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Abstract 

Global inland and coastal wetlands cover a size of about 12 million km², an area larger than 
Canada. Whereas natural wetlands have declined worldwide by about 35% during the past 50 
years, artificial reservoirs have almost doubled (Ramsar Convention on Wetlands, 2018). 
Surface water in wetlands is a global concern. It is a critical resource specifically in semiarid 
West-African regions that are frequently exposed to droughts. Wetlands and their surface 
water are of utmost importance for the population as well as the environment, providing 
various ecosystem services. The significance of surface water as resource for drinking and 
sanitation; as basis for the major livelihoods: agriculture, pastoralism, fishery, and mining; as 
well as for biodiversity is extremely high for a land-locked and water-scarce country like 
Burkina Faso, where the study area is located. Wetlands cover about 10% of the Sahel when 
they are at maximum water extent (Magdwick et al., 2017), a dimension which could easily be 
underestimated considering the importance of wetlands for societal and environmental 
concerns. Wetlands in semi-arid areas are subject to rapidly changing conditions and seasonal 
fluctuations, e.g., changing water extents, water levels and water quality, varying soil moisture, 
seasonal appearance of aquatic vegetation as well as seasonal rain-fed and irrigated 
agriculture. Such variabilities are particularly strong in semi-arid areas with pronounced rainy 
and dry seasons, such as in the sub-Saharan savannah and Sahel of Burkina Faso.  

Dynamics of wetlands in the study area, however, are still poorly understood. In the case of 
smallholder irrigated agriculture, transhumant pastoralism or fishing, uncoordinated water 
use and land use take place. Anthropogenic influences lead to high siltation rates impacting 
the lake floor topography and therefore surface water extents. In this region there are no 
systematic measurements of the wetland area, and even the number of natural wetlands and 
artificial reservoirs varies from source to source. A selected number of water bodies are 
observed in terms of ground-based water level measurements, but the potential of remote 
sensing-derived information as a large-scale, multi-temporal, comparable and independent 
measurement source is not exploited.  

The main goal of this thesis is to investigate how optical and radar remote sensing time series 
can be applied for spatio-temporal monitoring of wetlands in semi-arid sub-Saharan Africa, 
over large spatial scales and with dense temporal intervals. Two types of datasets were chosen: 
multitemporal and long-term optical time series from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) at medium spatial resolution, as well as multitemporal 
and short-term synthetic aperture radar (SAR) time series from the satellites 
TerraSAR-X (TSX) and RADARSAT-2 (RS-2) at high spatial resolution.  
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The focus of this cumulative dissertation is on two research questions: 

(i) Can spatio-temporal dynamics for sub-Saharan wetlands be derived using MODIS
medium resolution time series? (Chapters 3, 4 and 5).

(ii) Can the wetland classes open water, flooded or floating vegetation, and irrigated
cultivation be monitored using dual-polarized SAR time series from TerraSAR-X
and RADARSAT-2? (Chapters 3, 6, 7 and 8).

With respect to (i), MODIS data with 250 meter spatial resolution (MOD09Q1), 
complemented by 500 meter data (MOD09A1), were used to monitor wetlands and reservoirs 
in semi-arid Burkina Faso for the period 2000–2012, along a latitudinal gradient of different 
rainfall and land use characteristics, covering three different climatic zones. Additionally, 
ancillary data mainly from the SRTM digital elevation model, Landsat as well as photos 
geolocated with GPS that were collected during fieldwork in Burkina Faso were used. Related 
to (ii), unique SAR datasets were generated specifically for the main study site Lac Bam. An 
11-day repeat-pass time series from TerraSAR-X dual-co-polarized (HH-VV) data of 5 m pixel
spacing was first used for a detailed study between 2013 and 2015 and later extended until 2018.
Two repeat-pass time series (ascending and descending pass) of 24-days each from
RADARSAT-2 dual-cross-polarized (HH-HV) data of 5 m pixel spacing were added for the
season 2014–2015, and used in synergy with an interval of 11 and 13 days between them.
Moreover, very high resolution optical data from WorldView-2 and GeoEye-1 as well as various
RapidEye images were utilized as reference, alongside geolocated photos from two fieldwork
expeditions.

The results of (i) represent the first dynamic water product derived from 250 m MODIS data in 
the study area, showing the successful open surface water monitoring, focusing on the 
exploitation of near infrared-capabilities (Chapters 3 and 4). Results could be successfully 
derived from September to May of the entire analysis period. The monthly classified water 
areas were in very good accordance of 89.5%–93.5% with respect to the single-date Landsat-
based reference water masks. Limitations appeared due to cloud cover during the rainy 
season, increasingly towards the south, leading to data gaps between June and August. 
Aquatic vegetation cover also limited water detection. In total 219 wetlands larger than 
0.1 km², among them 68 larger than 1 km², were detected. Only a few small wetlands were 
found to have significantly diminished or completely disappeared during the analysis period. 
21 newly appeared artificial water bodies greater than 0.5 km² were detected, among them 
three substantially large water bodies, concluding to strong anthropogenic influence on water 
distribution and land use in the region. Spatio-temporal observations of the water surface area 
were derived and visualized as annual cumulative water covered area. A trend analysis in the 
investigation period shows a tendency toward larger water coverage but of shorter duration, 
which is likely connected to siltation effects causing wetlands to become shallower and water 
evaporating faster, which has a dramatic impact on lakes and land use around them. Five case 
studies consisting of two natural and three artificial wetlands were analyzed in further detail. 
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The seasonal cycles of natural wetlands appear more regular than for artificial wetlands, and 
water coverage duration increases from north to south. The water covered area at the end of 
the rainy season can be an indicator of the water availability in the coming dry season. 
Reduced water extent and duration of water coverage in the drought seasons of 2000–2001, 
2004–2005 and 2011–2012 could be observed for both types of wetlands, as well as negative 
monthly surface water anomalies. The largest positive anomalies of all case study wetlands 
corresponded to the 2003–2004 and 2005–2006 seasons. 

In a second step, surface water was jointly observed with the Normalized Difference 
Vegetation Index (NDVI) computed on the MODIS time series, both within and around the 
wetland area and in the surroundings (Chapters 3 and 5). Results demonstrated a connection 
of the occurrence of drought seasons with negative vegetation anomalies in the whole study 
area, as well as negative anomalies of surface water coverage. Anthropogenic effects such as 
the timing of dam constructions and development of new reservoirs could be detected with 
MODIS time series. Moreover, despite the only medium spatial resolution of the MODIS 
sensor, increasing land use activities in terms of small-scale irrigated agriculture could be 
observed with MODIS, as well as larger irrigated areas downstream of artificial water bodies. 
Both of these anthropogenically caused effects are known to the local authorities but are not 
quantified or mapped. 

The results of (ii) constitute the first remote sensing study dedicated to Lac Bam. It is also the 
first X-band SAR dual-co-polarized (HH-VV) high-resolution time series monitoring of 
African wetlands (Chapters 3, 6 and 8), and among the novel innovative SAR polarimetry 
studies applying multitemporal wetland classification with a dense time series as input 
(Chapters 6 and 7), including a multi-frequency study (Chapter 7). The Kennaugh element 
framework was chosen for SAR image processing because of its flexibility and robustness, 
enabling the application onto different sensors, frequencies and polarization combinations. 
A decomposition based on the Kennaugh matrix results in four geolocated and calibrated 
Kennaugh elements in the case of dual-polarized data, which represent layers with physically 
interpretable scattering mechanisms. A monotemporal supervised classification was computed 
using the Kennaugh elements from each TerraSAR-X image of the time series (2013–2015) for 
the three wetland classes (open water, flooded and floating vegetation, and irrigated 
cultivation), alongside with the dry land (non-wetland) class. The accuracy assessment based 
on four selected dates in the time series resulted in very high producer’s accuracies (PA) and 
user’s accuracies (UA) of 90–100% for open water. Very satisfying accuracies considering 
single-image classifications resulted for flooded vegetation (PA in the range of 91–95% and 
UA 83–84%), and medium accuracies for irrigated fields (PA 69–82% and UA 66–69%). 
Misclassifications as non-wetland class lowered the UA ranges of the latter two.  

Cumulative duration maps for the three wetland classes were computed for each season. Time 
series of the classes’ spatial extent were plotted revealing expected seasonal cycles for each 
class, and temporal shifts between the seasons 2013–2014 and 2014–2015. A similar analysis was 
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carried out until 2018 over a 5-year period. An increase in maximum water surface was 
detected, paired with a decrease of the minimum water surface at the end of the dry season; 
the latter did not always coincide with lower precipitation. This is assumed to be connected 
with increasing siltation and further spread-out of water, as well as the increase of water 
extraction for irrigation, both matching with the findings from the 12-year MODIS analysis 
period (Chapters 3, 4 and 5), and with reports from local authorities. An expansion of irrigated 
fields further away from the lake was detected as well over the five seasons using TerraSAR-X; 
which can be confirmed using selected available high-resolution Landsat and RapidEye images 
from recent years.  

With the goal to classify seven dynamic change classes over a season directly from a stack of 
input data, a multitemporal classification was performed using the Kennaugh elements 
(Chapters 6 and 7). Seven combinations of change classes between the land covers open water, 
flooded vegetation, irrigated fields and non-wetland were defined. In addition, the approach 
was successfully transferred onto dual cross-polarized (HH-HV) RADARSAT-2 time series in 
C-band frequency. Different experiments, using combinations of Kennaugh elements from
TerraSAR-X and RADARSAT-2 time series, separately and in fusion, were performed. Since the
dual-cross-polarized case of RADARSAT-2 does not allow to derive the meaningful Kennaugh
elements to interpret the double-bounce effect and the HH-VV difference, the monotemporal
detection of flooded vegetation is limited. The multitemporal RADARSAT-2 classification,
however, results in almost the same high overall accuracy (OA) of 90.6% as for the TerraSAR-
X data stack (92.1%), concluding to the power of dense temporal information in remotely
sensed data. A fusion of Kennaugh elements from the two sensors even reaches an OA of
92.8%. The added value of dual-polarized SAR data is demonstrated by significantly higher
accuracies compared to performing the multitemporal classification with single-polarized SAR
intensity data from TerraSAR-X (OA 81.6%) and RADARSAT-2 (OA 84.4%). For all change
classes involving flooded vegetation and irrigated fields, multi-polarized data is indispensable.

In summary, this thesis’ work shows the successful monitoring of sub-Saharan wetlands with 
remote sensing, providing added value and new research contributions related to 
methodological innovations as well as the interpretation of environmental processes. Both 
(i) multitemporal and long-term optical time series from MODIS with medium spatial 
resolution, and (ii) multitemporal and short-term SAR time series from TerraSAR-X and 
RADARSAT-2 with high spatial resolution successfully demonstrated the monitoring of 
relevant wetland features such as water coverage, flooded wetland vegetation as well as 
irrigated cultivation. A continuation of the presented investigations in terms of future work is 
feasible since MODIS is openly available and acquiring data since more than 20 years as of 
now, with compatible continuity missions such as VIIRS in orbit. Acquisitions of the 
TerraSAR-X time series will be continued for future studies at Lac Bam. These could provide 
valuable insight on observing the effects of the recent restoration project. Further 
recommendations for future work include the exploitation of new sensors in space. On the 
one hand, C-band SAR (e.g., Sentinel-1, Radarsat Constellation Mission) or high-resolution
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optical multispectral data (e.g., Sentinel-2, Landsat-8 and soon Landsat-9) would be suitable, 
and a combination of optical and SAR sensors is recommended. Such sensors offer regular 
high-temporal data to exploit time series analysis methods at an unprecedented spatial detail. 
On the other hand, growing archives of medium-resolution time series enable analyses going 
back further and further into the past, particularly with optical medium-resolution data such 
as combinations of MODIS and AVHRR (back until 1980), or Proba-V and SPOT 
VEGETATION (back until 1998). The analysis methods developed in this dissertation and/or 
data from time series of all these sensors are recommended to fill the following research gaps: 
(i) derivation of seasonal change classes using multitemporal classification or temporal
metrics, (ii) definition of the wetland extent using multitemporal analysis, (iii) development of
low-cost monitoring systems, (iv) provision of added value to ongoing wetland initiatives such
as Ramsar or the monitoring of the SDG indicators, (v) connected to that, incorporation
into/modification of existing classification systems, and (vi) the inclusion of surface water
dynamics analysis into drought monitoring indices and models. To conclude, this work
provides a significant contribution to the monitoring of water availability and water use in
sub-Saharan wetland areas using remotely sensed time series.
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Zusammenfassung 

Globale Binnen- und Küsten-Feuchtgebiete bedecken eine Fläche von ungefähr 12 Millionen 
km², einer Fläche größer als Kanada. Während in den vergangenen 50 Jahren natürliche 
Feuchtgebiete weltweit um 35% rückläufig waren, haben sich künstlich angelegte 
Wasserreservoire fast verdoppelt (Ramsar Convention on Wetlands, 2018). Oberflächenwasser 
in Feuchtgebieten ist eine kritische Ressource und globales Anliegen, besonders in semi-
ariden westafrikanischen Regionen, welche oft Dürren ausgesetzt sind. Sie sind von großer 
Bedeutung für die Bevölkerung als auch die Umwelt, und erfüllen verschiedene Ökosystem-
Dienstleistungen. Für ein Land wie Burkina Faso – wo sich das Untersuchungsgebiet befindet 
– ohne Meereszugang und mit Problemen der Wasserknappheit ist die Bedeutung solcher
Wasserressourcen extrem hoch, als Trinkwasser oder zur Sanitärversorgung oder als Basis für
die dominanten Lebensgrundlagen: Landwirtschaft, pastorale Viehwirtschaft, Fischerei und
Bergbau; als auch für Biodiversität. Feuchtgebiete bedecken bei Maximalwasserausdehnung
ungefähr 10% der Fläche der Sahel (Magdwick et al., 2017), eine Dimension welche leicht
unterschätzt werden könnte gemessen an der Wichtigkeit für gesellschaftliche- und
Umweltanliegen. Feuchtgebiete in semi-ariden Gebieten unterliegen saisonalen
Schwankungen und schnell veränderlichen Bedingungen, z.B. veränderlicher Wasserfläche,
Wasserstand und Wasserqualität, variierender Bodenfeuchte, Auftreten von saisonal gefluteter
Vegetation als auch saisonalem Regenfeldbau bzw. bewässerter Landwirtschaft. Besonders
starke jahreszeitliche Schwankungen bestehen in Gebieten mit ausgeprägter Regen- und
Trockenzeit, wie beispielsweise in der Savanne der Sub-Sahara und Sahel von Burkina Faso.

Die Dynamik von Feuchtgebieten im Untersuchungsgebiet ist jedoch noch unzureichend 
untersucht. Kleinbäuerliche Bewässerungslandwirtschaft, Wanderweidewirtschaft oder 
Fischerei führt zu unkoordinierter Wasser- und Landnutzung. Anthropogene Einflüsse führen 
zu hoher Verschlammung, was Auswirkungen auf die Gewässerboden-Topographie und daher 
auch die Wasserflächenausdehnung hat. In der Region gibt es keine systematischen 
Messungen der Fläche von Feuchtgebieten und selbst die Anzahl an natürlichen und 
künstlichen Feuchtgebieten variiert von Quelle zu Quelle. An einer Auswahl an Gewässern 
werden bodenbasierte Wasserstands-Pegelmessungen durchgeführt, aber die Möglichkeit der 
Fernerkundung als großflächige, multitemporale, vergleichbare und unabhängige 
Messmethode wird nicht ausgeschöpft.  

Das Hauptziel dieser Dissertation ist die Untersuchung der Eignung optischer- und Radar-
Zeitreihen für raumzeitliches Monitoring von Feuchtgebieten in der semi-ariden Subsahara 
Afrikas, über große räumliche Gebiete und enge Zeitintervalle. Zwei Arten von Datensätzen 
wurden ausgewählt: multi-temporale und langzeitliche optische Zeitreihen vom 
Sensor “Moderate Resolution Imaging Spectroradiometer“ (MODIS) mit mittlerer 
räumlicher Auflösung, sowie multi-temporale und kurzzeitige Zeitreihen von Radardaten 
mit synthetischer Blende (“Synthetic Apertur Radar“, SAR) der Satelliten TerraSAR-X (TSX)
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und RADARSAT-2 (RS-2) mit hoher räumlicher Auflösung. Der Schwerpunkt dieser 
Dissertation ist auf zwei Forschungsfragen gelegt:  

(i) Können raumzeitliche Veränderungen in Feuchtgebieten der Subsahara aus 
MODIS mittelaufgelösten Zeitreihen abgeleitet werden? (Kapitel 3, 4 und 5)  

(ii) Können die Feuchtgebiets-Klassen offenes Wasser, geflutete oder schwimmende 
Vegetation und bewässerte Landwirtschaft mit zweifach-polarisierten SAR 
Zeitreihen von TerraSAR-X und RADARSAT-2 überwacht werden? (Kapitel 3, 6, 7 
und 8) 

In Bezug auf (i), MODIS Daten mit 250 Meter räumlicher Auflösung (MOD09Q1), ergänzt 
durch 500 Meter Daten (MOD09A1) wurden für das Monitoring von Feuchtgebieten und 
Reservoiren im semi-ariden Burkina Faso für den Zeitraum 2000–2012 verwendet, entlang 
eines latitudinalen Gradienten unterschiedlicher Niederschlags- und Landnutzungs-
Charakteristika, welcher drei Klimazonen überspannt. Außerdem wurden Zusatzdaten, 
vorwiegend von dem SRTM digitalen Höhenmodell, Landsat bzw. mit GPS geokodierte Fotos 
verwendet, welche bei Feldarbeiten in Burkina Faso erhoben wurden. Bezogen auf (ii), 
einzigartige SAR Datensätze wurden speziell für das Haupt-Untersuchungsgebiet Lac Bam 
generiert. Eine zweifach-kopolare (HH-VV) TerraSAR-X Zeitreihe mit 5 Meter Pixelgröße und 
einem 11 Tage-Intervall unter gleicher Aufnahmegeometrie (Repeat-Pass Aufnahmen) wurde 
zuerst für eine detaillierte Studie von 2013–2015 angewandt, und später bis 2018 erweitert. Zwei 
zweifach-kreuzpolare (HH-HV) RADARSAT-2 Zeitreihen mit 5 Meter Pixelgröße und einem 
24 Tage-Intervall unter gleicher Aufnahmegeometrie wurden für die Saison 2014–2015 
hinzugefügt, und mit einem zeitlichen Intervall von 11 bzw. 13 Tagen zwischen den Aufnahmen 
in Synergie verwendet. Darüber hinaus wurden sehr hochaufgelöste optische Daten von 
WorldView-2 und GeoEye-1 sowie mehrere RapidEye Bilder als Referenz verwendet, 
gemeinsam mit geokodierten Fotos von zwei Feldexpeditionen.  

Die Resultate von (i) repräsentieren das erste dynamische Wasserprodukt abgeleitet aus 250 m 
MODIS Daten in dem Untersuchungsgebiet, und zeigen das erfolgreiche Monitoring von 
Oberflächenwasser, unter Verwendung des nahen Infrarot-Bereiches (Kapitel 3 und 4). Die 
Ergebnisse im Zeitraum September bis Mai des gesamten Analysezeitraums konnten 
erfolgreich abgeleitet werden. Die monatlich klassifizierten Wasserflächen waren in sehr guter 
Übereinstimmung von 89,5%–93,5% verglichen mit Landsat-basierten Referenzwassermasken. 
Einschränkungen ergaben sich auf Grund der Wolkenbedeckung zur Regenzeit, zunehmend 
Richtung Süden, was zu Datenlücken zwischen Juni und August führte. Aquatische Vegetation 
hat die Wasserdetektion ebenfalls eingeschränkt. Insgesamt konnten 219 Feuchtgebiete größer 
als 0,1 km² erkannt werden, darunter 68 mit einer Größe von über 1 km². Nur wenige kleine 
Feuchtgebiete wurden während des Analysezeitraums (2000-2012) stark verringert oder 
verschwanden komplett. Erkannt wurden 21 neu entstandene künstlich angelegte Reservoire 
größer als 0,5 km², darunter drei erheblich große Gewässer, was auf einen starken 
anthropogenen Einfluss auf die Wasserverteilung und Landnutzung in der Region 
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rückschließen lässt. Raumzeitliche Beobachtungen der Wasserfläche wurden erhoben und als 
jährliche kumulative Wasserfläche visualisiert. Eine Trendanalyse im Untersuchungszeitraum 
zeigt eine Tendenz Richtung größerer Wasserflächenausdehnung, welche aber von kürzerer 
Dauer ist. Dies steht in Zusammenhang mit Verschlammungseffekten wodurch die 
Feuchtgebiete seichter werden und Wasser schneller verdunsten kann, was dramatische 
Auswirkungen auf Seen und die umliegende Landnutzung hat. Fünf Fallstudien – bestehend 
aus zwei natürlichen und drei künstlichen Feuchtgebieten – wurden im Detail analysiert und 
zeigen, dass die saisonalen Zyklen der natürlichen Feuchtgebiete regulärer sind als die der 
künstlichen, und die Dauer der Wasserbedeckung von Norden nach Süden zunimmt. Die 
Ausdehnung der Wasserflächen zum Ende der Regenzeit kann ein Indikator für die 
Wasserverfügbarkeit in der kommenden Trockensaison sein. Eine reduzierte 
Wasserausdehnung und Bedeckungsdauer in den Dürrejahren 2000–2001, 2004–2005 und 
2011–2012 konnte für beide Typen an Feuchtgebieten beobachtet werden, sowie negative 
monatliche Anomalien der Wasserfläche. Die größten positiven Anomalien für alle Fallstudien 
stimmten mit den Jahren 2003–2004 und 2005–2006 überein. 

Anhand der MODIS Zeitreihe (Kapitel 3 und 5) wurden in einem zweiten Schritt 
Wasserflächen gemeinsam mit Vegetationsflächen analysiert, unter Berechnung des 
„Normalized Difference Vegetation Index“ (NDVI) im Bereich der Feuchtgebiete und der 
weiteren Umgebung. Ein Zusammenhang von Dürreperioden mit negativen 
Vegetationsanomalien im gesamten Untersuchungsgebiet und negativen Anomalien der 
Wasserflächenausdehnung konnte nachgewiesen werden. Anthropogene Effekte z.B. der 
Zeitpunkt von Staudamm Konstruktionen und die Entwicklung neuer künstlicher Reservoire 
konnten mit MODIS erkannt werden. Trotz der nur mittleren räumlichen Auflösung des 
MODIS Sensors konnten zunehmende Landnutzungsaktivitäten in Form von kleinräumigem 
Bewässerungsfeldbau mit MODIS beobachtet werden, als auch größere Bewässerungsregionen 
stromabwärts von künstlichen Seen. Diese beiden menschengemachten Effekte sind lokalen 
Behörden bewusst, werden aber weder quantifiziert noch kartiert.  

Die Resultate unter (ii) stellen die erste Lac Bam zugeordnete Fernerkundungsstudie dar. Es 
ist auch das erste X-Band SAR zweifach-kopolarisierte (HH-VV) hochaufgelöste Zeitreihen 
Monitoring für Afrikanische Feuchtgebiete (Kapitel 3, 6 und 8), und unter den innovativen 
Radar-polarimetrischen Studien bei denen eine multitemporale Klassifikation von 
Feuchtgebieten mit dichten Zeitreihen als Input zur Anwendung kommt (Kapitel 6 and 7), 
inklusive einer multi-frequenten Analyse (Kapitel 7). Wegen seiner Flexibilität und 
Robustheit, welche eine Anwendung auf verschiedene Sensoren, Frequenzen und 
Polarisationen ermöglichen, wurde das Kennaugh Element Framework als SAR 
Bildverarbeitungsmethode gewählt. Eine Dekomposition (Zerlegung der Rückstreu-
mechanismen in Einzelkomponenten) basierend auf der Kennaugh Matrix ergibt, im Fall von 
zweifach-polarisierten Daten, vier geocodierte und kalibrierte Kennaugh Elemente, welche 
Layer mit physisch interpretierbaren Rückstreumechanismen darstellen. Für die drei 
Feuchtgebietsklassen – offenes Wasser, geflutete oder schwimmende Vegetation, bewässerte 
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Felder – und einer zusätzlichen nicht-Feuchtgebiets-Klasse, wurde für die Kennaugh Elemente 
jedes TerraSAR-X Bildes in der Zeitreihe (2013–2015) eine monotemporale überwachte 
Klassifikation berechnet. Die Genauigkeitsanalyse, angewendet auf vier ausgewählte 
Zeitpunkte der Zeitreihe, ergab sehr hohe Erzeuger-Genauigkeit (producers‘ accuracies, PA) 
und Nutzer-Genauigkeit (user’s accuracies, UA) von 95–100% für offenes Wasser. Hohe 
Genauigkeiten für geflutete Vegetation (PA im Bereich von 91–95% und UA 83–84%), 
berücksichtigend dass es sich hier um Einzelbildklassifikationen handelt und mittlere 
Genauigkeiten für bewässerte Felder (PA 69–82% und UA 66–69%). Fehlklassifikationen als 
nicht-Feuchtgebiet Klasse senkten die UA Bereiche der beiden letztgenannten Klassen herab.  

Eine jährliche kumulative Darstellung der drei Feuchtgebiets-Klassen wurde berechnet. 
Zeitreihen der räumlichen Ausdehnung der Klassen zeigten erwartete jahreszeitliche Zyklen 
auf, sowie zeitliche Versätze zwischen den Jahren 2013–2014 und 2014–2015. Eine ähnliche 
Analyse wurde für einen 5-Jahres-Zyklus bis 2018 durchgeführt. Ein Anstieg der maximalen 
Wasserausdehnung wurde beobachtet, gemeinsam mit einer Verringerung der Wasserflächen 
gegen Ende der Regensaison, was sich nicht immer mit geringeren Niederschlagsmessungen 
erklären ließ. Ein Zusammenhang mit der Verschlammung des Sees welche eine größere 
Ausbreitung der Wasserflächen bewirkt, als auch die Wasserentnahme zur Bewässerung wird 
angenommen, was beides mit den Ergebnissen der 12-jährigen MODIS Analyse (Kapitel 3, 4 
und 5), und auch mit Berichten der lokalen Behörden übereinstimmt. Eine Ausbreitung von 
bewässerten Feldern in weiter entfernten Gebieten vom See, konnte über die 5-jährigen 
TerraSAR-X Beobachtungen festgestellt werden, und mit ausgewählten hochaufgelösten 
optischen Landsat und RapidEye Daten der letzten Jahre bestätigt werden. 

Mit dem Ziel der Klassifizierung von sieben Veränderungsklassen über eine Saison direkt aus 
der kompletten Zeitreihe als Input, wurde eine multitemporale Klassifikation unter 
Verwendung der Kennaugh Elemente durchgeführt (Kapitel 6 und 7). Sieben Kombinationen 
an Veränderungsklassen zwischen den Landbedeckungen offenes Wasser, geflutete 
Vegetation, bewässerte Felder und nicht-Feuchtgebiet wurden definiert. Zusätzlich konnte der 
Ansatz erfolgreich auf eine zweifach-kreuzpolare (HH-HV) RADARSAT-2 Zeitreihe im C-band 
Frequenzbereich transferiert werden. Verschiedene Experimente, unter Verwendung 
verschiedener Kombinationen von Kennaugh Elementen von TerraSAR-X und RADARSAT-2, 
wurden einzeln für jeden Sensor und in Fusion durchgeführt. Da im zweifach-kreuzpolaren 
Fall von RADARSAT-2 die Ableitung der bedeutendsten Kennaugh Elemente, welche die 
Interpretation von Doppelreflexion (double bounce) und Differenz zwischen HH-VV erlaubt, 
nicht möglich ist, unterliegt die Anwendung auf eine monotemporale Klassifikation 
Einschränkungen. Die multitemporale RADARSAT-2 Klassifikation hingegen resultiert in fast 
der gleichen Gesamtgenauigkeit (overal accuracy, OA) von 90,6% wie für die TerraSAR-X 
Zeitreihe (92,1%), was auf das Potenzial dichter zeitlicher Information in 
Fernerkundungsdaten hinweist. Eine Fusion der Kennaugh Elemente der beiden Sensoren 
erreicht sogar eine OA von 92,8%. Der Mehrwert zweifach-polarisierter Daten wird durch 
signifikant höhere Genauigkeiten gezeigt, verglichen mit einfach-polarisierten SAR 



ZUSAMMENFASSUNG 

XXX | P a g e

Intensitäts-Daten von TerraSAR-X (OA 81,6%) und RADARSAT-2 (OA 84,4%). Für alle 
Veränderungsklassen bei denen geflutete Vegetation oder bewässerte Felder involviert sind, 
ist die Verwendung von multi-polarisierten Daten unerlässlich. 

Zusammenfassend kann man festhalten, dass einerseits die Arbeiten dieser Dissertation das 
erfolgreiche Monitoring von Feuchtgebieten in der Sub-Sahara Afrikas unter Anwendung der 
Fernerkundung zeigen, und andererseits zusätzlicher Mehrwert sowie neue 
Forschungsbeiträge in Zusammenhang mit methodischen Innovationen und der 
Interpretation von Veränderungsprozessen in der Umwelt gewonnen werden. Unter 
Verwendung der beiden Sensortypen: (i) multitemporale und langzeitliche optische Zeitreihen 
von MODIS mit mittlerer Auflösung, als auch (ii) multitemporale und kurzzeitige SAR 
Zeitreihen von TerraSAR-X und RADARSAT-2 mit hoher Auflösung, konnte das Monitoring 
der relevanten Feuchtgebiets-Klassen: offenes Wasser, geflutete oder schwimmende 
Vegetation und bewässerte Felder, erfolgreich demonstriert werden. Eine Weiterführung 
dieser Untersuchungen in zukünftigen Arbeiten ist möglich da MODIS seit über 20 Jahren frei 
verfügbare Daten liefert, und sich kompatible Folgemissionen wie z.B. VIIRS im Orbit 
befinden. Die Aufnahmen der TerraSAR-X Zeitreihe werden weiterhin fortgeführt für 
zukünftige Studien an Lac Bam, welche wertvolle Einblicke in die Beobachtung der Effekte des 
vor kurzem initiierten Sanierungsprojektes geben könnten. Weitere Empfehlungen für 
zukünftige Arbeiten umfassen die Verwendung von neuen Sensoren im Weltraum. Einerseits 
wären C-band SAR Sensoren (z.B. Sentinel-1, Radarsat Constellation Mission) oder 
hochaufgelöste optische Multispektralsensoren (z.B. Sentinel-2, Landsat-8 oder bald Landsat-
9) geeignet, auch eine Kombination optischer und Radarsensoren wird empfohlen. Solche
Sensoren stellen multitemporale Daten für die Auswertung von Zeitserien mit noch nie 
dagewesenem räumlichem Detail bereit. Andererseits ermöglichen wachsende Archive an 
mittelaufgelösten Daten/Zeitreihen solche Analysen weiter und weiter zurück in die 
Vergangenheit zu betreiben. Speziell optische mittelaufgelöste Daten sowie Kombinationen 
aus MODIS und AVHRR (zurück bis 1980), bzw. PROBA-V und SPOT VEGETATION (zurück 
bis 1998) wären dafür geeignet. In dieser Dissertation entwickelte Analysemethoden und/oder 
Daten von Zeitreihen der oben erwähnten Sensoren werden empfohlen um folgende 
Forschungslücken zu füllen: (i) Ableitung jahreszeitlicher Veränderungsklassen unter 
Verwendung der multitemporalen Klassifikation oder temporaler Metriken, (ii) Definition der 
Ausdehnung eines Feuchtgebietes mittels multitemporaler Analyse, (iii) Entwicklung von 
kostengünstigen Monitoring Systemen, (iv) Bereitstellung des Fernerkundungs-Mehrwertes 
zur Einbindung in laufende Initiativen z.B. Ramsar oder dem Monitoring der SDG 
Indikatoren, (v) in Zusammenhang damit die Einbindung in existierende 
Klassifikationssysteme, und (vi) die Einbeziehung von Wasserdynamikparametern in Indexe 
oder Modelle zur Vorhersage oder Beobachtung von Dürren. Zusammenfassend, diese Arbeit 
bietet einen signifikanten Beitrag zum Monitoring der Wasserverfügbarkeit und 
Wasserverwendung in Feuchtgebieten der Sub-Sahara, unter Verwendung von 
fernerkundungsbasierten Zeitreihen.  
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1. Introduction

This thesis is on the monitoring of wetlands and water bodies using remote sensing in semi-

arid areas where water scarcity and droughts occur; hence surface water is of major 

importance for the population and the environment. Remote sensing time series of optical 

multi-spectral and synthetic aperture radar (SAR) data are used to analyze spatio-temporal 

developments within seasonal cycles and between different years. The study site is in Burkina 

Faso, West-Africa. The results are presented as six research papers forming part of this 
cumulative thesis, for five of them the author of this thesis is the main author. This thesis is 

structured starting with the introduction (Chapter 1), followed by the state of the art 

(Chapter 2), six chapters presenting original research articles of this cumulative PhD thesis 

(Chapter 3–8), and the summary, conclusions and future research (Chapter 9).   

Chapter 1 starts with section 1.1 on the background and motivation to the topic, initiated with 

the geographical and societal context of water scarcity and wetlands in sub-Saharan Africa 

(section 1.1.1), and followed by the contribution of remote sensing for wetland monitoring 

including a description of wetland parameters to be monitored with remote sensing (section 

1.1.2). In section 1.1.3 the study area in Burkina Faso is described, and in greater detail the main 

pilot study site Lac Bam as well as current monitoring methods and related challenges. In 
section 1.2 the research objectives are presented, alongside with the main research questions 

arising from the topic as introduced in this Chapter (section 1.2.1). The structure and 

connection between the six following scientific publications – that were published in order to 

work on these research questions – is explained and illustrated (section 1.2.2).  

Chapter 2 contains the current state of the art of wetland remote sensing. Remote sensing 

foundations for monitoring wetlands and water are discussed and an up-to-date state of the 

art is provided. Section 2.1 presents an overview of optical (section 2.1.1) and SAR remote 

sensing data (section 2.1.2). The state of the art of remote sensing for wetland and water 

mapping, classification, change detection and monitoring using data from optical high and 

medium resolution data is provided in section 2.2. This is initiated by multi-spectral reflection 

properties for wetland parameters in the optical domain (section 2.2.1), followed by a 
description of spectral water, vegetation and wetland indices (section 2.2.2), and the scientific 

state of the art for wetland studies using the two groups of sensors which are of interest in this 

thesis: optical high resolution sensors and optical medium resolution sensors (section 2.2.3). 

Section 2.3 targets synthetic aperture radar (SAR) imaging, starting with SAR backscattering 

properties of wetland features (section 2.3.1), followed by polarimetric decompositions 

(section 2.3.2), and SAR sensor applications (section 2.3.3): focusing on single-polarized SAR, 

multi-polarized SAR, and alternative SAR techniques. A further section 2.4 focuses on 

alternative remote sensing applications (section 2.4.1) and combined applications using 
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different types of sensors (section 2.4.2). These are followed by an overview of recent, current 

and upcoming international projects and data products where remote sensing is applied for 

water and wetland mapping and monitoring (section 2.5). The last part of this chapter points 

out the rationale behind the choice of data to achieve the objectives for the studies in this 

thesis (section 2.6).  

Chapters 3–8 contain the six scientific publications in international journals, conference 

proceedings and books. Whereas Chapter 3 is written in the style of a review article with 

some practical examples provided, the other five articles provide the methodology and 

results that this thesis is comprised of. They contain an approximately similar structure: 

Introduction – Materials – Methodology – Results – (Discussion) – Conclusions. The red line 

connecting these six articles and a brief description of the contents is presented 

beforehand in section 1.2.2. Every article follows exactly the structure and numbering as in 

the original journal. Respective references are at the end of each Chapter.  The Chapters are 

named the following: Chapter 3 – Remote Sensing of Wetland Dynamics as Indicators of 

Water Availability in Semi-Arid Africa; Chapter 4 – Multitemporal Wetland Monitoring in 

Sub-Saharan West-Africa Using Medium Resolution Optical Satellite Data; Chapter 5 – 

Monitoring of Critical Water and Vegetation Anomalies of Sub-Saharan West-African 

Wetlands; Chapter 6 – Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-

Band SAR Data; Chapter 7 – Automated Wetland Delineation from Multi-frequency and 

Multi-polarized SAR Images in High Temporal and Spatial Resolution; Chapter 8 - Lac Bam 

Imaged by TerraSAR-X – Classification and Visualization of Seasonal and Annual Changes.  

Chapter 9 concludes the work. A summary of the work and results of all six research papers is 

elaborated (section 9.1). The conclusions (section 9.2) start with the original research 

contributions (section 9.2.1) and provide detailed conclusions to the research questions from 

section 1.2.1 (sections 9.2.2 and 9.2.3). An outlook on the way forward towards future research 
possibilities and needs as well as technological capabilities rounds off the conclusions of this 

thesis (section 9.3).  

All references are provided at the end, following Chapter 9. Two Annexes are provided 

thereafter, to support the findings of this thesis or to provide additional relevant 

material. These are: Feasibility Analysis for Wetland Parameter Monitoring (Annex 1), 

and Selected Conference Posters (Annex 2). This PhD thesis document is concluded 

by the required information on the Statement of Authorship.  
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1.1 Background and Motivation 

This section provides a background to the framing issues of water scarcity and drought in sub-

Saharan Africa which is underpinning the importance of surface water and wetland 

monitoring, and discusses the significance of wetlands and water bodies for humankind and 

the environment (section 1.1.1). The role of remote sensing for wetlands (section 1.1.2), and 

therefore as well the motivation to the topic of this thesis is introduced. It is followed by a 

description of the study area in Burkina Faso (section 1.1.3). 

1.1.1 Geographical and Societal Context 

The global importance of water and wetland-related issues is briefly sketched in the coming 

section 1.1.1.1. The geographical and societal context of wetlands and their relation to water 

scarcity and drought in West Africa is introduced in section 1.1.1.2. A specific focus on wetland 

definitions and initiatives is laid thereafter in section 1.1.1.3.  

