤ 𝑗1 ≤ 𝑗2 ≤ · · · ≤ 𝑗𝑚 ≤ 𝑛 such that 𝑖𝑎1 = 𝑖𝑏 𝑗
1

∧ 𝑞𝑎1 = 𝑞𝑏 𝑗
1

, 𝑖𝑎2 = 𝑖𝑏 𝑗
2

∧ 𝑞𝑎2 = 𝑞𝑏 𝑗
2

,. . . ,𝑖𝑎𝑚 = 233

𝑖𝑏 𝑗𝑚
∧ 𝑞𝑎𝑚 = 𝑞𝑏 𝑗𝑚

, then 𝑋𝑏 is said to contain 𝑋𝑎 , which is denoted as 𝑋𝑎 ⊆ 𝑋𝑏 . 234

Example 6. The q-itemset [(a:3)(c:2)] in q-sequence 𝑠1 in Table 1 contains the q-itemset [(a:3)], q-itemset [(c:2)] 235

and q-itemset [(a:3)(c:2)]. 236

To elaborate the relationships of a sequence to a sequence, the following definition with a simple example is 237

given below. 238

Definition 7. Given two sequences s = <𝑥1,𝑥2, . . . , 𝑥𝑚> and t = <𝑦1, 𝑦2, . . . , 𝑦𝑛>, where 𝑥𝑖 ⊆ I and 𝑦 𝑗 ⊆ I are 239

both itemsets, if there exists positive integers 1 ≤ 𝑗1 ≤ 𝑗2 ≤ · · · ≤ 𝑗𝑚 ≤ 𝑛 such that 𝑥1 ⊆ 𝑦 𝑗1 , 𝑥2 ⊆ 𝑦 𝑗2 , . . . , 𝑥𝑚 ⊆ 𝑦 𝑗𝑚 , 240

then s is the subsequence of t, which is denoted as s ⊆ t. 241

Example 7. A sequence <[a,b] [a,c],[b,c]> is the subsequence of the sequence <[a,b],[a,b,c],[a,b],[b,c]>. 242

To handle the quantitative number of the items in the sequential database, the definition is then given below 243

to show the relationship of a sequence and its sub-sequences. 244

Definition 8. Given two q-sequences s = <𝑋1, 𝑋2, . . . , 𝑋𝑚> and t = <𝑌1, 𝑌2, . . . , 𝑌𝑛>, where 𝑋𝑖 and 𝑌𝑗 are both 245

q-itemsets, if there exist positive integers 1 ≤ 𝑗1 ≤ 𝑗2 ≤ · · · ≤ 𝑗𝑚 ≤ 𝑛 such that 𝑋1 ⊆ 𝑌𝑗1 , 𝑋2 ⊆ 𝑌𝑗2 , . . . , 𝑋𝑚 ⊆ 𝑌𝑗𝑚 , 246

then s is the q-subsequence of t, which is denoted as s ⊆ t. 247

Example 8. The q-sequences <[(a:2)],[(b:1)(c:2)]> and <[(a:3)(c:2)],[(a:4)(d:4)],[(e:3)]> are two q-subsequences 248

of the q-sequence 𝑠1 in Table 1. 249

To show the number of matches regarding the sub-sequences within a sequence, the following definition and 250

its example are then given below. 251

Definition 9. Given a q-sequence s= <𝑋1,𝑋2, . . . , 𝑋𝑛> and a sequence t = <𝑥1,𝑥2, . . . , 𝑥𝑚>, if n = m and the 252

items in 𝑋𝑖 are same as the items in 𝑥𝑖 , where 1 ≤ i ≤ n, then s is said to match t, which is denoted as t∼s. 253

Example 9. A sequence <[a][a,b][a,d]> matches the 𝑠1 in Table 1. Note that two q-itemsets may be considered 254

as different although they contain the same itemset because of the quantities and the position of a q-sequence. 255

Therefore, it is possible that more than one q-subsequence of a q-sequence match a given sequence. The sequence 256

<[a]> has three matches in 𝑠1:<[(a:2)]>, <[(a:3)]>, and <[(a:4)]>. 257

Definition 10. A q-itemset containing k items is called k-q-itemset. A q-sequence containing k items is called 258

k-q-sequence. 259

Example 10. The q-sequence 𝑠1 is a 9-q-sequence. 260

Definition 11. 𝑢 (𝑡, 𝑠) is used to denote as the utility of a sequence t in a q-sequence s, and is defined as follows: 261

𝑢 (𝑡, 𝑠) =𝑚𝑎𝑥{𝑢 (𝑠𝑘) |𝑡 ∼ 𝑠𝑘 ∧ 𝑠𝑘 ⊆ 𝑠}, (5)

where ∼ denotes the match relationship and 𝑡 ∼ 𝑠𝑘 represents that 𝑠𝑘 the match of t. 262

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 • Lin al.

Example 11. The utility of a sequence <[a],[b]> in the q-sequence 𝑠1 of Table 1 is calculated as: u(<[a],[b]>,𝑠1)263

= max{u([a:2],[b:1],𝑠1),u([a:2],[b:5],𝑠1),u([a:3],[b:5],𝑠1)} = max{13,25,30}=30.264

This example shows that a target sequence in HUSPM may have multiple utility values in a transaction, which265

is quite different from generic HUIM and ARM. Different evaluation criteria choose different utility values, and266

here the maximum value is used as the utility value of the target sequence in HUSPM.267

Definition 12. 𝑢 (𝑡) is used to denote the utility of a sequence t in a quantitative sequence database D, and is268

defined as follows:269

𝑢 (𝑡) = 𝑢 (𝑡) =
∑︁
𝑠∈𝐷
{𝑢 (𝑡, 𝑠) |𝑡 ∼ 𝑠𝑘 ∧ 𝑠𝑘 ⊆ 𝑠} (6)

Example 12. The utility of a sequence <[a],[b]> in Table 1 is calculated as: u(<[a],[b]>) = u(<[a],[b]>,𝑠1) +270

u(<[a],[b]>,𝑠2) + u(<[a],[b]>,𝑠3) + u(<[a],[b]>,𝑠4) + u(<[a],[b]>,𝑠5) = 30 + 31 + 27 + 37 + 35 = 160.271

To handle multiple databases in the distributed and parallel environment, let D be a quantitative sequence272

database and 𝐷1, 𝐷2, . . . , 𝐷𝑚 are the partitions of D satisfied by D ={𝐷1 ∪ 𝐷2 ∪ . . . ∪ 𝐷𝑚} and ∀{𝐷𝑖 , 𝐷 𝑗 } ∈ D, 𝐷𝑖273

∩ 𝐷 𝑗 = ∅. For example, the database D in Table 1 can be split into two partitions, 𝐷1 and 𝐷2, as Tables 3 and 4274

show. Table 2 is also the profit table of these two quantitative databases.275

Table 3. Quantitative sequence database 𝐷1

𝑠𝑖𝑑 sequence
𝑠1 <[(a:2)(c:3)],[(a:3)(b:1)(c:2)],[(a:4)(b:5)(d:4)],[(e:3)]>
𝑠2 <[(a:1)(e:3)],[(a:5)(b:3)(d:2)],[(b:2)(c:1)(d:4)(e:3)]>

Table 4. Quantitative sequence database 𝐷2

𝑠𝑖𝑑 sequence
𝑠3 <[(e:2)],[(c:2)(d:3)],[(a:3)(e:3)],[(b:4)(d:5)]>
𝑠4 <[(b:2)(c:3)],[(a:5)(e:1)],[(b:4)(d:3)(e:5)]>
𝑠5 <[(a:4)(c:3)],[(a:2)(b:5)(c:2)(d:4)(e:3)]>

Definition 13. 𝑢𝐿 (𝑡, 𝐷𝑖) is used to denote the utility of a sequence t in the partition 𝐷𝑖 , called the local utility of276

a sequence in a partition, and is defined as follows:277

𝑢𝐿 (𝑡, 𝐷𝑖) =
∑︁
𝑠 𝑗 ∈𝐷𝑖

𝑢 (𝑡, 𝑠 𝑗) (7)

Example 13. The utility of the sequence <[a],[b]> in partition 𝐷1 of Table 3 is calculated as: u(<[a],[b]>,𝐷1)278

