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Abstract: This paper describes the design of a two channels electrodermal activity (EDA) sensor
and two channels electrocardiogram (ECG) sensor. The EDA sensors acquire data on the hands
and transmit them to the ECG sensor with wireless WiFi communication for increased wearability.
The sensors system acquires two EDA channels to improve the removal of motion artifacts that take
place if EDA is measured on individuals who need to move their hands in their activities. The ECG
channels are acquired on the chest and the ECG sensor is responsible for aligning the two ECG traces
with the received packets from EDA sensors; the ECG sensor sends via WiFi the aligned packets to
a laptop for real time plot and data storage. The metrological characterization showed high-level
performances in terms of linearity and jitter; the delays introduced by the wireless transmission from
EDA to ECG sensor have been proved to be negligible for the present application.
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1. Introduction

During recent years, the interest of scientific literature in the measurement of the stress in
individuals has increased exponentially. Just in the current year, hundreds of works have been
published with the aim of investigating the stress induced by several conditions of every-day life.
Some works aim at the measurement of stress in the workplace [1], some others investigate stress
while people are playing videogames [2], but the majority of studies investigate the mental stress while
people are driving [3–10].

In recent literature [6,11], there have been several works which study driver attention by
means of computer vision and eye-tracking systems, but these papers are mainly focused on mental
workload and attention of the driver; it has been demonstrated in this field of research that pupil
diameter measurement can be correlated to cognitive load of the driver in recognizing obstacles and
pedestrians [12]. However, the mental stress of the driver seems to be poorly correlated to pupil
diameter or fixation duration [13] and, moreover, the eye-tracking systems need complex and accurate
calibration on each subject under test. For these reasons, currently the majority of scientific papers
focusing on driver mental stress detection rely on the measurement of bio-signals.

In order to detect the mental stress level of a person, several bio-signals are measured;
in Reference [14] photoplethysmogram (PPG) is acquired, in Reference [3] the authors
measure the electroencephalogram (EEG), but the electrocardiogram (ECG), with the consequent
heart rate variability (HRV), combined with electrodermal activity (EDA) are the most used
methodologies [1,4,15–22]. The combination of HRV and EDA methodologies is also widely used to
train machine learning algorithms able to detect the level of stress; in the literature, the detection
accuracy of stress, obtained from ECG and EDA signals, is in the order of 80% [23–26]. Moreover, in the
recent past there was an increase in development of new sensors (either for academic or commercial
purposes) able to measure the EDA with wearable devices having low invasiveness [27–29].
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However, the main problem of using different commercial devices (having different protocols and
data storage) is the capability of aligning and fusing data with an acceptable accuracy in an automatic
way, since the timebase of each sensor is different. In the recent past, we developed a device measuring
three channels ECG on the chest and one channel EDA on the hand [16], but the most critical point was
to connect wires from the chest to the hand. So, we moved to a device which acquired two channels
EDA and one channel ECG that had electrodes only on the hands [20]; however the signal to noise
ratio was lower (with respect to ECG acquired on the chest) and during driving sessions (especially in
simulators on Formula 1 tracks) some artifacts were recorded. So, in this paper we reintroduce the
chest derivations for ECG measurement because we have the main focus on studying the mental stress
of professional drivers on dynamic simulators; the importance of their psycho-physiological state
during simulator sessions is of paramount importance for car factories to develop new cars without
producing physical car prototypes. The dynamic model of a new car (mass distribution, springs,
dampers...) is in fact simulated and, on the basis of drivers impressions, modified without creating
an expensive physical prototype of the car. In this scenario, we want to add an objective indicator of
mental stress to the written questionnaires currently filled by drivers after each driving session.

Even if our main research activity focuses on mental stress detection of drivers at the simulator,
the sensor developed in the present paper can be applied also to other stressing conditions, for example
in the literature we find application of EDA and ECG to human-robot interaction [30], but also to
stress detection in the workplace [31,32]. However, the use of chest electrodes may be a little bit
uncomfortable in everyday life, especially for non-professional drivers who use the car just for daily
motion; in a simulator environment instead, professional drivers do not perceive the data acquisition
with vest and gloves as an uncomfortable situation.

In this work we describe the design of a low cost sensor for mental stress detection, measuring
two EDA channels on the hands and two ECG channels on the chest, using a completely wireless
transmission from the hands to the chest and from the chest to a laptop; in this way, data packets are
always aligned since they are sent from a unique sensor. In Reference [20] we also pointed out the need
of two channels for EDA measurement in driving scenarios since the motion of the hands (where EDA
electrodes are placed) on the steering wheel gives rise to a significant motion artifact, which makes a
single channel EDA sensor quite unreliable because it is very difficult to separate the motion artifact
from sympathetic activity [18]. Moreover, most of the studies in the literature make use of exosomatic
EDA methodology (namely skin conductance response (SCR) or galvanic skin response GSR), where
a current is injected into the body and a conductance information is extracted; in our studies, we
concentrate instead on endosomatic EDA (namely skin potential response (SPR)) because it has been
proved in the literature [33,34] that SPR is faster than SCR; so, when evaluating the instantaneous
stress of a driver when immersed in a scenario having sudden stimuli, SPR provides a more punctual
information on the sympathetic activity. Unfortunately, at the moment on the market there are no
commercial solutions for the measurement of endosomatic EDA by means of wearable devices.

SPR directly acquires the nervous pulse which activates the sweat glands, thus the conditioning
circuitry consists of a differential amplifier (like in the case of ECG, but with different gain and
bandwidth); this methodology implies more complex signals, but the sensor readout is faster and it is
less prone to electrode impedance changes due to sweating of the hands or to temperature variations.
SPR signal manifests as a differential voltage when we apply one electrode in a zone with a high
concentration of sweat glands (e.g., the palm of the hand) and another electrode where sweat glands
are fewer (e.g., the back of the hand). In the recent literature (e.g., in Reference [21]), we find several
papers where EDA and ECG are simultaneously acquired, also with commercial solutions, but ECG
data are not automatically aligned with EDA because data are coming from different commercial
sensors having different timebase; moreover, EDA is acquired by means of SCR, which provides a
slower reaction to stimuli.