1.1.1.1 Water and Wetlands are a Global Concern 

Water-related issues are of high global concern. “2 billion people live in countries experiencing 

high water stress” and a prognosis on 2030: “By 2030, 700 million people could be displaced by 

intense water scarcity” (UN Water, 2019). The United Nations (UN) 2030 Agenda  for 

Sustainable Development has formulated the Sustainable Development Goal (SDG) 6 on Clean 

Water and Sanitation which targets the achievement of indicators by the year 2030 for the 

topics on drinking water, sanitation and hygiene, water quality and wastewater, water use and 

scarcity, water resources management, and water-related ecosystems (UN Water, 2017, UN 

Water, 2019). All these topics are of strong relevance for sub-Saharan Africa in connection 

to water and wetlands.  

UN SDG Target 6.6 on water-related ecosystems has the goal to “By 2020, protect and 

restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers and 

lakes” which is addressed by the global indicator 6.6.1 Change in the extent of water-related 

ecosystems over time. For data collection, remote sensing solutions are proposed: “In terms of 

progressive monitoring, countries can initially focus on surface water-related ecosystems, for 

example, vegetated wetlands and open water bodies, measuring the spatial extent, quantity 

and quality of water. Over time, countries can expand to also cover groundwater bodies and 

increasingly ground-based verification and interpretation of the Earth observations that 

formed part of the spatial extent assessment” (UN Water, 2017). The Ramsar Convention on 

Wetlands is an intergovernmental treaty founded and signed in the city of Ramsar, Iran in 1971 

(Ramsar, 1971) with the goal to provide a framework for the conservation and wise use of 

wetlands and their resources. Ramsar’s latest most significant publication, the Global Wetland
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Outlook Report, has pointed out their leading role in reporting on wetland extent for the SDG 

indicator 6.6.1, as a co-custodian with the United Nations Environment Programme (UNEP). 

Additionally, it has been analyzed that wetlands play a direct or indirect role in literally all of 

the 17 UN SDGs (Ramsar Convention on Wetlands, 2018). Apart from the UN 2030 Agenda for 

Sustainable Development and the Ramsar Convention, Abdul Malak et al. (2019) have recently 
provided a summary of global policies where wetland protection and conservation plays a role, 

and where remote-sensing based studies can provide support: The Convention on Biological 

Diversity (the Aichi Biodiversity Targets), the United Nations Framework Convention on 

Climate Change (UNFCCC), the United Nations Convention to Combat Desertification 

(UNCCD) and in particular the Strategic Action Plan to Combat Desertification 2018–2030, 

and the Sendai Framework for Disaster Risk Reduction.  

1.1.1.2 Water Scarcity and Droughts in Semi-arid Africa 

Semi-arid African regions, such as the sub-Saharan Savannah and Sahel, are often prone to 

water scarcity and drought, which in some cases lead to food crises. Climatic disturbances 

persisted throughout the last decades in the Sahel, also causing extreme weather events, such 

as droughts and floods. Water scarcity – both physical and economic – is currently affecting 

more than 40% of the global population (UN Water, 2017). Physical water scarcity is measured 

as the total renewable water resources per capita of a country, using the Falkenmark water 

stress index (Falkenmark, 1989) for which a quantity of water below 1000 m3 inhabitant-1 year-1 

serves as the international water scarcity threshold (UNEP, 2010, WWAP, 2015). An overview 

of countries suffering from physical water scarcity is shown in Figure 1. The greatest 

distribution of physically water scarce countries is present in North Africa and the Middle 

East. Further clusters of countries are located in West Africa, East Africa, South Africa, Central 

Asia, India, China, the Caribbean and Central Europe. Ranked by highest severity, the African 

countries of Libya, Algeria, Djibouti, Tunisia, Cap Verde, Egypt, Kenya, Burkina Faso, 

Morocco, South Africa, Malawi, Sudan and Somalia fall below the international water scarcity 

threshold as of 2017 (FAO, 2017). 
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Figure 1: Total renewable water resources in m³ inhabitant-1 year-1 defined based on United Nations 
(UN) water thresholds; data based on the year 2011, according to the FAO AQUASTAT database (FAO, 

2017); Source: Moser et al. (2017). 

In the last twenty years, per capita water availability in Sahelian countries has dropped by 

more than 40% (Courtois, 2017). Burkina Faso is a landlocked country in West Africa, and is 

experiencing water scarcity with only 703.4 m3 inhabitant-1 year-1 of total renewable water 

(FAO, 2017), in conjunction with drought occurrence and population growth. According to the 

Food and Agriculture Organization of the United Nations (FAO) AQUASTAT database, the 

total renewable water of Burkina Faso deteriorated from more than 1400 m3 inhabitant-1 year-1 

in 1992 until to less than half for the year 2017 (FAO, 2017), see Figure 2.  

Figure 2: Burkina Faso’s deterioration of total renewable water resources in m³ inhabitant-1 year-1. Data 
source: FAO AQUASTAT (FAO, 2017).  
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chemistry, water temperature, flow velocity, turbidity and many more factors as investigated 

by Walz et al. (2015) in Burkina Faso using remote sensing data. A connection to the location 

of freshwater bodies can also be made with vector-borne diseases such as Malaria, Dengue 

fever and others. Mosquitos, which are predominantly found around water bodies, carry and 

transmit the infectious pathogen. Moreover, public health concerns due to extensive dam 
construction are reported (UNEP, 2010).  

Conflict about water resources, e.g. the access to water resources or surrounding land, is as 

well a present problem in the Sahel region. This can lead to social, political and economic 

instabilities and be one driver for out-migration. A recent report from Wetlands International 

states that “Wetland degradation is a cause of human migration that deserves greater 

recognition and attention”, and moreover concludes to the incompatibility of degradation and 

loss of wetlands caused by human interventions with sustainable livelihoods that the local 

population has developed. Outward migration from formerly productive wetlands is now a 

regional trend, which is coupled with increasing conflicts over natural resources (Madgwick et 

al., 2017). In Burkina Faso, after the severe drought in 2003 and following crop failure of 2004, 
one or more persons of around 50% of all households migrated for work (Barbier et al., 2009). 

Another example pointed out by the United Nations Environment Programme (UNEP) has 

found considerable reduction in natural pasture areas due to irrigated farming in the Senegal 

River floodplain, including problems of access to the water for cattle. This resulted in 

“frequent conflicts between stockbreeders and farmers” (Tayaa et al., 2005). There is only little 

work done in remote sensing to capture such conflict issues, an example is the mapping of 

enclosures around water resources due to fencing which does not allow access of surface water 

resources to the local population including pastoralist herds (Snorek et al., 2017).  

1.1.1.3 Wetland Definitions and their Importance 

There is no unique definition for wetlands; it varies among sources and authors. In this thesis 

the definition of the Ramsar Convention on Wetlands (Ramsar, 1971) is applied since it is an 

internationally well-established definition. Ramsar maintains a global list of Wetlands of 

International Importance (i.e., the ‘Ramsar List’). The Ramsar database is not of global 

coverage, but contains selected sites all around the globe and is continuously extended. As of 

July 2021 it comprises more than 2422 wetlands, which amounts to a surface of more than 

250 million ha. These wetlands are selected based on their status as representative, rare, or 

unique wetland types, as well as on their fulfilment of eight criteria of biological diversity 

(Ramsar, 2019a). Ramsar distinguishes between five main wetland types: marine (coastal 

areas), estuarine (deltas, tidal marshes, mangroves), lacustrine (wetlands associated with 

lakes), riverine (wetlands along rivers and streams), and palustrine (marshes, swamps). Not 

only natural wetlands, but also human-made wetlands such as reservoirs, fishponds, irrigated 

agricultural land or waste-water treatment ponds are considered wetlands (Ramsar, 2019a).  
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Wetlands cover more than 10% of the Sahel, when they are at maximum water extension in 

full flood conditions (Madgwick et al., 2017). Since this dimension might not be apparent, the 

importance of wetlands for several societal and environmental issues might be 

underestimated. The areal extent of wetlands can differ greatly according to geographic 

characteristics. Whole large deltas, agricultural areas, lakes, or coastal areas can cover 
hundreds of square kilometers, whereas small ponds might be as small as one hectare. Natural 

lakes, human-made reservoirs, irrigated agriculture around natural or artificial lakes, and 

wetlands along rivers are the predominant categories in sub-Saharan semi-arid West Africa, 

apart from some exceptions like the Niger inland delta.  

Wetlands fulfil different ecosystem services: serving as water reservoirs; serving as buffers for 

floods and droughts; providing territories for fisheries, providing habitats for various animal 

and plant species; recharging and discharging groundwater; protecting shorelines; serving as 

carbon sinks; retaining nutrients, sediments and pollutants; and stabilizing local climate 

conditions (Lyon et al., 2001, Junk et al., 2013, Ramsar, 2019a). Thus, they are of great 

importance for humans and the environment. Wetland degradation is the source of several 

environmental and societal problems. According to the Global Wetland Outlook 2018, since 

the year 1700 up to 87% of the global wetland resource has been lost, which is at a rate three 

times faster than natural forests (Ramsar Convention on Wetlands, 2018). A decline of the 

global extent of wetlands was estimated between 64–71% in the 20th century, whilst wetland 

degradation and losses continue worldwide (Ramsar Convention Secretariat, 2015). The 

degradation of wetlands can often be accounted to development projects related to the 

harnessing of water resources, rather than meteorological effects, as it is the case for 

agricultural irrigation projects or upstream dam projects. Such degradation can result in 

frequent periods of man-made water scarcity, and associated environmental and humanitarian 

impacts resembling those of meteorological droughts (Madgwick et al., 2017).  

Burkina Faso contains 25 Ramsar sites (as of July 2021, the Ramsar list is continuously 

extended) and is the fifth country in terms of number of sites in Africa behind Algeria, 

Tunisia, Morocco, and South Africa (Ramsar, 2019b). Considering wetland locations in World 

Wide Fund For Nature (WWF) biomes, most of the Ramsar sites are located in tropical and 

subtropical grasslands, savannahs and shrubland (Rebelo et al., 2009), which is also the case 

for Burkina Faso, or the sub-Saharan Sahel and Savannah in general. The predominant 

wetland categories in sub-Saharan semi-arid West Africa are natural freshwater lakes 

(permanent or seasonal), human-made reservoirs and ponds (as well permanent or seasonal), 

irrigated agriculture around natural or artificial lakes, and riparian wetlands located along 

rivers. Wetlands in Burkina Faso are strongly connected to agricultural activities around them 

for which water for irrigation is extracted. 78% of all Ramsar wetlands worldwide have been 

subjected to agricultural activities, taking into account 1603 wetlands that have been part of 

the Ramsar list as of 2006 (Rebelo et al., 2009). 
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1.1.2 Role of Remote Sensing for Wetland and Water Body Monitoring 

This section first explains the role of remote sensing for wetland and water body monitoring, 

in terms of the need for such a monitoring and the contribution that remote sensing 

techniques can provide. The inclusion of remote sensing analysis into existing wetland 

initiatives is further explained (section 1.1.2.1). Furthermore, wetland parameters that can be 

observed by remote sensing are described based on examples thereof using ground truth 

photos from the study site in Burkina Faso (section 1.1.2.2).  

1.1.2.1 Significance of Monitoring by Remote Sensing 

Independently of the application, remote sensing analysis can facilitate to retrieve data on 

(i) remote and/or large areas, and (ii) enable frequently repeated observations, as well going 

back into the past. These are two key advantages for inventorying or monitoring wetlands 

including their spatio-temporal dynamics. Particularly for the consistent mapping of large 

areas or for high-temporal monitoring remote sensing can provide promising solutions for 

wetland inventorying, classification, and monitoring.  

ADVANTAGES AND DISADVANTAGES OF REMOTE SENSING FOR WETLAND MONITORING 

Wetlands are highly dynamic land cover features, both in terms of intra-yearly (i.e. seasonal) 

and inter-yearly (i.e. between different years) variations. This manifests itself in changing 

water levels and water extents, varying wetness conditions, the appearance of seasonal aquatic 

vegetation and changes in vegetation on land, seasonal rain-fed and irrigated fields, etc. In 
section 1.1.2.2, a description of these changing parameters is presented and exemplified. 

Frequent observations at regular time intervals are required to capture these rapidly changing 

conditions and to map or measure them. Remote sensing-based time series offer a solution to 

that. Wetlands represent large landscape features and often a unity of different ecosystems. 

Wetlands can be very diverse, heterogeneous and small-structured in itself, in terms of land 

cover and land use classes. The extent of a wetland may cover a large area, ranging from less 

than a few hectares to hundreds of square kilometers in size. Wetlands can be well accessible 

or situated in remote locations. For measurements in remote locations, remote sensing offers 

a practical solution. Another advantage of remote sensing is, that in the past couple of years 

access to free satellite data as well as large data archives has improved, which can enable to 

derive environmental changes and trends applying time series analysis. Information derived 

from remote sensing can also be less time consuming and expensive in terms of personnel and 

field visits than conventional measurement techniques. A last and very important aspect is 

that remote sensing data provide an independent measurement to any ground data that may 

have been acquired. For all these reasons, remote sensing offers a monitoring solution for 
wetlands, which are often unsuitable for systematic ground surveying.  
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However, remote sensing analysis also has limitations, some possible limitations could be: 

gaps in time series and reduced data availability due to clouds (i.e. mainly for optical data), 

occupation of the sensor for other data acquisitions (i.e. for sensors that are not systematically 

observing a certain area but are tasked for specific purposes), insecure data continuity after 

the lifetime of the current satellite (i.e. continuity missions with the same or similar 
specifications), possible satellite or sensor failure, high data costs for commercial sensor data 

and applications, and the limited availability of computing power for remote sensing time 

series which are increasingly turning into big data, and depending on the user the lack of 

technical or scientific knowledge to perform a high-quality analysis. With respect to wetlands, 

a disadvantage can be the complexity of the wetland ecosystem itself and therefore related 

challenges for data analysis. Local expertise may be required for interpretation and validation 

of remote sensing results. Despite of all the advantages of remote sensing, depending on the 

application, ground survey cannot always be replaced by remote sensing.  

In sub-Saharan Africa, ground data appear to be very scarce, and on top of that difficult to 

retrieve, not available in digital workable databases, or incomplete. Given the ecological 
significance of wetlands and their importance for human livelihoods, it may be surprising that 

wetlands in Africa are scarcely monitored. This has been recently improved for some pilot 

sites through projects like GlobWetland-Africa (GlobWetland-Africa, 2016). For some 

wetlands in Burkina Faso water levelling measurements are performed, often at their dam, and 

additionally, water volume is estimated (DGRE, 2013). This, however, does not conclude to 

changing surface water area or takes into account changing lake floor topography. Due to 

natural and anthropogenic effects such as seasonally changing weather conditions or 

sedimentation into the lakes due to extensive land use, further monitoring parameters are of 

utmost importance.  

INCORPORATION OF REMOTE SENSING ANALYSES INTO ONGOING WETLAND INITIATIVES 

There are some initiatives in place dedicated to the conservation, estimation and restoration 

of wetlands, which partially also incorporate remote sensing-based projects. Possibilities for 
the inclusion of remote sensing data and techniques into such initiatives and organizations 

were discussed (Davidson and Finlayson, 2007, Fitoka and Keramitsoglou, 2008, Junk et al., 

2013, Davidson et al., 2018, Rebelo et al., 2018, Perennou et al., 2018, Ramsar Convention on 

Wetlands, 2018, Weise et al., 2020). Though remote sensing allows the application of identical 

methods on a large-scale, current projects are still mostly restricted to a larger number of pilot 

sites, rather than fully global or continental coverage. Earlier attempts to derive global 

wetland areas using continental and global scale inventory sources were reviewed by Finlayson 

et al. (1999), later on by Rebelo et al. (2009), and more recently by Davidson et al. (2018) and 

Davidson and Finlayson (2018).  
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To name a few significant initiatives, there is the before-mentioned Ramsar Convention 

(http://www.ramsar.org), the only international treaty focused on wetlands since 1971, which 

is supporting the inclusion of remote sensing analysis. Moreover, an important organization is 

Wetlands International (www.wetlands.org/), the only non-global not-for-profit organization 

dedicated to maintaining and restoring wetlands. The UN Environment Programme World 

Conservation Monitoring Centre (UNEP WCMC) (https://www.unep-wcmc.org/) is a leading 

entity in biodiversity issues and as such also a global stakeholder in terms of wetland 

monitoring. Together with the Ramsar convention UNEP is responsible for the UN SDG 

Target 6.6 on water-related ecosystems, more specifically the global indicator 6.6.1 Change in 

the extent of water-related ecosystems over time is of interest. The Scientific and Technical 

Review Panel (STRP) of Ramsar was driving the conceptualization of a Global Wetlands 

Observing System (GWOS) since 2008. Earth Observation (EO) for wetland inventorying and 

research in support to Ramsar (Ramsar, 2019a) has been a cornerstone to initiate wetland 

remote sensing projects (MacKay et al., 2009). Davidson and Finlayson (2007) have presented 

a collection of wetland inventory and assessment initiatives in cooperation with the Ramsar 

Convention, where Earth Observation products were developed. Rebelo et al. (2018) have 

provided a recent update on that as part of a Ramsar Technical Report, where EO applications 

for different case study sites are detailed out, describing the EO approach, resources, benefits 

and limitations.  

There are several regional Ramsar initiatives. To point out one that has incorporated remote 

sensing, the Mediterranean Wetlands Initiative (MedWet) (https://medwet.org/) was 

established in 1991 and brings together 27 Mediterranean countries. The Mediterranean 

Wetland Observatory (MWO) (https://medwet.org/observatory/) was established within the 

framework of the Medwet Initiative in 2008 to monitor and evaluate the status and trends of 

Mediterranean wetlands. The MWO is coordinated by Tour de Valat 

(https://tourduvalat.org/en/), a research institute for the conservation of Mediterranean 

wetlands. These three stakeholders have played a role incorporating remote sensing 

(Mediterranean Wetlands Observatory, 2014, Geijzendorffer et al., 2018). Moreover, there are 

various national wetland organizations and initiatives which are using remote sensing for 

national wetland inventories.  

The recently founded GEO-Wetlands Initiative (https://geowetlands.org/) is an initiative 

which is part of the Group on Earth Observation (GEO) (2017–2019, with a planned 

continuation from 2020–2022). It is following up the efforts established within GWOS and is 

taking over this task. Therefore, the use of Earth observation data and methods to support the 

conservation, management, restoration and wise use of wetlands on a global scale is fostered. 

GEO-Wetlands provides a link between wetland stakeholders, users and the Earth observation 

community. The two major stakeholders are the Ramsar Convention on Wetlands, and UNEP 

which are both in charge of the Sustainable Development Goal 6.6 (water-related ecosystems) 

http://www.ramsar.org/
https://medwet.org/
https://medwet.org/observatory/
https://tourduvalat.org/en/
https://geowetlands.org/
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and especially indicator 6.6.1. To date, most of the involved partners are based in Europe, but 

the target scale is global and partners from all continents shall get involved in the future. First 

governance and managements structures are in place to be further elaborated in the second 

phase (2020–2022). Further goals include to obtain a formal mandate from the Ramsar 

convention, and the preparation of methods and tools for coordinated global wetland 
inventorying in the future (GEO, 2020, GEO-Wetlands, 2020a). One of the first and most 

important accomplishments of the GEO-Wetlands initiative is the GEO-Wetlands knowledge-

base and community portal. This was implemented for Europe as part of the Satellite-based 

Wetland Observation Service (SWOS) project (SWOS, 2018). Moreover, some pilot projects 

were carried out and the acquisition of further projects is planned (GEO, 2020, GEO-

Wetlands, 2020a). 

Several recently completed or ongoing Earth observation projects, out of which many are in 

connection to wetland initiatives, are described in section 2.5.  

1.1.2.2 Wetland Parameters to be Monitored with Remote Sensing 

Wetlands comprise a mix of different land cover types. These land cover types have diverse 

spatial and temporal characteristics, i.e., (i) spatially: covering large surfaces homogeneously, 

or being very small, fragmented and heterogeneous; and (ii) temporally: being stable 

throughout the year, or changing gradually or rapidly within the course of a season. The 

choice of remote sensing data and methods to map or monitor these land covers depends on 

the above mentioned spatial and temporal criteria and can vary according to the focus of the 

desired wetland mapping or monitoring application.  

In Figure 5 various general wetland parameters are analyzed towards the relationship between 
different spatial and temporal resolutions that are required and feasible in terms of remote 

sensing sensor capabilities. The geometric resolution is displayed on a logarithmic scale on the 

spatial axis (y-axis), amended by some example remote sensing sensors; the required temporal 

scales in terms of data collection frequency are shown on the temporal axis (x-axis). The 

timescale for desired long-term monitoring based on seasonal observations is sketched by 

arrows. Spatial medium resolution (MR) time series (i.e. daily or near-daily observations) 

enable the derivation of surface water or vegetation dynamics, flood mapping, water quality 

parameters, as well as the estimation of soil moisture or precipitation (upper left-hand 

corner). Seasonal monitoring can be carried out, or time series analysis over many years which 

can allow the calculation of trends for e.g., long-term drought mitigation or water 

management (upper right-hand corner). Spatial high-resolution (HR) data have not been 

commonly available on a frequent regular basis before the new Sentinel-1 (S1) and -2 (S2) 

sensors. Applications like wetland type classification, inventorying, and infrastructure 

monitoring do not necessarily require data collection at very dense time intervals (lower right-
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hand corner). The curved line (lower left-hand corner) of the diagram marks an area of 

current remote sensing limitations. This is connected to frequent HR monitoring of water, 

floating or flooded vegetation and irrigated areas for which data might not be available. For a 

few seasons HR data might be specifically provided, but time series over many years are 

restricted.  

Figure 5: General wetland parameters analyzed towards their requirements for spatial and temporal 
scales of remote sensing-based observations. Modified from: Moser et al. (2017). 

Annex 1 provides a collection of wetland parameters/features and land covers that are relevant 

to be detected or monitored. The further analysis of the spatial and temporal requirements for 

monitoring these wetland parameters concludes to the best suitable remote sensing data to 

monitor these parameters. For each wetland feature it is analyzed what the ideal requirements 

versus the possible image scenarios are, in terms of spatial resolution, spatial coverage and 

temporal scale. The “traffic light system” serves to analyze which features can be potentially 

monitored best using certain types of remote sensing data, which in the following concludes 

to the potential of remote sensing for a successful analysis (see Annex 1). As a result, the 

following paragraphs of this section describe the wetland parameters that have been identified 

to have great potential to be mapped or monitored with remote sensing data, with focus on 

the West African study area (section 1.1.3).  
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In sub-Saharan West Africa wetlands typically contain open water, flooded vegetation that can 

be emergent, floating or submerged, irrigated cultivation (many wetlands are 

anthropogenically used), and infrastructure relevant to or with influence on the wetland (e.g., 

dams, motor pumps, fences, animal ditches). Moreover, natural coastal vegetation (e.g. shrubs 

and trees), bare soil (e.g. mudflats: exposed soil after water retreat, ploughed irrigated fields), 
or urban areas (e.g. dwellings, settlements) can be placed within or surrounding the wetland 

area. For some examples, see Figure 6:  

Figure 6: Typical wetland landscape in Burkina Faso at the example of Lac Bam: (a) turbid open water; 
(b) floating water lilies; (c) emergent grasses; (d) natural coastal vegetation; (e) exposed mudflat & 

sediments after water retreat; (f) irrigated fields; (g) water point; (h) dwelling; (i) fence; (j) spillway/dam 
with bridge at Lac Bam; (k) motor pumps; (l) animal ditch. Photo sources: L. Moser and F. Betorz 

Martínez (October 2013) and R. Ouedraogo (October 2015).  

a) b) c)

d) e) f)

g) h) i)

j) k) l)
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Optical and SAR remote sensing sensors can measure surface materials and characteristics. 

Resulting from the analysis in Annex 1, the following land cover classes are serving as wetland 

parameters to be analyzed:  

Open water surfaces can be relatively large – between a few square meters and kilometers in 

size – and to a certain degree homogeneous and in contrast to the environment. Therefore, 

various remote sensing sensors (optical or SAR) of different spatial resolution – from medium 

(MR) to high resolution (HR) – can be utilized for water mapping and monitoring. Some parts 

of lake and wetland water can be “stable” (present permanently throughout the year), whereas 

other parts might be very “dynamic” (e.g. large extent in the rainy season and retreat or 

disappearance in the dry season). The flat terrain and low water depth typical for West African 

Sahelian and savannah regions coupled with weather conditions can cause strong fluctuations 

in water area, which require water surfaces to be monitored with high temporal repeat 

frequency, ideally time series of remote sensing data with dense, regular intervals.  

Flooded and floating vegetation in sub-Saharan African wetlands can consist of trees and 

shrubs standing in water, as well as emergent, floating or submerged macrophytes. 

Macrophytes are aquatic plants characteristic for wetlands (including marshes, swamps, bogs 

etc.), shallow lakes and streams, and can as well occur in ponds and reservoirs. They consist of 

grasses, ferns, mosses and flowering plants, and grow in standing water at or above the surface 

of the soil. As shown in Figure 6, the study site features flooded vegetation types (i) standing 

in water/emerging from the water (e.g. macrophytes such as grasses, or trees in the vicinity of 

the coast), or (ii) vegetation emerging from the ground but floating on water (e.g. water lilies). 

Flooded vegetation can cover small fragmented areas or in some cases large areas in the order 

of a few hundred meters. Therefore, flooded vegetation needs to be monitored with HR data. 

Due to rapid seasonal changes – especially in semi-arid regions where areas of flooded and 

floating vegetation can completely dry out during the dry season – the application of time 
series is required. As further emphasized in section 2.3 the application of SAR data is of high 

added value for capturing flooded vegetation.  

Irrigated cultivation is part of the wetland according to the Ramsar definition. These 

agricultural fields are irrigated using the lake water and consist of e.g. vegetable gardening 

(green beans, tomatoes, onion…) or rice, see Figure 6. These fields range from larger to small 

size, therefore HR data and potentially even very high resolution (VHR) data are useful. The 

appearance of fields changes very dynamically throughout the year along the crop cycles; 

whereas in the rainy season a lot of fields are rain-fed, irrigation starts at the beginning of the 

dry season and prolongs until the rains are about to start. Therefore, monitoring of irrigated 

areas in semi-arid regions requires time series with high temporal frequency. It has to be taken 

into consideration that these changes are non-linear during a season or a year (e.g. changes in 
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different directions and from and to different land cover are possible, and in the next year the 

fields or type of gardening might not appear in the same locations).  

The most common features of water/wetland related infrastructure located directly inside 

or at the border of the wetland area are dams, bridges, ditches for animal watering, motor 

pumps for irrigation, and fences restricting access to fields or water. Dams or eventually 

bridges are well recognized in HR remote sensing imagery due to their length, shape and by 

being attached to a water body. Ditches can be detected thanks to their elongated structure in 

VHR imagery despite of their small size, whereas motor pumps might be too small to be 

detected or covered by vegetation. Fencing can be detected in VHR to HR imagery profiting 

from the spectral contrast of fences (which are often made of woody vegetation or living 

fences) to the environment. Such infrastructure is usually stable throughout the year, unless 

built or removed by anthropogenic activities, and therefore only requires remote sensing data 

at one or a few time steps of interest.   

1.1.3 Study Area Characteristics 

Burkina Faso was chosen as study area (i) due to reasons on water scarcity, drought 

occurrence and water-related problems, explained in section 1.1.1.2; (ii) due to a substantial 

number of Ramsar wetland sites; (iii) collaboration with the Wascal center with main office in 

Ouagadougou, Burkina Faso and (iv) political stability during most of the time when the main 

research was carried out, enabling to carry out field work.  

The study area is described in terms of its geographic characteristics, e.g. its climate, 

vegetation, hydrology and its main livelihoods, all of them connected to water availability 

(section 1.1.3.1). The focus region of Lac Bam is further described in detail (section 1.1.3.2) and 

current water and wetland monitoring methods and associated challenges in the area are 

outlined (section 1.1.3.3).  

1.1.3.1 Study Area Burkina Faso 

Burkina Faso is a land-locked country in West-Africa with the neighboring countries Mali in 

the North and West, Niger in the East, and Ivory Coast, Ghana, Togo and Benin in the South. 
The dimensions of Burkina Faso are approximately 200 km north–south and 500 km west–

east. The country is situated on a large plateau at an altitude of about 250–350 m above sea 

level and shows a rather flat terrain with some rock outcrops and hills.  

Figure 7 provides an overview of maps of Burkina Faso showing climate zones, mean yearly 

precipitation, land use, livelihood zones and population density that are all connected to a 

climatic gradient in north-south direction, which is connected to water and land resources 

availability.  
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show strong occurrences of cotton, fruits and cereals, and centrally located 

agriculturally dominated zones feature cereals and market gardening (FEWS NET, 

2010). 

• Figure 7e shows the population density of Burkina Faso with dark red values standing
for >1000 persons/km², dark orange for 500–1000 persons/km² with decreasing

population density towards light orange colors until pastel yellow with 3–10

persons/km² (IUCN, 2018).

Connections between these five maps can be established, e.g., in terms of climatic 

zones following the yearly precipitation amount (Figure 7a and Figure 7b); climatic 

zones, agricultural as well as pastoral land use and associated savannahs, and 

livelihood zones (Figure 7a and Figure 7c and Figure 7d); and agriculturally or peri-urban 

dominated livelihood zones with higher population density (Figure 7d and Figure 7e).  

CLIMATE

Burkina Faso’s climate is in general hot, sunny and dry. Different climate zones as defined by 

the Köppen-Geiger climate classification system are present (Kottek et al., 2006). From north 

to south, Burkina Faso is located at the edge of the arid and hot desert climate (BWh) in the 

north, and contains a hot steppe climate (BSh) in the centre, both identified by precipitation 

usually less than potential evapotranspiration, and concludes in a tropical dry to wet savannah 

climate (Aw) in the south. Northern areas are also known as Sahelian areas, centre areas as 

Sudano-Sahelian Savannah, and southern areas as Sudanian Savannah or Guinea Savannah in 

the very south (see Figure 7a). In north to south direction the country experiences 

characteristic climatic as well as vegetation gradients.  

Precipitation occurs almost exclusively during the rainy season (June–September), resulting in 

a strong gradient by latitude, ranging from less than 300 mm annual precipitation in the north 

to 1200 mm in the south (see Figure 7b). Evapotranspiration rates from 1700 to 2400 mm/year 

exceed the annual precipitation (Mouhamed et al., 2013, Planete-Burkina, 2018). Precipitation 

during the rainy season is very variable in time as well as space (Melcher et al., 2018), and can 

often lead to intense bursts with high runoff preventing the water from percolating into the 

groundwater (Ouedraogo, 2010). During the longer dry season (October–May) water in 

wetlands is very important for the population and serves for different livelihoods.  

The start and end of the rainy season vary with different latitudes. In mid-October, after the 

rainy season, regional north–south differences can be seen exemplified on a river bed (Figure 

8a and Figure 8b) and open shrubland (Figure 8c and Figure 8d), both at the boundary of 

the Sudano-Sahelian Savannah to the Sahel, and in the southern Sudano Savannah, 

respectively. All four photographs were acquired during field work at the end of the rainy 

season in mid-October 2013.
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for preparing agricultural fields or for clearing the area for hunting. Grasses have deep roots 

and survive fires mostly without any damage and re-grow quickly. Small trees often die in 

fires, whereas trees larger than two meters are not affected (Mistry and Beradi, 2014). Grazing 

causes degradation of grassy and shrub areas. Goats for example can well adapt to dry areas 

with scarce resources and eat grasses as well as from shrubs and trees. Animal watering, 

however, is required to breed cattle, which are dependent on surface water in wetlands and 

lakes (Machwitz, 2011).  

The Sahel is sometimes described as independent biome, and sometimes seen as the most 

northerly savannah zone which is a very dry savannah type, located between the Sahara desert 

and the more humid Sudano-sahelien Savannah. Trees and scrubs are situated in greater 

distance, with decreased number of species, and are increasingly thorny (Hopkins, 1965). The 

Sudano-sahelien Savannah is an intermediate zone between the Sahel and the Sudano 

Savannah which dominates West Africa as a zone of 150–320 km width (Hopkins, 1965). The 

Sudano Savannah consists of trees with small to medium-sized leaves of greater densities as in 

the Sudano-sahelien Savannah. Grasses typically grow 1–1.5 m high. The Sudano Savannah has 

been extensively used and human activity changed its appearance (Hopkins, 1965). A naturally 

preserved Sudano Savannah vegetation, characterized by high grass between shrubs and small 

trees, from the Nazinga national park in the south of the country is presented in Figure 9. 

Figure 9: Naturally preserved vegetation of the Sudano Savannah in the Nazinga national park (central-
south Burkina Faso). Photo source: L. Moser (October 2013).  

BIODIVERSITY 

Wetlands in Burkina Faso are very significant for migratory birds and water birds. The 25 

Ramsar wetlands (as of July 2021) in the country are connected to being bird breeding habitats. 

Burkina Faso is also home to a larger population of Nile crocodiles which live in and around 

wetlands. Dams in Burkina Faso have been built with no consideration of their ecological 

impact; dam construction led to the loss of fish species in West Africa (Melcher et al., 2012). 

Examples of diverse bird species and the Nile crocodile were seen during fieldwork, for 

example at Bagré, the Nazinga national park or Bazoulé.  
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HYDROLOGY AND WATER RESOURCES 

There are three large river catchments in Burkina Faso: The main part of the country belongs 

to the Volta catchment with the three main rivers, Nakambé (White Volta), Mouhoun (Black 

Volta) and Nazinon (Red Volta), which extend through the central and southern part of the 

study area. The north-eastern part of Burkina Faso belongs to the Niger catchment, and a 

small area in the very south-west to the Comoé catchment. Most of the focus study sites of 

this work are part of the Volta basin and are located along the Nakambé river. Burkina Faso 

and Ghana contain 40% of the Volta basin, in total six African countries have part of the Volta 

basin (UNEP, 2010). A very limited amount of water (8%) is transported to wetlands by surface 

runoff in the Sahelian climate, whereas evapotranspiration rates are very high (92%) (Peugeot 

et al., 2003). Extremely variable precipitation amounts in space and time can lead to large 

amount of water running off instead of percolating to the groundwater. The majority of rivers 

in Burkina Faso is seasonal; these rivers carry water exclusively during and towards the end of 

the rainy season. Most water courses are intermittent, and dry out for weeks to months 

(Ouedraogo, 2010). A summary of major impacts on rivers in Burkina Faso was compiled by 

Melcher et al. (2012): damming, rain-fed agriculture, irrigated vegetable farming, water 

abstraction, sand mining, fishing or over-fishing, deforestation, cattle-breeding as well as 

human settlements.  

Surface water is the most important water source for the population, especially during the dry 

season when there is no other alternative but deep wells. Besides in seasonal rivers, surface 

water is stored in lakes, wetlands and reservoirs. Water distribution is anthropogenically 

influenced in Burkina Faso. Each year new dams are built to create new artificial water bodies 

where rainwater and water from runoff can be collected and stored. The number of reservoirs 

and dams in Burkina Faso varies from source to source between 1400 and 2100 dams (as to the 

year 2013). According to Ouedraogo (2010) the first reservoirs were built by the Catholic 

church in the 1920s, and after the Sahelian droughts in the 1970s there was a higher increase in 

new reservoirs, as well as between 1983–1987 due to political developments. As of 2010 around 

1400 dams were built in Burkina Faso, converting the country into a leading country of water 

resource development (Ouedraogo, 2010). A remote sensing-based study performed on 

Landsat data detected 1033 small reservoirs in 2014, which is a 40% increase from the 620 small 

reservoirs detected in 2002 (Forkuor et al., 2019b). Based on 2011 data from the Direction 

Générale des Ressources en Eaux (DGRE) in Burkina Faso, Nikiema (2017) reported a number 
of over  1794 reservoirs which can carry around 2.77 billion m³ of water. To date, many new 

reservoirs are under construction (Ouedraogo et al., 2020). As presented in Figure 10, two 

examples of dams that created large artificial water bodies and wetlands are Lac Zam (central 

Burkina Faso) and Barrage de Bagré (southern Burkina Faso), the latter one being the largest 

lake in Burkina Faso. Both feature large irrigated cultivations downstream of the dam, visible 

in dark green color on the true color satellite imagery.  
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Figure 11: Hydrographic network of Burkina Faso. Black rectangles are focus wetland sites visited 

during field work, red rectangle shows the main study site Lac Bam. Modified from: © Institut 
Géographique de Burkina Faso (IGB), Aisseta Sawadogo. 
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Water use and extraction is a significant issue for different livelihoods and has a large impact 

on wetlands, since all these livelihoods critically depend on the availability of water (Rebelo et 

al., 2009, Junk et al., 2013). In the rainy season (June–September) there is dependency on 

rainwater, and in the dry season (October–May) on water in wetlands, since irrigation from 

water bodies and wetlands is the only way to farm during the long dry season. Critical lack of 

water can occur during seasons of drought. Threats to wetlands in sub-Saharan Africa are 

caused by climate and anthropogenic change. Population increase and exploitation of 

resources can lead to wetland degradation (Rebelo et al., 2009). A rapid population increase is 

apparent in Figure 13, which shows that since 1960 there is an increase in both urban as well as 

rural population. The total number of inhabitants increased from 4.6 million (1960) over 6.8 

million (1980), 11.6 million (2000) until 18.6 million (2016). In the 1960s the percentage of the 

urban (~5%) versus rural population (~95%) indicates that the country was strongly 

dominated by people living in rural areas. An increase of urban population took place between 

the mid-1970s and mid-1980s, with a 6–9 % annual growth rate (as opposed to 3% until then). 

Another rise of over 6% annual growth of urban population appeared starting the mid-1990s, 

and has again decreased in the last 10 years (WorldBank, 2020). With such a rising population 

it can be expected that the pressures on wetlands and their resources will increase in the 

future to maintain people’s livelihoods. Conflicts between different livelihood groups have 

been reported for African wetlands, as people compete for access to limited land and water 

resources (UNEP, 2010, Junk et al., 2013).  