= u(<[a],[b]>,𝑠1) + u(<[a],[b]>,𝑠2) = 30 + 31 = 61.279

To find the utility of a sequence t in the partitions, the definition is given as follows.280

Definition 14. 𝑢𝐺 (𝑡, 𝐷) is used to denote the utility of a sequence t in the partitions, called the global utility of a281

sequence in the sequence database 𝐷 , and is defined as follows:282

𝑢𝐺 (𝑡, 𝐷) =
∑︁
𝐷𝑖 ∈𝐷

𝑢𝐿 (𝑡, 𝐷𝑖) (8)

Example 14. The utility of a sequence <[a],[b]> in the sequence database D of Table 1 is calculated as:283

u(<[a],[b]>,D) = u(<[a],[b]>,𝐷1) + u(<[a],[b]>,𝐷2) = 160.284

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:9

Definition 15. If the utility of the sequence t in the partition quantitative database 𝐷𝑖 is not less than the 285

user-defined minimum threshold, then it is called a local high-utility sequential pattern, and is defined as follows: 286

𝑢𝐿 (𝑡, 𝐷𝑖) ≥ 𝛿 × 𝑢 (𝐷𝑖), (9)

where 𝛿 is the minimum utility threshold given in percentage and 𝑢 (𝐷𝑖) is the total utility of the partition 𝐷𝑖 . 287

Example 15. The utility of the sequence <[a],[b]> in partition 𝐷1 is 𝑢𝐿(<[a],[b]>,𝐷1) = 61, and the utility of 288

partition 𝐷1 is 𝑢 (𝐷𝑖) = 161. If the minimum utility threshold is set to 0.3, then the sequence <[a],[b]> is a local 289

high-utility sequential pattern in partition 𝐷1 because 61 ≥ 0.3 × 161 = 48.3. 290

Definition 16. If the summed up utility values of a sequence t in the quantitative database D is not lower than the 291

user-defined minimum threshold, then it is called a global high-utility sequential pattern, and is defined as follows: 292

𝑢𝐺 (𝑡, 𝐷) ≥ 𝛿 × 𝑢 (𝐷), (10)

where 𝛿 is a utility threshold given in percentage and 𝑢 (𝐷) is the total utility of the all partitions. 293

Example 16. The utility of the sequence <[a],[b]> in the sequence database D is𝑢𝐺 (<[a],[b]>,D) = 160, and the 294

utility of the sequence database D is 𝑢 (𝐷) = 360. If the minimum utility threshold is set to 0.3, then the sequence 295

<[a],[b]> is a global high-utility sequential pattern in the sequence database 𝐷 because 160 ≥ 0.3 × 360 = 108. 296

Problem Statement. Given a large-scale quantitative database D and a minimum utility threshold 𝛿 , the task 297

of HUSPM using a distributed and parallel method for handling the large-scale dataset is to discover the complete 298

set of sequences whose global utility is not less than 𝛿 × 𝑢 (𝐷) by efficiently parallel mining the partition 𝐷𝑖 of D. 299

4 DESIGNED MAPREDUCE MODELS AND ALGORITHMS 300

In this paper, we first develop a three-stage MapReduce framework for discovering HUSPs from large-scale 301

databases, which is the first work to adopt a MapReduce model in HUSPM. Furthermore, two data structures 302

respectively called sidset and Utility-Linked List are utilized here to keep the necessary information for 303

the mining progress. Fig. 1 first shows an overview of the designed framework. The framework is divided into 304

three phases which are Identification, Local Mining, Integration. Each MapReduce is then performed for 305

each phase in the designed framework. The three MapReduce operations used in the designed framework are 306

respectively representing the three phases and are described below. 307

G
-H

U
S

P
s

Sequence

database

Mapper 1

Mapper 2

Mapper 3

Mapper n

Reducer 1

Reducer 2

Reducer 3

Reducer n

P
ro

m
is

in
g
 i
te

m
s Mapper 1

Mapper 2

Mapper 3

Mapper n

Reducer 1

Reducer 2

Reducer 3

Reducer n

L
-H

U
S

P
s

s
id

s
e
t

c
a
n
d
id

a
te

s

Utility-Linked List

Mapper 1

Mapper 2

Mapper 3

Mapper n

Reducer 1

Reducer 2

Reducer 3

Reducer n

Identification Local mining

Integration

Fig. 1. An overview of the framework.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 • Lin al.

4.1 Identification308

The first phase uses MapReduce to identify promising items that may be HUSPs along with their super-sequences.309

The unpromising items and their super-sequences are discarded and do not need to be considered according to310

the first designed property in the first phase. Details of Property 1 are described next.311

Property 1. Considering that a quantitative sequential database is divided into multiple parts, if a pattern p is a312

HUSP, then it is a HUSP in at least one part.313

Proof. Suppose a database D is divided into n parts {𝐷1, 𝐷2, . . . , 𝐷𝑛}, the total utilities of each part are {𝑢 (𝐷1),314

𝑢 (𝐷2), . . . , 𝑢 (𝐷𝑛)}, the minimum utility threshold is 𝛿 , and the sequence p is the global high-utility sequential315

pattern (GHUSP) over the entire database. Let p be a global HUSP, the following formula can be established as:316

𝑢 (𝑝) ≥ 𝛿 ×
𝑛∑︁
𝑖=1

𝑢 (𝐷𝑖) (11)

The counter-evidence, {𝑢1, 𝑢2, . . . , 𝑢𝑛} is used to denote the utility of the pattern p in each part, and the317

pattern p is not the HUSP in all parts, which means that 𝑢1 < 𝛿 × 𝑢 (𝐷1), 𝑢2 < 𝛿 × 𝑢 (𝐷2), . . . , 𝑢𝑛 < 𝛿 × 𝑢 (𝐷𝑛).318

Then, 𝑢 (𝑝) = ∑𝑛
𝑖=1 𝑢𝑖 < 𝛿 ×∑𝑛

𝑖=1 𝑢 (𝐷𝑖) conflicts with the above formula. Therefore, it is proven that Property 1 is319

correct. □320

Based on this property of the designed three-stage MapReduce framework, we can say that Property 1 ensures321

the integrity of the mined results. Additionally, the search space is reduced significantly compared with the322

original search space used in the first phase. To handle the parallel and distributed system in the designed323

framework, the Local Sequence Weighted Utility (LSWU) and Global Sequence Weighted Utility (GSWU) of a324

sequence are respectively defined. Unlike generic ARM or SPM, HUSPM does not hold the downward closure325

property. The search space for HUSPM algorithms is thus very large without the downward closure property.326

Then, the sequence weighted utility (SWU) [42] is utilized to keep the downward closure property of the designed327

LSWU and GSWU. Details are given next.328

Definition 17. The 𝐿𝑆𝑊𝑈 (𝑡, 𝐷𝑖) is used to denote the local sequence weighted utility of a sequence t in partition329

𝐷𝑖 , and is defined as follows:330

𝐿𝑆𝑊𝑈 (𝑡, 𝐷𝑖) =
∑︁
𝑠∈𝐷𝑖

{𝑢 (𝑠) |𝑡 ⊆ 𝑠}. (12)

Example 17. The local sequence weighted utility of a sequence <[a]> in partition 𝐷1 is calculated as:331

𝐿𝑆𝑊𝑈 (<[a]>,𝐷1) = 𝑢 (𝑠1) + 𝑢 (𝑠2) = 94 + 67 = 141.332

Definition 18. The𝐺𝑆𝑊𝑈 (𝑡, 𝐷) is used to denote the global sequence weighted utility of a sequence t in database333

D, and is defined as follows:334

𝐺𝑆𝑊𝑈 (𝑡, 𝐷) =
∑︁
𝐷𝑖 ∈𝐷

𝐿𝑆𝑊𝑈 (𝑡, 𝐷𝑖) (13)

Example 18. The global sequence weighted utility of a sequence <[a]> in database D is calculated as:335

𝐺𝑆𝑊𝑈 (𝑡, 𝐷) = 𝐿𝑆𝑊𝑈 (<[a]>,𝐷1) + 𝐿𝑆𝑊𝑈 (<[a]>,𝐷2) = 160.336

Based on the GSWU, the high global sequence weighted utility sequence (H-GSWUS) is defined below.337