The measurement of HRV has been described in hundreds of scientific papers published in the
last decade. The heart rate variability is modulated by the sympathetic nervous system and by the
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parasympathetic (vagal) nervous system; these two systems control HRV with different speeds of
intervention: sympathetic system varies HRV slowly, while vagal varies HRV quickly. The processing
methodology of HRV is still an open issue in the literature; some features are extracted in frequency
domain (Low Frequency power LF, High Frequency power HF, and their ratio LF/HF), some others
in time domain (Standard Deviation Normal to Normal SDNN, Root Mean Square of Successive
Differences RMSSD), and newer features are moving towards symbolic approaches, especially for
short time acquisitions [35–37]. Since SPR gives valuable information about short-term sympathetic
activity, the simultaneous acquisition of HRV and EDA can help to improve the methodologies to
extract HRV features related to sympathetic activity, especially in short term evaluation.

In a recent paper [26], we proved that the combination of SPR and ECG signals can provide
several features for machine learning algorithms, like Support Vector Machine (SVM) and Artificial
Neural Networks (ANN), which can discriminate mental stress on drivers in a simulator. In that
paper, 16 healthy individuals took part in the test (performed on a professional dynamic driving
simulator) and had to drive in a simulated 28 km long highway, with four obstacles, requiring some
effort to cross, positioned at different distances along the road; all the intervals belonging to a road
section with obstacles were supposed to be “1”, with stress, and all the intervals belonging to a
section without obstacles were supposed to be “0”, without stress.. From the SPR signal we extracted
five features—variance, energy, mean absolute value, mean absolute derivative and max absolute
derivative. From the ECG signal we extracted eight features—the mean value of normal-to-normal RR
(or NN) intervals, the standard deviation of RR intervals (SDNN), the standard deviation of successive
RR interval differences (SDSD), the root mean square of successive RR interval differences (RMSSD),
the number of successive RR intervals differing more than 50 ms (NN50) and the corresponding value
in percentage (PNN50), the mean value of the Heart Rate (HR) and the HR mean derivative value.
The experimental data demonstrated that both SVM and ANN recognized the mental condition with
accuracy, specificity and sensitivity higher than 75%. The sensor that we used was that described in
Reference [16], but, as stated before, there was the need to connect wires from the hands to the chest,
so the wearability needed to be improved.

The aim of the present paper is the design and metrological characterization of a wearable, fully
wireless system which can acquire ECG and SPR signals with the same accuracy of a wired sensor.
In particular, the key point is to assure a reliable transmission with no delays or data losses because
the two SPR signals must be aligned with each other and both must be aligned with ECG.

The paper is organized as follows—Section 2 describes the architecture of the sensor, with
particular attention to the description of the alignment of data packets sent from SPR sensor to
ECG sensor; Section 3 describes the metrological characterization of the sensors using three different
approaches to evaluate the accuracy of the developed device—a first approach characterizes the
linearity and bandwidth, the second approach evaluates jitter using a synthesized ECG trace and a
third approach compares ECG acquisitions simultaneously with a commercial reference sensor to
quantify the accuracy in the extraction of main features used in HRV. At the end of Section 3, we show
an example of an application of the present sensor to detect the stress of subjects driving on a simulator
available in our laboratory at the University of Udine. Finally, after Discussion, the Conclusions
are drawn.

2. Material and Methods

The entire wearable sensors system is shown in Figure 1. The SPRbox A acquires the SPR on
the right hand where two disposable adhesive Ag/AgCl electrodes are posed on the palm and on
the back. The reference potential VREF is imposed on the VA1 electrode and the differential voltage
VA2−VA1 is amplified and conditioned, acquired by an A/D converter on board a Digital Signal
Processor (DSP) and sent to the ECGbox via wireless standard IEEE 802.11 (WiFi) using User Datagram
Protocol (UDP). In the same way, on the left hand, the SPRbox B conditions acquires and sends the
differential voltage VB2−VB1 to the ECGbox via WiFi UDP protocol. The ECGbox is responsible for
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conditioning and acquiring two ECG derivations, to receive and re-order the packets from SPRbox A
and B, and to transmit the aligned data to a laptop via WiFi UDP protocol. In particular, the ECG traces
are obtained conditioning and amplifying the differential voltages V4−V1 and V2−V3 on the chest,
acquired with four disposable adhesive Ag/AgCl electrodes. Referring to Figure 1, it is possible to see
that the block diagram of the ECGbox consists of two analog front ends, one DSP and a WiFi module;
in a similar way, SPRbox A and SPRbox B consist of an analog front end, a DSP and a WiFi module.

 

VA2, VB2 

VA1, VB1 DSP 

V4 

V1 

V2 

V3 

DSP 

ECGbox 

SPRbox A,B 
box 

Figure 1. (Left) scheme of sensors and electrodes positioning—the skin potential response (SPR)
boxes A and B acquire electrodermal activity (EDA) signals on the hands and transmit the data to the
electrocardiogram (ECG) box; the ECG box acquires signals on the chest and sends data to a laptop.
(Right) block diagram of SPR boxes and ECG box.

The SPRbox A and B use single cell 3.7 V 850 mAh lithium polymer batteries which are
rechargeable through a micro-USB plug. Since the current consumption of SPR boxes is 85 mA
during transmission, the sensors can transmit data for 10 hours of continuous operation. The ECGbox
is supplied with a single cell 3.7 V 2000 mAh lithium polymer battery and it is rechargeable through
a micro-USB plug. Since the current consumption of the ECGbox is 180 mA during transmission,
the sensor can transmit data for more than 11 hours of continuous operation.