Figure 13: (a) Urban and rural population (absolute numbers, summed up); (b) urban and rural 
population (% of total) in Burkina Faso from 1960–2016. Source: WorldBank (2020). 
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1.1.3.2 Focus Region: Lac Bam 

The main study site for this thesis is Lac Bam, which is a natural lake and wetland, located in 

central-north Burkina Faso (13.40°N, 1.52°W) at 300 m above sea level. It is located within the 

boundary from southern Sudano savannah and northern Sahelian areas. Its catchment is 

situated in the same-named province of Bam. This permanent freshwater lake is located along 

one of Burkina Faso‘s major rivers, the Nakambé (White Volta). With a water covered area of 

approximately 22–25 km² at high water level as derived from a remote sensing measurement 

(Moser et al., 2014b), and an area of 53 km² considering wetland and irrigated agriculture areas 

around the lake (Ramsar, 2019b), it is the largest natural lake as well as wetland in Burkina 

Faso. A spillway acting as a barrier similar to a small dam was built in 1920 and heighted in 

1963 (Pouyaud, 1986). In 2018 it was raised by an additional 25 cm in order to increase the lake 

storage volume (DCPM/MEA, 2020). Being located at the bottom of a watershed, around 

40-45 reservoirs are located in the watershed upstream of Lac Bam, the biggest of them Lake 

Bourzanga, located around 10 km in the north of Lac Bam (Nikiema, 2017, Ouedraogo et al., 

2020). The soils of the watershed are dominated by immature soil on gravel, and the dominant 

soil of the wetland itself is hydromorphic soil on clayey-sandy material from clayey schists 

(Nikiema, 2017). This impermeable soil prevents mixing of lake water and ground water from 

the aquifer (Pouyaud, 1986).  

Since 2009 Lac Bam belongs to the list of Ramsar wetland sites of international importance 

(Ramsar, 2019b). It is an important hotspot for biodiversity, e.g. multiple bird species (e.g. 

Bubulcus ibis and Motacilla flava), fish (e.g. Oreochromis niloticus and Schilbe mystus) and a 

large population of Nile Crocodiles live in and around the wetland (Ramsar, 2019b). The 

wooded savannah features Vitellaria paradoxa, Parkia biglobosa, Tamarindus indica and 

Bombax costatum (Ramsar, 2019b). Figure 14a shows a RapidEye false-color composite of Lac 

Bam with Global Positioning System (GPS) points from the fieldwork indicated; the 

following photos were taken along these GPS measurements. As described in section 1.1.2.2, 

the most common land cover types and characteristic features, i.e.: (b) floating water lilies, 

(c) exposed soil after water retreat, (d) irrigated fields, (e) flooded and floating 

vegetation (different macrophytes), (f) flooded vegetation (grassy macrophytes), (g) barren 

land typical for Sahelian areas, (h) flooded trees, (i) a motor pump and (j) open water, are 

visualized in Figure 14.  
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Figure 14: (a) Location of the GPS data (from 15–18 October 2013 and 25–28 October 2015) with a 
RapidEye image from 19 October 2013 as backdrop (©BlackBridge 2013), including areas visited in 

greater detail (white circles), GPS/photo points on land (yellow dots), GPS/photo points from the boat 
tracks on the open water (blue dots), and on water with flooded vegetation (green dots); (b) floating 

water lilies; (c) shoreline including soil exposed after water retreat and flooded vegetation in the 
background; (d) irrigated fields; (e) flooded and floating vegetation; (f) water, flooded vegetation, and 

an island in the background, seen from the eastern shoreline; (g) barren land; (h) flooded trees; (i) 
motor pump at the shoreline; (j) open water seen from the boat southwards (photos by L. Moser, F. 

Betorz Martínez, R. Ouedraogo 2013, 2015); Figure source: Moser et al. (2016b). 

The people in the area significantly depend on Lac Bam for their livelihoods which are mainly 

farming (irrigation) and pastoralism (animal watering, water access) where over 80% of the 

population are involved (Davies, 2005), as well as fishing (habitat for fish) in which also many 

farmers are partially involved (Ouedraogo, 2010, Ouedraogo, 2014, Ouedraogo et al., 2020). In 

particular during the dry season (Oct–May) the water of Lac Bam represents the only source of 

water for the local population and their livelihoods. Some scattered water points and wells 

with access to ground water are utilized for domestic use. The area around the lake is 

characterized by rain-fed agriculture during the rainy season, whereas the only water source 

for irrigation during the long-lasting dry season (Oct–May) is surface water in reservoirs and 

wetlands. National as well as international livestock corridors pass through the area resulting 
in the presence of transhumant nomads to water their animals at Lac Bam. Less a pressure for 

the lake itself, increasing cultivation cuts off water access to the lake which is a threat to 

pastoralists. Increasing cultivation has caused an overuse of fertilizers and pesticides, causing 

the water quality to decrease (Ouedraogo and Home, 2015). Human settlements and domestic 
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use contribute as well to water pollution. Populations of fish are endangered due to over-

fishing as well as water pollution and dam building (Ouedraogo, 2010, Ouedraogo, 2014). With 

about 700 fishermen (many of them only partially occupied in fishery, using also forbidden 

fishing methods) at Lac Bam, which is 14 times more than the recommended threshold by 

FAO (2 fishermen/km²), overfishing is a serious concern. Only half a kg of fish is caught per 
fishermen per day in Lac Bam (Ouedraogo, 2020, Ouedraogo et al., 2020). Especially between 

April and June there are the highest rates of fish mortality. Fertilizers and pesticides from 

irrigated farms – lacking proper irrigation practices – as well as nutrient deposits from around 

100,000 animals grazing around Lac Bam are washed off into Lac Bam. Additionally, cattle that 

enter the lake for drinking, stir up sediments at the bottom of the lake, causing the water to 

become more turbid (Ouedraogo et al., 2020). Pollution impacting water quality is as well a 

health issue for drinking water and hygiene, causing water- and vector-borne diseases (see 

section 1.1.1.2). Sadly, it has to be added that since the year 2015 there has been an increasing 

number of violent terrorist attacks on many villages in Burkina Faso, including villages around 

Lac Bam, resulting into outmigration of the local population into larger towns, e.g. Kongoussi. 

This presents a whole new and different challenge for the people, with potential effects not 

only on living but also farming, herding and fishing at and around Lac Bam.  

According to Davies (2005) the following 10 factors have been considered causative factors of 

lake degradation of Lac Bam: “1) sedimentation, 2) inherent high evaporation, 3) seasonal and 

inter-annual variation in flow, 4) limited sustainable resources management, 5) deforestation, 

6) over-grazing, 7) growing use of water through population increases (5%) and

modernization of irrigation and domestic equipment, 8) lack of organization and problems of 

land ownership, 9) desertification, 10) water quality; the growing use of herbicides and 

pesticides.” In connection to changing water levels and surfaces, two aspects of human 

pressures to Lac Bam are further outlined:  

(i) Siltation is impacting the lake floor topography and so the water depth decreases, 

which is causing a spread-out of water areas and higher evaporation.  

(ii) Water abstraction for irrigation purposes or further domestic or industrial use is a 

cause for decreasing water level and surface.  

Siltation from increasing sediment input into the lake, often caused by anthropogenic effects 

such as removal of natural vegetation due to cultivating shores and land adjacent to the lake, 

cause the lake to become shallower (Davies, 2005, Moser et al., 2014b, Ouedraogo and Home, 

2015, DCPM/MEA, 2017). As a consequence, water areas are spreading out further but are 

endangered to evaporate faster. Moreover, formerly cultivated land is now flooded and 

farmers have lost this land (Davies, 2005, Ouedraogo and Tigré, 2013, Ouedraogo et al., 2020). 

During the field visit in October 2013 several farmers in villages around Lac Bam reported that 
the water is now spread out wider, and stated the former location of their fields to be now 
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underwater. A sedimentation rate as high as 500,000 m³ per year has been stated (Davies, 

2005), resulting into a loss of 1/3 of the depth of Lac Bam between 1963 and 2006, which is 

mainly accounted to siltation (Ouedraogo, 2010). In contrast, Davies (2005) reports that the 

depth of the lake did not change greatly, but significant accumulation of sediment took place 

on the lake margins, around 360 km3 per meter of lake shore in the last 40 years. The water 

depth has been reported to be between 1.5 and 4 m (in 2010) which varies with the rainy and 

dry seasons (Ouedraogo, 2010). In the two field visits the following measurements were taken 

along selected profile lines: In the first field visit in October 2013 water depths between 1.2 and 

3 m were measured at points with 100 m intervals along three profiles crossing the lake in east-

west direction, closely located to the village of Bam (see Figure 14a, blue dots). In the second 

fieldwork in October 2015 water depths between 0.4 and 1.2 m were measured along profiles 

through four different focus areas of shallow waters with flooded vegetation in the east, west 

and north of Lac Bam (see Figure 14a, green dots) (Moser et al., 2016b). 

Water abstraction at Lac Bam, mainly for irrigated farming in smallholder irrigation schemes, 

is another impacting pressure. A new study on the water balance of Lac Bam from 2012–2016 

reported that the water is consumed by 26% due to water abstraction and 74% due to 

evaporation (Nikiema, 2017). The most frequent irrigation activities are targeted to 

vegetable gardening, e.g. tomatoes, onion and green beans, the latter ones are also 

internationally exported (Ouedraogo and Tigré, 2013, Moser et al., 2016b), as well as green 

peppers, cabbage, lettuce and eggplant (Ouattara et al., 2020). There has been a strong 

increase in irrigation activities throughout the past 10 to 15 years. This is connected to a 

growing number of motor pumps (see Figures 6k and 14i) that have been installed during 

this time. These motor pumps are placed at the shoreline or close to the shore in flooded 

vegetation areas. Up to a distance of one to two kilometers from the water, fields at the 

banks of the lake are irrigated with the help of such motor pumps, according to local 

authorities (Ouedraogo and Tigré, 2013). A total of more than 1000 motor pumps have 

been counted at Lac Bam as of 2014 (Ouedraogo, 2014). The increase in irrigated fields, 

particularly during the past 10 to 15 years, was detected in the remote sensing-based studies 

comprising this thesis (Moser et al., 2014a, Moser et al., 2017, Klingebiel et al., 2021). 

Restoration efforts are vital for Lac Bam. Restoration initiatives that were already in place and 

which are carried out by local fishermen and farmers are (Davies, 2005, Ouedraogo and Tigré, 

2013, Ouedraogo et al., 2020):  

(i) construction of dikes (small dams of stones) along tributary rivers to reduce 

sediment transportation into the lake,  

(ii) shrub planting on the lake banks to counteract erosion from agricultural fields and 

siltation, and  
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(iii) tree planting around the lake to reduce the need for deforestation in natural 

woods. 

There is a local governmental project called Le projet Restauration, Protection et Valorisation 

du Lac Bam, a planned 5-year project that has been launched on 3 March 2017. Summarized 

from various governmental and newspaper sources (Ouedraogo, 2014, DCPM/MEA, 2017, 

Nabole, 2017, Tianhoun, 2017, Soumis, 2017), as well as from personal communication with 

local authorities, the objectives of this project include:  

(i) raising the level of the former dam of Lac Bam by 25 cm in order to increase the 

lake's storage capacity to nearly 7 million m3;  

(ii) building a bridge on top of that raised barrier, elevating the National Route N°15 
(N15) which was formerly placed at the dam to avoid flooding of the road;  

(iii) developing 1.5 km of N15 which is of high importance because the road serves as 

the main connection between Kongoussi and Kaya;  

(iv) realizing a protective zone of about 100 m width at the lake’s shoreline where 

exploitation (farming, housing) is not allowed, and trees shall be planted to protect 

the banks of the lake;  

(v) developing 522 ha of new irrigable farmland on the left and right of the banks of 

the lake to farm vegetables (e.g. green been, carrots, onion), including irrigation 

infrastructure, with the aim to enhance the local economy;  

(vi) building infrastructure for enhancing the farming and processing of paddy rice;  

(vii) drilling of 21 water wells, out of them 6 for pastoral use;  

(viii) 250 km of new cattle track to enable access to the water for the animals;  

(ix) a livestock market and livestock fodder market;  

(x) infrastructures for livestock vaccination and hence immunization against diseases;  

(xi) measures to improve fish farming are under discussion; and  
(xii) several technological anti-erosion control measures, such as: small dams and dikes 

(small stony dams) to slow down the runoff of water into the lake and limit the 

transportation of sediments into the lake, as it has also been previously performed 

by the fishermen; half-moons to store small quantities of water and improve soil 

fertility.  

A second project phase shall focus on dredging the lake to remove sediments from the lake, as 

well as maintenance and improvement of previously existing farmland. For the greater good of 

the development of Lac Bam it is taken into consideration that some people will lose their 

land, houses and fields. The higher level of the dam and considerable increase of the lake 

storage volume causes some additional land being flooded during the rainy season and 

therefore some houses had to be moved to other locations. The affected population shall be 
compensated with money (DCPM/MEA, 2017). The construction of the new dam, bridge and 
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road N15 was finished after the rainy season 2018, in August 2018 it was already possible to use 

the bridge (Ouedraogo, 2020, Somandé, 2020). In recent governmental and newspaper articles 

from March 2020 it can be read that the works on the dam and road N15 on the new bridge 

have been completed on time, whereas there are some delays in the development of new 

perimeters for irrigated farming. This is due to the local population not vacating their land on 
time though works on the land are required, therefore eventually some planned sites have to 

be moved, and due to the violent attacks on the villages around Lac Bam, causing 

outmigration of the farmers (DCPM/MEA, 2020, Sama, 2020). 

If human pressures such as siltation, water extraction and pollution continue, Burkina Faso’s 

largest natural freshwater lake is slowly drying up until the Nakambé river will be the only 

remnant (Davies, 2005, Ramsar, 2019b). There are different opinions on when this could be 

the case: According to Ouedraogo (2010) Lac Bam might turn into a river in about 2035, 

according to the coordinator of the Lac Bam restoration project, O. Bounkoungou, in about 

50 years from 2017 onwards (~2067). Burkina Faso’s former Minister of Water and Sanitation, 

Niouga Ambroise Ouédraogo, stated that “Siltation is estimated at 4.8 million m3 and if 

nothing is done, by 2082, there will be no Lac Bam” (DCPM/MEA, 2017, Nabole, 2017).  

1.1.3.3 Current Monitoring Methods 

For some wetlands in Burkina Faso water levelling measurements are performed, often at their 

dam or with gauges, and additionally, water volume is estimated (DGRE, 2013). These 

measurements do not take into account the effects of siltation, and therefore, neither 

the changing lake floor topography. Measurements at Lac Bam are carried out in terms of 

stage heights which measure the water level. There is a gauging station near St Paul’s Mission 

(see Figure 15a, source: Davies (2005)). These measurements have been performed on a daily 

basis since 1966, and conclude to a rise in water volume of Lac Bam, in contrast to the lake 

seeming to dry out. According to the studies of Davies (2005) the volume raise is not in 

relation to local precipitation measurements and therefore concludes to siltation. Additional 

measurements are carried out at the spillway of Lac Bam (Figures 15b and 15c). The water table 

is at high level at the end of the rainy season (October) 2013, as seen in these Figures. 

Measurements are, however, not possible during the end of the dry season since the lake dries 

out at this location. Only the water table is monitored from the ground, and water volumes 

are estimated, but no measurements of the extent of the surface water area are performed – 

this is where remote sensing comes in.  
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Rainfall data are recorded a bit afar in the north of Lac Bam (at the Bourzanga reservoir) and in 

a neighbouring watershed in Ouahigouya since 1986. Since 2006 some rainfall gauges were 

installed by the agricultural department of the province of Bam, among them one directly in 

the south of Lac Bam (Kongoussi) as well as in the north (Zimtenga). There is no evaporation or 

temperature data measured in the catchment. The closest station is the one in Ouahigouya, 

located in the same climatic zone (Nikiema, 2017). The previous water balance of Lac Bam was 

derived back in 1986 by Pouyaud (1986), and these data are still the official reference. A new 

study on the water balance of Lac Bam from 2012–2016 reported that the water is consumed by 

26% due to water abstraction and 74% due to evaporation (Nikiema, 2017). From 1975–1986 

Pouyaud (1986) carried out also bathymetric measurements. These measurements are still the 

official ones used by national ministries until today, even though sedimentation and siltation is 

not accounted for. A study from WASCAL in 2016 (Forkuor et al., 2017) performed depth 

measurements of 85 points in the lake, therefore considering siltation. They interpolated the lake 

floor topography, and combined it with monthly water surface delineations from SAR imagery. 

An exponential relationship between water surface and volume was reported (Nikiema, 2017).   

As part of the work for this thesis, first studies using remote sensing data were successfully 

applied to monitor open water and flooded vegetation of Lac Bam (Moser et al., 2014b, Moser 

et al., 2014a, Moser et al., 2016b, Moser et al., 2016a, Klingebiel et al., 2021), as well as to detect 

the increase in irrigated fields, which occurred particularly during the past 10 to 15 years 

(Moser et al., 2014a, Moser et al., 2017, Klingebiel et al., 2021). A very recent study by Ouattara 

(2018) and Ouattara et al. (2020) was performed on crop monitoring and yield estimation 

around Lac Bam using Sentinel-1 and -2 data between 2016 and 2017. They classified four 

different classes of irrigated crops: around 62% of the irrigated area was accounted to 

tomatoes, 21% to onion, 13% to green beans and 4% to “other” which comprises green peppers, 

cabbage, lettuce and eggplant. In addition, yield modelling was carried out for the tomato 

class.  

1.2 Research Objectives 

The overall objective of this thesis is to explore the possibilities for wetland monitoring in 

semi-arid West Africa using time series of different kinds of available (particularly during the 

years 2000–2017) remote sensing data. Moreover, the role of wetlands for the population, 

for their livelihoods in terms of water use and connections to droughts and water stress, 

are explored by the use of remote sensing.  

This section presents the research objectives which are addressed in more detail by 

formulating two main research questions containing five respective sub-questions (section 

1.2.1). These questions are investigated as part of six research articles which this thesis is 

comprised of, for five of them the author of this thesis is the main author. The connection 
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between the articles with a chosen sequence of production and publication, while maintaining 

substantial differences between them and answering different research questions, is described 

and illustrated thereafter (section 1.2.2).  

1.2.1 Research Questions 

The two main research questions – hereby referred to as question 1 and 2 – have been 

addressed in the six research articles, which correspond to the Chapters 3–8. Question 1 is 

explored in Chapters 3, 4 and 5 and Question 2 is targeted in Chapters 3, 6, 7 and 8. 

Research Question #1: Can spatio-temporal dynamics for sub-Saharan 
wetlands be derived using MODIS medium resolution time series?  

On the one hand, this question explores (A) the spectral, spatial and temporal capabilities 

using MR sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) 

for dynamical long-term wetland monitoring and discusses (B) challenges related to the 

sensor capabilities and potential fields of improvement. On the other hand, the 

geographic interpretation of the results is evaluated, i.e., (C) the temporal behavior in 

terms of seasonal and yearly dynamics of wetlands regarding differences between natural 

and artificial wetland types as well as their location at different latitudes, (D) the co-

occurrence of remotely sensed dynamics of wetlands and their surrounding environment 

with drought events, and (E) the detection of anthropogenic influences such as newly 

created artificial wetlands as well as irrigation activities with MODIS.  

Research Question #2: Can the wetland classes open water, flooded or 
floating vegetation, and irrigated cultivation be monitored using dual-
polarized SAR time series from TerraSAR-X and RADARSAT-2?  

This question explores (A) the feasibility to use dense dual-polarized SAR time series to 

classify and monitor the wetland classes open water, flooded and floating vegetation and 

irrigated cultivation dynamically over time. The methodological focus, on (B) dual-polarized 

SAR time series methods, and their added value towards single-polarized data, considering 

also theoretical capabilities with respect to the opportunities/drawbacks when using fully 

polarimetric data, is evaluated. Moreover, (C) the possibility to transfer the approach onto 

time series of different temporal intervals, and time series from different sensors, i.e. 

frequencies and polarizations is explored. (D) The added value when fusing such time series 

from data with different frequencies and polarizations is analyzed. (E) The geographic 

interpretation of the results questions the seasonal development of the respective classes and 

compares a two-year time series, later extended to a five-year time series over the Lac Bam 

study site. The analysis concludes with drawing parallels to studies with optical data and 

ongoing lake restoration projects and issues reported during field work.  
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1.2.2 Overview of the Publications Comprising this Thesis 

This cumulative PhD thesis is comprised of four peer-reviewed papers published in different 

internationally renowned scientific journals (IEEE-JSTARS, MDPI Remote Sensing, ISPRS 

Annals) and books (Wiley & Sons, Inc.) in the field of remote sensing (Chapter 3, 4, 6 and 7). 

Moreover, one draft-paper peer-reviewed paper from the world's leading international 

conference dedicated to SAR techniques, technology, and applications (EUSAR) (Chapter 8), 

and one extended-abstract peer-reviewed conference paper from the most significant yearly 

remote sensing conference (IGARSS) (Chapter 5) are extending the journal papers. The 

scientific articles can be read self-standing, but Chapter 1 and 2 provide, amongst others, the 

background and state of the art to the papers. Chapter 9 connects the six articles and jointly 

discusses the results and synthesis and concludes to the research questions. An outlook on 

further recommended work and current scientific gaps and solutions is rounding off this 

PhD thesis. The Annex section contains further extended results that are not included in the 

articles comprising this cumulative PhD thesis, but amend the work, among them poster 

publications. Figure 17 illustrates the structure and connections between the research articles.  

Figure 17: Structure and publications of this dissertation. 
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PAPER 1 • WILEY & SONS LTD. • REVIEW ON REMOTE SENSING FOR WETLAND MONITORING & CASE

STUDIES 

Moser, L., Schmitt, A., Voigt, S. & Schoepfer, E. 2015. Remote Sensing of Wetland Dynamics as 

Indicators of Water Availability in Semi-Arid Africa. In: Balzter, H. (ed.) Earth Observation for 

Land and Emergency Monitoring - Innovative concepts for environmental monitoring from 

space. Wiley. Status: published (2017). 

The first paper is a book chapter providing a background on remote sensing techniques and 
applications for monitoring wetlands, with focus on sub-Saharan Africa. A gap analysis shows 
advantages and limitations of different data and methods applied on varying spatial and 
temporal scales. Three case studies are introduced for the example of Lac Bam in Burkina 
Faso, using (i) optical medium resolution time series from MODIS, (ii) optical high resolution 
data from RapidEye and Landsat, and (iii) dual-polarized SAR data from TerraSAR-X. 
These case studies build the basis for the five following papers: Paper 2, Paper 2b, Paper 

3, Paper 3b and Paper 4.  

PAPER 2 • IEEE – JSTARS • MR WATER MONITORING 

Moser, L., Voigt, S., Schoepfer, E. and Palmer, S. 2014. Multitemporal Wetland Monitoring in 

Sub-Saharan West-Africa Using Medium Resolution Optical Satellite Data, IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 7, 3402-3415. 

Status: published (2014).  

The application of medium resolution time series was introduced based on the example of Lac 

Bam in Paper 1. The same method is applied on a large area which is subject to an 

environmental gradient ranging from northern Burkina Faso (Sahel) to southern Burkina Faso 

(Sudano Savannah). The key aspect is time series analysis of MODIS data for retrieving spatio-

temporal dynamics and trends of open water in wetlands and water bodies. Five focus regions 

are compared and their seasonal time series are matched with drought occurrence seasons. 

This work is continued in Paper 2b.  

CONFERENCE PAPER 2B • IEEE – IGARSS • MR WATER & VEGETATION MONITORING 

Moser, L., Voigt, S. and Schoepfer, E. 2014. Monitoring of Critical Water and Vegetation 

Anomalies of Sub-Saharan West-African Wetlands, in IEEE International Geoscience and 

Remote Sensing Symposium (IGARSS 2014), Québec, Canada, pp. 3842-3845. Status: published 

(2014). 

This conference paper strongly builds on Paper 2 and extends the spatio-temporal analysis of 

open water in wetlands with calculated MODIS vegetation trends observing (i) vegetation 

anomalies in the dry season over the whole area and (ii) in regions around wetlands, 
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discovering the ability to detect also irrigation trends, and concluding to wetlands 

covered with flooded vegetation, which is a main aspect to be investigated in Paper 3, 
Paper 3b and Paper 4.  

PAPER 3 • MDPI – REMOTE SENSING • HR POLSAR WETLAND CLASSIFICATION AND MONITORING 

Moser, L., Schmitt, A., Wendleder, A. & Roth, A. 2016b. Monitoring of the Lac Bam Wetland 

Extent Using Dual-Polarized X-Band SAR Data. Remote Sensing, 8(4), 302. Status: published 

(2016). 

A case study using polarimetric SAR at the Lac Bam site was introduced in Paper 1. The three 

wetland classes: open water, flooded vegetation and irrigated cultivation are evaluated using a 

time series of two full years of dual-polarized SAR data from TerraSAR-X of the Lac Bam site. 

This paper focuses on time series analysis, temporal interpretation of scattering mechanisms 

and mono- and multi-temporal classification, which is transferred to another sensor and 

polarization in Paper 4, and extended from two to five yearly cycles in terms of monotemporal 
classification of the full time series in Paper 3b. Very high resolution optical data 

(WorldView-2 and GeoEye-1) as well as RapidEye data are used as a validation source, 

connecting to the applicability of RapidEye data as described in Paper 1.  

CONFERENCE PAPER 3B • EUSAR • HR POLSAR WETLAND CLASSIFICATION AND MONITORING OVER FIVE

YEARS 

Klingebiel, C., Schmitt, A., Wendleder, A., and Moser, L., 2021. Lac Bam Imaged by 

TerraSAR-X – Classification and Visualization of Seasonal and Annual Changes, in: 

Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, 537-542. 13th 

European Conference on Synthetic Aperture Radar (EUSAR), postponed from 15-18 June 2020, 

Leipzig, Germany to 29 March- 1 April 2021, virtual conference. Status: published (2021). 

This conference paper builds up on Paper 3, extending the time series until 2018, resulting in 

a dataset covering five full yearly cycles. Each image in the time series is monotemporally 

classified and the time series is evaluated regarding the spatial and temporal development of 

the classes open water, wetland area and irrigated agriculture along the five years, the results 
are compared with Global Precipitation Climatology Centre (GPCC) precipitation data.   

PAPER 4 • ISPRS  – ANNALS • HR MULTI-SENSOR POLSAR WETLAND CLASSIFICATION 

Moser, L., Schmitt, A., and Wendleder, A. 2016. Automated Wetland Delineation from Multi-

frequency and Multi-polarized SAR Images in High Temporal and Spatial Resolution, ISPRS 

Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-8, 57-64. 

Status: published (2016). 
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After the case study using SAR polarimetry at the Lac Bam site was introduced in Paper 1, 
spatio-temporal analysis and classification using TerraSAR-X data has been carried out in 
Paper 3 and Paper 3b. This paper is a follow-up of Paper 3 and aims to transfer the analysis 

chain developed for TerraSAR-X onto a time series of RADARSAT-2, a different SAR sensor 

that operates in another wavelength (C-band) and provides different polarization modes. 
Moreover, a synergetic use of these two sensors is exploited by comparing classification 

accuracies using different combinations of TerraSAR-X and RADARSAT-2 Kennaugh elements. 
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Chapter 2 

State of the Art 

Schema of multitemporal TerraSAR-X acquisitions and multitemporal profiles 
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2. State of the Art for Monitoring Sub-Saharan Wetlands

This section presents an in-depth state of the art of wetland remote sensing, focusing on 

optical multi-spectral data applications on a high and medium spatial resolution, as well as 

SAR data. Applications, methods and conclusions of the most recent state of the art are 

discussed, and studies particularly relevant for semi-arid Africa are pointed out. Research on 

the field was driven by rapid developments and new publications since the end of the year 

2014/beginning of 2015. It is assumed that these advances were to some extent fostered by 
some special issues in renowned international remote sensing journals, mainly in MDPI 

Remote Sensing, for example “What can Remote Sensing Do for the Conservation of 

Wetlands?” – under the contribution of this thesis’ author in 2016. Moreover, the increasing 

efforts of the Ramsar initiative to include remote sensing-based approaches as well as projects 

such as the GlobWetland projects funded by the European Space Agency (ESA) may have 

played a role. The high relevance of the topic for the remote sensing scientific community 

becomes clear looking at several further special issues on wetland topics which are planned by 

MDPI Remote Sensing for the year 2021. 

The coming section starts with an overview of optical and SAR remote sensing data 

(section 2.1). The physical principles of optical multi-spectral remote sensing with regard 

to observing wetland parameters, followed by water, vegetation and wetland indices and 

an in-depth analysis of the current state of the art of optical water and wetland remote 

sensing is presented (section 2.2). Analogous, SAR backscattering principles, polarimetric 

decompositions and SAR sensor applications for water and wetland remote sensing are 

provided (section 2.3). A further section 2.4 focuses on alternative remote sensing applications 

and combined applications. These are followed by an overview of recent, current and 

upcoming international projects and data products where remote sensing is applied for water 

and wetland mapping and monitoring (section 2.5). The last part of this chapter points out the 

rationale behind the choice of data to achieve the objectives for the studies in this thesis 

(section 2.6).  
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2.1 Optical and Synthetic Aperture Radar Remote Sensing Data 

This section provides a brief introduction to optical (section 2.1.1) and SAR remote sensing 

data (section 2.1.2). Optical and SAR remote sensing satellites of medium, high or very high 

resolution are commonly placed in low Earth orbit (LEO), between around 400 and 900 km 

altitude. They orbit the Earth at sun-synchronous near-polar orbits in about 90 minutes time, 

at the speed of 7 km/sec. Details about several satellite missions and sensors are provided in 

the ESA Earth Observation Portal (eoPortal) (eoPortal, 2020) or the Earth Observation 

Handbook (CEOS, 2017). The categories of spatial resolution for this thesis have been defined 

according to ESA’s Copernicus Space Data Component (the Data Access Portfolio: DAP) 

(Hoersch and Amans, 2017) as referred to in Table 1 with some examples of existing sensors:  

Table 1: Commonly used remote sensing sensors grouped by spatial resolution. Adapted from EO-
Handbook (CEOS, 2017), the Data Access Portfolio (DAP) (Hoersch and Amans, 2017) and ESA Earth 

Online (ESA, 2018a): sensors utilized for the work in this thesis are written in bold.  

Cate-
gory Description Spatial 

Resolution Optical Sensor Examples SAR Sensor Examples (after 
resampling to pixel spacing) 

VHR1 Very High Resolution 1 < = 1 m 
Pan-sharpened VHR: WorldView-
1/-2/-3/-4, Pleiades, GeoEye-1, 
Quickbird-2, IKONOS-2, Deimos-2 

VHR2 Very High Resolution 2 1 m < = 4 m 
Spot-5, pan-sharpened Spot-6/-7, 
PlanetScope, CartoSat (IRS-P5), 
multispectral VHR (see above) 

TerraSAR-X Spotlight 

HR1 High Resolution 1 4 m < = 10 m Sentinel-2, RapidEye, ResourceSat-
1/-2, LISS-4 (IRS-P6)  

TerraSAR-X StripMap, 
RADARSAT-2 Fine-Beam, 
Sentinel-1 StripMap, 
COSMO-SkyMed StripMap 

HR2 High Resolution 2 10 m < = 30 m 
Landsat 4/5/7/8 , ASTER, Spot-4, 
Sentinel-2, DMC, IRS-P5, Deimos-1, 
ResourceSat-1/2 LISS-3 (IRS-P6) 

ASAR IM, RADARSAT-2 
Standard and Wide-Beam, 
TerraSAR-X ScanSAR, 
Sentinel-1 Interferometric 
Wide-Swath 

MR1 Medium Resolution 30 m < = 100 m Landsat TIR, ALOS PALSAR,
ResourceSat-1 /-2 AWiFS (IRS-P6) 

ALOS PALSAR, Sentinel-1 
Extra-Wide Swath, 
RADARSAT-2 ScanSAR,  

MR2 Medium Resolution 100 m < = 300 m MODIS (250 m red+NIR), Viirs,
MERIS, Sentinel-3 ASAR Wide Swath Mode 

LR Low Resolution > = 300 m MODIS (500 m), PROBA-V, SPOT 
VEGETATION, AVHRR, SEVIRI 

ASAR Global Monitoring 
Mode 

Figure 18 provides an overview of commonly used remote sensing sensors – grouped into 

optical HR, optical MR and SAR sensors – and their timeline of operational service.  
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Figure 18: Timeline of the lifetime of commonly used remote sensing sensors, with spatial resolution or 
wavelength in brackets. Sensors are split into three groups: high-resolution (HR) optical sensors (dash-

dotted line), medium resolution (MR) optical sensors that record regular time series (solid line), and 
Synthetic Aperture Radar (SAR) sensors (dotted line); modified from (Moser et al., 2017).  

2.1.1 Optical Multi-spectral Data 

Optical sensors, also called electro-optical sensors or multi-spectral sensors are passive 

sensors that measure reflected sunlight from the Earth’s surface. The reflection differs 

according to the spectral properties of the surface material that scatters this light. The energy 

source that illuminates the material is typically the sun, or can be also an energy source on 

Earth (e.g. light) or a material that emits energy. In case of the sun, the energy has to travel 

through the Earth’s atmosphere twice where it interacts, before and after being scattered by 

the surface material, according to the surface properties, and the properties (e.g. wavelength) 

of the energy itself. An optical sensor in space then measures the received signal, stores it and 

further transmits it to a receiving station. An image is processed where spectral values are 

typically stored as digital numbers (DNs). The image needs to be further geometrically and 

radiometrically corrected, as well as atmospherically corrected. The goal is to retrieve 

physically meaningful surface reflectance values where the effect of the atmosphere is 

removed and clouds as well as cloud shadows are masked (Lillesand et al., 

2014, Natural Resources Canada, 2018).   

The number of spectral bands is typically between 3 for visual (VIS) or 4 for visual near-

infrared (VNIR) very high resolution sensors, with spectral wavelengths of 400–700 nm in the 

visual (VIS), and 700–1000 nm in the near infrared (NIR) range of the electromagnetic 

spectrum. For high resolution sensors between minimum 4 until about 15 bands are 

commonly available, adding mid-infrared (MIR) bands from 1–3 µm – also called shortwave 

infrared (SWIR) – or 3–100 µm in the thermal infrared (TIR) range. Medium resolution sensors 
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contain a few up to around 30 bands. The spectral sensitivity of a sensor depends on the 

bandwidth/range of a spectral band. Moreover, these spectral bands need to be located within 

atmospheric windows where electromagnetic radiation can penetrate the Earth’s atmosphere.  

In terms of geometric properties of an optical remote sensing image, with lower spatial 

resolution the swath width increases. The higher the resolution of an image, the smaller is the 

swath/area covered on the ground. A MODIS image with bands of 250 m, 500 m and 1000 m 

pixel size covers a swath of approx. 2330 km, whereas a Landsat image with bands on 30 m 

covers a swath of approx. 185 km, a VHR image with pixel size of approx. 0.5 m typically covers 

only a swath between 10 and 20 km width. The direction of the optical sensor towards the 

Earth is usually nadir with a certain field of view (FOV) which covers the swath defined by the 

scanning mechanism of the sensor.  

The temporal resolution or repeat frequency of optical satellites is determined not only by 

the satellite overpass but by the ability to tilt the angle of the instrument (mainly for VHR and 

HR sensors), and by the swath width which is tied to the geometric resolution as well. It can 

be increased if satellites with same or similar sensors fly in constellation. With two MODIS 

sensors onboard the Aqua and Terra satellites a (near-)daily coverage can be achieved, 

whereas some higher resolution sensors have repeat frequencies of for example 6 days 

(Sentinel-2A and -2B with a cycle of 12 days each) or 16 days (Landsat). RapidEye, flying since 

2009 in a constellation of five can reach a revisit time of one day considering a change of the 

instrument angle. The average revisit over European latitudes is around 5.5 days. With the 

PlanetScope constellation consisting of 180 cube sats the whole Earth can be pictured daily 

(eoPortal, 2020).  

2.1.2 Synthetic Aperture Radar (SAR) Data 

Synthetic aperture radar (SAR) has been widely applied for land and ocean remote sensing 

since the 1980s, and is subject of analysis in this thesis. SAR is an active sensing system and as 

such an imaging radar with measurement principles based on conventional radar (Radio 

Detection and Ranging), but synthesizing a much longer antenna by being mounted on a 

forward moving platform. Due to the movement of the satellite, the consecutive time of 

transmission/reception translates into different positions. As an active sensor system SAR 

illuminates the terrain by sequentially transmitting electromagnetic waves – pulses in the 

microwave part of the electromagnetic spectrum – from the antenna. Their backscattered 

echoes are then measured by the receiver in terms of travel time, which is often the same 

antenna (in case of monostatic systems), or with separate transmitter and receiver (bistatic 

systems), the latter could be located on a different platform (e.g. satellite constellations).  

Commonly used frequencies for space-borne SAR sensors are X-band (commonly at ~3 cm 

wavelength), C-band (commonly at ~5.6 cm) and L-band (commonly at ~24 cm), with an 
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attainable pixel resolution increasing with shorter wavelength/higher frequency. Composed of 

an azimuth and range resolution, the SAR image needs to be further resampled with a 

desired pixel spacing to generate the image. The spatial resolution of a SAR image is defined 

as such where two closely spaced scatterers can be separated by an imaging SAR. The spatial 

resolution decreases with longer wavelengths as well as with higher degree of polarization (in 
both cases the returned energy is weaker, at cost of the spatial resolution). With its active 

sensing technology SAR illuminates the terrain and can operate independent of illumination 

conditions, sunlight or nighttime, and in both, ascending and descending orbits. 

Transmissivity of microwaves through the atmosphere makes SAR also weather-independent, 

besides exceptional conditions of very heavy clouds and rain cells that can be visible in short 

wavelength (e.g. X-band) SAR images. 

