80 research outputs found

    Acute stress state classification based on electrodermal activity modeling

    Get PDF
    Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be important to monitor stress in everyday life unobtrusively and inexpensively. In this paper, we presented a new methodological pipeline to recognize acute stress conditions using electrodermal activity (EDA) exclusively. Particularly, we combined a rigorous and robust model (cvxEDA) for EDA processing and decomposition, with an algorithm based on a support vector machine to classify the stress state at a single- subject level. Indeed, our method, based on a single sensor, is robust to noise, applies a rigorous phasic decomposition, and implements an unbiased multiclass classification. To this end, we analyzed the EDA of 65 volunteers subjected to different acute stress stimuli induced by a modified version of the Trier Social Stress Test. Our results show that stress is successfully detected with an average accuracy of 94.62%. Besides, we proposed a further 4-class pattern recognition system able to distinguish between non-stress condition and three different stressful stimuli achieving an average accuracy as high as 75.00%. These results, obtained under controlled conditions, are the first step towards applications in ecological scenarios

    General Conceptual Framework of Future Wearables in Healthcare: Unified, Unique, Ubiquitous, and Unobtrusive (U4) for Customized Quantified Output

    Get PDF
    We concentrate on the importance and future conceptual development of wearable devices as the major means of personalized healthcare. We discuss and address the role of wearables in the new era of healthcare in proactive medicine. This work addresses the behavioral, environmental, physiological, and psychological parameters as the most effective domains in personalized healthcare, and the wearables are categorized according to the range of measurements. The importance of multi-parameter, multi-domain monitoring and the respective interactions are further discussed and the generation of wearables based on the number of monitoring area(s) is consequently formulated

    Wearables measuring electrodermal activity to assess perceived stress in care:A scoping review

    Get PDF
    Background:Chronic stress responses can lead to physical and behavioural health problems, often experienced and observed in the care of people with intellectual disabilities or people with dementia. Electrodermal activity (EDA) is a bio-signal for stress, which can be measured by wearables and thereby support stress management. However, the how, when and to what extent patients and healthcare providers can benefit is unclear. This study aims to create an overview of available wearables enabling the detection of perceived stress by using EDA.Methods:Following the PRISMA-SCR protocol for scoping reviews, four databases were included in the search of peer-reviewed studies published between 2012 and 2022, reporting detection of EDA in relation to self-reported stress or stress-related behaviours. Type of wearable, bodily location, research population, context, stressor type and the reported relationship between EDA and perceived stress were extracted.Results:Of the 74 included studies, the majority included healthy subjects in laboratory situations. Field studies and studies using machine learning (ML) to predict stress have increased in the last years. EDA is most often measured on the wrist, with offline data processing. Studies predicting perceived stress or stress-related behaviour using EDA features, reported accuracies between 42% and 100% with an average of 82.6%. Of these studies, the majority used ML.Conclusion:Wearable EDA sensors are promising in detecting perceived stress. Field studies with relevant populations in a health or care context are lacking. Future studies should focus on the application of EDA-measuring wearables in real-life situations to support stress management

    Wearable devices for remote vital signs monitoring in the outpatient setting: an overview of the field

    Get PDF
    Early detection of physiological deterioration has been shown to improve patient outcomes. Due to recent improvements in technology, comprehensive outpatient vital signs monitoring is now possible. This is the first review to collate information on all wearable devices on the market for outpatient physiological monitoring. A scoping review was undertaken. The monitors reviewed were limited to those that can function in the outpatient setting with minimal restrictions on the patient’s normal lifestyle, while measuring any or all of the vital signs: heart rate, ECG, oxygen saturation, respiration rate, blood pressure and temperature. A total of 270 papers were included in the review. Thirty wearable monitors were examined: 6 patches, 3 clothing-based monitors, 4 chest straps, 2 upper arm bands and 15 wristbands. The monitoring of vital signs in the outpatient setting is a developing field with differing levels of evidence for each monitor. The most common clinical application was heart rate monitoring. Blood pressure and oxygen saturation measurements were the least common applications. There is a need for clinical validation studies in the outpatient setting to prove the potential of many of the monitors identified. Research in this area is in its infancy. Future research should look at aggregating the results of validity and reliability and patient outcome studies for each monitor and between different devices. This would provide a more holistic overview of the potential for the clinical use of each device

    GSR Analysis for Stress: Development and Validation of an Open Source Tool for Noisy Naturalistic GSR Data

    Full text link
    The stress detection problem is receiving great attention in related research communities. This is due to its essential part in behavioral studies for many serious health problems and physical illnesses. There are different methods and algorithms for stress detection using different physiological signals. Previous studies have already shown that Galvanic Skin Response (GSR), also known as Electrodermal Activity (EDA), is one of the leading indicators for stress. However, the GSR signal itself is not trivial to analyze. Different features are extracted from GSR signals to detect stress in people like the number of peaks, max peak amplitude, etc. In this paper, we are proposing an open-source tool for GSR analysis, which uses deep learning algorithms alongside statistical algorithms to extract GSR features for stress detection. Then we use different machine learning algorithms and Wearable Stress and Affect Detection (WESAD) dataset to evaluate our results. The results show that we are capable of detecting stress with the accuracy of 92 percent using 10-fold cross-validation and using the features extracted from our tool.Comment: 6 pages and 5 figures. Link to the github of the tool: https://github.com/HealthSciTech/pyED