Definition 19. A sequence t in a sequence database D is a high global sequence weighted utility sequence338

(H-GSWUS) if its GSWU value is no less than the minimum utility value, denoted as follows:339

𝐻 -𝐺𝑆𝑊𝑈𝑆 ← {𝑡 |𝐺𝑆𝑊𝑈 (𝑡, 𝐷) ≥ 𝛿 × 𝑢 (𝐷)}, (14)

where 𝛿 is the minimum utility threshold given in percentage and 𝑢 (𝐷) is the total utility of the database.340

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:11

According to the downward closure property used in the designed LSWU and GSWU, the second property 341

(Property 2) as described next is used to extend the downward closure property for supersets of satisfied sequences. 342

Property 2. There is a sequence database D and two sequences t and t’ that are satisfied with 𝑡 ⊆ 𝑡 ′, and then 343

𝐺𝑆𝑊𝑈 (𝑡, 𝐷) ≥ 𝐺𝑆𝑊𝑈 (𝑡 ′, 𝐷). 344

Proof. Since the GSWU is the summed up value of LSWU for all partitions in the database, and LSWU is 345

based on the sequence-weighted utilization (SWU) model, thus the LSWU of a sequence is, to sum up all the 346

SWU values in all partitions if a sequence s appears in the sequences. In general, if two sequences 𝑡 ⊆ 𝑡 ′ hold, 347

that is the length of t’ is larger than or equal to t. Based on definitions 17 and 18, the 𝑆𝑊𝑈 (𝑡) ≥ 𝑆𝑊𝑈 (𝑡 ′) holds; 348

𝐿𝑆𝑊𝑈 (𝑡) ≥ 𝐿𝑆𝑊𝑈 (𝑡 ′) holds. Since GSWU is the summed up value of LSWU for all partitions in the database, 349

we then can conclude that 𝐺𝑆𝑊𝑈 (𝑡, 𝐷) ≥ 𝐺𝑆𝑊𝑈 (𝑡 ′, 𝐷) holds based on the downward closure property of SWU 350

and LSWU. □ 351

According to Property 2, if the GSWU value of a sequence t is not a H-GSWUS, then the sequence t and its 352

super sequences cannot be HUSPs. We can safely prune the sequences whose GSWU value is less than 𝛿 × 𝑢 (𝐷) 353

without affecting the complete set of HUSPs from the database D. Thus, the designed algorithms for the first 354

MapReduce in the identification stage are described below. 355

ALGORITHM 1: Designed Mapper of MapReduce-1

Input: A set of key-value pairs; the key is the sequence 𝑠𝑖𝑑 and the value is the q-sequence information.

Output: A set of key-value pairs; the key is the item and the value is the sequence utility containing this item.

1 for each q-sequence s do
2 calculate 𝑢 (𝑠);
3 for each item i in s do
4 write a pair (𝑖, 𝑢 (𝑠));
5 end
6 end

In Algorithm 1, each Mapper obtains a partition of the sequence database (Algorithm 1, line 1). Then, the 356

key-value pair <key, value> for the item and sequence utility of a certain sequence which contains this item is 357

output to the Reducer (Algorithm 1, lines 2-4). Based on this pair set, it is easy to measure the utility of an item i 358

in a sequence s. Please note that the size of a given q-sequence should not be larger than a maximum size of the 359

partition to be processed. The Mappers of the first MapReduce are designed and shown in Algorithm 2. 360

ALGORITHM 2: First Mappers

Input: A set of key-value pairs; the key is the sequence 𝑠𝑖𝑑 and the value is the list of sequence utility for a certain

sequences containing this item.

Output: A set of key-value pairs; the key is the item and the value is LSWU of the item in the partition.

1 for each key-value pair (𝑖, 𝑙𝑢) do
2 set LSWU = 0;

3 for each 𝑢 ∈ 𝑙𝑢 do
4 𝐿𝑆𝑊𝑈 := 𝐿𝑆𝑊𝑈 + 𝑢;
5 end
6 write a pair (𝑖, 𝐿𝑆𝑊𝑈);

7 end

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 • Lin al.

In Algorithm 2, the Mapper nodes accumulate the value with the same item before it outputs the key-value361

pair list to Reducers (Algorithm 2, lines 1-5). Furthermore, the output value of Algorithm 2 is the LSWU value362

of the item in the partition (Algorithm 2, line 6). It can reduce the requirement of the communication cost and363

the time of transportation. Simultaneously, it can also reduce the workload of the Reducers. The reason is that364

before the Reducers are processed, the key-value pairs of the same item are assigned to the same Reducer, thus365

the communication between different Reducers for calculating the same item can be greatly reduced. Then, the366

Reducers calculate the GSWU value for each item (Algorithm 3, lines 1-5), and output the items and their GSWU367

whose GSWU values are no less than 𝛿 × 𝑢 (𝐷) while the unpromising items are discarded (Algorithm 3, lines368

6-8). The promising items are used in a later MapReduce process to build the search space for each HUSPM task369

happening in each working node. The Reducer is then shown in Algorithm 3.370

ALGORITHM 3: First Reducers
Input: A set of key-value pairs; the key is the item and the value is a list of the LSWU for the item.

Output: A set of key-value pairs; the key is the item and the value is GSWU of the item in the entire database.

1 for each key-value pair (𝑖, 𝐿𝑆𝑊𝑈𝑠) do
2 set GSWU := 0;

3 for each LSWU in LSWUs do
4 GSWU := GSWU + LSWU ;

5 end
6 if 𝐺𝑆𝑊𝑈 ≥ 𝛿 × 𝑢 (𝐷) then
7 write a pair (𝑖,𝐺𝑆𝑊𝑈);

8 end
9 end

Generally speaking, in the first stage, the input database is split into several partitions and each Mapper is fed371

with a partition. All the items within H-GSWU-sequence are found to ensure the completeness and correctness372

for the later mining progress of varied k-itemsets (𝑘 ≥ 2); the unpromising items are pruned to efficiently reduce373

the search space for later progresses. The second local mining stage is then described below.374

4.2 Local Mining375

The second phase uses an existing HUSPM (i.e., HUS-Span [42]) algorithm to mine HUSPs in each partition,376

called the local HUSPs. Note here that the HUSP-Span can be replaced by other efficient memory-based HUSPM377

algorithms. Because the overall task of mining HUSPs on the entire database is fairly large, it is divided into378

small, partial, and multiple sets, and the same tasks are executed in parallel in each node. Due to the smaller379

amount of memory required, what was impossible for a single machine to perform is now possible, and the set380

of candidates containing all the HUSPs can be produced. At the same time, the candidate patterns have been381

calculated the utility in each node mining. In this progress, we then developed the sidset structure to speed382

up the checking process in the further third phase. The sidset is a compressed data structure that keeps the383

necessary information for the later progress. The definition of the designed sidset structure is then described384

below.385

Definition 20. The sidset is the horizontal structure, and it is composed by the form <𝑠𝑖𝑑 ,(𝑝𝑎𝑡𝑡𝑒𝑟𝑛1, 𝑢𝑡𝑖𝑙𝑖𝑡𝑦1),386

(𝑝𝑎𝑡𝑡𝑒𝑟𝑛2,𝑢𝑡𝑖𝑙𝑖𝑡𝑦2), . . . , (𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑛 ,𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑛)>, where 𝑠𝑖𝑑 represents a certain quantitative sequence, and {𝑝𝑎𝑡𝑡𝑡𝑒𝑟𝑛1,. . . ,387

𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑛} are contained by this quantitative sequence.388

Before the second MapReduce starts, a simple load balancing method on each node is utilized that assists389

to split the sequence data regarding their sizes into MapReduce tasks (Algorithm 4, lines 2-11). This task can390

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:13

speed up the entire MapReduce process since the minimal workload for each MapReduce can be found and 391

balanced. The idea of load balancing is that the HUS-Span [42] uses the matching and comparison mechanism to 392

generate the promising sequences. In this step, the number of the generated task files should match with the 393

number of mappers in the second MapReduce. The workload is calculated by measuring the number of promising 394

items within a sequence (Algorithm 4, lines 2-8), and then assigning this sequence to the task file with minimal 395

workload (Algorithm 4, lines 9-11). This process helps to equally distribute the computations to each node, thus 396

the processing time can be reduced compared to the serialization progress. Details are described in Algorithm 4. 397

ALGORITHM 4: Generate tasks
Input: k, the number of data partitions; items, the promising items whose GSWU values are no less than 𝛿 × 𝑢 (𝐷); D, the

input sequence database.