The azimuth is along the flight direction, in which the platform is moving (along-track). The 

slant range corresponds to the line-of-sight in which the SAR sensor is pointing the side-

looking transmission, and which is perpendicular to the radar satellite’s flight path. As 

opposed to optical instruments (that operate nadir-looking or with small off-nadir angles) SAR 
has a side-looking imaging geometry. This geometric property is required for SAR, since 

different points in or around the nadir direction could otherwise not be resolved (since they 

would be located at the same distance from the sensor). That results in SAR incidence angles 

that typically vary between around at minimum 15–20 and at maximum 45–50 degrees (Airbus, 

2014, MDA, 2016, ESA, 2013). The choice between different incidence angles has advantages, 

since for different applications either flat or steep angles are more or less suitable. With 

changing incidence angle also the footprint and therefore the area to be covered changes. The 

swath width is defined as the ground-range extent of the radar scene and can vary between at 

minimum 5–10 km and at maximum 200–500 km (Airbus, 2014, MDA, 2016, ESA, 2013) for 

space-borne SAR, depending on, e.g., the wavelength, frequency, imaging mode and type of 

polarization. The swath ranges from near range (smallest incidence angle) to far range (largest 

incidence angle at the most remote part of the swath). The length of the swath is variable and 

depends on the duration of the data take (Moreira et al., 2013, Lee and Pottier, 2009). 

The repeat pass orbits determine the temporal resolution of SAR sensor data. The time gap 

between two acquisitions from the same imaging geometry remains constant for one sensor, 

e.g. repeat pass acquisitions for TerraSAR-X (TSX) are provided in an 11-day period, for 

Sentinel-1 in a 12-days interval, and the interval of a RADARSAT-2 (RS-2) repeat-pass is 24 

days. To acquire repeated acquisitions or time series under the same geometry conditions the 

incidence angle needs to remain identical. Therefore, operational SAR sensors need to 

(i) systematically acquire data of the same area with continuous regular intervals and under 

identical geometry conditions or (ii) enable continuous tasking of new acquisitions of specific 

areas of interest to users. Different applications may require different acquisition modes. SAR 

sensor operations are restricted by the fact that the instrument cannot be turned on all the 
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time, e.g. due to storage and downlink capacity limitations. Furthermore, multiple sensor 

acquisition modes exclude each other and are therefore not possible at the same time. In order 

to increase the sample rate to the one provided by TerraSAR-X one could (i) merge 

acquisitions of two same-type satellites (e.g. constellations such as TerraSAR-X and 

TanDEM-X resulting in an 11-day repeat cycle or Sentinel-1A and Sentinel-1B – the latter 
operational since March 2017 – allowing a 6-day repeat cycle); (ii) merge acquisitions from two 

different orbits of the same satellite, resulting in two different geometry conditions; or 

(iii) multi-sensor and multi-frequency time series acquired by different satellite sensors. These 

three ways to increase the sampling rate are used to densify the time series in this thesis’ work 

(see section 2.6 and Chapters 6, 7 and 8, where further details on the SAR data that have been 

used are presented).  

2.2 Optical Multi-spectral Methods and Applications for 

Wetland Monitoring 

Optical multi-spectral data, briefly explained in section 2.1.2, have been widely used for 

various applications related to water and wetlands. With respect to this thesis’ work the 

reasons for using optical data are mentioned in section 2.6: for example long existing archives 
of MR time series data and continuous operations, high temporal revisit frequency, 

appropriate spectral bands for water and vegetation monitoring, availability of calibrated 

products and free online data accessibility. The main limitation of optical data is cloud cover 

and co-occurring cloud shadows, which particularly occur during the pronounced rainy season 

in the study area.  

Examples for the applications of optical data for wetland remote sensing are given in the 

following sub-sections. An overview of multi-spectral reflectance properties with focus on 

imaging characteristics of water and wetland parameters is given (section 2.2.1). The state of 

the art of water and vegetation indices derived from optical data and used for wetland analysis 

is elaborated (section 2.2.2), followed by the state of the art of the use of optical (i) high 
resolution and (ii) medium resolution data for wetland applications (section 2.2.3).  

2.2.1 Multi-spectral Reflection Properties of Wetland Features 

This section explains optical reflection properties as described by many books, authors and 

tutorials, e.g. Albertz (2009), Lillesand et al. (2014), Jensen (2014), Thenkabail (2016), but with 

focus on scattering properties of water and wetland-related land cover.  

The spectral response as measured by optical sensors in the relevant wavelengths of the visual 

(0.4–0.7 µm), near infrared (0.7–1.3 µm) and shortwave infrared (1.3–3 µm) range depends on
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the spectral properties of the surface material reflecting the solar energy, in contrast to SAR 

sensors where surface structure properties in microwave wavelengths are retrieved. Passing 

through the atmosphere twice, mainly effects of scattering (due to atmospheric particles and 

molecules) and absorption (due to mainly water vapor, carbon dioxide and ozone) take place, 

as well as refraction which is negligible. The transmission through the atmosphere strongly 
depends on the wavelength and is only possible within atmospheric windows. The remaining 

radiation hits the Earth’s surface in two ways: as direct and diffuse “skylight” radiation. When 

sunlight hits the Earth’s surface, energy is then reflected, absorbed or transmitted. The 

roughness of the material in relation to the wavelength determines the characteristics of the 

reflection which can be (i) specular where the angle of incidence is equal to the angle of 

reflection, (ii) diffuse where reflection occurs in all directions at the same magnitude, or most 

likely (iii) a mixed version of both mechanisms, ranging from near-perfect-specular to near-

perfect-diffuse. In terms of calm water surfaces specular reflection can occur. Moreover, 

geometric properties of the sensor (e.g. the sensor viewing angle, the size of the instantaneous 

field of view (IFOV) or the pixel resolution etc.), and of the sunlight (e.g. the solar elevation 

angle and the solar azimuth angle with respect to the position of the sensor) are decisive 

(Albertz, 2009, Lillesand et al., 2014).  

In summary, the surface reflectance returning to the sensor is altered according to (i) sensor-

dependent properties: i.e., the wavelength, the radiometric resolution and the spatial 

resolution of the respective spectral bands of the sensor, as well as the sensor viewing 

geometry (solar zenith angle, viewing angle, azimuth angle, relative azimuth angle, sensor 

altitude); (ii) physical properties: i.e., surface material, roughness of the material, wetness of 

the soil/material, size of the target, background reflectance, topography of the terrain and 

associated geometric distortions and terrain shadows, as well as illumination conditions from 

the sun; and (iii) atmospheric properties: i.e. atmospheric optical parameters, atmospheric 

particles, haze, clouds and associated cloud shadows, etc. Figure 19 illustrates the processes 

resulting in reflection of electromagnetic energy.   
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Figure 19: Reflection of electromagnetic energy on land and water, in visual and infrared wavelengths, 
consisting of reflection, emission, scattering and absorption (example: sensed by the MODIS sensor on 

the Terra spacecraft).  

There are numerous reasons for a change of the spectral properties and visual colour of open 
water surfaces, especially in the visual wavelengths, and to a lesser extent in the infrared 

regions. Unlike for microwaves emitted by SAR sensors there is usually no great penetration of 

solar energy into solid surface materials in the visual and infrared wavelengths. In the case of 

liquid open water surfaces, however, electromagnetic energy predominantly in short 

wavelengths, (i.e. the visual part of the electromagnetic spectrum), interacts with the water 

itself and optically active substances (OAS) in the water, such as plankton (high chlorophyll 

concentration), organic molecules and sediments. The bottom material of shallow water 

bodies can also alter the absorption and scattering of light energy, therefore also the water 
depth plays a role.  

The spectral properties of water are generally characterized by higher reflectance values in the 

visible range, and high absorption (i.e. very low reflectance values) in the near infrared (NIR) 

and beyond, i.e., the shortwave infrared (SWIR), the latter is also called mid-infrared (MIR) 

range. Reflectance is particularly high in the blue band followed by the green band for clear 

waters, and for turbid waters it increases in different parts of the visual spectrum. Waters with 

high chlorophyll concentrations generally peak in green wavelengths (Lillesand et al., 2014). 

The existence of a NIR or SWIR band is decisive for water detection and monitoring. Almost 

all optical remote sensing sensors carry a NIR instrument, and many have bands in the 

SWIR region as well. Moreover, there is a high contrast between water and land pixels in the 

NIR and SWIR range, which is in favor of water detection using these bands. 
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Confusions can appear in case there are topographic shadows from steep slopes, cloud 

shadows or burn scars which can lead to similar low NIR values. A large number of 

authors have applied single-band detection thresholding on the NIR band, e.g. Landmann et 

al. (2010), Moser et al. (2014b), Klein et al. (2014) and Klein et al. (2017), or few authors on 

the SWIR band (Wolski et al., 2017) to detect open water.  

In more details, among OAS there are three main substances: (i) phytoplankton which are 

microscopic plant-like organisms, often characterized by chlorophyll a concentration derived 

from distinct spectral signals; (ii) yellow substance (gelbstoff, gilvin) which is the same as 

“dissolved organic matter” (DOM), and where the light-absorbing part is referred to as 

“colored dissolved organic matter” (CDOM); and (iii) total suspended matter (TSM) being 

mineral particles (e.g. sediments from in-flowing rivers or the lake bottom) or a mixture of 

organic (dead algae, humic particles, detritus) and mineral particles; a high concentration of 

suspended matter leads to high turbidity of the water (Arst, 2003). Such water quality or 

turbidity parameters can naturally change following a seasonal cycle (e.g. rainy season – dry 

season). On the one hand, the different optical properties of all these materials are the cause 
for water being a very variable target as to its own physical characteristics, and pose great 

challenges for water detection and monitoring. On the other hand, beyond the scope if this 

thesis, optical remote sensing sensors are used to study water optics and water color, i.e., 

water quality parameters and bio-optical parameters including OAS (Palmer et al., 2015, 

Gholizadeh et al., 2016, Zhang et al., 2017). In these cases the use of optical data poses an 

absolute advantage with respect to SAR data.  

Further challenges for water body remote sensing have been summarized by Palmer (2015). 

Among them are complexities related to the atmospheric correction of optical images for 

inland water and wetland remote sensing, the land adjacency effects over inland waters, the 

size and geometry of mixed pixels and the bottom effect of optically shallow versus optically 
deep waters. Different challenges due to the physical nature of lakes and wetlands, such as ice 

and snow cover, are not of relevance for this study in sub-Saharan Africa. The influence of 

flooded vegetation, however, is huge and will be discussed further in this section.  

Besides all occurring absorption and scattering effects, illumination conditions and sensor 

geometry are also altering the spectral signal received by the sensor. Perfectly flat 

water surfaces cause a specular reflection of sunlight. A typically occurring optical 

phenomenon is sunglint, which is the case when sunlight is reflected off the water surface at 

the same angle where the sensor’s detectors are pointed to. Currents, waves and ripples on 

the water surface cause sunglint to be scattered in various directions leading to blurry glow 

effects. The shape of the coastline might as well play a role for sunglint effects, some 

examples as seen by the MODIS sensor are presented by the NASA Earth Observatory 

(2014). Water bodies itself are flat, but the terrain inclination and aspect is relevant for casting 
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shadows which might be mistaken as water. Moreover, particularly for ocean coasts the terrain 

is relevant for waves and ripples which are scattering sunlight at coastlines. In semi-arid 

landscapes close to the equator the illumination conditions are usually suited for remote 

sensing analysis; however, for territories of higher latitudes few hours of sunlight until periods 

of darkness, and long shadows would have to be taken into account.  

Not in focus of this work but mentioned for completeness is the possibility of thermal infrared 

(TIR) remote sensing of open water or water below vegetation. In thermal infrared 

wavelengths (with atmospheric windows in 3–5 µm and 8–14 µm) energy is not reflected, but 

emitted, resulting in measurements of radiant temperature (which is different to their kinetic 

temperature, materials of the same radiant temperature can have totally different kinetic 

temperature and vice-versa). Satellite-based measurements can take place at day as well as at 

night time, and therefore diurnal cycles have to be considered, depending on the thermal 

inertia of the material. Clear water contains high emissivity with emissivity curves close to 

black bodies (Lillesand et al., 2014). For semi-arid African regions, Leblanc et al. (2011) 

describes that water has a higher thermal inertia than land. Therefore, water bodies or wet soil 
take longer to heat and cool along the diurnal cycle than their surrounding dryland areas, and 

these differences can aid to the detection of water and wetlands. They moreover describe that 

mixing of large water bodies also impacts radiant temperature, as does evaporation by cooling 

the surface, which is limited on dryland (Leblanc et al., 2011). A possible advantage of TIR 

remote sensing with respect to VNIR and MIR remote sensing for inundation mapping is the 

possibility to detect water below vegetation. Macrophytes measured by optical sensors may 

still grow in wet soil until after the inundation has ended. Vegetation indices based on optical 

data can show high values despite no water being present anymore below the vegetation 

(Leblanc et al., 2011). In any case, day-night differences, seasonal differences (also for visual, 

NIR and MIR reflection) as well as regional characteristics need to be taken into account to 

conclude to water bodies or wet surfaces. Common satellites that carry TIR-capable sensors 

are for example Landsat 5, 7 and 8, Terra/ASTER, MODIS, (A)ATSR, AVHRR 3, or Meteosat. 

Examples include the surface inundation derivation and modelling to assess flood risks at the 

Upper Zambesi Basin, Namibia/Botswana, using MODIS TIR imagery from 2000–2015 (Burke 

et al., 2016), or detecting water under flooded vegetation at Lake Chad using Meteosat thermal 
maximum composite data from 1986–2001 (Leblanc et al., 2011).  

Wetland vegetation can be standing in water (emergent vegetation), floating on water 

(floating or emergent vegetation) or be below the water surface (submerged vegetation). 

Wetland vegetation grows as well on the land that is part of the wetland area, or persists as 

irrigated or rain-fed agriculture. Villa et al. (2015) focused on macrophytes and their role in the 

carbon cycle, for which they state that research is still underrepresented. They cite many 

authors that report as well that remote sensing methods for vegetation were developed 

targeted to vegetation on land and there is no such systematic monitoring from regional to 
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global scale for aquatic vegetation. Studies using multispectral data are rather limited to 

particular case studies or have been conducted using hyperspectral imagery.  

For remote sensing of vegetation in general, the large difference between the reflection in the 

visual and the infrared spectral regions is decisive. This is also the basis for many vegetation 

indices (see section 2.2.2). At the edge of the red and near infrared spectral regions there is an 

enormous increase in reflection at a narrow bandwidth. In the case of healthy “green” 

vegetation chlorophyll strongly absorbs red and blue wavelengths while it shows higher 

reflection in the green wavelengths, and increases considerably at NIR wavelengths starting at 

0.7 µm and ranging up to 1.3 µm, allowing the interpretation of different plant types or 

vegetation health status (Lillesand et al., 2014). The infrared reflection of aquatic emergent 
or floating vegetation is determined by the leaf morphology and water content, whereas leaf 

pigments account for the reflectance in the visual range, similar as for vegetation on land 

(Silva et al., 2008). The authors also pointed out that the density of the macrophyte surface is 

decisive for the NIR reflectance, and that in case of optical imagery the signal can be saturated 

when vegetation cover is very dense (Silva et al., 2008). It is assumed that this is particularly 

the case for sensors with lower dynamic ranges (e.g. 8 bit) such as Landsat 1–7.  

Some preliminary findings extracted from various references and summarized by Adam et al. 

(2010) are presented here including some extended thoughts. The boundaries between 

herbaceous wetland vegetation types are challenging to extract, since wetland vegetation is 

subject to a high spectral and spatial variability. This is because of short ecotones (transition 

area between two biological communities) (Schmidt and Skidmore, 2003, Zomer et al., 2009), 

small-scale structure of the different land covers in a wetland, and strong temporal (seasonal) 

variances. The spectral reflectance of different wetland vegetation is often very similar and is 

as well influenced by the underlying ground/material, typically water or wet soil. In both cases 

the spectral signal decreases, particularly it the NIR and MIR ranges where water is strongly 
absorbed and soil does not show much reflection due to lack of chlorophyll (Silva et al., 2008). 

Spectral vegetation indices which were successfully designed and applied on land might be 

spectrally and/or spatially less suitable for distinguishing wetland vegetation, since the 

underlying water and wet soil attenuate the NIR and MIR reflection (Zomer et al., 2009).  

Multitemporal applications using HR data for wetland vegetation using traditional vegetation 

indices such as the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation 

Index (EVI) were for example applied in combination with the Floating Algae Index (FAI) 

developed for MODIS data (Hu, 2009), or the FAI alone (Hu et al., 2010), using MODIS and 

Landsat from 2000–2009 in the yellow sea and East China sea. Multi-temporal approaches for 

classifying wetland vegetation were applied e.g. by Gilmore et al. (2008) in tidal marsh 

environments performing an object-oriented classification, using the NDVI and simple band 
ratios on QuickBird imagery from 2003–2006, in combination with Light Detection And 
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Ranging (LiDAR) and field spectrometer data. Moreover, Wang et al. (2012) developed an 

aquatic and plant functional types classification scheme for the regularly flooded Poyang lake, 

China, using the Beijing-1 microsatellite with 32 m spatial resolution. Niculescu et al. (2020) 

did several different classification scenarios using Sentinel-1 and Sentinel-2 bands and indices, 

and found out that with various sensor combinations reed is well discriminable in contrast to 
other macrophyte communities.  

Niculescu et al. (2020) also investigated how to distinguish submerged macrophytes from 

emergent wetland vegetation using optical data. They thereby state that the classification of 

aquatic macrophytes is especially challenging due to the reflected signal being distorted by the 

OAS in the water column. Penetration of energy into the water is greatest in the green spectral 

region, in which submerged plants can be detected, and emergent species show even higher 

reflectance (Silva et al., 2008). Since SAR wavelengths do not have the ability to penetrate 

below the water surface, remote sensing of submerged macrophytes is restricted to optical 

data (Niculescu et al., 2020).  

The topic of flooding below canopy is not of particular focus in this thesis’ work, since the 

area of interest of the study region does not contain such dense vegetation with the exception 

of some larger trees in the south of the study area, rather herbaceous macrophytes. Generally 

speaking, unlike longer SAR wavelengths, the optical and infrared wavelengths do not 

penetrate the vegetation and hence do not reflect the surface material, e.g. water or wet soil, 

below the vegetation canopy. Guerschman et al. (2011) who have focused on open water 

detection using MODIS, stated that depending on the density of flooded vegetation, it might 

spectrally dominate over the reflection of open water and in these cases water will not be 

detected. It has to be noted, however, that a MODIS pixel can contain a multitude of different 

plants and water. Using higher resolution sensors, water in-between vegetation canopy could 

be more likely detected.  

2.2.2 Water, Vegetation and Wetland Indices 

The spectral properties and differences between the visual and infrared range are the basis for 

the construction of water as well as vegetation indices for water and wetland detection, as 

further described in the following paragraphs. They often consist of a normalized ratio 

between two divided bands. Some indices can be deducted from the bands directly; no matter 
if we are dealing with surface reflectance (level 2) or DNs (level 1) data, but some indices need 

pre-calculated coefficients.  

One of the first indices to become popular in remote sensing was the Normalized Difference 

Vegetation Index (NDVI) – previously only called VI – which was applied on Landsat Multi-

spectral Scanner (MSS) imagery (Rouse, 1973) and further assessed based on ground-collected 

in-situ spectrometer data, alongside with further red- and NIR-based indices (Tucker, 1979). 
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This normalized index can be calculated with the equation (NIR - red)/(NIR + red), profiting 

from the different spectral response for vegetation in the red and NIR range. Since almost all 

optical sensors (high, medium or low resolution) contain these bands the NDVI can be 

computed using the majority of optical sensors. This index was designed as vegetation index – 

not as water index – but it is of relevance for water and wetland monitoring in terms of 
detection of flooded or floating vegetation (higher NDVI values) as well as distinguishing 

water (low NDVI values) from land surface (much higher NDVI values).  

Dedicated water indices developed for water extraction are the Normalized Difference Water 

Index (NDWI), calculated as (green - NIR)/(green + NIR) and applied to delineate open water 

features on Landsat MSS data (McFeeters, 1996). In parallel, another method for calculating 

the NDWI was developed by Gao (1996), adding a band in the mid-infrared region: (NIR - 

MIR)/(NIR + MIR), based on laboratory measurement spectra and testing it using Airborne 

Visible Infrared Imaging Spectrometer (AVIRIS) data. The same band combination was 

used for the Normalized Difference Moisture Index (NDMI) by Wilson and Sader (2002), 

which according to Xu (2006) fulfills the purpose to detect vegetation water liquid, 

whereas the index by McFeeters is more suited to open water detection. Some authors also 

use the same index as Land Surface Water Index (LSWI) proposed by Xiao et al. (2002) 

for applications related to flooding (Sakamoto et al., 2007, Yan et al., 2010). Xu (2006) 

proposed the modified Normalized Difference Water Index (mNDWI) for detecting open 

water features, based on the McFeeters index using the MIR and green bands of Landsat 

Thematic Mapper (TM) and Enhanced Thematic Mapper+ (ETM+) data: (green - MIR)/

(green + MIR). It was concluded that this index is especially useful for urban areas since 

noise caused by built-up land which is present in the NDWI could be reduced or removed. 

Both NDWI and mNDWI were also compared by Xu (2006) to analyze water turbidity. 

The NDVI, NDWI and mNDWI indices are now very widely applied in the field of water 

and wetland remote sensing using various high and medium resolution optical sensors.   

Further worth mentioning in the context of this work are two indices which were especially 

developed by Lacaux et al. (2007) for ponds in the Sahel are (i) the Normalized Difference 

Pond Index (NDPI): (MIR - green)/(MIR + green) which is an index exploiting the very low 

reflectance of typically turbid open water ponds in the MIR region, and the ability to 

distinguish between aquatic vegetation and vegetation on land for less turbid ponds which are 

partially covered by aquatic vegetation; (ii) the Normalized Difference Turbidity Index (NDTI) 

based on only visual bands: (red - green)/(red + green) which serves to estimate the turbidity 

of a pond, based on the assumption that turbid waters are spectrally similar to bare soil, where 

the reflectance in red can be higher than in green. The latter two indices were applied for 

studying Sahelian ponds in Senegal using SPOT-5 imagery (Lacaux et al., 2007) and in a study 

investigating ponds in Mali with SPOT, Landsat, FORMOSAT and MODIS imagery (Gardelle 

et al., 2010) and by further authors. There are several other two- or three-band indices
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that have been developed by different authors for e.g. water detection, which are less 

commonly applied, for some of them it can be referred to Li et al. (2016) who is mentioning 

several water indices and has been developing a further one.  

Other more complex indices which require further bands and/or one or more coefficients are 

for example the Automated Water Extraction Index (AWEI), developed in two ways: 

AWEInsh (for regions where shadows are no problem) and AWEIsh (for removal of shadows) 

classifiers (Feyisa et al., 2014). Applied on Landsat 5 TM imagery in different study areas in 

Europe, Africa and New Zealand AWEI outperformed mNDWI as well as Maximum Likelihood 

(ML) classifiers (Feyisa et al., 2014), and AWEI was further applied for Landsat-8 OLI (Ji et al., 

2015, Xie et al., 2016a). The Open Water Likelihood Algorithm (OWL) by Guerschman et al. 

(2011) was further applied on MODIS data for wetland studies for example by 

Gouweleeuw et al. (2011), Chen et al. (2013), Ticehurst et al. (2014), and Colditz et al. (2018). 

Gouweleeuw et al. (2011) used as well the Open Water Index (OWI) which consists of two 

vegetation indices, the Global Vegetation Moisture Index (GVMI) and the EVI.  

Image transformations were also used to classify different wetland types. The tasseled cap 

transformation, which is known to be sensitive to water or wetness, was originally developed 

for Landsat imagery (Kauth and Thomas, 1976) and applied in some works for wetland 

analysis, e.g. by Wright and Gallant (2007) on Landsat TM data and Colditz et al. (2018) on 

MODIS data. In the recent years, the hue–saturation–value (HSV) color transformation was 

applied for open water detection. Hereby the red–green–blue (RGB) color space is transferred 

into the HSV colour space using the MIR, NIR and red bands. This was applied for different 

sensors: first for MODIS (Pekel et al., 2014a, d'Andrimont and Defourny, 2018), followed by 

Landsat (Pekel et al., 2014b, Pekel et al., 2015, Pekel et al., 2016), SPOT VEGETATION (Bertels, 

2015), and Proba-V (Bertels et al., 2016). This is now also the basis for the Copernicus Global 

Land Service dataset on Water Bodies at 300 m (CLMS, 2020a).  

Spectral vegetation indices are also used for wetland vegetation detection, classification or 

characterization. As for the NDVI, mentioned at the beginning of this chapter, further 

indices exploit the NIR band since chlorophyll activity and healthy green vegetation lead to 

high NIR reflectance values, both for terrestrial as well as aquatic vegetation. Adam et al. 

(2010) has provided an extensive discussion of different vegetation indices for identifying 

wetland vegetation. However, these spectral vegetation indices have been mostly developed 

for terrestrial vegetation applications but are sometimes used for wetland or aquatic 

vegetation as well (Villa et al., 2015). There’s a lot of literature on comparing common 

vegetation indices (Jackson and Huete, 1991, Myneni et al., 1995, Glenn et al., 2008), such as 

the Enhanced Vegetation Index (EVI) developed by Huete et al. (2002) which is widely applied 

in wetland remote sensing. To a lesser extent, the Soil Adjusted Vegetation Index (SAVI) 

introduced by Huete (1988), or Global Environment Monitoring Index (GEMI) developed by 
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Pinty and Verstraete (1992) have been used for wetland studies. Ceccato et al. (2002) 

developed the Global Vegetation Moisture Index (GVMI) which is calculated using NIR and 

MIR bands, and was optimized for SPOT-VEGETATION data. Moreover, remote sensing 

methods allow the measurement of biophysical and biochemical properties, and among them 

the use of the Leaf Area Index (LAI) is popular in vegetation remote sensing.  

As mentioned previously, there are only a few aquatic vegetation indices, since indices for 

remote sensing of vegetation were developed for terrestrial vegetation. Modified in relation to 

flooded vegetation, the Floating Algae Index (FAI) was conceptualized by Hu (2009) and 

applied by Feng et al. (2012) on MODIS data and by Hu et al. (2010) on Landsat and MODIS 

data. Besides some of the before-mentioned common water and vegetation indices with the 

target to classify macrophytes, Niculescu et al. (2020) applied the Modified Chlorophyll 

Absorption in Reflectance Index (MCARI) by Daughtry et al. (2000) on Sentinel-2 data. The 

MCARI is an index exploiting a red edge band – which is available for Sensors like Sentinel-2 

or RapidEye – in combination with the red and green bands. Two indices specifically designed 

to target aquatic vegetation using optical HR data have been proposed: (i) the Normalized 

Difference Aquatic Vegetation Index (NDAVI) by Villa et al. (2013), a 2-band normalized 

index calculated (NIR - blue)/(NIR + blue), and (ii) the Water Adjusted Vegetation Index 

(WAVI) which is a derivative of the NDAVI adding a correction factor to adjust with the 

influence of the background signal (usually water); this is done in a similar way as for the 

SAVI which is a derivative of the NDVI where the background signal consists of soil (Villa 

et al., 2014). Both indices have been tested by the above mentioned authors resulting in 

better performance than the NDVI. Villa et al. (2015) thereafter applied NDVI, NDAVI and 

WAVI to five wetland case studies using Landsat 7 ETM+, Landsat 8 OLI, and ALOS 

AVNIR-2 data, in order to separate aquatic vegetation and vegetation on land, as well as 

classify 4 groups of macrophytes: helophytes, emergent rhizophytes, floating macrophytes 

and submerged-floating macrophyte associations. As Adam et al. (2010) states, regarding the 

estimation of water content and water stress of wetland vegetation, there has not 

been any significant research. Further understanding of the spectral response of 

wetland vegetation plants would be required.  

Some non-spectral wetland indices which are used in conjunction with spectral indices are for 

example the Topographic Wetness Index (TWI) which based on elevation information from a 

Digital Elevation Model (DEM). As many authors noticed, water or wetlands can spectrally 

overlap with other upland land covers such as dark forest, as well as shadows on the terrain 

(Ozesmi and Bauer, 2002). Therefore, the TWI can help to reduce false water or wetland 

classification in uplands and is calculated as such: TWI = ln (a/tan(b)) (Beven and Kirkby, 

1979). Several authors use a simplified topographic exclusion by calculating a slope threshold 

from a DEM assuming that water and wetland areas are of flat terrain (Moser et al., 2014b, 

Klein et al., 2017).  
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The field of wetlands is often connected to the field of soil moisture or drought. Up until now 

few studies connected water body or wetland dynamics with conclusions on droughts (see: 

Moser et al., 2014a, Moser et al., 2014b) or vice versa, used drought indices for inclusion into 

wetland studies (see more in: Moser et al., 2017). A review of these related fields is not 

provided here but it should be noted that some authors recently included spectral drought 
indices for wetland remote sensing. One recent example is that Ludwig et al. (2019) 

incorporated the Normalized Multi-band Drought Index (NMDI) (Wang and Qu, 2007) and 

the Angle Based Drought Index (ABDI) (Das et al., 2017) in their research.  

2.2.3 Multi-spectral Sensor Applications 

The usage of optical HR remote sensing data for water or wetland mapping or monitoring goes 

back to the mid-1980s, from which on HR Landsat and SPOT data were acquired. The primary 

usage of optical HR data in the field of water and wetland remote sensing is 

for detection/mapping, classification or change detection applications. In the past it was 

made use of selected data from one or more time steps for classification or change 

detection, but recently more and more studies concentrate on multitemporal time series 

(e.g. using data from the Landsat archive data are available every 16 days in an ideal case, 

however, in practice in irregular time intervals since 1982 when counting from Landsat 4 at 30 

m spatial resolution, and since 1972 when going back to Landsat 1), partially to achieve 

dynamic results and extract information from the time series. With the launch of the MR-

scale optical sensors Advanced Very High Resolution Radiometer (AVHRR) and later 

MODIS, opportunities for (i) tracking surface processes over large areas as well as (ii) dense 

time series analysis to extract temporal information at short time intervals (i.e. days) that go 

back into the past of a data archive were opened up and are exploited ever since. The 

Sentinel satellites launched in the past couple of years now offer new opportunities of freely 

available time series in dense temporal intervals, but yet only a few years of data exist: in 

the optical domain these are Sentinel-2 (optical HR) and Sentinel-3 (optical MR).  

2.2.3.1 Applications Focusing on Optical High Resolution Data 

In the past few years two forms of development can be observed for wetland remote sensing 

studies using optical HR data: (i) the development from single-date classification and change 

detection thereof to multi-temporal classification using a time series of images over a 

season/year, and potentially change detection of the map results of different years; (ii) the 

development from focusing on single reference years of good data availability to whole 

historical archives when considering a long-term analysis; and – what is of relevance to the 

work carried out in this thesis – (iii) a combination of both, dense time series of multi-

seasonal and multi-year imagery.  
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Among the optical HR sensors the TM, ETM+ and OLI sensors on board the Landsat-4/-5/-7 

and -8 satellites have been most used for wetland or water body classification, 

change detection or monitoring, thanks to a large and openly available data archive 

(since the mid- 1980s at 30 m resolution). The appropriate multispectral bands for the 

generation of water and vegetation indices are present, and the relatively large spatial 

coverage (swath width around 185 km) is also advantageous while retaining a spatial 

resolution of 30 meters. Further sensors as mentioned in the following paragraphs 

were used for different wetland applications, however, often not of (dense) 

multitemporal character due to the lack of time series data. The use of historical multi-

year HR optical time series is still a new area of research in the domain of seasonal 

wetland monitoring. This is facilitated only since the launch of Landsat-8 OLI (February 

2013) which is acquiring data ideally at a 16-day interval. The recently launched 

Sentinel-2A (June 2015) and -2B (March 2017) are in operation, in combination with 

shorter time intervals of 6 days. On the edge from HR to VHR and with high temporal interval 

are Planet data, however, there is little use on Planet data for wetlands so far, which could 

potentially be explained with small image extents, large data sizes when considering 

larger regions, and radiometric issues.

As for (i), studies classifying wetlands for a particular season were performed in terms of 

mono-temporal analysis using images acquired at a single date (Rebelo et al., 2009, Dronova et 

al., 2012), or bi-seasonally at two to three dates per season (Reschke and Hüttich, 2014). 

Change detection between wetland classification results of two or more points in time – 

preferably imagery acquired in the same season of different years – has been applied by 

various authors (Rebelo et al., 2009, Gardelle et al., 2010, Schmid et al., 2005, Maillard et al., 

2011). A small series of seven Landsat images between 1987 and 2002 served for open water 

body mapping in South Africa and compared results of summer and winter seasons (De Roeck 

et al., 2008). Niu et al. (2012) used monotemporal coverages in four different years on a large 

scale. Landsat MSS images for the year 1978, and Landsat TM images for the years 1990, 2000 

and 2008 accompanied by China-Brazil Earth Resources Satellite (CBERS) images, were used 

to derive a full coverage of China. Wetland maps for China were produced and wetland 

distributions, changes and drivers for change analyzed. More recent works are more and more 

commonly performed as multi-temporal classification based on a series of multiple images for 
selected seasons/years with good data availability, e.g., using Landsat data by Sanchez et al. 

(2015) for the years 1984 and 2001, and by Weise et al. (2016) for the years 1975, 1990 and 2005. 

Recently, Landsat-8 OLI time series from 2014–2016 served to produce a wetland type 

classification for the whole China (Mao et al., 2020). For a few other sensors such as Beijing-1 

multiple images within a year were available and have been applied by Wang et al. (2012) for 

the season 2007–2008. One study used RapidEye in conjunction with PlanetScope data for 

open water classification in northern areas (Alaska) using a time series over 3 months of data 

(Cooley et al., 2017).  
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Besides Landsat there are other HR sensors that have been mainly used for wetland mapping, 

classification or change detection, since data availability was not suitable for dense temporal 

analysis approaches such as monitoring. Among these sensors are, e.g., ASTER (Schmid et al., 

2005, Rebelo et al., 2009), AVNIR-2 (Villa et al., 2015), Beijing-1 (Dronova et al., 2011, Wang et 

al., 2012), CBERS (Niu et al., 2012), RapidEye (Maillard et al., 2011, Walz et al., 2012, Tetteh and 

Schönert, 2015, Gabrielsen et al., 2016), SPOT-4 (Gardelle et al., 2010, Gal et al., 2016) and 

SPOT-5 (Maillard et al., 2011, Davranche et al., 2010, Powers et al., 2012, Davranche et al., 2013, 

Niculescu et al., 2016). Most recently, also Sentinel-2 data was applied for first single-date 

wetland studies or studies applying a few images: Kaplan and Avdan (2017) used one Sentinel- 2 

image for classifying a wetland in Turkey, or Araya-López et al. (2018) used Sentinel-2 at four 

dates for Andean wetlands in Chile combined with WorldView-2 imagery. Some studies 

combined single-date Sentinel-2 with Sentinel-1 data for wetlands in Turkey (Kaplan and 

Avdan, 2018b), or South Africa (Whyte et al., 2018), or took a few dates of Sentinel-1 and 

Sentinel-2 for wetland classification in France (Rapinel et al., 2019). Very high-resolution 

satellite data as well as aerial imagery in the sub-meter resolution scale are only applied for 

analysis in few cases of small-scale wetland studies, partially in fusion with HR optical or SAR 

data (Halabisky et al., 2011, Whiteside et al., 2012, Malinowski et al., 2015, Araya-López et al., 

2018, Niculescu et al., 2020), but are very often used for validation of results from sensors of 

coarser resolution. 

As for (ii), as performed for example by the above-mentioned authors (Weise et al., 2016, 

Sanchez et al., 2015), multitemporal data of a few selected reference years going back until the 

mid-1970s / mid-1980s were used, and changes between these years are then interpreted. 

Meanwhile, the field of change detection between selected dates is moving more towards the 

analysis of full time series, ideally without gap years or seasons. One of the first wetland 

studies to exploit the full temporal range of the Landsat archive was performed by Maillard et 

al. (2011) where the goal was to use one image per year from 1985 to 2010. Therefore, a time 

series of about 20 Landsat images could be built, however, some gaps of two or three years 

remained due to no acquisitions being available for these periods. Acquisitions were dated 

between end April and beginning of October, which results in differences up to 5 months in 

the season. This is not an ideal basis for analyzing changes, however, this had to be accepted 

due to the limitations in data availability. Dvorett et al. (2016) used 3 images per year (early, 

peak and late season), in total 51 images, to classify 5 land cover classes (including water) in 

wetlands in Oklahoma from 1994–2011.  

As for (iii), a combination of seasonal wetland monitoring and (historical) multi-year HR 

optical time series for the derivation of dynamic information is still a new area of research in 

the domain of wetland monitoring and can only be facilitated with some restrictions in 

regions of very good historical Landsat-4, -5, -7 and -8 coverage, or by usage of the latest 

optical HR sensors, i.e., Sentinel-2A and -2B, potentially complemented by Landsat-8 OLI (or 
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further Landsat data back into the past) as well as recently, Planet data. Since (iii) is of 

relevance for the work carried out in this thesis, selected studies that exploited most available 

data in the Landsat archive for longer timelines (and partially larger areas) and which have 

approached the field of time series analysis to create hydrographs or dynamic information 

products are pointed out. Related to surface water in wetlands a larger temporal analysis has 
been performed by Gómez-Rodríguez et al. (2010) who investigated 174 Landsat images from 

1984–2007 for spatio-temporal variations in flooding of 800 temporary ponds in the Doñana 

wetlands, Spain. This work inspired Halabisky et al. (2016) for their work on surface water 

variations from 230 Landsat data from 1984–2011 in 750 wetlands in Douglas County, 

Washington State, USA. Dedicated to water body monitoring the major work providing 

dynamic information (e.g., monthly and yearly temporal indicators) extracted from the 

Landsat archive for 32 years and also for the first time at global level has been done by Pekel et 

al. (2016), also having monthly and yearly spatio-temporal changes in the focus. The Landsat 

archive was further exploited to compute or model dynamic information (i.e., such as 

inundation frequencies) on a large scale (Tulbure et al., 2016, Heimhuber et al., 2016, Mueller 

et al., 2016). Besides open water in the Murray–Darling Basin, Australia, on a large scale from 

1986–2011, Tulbure et al. (2016) focused also on a case study with flooded forest. Mueller et al. 

(2016) computed the number of surface water observations for the whole Australia from 

1987–2014. A combination of MR time series, e.g. from MODIS, in conjunction with a large 

number of Landsat archive data is sometimes applied for water or wetland studies 
(Guerschman et al., 2011, Chen et al., 2018, Li et al., 2018), see further in section 2.2.3.2.  