Figure 2a shows the boxes inside the enclosures, realized with 3D-printing technology; Figure 2b
shows the Printed Circuit Boards of ECGbox and SPRboxes. The outer dimensions of the SPRbox
are 55 × 37 mm2, while the ECGbox outer dimensions are 108 × 41 mm2; we observe that the outer
dimensions are limited by the size of the batteries, so the boxes and the boards dimensions can be
strongly shrunk if we decide to reduce the maximum duration of transmission. The SPR boxes are
worn on wrists using velcro straps (like wearing a smart-watch) in order to keep the sensors firmly
and unobtrusively adherent to the body, while the ECG box is worn with an elastic chest strap.
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(a) (b)
Figure 2. (a) Enclosures of SPR boxes and ECG box, and (b) Printed Circuit Boards of the developed sensors.

2.1. Analog Section

Referring to Figure 1, the analog front ends measure low-level differential voltages and, through a
proper signal conditioning, provide a high level voltage which can be acquired by the A/D converter
on board the DSP. The input differential voltages are filtered with passive, first order, high-pass filters
(with cutoff frequency (2πτL)

−1 = 0.05 Hz). Since the output impedance of the skin is in the order of
100 kΩ, the input impedance of the filters is 100 MΩ—three orders of magnitude higher—in order to
reduce the load uncertainty to less than 0.1%. Cascaded to the input filter there is an instrumentation
amplifier with gain GSPR and GECG (for SPR and ECG channels, respectively) which amplifies the input
differential signals and, at the output of the amplifier, there is a third order, Butterworth, anti-alias
filter with time constants τH,SPR = 10 ms and τH,ECG = 1 ms for SPR and ECG signals, respectively;
thus, the expected 3 dB cutoff frequencies of the third order filters are 8 Hz and 75 Hz for SPR and
ECG, respectively. The DC compensation block integrates (with time constant designed τI = τL) the
difference between the amplifier output and VREF. Thus, the closed loop composed by the amplifier and
the DC compensation block behaves as a high pass filter with cut-off frequency (2πτL)

−1. Using this
DC compensation block, we are able to remove all the DC non-idealities of the amplifier (offset voltage,
bias current, offset current) [29]. The output voltage of the analog front end (for SPRbox and ECGbox,
respectively), in the Fourier domain, is

VSPRA,B(jω) = 2πVREF · δ(ω) +
GSPRτ2

L,SPR · (jω)2

(1 + τL,SPR · jω)2(1 + τH,SPR · jω)3 · (VA2,B2(jω)−VA1,B1(jω)), (1)

VECG1,2(jω) = 2πVREF · δ(ω) +
GECGτ2

L,ECG · (jω)2

(1 + τL,ECG · jω)2(1 + τH,ECG · jω)3 · (V4,2(jω)−V1,3(jω)). (2)

We set VREF = 1.65 V at one half of the supply range that is 3.3 V. The gain of the amplifier of the
SPRbox has been set GSPR ≈ 160, since the input range is ±10 mV and it is converted into 3.3 VPP;
the SPRbox has a band pass frequency response in the range [0.08, 8] Hz with slopes +40 dB/dec for
the lower cut-off and −60 dB/dec for the higher cut-off. The gain of the amplifiers of the ECGbox has
been set at GECG ≈ 370, since the input range is ±5 mV and it is converted into 3.3 VPP; the ECGbox
has a band pass frequency response in the range [0.08, 75] Hz with slopes +40 dB/dec for the lower
cut-off and –60 dB/dec for the higher cut-off.

2.2. DSP and A/D Conversion

The SPR and ECG signals, after the conditioning of analog front end, are acquired by the A/D
input of a Digital Signal Processor (DSP), which processes the data (the processing is described in
next Section) and sends them to the WiFi module via a Universal Asynchronous Receiver Transmitter
(UART). The chosen DSP is a Microchip DSPIC 30F3013, it operates at 8 MIPS and has an on board
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12 bit Analog-to-Digital Converter; the sampling frequency is set to 200 Hz, this value is high enough
to record ECG signals with low jitter on the peak detection for HRV analysis, without sending too
many data to a medium-low performance laptop. The sampling and conversion time of the A/D has
been set to 50 µs, so that the sampling transients affect the converted data by far lower than 1 LSB.
The baud rate of data transfer has been set to 115.2 kbps in order to allow data transmission without
crowding the channel.

2.3. Data Transmission: SPRbox

Figure 3a shows how the packets are built by the DSP on the SPRbox before transmission. The A/D
module provides a 12 bit datum every 5 ms; each byte sent via UART to the ECGbox must be identified
with a unique coding, since the ECGbox must recognize if the incoming datum is the higher or lower
byte of the SPR box A or B. So, the DSP of SPRbox builds the lower (higher) byte of information using
the six least (most) significant bits of the A/D, adding one bit for left/right box (AB bit in Figure 3a)
and one bit for lower (higher) byte (L or H bit in Figure 3a).

The chosen WiFi module is the USR-IOT USR-C216; it is a low power module (60 mA consumption
during transmission) and, for consumption reasons, it can send packets every 40 ms minimum. For this
reason, the DSP builds a packet composed by eight data acquired every 5 ms and sends them to
the ECGbox. The module is configured as station (STA) with static IP and operates as a client UDP;
the gateway address is configured to be the one of ECGbox, in order to send SPR data to the ECGbox
which re-aligns the data acquired by SPRbox A and B.

x x x x b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

H AB b11 b10 b9 b8 b7 b6 L AB b5 b4 b3 b2 b1 b0

ByteHA,B ByteLA,B

A/D out every 5 ms

ByteHA,B,7 ByteLA,B,7 ByteHA,B,0 ByteLA,B,0...............

WiFi Packet TX to ECGbox every 40 ms

(a)

ByteHA,7 ByteLA,7 ByteHA,0 ByteLA,0...............

WiFi Packet from SPRbox A

ByteHB,7 ByteLB,7 ByteHB,0 ByteLB,0...............

WiFi Packet from SPRbox B

Header Header ECG1H ECG1L ECG2H ECG2L SPRAH SPRAL SPRBH SPRBL

Header Header ECG1H ECG1L ECG2H ECG2L SPRAH SPRAL SPRBH SPRBL

..........................
.............................

