114 research outputs found

    Sentinel-1 Satellite Data as a Tool for Monitoring Inundation Areas near Urban Areas in the Mexican Tropical Wet

    Get PDF
    This work shows advances in the field of water body monitoring with radar images. Particularly, a monitoring procedure is developed to define the extension and frequency of inundation for continental waters of the Grijalva-Usumacinta basin, in the state of Tabasco, Mexico. This is a region located in the Mexican tropical wet and under its meteorological conditions, radar technology can be used to characterize monthly inundation frequency. The identification of water bodies were obtained by processing images at a monthly intervals captured by Sentinel-1A during 2015 having kappa indices and overall accuracy higher than 0.9. The chapter describes the seasonal variability of these water bodies, and at the same time, the relationship with human settlements located in their neighborhood. To do this, a proximity analysis was carried out to emphasize the importance of spatial-temporal studies of superficial water bodies, linked to an urban and a rural area. This information is useful to investigate changes in the ecosystem, as well as risks to human settlements, and as a contribution for a comprehensive management of hydric resources

    CID Survey Report Satellite Imagery and Associated Services used by the JRC. Current Status and Future Needs

    Get PDF
    The Agriculture and Fisheries Unit (IPSC) together with the Informatics, Networks and Library Unit (ISD) has performed this inventory called the Community Image Data portal Survey (the CID Survey); 20 Actions from 4 different Institutes (ISD, IPSC, IES, and IHCP) were interviewed. The objectives of the survey were to make an inventory of existing satellite data and future requirements; to obtain an overview of how data is acquired, used and stored; to quantify human and financial resources engaged in this process; to quantify storage needs and to query the staff involved in image acquisition and management on their needs and ideas for improvements in view of defining a single JRC portal through which imaging requests could be addressed. Within the JRC there are (including 2006) more than 700 000 low resolution (LR) and 50 000 medium resolution (MR) images, with time series as far back as 1981 for the LR data. There are more than 10 000 high resolution (HR) images and over 500 000 km2 of very high resolution (VHR) images. For the LR and MR data, cyclic global or continental coverage dominates, while the majority of HR and VHR data is acquired over Europe. The expected data purchase in the future (2007, 2008) known which enables good planning. Most purchases of VHR and HR data are made using the established FCs with common licensing terms. Otherwise multiple types of licensing govern data usage which emphasizes the need for CID to establish adequate means of data access. The total amount of image data stored (2006 inclusive) is 55 TB, with an expected increase of 80% in 2 years. Most of the image data is stored on internal network storage inside the corporate network which implies that the data is accessible from JRC, but difficulties arise when access is to be made by external users via Internet. In principle current storage capacity in the JRC could be enough, but available space is fragmented between Actions which therefore implies that a deficit in storage could arise. One solution to this issue is the sharing of a central storage service. Data reception is dominated by FTP data transfer which therefore requires reliable and fast Internet transfer bandwidth. High total volume for backup requires thorough definition of backup strategy. The user groups at JRC are heterogeneous which places requirements on CID to provide flexible authentication mechanisms. There is a requirement for a detailed analysis of all metadata standards needed for reference in a catalogue. There is a priority interest for such Catalogue Service and also for a centralized storage. The services to implement for data hosted on central storage should be WCS, WMS, file system access. During the analysis of the results mentioned above, some major areas could be identified as a base for common services to be provided to interested Actions, such as: provision of a centralized data storage facility with file serving functionality including authentication service, image catalogue services, data visualization and dissemination services. Specialized data services that require highly customized functionality with respect to certain properties of the different image types will usually remain the sole responsibility of the individual Actions. An orthorectification service for semi-automated orthorectification of HR and VHR data will be provided to certain Actions. At the end of the report some priorities and an implementation schedule for the Community Image Data portal (CID) are given.JRC.G.3-Agricultur

    VALIDATION OF SPACEBORNE RADAR SURFACE WATER MAPPING WITH OPTICAL sUAS IMAGES

    Get PDF

    Delineation of Surface Water Features Using RADARSAT-2 Imagery and a TOPAZ Masking Approach over the Prairie Pothole Region in Canada

    Get PDF
    The Prairie Pothole Region (PPR) is one of the most rapidly changing environments in the world. In the PPR of North America, topographic depressions are common, and they are an essential water storage element in the regional hydrological system. The accurate delineation of surface water bodies is important for a variety of reasons, including conservation, environmental management, and better understanding of hydrological and climate modeling. There are numerous surface water bodies across the northern Prairie Region, making it challenging to provide near-real-time monitoring and in situ measurements of the spatial and temporal variation in the surface water area. Satellite remote sensing is the only practical approach to delineating the surface water area of Prairie potholes on an ongoing and cost-effective basis. Optical satellite imagery is able to detect surface water but only under cloud-free conditions, a substantial limitation for operational monitoring of surface water variability. However, as an active sensor, RADARSAT-2 (RS-2) has the ability to provide data for surface water detection that can overcome the limitation of optical sensors. In this research, a threshold-based procedure was developed using Fine Wide (F0W3), Wide (W2) and Standard (S3) modes to delineate the extent of surface water areas in the St. Denis and Smith Creek study basins, Saskatchewan, Canada. RS-2 thresholding results yielded a higher number of apparent water surfaces than were visible in high-resolution optical imagery (SPOT) of comparable resolution acquired at nearly the same time. TOPAZ software was used to determine the maximum possible extent of water ponding on the surface by analyzing high-resolution LiDAR-based DEM data. Removing water bodies outside the depressions mapped by TOPAZ improved the resulting images, which corresponded more closely to the SPOT surface water images. The results demonstrate the potential of TOPAZ masking for RS-2 surface water mapping used for operational purposes