With the launch of Sentinel-2A and -2B in June 2015 and March 2017, respectively, a new 

sensor is operational providing the basis for multitemporal studies and monitoring. A few 

years of dense time series data are now available and freely accessible. Besides some single-

date studies mentioned earlier, Sentinel-2 has been added to longer time series from other 

sensors for wetland related studies (Gal et al., 2016, CLMS, 2020b). Moreover, it has been used 

for combining and comparing Sentinel-2 and Landsat-8 (Sánchez-Espinosa and Schröder, 

2019, Weise et al., 2020) or combining Sentinel-2 and Sentinel-1 (Hird et al., 2017, Kaplan and 

Avdan, 2018b, Mahdianpari et al., 2019, Slagter et al., 2020, Niculescu et al., 2020, CLMS, 

2020b, Mahdianpari et al., 2020). Two seasonal studies covering a 1.5-year time span focusing 

on Sentinel-2 have been published: The before-mentioned Niculescu et al. (2020) have used 

two times 38 Sentinel-2 data from February 2016 until September 2017, in combination 

with Sentinel-1 and Pléiades imagery of the same time span, to classify macrophytes in the 

Danube delta. Ludwig et al. (2019) have used Sentinel-2 time series from December 2015 to 

June 2017 for 3 case studies in Algeria (69 images), Uganda/Kenya (64 images) and Austria 

(130 images). Spectral indices based on optical indices and water occurrence were the basis 

to compute monthly water and wetness masks resulting into water and wetness 

frequencies as well as the Water Wetness Presence (or Probability) Index (WWPI).  
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A few examples on applications and methods using HR optical data for wetland research are 

provided. Recently Guo et al. (2017) published a review of wetland remote sensing grouped 

throughout various applications for wetlands. Of relevance for this thesis’ work is firstly open 

water mapping in wetlands which has been done by many authors (De Roeck et al., 2008, 

Maillard et al., 2011, Halabisky et al., 2016). Gardelle et al. (2010) and many others estimated 
the size of water bodies. Temporal classes that distinguish between permanent and seasonal 

open water have been computed (Rebelo et al., 2009). Flooded or floating vegetation was 

targeted (Silva et al., 2008, Adam et al., 2010, Moffett and Gorelick, 2013, Villa et al., 2015, 

Niculescu et al., 2020) as well as wetness estimation (Ludwig et al., 2019). Different studies 

addressed land cover, vegetation types, and crop types in wetland areas (Rebelo et al., 2009, 

Davranche et al., 2010, Powers et al., 2012, Whiteside et al., 2012). Plant functional types in 

wetland vegetation have also been a topic of study (Dronova et al., 2012, Wang et al., 2012).  

Several techniques for classification to delineate or map wetlands have been reviewed (Lyon et 

al., 2001, Adam et al., 2010, Ozesmi and Bauer, 2002, Dronova et al., 2012) and a few 

methodological developments are pointed out:   

(a) Diverse machine learning algorithms were compared in one study (Dronova et al., 2012). 

One classic approach is supervised classification using the Maximum Likelihood Algorithm 

which has been applied in the field of wetland remote sensing (Rebelo et al., 2009, De Roeck 

et al., 2008). Decision tree algorithms have been applied to classify wetlands (Davranche et al., 

2010, Berhane et al., 2018), and among them the random forest (RF) (Reschke and Hüttich, 

2014, Na et al., 2013b, Tian et al., 2016, Whyte et al., 2018, Niculescu et al., 2020, Slagter et al., 

2020) which is a currently very popular method in remote sensing in general. It also has been 

used to study land cover of wetland areas (Rebelo et al., 2009, Davranche et al., 2010). Another 

popular algorithm, support vector machines (SVM), has been used in other research to map 

and monitor wetlands (Wang et al., 2012, Whyte et al., 2018).  

(b) Modern machine learning algorithms often allow the derivation of continuous classes 

rather than discrete classes. Such continuous classes were for example derived by Reschke and 

Hüttich (2014) based on RF. Since wetland environments are very fine structured and contain 

mixed pixels of water, aquatic submerged, floating and emergent vegetation, as well as 

vegetation or soil on land, spectral mixture analysis (SMA) became very popular. Fractional 

covers of a land cover class can be retrieved on a sub-pixel scale of HR imagery, which was 

applied for diverse studies (Schmid et al., 2005, Reschke and Hüttich, 2014, Halabisky et al., 

2016). Moreover, downscaling approaches have been used to improve the spatial resolution of 

water body maps (Li et al., 2013, Aires et al., 2015, Che et al., 2015).  

(c) Research in remote sensing of wetlands has also moved towards geographic object-based 

image analysis (GEOBIA) (Gilmore et al., 2008, Dronova et al., 2011, Halabisky et al., 2011, 

Powers et al., 2012, Whiteside et al., 2012, Moffett and Gorelick, 2013, Dronova et al., 2015, 
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Whyte et al., 2018), working with segmentation of imagery consequently assigning classes to 

landscape segments, instead of the common pixel-based analysis.  

(d) On the extraction of changes or dynamic information from time series, traditional change 

detection approaches have been widely applied. Change vector analysis (CVA) was used in one 

study to derive wetland change and no-change classes between two points in time (Baker et 

al., 2007).  

(e) Recently, moving into HR time series, classification is often performed on pre-computed 

temporal metrics, sometimes called features, which extract temporal statistics from the whole 

time series and throughout selected bands (rather than using the values of the optical bands 

themselves), or in combination with the optical bands. Temporal metrics provide added 
temporal information while reducing the data size. Some recent studies showed successful 

applications for wetland remote sensing (Slagter et al., 2020, CLMS, 2020b, Ludwig et al., 

2019). Multitemporal approaches aiming at characterizing dynamic classes (i.e., a change from 

one to another class throughout a season) by making use of the seasonal variations in the time 

series is also a field of research which is not yet truly applied using optical HR data.  

2.2.3.2 Applications Focusing on Optical Medium Resolution Data 

The focus of optical MR data analysis is usually on the analysis of time series. What makes MR 

data especially suitable for this is that MR sensors acquire data regularly at short time intervals 

(i.e. days), have built up data archives of many years back into the past, as well as cover a large 

swath which allows the observation of land surface processes over large areas. These three 

peculiarities enable the development of time series analysis for extracting (i) long-term 

developments and trends or monitoring applications – which is the area of particular interest 
for the work in this thesis; and moreover, (ii) operational near-real-time (NRT) applications 

and warning systems; or (iii) spatially large scale to global products, thanks to the large swath 

width of MR sensors, which in most cases exploit time series, however, the results might not 

be of temporal character. Monitoring over large areas can be challenging. Not only temporal 

dynamics, but also regional and latitudinal differences have to be taken into consideration, as 

well as naturally occurring mixed pixels due to the spatial resolution of the sensor versus the 

land cover on Earth. The before mentioned aspects constantly result in challenges for the 

analysis of MR optical time series.  

The beginning of MR remote sensing was in 1979/the early 1980s after the launch of AVHRR 

with a pixel size is of 1.1 km. The AVHRR sensor was mounted on board of different National 
Oceanic and Atmospheric Administration (NOAA) satellites launched over time. AVHRR in 

slightly different configurations provides four- to six-band multispectral data in the visual and 

NIR spectral regions, but all sensors have two visible, one NIR and one TIR band (eoPortal, 

2020). The next milestone was the launch of the two MODIS sensors, mounted on the Terra 
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(EOS AM-1) and Aqua (EOS PM-1) satellites. MODIS features 36 bands from the visual to the 

TIR spectral region. Two of them (red and NIR) are available at 250 m spatial resolution and 

500 m spatial resolution, and an additional five bands (blue, green, SWIR 1, SWIR 2, SWIR 3) 

at 500 m. All other bands are available at 1 km resolution. Due to the large swath width of 2330 

km, MODIS can provide daily to two-daily coverage, or record even twice per day for regions 

at the higher latitudes. The satellites and sensors have exceeded their expected lifetime (6 

years) by far, being approximately 20 years in orbit and functional (Terra: since December 

1999, Aqua: since May 2002) (NASA, 2018, eoPortal, 2020). MODIS is already used in 

conjunction with AVHRR, which enables the continuation of the long-term legacy of NDVI 

products (since 1981) (Brown et al., 2006), e.g. the Long-Term Data Record (LTDR) synergy 

product (Pedelty et al., 2007).  

Other multispectral MR sensors that were put in orbit in the last 20 years are for example 

SPOT VEGETATION mounted on the SPOT-4 satellite (launched March 1998) and later on 

SPOT-5, (1 km pixel size, 4 bands), as well as the successor mission Proba-V launched in May 

2013 (300 m and 100 m products, similar 4 bands) (eoPortal, 2020, VITO, 2020). Moreover, the 
Medium Resolution Imaging Spectrometer (MERIS) was launched in March 2002 on Envisat 

(300 m and 1.2 km pixel size, 15 bands) but operated only until the unforeseen loss of contact 

with Envisat in April 2012, and it’s successor mission Sentinel-3 with OLCI (300 m, 21 bands) 

was only launched in February 2016. The same two satellites also carried the Advanced Along 

Track Scanning Radiometer (AATSR) (1 km pixel size, 7 bands) and the successor mission 

SLSTR (500 m – 1 km pixel size, 9 bands) (ESA, 2020c, eoPortal, 2020).  

As for application area (i), which is the derivation of long-term developments and trends or 

monitoring applications, spatio-temporal development of wetlands or water bodies 

considering dynamic aspects has been the focus of many studies using MODIS (Landmann et 

al., 2013, Moser et al., 2014b, Pekel et al., 2014a, Klein et al., 2014, Klein et al., 2017, d'Andrimont 
and Defourny, 2018, Chen et al., 2018, Li et al., 2020, Mu et al., 2020) or SPOT VEGETATION 

and Proba-V (Haas et al., 2009, Haas et al., 2011, Fichtelmann et al., 2015, Bertels et al., 2016). 

The availability of MODIS or SPOT VEGETATION surface reflectance products with daily 

intervals or composite products of eight-daily, 10-daily or monthly intervals allows the 

interpretation of dynamic processes for larger wetlands (Haas et al., 2011, Landmann et al., 

2013, Moser et al., 2014b, Guerschman et al., 2011, d'Andrimont and Defourny, 2018, Mu et al., 

2020). Though the MOD09 reflectance products are very commonly used, one group of 

authors also used Bidirectional Reflectance Distribution Function (BRDF) corrected surface 

reflectance products from MODIS which are available in a 16-day temporal interval 

(MCD43A4) (Li et al., 2018). Time series analysis has been conducted on wetlands or open 

water bodies over Africa using MODIS (Landmann et al., 2010, Landmann et al., 2013, Moser et 

al., 2014b, Moser et al., 2014a, Pekel et al., 2014a, d'Andrimont and Defourny, 2018, Di Vittorio 
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and Georgakakos, 2018) and SPOT VEGETATION (Haas et al., 2009, Haas et al., 2011, 

Fichtelmann et al., 2015, Bertels et al., 2016).  

Some methodological developments of significance and for which MR time series are 

predestinated for, are mentioned in the next paragraphs.  

(a) Time series analysis is often based on spectral indices calculated from reflectance bands or 

composite products (see section 2.2.2). As previously discussed, the strong absorption of the 

NIR energy caused by water resulted in the use of the MODIS NIR reflectance band at 250 m 

resolution for water and wetland applications (Moser et al., 2014b, Klein et al., 2014, Klein et 

al., 2017), whereas other authors combined the NDVI with NIR (Landmann et al., 2010, 

Landmann et al., 2013, Fuller and Wang, 2014, Moser et al., 2014a), or added a SWIR band from 
the MODIS 500 m data (d'Andrimont and Defourny, 2018), which allowed the definition and 

application of multiple further water indices beyond the NDWI, which were developed for MR 

multispectral data (mainly MODIS). Some examples include the Land Surface Water Index 

(LSWI) proposed by Xiao et al. (2002) based on VEGETATION data and later applied by 

Sakamoto et al. (2007) and Yan et al. (2010) on MODIS data. The Open Water Likelihood 

Algorithm (OWL) was proposed by Guerschman et al. (2011) using MODIS data, and was 

further applied on MODIS data for wetland studies by related authors (Gouweleeuw et al., 

2011, Chen et al., 2013, Ticehurst et al., 2014). The Floating Algae Index (FAI) was developed by 

Hu (2009) on MODIS data and later applied by Feng et al. (2012) on MODIS data and Hu et al. 

(2010) on Landsat and MODIS data. 

(b) A lot of studies test and apply pre-defined thresholds on indices calculated on each image 

in a time series, but recent trends exploit dynamically varying thresholds based on the spectral 

statistics of each image. The idea was conceptualized by Fichtelmann and Borg (2012) using 

AATSR imagery and was adapted for example to the MODIS 250-m NIR band (Klein et al., 

2014, Klein et al., 2017), as well as for AVHRR data (Klein et al., 2014), and further studies 

thereafter.  

(c) Multitemporal classification using temporal statistics – similarly also called temporal 

metrics or temporal features (such as min, max, mean, standard deviation or more complex 

ones) – have been applied either on spectral indices or the values of the spectral bands itself, 

taking the full time series stack (or a selected time interval) as input. This results in strongly 
compressed data containing temporal information. Applications using temporal statistics have 

been applied for land cover and vegetation studies, one relevant example in West Africa is a 

study by Gessner et al. (2015) who used seasonal and annual temporal statistics on MODIS 

250 m data (MOD13) for the year 2006, amongst other data (from ASAR and TSX), for a multi-

sensoral land cover classification in West Africa. Other than that, such approaches have rarely 

been applied in wetland research, e.g. by Landmann et al. (2010) who performed a 

multitemporal classification of five wetland classes according to different flooding regimes in 
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Burkina Faso and Mali, and applied MODIS time series metrics from the NIR band and the 

NDVI on 250 m resolution for that study.  

(e) Likewise as for HR and VHR data, water fraction datasets were created to study water 

bodies, mostly from a combination of MR MODIS and HR Landsat imagery. This results in 

percentage-cover information of a class, e.g. open water, for the lower resolution cell (e.g. for 

MODIS). Some examples with applications related to water bodies include Guerschman et al. 

(2011) and Li et al. (2018).  

(f) Mentionable are also data fusion approaches of MR time series (such as MODIS) and 

higher resolution data of less dense intervals (such as Landsat), in order to model a dense time 

series on a HR spatial scale. Examples used for water body studies include for example the 
spatial and temporal adaptive reflectance fusion models (STARFM) algorithm applied by Ma 

et al. (2018) for few dates in summer 2016, or the newly proposed spatiotemporal adaptive 

fusion model for NDVI products (STAFFN) by Chen et al. (2018) with the aim to better 

consider land cover change within the observation period, in this example for the Poyang 

Lake, China, from 2000–2014.  

Regarding application area (ii), near-real-time applications or warning applications are not 

focus of this work, it is referred to further reading. MR time series involving the thematic areas 

of water and wetlands are most commonly in the field of flood monitoring and most examples 

use MODIS data, such as the National Aeronautics and Space Administration/Dartmouth 

Flood Observatory (NASA/DFO) MODIS near-real-time (NRT) global flood mapping product 
(Nigro et al., 2014, NASA, 2017), building up on the work of the DFO (Dartmouth Flood 

Observatory, 2020), as well as DLR’s flood monitoring system based on MODIS data in 

conjunction with SAR data from TerraSAR-X (Martinis et al., 2013).  

As for application area (iii), large-scale to global applications, it is as well referred to further 

reading. There is currently no dynamic remote sensing product of fully global or continental 

coverage focusing on wetlands. However, in the past few years, some global data products and 

studies for open water bodies were published, that exploit the temporal character of MR and 

low resolution (LR) time series imagery, leading also to some dynamic information products 

based on MODIS (Pekel et al., 2014a, Klein et al., 2017), SPOT VEGETATION and Proba-V 

(Bertels et al., 2016, CLMS, 2020a), or MR to LR multi-source data including optical data (e.g. 
from AVHRR or MODIS), active microwave (e.g. ESCAT or ASCAT scatterometer) data and 

passive microwave (e.g. AMSR-E or SSMI) data (Prigent et al., 2007, Papa et al., 2010, 

Schroeder et al., 2015, Aires et al., 2017). More details on these products are described in 

section 2.5 on “Products targeting fully global coverage”.  
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Some selected studies related to application (i) – long-term developments and trends or 

monitoring applications – are pointed out:  

Two meaningful studies carried out in the sub-Saharan West-African Sahel region (Haas et al., 

2009, Haas et al., 2011) applied 10-daily SPOT VEGETATION maximum value composites at 

1 km spatial resolution to deduct small water body (SWB) maps for the analysis period 

1999–2007. Their work was inspired by the studies of Gond et al. (2004). Results show the 

percentage of occurrence as free water for each water pixel at 1 km resolution, as well as at a 

0.5 degree grid throughout the whole Sahel region. Moreover, comparison with other surface 

water datasets, such as the Global Lakes and Wetlands Database (GLWD) or SRTM 

Waterbody Data (SWBD) is performed. The size distribution of detected water bodies is 

graphically shown. At time of publication the temporal resolution of 10 days was unique but it 

is emphasized that only water bodies larger than 1 pixel (1 km²) can be observed (Haas et al., 

2009). A following study by Haas et al. (2011) used the SWB dataset for case studies in Burkina 

Faso and Mali, and jointly analyzed it with a green cover percentage dataset derived from 

NDVI maximum value composites from daily SPOT data, and rainfall estimates derived from 
NOAA/FEWS NET. For the period 1999–2008 it could be statistically shown that surface water, 

vegetation cover and rainfall are linked, and in particular the positive relationship of 

vegetation cover and available surface water for areas mainly covered by annual plants (Haas 

et al., 2011). 

The question of the appropriate temporal resolution for deducting temporal changes and 

dynamic information has been studied by some authors comparing daily surface reflectance 

(e.g. MPD09GA) and 8-day MODIS composite products (e.g. MOD09A1): Chen et al. (2013) 

performed a work on floodplain and wetlands inundation mapping in Australia, applying the 

OWL and mNDWI indices for MODIS and Landsat TM data. The authors concluded that both 

the daily data (MOD09GA) and 8-daily composite data (MOD09A1) resulted in a comparable 
estimate of floodplain inundation and therefore the use of 8-daily data is encouraged. The 

applied “best” pixel approach for the production of the 8-day composites is using the lowest 

possible viewing angle under cloud-free conditions. Images with low angles are mentioned to 

be clearer, to contain more details and to be less prone to mixed pixels in the applied water 

indices (Chen et al., 2013). Related to the comparison of daily and 8-daily data, Guerschman et 

al. (2011) studied inundation mapping of standing water using MODIS 8-day composites for 

the Australian continent. A comparison of daily (MOD09GA) and 8-daily composites 

(MOD09A1) was performed, concluding to the fact that the “best” pixel approach of an 8-day 

composite (using the lowest possible viewing angle under cloud-free conditions) results in 

some standing water being missed out in the case of short-duration flooding events. 

Therefore, the MOD09A1 product might be subject to an underestimation of water, when 

compared with daily data in the respective time period. It was also observed, however, that the 

missing water was present in the next 8-day period (Guerschman et al., 2011). This study is also 
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interesting since the spectral responses of the MODIS water fraction related to Landsat TM 

bands was analyzed, alongside with a comparison with the indices NDVI and NDWI. NDWI 

and water showed a strong positive relationship (the higher the water fraction towards 100%, 

the higher the NDWI), whereas NDVI and water resulted in a strong negative relationship, as 

expected. Moreover, the result of MOD09GQ 250 m data and oversampled MOD09GA 500 m 
data into 250 m data was compared, not yielding any significant differences in terms of flood 

dynamics, only that the 250 m data allow a more precise delineation of flood boundaries 

(Guerschman et al., 2011).  

Very recently a study on an 18-year MODIS-derived surface water fraction dataset at 500 m 

resolution was published by Li et al. (2020). The dataset was previously developed and 

described by Li et al. (2018) as originating from a time series of BRDF corrected surface 

reflectance MODIS data in a 16-day temporal interval (MCD43A4) in combination with all 

available C-version of Function of Mask (CFmask) corrected Landsat images from 2000–2015. 

Li et al. (2020) observed 340 Mediterranean water bodies, among which the vast majority is a 

Ramsar wetland site. As the authors point out, the advantage of this dataset with respect to 
other MODIS- (e.g., Klein et al., 2017) or Landsat-based surface water datasets such as the 

Joint Research Centre - Global Surface Water (JRC-GSW) (Pekel et al., 2016) is that the 

product is not a binary one but provides water fractions within a MODIS 500 m cell. It 

complements an HR product such as the JRC-GSW since the MODIS water fraction analysis 

allows the detection of rapid changes as well as short-term processes which might be missed 

out by Landsat-based products due to insufficient temporal density of available imagery or the 

focus on monthly results. It is noted that for quite stable water bodies of little fluctuations 

which show also little spectral variations the surface water fraction dataset was less effective as 

for dynamic water bodies (Li et al., 2020). This study mentions but does not discuss further 

the effects of flooded vegetation, but refers to Li et al. (2015) for misclassifications as water due 

to salt presence. 

2.3 SAR Methods and Applications for Wetland Monitoring 

SAR data, briefly described in section 2.1.2, have been proven to be suitable for wetland 

applications and their usage is recommended due to a number of reasons, some of them cover 

the advantages of SAR sensing systems with respect to this thesis’ work as explained in section 

2.6. For example, the acquisition of time series with regular temporal intervals, under the 

same geometry conditions and at all weather situations is technically possible and a pre-

requisite for wetland monitoring. For regions which are subject to frequent cloud cover 

or rainfall, or – which is the case for sub-Saharan Africa – show climatic characteristics of 

one pronounced rainy season followed by a dry season, SAR data are recommended 

to be considered due to their ability to sense through clouds. Limitations are very heavy 
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cloud cover (e.g., in the tropics) in shorter microwave wavelengths (e.g., X-band), 

systematic acquisition limitations or availability of the desired sensor-mode, and 

lifetime of a satellite in orbit/duration of a mission.  

Further reasons for the use of SAR data for wetland remote sensing are given in the following 

sub-sections. An overview of SAR backscattering properties for water and wetlands is given 

(section 2.3.1), followed by the state of the art of polarimetric SAR decompositions of relevance 

for wetland monitoring (section 2.3.2), and the final section presents the state of the art of the 

use of single-polarized data, multi-polarized data and alternative SAR techniques for wetland 

applications (section 2.3.3).  

2.3.1 SAR Backscattering Properties of Wetland Features 

This section summarizes SAR backscattering properties which have been described in books, 

tutorials and theses by many authors, e.g. (Lee and Pottier, 2009, Schmitt, 2011, Moreira et al., 

2013, Jin and Xu, 2013), but with focus on backscattering properties of water and wetland-

related land cover.  

The measurement of electromagnetic backscattering in microwave wavelengths (cm until 
about 1 m) relates to the geometric structure and properties of the surface, e.g., also surface 

roughness and wetness are deciding parameters. This is opposed to optical sensors where the 

spectral response depends on the spectral properties of the surface material. In contrast to 

optical instruments, not spectral properties but surface structure properties are measured by 

SAR.  

When the transmitted radar pulse interacts with the Earth’s surface, different backscatter 

mechanisms cause that only some parts of the backscatter returns in direction of the SAR 

sensor with a certain phase shift. The surface reflectivity, also denoted as backscattering 

coefficient σ0, is altered dependent on (i) sensor-dependent properties: i.e., frequency f, 
polarization type and degree (single, dual or quad) and incidence angle θi); (ii) physical 

properties: i.e., surface roughness, topography of the terrain, local incidence angle due to 

exposition of the surface features; and (iii) electrical properties: i.e., permittivity and moisture. 

Therefore, surface features and materials have different backscatter properties which do not 

only vary according to frequency bands (e.g., X-, C-, or L-band) and polarizations, i.e., 

horizontal-horizontal (HH), horizontal-vertical (HV), vertical-horizontal (VH), vertical-

vertical (VV), but also due to the above-mentioned physical and electrical properties of the 

material.  

Electromagnetic SAR pulses are able to penetrate certain materials (e.g., vegetation, dry soil or 

glacier ice). The penetration is generally greater, the longer the wavelength is. The 

contribution of the volume scattering also rises with longer wavelengths. Therefore, for 
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applications of forest or biomass estimation (where penetration of the vegetation canopy is 

desired) or geologic or archeologic applications (where it is useful to penetrate soil) longer 

wavelengths such as L-band or even P-band are preferred (Schmullius and Evans, 1997), for 

some examples see Schmullius et al. (2015). In the future, also P-band (~70 cm) will be 

available from ESA’s BIOMASS mission which is currently developed and planned to launch in 
2023 (ESA, 2021a). For wetland research short as well as long wavelength SAR has been used 

since there are different advantages and disadvantages for certain wavelengths. Longer 

wavelengths (L-band) have the advantage to not likely experience alterations of the 

backscatter signal over open water due to wind or current, such as it is more often the case for 

shorter wavelengths (X-band, C-band). L-band has the ability to penetrate canopy and was 

preferred for studies in forested wetlands and it can be as well applicable for detecting flooded 

areas below vegetation/forest (Schmullius and Evans, 1997, Li and Chen, 2005, Lang et al., 

2008). X-band and C-band are favored for non-forested wetland vegetation, in general for 

non-forested wetlands predominantly of herbaceous vegetation (Schmullius and Evans, 1997, 

Morandeira et al., 2016, Mahdianpari et al., 2017b) and bogs, fens and marshes (Brisco et al., 

2009). For the work in this thesis, X-band and C-band data were used, since the wetland 

vegetation types of the study site are predominantly herbaceous.  

There are different synonyms for the dominant scattering mechanisms. For consistency, the 

one that is underlined will be the one referred to in this thesis as well as the comprised journal 

papers:  

• single-bounce, odd-bounce or surface scattering: This scattering mechanism is

dominant for planar targets with a rough surface in relation to the SAR wavelength
(e.g., bare soil or dense vegetation canopy scattering the signal). A perfectly smooth

surface would scatter the energy in specular direction and cause a low, almost

negligible backscatter signal (e.g., smooth water).

• double-bounce, even-bounce, dihedral or dipole scattering: This scattering mechanism

describes the double-reflection at two perpendicular planes before returning to the

sensor (e.g. artificial urban structures with double-bounce scattering between paved

soil and buildings or between buildings as perpendicular scattering plane; flooded

vegetation with the water surface as perpendicular scattering plane to the vegetation).

• volume or diffuse scattering: This term denotes the scattering caused by multiple
small-scale scatterers inside volumes or objects (the most prominent effect appears,

e.g., insides tree crowns) where scattering between multiple dipoles occurs.

The distinction between the components of the different backscatter mechanisms are the 

foundation for the interpretation of multi-polarized SAR imagery (see section 2.3.2). In the 

case of a single deterministic target, coherent scattering or point-like scattering occurs. This is 

mostly the case for man-made objects such as buildings. From random or distributed targets 
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incoherent scattering is returned, which is mostly the case for natural targets; a strong 

distributed scatterer is represented by flooded vegetation. The characteristics of dominant 

scattering mechanisms in wetlands (see Figure 20) have been described by many authors 

(Hess et al., 1990, Henderson and Lewis, 2008, Schmitt and Brisco, 2013, Moser et al., 2016b, 

Mahdianpari et al., 2017b), etc.  

Figure 20: Most prominent wetland cases as exemplified in the study site in Burkina Faso, antenna 
beam (yellow), backscatter: surface (blue-dashed), double-bounce (red-lined), volume (dark green-
dotted), for an X-band sensor: (a) open water; (b) emergent & floating macrophytes, e.g. water lilies, 

largely covering the water; (c) submerged macrophytes & partially emergent macrophytes; (d) emergent 
macrophytes; (e) emergent macrophytes & flooded trees; (f) flooded area of dense tree cover.  

Due to the off-nadir looking angle of SAR sensors, smooth, open water surfaces cause the 

signal to be backscattered in a specular manner like from a mirror, reflecting almost all 

radiation away in a different direction than the one of the sensor location (see Figure 20a). 

Therefore, surface scattering is the only dominant scattering mechanism over open water. 

Water surfaces thus appear very dark in SAR images, regardless of their turbidity – which 

would in contrast strongly affect the signal measured by optical instruments. This has been 

exploited in many studies for mapping water with different SAR sensors of different 

wavelengths (Schmitt and Brisco, 2013, Santoro and Wegmuller, 2014, White et al., 2014, 

(a) 

(f) (e) 

(b) 

(d) (c) 



CHAPTER 2  –  STATE OF THE ART 

71 | P a g e

Martinis et al., 2015b, Moser et al., 2016b, Bertram et al., 2016), to name a few. Since C-band 

and HH-polarized SAR data show a higher contrast between water and land, their usage has 

been recommended with respect to other polarizations (Brisco et al., 2009). For deep water 

similar low backscatter values can be expected regardless of the wavelength (Mahdianpari et 

al., 2017b). For shallow water – as it is often represented in wetlands – short wavelengths 
(X-band HH) have been reported to show lower variabilities in backscatter values than long 

wavelengths (L-band HH) (Mahdianpari et al., 2017b) and might therefore be preferred for 

classification of shallow water with potential emergent vegetation.  

In case of wind or current causing ripples or waves on the water surface the backscatter signal 

can be altered and can result in much higher backscatter values (Alsdorf et al., 2007). 

Generally, patterns of winds and currents are often visible in C- and X-band SAR images, and 

this is as well exploited in the field of ocean remote sensing. The cross-polarized channel has 

been described as less sensitive towards surface roughness and therefore a HH/HV ratio was 

proposed to delineate water bodies (Brisco et al., 2011a). HH data have been reported to be less 

sensitive to wind influence as VV data, e.g. HH-polarized C-band as well as X-band are less 
sensitive to wind-induced surface roughness (Brisco et al., 2008, Gstaiger et al., 2012, 

Wendleder et al., 2013). The effect of Bragg scattering, where wind-induced waves increase the 

backscatter signal of predominantly C-band SAR energy over inland water bodies, was 

discussed for monitoring small reservoirs in semi-arid areas using ASAR (Liebe et al., 2009), 

and was pointed out in the framework of a monitoring study of Lake Tabalakh in the Nigerien 

Sahel using ERS-1 data amongst other datasets (Bertram et al., 2016). One needs to pay 

attention that dry sands and dry soils – which are present in semi-arid and arid areas – as well 

as large and smooth sealed surfaces (e.g. asphalt, concrete) can show a similar low backscatter 

as calm, open water. This effect can increase with lower wavelength. Such similar low 

backscatter of dry soils was reported in a study monitoring flooded areas in the Niger Inland 

Delta using ASAR (Seiler et al., 2009). Likewise, Gessner et al. (2015) reported that ASAR data 

could be successfully used for mapping permanent and temporary water bodies south of 

10° latitude in West Africa, however, that was not the case in the semi-arid zones north of 

10° latitude where dry soils and sands frequently occur.   

A very comprehensive review of SAR remote sensing for flooded vegetation was recently 

presented by  Tsyganskaya et al. (2018b). Flooding below canopy has been detected using 

SAR imagery in several studies (Hess et al., 2003, Frappart et al., 2005). SAR radiation 

penetrates the vegetation canopy to a certain extent, increasingly with long radar wavelengths 

which usually also have an emphasized volume contribution in the backscattered signal 

(Moreira et al., 2013), dependent on the wavelength of the signal (see section 2.3.1). The 

double-bounce effect occurs between water below canopy and plant stems (Betbeder et al., 

2015). For shorter wavelengths in X-band, scattering occurs mainly in the canopy and the 

double bounce effect between water below canopy and plant stems is not pronounced. For 
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C-band the canopy might be penetrated with scattering mainly on the small branches of a 

tree, hence double bounce between the water surface and plant occurs. Studies showed that 

sub-canopy water bodies were not sufficiently detected with C-band SAR (Slagter et al., 2020). 

Long wavelengths such as L-band or P-band (the latter not yet being available from satellite 

sensors) might even totally penetrate a forest canopy and scatter only at the tree’s trunk and 
branches, hence detect flooding below canopy. Penetration is of advantage when one wants to 

map water below the vegetation canopy in areas of flooded or emergent vegetation. Optical 

sensors are less effective in characterizing flooding below canopy or might not detect flooding 

at all in the case of a dense canopy, when radiation is reflected from the canopy only.  

When the radar pulse hits flooded vegetation that is standing in water or floating on water, 

additional scattering effects, namely double-bounce and volume scattering occur (see 

Figure 20b–e). Double-bounce scattering is usually more prominent for man-made structures 

and rare in natural environments where not so much perpendicular backscattering targets are 

present (Schmitt and Brisco, 2013). Since dry soil on land shows a weak response, the 

backscattering is dominated by the plants, resulting in a more or less smooth appearance in 
shorter wavelengths (e.g., X-band) or a diffuse backscattering volume in longer wavelengths 

(e.g., C-band). In case of flooding, the water surface forms a double-bounce reflector together 

with the plant stems, where vegetation is acting as corner-like reflector in water. This effect is 

likely be caused by open water reflecting the signal into preferably one direction, where it hits 

the flooded vegetation, i.e., macrophytes thereafter, and is scattered again from the 

vegetation. A finding from performing the work of this thesis is, that the signal in single-

polarized imagery can be stronger for flooded vegetation then for dry vegetation on land, or be 

similar as for vegetation on land or urban areas.  

Short wavelengths like X-band SAR pulses do almost not pass through the canopy. This results 

in a double-bounce effect between flooded vegetation and water, or volume scattering effects 
within the vegetation. C-band SAR energy can penetrate a little more but still results in 

double-bounce and volume scattering effects. Long wavelengths have shown to be more 

adequate to map forested wetland (Li and Chen, 2005), whereas short wavelengths have been 

reported to be favored for mapping herbaceous vegetation. In contrast, for long wavelengths 

such a L-band herbaceous vegetation is partially transparent (Brisco et al., 2009, Evans and 

Costa, 2013, Mahdianpari et al., 2017b). Shorter wavelengths have also been described to 

distinguish well between non-forested wetland classes (Li and Chen, 2005). For non-forested 

wetlands all polarizations of X-band (HH, VV, cross-pol) as well as C-band (HH, VV and cross-

pol) were summarized to be important contributors, alongside with L-HH (Schmullius and 

Evans, 1997). As reported in some further studies L-band SAR is well suited for identifying 

marshland and causes lower backscatter values due to a combination of surface and volume 

scattering in L-band versus only volume scattering in shorter wavelengths such as C-band 

(Silva et al., 2008, Evans and Costa, 2013, Mahdianpari et al., 2017b).  
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In terms of polarization, for mapping flooded vegetation C-HH was found out to be the 

preferred polarization, since it increases the canopy penetration with respect to C-VV, and 

therefore enhances the double-bounce scattering of the flooded trees (Brisco et al., 2008). HH 

is described to be most favorable for wetland mapping due to the highest sensitivity for the 

flooding status of vegetation (Mohammadimanesh et al., 2018a, Mahdianpari et al., 2020). For 
herbaceous wetland classes with sparse canopy closure VV observations have proven useful for 

discriminating wetland vegetation classes, and due to the occurring volume scattering in the 

vegetation canopy HV-polarized imagery is capturing the structure of the vegetation 

(Mahdianpari et al., 2020). The added value of SAR imagery is therefore provided by the use of 

multi-polarized imagery which enables the discrimination between different scattering 

mechanisms and can conclude to the occurrence of flooded vegetation, which is characterized 

by high double-bounce scattering (Hess et al., 1990, Henderson and Lewis, 2008, Brisco et al., 

2011b, Schmitt and Brisco, 2013, Gallant et al., 2014). This is further elaborated in sections 2.3.2. 

and 2.3.3.2. Dual-co-polarized (HH-VV) SAR imagery has been successfully used for the 

classification of flooded vegetation (Schmitt and Brisco, 2013, Betbeder et al., 2015). The most 

commonly used sensor is TerraSAR-X where this mode is enabled. In contrast, better 

discrimination between plant functional types in herbaceous wetland vegetation was achieved 

using cross-pol C-band data as compared to co-pol data, as shown in one study (Morandeira et 

al., 2016).  

Long wavelengths such as L-band are typically preferred for forested wetlands, which do not 

play much of a role in the study area. Tsyganskaya et al. (2018b) reviewed multiple studies 

where common SAR wavelengths have been applied. The ones using longer wavelengths such 

as L-Band, and two studies using airborne P-band, were performed in densely forested 

wetlands, predominantly located in Africa or South America. For flooded forest, Schmullius 

and Evans (1997) listed L-HH data as important and L-VV and L-cross-pol as helpful, and 

analogous P-HH data as important and P-VV and P-cross-pol as helpful, whereas they 

discarded all polarizations of X- and C-band data. Mahdianpari et al. (2019) and Slagter et al. 

(2020) reported classification errors due to the limited capabilities of C-band VV/VH from 

Sentinel-1 in high-vegetated areas, where upland forests and high-vegetated wetlands such as 

swamp or mangrove forests were not properly distinguished. Slagter et al. (2020) added that 
mapping water beneath high wetland vegetation could not be done sufficiently with C-band. 

Floating vegetation on water is often very dense, with only a few open water areas beneath 

the leaves. Such vegetation does typically not emerge a lot from the water surface. 

A prominent example in wetlands and lakes are water lilies which commonly occur in shallow 

water. Water lilies have been reported not to be detected with X- or C-band SAR; the 

backscatter is similar to the one of vegetation on land. This has been demonstrated for X-band 

(Moser et al., 2016b) as well as X- and C-band SAR for a study on flooded and floating 

vegetation on water in Burkina Faso (Moser et al., 2016a), see also Chapters 6 and 7. This is 
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assumed to be due to the fact that no strong double-bounce effect occurs in these areas, since 

there is no reflection between the water surface and plant stems or vegetation canopy. 

Moreover, no significant difference between X-HH and VV intensity could be observed for 

floating vegetation, in contrast to significant difference for flooded vegetation (Moser et al., 

2016b). Since water lilies are a common vegetation type on wetlands and lakes in warm 
climates, the importance of temporal analysis has to be taken under consideration for 

mapping such aquatic plant cover (see section 2.3.3.2).  

To summarize, smooth water can be detected by its low backscatter in all polarizations, 

whereas flooded vegetation shows a strong double-bounce effect and partially volume 

scattering effect, which brings an important add-on to the use of optical data (where water 

below dense canopy might not be visible) to wetland research.  