.........................

8 WiFi TX packets every 5 ms 

(b)
Figure 3. (a) Packets generation for transmission from SPR boxes to ECG box, and (b) packets alignment
and reconstruction performed by the ECG box.
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2.4. Data Transmission: ECGbox

Figure 3b shows how the ECGbox builds the packets for the transmission to the laptop. Every 5 ms,
the ECGbox builds a packet composed by a unique header (2 bytes), two 12-bit data acquired from
the two ECG channels ECG1H,L and ECG2H,L (4 bytes), the bytes coming from SPRbox A channel
SPRAH and SPRAL (2 bytes) and the ones coming from SPRbox B channel SPRBH and SPRBL (2 bytes);
since the packets coming from SPR boxes arrive every 40 ms, the SPR data are treated as a first-in
first-out stack. This means that, in principle, there is a 40 ms delay between ECG channels and SPR
channels—the ECG channels are synchronous with the data transmitted to the laptop since they are
acquired directly on the ECGbox, while the SPR data belong to the last transmitted packet which is,
roughly, 40 ms delayed. Since the bandwidth of SPR signals is in the order of a few hertz, this delay
does not affect the accuracy of data alignment.

The WiFi module chosen for the ECGbox is the USR-IOT USR-WIFI232; the device operates as
access point (AP), it is configured to be a client UDP which sends the data to the IP address of the
server which is the laptop that plots and saves the traces.

2.5. Software Description

An Ad hoc control panel has been designed to acquire, plot and save the data transmitted from
ECGbox, Figure 4 shows a screenshot during acquisition.

Figure 4. Control panel developed in .NET environment for data acquisition and real time plot; upper
traces show SPR channels, bottom traces show ECG channels.

The panel has been designed in .NET framework since this tool allows a fast and easy design of
Graphical User Interfaces (GUI). The GUI communicates with the ECGbox via UDP protocol, extracts
the data from the received packets, plots the four signals in real time and allows the insertion of
graphical markers with optional comments if the user needs to annotate which kind of stimuli are
received by the subject under test. On the left of the GUI there are several controls where the user sets
the SSID of the wireless network, the IP address of the server and the folder path where data are saved.
The button “Acquire” starts the connection to the ECGbox and the plot of the four traces in real time.
The first two graphs on top show the SPR signals, the last two graphs show the two ECG derivations.

3. Experimental Results

The sensors system has been characterized with three different approaches and test setups.
The first approach characterizes the linearity and the bandwidth of the sensors using, as a reference
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input, sinusoidal signals and measuring the sensors response at the output. The second approach
characterizes the ECG sensor sending at its input a synthesized ECG provided by a digital waveform
generator; with this approach we quantify accuracy in detecting R-R intervals at the output with
respect to the input. Using a free license commercial software designed to perform HRV analysis [38],
we quantify the accuracy of the measured heart rate by means of the jitter introduced by the sensor.
The third approach shows the results obtained on real ECG traces acquired simultaneously by the
sensor and a commercial one [39], taken as reference; moreover, we quantify the deviation between
our sensor and the reference one for the most common HRV parameters used in literature. Finally,
at the end of this Section, we show an application example of the proposed sensor measuring the
sympathetic activity of drivers in a city traffic simulated scenario.

3.1. Metrological Characterization

In this Subsection, we present the experimental characterization of the linearity and bandwidth of
the sensor. For the characterization, a GUI has been developed in the Matlab environment to realize an
automatic test bench for the acquisition of a large number of samples. An oscilloscope with a built-in
waveform generator (RIGOL DS2302A) has been connected to the laptop through LAN and the sensor
through WiFi. The test bench GUI controls the waveform generator to generate the appropriate output
and a robot code controls the marker insertion and the data saving of the traces transmitted from
the sensor (via WiFi) to the control panel described in Section 2.5. At the end of data acquisition,
the accuracy of the sensor is evaluated accordingly to the “Guide to the expression of Uncertainty in
Measurements” (GUM) [40].

3.1.1. Linearity Characterization and Resolution

For linearity characterization, the waveform generator provided a sinusoidal voltage VG with
50 linearly spaced amplitudes from 0 to 3.3 VPP and with frequency around the centre of the bandwidth
for both SPRboxes and ECGbox, i.e. at 1 Hz. The output of the generator is connected to a resistive
attenuator α (0.1% tolerance of the resistors) having output impedance 1 MΩ to simulate skin behavior,
the value of α has been designed as in [20]. The outputs of the attenuators provide simultaneously
the input voltages VIN,SPR = αSPRVG and VIN,ECG = αECGVG which are connected to the input of
SPRboxes and ECGbox. In the case of SPRbox αSPR = 5.568× 10−3(8× 10−6), in the case of ECGbox
αECG = 1.497 × 10−3(3 × 10−6). The uncertainty on the input voltages is then calculated using
the GUM:

u(VIN,SPR) =
√
[αSPR · u(VG)]2 + [VG · u(αSPR)]2, (3)

u(VIN,ECG) =
√
[αECG · u(VG)]2 + [VG · u(αECG)]2. (4)

In order to evaluate the accuracy of the sensors, the RMS values of the traces plotted on the control
panel are evaluated over 10 periods of the input sinusoid; for each amplitude of the sinusoid, 10 RMS
values have been acquired (corresponding to the evaluation of 100 periods) in order to evaluate the
type A estimation of uncertainty. Thus, at the end of acquisitions, we collect a 50 × 10 matrix for each
of the two ECG signals VOUT,ECG and the two SPR signals VOUT,SPR.

Then, using the least squares method, we estimated the gains GSPR and GECG using the input
voltage vectors (VIN,SPR and VIN,ECG) and the mean of the 10 RMS readouts (VOUT,SPR and VOUT,ECG)
calculated on the output voltages vectors.