Output: k task files

1 initialize the work load𝑊𝐿𝑖 to 0 of each task files i ;
2 for each quantitative sequence q in D do
3 𝑁𝑢𝑚 = 0 ;

4 for each item in q do
5 if item in items then
6 𝑁𝑢𝑚 = 𝑁𝑢𝑚 + 1 ;

7 end
8 end
9 find task file i with the minimum work load ;

10 𝑊𝐿𝑖 =𝑊𝐿𝑖 + 𝑁𝑢𝑚 ;

11 assign the quantitative sequence q to task i ;
12 end
13 output the k task files;

For the Mapper progress of the second MapReduce in the second stage, the HUS-Span algorithm [42] is used 398

to find a set of local high-utility sequential patterns in partition 𝐷𝑖 whose utility is no less than 𝛿 × 𝑢 (𝐷𝑖) 399

(Algorithm 5, lines 2-11). Each Mapper outputs the local HUSPs as a pair of (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, (𝑠𝑖𝑑 , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦)) (Algorithm 5, 400

lines 9-11). We also build the Utility-chain [23] for each promising items to speed up the search complexity 401

(Algorithm 5, lines 3-6). This chain structure has better performance than the generic HUSPM algorithms thus 402

the computational cost can be greatly reduced. Details are shown in Algorithm 5. 403

For the Reducer progress of the second MapReduce, the mapper task executes HUS-Span algorithm [42] to 404

mine the HUSPs in this partition. The local HUSPs that have the same key are assigned to the same Reducer. 405

Then, the partial total utility of a pattern can be summed (Algorithm 6, lines 2-4). Through this method, the 406

global HUSPs whose partial utility sum is more than 𝛿 × 𝑢 (𝐷) can be identified because the complete total utility 407

of a pattern is no less than the value of the partial utility sum (Algorithm 6, line 5). Then, the global HUSPs 408

are saved to the result file (Algorithm 6, line 6); otherwise, the Reducers change the form of the key-value pair 409

and output the key-value pairs as (𝑠𝑖𝑑 , (𝑝𝑎𝑡𝑡𝑒𝑟𝑛,𝑢𝑡𝑖𝑙𝑖𝑡𝑦)) for later use in generating the candidate set and the 410

sidset (Algorithm 6, lines 8-10). Next, all the candidate patterns and sidset need to be generated after the 411

second MapReduce stage is completed. This process is shown in Algorithm 6. 412

We note here that the utility values are their utilities in the q-sequence that is calculated in the second stage. 413

By reducing repeated computation, the sidset structure can accelerate the calculation of the total utility of the 414

candidates. For instance, if the quantitative sequence contains a candidate, then its utility can be obtained directly, 415

and there is no need to calculate its utility again. The reason is to iteratively calculate the utility of the same item 416

is costly; based on the sidset, this utility can be directly traced without further calculation. 417

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 • Lin al.

ALGORITHM 5: Second Mappers

Input: A set of key-value pairs, the value is task file T ;items, the promising items whose GSWU values are no less than 𝛿

× 𝑢 (𝐷);D, the input sequence database.
Output: A set of key-value pair ((𝑝𝑎𝑡𝑡𝑒𝑟𝑛, (𝑠𝑖𝑑 , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦))), the key pattern is the LHUSP, the value (𝑠𝑖𝑑 , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦) is utility

of this pattern in a transaction 𝑠𝑖𝑑 .

1 initialize Utility-chain of each item in items ;
2 for each quantitative sequence q in D and q in task file do
3 for each item in items and each item in q do
4 calculate the utility and remaining utility of each matching that item is in q ;

5 build Utility List of item in q ;

6 add the Utility List of item to the Utility-chain item ;

7 end
8 end
9 for each item in items do
10 {pattern,{𝑠𝑖𝑑 ,utility}}← HUS-Span(item, Utility-chain of item) ;

11 write pairs (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, (𝑠𝑖𝑑 , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦));
12 end

ALGORITHM 6: Second Reducers

Input: A set of key-value pairs, the key denoted pattern is a LHUSP and value is the list denoted L with pairs

(𝑠𝑖𝑑 , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦);𝑢 (𝐷), the total utility; 𝛿 , the minimum utility threshold

Output: A set of key-value pair (𝑠𝑖𝑑 , (𝑝𝑎𝑡𝑡𝑒𝑟𝑛,𝑢𝑡𝑖𝑙𝑖𝑡𝑦))
1 set U=0 ;

2 for each pair (𝑠𝑖𝑑 , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦) do
3 𝑈 += 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ;

4 end
5 if 𝑈 ≥ 𝛿 × 𝑢 (𝐷) then
6 save pattern to the result file ;

7 end
8 else
9 write pairs (𝑠𝑖𝑑 , (𝑝𝑎𝑡𝑡𝑒𝑟𝑛,𝑢𝑡𝑖𝑙𝑖𝑡𝑦))

10 end

Please note the current framework does not deal with the case when partitions size exceeds the memory size.418

An alternative solution is to use approximate solutions where only small parts of each partition may be handled.419

This considerably reduces the number of frequent patterns discovered.420

4.3 Integration421

In the third phase, by computing the global utility of each local HUSP using MapReduce, the candidates produced422

by each partition are checked to see if they are a high-utility sequential pattern. In this phase, the data structure423

sidset produced by the second phase is used to reduce the utility calculation of the patterns that have been424

calculated in each node mining during the second phase. Simultaneously, the Utility-Linked List, which is425

transformed and expanded by the sequence in the original database and records information about the original426

database and common information that needs to be calculated, is also used to accelerate the computation of the427

utility. The definition of the Utility-Linked List is then described below.428

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:15

Definition 21. The Utility-Linked List is a data structure based on the idea of “space-for-time” which is 429

formed by the transformation and expansion of the q-sequence in the original database. It consists of two arrays 430

of UP Information and Header_Table. A Header_Table is a collection of non-repeating items in a transaction 431

including the item name and the location of each item that first appeared in the transaction. 432

The developed Utility-Linked List records information about the original database and common infor- 433

mation that needs to be calculated. Due to this complete structure, the complete information is then kept in 434

the main memory. It increases the computational speed for calculating the utility of a sequence. As mentioned 435

earlier, the target sequence may have multiple matches in a single transaction. Therefore, calculating the utility 436

value of a sequence in a transaction requires finding all matches and then taking the maximum utility value. The 437

Utility-Linked List records the next location of the project in the transaction; therefore, the algorithm does 438

not need to scan the transaction multiple times. The maximum utility value of the sequence in the transaction 439

can be calculated as long as the next position of the item is continuously searched. Table 5 is a Utility-Linked 440

List converted from the q-sequence s1 of Table 1. 441

Table 5. The Utility-Linked List of 𝑠1
UP

Information
<[(a, 10, 3) (c, 12, 5)], [(a, 15, 6) (b, 3, 7) (c, 8, -)],

[(a, 20, -) (b, 15, -) (d, 8, -)], [e, 3, -]>
Header Table (a, 1) (b, 4) (c, 2) (d, 8) (e, 9)

As an example taken from Table 5, the non-repeating items in the q-sequence 𝑠1 have a, b, c, d, and e, and 442

their first occurrences in the q-sequence 𝑠1 are 1, 4, 2, 8, and 9, respectively. UP Information is an extension of a 443

q-sequence in which each element consists of three parts: the item name, the project utility value, and the next 444

occurrence of the item in the q-sequence. By taking the first element of the UP Information of Table 5 as an 445

example, the utility value of a is 10, and the position where a appears next in the q-sequence 𝑠1 is 3. 446