    Wireless sensors system for stress detection by means of ECG and EDA acquisition

    Get PDF
    This paper describes the design of a two channels electrodermal activity (EDA) sensor and two channels electrocardiogram (ECG) sensor. The EDA sensors acquire data on the hands and transmit them to the ECG sensor with wireless WiFi communication for increased wearability. The sensors system acquires two EDA channels to improve the removal of motion artifacts that take place if EDA is measured on individuals who need to move their hands in their activities. The ECG channels are acquired on the chest and the ECG sensor is responsible for aligning the two ECG traces with the received packets from EDA sensors; the ECG sensor sends via WiFi the aligned packets to a laptop for real time plot and data storage. The metrological characterization showed high-level performances in terms of linearity and jitter; the delays introduced by the wireless transmission from EDA to ECG sensor have been proved to be negligible for the present application

    Ecological Momentary Assessment in Internet-Delivered Psychological Treatments using Wearable Technology

    Get PDF
    The growing prevalence of mental health problems is a global concern. Current psychological treatments are effective for a wide range of mental health problems. Yet, treatments today fall short with regards to scalability and struggle to meet the demand for help. To treat patients in a more cost-effective, accessible, and scalable manner, InternetDelivered Psychological Treatment (IDPT) has posed as a promising solution. Although, IDPT has shown encouraging results, the technology falls short in some regards. One such shortcoming is low user adherence. Adaptive IDPT that allow for personalizing treatment to patient needs may help solve the issue of high drop-out rates in IDPT as they are thought to aid in increasing user adherence. Yet, to adapt and personalize treatment there is a need of meaningful data about patients. In this thesis, we have created an artifact for the use of wearable data in IDPT. More specifically, our artifact can be split in two parts: (1) an extension of an IDPT framework that serves as a general component and allows for the utilization of wearable data to support Ecological Momentary Assessment (EMA) and (2) a demonstrative component that provides an example of how wearable data may be utilized in interventions to support adaptation. We have created an artifact, comprised of these two components, according to the design science research methodology. Through semi-structured interviews with domain experts of electrical engineering and psychology our artifact has been evaluated. As a result of this evaluation, we have learned that our artifact can serve as a basis for future research.Masteroppgave i Programutvikling samarbeid med HVLPROG399MAMN-PRO

    Development of a Signal Processing Library for Extraction of SpO2, HR, HRV, and RR from Photoplethysmographic Waveforms

    Get PDF
    Non-invasive remote physiological monitoring of soldiers on the battlefield has the potential to provide fast, accurate status assessments that are key to improving the survivability of critical injuries. The development of WPI’s wearable wireless pulse oximeter, designed for field-based applications, has allowed for the optimization of important hardware features such as physical size and power management. However, software-based digital signal processing (DSP) methods are still required to perform physiological assessments. This research evaluated DSP methods that were capable of providing arterial oxygen saturation (SpO2), heart rate (HR), heart rate variability (HRV), and respiration rate (RR) measurements derived from data acquired using a single optical sensor. In vivo experiments were conducted to evaluate the accuracies of the processing methods across ranges of physiological conditions. Of the algorithms assessed, 13 SpO2 methods, 1 HR method, 6 HRV indices, and 4 RR methods were identified that provided clinically acceptable measurement accuracies and could potentially be employed in a wearable pulse oximeter

    Detecting Moments of Stress from Measurements of Wearable Physiological Sensors

    Get PDF
    There is a rich repertoire of methods for stress detection using various physiological signals and algorithms. However, there is still a gap in research efforts moving from laboratory studies to real-world settings. A small number of research has verified when a physiological response is a reaction to an extrinsic stimulus of the participant’s environment in real-world settings. Typically, physiological signals are correlated with the spatial characteristics of the physical environment, supported by video records or interviews. The present research aims to bridge the gap between laboratory settings and real-world field studies by introducing a new algorithm that leverages the capabilities of wearable physiological sensors to detect moments of stress (MOS). We propose a rule-based algorithm based on galvanic skin response and skin temperature, combing empirical findings with expert knowledge to ensure transferability between laboratory settings and real-world field studies. To verify our algorithm, we carried out a laboratory experiment to create a “gold standard” of physiological responses to stressors. We validated the algorithm in real-world field studies using a mixed-method approach by spatially correlating the participant’s perceived stress, geo-located questionnaires, and the corresponding real-world situation from the video. Results show that the algorithm detects MOS with 84% accuracy, showing high correlations between measured (by wearable sensors), reported (by questionnaires and eDiary entries), and recorded (by video) stress events. The urban stressors that were identified in the real-world studies originate from traffic congestion, dangerous driving situations, and crowded areas such as tourist attractions. The presented research can enhance stress detection in real life and may thus foster a better understanding of circumstances that bring about physiological stress in humans
    corecore