GSPR =

〈
VIN,SPRVOUT,SPR

〉
− 〈VIN,SPR〉

〈
VOUT,SPR

〉
〈VIN,SPR,2〉 − 〈VIN,SPR〉2

(5)

GECG =

〈
VIN,ECGVOUT,ECG

〉
− 〈VIN,ECG〉

〈
VOUT,ECG

〉〈
V2

IN,ECG

〉
− 〈VIN,ECG〉2

. (6)
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The uncertainty of the output voltages u(VOUT,SPR) and u(VOUT,ECG) is calculated as the
combination of two contributions—one is the type A estimation uA obtained as the standard deviation
of the sample means over the 10 readings of RMS, and the second is the type B estimation uB
extracted from the datasheet of the A/D which considers the Integral Non Linearity (INL) and
the quantization uncertainty

u(VOUT,SPR) =
√
[uA(VOUT,SPR)]2 + [uB(VOUT,SPR)]2, (7)

u(VOUT,ECG) =
√
[uA(VOUT,ECG)]2 + [uB(VOUT,ECG)]2. (8)

We recall that VIN,SPR and VIN,ECG are vectors composed by 50 test amplitudes and that VOUT,SPR
and VOUT,ECG are vectors obtained as the mean of 10 readings for each output amplitude. Finally,
combining (3)–(8) and naming with subscript i the input and output voltages at the ith step, we
calculate the uncertainty on the gain as

u(GSPR) =

√√√√ 50

∑
i=1

(
∂GSPR

∂VIN,SPR,i
u(VIN,SPR,i)

)2
+

50

∑
i=1

(
∂GSPR

∂VOUT,SPR,i
u(VOUT,SPR,i)

)2

, (9)

u(GECG) =

√√√√ 50

∑
i=1

(
∂GECG

∂VIN,ECG,i
u(VIN,ECG,i)

)2
+

50

∑
i=1

(
∂GECG

∂VOUT,ECG,i
u(VOUT,ECG,i)

)2

. (10)

The gains of the four channels thus result in GSPR1 = 141.0± 0.6, GSPR2 = 141.2± 0.6, GECG1 =

378.3± 1.6 and GECG2 = 376.9± 1.6. After having characterized the gain of the four channels, we are
interested in investigating the deviation from linearity. Figure 5 shows the relative deviation from
linearity with respect to the full scale of each input.

(a) (b)

(c) (d)
Figure 5. Linearity of the developed sensors, error bars represent the uncertainty on linearity.
(a) Linearity for SPR1 signal, (b) Linearity for SPR2 signal, (c) Linearity for ECG1 signal, and
(d) Linearity for ECG2 signal.

As can be seen, the maximum non-linearity for the SPR channels is 0.15%FS, corresponding to
30µV and the maximum non-linearity for the ECG channels is 0.05%FS, corresponding to 5µV; error
bars in Figure 5 represent the uncertainty contributions evaluated in (3), (4), (7) and (8).



Sensors 2020, 20, 2026 10 of 20

The resolution of the sensor is 12 bit, which corresponds to 4.9µV for SPR channels and 2.4µV for
ECG channels.

3.1.2. Bandwidth Characterization

For bandwidth characterization, the waveform generator provided a sinusoidal voltage with
61 logarithmically spaced steps in the range [0.1, 100] Hz and the amplitude of the generator was
set to 3.3 VPP; the output of the generator has been connected to the same attenuator described in
previous Section. With the same GUI with robot code described in the previous Section, we acquired
the outputs for each frequency step over a variable time window W = min(10 periods, 3 s); in this
way, we compute the gains GSPR(jω) and GECG(jω) observing the signals for a duration of 10 periods
(coherent sampling) when the frequency is low, and for a duration of three seconds when the frequency
is high.

Figure 6 shows the magnitude of the gain for each channel; the upper cut-off frequency results
8 Hz and 75 Hz for SPR channels and ECG channels, respectively. Regarding the lower cut-off, it results
lower than 0.1 Hz which is the limit of the waveform generator (from design it is expected 0.08 Hz).

(a) (b)

(c) (d)
Figure 6. Bandwidth characterization for the developed sensors, horizontal line represents the cut-off
limit. (a) Bandwidth for SPR1 signal, (b) bandwidth for SPR2 signal, (c) bandwidth for ECG1 signal,
and (d) bandwidth for ECG2 signal.

3.1.3. Delays in Transmission and Data Loss

As introduced in Section 2.4, the SPR data are available at ECGbox after that the packet, composed
by 8 SPR data, is sent from the SPRbox. This means that SPR data are delayed with respect to the ECG
ones and, if no data loss happened, the delay should be in the order of 40 ms. In order to characterize
the real delays of transmission, we used the data acquired in Section 3.1.1 (duration of acquisition
1120 s corresponding to 224,000 samples per channel) to characterize the average delay from one
trace to another. Since all the inputs are in phase, we compute the Fast Fourier Transform (FFT) of
each signal and we evaluate its phase on the peak (that is at 1 Hz); then, we calculate the difference
of phases from one channel to another and convert it into a time delay. Naming ∆tj,k the delay
between signal j and k, we obtained ∆tSPR1,SPR2 = 6 ms, ∆tSPR1,ECG1 = 43 ms, ∆tSPR1,ECG2 = 43 ms,
∆tSPR2,ECG1 = 49 ms, ∆tSPR2,ECG2 = 49 ms, ∆tECG1,ECG2 = 72µs. From these results, we can see that
the delays are comparable with the values expected by design—ECG1 and ECG2 are substantially
synchronous, while SPR channels are 43 to 49 ms delayed. As stated before, this delay is negligible



Sensors 2020, 20, 2026 11 of 20

since the SPR signal bandwidth is in the order of few hertz. Regarding data loss, we have to notice that
no data have been lost in communication from ECGbox to laptop; from SPRbox to ECGbox instead,
we counted 98 samples that were belonging to the previous packet, so we can say that the data loss
from SPRbox to ECGbox is of 98 samples over a total amount of 224,650 samples, corresponding to the
0.04% (i.e., on average, one sample lost every 12 s of acquisition).