In the third MapReduce stage, given the set of candidate patterns and the data structure sidset, this phase 447

calculates the global HUSP in the candidate set and checks whether it is a global HUSP or not. In this stage, the 448

core and time-cost operations are used to calculate the utility of a candidate pattern in this q-sequence. There are 449

two situations: 450

(1) when the utility of this candidate pattern has been calculated, and the sidset of the q-sequence can be 451

queried and its utility value can be obtained directly without the need to be computed again. 452

(2) when the utility of the candidate pattern has not been calculated. In this case, it needs to be checked if 453

it appears in a certain q-sequence. If it appears, the utility of this candidate needs to be calculated in the 454

q-sequence. 455

We note here that the calculation of this operation is time-consuming because it needs to scan the q-sequence, 456

and the pattern may have multiple matches in a q-sequence; therefore, the algorithm needs to scan multiple times 457

to find the largest match as the utility value of the candidate pattern in this q-sequence. Thus to complete the 458

mining task, the entire sequential database must be scanned several times. We designed this framework and also 459

the developed Utility-Linked List to handle this limitation for the large-scale databases Thus, the three parts, 460

Mapper, Combiner and Reducer of the third MapReduce are respectively shown in Algorithms 7, 8, and 9. In the 461

Mapper stage, each Mapper first projects the q-sequence information into Utility-Linked List (Algorithm 462

7, line 1) and then calculates the local utility of all patterns in the candidate set (Algorithm 7, lines 2-10). If the 463

pattern can be queried by the sequence id in the sidset (Algorithm 7, lines 3-4), then this means that the utility 464

of the pattern in this sequence has been calculated in the second MapReduce phase and the Mapper outputs the 465

pair (𝑝𝑎𝑡𝑡𝑒𝑟𝑛,𝑢𝑡𝑖𝑙𝑖𝑡𝑦) for the Reduce stage; if not, the utility of the pattern in this sequence needs to be calculated 466

using the Utility-Linked List and then output it (Algorithm 7, lines 6-9). Using the data structure sidset 467

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 • Lin al.

and the Utility-Linked List can save much time and accelerate the process of calculating the global utility in468

the sequence database. In Combiner and Reducer stage (Algorithms 8 and 9), these two stages are used to sum469

the utility of a pattern. Algorithm 8 first calculates the local utility of each partition, and Algorithm 9 sums up470

the global utility of the sequences from all partitions. If the global utility of a pattern is no less than ≥ 𝛿× 𝑢 (𝐷)471

in the Reduce stage (Algorithm 9, lines 5-7), then it is the needed global high-utility sequential pattern and is472

output as the final results.473

ALGORITHM 7: Third Mappers

Input: A set of key-value pairs; the key is the sequence id and the value is the q-sequence information.

Output: A set of key-value pairs; the key is the item and the value is the sequence utility for a contain sequences

containing this item.

1 project the q-sequence into Utility-Link List L;
2 for each pattern in candidate set C do
3 if pattern p appears in sidset where 𝑠𝑖𝑑 == key then
4 write a pair (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑢𝑡𝑖𝑙𝑖𝑡𝑦);
5 end
6 else
7 calculate the utility of a pattern using Utility-Linked List L;
8 write a pair (pattern, utility);
9 end

10 end

ALGORITHM 8: Combiner of Third Mappers

Input: A set of key-value pairs; the key is a pattern and the value is te list of the utilities of the pattern denoted as 𝑙𝑢 .

Output: A set of key-value pairs; the key is the pattern and the value is utility value of the pattern.

1 set 𝑙𝑜𝑐𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 := 0;

2 for each u in 𝑙𝑢 do
3 𝑙𝑜𝑐𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 := 𝑙𝑜𝑐𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 + 𝑢;

4 end
5 write a par (𝑘𝑒𝑦, 𝑙𝑜𝑐𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦);

ALGORITHM 9: Third Reducers

Input: A set of key-value pairs; the key is a pattern and the value is the list of the utilities of the pattern denoted as 𝑙𝑢 .

Output: A set of key-value pairs; the key is the pattern and the value is global utility value in the sequential database.

1 set 𝑔𝑙𝑜𝑏𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 := 0;

2 for each u in 𝑙𝑢 do
3 𝑔𝑙𝑜𝑏𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 := 𝑔𝑙𝑜𝑏𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 + u;
4 end
5 if 𝑔𝑙𝑜𝑏𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ≥ 𝛿 × 𝑢 (𝐷) then
6 write a pair (key, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑢𝑡𝑖𝑙𝑖𝑡𝑦);
7 end

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:17

5 EXPERIMENTAL RESULTS 474

Several experiments were conducted to evaluate the performance of the presented MapReduce framework in 475

the Spark model. The designed three-stage MapReduce framework without any structure (i.e., sidset and 476

Utility-Linked List) is named M-HUSPM in the experiments, and the designed three-stage MapReduce 477

framework with both the sidset and the Utility-Linked List structures for the implementation is named ML- 478

HUSPM in the experiments. The state-of-art algorithm HUS-Span [42] is also used as the serial algorithm 479

for comparisons and evaluation. Each algorithm is then performed ten times for the evaluation. Experiments 480

were performed with a local Spark cluster on a workstation having Intel Xenon CPU 2.10 GHz with 8 cores, 16 481

threads, 16 GB RAM, and 1.5 TB of disk storage. Spark-2.1.1 is installed over Ubuntu 20.04, 64 bit running on the 482

workstation. Note that the data structure is stored using HDFS (Hadoop Distributed File System) storage system. 483

To save the shared structure, we used the Hadoop sequence file, which is a binary file format containing all of the 484

data in the shared structures presented by <key, value> pairs in a serialized form. Four real-life datasets [34] were 485

used in the experiments. The characteristics of the four original datasets are shown in Table 6. The parameters of 486

the datasets are indicated using the following four attributes: |D| states the total number of sequences; |I| is the 487

number of distinct items; C is the average number of itemsets per sequence, andMaxLen states the maximum 488

number of items per sequence. In real cases, there is no large-scale datasets for performing the designed model for 489

efficiency evaluation, thus, the original datasets in Table 6 are then enlarged that is the original size is multiplied 490

by various numbers (i.e., 1, 20, 50, 100, 200, 500, 1, 000, 2, 000, 5, 000, 10, 000). The sizes of the conducted large-scale 491

datasets are also illustrated in Table 7. 492

Table 6. Characteristics of experimental datasets
Dataset |D| |I | C MaxLen
SIGN 730 267 52.0 94

Leviathan 5,834 9,025 33.8 100

MSNBC 31,790 17 13.3 100

BMS 59,601 497 2.5 267

Table 7. Data size in GB
Dataset 1 20 50 100 200 500 1,000 2,000 5,000 10,000
SIGN 0.0002 0.004 0.0110 0.02 0.04 0.10 0.20 0.40 1.12 2.25

Leviathan 0.001 0.02 0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00

MSNBC 0.002 0.04 0.10 0.20 0.40 1.00 2.00 4.00 10.00 20.00

BMS 0.001 0.02 0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00

5.1 Runtime Performance 493

The designed three-stage MapReduce framework was proposed to handle the problem of large-scale datasets. This 494

section describes the runtime performance of the state-of-the-art serially HUS-Span, M-HUSPM, and ML-HUSPM 495

on several large-scale datasets. Fig. 2 shows the execution time of the three algorithms on the four datasets. The 496

results of runtime regarding maximum (Max.), minimum (Min.), and average (Avg.) are then illustrated in Table 8. 497

From the results, it can be seen that the HUS-Span while running on a single machine cannot handle much 498

data. For example, in the Sign and Leviathan datasets, the HUS-Span obtains lower runtime than that of the 499

M-HUSPM and ML-HUSPM when the database size is less than 100 times the original ones. However, when the 500

database size increases to 200 times the original dataset, the generic and serial HUS-Span cannot obtain any of 501

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 • Lin al.

Table 8. Comparisons of Max., Min., and Avg. in terms of runtime (sec.)