    Assessment of high resolution SAR imagery for mapping floodplain water bodies: a comparison between Radarsat-2 and TerraSAR-X

    Get PDF
    Flooding is a world-wide problem that is considered as one of the most devastating natural hazards. New commercially available high spatial resolution Synthetic Aperture RADAR satellite imagery provides new potential for flood mapping. This research provides a quantitative assessment of high spatial resolution RADASAT-2 and TerraSAR-X products for mapping water bodies in order to help validate products that can be used to assist flood disaster management. An area near Dhaka in Bangladesh is used as a test site because of the large number of water bodies of different sizes and its history of frequent flooding associated with annual monsoon rainfall. Sample water bodies were delineated in the field using kinematic differential GPS to train and test automatic methods for water body mapping. SAR sensors products were acquired concurrently with the field visits; imagery were acquired with similar polarization, look direction and incidence angle in an experimental design to evaluate which has best accuracy for mapping flood water extent. A methodology for mapping water areas from non-water areas was developed based on radar backscatter texture analysis. Texture filters, based on Haralick occurrence and co-occurrence measures, were compared and images classified using supervised, unsupervised and contextual classifiers. The evaluation of image products is based on an accuracy assessment of error matrix method using randomly selected ground truth data. An accuracy comparison was performed between classified images of both TerraSAR-X and Radarsat-2 sensors in order to identify any differences in mapping floods. Results were validated using information from field inspections conducted in good conditions in February 2009, and applying a model-assisted difference estimator for estimating flood area to derive Confidence Interval (CI) statistics at the 95% Confidence Level (CL) for the area mapped as water. For Radarsat-2 Ultrafine, TerraSAR-X Stripmap and Spotlight imagery, overall classification accuracy was greater than 93%. Results demonstrate that small water bodies down to areas as small as 150m² can be identified routinely from 3 metre resolution SAR imagery. The results further showed that TerraSAR-X stripmap and spotlight images have better overall accuracy than RADARSAT-2 ultrafine beam modes images. The expected benefits of the research will be to improve the provision of data to assess flood risk and vulnerability, thus assisting in disaster management and post-flood recovery

    Ocean Wind Fields from Satellite Active Microwave Sensors

    Get PDF

    Monitoring wetlands and water bodies in semi-arid Sub-Saharan regions

    Get PDF
    Surface water in wetlands is a critical resource in semi-arid West-African regions that are frequently exposed to droughts. Wetlands are of utmost importance for the population as well as the environment, and are subject to rapidly changing seasonal fluctuations. Dynamics of wetlands in the study area are still poorly understood, and the potential of remote sensing-derived information as a large-scale, multi-temporal, comparable and independent measurement source is not exploited. This work shows successful wetland monitoring with remote sensing in savannah and Sahel regions in Burkina Faso, focusing on the main study site Lac Bam (Lake Bam). Long-term optical time series from MODIS with medium spatial resolution (MR), and short-term synthetic aperture radar (SAR) time series from TerraSAR-X and RADARSAT-2 with high spatial resolution (HR) successfully demonstrate the classification and dynamic monitoring of relevant wetland features, e.g. open water, flooded vegetation and irrigated cultivation. Methodological highlights are time series analysis, e.g. spatio-temporal dynamics or multitemporal-classification, as well as polarimetric SAR (polSAR) processing, i.e. the Kennaugh elements, enabling physical interpretation of SAR scattering mechanisms for dual-polarized data. A multi-sensor and multi-frequency SAR data combination provides added value, and reveals that dual-co-pol SAR data is most recommended for monitoring wetlands of this type. The interpretation of environmental or man-made processes such as water areas spreading out further but retreating or evaporating faster, co-occurrence of droughts with surface water and vegetation anomalies, expansion of irrigated agriculture or new dam building, can be detected with MR optical and HR SAR time series. To capture long-term impacts of water extraction, sedimentation and climate change on wetlands, remote sensing solutions are available, and would have great potential to contribute to water management in Africa

    Recommendations concerning satellite-acquired earth resource data: 1982 report of the Data Management Subcommittee of the GEOSAT Committee, Incorporated

    Get PDF
    End user concerns about the content and accessibility of libraries of remote sensing data in general are addressed. Recommendations pertaining to the United States' satellite remote sensing programs urge: (1) the continuation of the NASA/EROS Data Center program to convert pre-1979 scenes to computer readable tapes and create a historical archive of this valuable data; (2) improving the EROS archive by adding geologically interesting scenes, data from other agencies (including previously classified data), and by adopting a policy to retire data from the archive; (3) establishing a computer data base inquiry system that includes remote sensing data from all publically available sources; (4) capability for prepurchase review and evaluation; (5) a flexible price structure; and (6) adoption of standard digital data products format. Information about LANDSAT 4, the status of worldwide LANDSAT receiving stations, future non-U.S. remote sensing satellites, a list of sources for LANDSAT data, and the results of a survey of GEOSAT members' remote sensing data processing systems are also considered
    • …
    corecore