3.2. Jitter Estimation Using Synthesized ECG

In the perspective of using ECG data to perform HRV analysis, it is very important to quantify how
accurate the recognition of R-peaks is; one of the main contributions to accuracy is the jitter introduced
by the sample rate and bandwidth of the sensor. In this Subsection, we build the RR-tachogram starting
from a synthesized ECG provided by an arbitrary waveform generator. We acquire simultaneously
the output of the sensor and the output of the generator which was set to provide an ECG with R-R
peaks at constant distance 1 s (1 Hz frequency corresponding to 60 bpm). Figure 7a shows a qualitative
comparison between the PQRST complex at the generator and at the output of the proposed sensor—no
attenuation, delay or distortions are noticed. On the other hand, Figure 7b shows the RR intervals
estimation starting from the generator and starting from the proposed sensor. The RR tachogram has
been built acquiring the signal for a duration of 5 minutes and using the commercial software Kubios
HRV which implements the Pan Tompkins algorithm [41] for peak recognition. As can be seen in
Figure 7b, the maximum distance of computed RR is 5 ms with respect to the nominal value—this
means that the R-peaks have been detected with deterministic uncertainty equal to the sample period.
The standard deviation of the tachogram obtained by the sensor results 2 ms, so we can conclude that
the jitter introduced by the sensor is very close to the theoretical one that is 5/

√
3 = 2.8 ms, assuming

a uniform distribution of deterministic uncertainty.

(a) (b)
Figure 7. (a) Comparison between the synthesized peaks acquired from the oscilloscope and the
proposed sensor, and (b) tachogram extraction to evaluate the jitter introduced by the sensor.

3.3. Real ECG Acquisitions and Comparison with Benchmark Device

As a third approach for sensor characterization, in this Subsection we compare the tachogram
obtained from the proposed sensor with the one obtained from a commercial sensor used as reference.
We acquired the data simultaneously placing the reference sensor electrodes close to the derivation
V4 −V1 shown in Figure 1. The reference sensor is a Shimmer 3 EXG unit and it has been configured
to acquire data at sample rate 512 Sa/s. We chose the Shimmer EXG as reference because of its
compactness, of its high performances (sampling rate up to 8 kSa/s) and of its reasonable cost
(one Shimmer sensor costs ten times the sensor presented in this paper). We collected a total
number of 18 tests performed on three different individuals (six tests per person) acquiring data
for a duration of five minutes per test, this duration is typical for HRV analysis. Figure 8a–c show the
tachograms extracted for each person under test; blue lines represent the proposed sensor, red lines
represent the reference instrument. As a qualitative analysis, we observe that all the R-peaks have
been detected without artifacts and the two lines are almost indistinguishable for all the three persons;
in particular, the standard deviation of the difference between the two plotted lines is 4 ms, 5.4 ms and
3.6 ms, respectively.
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In order to perform a quantitative analysis, we processed the data saved from both sensors using
Kubios and we evaluated the most common parameters used in HRV analyses. In particular, we
focused our attention to mean HR, SDNN, RMSSD, LF and HF. Table 1 shows the results obtained
from both sensors.

(a)

(b)

(c)
Figure 8. Comparison of Tachograms extracted acquiring data with the proposed sensor and with a
reference one on three different individuals (a–c): blue lines represent the proposed sensor, red lines
represent the reference one.
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Table 1. Comparison between developed sensor and reference for principal heart rate variability
(HRV) features.

Test # Sensor Reference

HR SDNN RMSSD LF HF HR SDNN RMSSD LF HF
(bpm) (ms) (ms) (ms2) (ms2) (bpm) (ms) (ms) (ms2) (ms2)

1 75.903 40.916 20.242 488.31 91.864 76.013 40.742 19.468 496.39 87.125
2 74.693 43.338 18.355 628.14 72.580 74.811 43.176 17.673 627.78 70.115
3 74.657 41.674 17.148 363.47 86.098 74.774 41.406 16.386 366.41 81.716
4 73.482 47.612 18.186 222.03 106.33 73.599 47.453 17.537 221.73 101.75
5 71.981 32.295 17.707 336.96 74.507 72.102 32.201 17.203 333.97 70.242
6 71.73 31.691 18.392 476.8 67.139 71.852 31.623 18.161 476.05 67.896

7 68.054 34.675 22.568 134.18 177.7 68.152 34.505 22.675 136.87 184.82
8 68.54 26.808 21.664 93.33 171.51 68.652 26.716 21.938 92.85 172.08
9 68.976 25.858 22.917 91.28 191.59 68.791 25.231 21.547 91.05 188.16

10 68.751 28.581 24.007 83.69 179.47 68.867 27.93 22.55 87.25 181.5
11 68.331 28.855 24.293 128.52 199.05 68.454 28.254 22.725 124.42 195.23
12 68.073 26.624 23.802 189.73 240.78 68.198 26.179 22.473 181.39 227.37

13 79.857 43.445 40.166 626.98 508.68 79.97 43.421 40.547 619.72 504.26
14 79.582 43.674 39.696 761.04 558.41 79.7 43.578 39.947 758.69 556.97
15 79.564 48.758 41.529 749.02 532.59 79.689 48.668 41.682 746.43 523.12
16 78.98 49.145 41.644 1000.9 614.16 79.105 48.97 41.45 984.13 597.78
17 79.196 48.47 40.791 958.95 894.56 79.323 48.154 40.2 950.35 861.06
18 79.012 49.28 42.327 632.74 826.41 79.137 48.978 41.624 636.95 778.08

In order to evaluate the deviation between the proposed sensor and the reference, we present in
Table 2 the relative difference between the two sensors in the estimation of HRV parameters. From the
data, emerges that the maximum deviation is in the order of 6%.

Table 2. Relative deviation between developed sensor and reference for principal HRV features.