M-HUSPM ML-HUSPM HUS-Span

Dataset Times (Size) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg.
20 (0.004GB) 8 5 7 5 3 4 8 5 7

(a) SIGN (𝛿=0.05) 500 (0.01GB) 21 16 18 11 14 13 - - -

10,000 (2.25GB) 4,275 4,047 4,118 2,982 2,895 2,934 - - -

20 (0.02GB) 14 12 13 9 8 7 19 15 17

(b) Leviathan (𝛿=0.13) 500 (0.5GB) 340 321 335 224 205 211 - - -

10,000 (10GB) 6,879 6,674 6,709 4,875 4,679 4,708 - - -

20 (0.04GB) 248 201 224 174 142 167 341 328 335

(c) MSNBC (𝛿=0.08) 500 (1GB) 5,475 4,975 5,214 4,124 3,905 4,074 - - -

10,000 (20GB) 11,475 10,248 11,005 8,475 8,005 8,248 - - -

20 (0.02GB) 25 18 20 11 5 8 36 44 40

(d) BMS (𝛿=0.04) 500 (0.5GB) 457 419 443 214 201 207 - - -

10,000 (10GB) 9,421 9,142 9,415 4,452 4,005 4,214 - - -

20 50 100 200 500 1000 2000 5000 10000
0

2000

4000

6000

8000

10000

12000

14000

Times of the database size

R
u
n
ti
m

e
 (

s
e
c
.)

(a) Sign (δ=0.05)

20 50 100 200 500 1000 2000 5000 10000
0

2000

4000

6000

8000

10000

12000

14000

Times of the database size

R
u
n
ti
m

e
 (

s
e
c
.)

(b) Leviathan (δ=0.13)

20 50 100 200 500 1000 2000 5000 10000
0

2

4

6

8

10

12
x 10

4

Times of the database size

R
u
n
ti
m

e
 (

s
e
c
.)

(c) MSNBC (δ=0.08)

20 50 100 200 500 1000 2000 5000 10000
0

2

4

6

8

10
x 10

4

Times of the database size

R
u
n
ti
m

e
 (

s
e
c
.)

(d) BMS (δ=0.04)

M−HUSPM ML−HUSPM HUS−Span

Fig. 2. The runtime on varied big datasets.

the results due to the memory leakage. This is reasonable since the serial HUS-Span can only be performed on502

a small dataset, which is not able to handle a very large-scale dataset. However, the designed two algorithms503

can be performed on four datasets in terms of varied database size from 20 to 10,000 times of the original ones.504

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:19

Table 9. Comparisons of Max., Min., and Avg. in terms of memory usage (MB)

M-HUSPM ML-HUSPM HUS-Span

Dataset Times (Size) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg.
20 (0.004GB) 2 5 3 2 2 2 471 512 492

(a) SIGN (𝛿=0.05) 500 (0.01GB) 41 38 40 38 33 35 - - -

10,000 (2.25GB) 915 821 854 884 801 842 - - -

20 (0.02GB) 4 2 3 3 1 2 514 485 506

(b) Leviathan (𝛿=0.13) 500 (0.5GB) 83 80 82 66 61 64 - - -

10,000 (10GB) 1,348 1,249 1,278 1,107 1,067 1,085 - - -

20 (0.04GB) 7 5 6 5 5 5 854 757 804

(c) MSNBC (𝛿=0.08) 500 (1GB) 75 66 72 42 48 45 - - -

10,000 (20GB) 1,970 1,824 1,970 1,523 1,329 1,482 - - -

20 (0.02GB) 12 8 10 8 5 7 751 706 733

(d) BMS (𝛿=0.04) 500 (0.5GB) 52 48 50 32 27 29 - - -

10,000 (10GB) 1,005 904 957 804 777 792 - - -

It is also obvious to see that the designed ML-HUSPM obtains better performance than that of the M-HUSPM, 505

which can be seen from Fig. 2(a), Fig. 2(c), and Fig. 2(d). Thanks to the developed sidset and Utility-Linked 506

List structures, both of them can be used to greatly reduce the computational cost while mining the required 507

HUSPs from a large-scale dataset. The next section will provide the evaluation in terms of memory usage of three 508

compared algorithms. 509

5.2 Memory Usage 510

This section examines the maximum memory usage of each working node on the Spark cluster compared to the 511

maximum memory usage of a single machine. Fig. 3 shows the result of the maximum memory usage of these 512

three algorithms. The results of memory usage regarding maximum (Max.), minimum (Min.), and average (Avg.) 513

are then illustrated in Table 9. In addition, Table 10 presents the memory usage of the Utility-Linked List of 514

the proposed framework. 515

As shown in Fig. 3, the memory usage of the HUS-Span increased as the size of the dataset increased because 516

the HUS-Span is memory-based and needs to load all data into memory before mining. For example in Fig. 3(a), 517

the required memory of HUS-Span is about 1, 200 MB when the size of the database is 20 times the original one. 518

As the database size increases to 50 times of the original one, the HUS-Span needs about 2, 300 MB, and when the 519

size increases to 100 times of the original one, the HUS-Span requires about 3, 000 MB. This situation also applies 520

to Fig. 3(b). However, as the dataset increased in size, the HUS-Span algorithm may result in an out of memory 521

error especially when the size of the conducted datasets is over than 200 times of the original ones that can be 522

observed both in Fig. 3(a) and Fig. 3(b). In addition, the HUS-Span can only be performed while the size of the 523

original database is under 20 times of the original databases (i.e., MSNBC and BMS), which can be discovered from 524

Fig. 3(c) and Fig. 3(d). When the size increases more than 50 times of the original databases, the HUS-Span cannot 525

be well performed and causes the memory leakage issue. The designed M-HUSPM and ML-HUSPM obtain stable 526

results in terms of memory usage, and even the ML-HUSPM requires the extra sidset and Utility-Linked 527

List structures to keep more information for speeding up the computational progress, but those two structures 528

can also be helpful to reduce the multiple database scans (the generated candidates required memory for further 529

processing). Furthermore, Table 10 shows that the percentage of the memory usage of the utility linked list 530

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 • Lin al.

Table 10. Percentage of memory usage of the Utility-Linked lists of the proposed framework.

Dataset Times (Size) Max. Min. Avg.
20 (0.004GB) 0.65 0.32 0.45

(a) SIGN (𝛿=0.05) 500 (0.01GB) 1.12 1.06 1.08

10,000 (2.25GB) 25.67 22.45 23.57

20 (0.02GB) 1.06 0.98 1.03

(b) Leviathan (𝛿=0.13) 500 (0.5GB) 3.27 3.06 3.15

10,000 (10GB) 25.98 22.36 23.45

20 (0.04GB) 1.59 1.45 1.51

(c) MSNBC (𝛿=0.08) 500 (1GB) 7.12 6.93 7.05

10,000 (20GB) 42.56 40.65 41.20

20 (0.02GB) 2.04 1.57 1.86

(d) BMS (𝛿=0.04) 500 (0.5GB) 6.71 6.33 6.53

10,000 (10GB) 33.27 30.91 31.95

20 50 100 200 500 1000 2000 5000 10000
0

500

1000

1500

2000

2500

3000

Times of the database size

M
e
m

o
ry

 (
M

B
)

(a) Sign (δ=0.05)

0

1000

2000

3000

4000

Times of the database size

M
e
m

o
ry

 (
M

B
)

(b) Leviathan (δ=0.13)

0

500

1000

1500

2000

2500

3000

Times of the database size

M
e
m

o
ry

 (
M

B
)

(c) MSNBC (δ=0.08)

0

200

400

600

800

1000

Times of the database size

M
e
m

o
ry

 (
M

B
)

(d) BMS (δ=0.04)

M−HUSPM ML−HUSPM HUS−Span

20 50 100 200 500 1000 2000 5000 10000

20 50 100 200 500 1000 2000 5000 10000 20 50 100 200 500 1000 2000 5000 10000

Fig. 3. The memory usage of compared algorithms.

structures does not exceed 43% even for big databases. Thus, the memory usage of the ML-HUSPM can still be531

minimized compared to the M-HUSPM. Moreover, it can also be observed that the parameters |𝐼 |, C, and MaxLen532

does not seriously affect the results of the compared algorithms but the database size |𝐷 | since the HUSP-Span533

cannot be performed for the MSNBC and BMS datasets while the database size is over than 50 times of the534

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:21

original ones. This observation also showed that the designed MapReduce models have good capability to handle 535

the large-scale datasets, and it does not matter about varied parameters of the datasets. 536

5.3 Speedup performance 537

In this section, the Spark cluster was run on one server with multiple virtual machines. These virtual machines 538

shared the CPU, IO, and main memory. Note that the main memory is limited to one server. We ran the designed 539

algorithms using 2, 4, 8, 16, and 32 nodes. The work nodes increased we increase the number of virtual machines. 540

The results are shown in Fig. 4. 541

2 4 8 16 32
0

10

20

30

40

50

60

70

Number of nodes

S
p
e
e
d
 u

p

(a) Sign (δ=0.05)

2 4 8 16 32
0

10

20

30

40

50

60

70

Number of nodes
S

p
e
e
d
 u

p

(b) Leviathan (δ=0.13)

2 4 8 16 32
10

20

30

40

50

60

70

Number of nodes

S
p
e
e
d
 u

p

(c) MSNBC (δ=0.08)

2 4 8 16 32
10

20

30

40

50

60

70

Number of nodes

S
p
e
e
d
 u

p

(d) BMS (δ=0.04)

M−HUSPM ML−HUSPM

Fig. 4. The runtime on varied number of nodes.