2.3.2 Polarimetric Decompositions 

Polarimetric synthetic aperture radar (polSAR) enables to derive polarimetric decompositions 

from multi-polarized (i.e., dual-, or quad-pol) SAR imagery. The purpose of polarimetric 

decompositions is to decompose the backscattered SAR signal into different backscattering 

mechanisms, in order to be able to interpret or classify not only the backscattering coefficient 

in each available polarization, but exploit the characterization of the surface into different 

scattering mechanisms. Sensors with full polarimetric (i.e., quad-pol) capability acquire the 

full polarimetric backscattering matrix with ground-target information for every pixel. Despite 

of not being possible to uniquely identify all different scattering mechanisms, it is targeted to 
distinguish, e.g., the three main types of backscatter contributions of different backscatter 

mechanisms: single, double-bounce and volume scattering (see section 2.3.1).  

A number of decompositions – almost only available for quad-pol data – have been developed 

or extended in the past couple of years. One can distinguish between coherent and incoherent 

descriptions of decompositions. Remote sensing studies on wetlands are mostly based on 

quad-pol RADARSAT-2 data, with a few exceptions on ALOS PALSAR-1 and -2 data, and 

TerraSAR-X quad-pol data. Frequently, only dual-pol data are available from SAR sensors 

currently in orbit (see section 2.3.1), including Sentinel-1, however, to date there is a lack of 

methods to interpret the scattering matrix from dual-pol data, and this is where the work in 

this thesis ties into.  
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COHERENT DECOMPOSITIONS FOR WETLAND REMOTE SENSING USING QUAD-POL DATA 

Coherent target decompositions are to be applied on every pixel and can only be used to 

investigate the so-called coherent targets, also called point scatterers, deterministic scatterers 

or pure targets (ESA, 2018b), they are not defined and random for distributed scatterers. Some 

commonly known representatives of coherent decompositions are the Pauli, Krogager and 

Cameron decompositions (Lee and Pottier, 2009, Schmitt, 2011, ESA, 2018b). Such coherent 

targets are mainly man-made structures, which do not play a big role for interpreting or 
classifying wetland environments. Therefore, they are not further discussed here.  

INCOHERENT DECOMPOSITIONS FOR WETLAND REMOTE SENSING USING QUAD-POL DATA 

Incoherent decompositions are required to analyze distributed targets such as they are present 

in wetland environments, or one could say, in natural environments (forests, agricultural 

fields, grasslands, bare soil…) in general. A common characteristic of all incoherent 

decompositions is that they decompose the SAR signal into covariance or coherency matrices 

(the representations are equivalent) (ESA, 2018b). Incoherent decompositions are averaged 

over multiple neighboring pixels. Therefore the structures in the images appear to be of lower 

resolution, due to the applied local averaging (Schmitt, 2011). The covariance or coherency 

matrices cannot be directly physically analyzed due to their complexity, therefore 

decompositions by applying a combination of second order descriptors corresponding to 

simpler or canonical objects are required (Lee and Pottier, 2009, ESA, 2018b).  

In the context of wetlands, several incoherent polarimetric decompositions have been used. 

The Cloude-Pottier decomposition (Cloude and Pottier, 1997) based on the 

eigenvector/eigenvalue mathematical framework extracts the parameters H/A/α, respectively 

the Entropy, Anisotropy and α angle, in order to derive the relationships between the 

scattering mechanisms: surface, double-bounce and volume. This method was applied by 

Schmitt and Brisco (2013) using RADARSAT-2 with the goal to detect water beneath 

vegetation canopies for a wetland study site in New Brunswick, Canada. The Cloude-Pottier 

decomposition was applied amongst other methods as part of a study classifying wetlands on 

the Avalon Peninsula, Newfoundland, Canada, using RADARSAT-2 data (Mahdianpari et al., 

2017b), for classifying plant functional types (PFTs) in the Lower Paraná river floodplain using 
RADARSAT-2 data (Morandeira et al., 2016), and for classifying wetlands in Spain with 

RADARSAT-2 and ALOS PALSAR-1 data (Koch et al., 2012). Another eigenvector/eigenvalue-

based decomposition is the Touzi decomposition with the difference that a roll-invariant 

scattering model is used leading to five parameters (Touzi, 2007). The Touzi decomposition 

was applied for wetland classification in Ottawa, Canada using RADARSAT-2 data (Touzi et 

al., 2007) and again for the same site using airborne SAR data (Touzi et al., 2009). Moreover, 
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both, the Cloude-Pottier and the Touzi decompositions were used as well by Chen et al. (2014) 

and Mahdianpari et al. (2017b), amongst other decompositions and parameters.  

The physically-based scattering model of the Freeman-Durden decomposition that estimates 

the amount of surface, double-bounce, and volume scattering based on extracting polarimetric 

features from dihedral corner reflectors (Freeman and Durden, 1998) was used by Schmitt and 

Brisco (2013) as well for the above-mentioned study to detect water beneath vegetation 

canopies for a wetland study site in New Brunswick, Canada, using RADARSAT-2. White et al. 

(2015) summarized the findings to map flooded vegetation and wetlands by Freeman and 

Durden (1998), Touzi et al. (2004), White et al. (2014), respectively. The Yamaguchi four-

component decomposition is an extended version of the Freeman-Durden model and 

distinguishes surface-, double bounce-, volume scattering and, in addition, helix scattering 

components (Yamaguchi et al., 2005). This decomposition was applied by Koch et al. (2012) 

using RADARSAT-2 and ALOS PALSAR-1 data for classifying a wetland area in semi-aid 

environment in central Spain. Thereafter, Koch et al. (2012) applied a H/A/α decomposition 

(Cloude and Pottier, 1997, Lee et al., 1999) which was performed followed by an unsupervised 
Wishart-H/A/α classification. The Hong and Wdowinski four-component decomposition was 

developed and applied in tropical and sub-tropical wetlands (Hong and Wdowinski, 2014) and 

for classifying wetland vegetation using quad-pol TerraSAR-X data in the Florida Everglades 

by the same authors (Hong et al., 2015). Moreover, multiple polarimetric parameters derived 

from several coherent and incoherent decompositions were exploited using ALOS PALSAR-1 

data concluding to different advantages of polarimetric parameters for certain classes (Chen et 

al., 2014). A study that computed a time series of 15 RADARSAT-2 quad-pol images in northern 

France into multiple polarimetric decompositions, among them the Shannon Entropy, showed 

the most significant contrast between marsh flooded areas and surrounding areas (Marechal 

et al., 2012). 

Some recent studies have investigated the use of simulated compact polarimetry for wetland 

change detection, in preparation for the future RADARSAT Constellation Mission (RCM). The 

m-chi decomposition developed by Raney et al. (2012) which estimates the received Stokes 

Vectors and converts them to the Poincaré features m and χ was applied in two studies (White 

et al., 2014, White et al., 2015), and the Wishart-Chernoff distance proposed by Dabboor et al. 

(2013) as probabilistic matrix distance measure which estimates the similarity between two 

complex Wishart distributions was applied on wetlands in one study (Dabboor et al., 2015). 

A study by Mohammadimanesh et al. (2017) came to the conclusion that when comparing 

wetland classifications using compact polarimetric, quad-polarized and dual-polarized data, 

quad-polarized data yield the best results. However, there is a significant improvement of 

compact polarimetric data with respect to dual-polarized data and therefore the potential of 

RCM for wetland mapping is shown. A very recent contribution has been published by Olthof 

and Rainville (2020) who applied simulated RCM data derived from RADARSAT-2 for 
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mapping open water and flooded vegetation using several simulated compact polarimetric 

parameters. A separability analysis was conducted between flooded vegetation and other land-

cover classes. The most efficient four compact polarimetric parameters for flooded-vegetation-

region-growing were identified to be RH intensity (most efficient), RR intensity, Shannon 

Entropy intensity (SEi), and the first Stokes parameter (SV0). Since the three RCM satellites 
were launched in June 2019, studies using the actual data from this mission can be expected in 

the near future.  

DECOMPOSITIONS AND ALTERNATIVE METHODS FOR WETLAND REMOTE SENSING USING DUAL-POL DATA 

Back in 1997 the use of C-band co-polarized (HH-VV) SAR was concluded to be most suitable 

for mapping flooded vegetation (Pope et al., 1997, Kasischke et al., 1997). Since this dual-pol 

mode did not exist on a satellite until recently (e.g. on TSX or ALOS PALSAR-2), a 

combination of RADARSAT-1 and ERS data, one acquiring in HH and one in VV, was proposed 

(Pope et al., 1997), suffering, however, from the missing phase relation which is essential for 

the identification of double bounce scattering. Further authors concluded on the best suitable 

combination of HH and VV for wetland mapping (Brisco et al., 2008, Schmitt and Brisco, 

2013). 

For dual-polarized data, besides the Kennaugh Elements – that will be described in the 

coming paragraph – there are only few methods and decompositions available. One of them is 

the H-α decomposition (Cloude, 2007, Shan et al., 2011) which is based on the Cloude-Pottier 

decomposition requiring quad-pol data (Cloude and Pottier, 1997), to the authors knowledge 

there is yet no work published applying the H-α decomposition using dual-pol data for 

wetland studies. Another possible method is based on the Shannon Entropy, deducted from a 

2 x 2 covariance matrix (Lee and Pottier, 2009). It has been concluded that this polarized 

parameter can be successfully applied for mapping herbaceous wetland formations by the use 

of dual-co-pol TSX data. The Shannon entropy is hereby described as the randomness of 

scattering of a pixel, which can be caused by either variation in backscattering power or 

polarization, which are the two parts that the Shannon Entropy is composed of (Betbeder et 
al., 2015). This has been demonstrated in two recent studies that were conducted using dual-

co-pol (HH-VV) TSX data for a wetland test site in France (Betbeder et al., 2014b, Betbeder et 

al., 2015).  

THE KENNAUGH ELEMENTS FOR WETLAND REMOTE SENSING 

The Kennaugh decomposition – described as normalized Kennaugh elements – can be applied 

for all combinations of dual- and quad-pol data for any wavelength and sensor. It was 

developed and described by Schmitt (2011) and Schmitt et al. (2015) and is the chosen 

decomposition method for the work in this thesis. For the respective reasons, see section 2.6 

on the choice of data for this work.  
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An advantage of the Kennaugh elements with respect to other incoherent decompositions is, 

that it is possible to scale and directly interpret the backscattering matrix elements themselves 

(Schmitt and Brisco, 2013) so that the information can be directly used for physical 

interpretation on the Kennaugh elements, no further generalization of information needs to 

take place (Schmitt, 2011). No further intermediate tools are needed for interpretation of the 
Kennaugh elements (Mahdianpari et al., 2017b). Another difference between the Kennaugh 

elements and other incoherent decompositions – and at the same time an advantage of the 

Kennaugh elements – is that it can be applied for any combination of polarization, for quad- 

as well as dual-pol data. In one study by Schmitt and Brisco (2013), it was shown that dual-co-

polarized (HH-VV) RADARSAT-2 data provide high classification accuracies when 

decomposing the data with the Kennaugh element method, with an accuracy close to the use 

of quad-pol data. For more information on the possibilities of dual-pol SAR data interpretation 

see the previous sub-section.  

Studies related to wetlands are the most common application field for which the Kennaugh 

elements from quad- and dual-pol polSAR data have been applied, since being published by 

Schmitt (2011) and Schmitt et al. (2015). In the framework of this thesis they have been used for 

wetland studies with dual-pol TerraSAR-X and RADARSAT-2 data in Burkina Faso as input 

(Moser et al., 2016a, Moser et al., 2016b, Klingebiel et al., 2021), and moreover by Schmitt et al. 

(2011), Schmitt and Brisco (2013) using RADARSAT-2 data in Canada and Germany, 

respectively. A combination of TSX, RADARSAT-2 and extra-wide swath Sentinel-1 images was 

used to derive class similarities of different sensors over time in wetlands in the Athabasca 

delta, Canada (Schmitt et al., 2016). Recently, the Kennaugh elements were applied using 

ALOS-2 dual-pol (HH/HV) data in Canada for mapping wetland classes (Mahdianpari et al., 

2017b) as well as for classifying intertidal flats in the German Wadden Sea using RADARSAT-2 

dual-cross-pol imagery (Gade et al., 2018). Moreover, the project Wetland-Radar (see section 

2.5) covered research using the Kennaugh elements for test studies at the Lake Burullus, Egypt 

and Neusiedler See, Austria. The usually less meaningful Kennaugh element K7 showed to be 
valuable for analyzing larger areas covered by reed (Weise, 2018). Comparing the Cloude-

Pottier decomposition, the Freeman-Durden decomposition and the Normalized Kennaugh 

elements, the latter was favored for the description of wetlands in New Brunswick with 

polarimetric data by Schmitt and Brisco (2013). This was reported to be due to 

LC types/LC changes which were reflected by the Kennaugh elements, and where the 

smoothest results could be achieved. Likewise, another study compared the Cloude-Pottier 

decomposition, the Freeman-Durden decomposition, the Normalized Kennaugh elements and 

various other polarimetric parameters to derive the strongest variable importance for wetland 

classification on the Avalon peninsula, resulting in the three above-mentioned 

decompositions, particularly the normalized Kennaugh elements (Mahdianpari et al., 2017b).  
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2.3.3 SAR Sensor Applications 

In addition to the applications of polarimetric decompositions for wetland monitoring, a 

selection of studies is presented in the following sections, representative for the applications 

of SAR data for wetland monitoring, with an emphasis on temporal analysis and herbaceous 

wetland vegetation as it is of relevance for this thesis.  

As for section 2.2.3, the following sections are structured into two aspects of interest for this 

thesis: (i) studies focusing on comparing different modes, polarizations or datasets – pre- as 

well as post-classification – and (ii) studies applying temporal analysis or multi-temporal 

classification. 

2.3.3.1 Applications Focusing on Single-polarized SAR 

Single-polarized (single-pol) SAR data have been commonly used for open water detection, 

including water body mapping as well as flood detection. On the one hand single-pol SAR data 

is sufficient for open water mapping and monitoring, but on the other hand this is also 

connected to data availability. For large study sites or even continental applications no multi-

polarized data are available and single-pol data cover a larger swath. Also backscatter analysis 

of both channels of dual-pol data was frequently carried out without further considering 

polarized information or decompositions thereof. 

A large number of studies has examined C-band SAR data for open water applications, most 

commonly from ASAR on Envisat (Bartsch et al., 2009, Reschke et al., 2012, Gstaiger et al., 

2012, Kuenzer et al., 2013, Santoro et al., 2013, Santoro and Wegmuller, 2014, Gessner et al., 

2015) or previously ERS-1/ERS-2 for water and wetland applications (Kasischke and Bourgeau-

Chavez, 1997, Townsend, 2002, Kasischke et al., 2003, Bourgeau-Chavez et al., 2009). Further 

studies using single-pol C-band data have been carried out using RADARSAT-2 (White et al., 

2014) and its precursor RADARSAT-1 (Townsend, 2002, Karvonen et al., 2005, Brisco et al., 

2009), however, for RADARSAT-2 most applications use multi-polarized data (see section 

2.3.3.2). Sentinel-1 time series have been applied for Europe-wide mapping of permanent and 

temporary water bodies and areas of permanent or temporary wetness – which is the first such 
Europe-wide product on a high resolution scale (Ramminger et al., 2017, Riffler et al., 2017, 

CLMS, 2020b). One study applied ASAR and TSX data for classifying permanent and seasonal 

water bodies as part of a LC classification of West Africa (Gessner et al., 2015), covering also 

the study site in Burkina Faso. Envisat ASAR Wide Swath (WS) data from 2006 were used for 

all latitudes of West Africa (south of 10°N). This study provided an outlook in direction of 

possible improvement of the detection of smaller water bodies when replacing ASAR WS data 

by the higher resolution Sentinel-1 data. Moreover, multi-temporal ASAR WSM was used to 

map open standing water on global scale (Santoro et al., 2013, Santoro and Wegmuller, 2014), 

and the ASAR Global Mode (GM) was applied for global wetland monitoring (Bartsch et al., 
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2009). Single-polarized X-band SAR data, mainly from TerraSAR-X/TanDEM-X were applied 

for water body or flood mapping (Gstaiger et al., 2012, Wendleder et al., 2013, Martinis et al., 

2015a, Martinis et al., 2015b). The L-band SAR sensor JERS provided single-polarized HH 

images which were used for wetland research (Hess et al., 2003, Bourgeau-Chavez et al., 2009), 

whereas for L-band SAR sensors such as ALOS PALSAR-1 or ALOS PALSAR-2 the multi-
polarized capabilities were exploited rather than using single-pol data (see section 2.3.3.2).  

2.3.3.2 Applications Focusing on Multi-polarized SAR 

Using single SAR intensity data one cannot distinguish between different scattering 

mechanisms, and therefore, where the received signal comes from; e.g. from the canopy or 

ground: dry soil, vegetated soil, flooded ground, water below vegetation, etc., see section 2.3.1. 

Two aspects of interest for polSAR data analysis with respect to the thesis at hand are 

presented: (i) studies focusing on comparing different modes (multi-polarization), 

wavelengths (multi-frequency) or datasets – pre- and well as post-classification, and 

(ii) studies applying temporal analysis or multi-temporal classification. Some selected studies 

of relevance for this work are presented in the following paragraphs of this section.  

Most multi-polarized wetland studies have been carried out with RADARSAT-2 (e.g., Brisco et 

al., 2011b, Koch et al., 2012, Marechal et al., 2012, Schmitt and Brisco, 2013, Schmitt et al., 2016, 

Gallant et al., 2014, Morandeira et al., 2016, Mahdianpari et al., 2017b, Mahdavi et al., 2017), as 

far as the use of fully polarimetric (quad-pol) data is concerned. Fewer quad-pol studies were 

performed using ALOS PALSAR (e.g., Koch et al., 2012, Chen et al., 2014), and a few studies 

utilized TerraSAR-X quad-pol data (e.g., Hong et al., 2015).  

Dual-co-polarized (HH-VV) SAR data were mainly retrieved from Terra 
SAR-X (e.g., Betbeder et al., 2014b, Betbeder et al., 2015, Moser et al., 2016b, Moser et al., 2016a, 

Schmitt et al., 2016, Heine et al., 2016, Klingebiel et al., 2021) or previously, from a combination 

of different sensors at the same wavelength, such as JERS-1 and ALOS PALSAR (e.g., Milne and 

Tapley, 2010), or RADARSAT-1 and ERS-1 (e.g., Townsend, 2002). Dual-cross-pol data are 

available form a multitude of sensors, and were used for wetland studies with ASAR (e.g., Na 

et al., 2013a, Evans and Costa, 2013), RADARSAT-2 (e.g., Evans and Costa, 2013, Moser et al., 

2016a), ALOS PALSAR (e.g., Evans and Costa, 2013, Ferreira-Ferreira et al., 2015, Zhang et al., 

2016, Mahdianpari et al., 2017b, Mahdavi et al., 2017), ALOS-2 PALSAR-2 (e.g., Mahdavi et al., 

2017) and lately, from Sentinel-1 (e.g., Schmitt et al., 2016, Muro et al., 2016, Cazals et al., 2016, 

Chatziantoniou et al., 2017, Mahdavi et al., 2017, Tsyganskaya et al., 2018a, Mahdianpari et al., 

2019, Slagter et al., 2020, Mahdianpari et al., 2020). For dual-co-pol data, decomposition 

techniques are still a new research field, and for cross-pol data options are limited.  

As for (i), relevant selected multi-polarization and multi-frequency SAR studies are pointed 

out:  
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After a first study using the Kennaugh element technique for application on German wetlands 

using TSX data by Schmitt et al. (2012) the Kennaugh elements were successfully applied for 

wetland remote sensing and furthermore compared to the results derived from other 

decompositions (Cloude-Pottier, Freeman-Durden) using RADARSAT-2 data in New 

Brunswick, Canada, by Schmitt and Brisco (2013). The goal of the latter study was the regular 
mapping of (temporarily) flooded areas especially beneath vegetation, therefore deriving the 

flooding extent and its change over time from a small series of five images of the year 2010. 

A Curvelet-based change detection methodology was applied to extract changes by direct 

comparison (pre-classification) of four pairs of images. As mentioned in section 2.3.2, different 

polarimetric decomposition methods (Cloude-Pottier, Freeman Durden and Normalized 

Kennaugh elements) were used to perform this analysis. The change of the Normalized 

Kennaugh elements – entitled differential Kennaugh elements – produced smoother results 

with reduced noise content as the before-mentioned two alternative decompositions. The 

relation of HH to VV intensity revealed well-defined structures. The authors could draw the 

very significant conclusion that the co-polarized channels (HH-VV) may be appropriate for 

wetland monitoring, showing that dual-co-polarized imaging modes are sufficient, as opposed 

to the use of quad-pol imagery.  

Mahdianpari et al. (2017b) utilized single-date images from TSX, RADARSAT-2 and ALOS-2 

for a hierarchical object-based Random Forest classification of wetlands on the Avalon 

peninsular in Newfoundland, Canada. Prior, a multiresolution segmentation is carried out on 

an optical RapidEye image, and three levels of SAR classification follow. The resulting classes 

are wetland and non-wetland classes: water (deep water, shallow water), herbaceous (bog, fen, 

marsh) and non-herbaceous (urban, upland and swamp). Different polarimetric 

decomposition approaches including the Cloude-Pottier, Freeman-Durden, Yamaguchi, Touzi, 

Kennaugh elements, covariance matrix and coherence matrix are exploited with the result that 

the greatest variable importance for classification is represented by the Kennaugh elements, 

Yamaguchi and Freeman-Durden decompositions, and the note that the Kennaugh elements 

add to the overall accuracy or may outperform other polarimetric parameters. It was reported 

that the Kennaugh elements may contain the highest polarimetric information content while 

also having the least amount of noise. The overall classification accuracy was reported to be at 
94%. Moreover, this study provides interesting insights through a backscatter analysis of all 

eight classes, discussing class variability and backscattering mechanisms for X, C and L-band 

(see section 2.3.1).  

An alternative method that allows analysis of dual-pol data, the computation of the Shannon 

Entropy (SE), was applied by Betbeder et al. (2015) on a small time series of eight dual-pol 

HH-VV TSX images. The polarized SE parameter varies with wetland flooding and vegetation 

roughness. The study site was the herbaceous wetland site of Pleine Fougères in northern 

France. Support vector machine classifications with a Gaussian kernel were performed to test 
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the best combination of all derived SE data to identify six wetland vegetation formations 

(woody areas, ponds, long-flooded grasslands, hygrophilic grasslands, meso-hygrophilic 

grasslands, and mesophilic grasslands). A combination of five images proved to yield the best 

classification results. The authors concluded to a new successful approach for herbaceous 

wetland monitoring using polarized SAR imagery. The polarized parameter SE was as well 
used on quad-pol RADARSAT-2 time series for the same site (Marechal et al., 2012).  

As for (ii), relevant selected studies applying temporal analysis, multi-temporal classification 

or change detection are pointed out: 

As described in section 1.1.2.1, data time series are required to map the dynamics of open water 

in water bodies and wetlands. This is due to the temporal-seasonal character of wetlands and 
water bodies, particularly in areas with pronounced rainy and dry seasons, such as many semi-

arid areas. Apart from seasonal variations water surface and wetland vegetation are affected by 

local weather conditions. Therefore, the use of multi-temporal imagery instead of mono- or bi-

temporal data, in fact the use of dense time series, is as well recommended for classification of 

permanent or temporary water, wetland vegetation or wetland types.  

Temporal analysis of wetlands is also the key of this thesis and was applied on dual-pol TSX 

(Moser et al., 2016b, Klingebiel et al., 2021) and dual-pol TSX and RADARSAT-2 time series 

(Moser et al., 2016a), see Chapter 6, 7 and 8. It is shown how wetland vegetation features, i.e. 

open water, flooded vegetation and irrigated fields – especially the latter two which cannot be 

detected in single images (especially in C-band) – can be well classified by applying a multi-
temporal classification over an image stack of more than 20 images throughout a season 

(Moser et al., 2016a). A study by Schmitt et al. (2016) applied the Kennaugh element 

framework on a combination of single & dual-pol TSX and Sentinel-1 as well as quad-pol 

RADARSAT-2 data, over a 4-months period to explore class similarities (open water, flooded 

vegetation, vegetation on land) using different sensors over time for wetlands in the Athabasca 

delta, Canada. A study by Bertram et al. (2016) used the Kennaugh element framework to 

process solely sum of intensity (K0) images of available data throughout a long time span 

(1998–2016), using different sensors (ERS, RS-1/2, ASAR, PALSAR-1/2, TSX, Sentinel-1) to study 

open water changes at lake Tabalakh, Niger. The studies as part of this thesis by Moser et al. 

(2016b), Moser et al. (2016a) and Klingebiel et al. (2021) remain the only studies so far that 

apply the multi-polarized Kennaugh element framework on a dense time series of imagery.  

The importance of using time series of polSAR data was shown by Schuster et al. (2015) using 

TSX data, who demonstrated that the classification of herbaceous wetland vegetation types of 

similar backscatter is possible adding the temporal component by deriving their intra-annual 

phenology using temporal profiles. A study by Marechal et al. (2012) applied time series of 15 

quad-pol RADARSAT-2 data with a repeat cycle of 24 days for a test site in northern France, to 

identify and locate seasonal dynamics of saturated areas in wetlands. Therefore, different 
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polarimetric decompositions and descriptors were calculated, such as Huynen, Cloude, 

Barnes, Holm, Freeman, Van Zyl, Yamaguchi, Cloude-Pottier, and Shannon entropy. The 

Shannon entropy proved to be the parameter most sensitive to the temporal variability of the 

marsh flooded areas. The temporal coefficient of variation showed the most pronounced 

contrast between the marsh flooded areas and the surrounding areas, and a segmentation to 
extract the water table was applied on the Shannon entropy results. Water extraction was 

reported to be very successful for water-saturated areas with no vegetation, but there were 

underestimations for vegetated areas in the summer.  

The regular acquisitions and short repeat frequency of the C-band sensor onboard Sentinel-1 

makes it predestinated for temporal analysis. Sentinel-1 operates in VV-VH which is not the 

favored polarization combination for wetland applications (e.g., due to less canopy 

penetration and fewer sensitivity to the flooding status of vegetation than HH, and due to 

larger sensitivity to wind influence than HH, for more details and references see section 2.3.1). 

First studies using time series of dual-polarized (VV-VH) data from Sentinel-1 have been used 

for short-term wetland analysis, over the duration of one or maximum two seasons. Further 
studies followed using time series analysis of Sentinel-1, a lot of them applications related to 

flood detection and monitoring (Martinis et al., 2018, Tsyganskaya et al., 2019), but also for 

water body or wetland detection, classification and monitoring (Muro et al., 2016, Cazals et al., 

2016, Xing et al., 2018, Tian et al., 2017, Tsyganskaya et al., 2018a). Some studies applied 

Sentinel-1 time series in combination with other SAR data such as from TSX (Mleczko and 

Mróz, 2018), or merged with optical data such as from Landsat (Kaplan and Avdan, 2018a). 

Given that full seasons of both Sentinel-1 and optical Sentinel-2 time series are being available 

now, some  studies already targeted 1–2 years of combined analysis using Sentinel-1 and 

Sentinel-2 (Hird et al., 2017, Kaplan and Avdan, 2018b, Mahdianpari et al., 2019, Slagter et al., 

2020, Niculescu et al., 2020, CLMS, 2020b, Mahdianpari et al., 2020), see sections 

2.2.3.1 and 2.4.2. One representative and recent example of a first attempt of successful use of 

Sentinel-1 for temporal analysis of a large area of wetlands is presented by Mahdianpari et al. 

(2020), who exploited the temporal density of the Sentinel-1 and -2 time series paired with 

large spatial coverage thanks to freely available data. They used in total 13,519 Sentinel-1 

images extracted with Google Earth Engine, over the whole Canada and for the period June to 
August in three consecutive years: 2016, 2017 and 2018. As for most studies, VV-VH imagery 

was used, however, for the northern parts of Canada also HH-HV imagery is available that are 

collected over sea ice zones as to the Sentinel-1 acquisition strategy. Backscattering 

coefficients of all four bands, the span and a ratio were applied in terms of extracted features, 

and stacked into seasonal composites. Together with spectral bands and the NDVI derived 

from Sentinel-2 time series, an OBIA-based methodology was applied and the classification 

was performed with the RF algorithm, resulting in five wetland classes (bog, fen, marsh, 

swamp, water) and five further LC classes for the whole Canada. For further recently published 
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studies using dense Sentinel-1 and -2 time series see, e.g., Slagter et al. (2020), Niculescu et al. 

(2020) in section 2.4.2. In summary, studies related to the exploitation of the normalized 

Kennaugh elements as well as capabilities of dual-pol SAR have been described, as well as 

studies focusing on dense time series. Besides initial work on Sentinel-1 time series, no study 

takes into account such dense time series as presented in this thesis (see Chapters 6, 7 and 8). 
Due to all applications and advantages presented, SAR represents an optimal sensor type for 

regular monitoring of water bodies and wetlands with remote sensing.  

2.3.3.3 Applications Focusing on Alternative SAR Techniques 

Alternative SAR techniques that have been applied for wetland mapping are for example based 

on (i) interferometric SAR coherence for detection and classification, (ii) SAR interferometry 

for water level measurements and (iii) soil moisture retrieval from SAR backscatter. This goes 

beyond the frame of this thesis; however, a short overview is presented in the following 

paragraphs, referring to further reading.  

INTERFEROMETRIC SAR COHERENCE 

Interferometric SAR Coherence is a step of interferometric SAR (InSAR) processing, but can as 

such be relevant for classification or change detection. Coherence is a measure of stability of 

the phase relation between waves in a beam of electromagnetic (EM) radiation (ESA, 2013). 

High coherence therefore signalizes that the phase of the received signal has been preserved 

between a pair of two satellite images, and that the signal is highly correlated. There are not 

many studies related to classification or monitoring of wetlands using interferometric SAR 

coherence data. Brisco et al. (2017) has recently exploited coherence information from 

RADARSAT-2 spotlight data (2011–2013) for monitoring seasonal change in an area of a large 

number of small wetlands in eastern Canada. Based on the assumption that InSAR coherence 

change detection (CCD) might be applied to wetland monitoring applications, the main 

findings of the study are that (i) open water areas (without emergent vegetation) are not 

subject to coherence applicable for CCD or InSAR water level estimation; (ii) most swamps 

and marshes (provided they are ice/snow-free) maintain coherence between RADARSAT-2 

overpasses (24-day repeat cycle); (iii) the highest coherence was retrieved for wetlands with 

tree cover, followed by shrub covered wetlands (high coherence and intermediate variability of 
coherence) and wetlands with herbaceous cover (high coherence but high variability of 

coherence). Coherence information has been visualized as colour image product derived from 

temporal metrics throughout a time-stack: mean coherence, standard deviation of coherence, 

standard deviation of intensity, and an IHS transformation based on mean intensity was 

performed as backdrop. Coherence measurements were also added to SAR backscatter 

measurements in further recent wetland studies by, e.g., Niculescu et al. (2020) who described 

that backscatter measurements were favored due to being measured at a single date and not as 
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a compound of an image pair, and since features could be better distinguished with 

backscatter than coherence data. Increases in coherence were mainly attributed to cutting 

events of reed or disappearing wetland vegetation exhibiting the underlying soil. Another 

study by Mohammadimanesh et al. (2018a) applied multi-temporal, -frequency and -polarized 

measurements from TerraSAR-X (X-band), Radarsat-2 (C-band) and ALOS PALSAR-1 
(L-band). The coherence was highest in L-band, whereas for X- and C-band coherence values 

were from low to intermediate. It was stated that the type of wetland class and the temporal 

baseline between the acquisition pairs plays a role as well.  

SAR INTERFEROMETRY FOR WATER LEVEL MEASUREMENTS.

Water level changes in wetlands have been derived from interferometric SAR in the Amazon 

floodplain (Alsdorf et al., 2000, Alsdorf et al., 2001), coastal wetlands in Louisiana (Lu and 

Kwoun, 2008), Louisiana and Florida wetlands (Kim et al., 2005), in the Everglades 

(Wdowinski et al., 2008, Hong et al., 2010), the Yellow River Delta (Chou et al., 2010, Chou et 

al., 2013), and the Liaohe river estuary in China (Zhang et al., 2016). Further studies have been 

reviewed by Mohammadimanesh et al. (2018b).  

Chou et al. (2013) investigated water level changes using InSAR in wetlands using 

HH-polarized L-band SAR from ALOS PALSAR. Clear interferometric phases could be 

obtained for different kinds of coastal wetlands, during leaf-on as well as leaf-off conditions. 

Changes in water levels could be detected for coastal wetlands with centimeter precision 

(Chou et al., 2013). It was previously concluded by Wdowinski et al. (2004) that HH 

polarization L-band SAR data with relatively small incidence angles are preferred for water 

level measurements in wetlands. Longer wavelength L-band SAR enables a higher penetration 

through vegetation and HH is more sensitive to the double-bounce effect (Chou et al., 2010, 

Chou et al., 2013). C-band HH polarized RADARSAT-2 InSAR data with a 24-day repeat cycle 

has been concluded to also be successful for detecting water level changes (Hong et al., 2010, 

Chou et al., 2010). Shorter wavelength X-band pulses are assumed to interact mostly with the 

upper vegetation canopy via volume scattering. The upper canopy is often affected by wind 
and therefore rapidly loses coherence (Hong et al., 2010). The study by Hong et al. (2010) in 

the Everglades, however, demonstrates the successful application of X-band InSAR from TSX 

with an 11-day repeat cycle for monitoring water level changes, and desribes that volume 

scattering might not play such a dominant role as previously assumed.  

SOIL MOISTURE FROM SAR BACKSCATTER

Soil moisture retrieval can be of value for wetland research. Since the 1970s radar has been 

investigated to measure surface soil moisture, thanks to the increase in the dielectric constant 

with the amount of water in soil (Brisco et al., 2008). Data from SAR sensors have, among 

other remote sensing sensors – such as radar scatterometers or passive microwave sensors – 
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also been used for surface soil moisture estimation. One recent study derived soil moisture 

from ASAR Global Monitoring (GM) mode over Africa on a medium resolution scale (around 

1 km) (Dostálová et al., 2014). Further studies focused on Sahelian areas using ASAR data 

(Baup et al., 2007, Zribi et al., 2007). Surface soil moisture derivation from high resolution 

Sentinel-1 data has been evaluated in recent studies (Gao et al., 2017, Bauer-Marschallinger et 
al., 2018a, Dabrowska-Zielinska et al., 2018) and has been taken into account for the processing 

chain for the recently produced Copernicus High Resolution Layer (HRL) on Water and 

Wetness (Ramminger et al., 2017, Riffler et al., 2017, CLMS, 2020b). Such a product in this high 

resolution was derived for the first time over the European continent.  

2.4 Alternative and Combined Remote Sensing Applications 

This section provides a short introduction to alternative remote sensing applications for 

wetland studies, such as from data derived from LiDAR, Radar altimetry, scatterometer-

derived soil moisture estimates, passive microwave radiometry, gravitational measurements or 

GNSS-R measurements (section 2.4.1) and provides a summary of selected wetland studies 

applying sensor synergies or fusions (section 2.4.2).  

2.4.1 Alternative Remote Sensing Applications 

Though being out of scope for this work, promising applications using further alternative 

remote sensors that have been applied for wetland studies are mentioned in this section, for 

completeness. Since a deeper discussion would go beyond the scope of this thesis it is 

referenced to further reading.  

HYPERSPECTRAL IMAGING 

Hyperspectral sensors are retrieved by imaging spectrometers of a large amount of spectrally 

narrow bands, that are mostly mounted on airborne platforms and therefore focus on specific 

case studies. Within wetland sciences hyperspectral data have been widely applied, in 

particular to study the vegetation of a wetland. Many studies were reviewed by Adam et al. 

(2010) and Hirano et al. (2003). Most studies target coastal wetlands, and some examples that 

were used for wetland studies particularly focused on terrestrial wetland vegetation are: One 
study targeted a spectral library for a semi-arid La Mancha Alta wetland area in Spain using 

DAIS 7915 (Schmid et al., 2004). Building spectral libraries for wetlands in California using 

PROBE-1 was the target by Zomer et al. (2009). A study on hyperspectral and LiDAR data for 

vegetation mapping in the Everglades in Florida, USA was carried out with Hyperion data 

(Zhang, 2014). One study targeted lake shore reed vegetation and used a combination of 

hyperspectral airborne imagery with other ground-based data at Lake Balaton, Hungary 

(Stratoulias et al., 2014).  
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LIDAR 

Light Detection and Ranging (LiDAR) applications have been used in the context of wetlands, 

often combined with other sensors. Airborne LiDAR instruments have been commonly used, 

which enable topographic measurements of designated areas with high precision. Some 

examples of airborne LiDAR usage for wetland studies focus on wetland vegetation canopy 

height, where pulses between the first return (canopy) and last return (soil) are measured. 

Niculescu et al. (2016) combined airborne single-date LiDAR, RADARSAT-2, and optical 
SPOT-5 data to classify vegetation classes in the Danube delta. Montgomery et al. (2019) 

combined a dense time series of RADARSAT-2 data with one optical SPOT-6 image and two 

coverages od LiDAR data out of which they derived canopy height models, for boreal wetland 

ecosystem monitoring. Dawson et al. (2016) evaluated the restoration of floodplain wetland 

vegetation based on Landsat fractional cover over three time periods supported by LiDAR-

derived canopy height models of two time periods, the latter aiming for measuring the change 

of canopy height between these two time periods. Gilmore et al. (2008) classified common 

plant communities in a marsh wetland applying an object-oriented classification 

methodology, using single-date LiDAR canopy height data and optical VHR QuickBird data. 

Owers et al. (2016) focused on wetland vegetation, particularly mangrove and saltmarsh, for 

which they combined LiDAR data with aerial imagery using an object-based approach. 

A totally different application was presented by Huang et al. (2014) who developed an 

approach for mapping wetland inundation change from a combination of optical Landsat and 

LiDAR intensity data. LiDAR data from two years at maximum inundation conditions was 

used to derive subpixel inundation percentages within a Landsat pixel.  