Test # ∆%

HR SDNN RMSSD LF HF

1 0.14 −0.43 −3.9 1.6 −5.4
2 0.16 −0.38 −3.8 −0.06 −3.5
3 0.16 −0.65 −4.6 0.80 −5.3
4 0.16 −0.34 −3.7 −0.14 −4.5
5 0.17 −0.29 −2.9 −0.90 −6.1
6 0.17 −0.22 −1.2 −0.16 1.1

7 0.14 −0.49 0.47 1.9 3.8
8 0.16 −0.34 1.2 −0.52 0.33
9 −0.27 −2.5 −6.3 −0.25 −1.8

10 0.17 −2.3 −6.4 4.1 1.1
11 0.18 −2.1 −6.9 −3.3 −1.9
12 0.18 −1.7 −5.9 −4.6 −5.9

13 0.14 −0.06 0.94 −1.2 −0.88
14 0.15 −0.22 0.63 −0.31 −0.26
15 0.16 −0.18 0.37 −0.35 −1.8
16 0.16 −0.36 −0.47 −1.7 −2.7
17 0.16 −0.66 −1.4 −0.90 −3.8
18 0.16 −0.62 −1.6 0.66 −6.2

Mean 0.13 −0.77 −2.5 −0.29 −2.4
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3.4. Acquisition of SPR and ECG Signals on a Driving Simulator

As an application example of the proposed sensor, we performed several tests on the driving
simulator available in our laboratory at the Polytechnic Department of Engineering and Architecture
of the University of Udine. The simulator is composed by the moving seat P2 by DOFreality [42],
a curved screen and a Logitech G29 Steering Wheel [43], Figure 9 shows a picture of the simulator.

Figure 9. The driving simulator available in our laboratory at the University of Udine.

As simulator software, we use City Car Driving; it is a software simulating traffic situations in
a city with the option to insert, as stressors, a set of undesired events like: unexpected pedestrian
crossing, lane invasion by other vehicles in the opposite direction, sudden change of lane of the vehicle
in front of the driver, and sudden brake of the front vehicle. As a limitation, this software does not
allow the full control on other vehicles or pedestrian behavior (platoons of cars are not the same,
pedestrians do not cross always in the same locations...), but the type and the number of stressors
among different simulations is consistent, accordingly to the settings of the simulation.

We instructed ten volunteers (among the students of University of Udine) to drive along the
route highlighted in Figure 10; the red line represents a portion of a motorway, while the blue line
represents urban streets. The subjects had to repeat the test in two conditions—a first condition is
without traffic (no cars nor pedestrians) and the second condition is with few cars and pedestrians.
In this second scenario, despite little traffic, we set up the behavior of other cars and pedestrians
as “very aggressive”, this means that other cars often change their direction (invading the subject’s
trajectory) and pedestrians very often cross the road at forbidden points. One half of the subjects drove
before without traffic and then with traffic and the other half vice-versa. The selected path on the
map in Figure 10 allowed the recording of ten minutes traces for each experiment, roughly one half in
motorway and one half in urban streets.

Regarding the processing of SPR data, we applied the motion artifact algorithm described in
Reference [44]; for ease of reference, we show in Figure 11a the acquired traces (blue line SPR1 for
right hand and red line SPR2 for left hand) and the output of the motion artifact removal algorithm
(black line). Figure 11b shows the zoom of circle A in Figure 11a and we show the typical SPR pulses
that we have when no motion artifacts are intervening; all the traces are almost coincident and each
SPR peak duration is, roughly 10 s. The circles marked with letters B, and C in Figure 11a evidence
the motion artifacts that arose when the hands were moving the steering wheel; in that case, the two
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input signals differed and some high frequency components appeared. Figure 11c,d show the zoom of
circles B and C; as it can be seen, at the output the artifacts are strongly reduced.

Figure 10. City map of the driving experiments; red line represents the motorway, blue line represents
urban streets and checkered flag represents the start and the stop of experiments.

(a) (b)

(c) (d)
Figure 11. (a) Acquired SPR signals (blue line SPR1 on right hand, red line SPR2 on left hand) and
output of the algorithm for motion artifact removal (black line) during a driving session; circles A, B
and C represent some significant portions zoomed in the next sub-figures. (b) Zoom of the signals in
the circle A; when hands are still, the three traces are identical and SPR pulses look with smooth shape.
(c) Zoom of the signals in the circle B; it is evident a motion artifact in right hand, but the output is not
affected remaining close to zero. (d) Zoom of the signals in the circle C; motion artifacts are evident
in both hands in t ∈ [495, 515] s, but the output is not affected; at t = 520 s instead, an SPR pulse is
properly recognized.

Since in this experiment the subjects were driving on a motorway or in a city (and not in a race
track), the artifacts appeared very rarely (the hands motion was limited) and the algorithm removed
all the possible artifacts that were appearing in the signals.
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After the artifact removal, we evaluated the Root Mean Square (RMS) value over a moving
window having duration 5 s. Regarding ECG traces, we extracted several features like HR, SDNN, LF
and LF/HF.

Figure 12a shows the extraction of SPRRMS signal (black line, left axis) from the trace in Figure 11a
and HR signal (red line, right axis) during the driving without traffic. Pink background represents
motorway, light blue background represents urban streets. With the same axes scales, Figure 12b
represents the traces of the same subject when driving with aggressive traffic.

(a)

(b)
Figure 12. Acquired traces from a subject driving without traffic (a), and with aggressive traffic (b).
Black line (left axis) represents SPRRMS signal, red line (right axis) represents HR signal. It is evident
that SPR peaks are by far higher during traffic test and HR shows a higher variability.

From Figure 12 it is evident that SPR activity is considerably higher when driving in aggressive
traffic—the height of the peaks in Figure 12b are higher than the ones in Figure 12a and every peak of
black line corresponds to a sudden lane change of other vehicles or a pedestrian crossing. Similarly,
it is possible to notice that HR has increased variability during a traffic test.