From the results shown in Fig. 4, it is obvious to see that when the nodes were increased, the acceleration effect 542

was very obvious. The runtime of these two distributed models has linearly sped up along with the increases in 543

the number of nodes in the distributed system. Thus, with the increasing number of nodes in the distributed 544

system, the performance can be increased. Thanks to the developed two structures, the ML-HUSPM always 545

obtains better performance than that of the M-HUSPM. 546

5.4 Scalability 547

The last experiments aim to test the scalability of the proposed framework on large-scale databases regarding the 548

number of distributed nodes in the MapReduce system. Several tests have been carried out by varying the number 549

of nodes, and data size in GB. Fig. 5 presents the runtime in seconds, Fig. 6 shows the memory consumption, and 550

Fig. 7 discusses the speedup of both M-HUSPM, and ML-HUSPM using 40GB of the duplicated BMS data. Note 551

that each result is the standard deviation of 10 samples. 552

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 • Lin al.

1 2 16 32
0

0.5

1

1.5

2
x 10

5

R
u

n
ti
m

e
 (

s
e

c
.)

BMS (40GB): Runtime

4 8

Number of nodes

M−HUSPM

ML−HUSPM

Fig. 5. Scalability of runtime under varied nodes.

1 2 16 32
0

1000

2000

3000

4000

5000

6000

M
e

m
o

ry
 (

M
B

)

BMS (40GB): Memory Usage

4 8

Number of nodes

M−HUSPM

ML−HUSPM

Fig. 6. Scalability of memory usage under varied nodes.

1 2 4 8 16 32
0

2

4

6

8

10

Number of nodes

S
p

e
e

d
 u

p

BMS (40GB): Speed up

M−HUSPM

ML−HUSPM

Fig. 7. Scalability of speedup under varied nodes.

With varying the number of nodes from 1, 2, 4, 8, 18 and 32, the scalability of both approaches increased. Since553

the serial HUS-Span cannot handle the large-scale datasets, thus it could not be compared with the designed554

algorithms. Generally, the runtime of these two distributed MapReduce frameworks decreases as the number of555

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:23

the work nodes increases. For example, the runtime is decreased from more than 15, 000 seconds to less than 4, 000 556

seconds, the memory consumption is decreased from more than 5, 000 MB to less than 3, 500 MB, and the speedup 557

is increased from less than 2 to more than 8. Thus, the runtime and speed-up performances are greatly improved 558

and the memory usage stably decreases along with the number of distributed nodes. In addition, the ML-HUSPM 559

outperforms the M-HUSPM, whatever the scenario used in the experiment. In summary, the designed models 560

obtained good performance in the large-scale dataset and the as the increasing number of distributed nodes, the 561

scalability of the designed algorithms can thus be efficiently achieved. 562

6 CONCLUSION AND FUTURE WORK 563

A three-stage MapReduce framework is designed in this paper to handle the high-utility sequential pattern mining 564

in large-scale databases. To speed upmining performance, two data structures called sidset and Utility-Linked 565

List are applied in the designed model. Moreover, two properties are then developed to hold the correctness and 566

completeness of the discovered patterns. From the conducted results in the experiments, the designed model 567

showed better performance compared to the traditional HUSPM models in terms of runtime, memory usage, and 568

scalability, particularly in large-scale databases. In future works, the designed model can be extended to the other 569

constraint-based approaches, i.e., top-k, maximal or closed high-utility sequential pattern mining. Moreover, 570

the evolutionary computation models can also be discussed and utilized in the designed model to improve the 571

effectiveness and efficiency of the mining progress. 572

ACKNOWLEDGMENT 573

This work is partially supported by Western Norway University of Applied Sciences, Bergen, Norway, and by 574

NSF under grants III-1763325, III-1909323, III-2106758, and SaTC-1930941. 575

REFERENCES 576

[1] R. Agrawal, T. Imielinski, and A. N. Swami, Database mining:A performance perspective, IEEE Transactions on Knowledge and Data 577

Engineering, vol. 5(6), pp. 914–925, 1993 578

[2] R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, The International Conference on Very Large 579

Data Bases, pp. 487–499, 1994. 580

[3] R. Agrawal and R. Srikant, Mining sequential patterns, The International Conference on Data Engineering, pp. 3–14, 1995. 581

[4] C. F. Ahmed, S. K. Tanbeer, and B. S. Jeong, Mining high utility web access sequences in dynamic web log data, ACIS International 582

Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing, pp. 76–81, 2010. 583

[5] C. F. Ahmed, S. K. Tanbeer, and B. S. Jeong, A novel approach for mining high-utility sequential patterns in sequence databases, Electronics 584

and Telecommunications Research Institute, vol. 32(5), pp. 676–686, 2010. 585

[6] O. K. Alkan and P. Karagoz, CRoM and HuspExt: Improving efficiency of high utility sequential pattern Extraction, IEEE Transactions on 586

Knowledge and Data Engineering, vol. 27(10), pp. 2645–2657, 2015. 587

[7] U. Ahmed, J. C. W. Lin, G. Srivastava, R. Yasin, and Y. Djenouri, An evolutionary model to mine high expected utility patterns from 588

uncertain databases, IEEE Transactions on Emerging Topics in Computational Intelligence, 2020. 589

[8] M. Chen, J. Han, and P. S. Yu, Data mining: An overview from a database perspective, IEEE Transactions Knowledge and Data Engineering, 590

vol. 8(6), pp. 866–883, 1996. 591

[9] R. Chan, Q. Yang, and Y.-D. Shen, Mining high utility itemsets, IEEE International Conference on Data Mining, pp. 19–26, 2003. 592

[10] Y. Chen and A. An, Approximate parallel high utility itemset mining, Big Data Research, vol. 6, pp. 26–42, 2016. 593

[11] J. Dean and S. Ghemawat, MapReduce: simplified data processing on large clusters, Communications of the ACM, vol. 51(1), pp. 107–113, 594

2008. 595

[12] K. C. Duong, M. Bamha, A. Giacometti, D. Li, A. Soulet, and C. Vrain, MapFIM+: memory aware parallelized frequent itemset mining in 596

very large datasets, Transactions on Large-Scale Data and Knowledge-Centered Systems, vol. 39, pp. 200–225, 2018. 597

[13] J. Ge, Y. Xia, and J. Wang, Mining uncertain sequential patterns in iterative mapReduce, Pacific-Asia Conference on Knowledge Discovery 598

and Data Mining, pp. 243–254, 2015. 599

[14] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, and P. S. Yu, A survey of parallel sequential pattern mining, ACM Transactions on 600

Knowledge Discovery from Data, vol. 13(3), pp. 1–34, 2019. 601

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 • Lin al.