There are only a few space-borne sensors which operate as surface elevation LiDARs. The most 

known representative of a spaceborne surface elevation LiDAR is the Geoscience Laser 

Altimeter System (GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat), launched 

in 2003. GLAS is measuring at regularly separated and large (e.g. about 70 m for GLAS) 

footprints which does not allow the coverage of whole wetlands. Two new sensors were 

recently launched: ICESat-2 was launched in 2018, carrying the Advanced Topographic Laser 

Altimeter System (ATLAS) instrument. The Global Ecosystem Dynamics Investigation (GEDI) 

LiDAR flew on the International Space Station (ISS) in 2019, and has the topographic mapping 

of tropical and temperate forests as goal. There are not many designated wetland studies 

published using Spaceborne LiDAR systems. Related applications target for example water 

level measurements, out of which two recent studies focus on global distribution water level 

measurements for reservoir water storage/lake water volume derivation (Ryan et al., 2020, Xu 

et al., 2020). Further applications are related to wetland terrain elevation/topography 

(Betbeder et al., 2014a, Ballhorn et al., 2011), vertical vegetation distribution/canopy height 

(Betbeder et al., 2014a), biomass estimates of wetland vegetation (Ballhorn et al., 2011) and 

mangrove height and biomass for coastal wetlands (Fatoyinbo and Simard, 2013), all of the 
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above using ICESat GLAS data. Related to water bodies the measurement of water bathymetry 

is among the promising applications of the new ICESat-2 ATLAS instrument (Li et al., 2019). 

Alternative to space-based water level measurements are often ground-based gauging stations. 

There are local gauging stations at some lakes in Burkina Faso (see section 1.1.3.3).  

RADAR ALTIMETRY

Radar altimetry is another remote sensing technique, originally developed to accurately 

measure sea surface height, which is able to derive point-wise elevation measures in a sparse 

spatial distribution in terms of large footprints (e.g., hundreds of meters). This technique 

allows the derivation of elevation measurements. This implies that the monitoring of wetlands 

at high spatial resolution or for deriving the wetland extent is not the target. Radar altimetry 

can, however, play a role for water level measurements in lakes, wetlands and rivers which is 

one of the most common applications over land (Frappart et al., 2020). In that context, one 

early work included data from the NASA radar altimeter on Topex/Poseidon data for global 

monitoring of height variations over inland waters, large wetlands and rivers (Birkett, 1998). 

Inundated wetland dynamics over boreal regions were evaluated using Topex/Poseidon data 

(Papa et al., 2006). Lately, one study of relevance to this thesis has been carried out in West 

Africa using three radar altimeter instruments: SARAL, ENVISAT RA-2 and Jason-2, showing 
the possibility of radar altimetry to measure water level below vegetation canopy in West 

Africa (Frappart et al., 2015). Further authors performed studies using ENVISAT RA-2 on water 

level change for the Panantal wetland in Brazil (Dettmering et al., 2016) or seasonal 

variabilities in wetlands in Siberia (Zakharova et al., 2014). The United States Department of 

Agriculture (USDA) provides lake water level products called Global Reservoirs and Lakes 

Monitor (G-REALM). The altimetry satellites Topex/Poseidon, Jason-1, Jason-2/OSTM and 

Jason-3 are used to compute relative lake height variations with respect to a single fly-over 

date of the Jason-2/OSTM mission. One lake in Burkina Faso, Lake Bagré, is included in the 

near-real-time data collection with measurements since mid-2018. Along a profile line at the 

center part of the lake with 500 m width five altimetry measurements were taken (at approx. 

100 m distance). The measurements show height variations of around 6–8 m/year. Lake Bagré 

is an artificial lake and it’s water levels are regulated by a large gravity dam with an adjacent 

area of irrigated agriculture (see section 1.1.3.1 and Chapter 4). Future plans include the 

extension of G-REALM with ERS, SARAL and Sentinel-1A data (United States Department of 

Agriculture (USDA), 2018).  

Different applications applied not to wetlands but the Sahel region in general are for example 

studies that found that an increase of vegetation in the Sahel was related to a decrease in 

backscattering coefficients using Topex/Poseidon and ENVISAT RA-2 data (Fatras et al., 2012, 

Prigent et al., 2014). Fatras et al. (2012) also performed the retrieval of surface soil moisture for 

a Sahelian savannah region in Mali using ENVISAT RA-2. Generally, the retrieval of soil 
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moisture is much more common using scatterometer or SAR data. For future studies, the 

November 2020-launched Sentinel-6 Michael Freilich and the future swath-based SAR 

altimetry mission Surface Water Ocean Topography (SWOT) (eoPortal, 2020) are of interest. 

Likewise as for spaceborne LiDAR sensors, alternative to space-based water level 

measurements are often ground-based gauging stations. 

SCATTEROMETRY 

Soil moisture is another parameter of relevance for wetland studies. Besides SAR and 

sometimes optical data, alternative SAR remote sensing techniques based on scatterometer 

instruments are used for soil moisture retrieval. Scatterometers are low resolution radar 

instruments, and can therefore be of relevance for large-scale wetland monitoring 

applications. Scatterometers have been originally designed for the measurement of wind 

speed and direction at the sea surface. However, in the late 90s also the terrestrial application 

of soil moisture estimation was developed (Wagner et al., 1999). Scatterometer instruments 

are for example the SCAT instruments on board ERS-1 and ERS-2, and the Advanced 

Scatterometer (ASCAT) on board Meteorological Operational Satellites (MetOp) (Naeimi et 

al., 2009). Lately, scatterometer data is often used for soil moisture retrieval in 

conjunction with higher resolution SAR data (Bauer-Marschallinger et al., 2018b).  

PASSIVE MICROWAVE SENSORS

Another type of sensor used for the retrieval of soil moisture are passive microwave (PM) 

sensors which are instruments that passively collect low resolution brightness temperatures in 

the microwave range. This is in contrast to active microwave instruments such as 

scatterometers or SAR data. As for scatterometer data they might be of relevance for 

large-scale wetland applications. The following sensors have been used for soil moisture 

applications: the Special Sensor Microwave/Imager (SSM/I), and its successor Special 

Sensor Microwave Imager/Sounder (SSMIS), the Advanced Microwave Scanning 

Radiometer for Earth Observing System (AMSR-E) on Aqua (operating 2002–2011), 

Advanced Microwave Scanning Radiometer-2 (AMSR-2) on JAXA's GCOM-W1 spacecraft 

operating since 2012, ESA’s Soil Moisture and Ocean Salinity (SMOS) mission, and the 

new NASA mission Soil Moisture Active Passive (SMAP). A large amount of studies has 

been published applying or comparing soil moisture retrieval from these sensors (Paloscia 

et al., 2001, Njoku et al., 2003, Mecklenburg et al., 2016, Wigneron et al., 2017, Ma et al., 2019).  

GRAVIMETRY

Sensors measuring gravity have been used for assessing terrestrial/total water storage (TWS) 

or terrestrial/total water storage anomalies (TWSA) in wetlands. Mostly used were data from 

the Gravity Recovery and Climate Experiment (GRACE) satellites, often in combination with 

https://en.wikipedia.org/wiki/SSMIS
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other sensors. Some examples related to wetland studies and combination of GRACE with 

other type of remote sensing analysis is e.g. the combination of GRACE and MODIS for the 

estimation of total water storage and detection of flood events over Tonlé Sap basin in 

Cambodia (Tangdamrongsub et al., 2016), or the combination of GRACE and Landsat arid 

wetland dynamics in a dryland river system (Xie et al., 2016b). A recent example of importance 
for global water mapping is the study on quantifying renewable groundwater stress with 

GRACE, done by Richey et al. (2015) who analyzed several aquifers of global distribution, many 

of them in Africa.  

GLOBAL NAVIGATION SATELLITE SYSTEMS REFLECTOMETRY

Global Navigation Satellite Systems Reflectometry (GNSS-R) signatures have been recently 

tested for wetland delineation. One study by Nghiem et al. (2017) used airborne measurements 

of the Catalonia flight campaign over the Ebro River Delta in Spain, which is characterized by 

a dense rice canopy, as well as spaceborne measurements over the Mississippi River and 

adjacent watersheds, which is an area of a tall and dense forest. This study showed proof that 

inundated wetlands under diverse vegetation conditions can be captured, and concludes to 

the potential of GNSS-R as temporal dataset. On top of available GNSS measurement systems 

as described by Nghiem et al. (2017), the new Cyclone Global Navigation Satellite System 
(CYGNSS) mission from NASA is the first science-driven GNSS-R satellite mission and was 

very recently exploited by Rodriguez-Alvarez et al. (2019) to develop a classification 

methodology for inundated tropical wetlands in the Peruvian Amazon derived from GNSS-R 

measurements and ancillary data, and by Morris et al. (2019) for inundation mapping in the 

Everglades wetlands in Florida.  

2.4.2 Examples of Sensor Fusion Applications 

Since there are advantages and limitations for all sensors, related to spatial resolution and 

areal coverage, radiometric capabilities, temporal repeat frequency, available of historical data 

into the past, data costs etc. (see section 1.1.2.1) different remote sensing sensors are often 

combined to complement each other, or to add relevant information from another type of 

sensor.  

Generally speaking, SAR sensors are favored for characterizing wetland vegetation 

morphology, moisture or flooding below canopy, whereas optical sensors have the general 

advantage of improved spectral characterization of vegetation and soil (Koch et al., 2012). 

Wetland studies based on optical remote sensing sensors often use either high or medium 
resolution data or a multi-scale combination of them (see section 2.2.3), and SAR-based 

studies often solely focus on SAR data (see section 2.3.3). There is a recently growing amount 

of studies that use a combination of optical and SAR imagery. In the past optical data such as 

from Landsat, RapidEye, SPOT or AVIRIS were combined with SAR data from RADARSAT-1 
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and -2, TerraSAR-X, JERS or ALOS PALSAR, mostly for dedicated case studies (Bourgeau-

Chavez et al., 2009, Gallant et al., 2014, Hong et al., 2015, Koch et al., 2012, Niculescu et al., 

2016). Very recently the combination of Sentinel-1 and -2 data became feasible and was 

exploited in recent studies (Hird et al., 2017, Kaplan and Avdan, 2018b, Mahdianpari et al., 

2019, Slagter et al., 2020, Niculescu et al., 2020, CLMS, 2020b, Mahdianpari et al., 2020). S1 plus 
S2 time series allow also larger-scale applications thanks to the similar spatial and temporal 

scales, as well as the continuous operation and free availability of the Sentinel data.  

To present some examples, an earlier work combining optical and SAR data for classifying 

various wetland classes in five study sites at the great lakes and a boreal wetland in Canada 

was carried out by Bourgeau-Chavez et al. (2009). They applied a combination of traditional 

optical/infrared Landsat methods with multiple SAR amplitude data from JERS, ERS-1 and 

RADARSAT-1. One image was chosen for three seasons per year (spring, summer and fall). The 

study describes how different classes were classified with combinations of only optical, only 

SAR or a combination of both sensors. They emphasize on the importance of multitemporal 

acquisitions and the timing of the acquisitions, especially with respect to the JERS images that 
are capable of mapping flooding below vegetation. Gallant et al. (2014) used as a main dataset 

quad-pol RADARSAT-2 data, complemented by Landsat data for their studies in a natural park 

in Minnesota, USA, and reported that optical NIR bands from Landsat helped to reduce 

confusion of wetland features with upland grasslands, which were wrongly included into water 

maps using SAR. Open water maps were improved by post-classification filtering using NIR 

data from a timely close overpass of Landsat. Classification results could be increased by 

including Landsat imagery to filter noise. Moreover, the historical Landsat archive data aided 

to develop moist/dry landscape filters, which helped to define areas of wetland occurrence. 

Hong et al. (2015) combined a single-date quad-pol TSX image with an optical RapidEye image 

of the Everglades, Florida, USA, and performed segmentation and supervised classification 

onto different scenarios of band combinations from the two datasets, concluding to RapidEye 

yielding highest classification results, followed by polarimetric SAR imagery only, and with 

distance the optical-SAR combination performed worst. An underestimation of mangrove 

forests along the tidal canals was reported for RapidEye data, where polarimetric SAR data 

performed better. Moreover, a time series of Landsat imagery helped to assess the status of 
recent vegetation conditions for this study.  

With some years of Sentinel data existence from both optical (Sentinel-2) and SAR (Sentinel-1) 

sensors there is a steep increase of studies applying optical/SAR sensor combinations, some of 

them were already mentioned in sections 2.2.3.1 and 2.3.3.2. Exploitation of sensor fusion is 

practical due to the similar spatial and temporal scales, as well as the continuous operation 

and free availability of the Sentinel data. Single-date optical Sentinel-2 in combination with 

SAR Sentinel-1 data were applied for wetland studies in Turkey (Kaplan and Avdan, 2018b) and 

South Africa (Whyte et al., 2018). Several recent studies focused on combined time series data 



CHAPTER 2  –  STATE OF THE ART 

92 | P a g e

from Sentinel-2 and Sentinel-1 (Hird et al., 2017, Kaplan and Avdan, 2018b, Mahdianpari et al., 

2019, Slagter et al., 2020, Niculescu et al., 2020, CLMS, 2020b, Mahdianpari et al., 2020). To 

point out a few examples, using a monotemporal approach, Whyte et al. (2018) came to similar 

conclusions as the authors stated below, using S1 and S2 dataset for classifying 15 LC/LU 

classes in the Greater St. Lucia Wetland Park, South Africa, using an OBIA method, RF and 

SVM. The combination of S1 and S2 yielded the highest results. It was concluded that S1 and S2 

synergies can be successfully used to classify LC/LU classes in a wetland environment, and in 

this study the topographically derived SAGA Wetness Index (SWI) was a valuable add-on. 

A recent work by Niculescu et al. (2020) applied a fusion of a time series from Sentinel-1, 

Sentinel-2 and optical Pleiades imagery from February 2016 until September 2017, to classify 

macrophytes in the Danube delta using RF. They applied combinations of different bands and 

indices. The dense time series allowed capturing the phonological cycle of wetland vegetation. 

It was noted that reed was well discriminable with all sensor combinations, which was not the 

case for other macrophyte communities. The highest accuracy was retrieved for a combination 

of S2 bands and indices with S1, the optical only S2 plus Pleiades combination yielded very 

high accuracies, and using S1 only resulted in the lowest accuracies. Slagter et al. (2020) 

performed RF classification on S1 and S2 time series for the St. Lucia wetlands in South Africa 

for different levels: wetland delineation, vegetation type mapping and water dynamics 

derivation. Classification accuracies were significantly higher when combining S1 and S2 data 

as compared to separate classifications. The highest errors occurred in regions of high 

vegetation, and sub-canopy flooding could not be detected with C-band SAR of S1. On the one 

hand, S2 was preferred to S1 for wetland delineation. Moreover, confusions were reported 

between permanent water and non-vegetated wetland, where S2 performed still better than S1. 

The authors concluded that minor differences between shallow water and e.g. a tidal flat seem 

to be better distinguishable spectrally with S2 than in terms of structure with S1. On the other 

hand, S1 outperformed S2 when classifying wetland vegetation types, where the structural 

information from SAR seemed to be valuable. For mapping surface water dynamics, both S1 

and S2-based analyses led to the same results (Slagter et al., 2020). Lastly, beyond scientific 

studies also the processing chain for the recently produced Copernicus HRL on Water 

and Wetness, starting with the reference layer 2015, incorporated ASAR and S1 SAR data 

in the processing chain together with various optical sensors, mainly Landsat (Ramminger 

et al., 2017, Riffler et al., 2017). Such a product in this high resolution was derived for the 

first time over the European continent. The next layer for the reference year 2018 includes 

also S2 time series (CLMS, 2020b).  

Many researchers combined airborne LiDAR data with optical and/or SAR imagery, adding the 

topographic information from LiDAR to derive wetland vegetation canopy height, which in 

some cases, has been used as an additional input source for wetland classification (Gilmore et 

al., 2008, Niculescu et al., 2016, Dawson et al., 2016, Owers et al., 2016, Montgomery et al., 
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2019). Another application combined optical Landsat and LiDAR data for wetland inundation 

change (Huang et al., 2014). Applications focusing on radar altimetry, spaceborne LiDAR 

altimetry, gravimetry or GNSS-R mostly focus on the estimation of water levels and storage 

volumes. As noted in the previous section 2.4.1, such sensors and methodologies are mostly 

applied in combination with optical or SAR remote sensing data, and aid the analysis of 
wetland detection, classification or monitoring, or bring in new information such as 

vegetation structure and vegetation canopy height, water level and water storage estimation, 

or soil moisture estimation. Scatterometry and passive MW remote sensing mostly target soil 

moisture estimation, which is also sometimes combined or compared with optical or SAR data 

in terms of soil moisture estimation or other types of information.  

2.5 Projects and Data Products for Water and Wetland 

Monitoring 

Global, continental and regional wetland initiatives, as mentioned in section 1.1.2.1, partially 

incorporate or coordinate with Earth observation-based projects. Data products from 19 global 

wetland area estimates from 15 literature sources which were generated from ground-based 

studies (bottom-up approach) or global mapping (top-down approach) or remote sensing 
(only a few of them) have been compared by Davidson et al. (2018) (see section 1.1.2.1). This 

section presents selected currently ongoing or recently completed dedicated Earth observation 

projects for water and wetland inventorying, assessment or monitoring based on case-studies 

on a global, continental or regional level, where Earth Observation data and methods as 

described in the previous sections have played a major role.  

PROJECTS TARGETING WETLAND CASE STUDIES WITH GLOBAL OR CONTINENTAL DISTRIBUTION 

Several projects target pilot wetland sites around the globe and in Africa. Three GlobWetland 

projects are/were funded by ESA: The GlobWetland I (GW-I) project (2003–2008) was carried 

out in support to Ramsar (Jones et al., 2009, MacKay et al., 2009). The analysis of EO 

capabilities to support inventorying, monitoring and assessment of wetland ecosystems in 52 

different wetlands on four continents concluded to EO technology being mature and a cost-

effective and productive tool for the Ramsar Convention (GlobWetland, 2016). A follow-up 

GlobWetland II (GW-II) project (2010–2015), aimed to map around 200 Mediterranean 

wetlands in the Middle East and Northern Africa on a high-resolution scale. Landsat archive 

data from three points in time were used: 1975, 1990, and 2005 (Paganini et al., 2010, Weise et 

al., 2013, Weise et al., 2014, Reschke and Hüttich, 2014), with focus on multi-seasonal time-

series for these three years. The products of GlobWetland II are three wetland information 

maps: LC/LU maps including wetland typologies, LC/LU Change maps and Water Cycle 

Regime (WCR) maps; and wetland indicators categorized into four groups related to changes 
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in wetland area, changes in agriculture and urbanization, % of permanently/non-permanently 

flooded area, and status and trends of threats. For the analysis, a supervised, object-based 

classification approach from GW-I was developed further, adding Ramsar wetland types as 

additional level to classes of the CORINE Land Cover Classification System (CLC). For the 

processing of mapping products and indicators, the GlobWetland-II software Toolbox was 
developed. Some relevant conclusions from the project were that it is recommended to 

emphasize on multi-seasonal Landsat time series to derive products of a particular year, that 

local information is important in addition to EO, and that Landsat data is a good basis but the 

30 m spatial resolution is not sufficient for small areas, and can be restricted by cloud cover. 

Therefore, some test sites were mapped with, e.g., VHR data or simulated Sentinel-2 data, and 

SAR data was utilized to deduce the water cycle regime without the influence of cloud cover 

(Weise et al., 2016).  

The GlobWetland-Africa (GW-A) project (2015–2018) was initiated in November 2015, and 

focused on 61 pilot sites on the African continent (Paganini, 2013, GlobWetland-Africa, 2016). 

While Landsat data have been the basis for the precursor GlobWetland projects, GW-A makes 

use of ESA’s Sentinel-1 and -2 data, completed by other relevant contributing missions, e.g., 

ERS, ENVISAT, Landsat and ALOS (Tottrup et al., 2016b). An open-source toolbox covering 

the processing chain for calculating spatial and temporal indicators on wetland status and 

trends is developed. The products are: (i) wetland inventorying (delineation) which is applying 

a similar methodology as for the Copernicus HRL Water and Wetness (classification of 

permanent and temporary water or wet areas), (ii) habitat mapping (LC/LU classification with 

9 classes), (iii) water cycle regime monitoring using historical time series (permanent and 

seasonally inundated water bodies throughout the season and between different years), 

(iv) water quality parameter derivation, (v) river basin hydrology by observing water cycle 

regime components, and (vi) mangroves mapping (GlobWetland-Africa, 2016). It was recently 

reported that an extension to GW-A is planned, moving from pilot sites to full national 

wetland inventories of African countries which should aid to meet the monitoring 

requirements for the SDGs as well as obligations towards the Ramsar convention. The 

proposed approach is to extend the GW-A toolbox functionality into the cloud so that also 

users with low bandwidth or restricted technical knowledge could process the 

data online (GlobWetland-Africa, 2020). Lac Bam has been recently included as pilot site 

in the GW-A project. 

Another ESA initiative that addresses water and wetland related topics specifically in Africa is 

the TIGER Initiative, launched in 2002 through the Committee on Earth Observation Satellites 

(CEOS), to support the African Earth observation capacity for water resource monitoring, in 

close collaboration with African water authorities and experts. Within the idea of Earth 

observation contributing to Integrated Water Resources Management (IWRM) the aim of the 

project is to provide assistance to African countries for the access, analysis and use of water 
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related geo-information which involves the exploitation of EO technology and development 

of EO information services. Moreover, capacity building and training as well as the 

development of a knowledge and information network are part of the TIGER initiative 

(TIGER-Initiative, 2012). TIGER-NET (2012–2015) is part of the TIGER initiative, and supports 

the assessment and monitoring of water resources from watershed to cross-border basin level 

in Africa. The two project objectives are: (i) the development of an open-source software for 

monitoring, assessing and inventorying water resources in a cost-effective manner, called 

Water Observation and Information System (WOIS), and (ii) Capacity building and training of 

African water authorities and technical centers (Walli et al., 2013, TIGER-NET, 2015a). There 

are different satellite data-based products, among them a product entitled wetlands mapping 

which will produce (i) wetland delineation and water cycle regime, as well as permanent water 

bodies delineation based on Sentinel-1 and ASAR data, and (ii) dynamic mapping of open 

water bodies larger than 1 ha based on HR optical data, and temporal monitoring of seasonal 

and long-term changes in water extent using optical MR MERIS and MODIS data (TIGER-

NET, 2015b). These products, however, are more related to map the open water extent and do 

not specifically tackle vegetated waters or wetlands. Optical and SAR data are used for 

separate products.  

Another ESA initiative (2016–2019) in cooperation with International Financing Institutions 

(IFIs) is EO4SD – Earth Observation for Sustainable Development. EO4SD deals with the 

three major international development issues: urban development, agriculture and rural 

development as well as water resource management. The EO4SD project on water resource 

management provides EO services and products required to support IFI water resources 

projects at local to basin scales in response to stakeholder requirements, and performs 

capacity-building with local partners (Tottrup et al., 2016a, EOmag!, 2016). Out of many topics 

there is one on surface water monitoring which targets the identification of open water bodies 

and wetlands and their associated dynamics, their seasonal and long-term changes on water 

body extent, as well as water levels. The product applies optical (e.g. Sentinel -2 and -3, 

Landsat, MERIS, MODIS) and SAR imagery (e.g. Sentinel-1). Site pilot sites are located in: 

Africa (Sahel, Africa Horn and Zambezi), Asia (Myanmar and Laos) and Latin America (Bolivia 

and Peru) (EO4SD-Water, 2020). The product, however, focuses on open water rather than 
flooded vegetation or vegetated wetlands. 

The Japanese Space Agency (JAXA) has implemented the Kyoto & Carbon (K&C) Initiative in 

2001 which focuses on three thematic areas: Forest, Wetlands and Glaciers. The wetland 

theme includes global wetlands status and change. The whole project emphasizes the use 

of L-band SAR in terms of ALOS PALSAR and ALOS-2 PALSAR-2 (Rosenqvist et al., 2007, 

JAXA, 2020). The Global Mangrove Watch (GMW), initiated as part of the K&C Initiative 

in 2011, computed a global baseline map of the mangrove extent for the year 2010 

using ALOS PALSAR and Landsat data. JAXA’s JERS-1 SAR, ALOS PALSAR and ALOS-2
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PALSAR-2 serve to produce change information for seven epochs spanning over two decades, 

between 1996 and 2016. From 2018 onwards this is foreseen on an annual basis, and from 

2021 or later on it is also planned to include ALOS-4 PALSAR-3 data (JAXA, 2020).  

Satellite-based Wetland Observation Service (SWOS) is a recently completed (2015–2018) 

H2020 research project with participation of the University of Jena, amongst various major 

players in the field of wetland monitoring. Among the projects’ goals was to generate 

information on wetland ecosystems using freely available satellite data (such as Sentinel-1, -2, 

-3, Landsat, MODIS and MERIS). Long-term changes, building up on work performed in 

GW-II amongst others, as well as short term variations are targeted. A software toolbox called 

the GEOclassifier toolbox is developed for users. 48 wetland locations including also large 

lakes and river deltas have been chosen. They are mainly located in Europe where a number of 

coastal wetlands are included; a few sites are located on the Arabic peninsular and in Africa, 

but none in Burkina Faso. SWOS targets seven mapping products, among them surface water 

dynamics, wetland inventory and delineation, and a potential wetland layer. Moreover, 

the research includes nine indicators which are all of relevance to be investigated for 

wetlands, e.g., the wetland extent as well as open water extent, change in wetland area, 

change to agriculture & urbanization, wetland artificialization and degradation, or status of 

wetland threats. The SWOS/GEOwetlands Community Portal enables visualization of all 

case study wetlands including their products and indicators in a map viewer (SWOS, 2018).  

Two smaller wetland projects in cooperation with SWOS are thematically relevant and 

therefore mentioned here: (i) Wetland-Radar (2016–2018) is a research project, funded by the 

DLR within the joint C/X Band Initiative of the Canadian Space Agency (CSA) and DLR, and 

with the participation of the University of Jena. The research covers the integration of SAR 

data and methods into remote-sensing based observations of wetlands, and for the long-term 

conservation of wetlands. Data from the SAR sensors TerraSAR-X, RADARSAT-2 and Sentinel-
1 are applied, and the methodological focus us is on the study of the inclusion of high-

temporal SAR data time series for operational wetland monitoring. Two SWOS case studies 

(Lake Burullus, Egypt and Neusiedler See, Austria) were chosen. As part of the technical 

objectives the added value of the use of polarized imagery and the comparison of data from 

the three sensors as mentioned above is a topic. Not only open water (permanent water mask, 

single time step water mask, final water mask) but also vegetation as well as soil moisture is 

mapped (Weise, 2018). Research of this project covers the use of the Kennaugh elements 

computed at DLR according to the framework as used in this thesis (Schmitt et al., 2015). 

(ii) DeMo-Wetlands (2016–2019) – Copernicus-based Detection and Monitoring of tropical 

Wetlands – is a research project funded by the German Federal Ministry for Economic Affairs 

and Energy. The goal is to develop Copernicus data-based analysis for the efficient 

characterization of tropical wetlands, for which Rwanda serves as national demonstrator. 

Mainly Sentinel-2 time series on 10 m resolution from the year 2017 were used to compute the 
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following products for the whole of Ruanda, providing a baseline wetland inventory: wetland 

delineation; LC/LU classification with FAO’s Land Cover Classification System (LCCS) 

nomenclature for the non-wetland classes and Ramsar nomenclature for 8 wetland classes; 

and wetland use intensity (based on the magnitude of change in vegetation, indicating 

intensively and extensively used wetlands and semi-natural systems). Moreover, Sentinel-1 
data from 2014–2017 was used to compute surface water occurrence frequency. The technical 

focus was on automated processing, and the political focus on the cooperation of national 

institutions as well as with international initiatives and conventions (DeMo-Wetlands, 2018, 

GEO-Wetlands, 2020b). 

The Globolakes project (2012–2018) is a UK Natural Environment Research Council (NERC) 

funded research project that does not specifically target wetlands but aims to observe the state 

of lakes and the response to climate and other environmental drivers. It is specifically targeted 

towards lakes and reservoirs. Long-term satellite time series data from MERIS, MODIS, 

AATSR, and SeaWifs (going back to 1997) is used, with planned continuation using Sentinel-2 

and Sentinel-3 applying near-real time data processing. 991 lakes/reservoirs from around the 
world are observed (Globolakes, 2016). The African focus is on East Africa, there are only few 

sites in West Africa and none in Burkina Faso.  

Recently the Bluedot Water Observatory was launched and is available online. On this 

webpage, for more than 13.000 selected water bodies and wetland polygons of the water area 

derived from the NDWI, computed on Sentinel-2 imagery and post-processed with the Otsu 

method, can be viewed for each time step of available Sentinel-2 imagery. Moreover, a time 

series of the water surface area for each Sentinel-2 image between 2016 and 2021 is displayed 

on-the-fly (Bluedot-Observatory, 2018). One case study which is also study site for this thesis’ 

work is included in the Bluedot Observatory: The natural Lac Dem in Burkina Faso, showing 

a distinct seasonal curve, filling up the lake during the rainy season starting July/August, 

and drying out around June of the consecutive year.  

PRODUCTS TARGETING FULLY GLOBAL COVERAGE 

There is currently no dynamic remote sensing product of fully global or continental 

coverage focusing on wetlands. The first endeavor to provide a global surface water dataset 

– taking into account repeated or dynamic information rather than producing only a water/

non-water map – was the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. 

The data contain monthly global surface water extent at around 25 km low resolution from 

1993–2007. Three different sensors (AVHRR in the optical-NIR range, SSM/I as passive 

microwave, and the scatterometer onboard ERS as active microwave instrument) were used 

(Prigent et al., 2007). Using a downscaling approach the spatial resolution was increased to 

90 m as part of a new GIEMS-D3 product (Aires et al., 2017). Another dataset at 25 km low 

resolution is the SWAMPS dataset of fractional surface water deducted from data from the
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SSM/I and the SSMI/S (passive microwave) and ERS, QSCAT and ASCAT (active microwave) 

from 1992–2003 (Schroeder et al., 2015). A next milestone was presented by Pekel et al. (2014a), 

Pekel et al. (2016) who first focused on MR MODIS 250 m and then on HR Landsat 30 m data. 

The latter results in a dataset and that can be viewed and downloaded via the Global Surface 

Water Explorer, and the dynamic information is represented by water occurrence 1984–

2020, water occurrence change intensity, water seasonality, annual water recurrence, water 

transitions (e.g. from and to permanent, seasonal), and maximum water extent (JRC, 2020). 

Thereafter, the Global Water Pack, which is a 250 m product based on various MODIS 

reflectance data as well as available MODIS products, was presented and features open 

surface water/no water layers as well as the sum of annual days of open water. The product 

delivers permanent and seasonal water in terms of dynamic flooding regimes. Open water 

can be well captured, but the product underestimates or does not account for flooded 

or floating vegetation, or waters with high turbidity (Klein et al., 2015, Klein et al., 2017).  

The European Commission’s Copernicus Land Monitoring Service (CLMS) is one out of six 

core thematic areas (Land, Atmosphere, Marine, Climate Change, Emergency and Security) of 

the Copernicus Programme, headed by the European Commission (EC) in partnership with 

the ESA (CLMS, 2020c). The Copernicus Land global component does not have a topic on 

wetlands but on water bodies, which is the first global near-realtime water product 

presented as 10-day composites available three days after end of synthesis period. Water 

bodies detection maps are accompanied by a quality layer map. Current and previous 

products since 2014 are based on PROBA-V on a 300 m as well as >1 km spatial scale, an 

archive from 1999–2014 is available based on SPOT/VEGETATION at 1 km (Bertels et al., 

2016, CLMS, 2020a). Future ideas for expanding the Global Surface Water Dataset 

(Pekel et al., 2016) to a ~30 m Copernicus global component product have been voiced.  

There are several (near-)global static water mask products, derived from time series of optical 

HR or MR as well as SAR data, but with no dynamic information or temporal repetition of the 

product, and no classes for wetlands. For completeness the most important ones are 

summarized in the following: Already back in 2003 the SRTM Water Body Data set or SWBD 

was created as a side product of the production of the SRTM Digital Terrain Elevation Data 

Level 2 (DTED® 2) (USGS, 2003, Farr et al., 2007). In 2009 a 250 m water mask based on 

MODIS has been published, such a product is now available as MOD44W (Carroll et al., 

2009). The GLObal WAter BOdies database (GLOWABO) is based on pan-

sharpened Landsat-7 ETM+ data at 14.25 m resolution (Verpoorter et al., 2014). Within the 

Land Cover topic of the ESA Climate Change Initiative (CCI) a global water bodies data set 

was generated with mainly Envisat ASAR Wide Swath Mode data from 2005–2010, entitled 

SAR-WBI (Santoro et al., 2013, Santoro and Wegmuller, 2014). The High-Resolution 

Landcover CCI project will produce a 10 m static HRL and 30 m change information, 

including water bodies (ESA, 2020a). Global 3 arc-second Water Body Map (G3WBM) of
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about 90 m resolution was created from multitemporal Landsat imagery (Yamazaki 

et al., 2015), and a 30 m resolution inland water body dataset was produced from Landsat-

based surface reflectance estimates, multispectral water and vegetation indices, terrain 

metrics, and prior coarse-resolution water masks (Feng et al., 2016).  

PROJECTS AND PRODUCTS TARGETING CONTINENTAL COVERAGE 

As part of the pan-European continental component of Europe’s CLMS, the High 

Resolution Layers (HRLs) target multi-temporal land cover characteristics in a consistent 

manner for 39 European countries. The five thematic areas are: Imperviousness, Forest, 

Grassland, Water and Wetness, and Small Woody Features (CLMS, 2020b). The previous 

HRLs 2012 and 2015 are available as status layers and change layers in 20 meter spatial 

resolution, whereas the current 2018 reference layers provide continuation to the previous 

products but target the main products at 10 m resolution. As part of the 2012 production, a 

layer on permanent water bodies and a layer on wetlands were produced. These two layers 

were no longer continued and were replaced by a new hybrid sensor approach, combining 

SAR (Sentinel-1, ASAR) and optical (Sentinel-2, Landsat) data over a period of seven years 

to generate the 2015 HRL on Water and Wetness at 20 m resolution, followed-up by the 2018 

production on 10 m resolution using data from 10 years. This approach combines the 

strengths of optical data to detect open water and wetland vegetation with the ability of 

SAR data to detect information on the soil moisture content in addition. The result is a 

product with four thematic classes: permanent water, temporary water, permanent 

wetness and temporary wetness. Moreover, a water-wetness-probability-index (WWPI) is a 

percentage wetland occurrence product at 100 m resolution, deducted from the frequency 

of observations in the time series. As such, this is the first dataset with full coverage 

over Europe (EEA 39) taking into account not only open water bodies but information 

on permanent and temporary wetness (Langanke, 2013, Langanke et al., 2015, Langanke, 

2016, Ramminger et al., 2017, Riffler et al., 2017).  

The NASA JPL wetland project aims to build up a global-scale Earth System Data Record 

(ESDR) of inundated wetlands based on SAR imagery-derived wetland extent, open water 
classification, vegetation type and seasonal inundation dynamics at 100 m. The focus is on 

North America and the Amazonas region. Global monthly mapping of inundation extent is 

carried out at approximately 25 km resolution (JPL, 2020).  

The Diversity II Project (2002–2012) was an ESA DUE project, supporting the Convention on 

Biological Diversity, generated products related to Inland Waters and Drylands, using four 

instruments onboard ENVISAT: MERIS, AATSR, ASAR and RA-2. Around 300 lakes were 

observed regarding water area, water surface height, different water quality parameters and 

lake surface temperature (Brockmann-Consult-GmbH, 2015). These products, however, do not 

contain classes on wetlands.  
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The project WaPOR (Water Productivity Open-access Portal), funded by FAO, is not a project 

targeting wetlands but producing Africa-wide decadal, annual or monthly maps on various 

parameters related to biomass water productivity, evapotranspiration and interception, 

precipitation etc. Of interest for wetland classification are as well the yearly land cover 

classification maps (2009–present), featuring classes for permanent and temporary 

water bodies as well as irrigated agriculture and rain-fed agriculture, on a 250 m-scale 

(continental) as well as 100 m-scale (national, the northern part of Burkina Faso is 

included) (WaPOR-Portal, 2020).  

To summarize, there are a couple (partially follow-up) projects in place which led to a great 

advance in the remotely sensed mapping of wetlands, and which target diverse case studies 

around the globe. The challenge of dynamically mapping wetlands with full global coverage 

has not been addressed yet. As also reported by Davidson et al. (2018), high resolution 

mapping of all types of permanent and temporary wetlands still remains to be a big challenge, 

and there is a gap in diversification of wetland classes (Davidson and Finlayson, 2018).  

2.6 Data Used for the Studies in this Thesis 

The choice of datasets for this thesis’ work was based on their suitability for wetland (water 

and vegetation) detection as well as appropriateness for time series analysis and monitoring. 

This comprises: (i) spectral characteristics or frequency and polarization, for optical and SAR 

data respectively, (ii) spatial resolution/spatial sampling as well as spatial coverage, and most 

importantly (iii) temporal resolution, as well as (iv) availability of time series data, which 

includes both, archive data and newly acquired or tasked data; the latter considering the fact 
that high resolution data archives over the study region contain scarce or irregularly spaced 

data. An overview of the selected and used datasets is provided in Table 2:  

Table 2: Overview of the selected and used datasets for this thesis’ work. 