In order to provide a quantitative estimation of perceived stress, we report in Table 3 the mean
values of SPRRMS, HR, SDNN, LF and LF/HF for each driver and for each experiment. Regarding
SPR activity, it is possible to observe that all the subjects show a higher SPRRMS during the traffic
test; in particular, they present an average 39% increase of SPR activity in a traffic test with respect to
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a no-traffic drive test. Regarding HRV, we notice that HR increases in 8 subjects out of 10, with 2%
average increase, SDNN increases in 6 subjects out of 10, with 19% average increase; LF increases in
6 subjects out of 10, with 14% average increase and LF/HF increases in 8 subjects out of 10, with 42%
average increase.

Table 3. Comparison between SPR and HRV features extracted in no-traffic or traffic scenarios.

Subject # No-Traffic Traffic

SPRRMS HR SDNN LF LF/HF SPRRMS HR SDNN LF LF/HF

(mV) (bpm) (ms) (ms2) (mV) (bpm) (ms) (ms2)

1 0.271 96.9 25.17 333 6.11 0.379 96.1 32.51 502 12.2
2 0.651 97.5 41.62 455 5.01 0.773 97.6 39.62 405 5.61
3 0.307 74.3 44.71 937 4.69 0.434 75.8 52.73 918 3.14
4 0.571 75.9 66.21 831 4.71 0.653 75.4 63.84 1499 8.64
5 1.5 71.4 52.31 1129 3.74 1.6 72.1 57.82 1352 4.17
6 0.092 73.9 50.81 442 2.25 0.299 76.3 114.3 586 3.04
7 0.124 67.8 45.51 770 3.75 0.921 71.9 52.61 861 2.55
8 0.326 80.9 34.71 631 3.57 0.354 82.8 31.62 391 6.55
9 0.191 79.9 42.31 798 2.24 0.223 84.7 36.42 830 4.62

10 0.186 78.4 37.42 813 2.07 0.241 79.6 41.85 783 3.48

Mean 0.422 79.7 44.07 714 3.81 0.587 81.2 52.33 813 5.41

Performing a paired t-test between the two sets of data (no traffic and aggressive traffic), we
observe that the SPRRMS is significantly higher with traffic (p = 0.04), HR is significantly higher
with traffic (p = 0.03) and LF/HF is almost significantly higher with traffic (p = 0.06). On the other
hand, we observe that SDNN and LF are higher with traffic but with low significance (p = 0.22 for
both features).

Performing a non-parametric test (Wilcoxon signed rank test) between the two sets of data, we
observe results similar to t-test. In particular, the test on SPRRMS provides p = 0.002, thus the traffic
condition provides higher SPR with high significance; on HR the test provides p = 0.03 so the traffic
condition provides higher HR with significant difference; LF/HF is almost significantly higher with
traffic (p = 0.08) while SDNN and LF have lower significance (p = 0.13 and p = 0.27, respectively).

The results from both t-test and Wilcoxon test remark two important aspects—(1) the necessity of
evaluating more than a single parameter in HRV—for example, evaluating the quantity SDNN ·
LF/HF, the Wilcoxon test provides p = 0.02; (2) the importance of acquiring SPR and HRV
simultaneously (any combination of SPR with HRV parameters provides p < 0.05).

In this scenario, it emerges that the simultaneous acquisition of SPR+ECG with a unique timebase
and with a fully wireless sensor system can be a valuable help to the research in this field.

4. Discussion

From the characterization described in previous Section, we can observe several interesting points
regarding the accuracy of the developed sensor system.

Regarding the characterization of gain and bandwidth shown in Section 3.1, we have to point out
that the gains of the two ECG channels and of the two SPR channels present a very small mismatch and
all the channels present a non-linearity in the order of 0.1%. This confirms the high level of accuracy of
the developed system; moreover, the delay between local signals (ECG) and transmitted ones (SPR)
has been validated in the order of 40 ms, as estimated during the design phase. Finally, the bandwidths
of the analog front ends respect the initial specifications.

The jitter estimation with synthesized ECG demonstrated two important aspects. First, the chosen
analog bandwidth of 75 Hz does not alter the shape of R-peaks (shown in Figure 7a) and thus it is
suitable for tachogram extraction. Second, the jitter introduced by the sensor results lower than sample
rate, thus its effect is negligible for HRV estimation.
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The comparison of ECG acquired with a reference sensor points out some problematic aspects of
HRV estimation. First, looking at Table 2, we observe that the extraction of mean heart rate is extremely
accurate (in the order of 0.2%); the SDNN (in time domain) and the LF (in frequency domain) provide
quite accurate results, in the order of 2%, whilst the least accurate results are provided by the RMSSD
and HF (6%). Observing the data in Table 1 we can see that the magnitude of HF and RMSSD is quite
small in all the acquired experiments (sympathetic activity prevailing on the vagal) and thus, a small
error in absolute terms can reach significant values in relative terms. This observation keeps still open
the issue that, even if HR is evaluated with high accuracy, the HRV has a strong dependency on very
small variations; for this reason the simultaneous acquisition of ECG and EDA can be a useful tool to
improve the knowledge of HRV.

5. Conclusions

We designed a wearable sensors system for the simultaneous measurement of two channels SPR
acquired on the hands and two channels ECG acquired on the chest. The SPR data are sent via WiFi to
the ECG box so the system is completely wireless in order to achieve increased wearability.

The characterization showed high-level performances in terms of linearity and jitter even if the
SPR channels are not wired, despite of a small delay accounted during the design process.

The developed sensor is suitable for stress detection in drivers at simulators, but its application
can be extended to other fields like safety on workplace, game addiction, development of adaptive
video games, and so on.

As a future work, we are studying an improvement of the motion artifact algorithm presented in
Reference [44]; the main limit of this methodology, in fact, is the accurate removal of motion artifacts
that arise when the subject, with sudden and rough movements, solicits the electrode posed on the
palm of the hand.

We are also working to improve the SVM described in Reference [26], in particular we want to
discriminate the minimum set of features to accurately train the SVM, and we are going to integrate
the system with computer vision sensors measuring the pupil diameter, eye blinking rate and the
gaze direction.
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