[15] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, V. Tseng, and P. S. Yu, A survey of utility-oriented pattern mining, IEEE Transactions602

on Knowledge and Data Engineering, pp. 1–1, 2019.603

[16] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu, Freespan: frequent pattern-projected sequential pattern mining, ACM604

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 355–359, 2000.605

[17] J. Han, J. Pei, Y. Yin, and R. Mao, Mining frequent patterns without candidate generation: A frequent-pattern tree approach, Data606

Mining and Knowledge Discovery, vol. 8(1), pp. 53–87, 2004.607

[18] H. Kim, U. Yun, Y. Baek, H. Kim, H. Nam, J. C. W. Lin, and P. Fournier-Viger, Damped sliding based utility oriented pattern mining over608

stream data, Knowledge-Based Systems, vol. 213, pp. 106653, 2021.609

[19] H. Li, Y. Wang, D. Zhang, M. Zhang and, E. Y. Chang, Pfp: parallel fp-growth for query recommendation, ACM conference on Recommender610

systems, pp. 107–114, 2008.611

[20] Y. Liu, W. Liao, and A. N. Choudhary, A two-phase algorithm for fast discovery of high utility itemsets, Pacific-Asia Conference on612

Advances in Knowledge Discovery and Data Mining, pp. 689–695, 2005.613

[21] J. C. W. Lin, T. Hong, and W. Lu, An effective tree structure for mining high utility itemsets, Expert Systems with Applications, vol. 38(6),614

pp. 7419-–7424, 2011.615

[22] M. Liu and J. Qu, Mining high utility itemsets without candidate generation, ACM International Conference on Information and Knowledge616

Management, pp. 55–64, 2012.617

[23] J. Liu, K. Wang, and B. C. M. Fung, Direct discovery of high utility itemsets without candidate generation, IEEE International Conference618

on Data Mining, pp. 984–989, 2012.619

[24] M. Y. Lin, P. Y. Lee and, S. C. Hsueh, Apriori-based frequent itemset mining algorithms on MapReduce, The International Conference on620

Ubiquitous Information Management and Communication, pp. 1–8, 2012.621

[25] G. C. Lan, T. P. Hong, H. C. Huang, and S. T. Pan, Mining high fuzzy utility sequential patterns, The International Conference on Fuzzy622

Theory and Its Applications, pp. 420–424, 2013.623

[26] Y. C. Lin, C. W. Wu, and V. S. Tseng, Mining high utility itemsets in big data, Pacific-Asia Conference on Knowledge Discovery and Data624

Mining, pp. 649–661, 2015625

[27] J. Liu, K. Wang, and B. C. M. Fung, Mining high utility patterns in one phase without generating candidates, IEEE Transactions on626

Knowledge and Data Engineering, vol. 28(5), pp. 1245–1257, 2016.627

[28] J. C. W. Lin, W. Gan, P. Fournier-Viger, T. P. Hong, and V. S. Tseng, Efficient algorithms for mining high-utility itemsets in uncertain628

databases, Knowledge-Based Systems, vol. 96, pp. 171–187, 2016.629

[29] J. C. W. Lin, L. Yang, P. Fournier-Viger, and T. P. Hong, Mining of skyline patterns by considering both frequent and utility constraints,630

Engineering Applications of Artificial Intelligence, vol. 77, pp. 229–238, 2019.631

[30] S. Moens, E. Aksehirli, and B. Goethals, Frequent itemset mining for big data, IEEE International Conference on Big Data, pp. 111–118,632

2013.633

[31] T. Mai, L. T. T. Nguyen, B. Vo, U. Yun, and T. P. Hong, Efficient algorithm for mining non-redundant high-utility association rules,634

Sensors, vol. 20(4), 1078, 2020.635

[32] H. Nam, U. Yun, E. Yoon, and J. C. W. Lin, Efficient approach of recent high utility stream pattern mining with indexed list structure and636

pruning strategy considering arrival times of transactions, Information Sciences, vol. 529, pp. 1–27, 2020.637

[33] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu, Prefixspan: Mining sequential patterns by prefix projected638

growth, The International Conference on Data Engineering, pp. 215–224, 2001.639

[34] P. Fournier-Viger, J. C. W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, and H. T. Lam, The SPMF open-source data mining library640

version 2, The European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 36–40, 2016.641

[35] R. Srikant and R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, The International Conference on642

Extending Database Technology, pp. 3–17, 1996.643

[36] B. E. Shie, J. F. Hsiao, V. S. Tseng, and P. Yu, Mining high utility mobile sequential patterns in mobile commerce environments, The644

International Conference on Database Systems for Advanced Applications, pp. 224–238, 2011.645

[37] B. E. Shie, J. H. Cheng, K. T. Chuang and V. S. Tseng, A one-phase method for mining high utility mobile sequential patterns in mobile646

commerce environments, The International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, pp.647

616–626, 2012.648

[38] G. Srivastava, J. C. W. Lin, M. Pirouz, Y. Li, and U. Yun, A pre-large weighted-fusion system of sensed high-utility patterns, IEEE Sensors649

Journal, 2020.650

[39] S. Sumalatha and R. B. V. Subramanyam, Distributed mining of high utility time interval sequential patterns using mapreduce approach,651

Expert System with applications, vol. 141, pp. 112967, 2020.652

[40] V. S. Tseng, B. Shie, C. Wu, and P. S. Yu, Efficient algorithms for mining high utility itemsets from transactional databases, IEEE653

Transactions Knowledge and Data Engineering, vol. 25(8), pp. 1772-–1786, 2013.654

[41] B. Vo, L. T. T. Nguyen, T. D. D. Nguyen, P. Fournier-Viger, and U. Yun, A multi-core approach to efficiently mining high-utility itemsets655

in dynamic profit databases, IEEE Access, vol. 8, pp. 85890–85899, 2020.656

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Scalable Mining of High-Utility Sequential Patterns with Three-Tier MapReduce Model • 1:25

[42] J. Wang, J. Huang, and Y. Chen, On efficiently mining high utility sequential patterns, Knowledge and Information Systems, vol. 49(2), pp. 657

597-–627, 2016 658

[43] J. M. T. Wu, J. C. W. Lin, and A. Tamrakar, High-utility itemset mining with effective pruning strategies, ACM Transactions on Knowledge 659

Discovery from Data, vol. 13(6), pp. 1–22, 2019. 660

[44] J. M. T. Wu, G. Srivastava, M. Wei, U. Yun, and J. C. W. Lin, Fuzzy high-utility pattern mining in parallel and distributed Hadoop 661

framework, Information Sciences, vol. 553, pp. 31–48, 2021. 662

[45] H. Yao, H. J. Hamilton, and C. J. Butz, A foundational approach to mining itemset utilities from databases, SIAM International Conference 663

on Data Mining, pp. 482-–486, 2004. 664

[46] J. Yin, Z. Zheng, and L. Cao, USpan: an efficient algorithm for mining high utility sequential patterns, ACM SIGKDD International 665

Conference on Knowledge Discovery and Data Mining, pp. 660–668, 2012. 666

[47] U. Yun, H. Nam, J. Kim, H. Kim, Y. Baek, J. Lee, E. Yoon, T. Truong, B. Vo, and W. Pedrycz, Efficient transaction deleting approach of 667

pre-large based high utility pattern mining in dynamic databases, Future Generation Computer Systems, vol. 103, pp. 58–78, 2020. 668

[48] J. Yin, Z. Zheng, L. Cao, Y. Song, and W. Wei, Efficiently mining top-k high utility sequential patterns, IEEE International Conference on 669

Data Mining, pp. 1259-–1264, 2013. 670

[49] L. Zhou, Y. Liu, J. Wang, and Y. Shi, Utility-based web path traversal pattern mining, IEEE International Conference on Data Mining, pp. 671

373–380, 2007. 672

[50] S. Zida, P. Fournier-Viger, J. C. W. Lin, C. W. Wu, and V. S. Tseng, EFIM: a fast and memory efficient algorithm for high-utility itemset 673

mining Knowledge and Information Systems, vol. 51(2), pp. 595–625, 2017. 674

[51] M. Zihayat, H. Davoudi, and A. An, Mining significant high utility gene regulation sequential patterns, BMC Systems Biology 2017, 675

11(Suppl 6):109, vol. 11(109), pp. 1–14, 2017. 676

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Literature Review
	3 Preliminaries and Problem Statement
	4 Designed MapReduce Models and Algorithms
	4.1 Identification
	4.2 Local Mining
	4.3 Integration

	5 Experimental Results
	5.1 Runtime Performance
	5.2 Memory Usage
	5.3 Speedup performance
	5.4 Scalability

	6 Conclusion and Future Work
	References