Main datasets 
for analysis: 

Auxiliary & reference 
datasets: 

Non-remote sensing 
data: 

- MODIS: MOD09 250 m 
and 500 m reflectance 
time series  

- TerraSAR-X dual-co-pol 
HH-VV StripMap time 
series  

- RADARSAT-2 dual-cross-
pol HH-HV Fine Beam 
time series 

- VHR (WorldView-2, 
GeoEye-1)  

- RapidEye  
- Landsat MSS, TM, ETM+, 

OLI  
- SRTM DEM 

- GPS (acquired during 
field work)  

- Photos (acquired during 
field work)  

- GPCC rainfall data 
products  

- Drought references  
- Water level and volume 

data 
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MEDIUM RESOLUTION OPTICAL DATA 

The first type of data selected are MR optical data from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instruments on board of the AQUA and TERRA 

satellites. MODIS data has been chosen due to: (i) a long existing archive and continuous 

operations since 2000 and still ongoing – which does not exist for any other MR sensor, 

and on top of that it covers drought periods in the 2000s; (ii) continuous acquisitions 

during time of this research (in line with field work and optical HR data acquisitions); (iii) 

high temporal repeat frequency (daily) of acquisitions, which was possible thanks to the 

MODIS instrument being mounted on two satellites; (iv) appropriate spectral bands that 

have proven adequate for water and vegetation monitoring, which is also meaningful in 

the light of transferability to other sensors; (v) availability of well documented and 

calibrated data and products; (vi) free online accessibility of the data; and last but not 

least (vii) continuity of MODIS provided through the VIIRS instrument already in orbit.  

VERY HIGH AND HIGH RESOLUTION OPTICAL DATA 

VHR optical data from WorldView-2 and GeoEye-1 as well as HR data from RapidEye and 

Landsat have been mainly used for reference purposes, training area collection and validation. 

RapidEye and VHR data – which were tasked and acquired specifically for the work of this 

thesis – were indispensable for multitemporal data sampling and validation, and Landsat 

provided information on, e.g., irrigated cultivation around wetlands back into the past. 
Wetland monitoring in Burkina Faso with HR data (e.g. Landsat or RapidEye) was not carried 

out in this work due to the lack of dense time series or large data gaps between some intervals 

of acquisitions in the study area. Table 3 describes the sensor characteristics of all optical 

remote sensing datasets that have been used for this thesis.  
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Table 3: Sensor characteristics of the main optical dataset from MODIS, and the reference datasets from 
Landsat, RapidEye, WorldView-2 and GeoEye-1 (NASA, 2018, USGS, 2018, eoPortal, 2020).  

MODIS Landsat TM/ETM+ RapidEye WorldView-2 GeoEye-1 

Spectral Bands 

250 m:  
620–670 nm (red) 
841–876 nm (NIR) 

500 m:  
459–479 nm (blue) 

545–565 nm (green) 
1.23–1.25 µm (SWIR) 
1.53–1.65 µm (SWIR) 
2.11–2.16 µm (SWIR) 

450–520 nm (blue) 
520–600 nm (green) 

630–690 nm (red) 
760–900 nm (NIR) 

1.55–1.75 µm (SWIR) 
10.40–12.50 µm (TIR) 
2.08–2.35 µm (SWIR) 

440–510 nm (blue)  
520–590 nm (green)  

630–685 nm (red)  
690–730 nm 

(redEdge)  
760–850 nm (NIR) 

442–515 nm (blue)  
506–586 nm 

(green)  
624–694 nm (red)  
765–901 nm (NIR) 

450–510 nm (blue)  
510–580 nm (green)  

655–690 nm (red)  
780–920 nm (NIR) 

Dynamic range 12 bits/pixel 8 bits/pixel 12 bits/pixel 11 bits/pixel 11 bits/pixel 

Resolution 250 m / 500 m ~27 m 6.5 m (ms) 
2 m (ms),  

0.5 m (pan) 
2 m (ms),  

0.5 m (pan) 
Pixel spacing / 

Spatial 
resolution 

250 m / 500 m 30 m 
5 m  

(resampled) 
0.5 m 

(pansharpened) 
0.5 m 

(pansharpened) 

Repeat 
frequency 

8-day product (1–2 d 
repeat frequency) 

Selected scenes over 
the study area in 

irregular time steps 

2–7 time steps of 7 
AOIs (irregularly  

tasked) 

3 acquisitions  
of AOI Lac Bam 

1 acquisition  
of AOI Lac Bam 

Off-nadir angle 0° 0° 
2.5°–21.2° (different 

acquisitions) 
22.0° 39.2° 

Swath width 2230 km 185 km 77 km 16.4 km 15.2 km 

Pass direction Descending Descending Descending Descending Descending 

Product level 
MOD09 

L3 
1G, 1T 

1B  
(basic) 

1B  
(ortho-ready 

standard) 

1B  
(ortho-ready 

standard) 

SAR DATA 

The second type of data selected for this thesis’ work are HR dual-polarized SAR data from the 

X-band SAR sensors onboard the TerraSAR-X and TanDEM-X satellites – both abbreviated as 

TSX – and from the C-band SAR sensor onboard RADARSAT-2 (RS-2). For both, TSX and RS-2, 
time series of regular intervals could be tasked and newly acquired specifically for the work 

conducted in this PhD thesis via successful scientific proposals.  

For this thesis dual-co-polarized (HH-VV) TSX data were chosen due to a number of reasons: 

(i) for wetland studies HH-VV polarization has been successfully used (Schmitt et al., 2011, 

Schmitt and Brisco, 2013, Schmitt et al., 2014, White et al., 2015); (ii) the difference between 

HH and VV backscatter aids to detect flooded vegetation: the backscatter intensity is higher in 

HH than in VV, in contrast to land areas where HH and VV intensity are similar (Moser et al., 

2016b); (iii) two scattering mechanisms are physically interpretable and separable when 

processed into Kennaugh elements, in terms of distinguishing between single- and double-

bounce scattering mechanisms using dual-co-pol data (HH-VV). In contrast, for dual-cross-
pol data (HH-HV or VV-VH) Kennaugh elements can be computed but no physical 

interpretation of single- or double-bounce scattering is possible (Schmitt et al., 2015). 
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Separating single- from double-bounce scattering is of great value considering that the 

double-bounce effect is stronger in flooded vegetation than it is on water or land (incl. 

vegetation on land). This can been concluded from own studies (Moser et al., 2016b, Moser et 

al., 2016a) as well as from previous work as well (Brisco et al., 2011b, Schmitt and Brisco, 2013); 

(iv) phase information in addition to intensity-based information is only provided for dual-co-

pol data, as opposed to dual-cross-pol data. As explained in Chapters 6 and 7, three significant 

Kennaugh element outputs can be obtained from dual-co-pol data, in contrast to only two 

meaningful outputs from dual-cross-pol data); (v) short wavelengths have been reported to be 

favored for mapping herbaceous vegetation which is mainly present in the study site, in long 

wavelengths such as L-band herbaceous vegetation is partially transparent. This has 

been confirmed in previous studies (Brisco et al., 2009, Evans and Costa, 2013, Mahdianpari 

et al., 2017b).  

RADARSAT-2 features quad-polarized and dual-cross-polarized modes. Two time series of 

C-band dual-cross-polarized (HH-HV) RS-2 data were tasked for the season 2013–2014 via an 

ESA Third Party Missions (TPM) proposal, and were acquired in two different orbits/different 

geometry conditions (incidence angles). These data are valuable to investigate (i) to what 

extent the approach developed for TSX is transferable onto other sensors operating in 

different SAR wavelengths (i.e., C-band) and polarizations (i.e., dual-cross-pol) – 

despite no physical interpretation of single- or double-bounce scattering is possible; (ii) 

to test the added value of the synergy of X-band and C-band dual-polarized SAR for 

classification; and (iii) to conclude to the applicability onto Sentinel-1 as novel European 

SAR satellite with dual-cross-pol capabilities. ESA’s first priority being Europe and second 

priority Africa, Sentinel-1A VV-VH acquisitions of the Lac Bam site were initiated in June 

2015 and became systematic (12 day intervals) in October 2016. Due to this period being 

after the acquisitions of TSX, RS-2, optical reference data and in-situ data, Sentinel-1 data 

were not considered anymore in this study. In the future more and more data will become 

freely available. Table 4 describes the sensor characteristics of the SAR remote sensing 

datasets that have been used for this thesis’ work.  



CHAPTER 2  –  STATE OF THE ART 

104 | P a g e

Table 4: SAR data used for this thesis: TerraSAR-X dual-co-pol HH-VV StripMap time series; 
RADARSAT-2 dual-cross-pol HH-HV Fine Beam data in (a) ascending and (b) descending pass (MDA, 

2016). 

TerraSAR-X RADARSAT-2 
Wavelength 3.1 cm 5.5 cm 

Mode StripMap Fine Beam 

Polarization HH-VV (dual-co-pol) HH-HV (dual-cross-pol) 

Frequency X-band (9.6 GHz) C-band (5.405 GHz) 

Resolution 6.60 m (azimuth), 2.49 m (range) 
(a) 7.7 m (azimuth), 9.3–8.3 m (range) 
(b) 7.7 m (azimuth), 8.7–8.0 m (range) 

Pixel spacing 5 m (resampled) 5 m (resampled) 
Repeat 

Frequency 
11 days 

24 days (combined time series of (a)+(b):  
intervals of 11 days & 13 days 

Inc. angle 27.4°–28.9° 
(a) 34°–39° (F21) 
(b) 36°–40° (F1) 

Swath width 15 km 50 km 

Pass direction ascending, right-looking 
(a) ascending, right looking  

(b) descending, right looking 

Product level 
1B  

single Look Slant Range Complex (SSC) 
1B  

single Look Complex (SLC) 

ANCILLARY DATA 

GPS measurements and digital photos were taken to perform ground truthing of the results 

deducted from satellite data. Photos with GPS coordinates were used for training and 

validation sample generation for the classification. Therefore, hundreds of photos with 

associated GPS coordinates were taken with a digital camera. Accordingly, GPS measurements 

were taken at the photo points. During the field campaigns in 2013 and 2015 different transects 

crossing Lac Bam and Lac Dem were defined, and photos and GPS measurements were taken 

when crossing them by boat. Moreover, water depths were measured at Lac Bam using a 

meter-rope as well as using a sechi disc.  

Further ancillary data have been acquired to tackle the research objective related to the 

connection of wetland parameters with droughts and water stress events. Data related to 

water monitoring: water levels and water volume of major water bodies, as well as locations of 

water wells in Burkina Faso (DGRE, 2013) was acquired during field work from the Direction 

Générale des Ressources en Eau (DGRE). Data related to drought occurrence and food security 

issues was collected from different sources, e.g. FEWS NET (FEWS NET, 2019) or the African 

Flood and Drought Monitor (Sheffield et al., 2014). During the field survey from October to 

November 2013 interviews with the local population and representatives from local 

institutions were carried out. These were expert talks covering topics such as the occurrence 

and timing of drought periods as well as increased or reduced water levels and/or water areas 

in the local context.  
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Gridded data on precipitation amounts were derived from the Global Precipitation 

Climatology Centre (GPCC) which is operated by the German Meteorological Service: 

Deutscher Wetterdienst (DWD). Global analysis of precipitation is provided for the aim of 

conducting research to monitor the Earth’s climate. As such the centre contributes to the 

World Climate Research Programme (WCRP) and to the Global Climate Observing System 
(GCOS) (Deutscher Wetterdienst, 2019).  

Various Geographic Information System (GIS) data of Burkina Faso could be retrieved thanks 

to the collaboration with the WASCAL center. Customized water-network maps as well as old 

topographic maps (e.g. before dam construction of major water bodies under study, such as 

Barrage du Bagré) were bought from the Institut Géographique du Burkina (IGB).  

The footprints and swath width of the applied remote sensing data are visualized in Figure 21: 

Figure 21: Footprints and swath width (in brackets in the legend) of remote sensing data used in this 
study draped over boundaries of Burkina Faso: MODIS tile (orange); Landsat 5 (yellow); RapidEye 

(green); TSX ScanSAR (lights blue); TSX StripMap over Lac Bam (dark blue); and RS-2 Fine Beam at 
ascending and descending orbit (purple).  
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Abstract—Surface water is a critical resource in semi-arid 

West-African regions that are frequently exposed to droughts. 
Natural and artificial wetlands are of high importance for 
different livelihoods, particularly during the dry season, from 
October/November until May. However, wetlands largely go 
unmonitored. In this work remote sensing is used to monitor 
wetlands in semi-arid Burkina Faso over large areal extents 
along a gradient of different rainfall and land use characteristics. 
Time series of data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) from 2000 to 2012 are used for 
near-infrared (NIR) based water monitoring using a 
latitudinal threshold gradient approach. The occurrence of 
21 new water bodies with a size larger than 0.5 km² over the 
13-year analysis period results from a post-classification change 
detection. Yearly cumulative spatio-temporal analysis shows lower 
water extents in the drought seasons of 2000-01, 2004-05 and 
2011-12. Multiple wetlands indicate a positive trend towards 
a larger yearly maximum area, but a negative trend towards 
shorter flooding duration. Such a negative trend is observed 
particularly for natural wetlands. The temporal behavior of 
five selected case studies demonstrates that monthly negative 
anomalies of water covered areas coincide with the occurrence 
of drought seasons. The successful application of remote sensing 
time series as a tool to monitor wetlands in semi-arid regions is 
presented, and the potential of novel early warning indicators 
of drought from remote sensing is demonstrated.  

Index Terms—Burkina Faso, drought indicators, MODIS, 
monitoring, Sahel, surface water, time series, wetlands 
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I. INTRODUCTION

HE West African Sahel belt was subjected to devastating 
droughts between the years 1910-1916, 1941-1945, and 

particularly devastating droughts in the mid-1970s and mid-
1980s leading to food crises. These drought periods are 
coupled with negative precipitation anomalies with respect to 
the last 110 years. In comparison to pre-1970 precipitation 
conditions, the drought can be considered to be ongoing at 
present, although an increasing precipitation trend is 
detectable over the last 15 to 20 years [1], [2]. Most recently, 
in 2012 the West African Sahel region (particularly Mali, 
Mauritania, Niger and Burkina Faso) suffered from a severe 
drought and hunger crisis [3], [4], [5]. Burkina Faso is a water 
scarce country, and according to the commonly used 
Falkenmark water stress index [6] it has only 820.5 m3 
inhabitant-1 year-1 of total renewable water (estimated in 
2008), which is below the international water scarcity 
threshold of 1000 m3 inhabitant-1 year-1.  

The United Nations Environment Programme (UNEP) 2010 
Africa water atlas [1] lists “Climate variability and water 
scarcity” and “Public health concerns due to extensive dam 
construction” as the two main problems in Burkina Faso 
regarding water resources, related to erratic rainfall patterns 
and short rainy seasons. Before 1960, approximately 100 dams 
were built, but the majority were constructed in response to 
the droughts of the 1970s and 1980s. Many reservoirs are 
small and are subject to high evaporation rates of about 60% 
of the water [7]. 40% of the approximately 1400 to 2100 dams 
(numbers vary from source to source) in Burkina Faso have 
been built in the North where rainfall periods are short and 
erratic. These small reservoirs do not collect a sufficient 
amount of rain to sustain the water needs of the population. 
Due to strong population growth, those water needs continue 
to rise, and therefore new dams and reservoirs are created [1], 
[8]. Water availability in wetlands, reservoirs and wells, as 
well as rainfall amount and distribution play an important role 
for farmers, herders and fishermen, for water supply to cities 
and villages, and for electricity generation. This is most 
important during the dry season, from October to May/June.  

In this work, the terms “wetlands” as well as “water bodies” 
will be used to refer to areas flooded during at least two 
months per year. The focus lies on water availability, thus 
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only the water covered part, not the vegetated part, is 
considered. The surface area of the 20 largest wetlands after 
the rainy season is above 5 km². Among them, Bagré is the 
largest wetland in the study area with about 175 km², and three 
more wetlands are in the range of 50 km². Small wetlands 
down to approximately 0.1 km² were included in the analysis. 
Wetlands occurring in the study site are either natural or 
artificial wetlands, the latter created by man-made dams. 
Dams are built to create artificial wetlands which serve as 
reservoirs and collect rainwater. Water abstraction is usually 
performed for irrigation, water supply for cities, or electricity 
generation. Both artificial and natural wetlands fulfill certain 
ecosystem functions [9]: they are used as water reservoirs; are 
important for water consumption; are of use for different 
livelihoods in the study area (agricultural, pastoral, fishery, 
domestic, industrial use); serve as buffer for flooding; 
contribute to carbon sequestration; and are habitats for various 
species. Siltation, whereby fine sediment accumulates at the 
bottom of a lake, is causing wetlands to become shallower, 
which is considered to be the largest problem for all wetlands 
in Burkina Faso, particularly for natural wetlands. 

A. Earth Observation for Monitoring Water and Wetlands in
the Sahel Region

Remote sensing has the potential to play an important role for 
wetland monitoring [10]. Monitoring over such large areas can 
become a challenging task since temporal dynamics persist 
and regional and latitudinal differences occur. In this study, 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensor has been used to map water on a 250m-scale 
using the near infrared (NIR) reflectance band [11], [12] 
making use of the strong absorption of NIR energy of water in 
contrast to land surfaces. Similarly, the Normalized Difference 
Vegetation Index (NDVI) serves to separate land and water 
[13]. Combined studies classify wetlands at 250m-scale using 
wet-season NIR metrics as a proxy for flooding and dry 
season NDVI metrics as a proxy for chlorophyll dynamics 
[11], [14]. At the 500m-scale, MODIS provides seven bands in 
the visual, near infrared and shortwave infrared range that allow 
the calculation of other indices applicable to water detection, 
that use also bands in the blue and shortwave infrared 
(SWIR) range. Other studies have used, for example, the 
Normalized difference Water Index (NDWI) and a 
modified Normalized difference Water Index (mNDWI) [15], 
Land Surface Water Index (LSWI), Global Vegetation 
Moisture Index (GVMI) [16], Open Water Index (OWI) [17] 
and Floating Algae Index (FAI) [18], [19]. The Enhanced 
Vegetation Index (EVI) [20], which is used for calculation of 
some of the above mentioned water indices, also serves for 
excluding vegetated areas. The above listed indices have been 
successfully applied for surface water detection and 
monitoring, or flood detection from MODIS [21], [22], [23], 
[24], [25].  

Presently, large Earth observation projects such as 
GlobWetland-2 to map Mediterranean wetlands on a high 
resolution scale exist [26], [27], or Tiger-NET that supports 
satellite based assessment and monitoring of water resources 

in Africa [28]. Other wetland studies focusing on the Sahel 
area, partially including Burkina Faso, provide monitoring or 
mapping of wetlands using MODIS 250 m data [11] and 
SPOT VEGETATION data of 1 km resolution. They are 
focusing on the seasonal behavior of water bodies [29], [30] 
where a positive relationship between rainfall anomalies and 
the area of temporary surface water bodies could be found 
[30]. On a high resolution scale, the paradox of more rainfall 
but less water in the wetlands of certain areas in the Sahel is 
addressed with a multi-sensor approach [31]. Summarizing, 
the monitoring of Sahelian wetlands still remains a challenge 
due to spatial and temporal requirements to monitor small 
wetlands with strong seasonal differences.  

B. Objectives
Despite the importance of water availability on livelihoods,

existing knowledge and monitoring of wetlands are lacking. 
The number of natural and artificial water bodies, their surface 
areas and temporal dynamics, as well as the number of 
existing dams is not fully documented. Therefore, this work 
addresses spatio-temporal changes of the water coverage of 
wetlands derived from time series analysis of MODIS 
imagery, analyzing both seasonal patterns and inter-annual 
variability. The flooding regime (number of water covered 
months per year) variability in time and space between 
different years and different wetland types (natural or 
artificial), sizes and latitudes is explored. For demonstration, 
five case studies within the study area were selected, covering 
different lakes from the Sahel to the Sudano-Savannah region 
of Burkina Faso. The time series analysis of surface water area 
shows the potential for novel early warning indicators of 
drought. 

II. STUDY AREA AND DATA

A. Study Area
The study area is located in the land-locked country of

Burkina Faso, West Africa. A north-south transect extending 
to Mali in the North and Ghana in the South, with a width of 
approximately 200 km and a length of 500 km was selected 
(Fig. 1). Flat terrain with an average elevation of 250 to 350 m 
above sea level dominates the region. All rivers are seasonal. 
The Volta catchment with the three main rivers, Nakambé, 
Mohoun and Nazinon, extends through the central and 
southern part of the study area. The north-eastern part belongs 
to the Niger catchment. A strong gradient persists in terms of 
precipitation, ranging from less than 300 mm annual 
precipitation in the north to more than 1000 mm in the south. 
Three climatic zones are crossed from north to south: the 
Sahel region, Sudano-Sahelian Savannah, and Sudanian 
Savannah. Land use varies within different livelihood zones, 
where livelihoods are defined as "the means by which 
households obtain and maintain access to essential resources 
to ensure their immediate and long-term survival” [32]. 
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Fig. 1. The study area, located in Burkina Faso, West Africa, marked with 
the large rectangle. The five wetland cast studies (a-e) are displayed as small 
rectangles: Barrage de Yakouta (a), Lac Bam (b), Lac Dem (c), Barrage de 
Ziga (d), and Barrage de Bagré (e). 

In Burkina Faso, livelihoods are based mainly on farming and 
pastoral activities, which both strongly depend on the 
availability of water, particularly during the dry season, from 
October to May/June.  

The northern part of the study region consists 
predominantly of a pastoral zone with transhumant 
pastoralism. Millet and cereals are found in the northeast, 
whereas in the central and southern parts, agricultural zones of 
cereals, sorghum, market gardening, fruits and cotton prevail 
[32]. Burkina Faso is considered to be a “hotspot” of water-
constrained, rain-fed agriculture, related to effects of climate 
change on food security. Water distribution is 
anthropogenically influenced by the construction of about 
1400 to 2100 dams across the country. Although data are not 
available for the majority of the dams, according to visual 
interpretation of high resolution satellite imagery, these tend to 
be on the order of several hundred meters to more than 1 km 
in length. The few largest dams in the study area are of more 
than 4 km in length. Many of them are used mainly for small-
scale irrigation [1], for example of rice and vegetables, 
although most of Burkina Faso’s agriculture is rain-fed. The 
country is ranked 183rd out of 187 countries in the Human 
Development Index (HDI) [33]. Burkina Faso has a population 
of approximately 16 million people, and strong population 
growth of about 3% per year has been reported [34].  

Five wetlands were selected as case studies for detailed 
analysis according to different criteria, such as reasonable size 
for monitoring with MODIS pixel resolution, geographic 
distribution from north to south, differences in type (natural or 
artificial), and international importance as described by the 
RAMSAR Convention on Wetlands of International 

Importance, founded in 1971 [35]. The case studies from north 
to south are further described as follows:  

La Barrage de Yakouta (site a) is a new artificial lake with a 
surface area (the area covered by water two or more months 
per year) of approximately 10.5 km² that was formed along a 
river between 2004 and 2005 after dam construction in 
Burkina Faso’s northern Sahel region, close to the village 
Yakouta. This event is apparent in the time series analysis as 
shown in Section 4 (Fig. 8). The purpose of this reservoir is to 
provide water to the city of Dori located about 10 km to the 
east. It is otherwise used by herders, and some fishing and 
small irrigation activities also take place. Lac Bam (site b) is 
the largest permanent natural lake (about 23.5 km²) in Burkina 
Faso, and as such a RAMSAR site. Water abstraction is 
performed solely for irrigation. Other anthropogenic activities 
include fishing, livestock breeding, and subsistence and 
cultivation farming for export. Siltation is a major concern. 
Increasing land use activities such as irrigated cultivation 
cause deforestation and conversion from naturally vegetated 
land into cultivated land, which foster sediment input into the 
lake. The lake is highly important for various animal species, 
particularly fish [7]. Lac Dem (site c) is a permanent natural 
lake and a RAMSAR site of about 6 km². Water is abstracted 
for irrigation and for water supply of the provincial capital 
city, Kaya, located nearby. Irrigated cultivation poses a threat 
due to pesticide use and water removal. Water scarcity may 
force livestock routes to change, and conflict between farmers 
and herders occasionally occurs. Likewise, similar to Lac 
Bam, it is strongly prone to siltation. Over-fishing due to both 
population pressure and climate change has resulted in the 
extinction of various terrestrial and aquatic species [35]. A 
large, permanent, artificial lake, la Barrage de Ziga (site d), is 
located 50 km from the capital city, Ouagadougou, and has a 
surface area of approximately 58 km². The dam was built on 
the Nakambé River between 1998 and 2000 to secure the 
availability of freshwater resources for the city of 
Ouagadougou, providing a near continuous water supply [36], 
[37]. Further south, la Barrage de Bagré (site e) is a 
permanent artificial lake created by a large dam built in 1992 
on the Nakambé River in southeastern Burkina Faso. It is the 
largest wetland in the study area (about 175 km²) and is a 
RAMSAR site. Water from the reservoir is abstracted for the 
irrigation of large areas, mainly rice fields to the South of the 
dam, and for electricity generation. The construction of dams 
might influence downstream hydrological characteristics. In 
the Nakambé catchment, 242 dams have been built until 2005 
[38]. Bagré and Ziga, as well as the two natural wetlands Bam 
and Dem are located in the Nakambé catchment. It was found 
that since the 1960s the hydrological regime of the Nakambé 
River has changed due to the construction of many dams. 
Despite rainfall having decreased and the number of dams 
increased, average runoff and maximum daily discharge 
increased. Therefore, the hypothesis that increasing land use 
may lead to higher runoff in rivers is supported [38].  

To summarize, from the five case studies, only Barrage de 
Bagré is used for electricity generation, Barrage de Ziga, Lac 
Dem and Barrage de Yakouta are used for water supply to 
towns, and all water bodies besides Barrage de Ziga for 
irrigation. In the case of Bagré, large rice fields are irrigated, 
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in contrast to the small fields belonging to different villages 
and farmers which is more typical throughout the country. 

B. Data
MODIS surface reflectance data at 250 m resolution

(MOD09Q1) and at 500 m resolution (MOD09A1) were used 
to generate a time series between the years 2000 and 2012, 
with a temporal frequency of 8 days. The MOD09Q1 product 
is a Level-3 surface spectral reflectance product, precisely 
geolocated and composited over 8-day intervals. It consists of 
two 250 m spatial resolution bands, band 1 corresponding to 
the red spectral range (620-670 nm) and band 2 to the near 
infrared (NIR) range (841-876 nm), and an additional band 
quality layer. In the compositing process, the best observation 
over an 8-day period is selected for each pixel based on 
MODIS level-2 products, according to criteria such as cloud-
free and cloud shadow-free observations, aerosol loading, high 
observation coverage or low viewing angle. The MOD09A1 
product is produced similarly to MOD09Q1, but contains 
seven 500 m spatial resolution bands spanning the visible, 
NIR and SWIR range, and includes state flags and quality 
information [39], [40]. MODIS data are available in 
Sinusoidal projection and were provided by Reverb of the 
National Aeronautics and Space Administration (NASA) 
Earth Observing Data and Information System (EOSDIS). 

The Digital Elevation Model (DEM) from the Shuttle Radar 
Topographic Mission (SRTM) flown by the (NASA) in 2000 
was used. This DEM has been derived by interferometric 
techniques using two SAR antennas onboard the Space Shuttle 
and is available globally between 60° North and 54° South 
with a spatial resolution of 90 m [41], [42]. In order to verify 
water covered pixels in MODIS data, and consequently to 
define suitable threshold values, bi-seasonal Landsat images 
were used from two different years. Three Landsat images 
(path 194, row 50, 51 and 52) from February 16 2002, 
acquired by the Landsat 7 Enhanced Thematic Mapper 
(ETM+), were selected to serve as dry season reference. For 
the end of the rainy season reference, eight Landsat 5 
Thematic Mapper (TM) images from September 23 2009 (path 
194, row 50, 51 and 52), October 9 2009 (path 194, row 50, 51 
and 52), and October 16 2009 (path 195, row 50 and 51) were 
chosen.  

III. METHODOLOGY

Fig. 2 shows the processing chain implemented in IDL8.2 
including (1) the input data, (2) intermediate processing steps, 
(3) water masks, and (4) derived products for categorization,
spatio-temporal analysis and the retrieval of time series
information.

A. Water Mask Processing Chain
MODIS 8-day composite NIR surface reflectance values

from February 2000 to December 2012 were imported in order 
to form image stacks and time series. The 500 m state flags 
were also imported and resampled to the higher MODIS pixel 
resolution. Cloud removal and removal of bad quality pixels 
were performed using the resampled 500 m state flags, the 
band quality information and additional thresholding on the 
reflectance bands. Thereafter, 8-day NIR composites were 
aggregated to monthly averaged values.  

Fig. 2. Overview of the processing chain showing the main input data: NIR 
reflectance (black) and SRTM DEM (grey), followed by intermediate 
processing steps, water mask generation and highlighting retrieved products 
for categorization, spatio-temporal analysis and creation of time series 
information.  

A per pixel quality mask was created containing the number 
of valid observations that were used to build the monthly 
averaged images. Pixels with no valid observations were 
flagged. The SRTM DEM pre-processing included the 
reprojection to Sinusoidal MODIS projection, resampling and 
coregistration to the MODIS pixel size and subsetting to the 
area of interest (AOI) extent. Slope inclination in degrees was 
then calculated. The whole terrain is characterized by very flat 
topography, apart from some rock outcrops with steep slopes 
and plateaus on top. Shadows related to these slopes were 
removed by building a topographic shadow mask.  

Surface water mapping was carried out via a thresholding 
approach using the NIR band, since water strongly absorbs 
light in the NIR spectral region leading to low reflectance in 
NIR bands, in contrast to the higher NIR reflectance of land 
surfaces. In order to derive an appropriate mean water 
threshold for the given region, three selected dry and wet 
season Landsat images were used. The images were selected 
to verify water covered areas on a higher resolution scale by 
applying a NIR threshold and calculating NDWI. A total of 30 
samples of water covered AOIs were chosen across different 
latitudes, covering various wetlands bi-seasonally. Adjacent 
pixels within a minimum radius of 250 m around the AOIs 
were required to be covered with water in order for a pixel to 
be included within the water-covered AOI. Corresponding 
NIR surface reflectance values were measured in the MODIS 
data. First thresholding trials revealed that due to regional 
differences along the north-south transect, variations within 
the same water body, and seasonal differences between the 
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rainy and dry seasons, no single threshold value was suitable. 
NIR reflectance values are up to 5-10% higher in the dry 
season as compared to the rainy season, because the sediment 
rich water causes a stronger reflectance in the visible 
wavelengths, which however, slightly affects the NIR as well. 
Predominantly artificial water bodies, located in the center and 
southern parts, were well detected using a lower reflectance 
thresholds, around 15% surface reflectance at the end the of 
the rainy season, whereas natural wetlands in the north of the 
study area could only be mapped using higher thresholds, in 
the range of 25%. Therefore, a latitudinal gradient NIR 
threshold ranging from 15% (10°N) to 25% (15.5°N) was 
applied. The gradient is a consequence of the characteristics of 
the water bodies in the study area along a transect covering 
three different climatic zones, rather than a general function of 
latitude itself. Moreover, the DEM derived slope inclination 
was used as a further condition of exclusion to retrieve the 
water masks. Any value exceeding a threshold of 1 degree of 
slope inclination was excluded, in order to rule out shadows 
caused by steep slopes. For every month in the time series, a 
water mask was calculated.  

Three validation sites at different locations along the 
transect were chosen: Barrage de Yakouta in the north, Lac 
Bam in the centre, and Barrage de Bagré in the south. The 
MODIS water mask for October 2009 serves as a basis for 
validation. Five Landsat images from October 9 (path 194, 
row 50, 51 and 52), and October 16 (path 195, row 50 and 51) 
2009 serve to (1) create a water mask based on NDWI 
thresholding and (2) digitize the open water surface including 
the floating or standing vegetation. The finer spatial resolution 
of Landsat (30 m) allows the validation of MODIS water 
masks, as seen in Fig. 5.  

B. Spatio-temporal Analysis of Water Mask Derived Products
Wetland detection and categorization by size and by

natural/artificial type was carried out by calculating areal 
statistics using ArcGIS10.1. Surface water dynamics were 
derived by summing the monthly calculated water masks into 
cumulative water covered months per year. This step was 
performed for each hydrological season over the period 2000-
2012, starting with the beginning of the rainy season in May 
and ending at the end of the dry season in April of the 
following year. On the one hand, this indicates the extent of 
the area covered by water, and on the other hand, it shows the 
temporal aspect in terms of number of water covered months 
per pixel for each season (Fig. 3), (Fig. 7). Regularly 
appearing phenomena that could be misclassified as water, 
such as topographic shadows or bushfire scars were masked 
out. Topographic shadows always appeared in the same spot, 
and could be masked out by using the DEM, whereas burn 
scars were only visible for a couple of days to weeks and in 
most cases were masked out by the definition that only pixels 
covered by water masks for minimum two months per year are 
counted as wetlands.  

The cumulative water covered area was used to distinguish 
between the permanent and dynamic areas of each wetland. A 
near-permanent region was defined by greater than or equal to 
nine months of water coverage, considering known errors in 
the water masks due to masked out pixels resulting from cloud 
cover during the rainy season. As a result, the dynamic region 

is covered by water between one and eight months. Change 
detection between a water mask from 2000 and 2012 was 
carried out (Fig. 6). All pixels covered by water between 2 and 
12 months per year were considered for the masks, and the 
water mask of the year 2000 was subtracted from 2012. In 
order to separate new or vanished water pixels due to yearly 
varying size changes from the desired newly appeared or 
totally vanished water bodies, the wetland masks of the year 
2000 and 2001 were compared with the ones of 2011 and 
2012. Thereafter, a standardized anomaly trend was calculated 
from the per-pixel anomalies of the cumulative water covered 
area (Fig. 7). This is defined by the per pixel linear regression 
through the deviation from the mean of all years of cumulative 
water covered areas, divided by the standard deviation of the 
cumulative water covered area of the respective year.  

C. Surface Water Area Time Series
Five case studies were chosen to derive the temporal

dynamics of water covered areas from the time series. 
Therefore, time series of water covered areas were converted 
from number of pixels to area (in square kilometers) and to 
relative values (in percent), with 100% being the time series’ 
maximum (Fig. 8). Monthly water-extent area in km² was 
compiled as ASCII sequential data. The areas served as input 
into the TIMESAT software [43], [44] and all implemented 
smoothing functions were applied. The Gaussian fit proved to 
be the best fitting function, through comparison of chi square 
goodness-of-fit with the input time series. Surface water area 
anomalies, calculated as the deviation from the 13-year mean 
of each respective month, were calculated. The focus lies 
solely on the dry season beginning with the peak value 
(around October-November) at the end of the rainy season 
until the end of the dry season (around May). Due to the 
frequent occurrence of cloud cover, mostly in July and August 
as well as in June and September, data during the rainy season 
were assumed not to be reliable. Therefore these four months 
were excluded from the time series analysis of surface water 
areas anomalies (Fig. 9).  

A field survey in Burkina Faso was carried out from 
October to November 2013 for better understanding of the 
local context, carrying out interviews with the local population 
and representatives from local institutions, and gathering 
reference information in the field. The focus of the expert talks 
was regarding the occurrence and timing of drought periods 
and reduced water levels and water areas.  

IV. RESULTS:

A. Wetland Detection and Categorization
The study area has been divided into northern, central and

southern regions. Following the definition that a wetland is an 
area covered by water in a minimum of 2 monthly composites 
per year, categories of size, natural/artificial type and 
distribution of wetlands have been compiled in Table 1. Size 
was calculated as the maximum area covered by water for at 
least two months per year, in all of the 13 years of the study 
period. 219 wetlands with a spatial extent greater than 0.1 km² 
were detected, among them 68 are larger than 1 km². 35% of 
the wetlands larger than 0.1 km² are situated in the northern 
part of the study area, 57% in the central part and 8% in the 
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TABLE 1: WETLANDS OF THE STUDY AREA CLASSIFIED BY SIZE, TYPE AND SITE. 

Region # of  
total 
> 0.1 km²

# of natural 
> 1 km²

# of artificial 
> 1 km²

> 50 
km² 

> 5 km² > 2 km² > 1 km² > 0.5 
km² 

> 0.1 
km² 

North  76 22 10 0 9 15 8 10 34
Centre  125 4 28 2 7 9 14 25 68
South  18 0 4 1 1 1 1 1 13
TOTAL 219 26 42 3 17 25 23 36 115

south. The majority of wetlands are located in the central part, 
being an area with substantial agricultural activities and on the 
southern edge of the pastoral zone. It can be observed that in 
the northern and north-eastern pastoral zone, natural wetlands 
are predominant. Going further south, anthropogenic influence 
becomes more obvious, as agricultural activities increase and 
no natural wetlands appear. The lowest density of wetlands is 
observed in the south, which is dominated by the largest water 
body in the region, la Barrage de Bagré, and two artificial 
water bodies in north-Ghana.  

The largest water body, la Barrage de Bagré, has a surface 
area of approximately 175 km² and is followed in areal extent 
by Barrage de Ziga covering slightly more than 50 km². The 
largest natural lake is Lac Bam with approximately 23.3 km² 
water surface area. Table 1 gives an overview of wetlands in 
the study area by size (very large > 50 km², large > 5 km², 
medium-large > 2 km², medium > 1 km², medium-small > 0.5 
km², small > 0.1 km²) in the northern, central and southern 
region. Additionally, the wetlands are categorized into natural 
versus artificial wetlands. 

In order to provide information on the minimum size of 
water bodies that can be captured with MODIS, an analysis 
has been carried out considering five Landsat images from 
October 9 (path 194, row 50 and 52), and October 16 (path 
195, row 51) 2009, at the end of the rainy season. The 
cumulative water covered surface area for the year 2009-10 
(as shown in Fig. 3 and 7) is the basis for identifying the 
smallest detected wetlands (one MODIS pixel classified as 
being water covered for a minimum of two months per year). 
The area is subsequently measured from the Landsat images, 
for a sample of 30 small water bodies equally distributed over 
the study area. The average area of the measured small water 
bodies serves as an indication of the maximum size of the 
smallest water bodies that are still included in the analysis, 
which is on average 0.16 km². This depends on the location of 
the mixed land-water pixels detected by MODIS, as well as 
the length to width ratio of the water bodies, which tend to 
decrease in area throughout the dry season.  

B. Spatio-temporal Surface Water Dynamics
Surface water dynamics for the five wetland case studies are

analyzed, focusing on the drought seasons. The seasons 2000-
01, 2004-05 and 2011-12 have been described as years of 
drought in Reliefweb [5] and 16 expert interviews with local 
institutions and villagers, who independently and consistently 
mentioned these seasons. The EM-DAT database [45] report 
the years 2000-01 and 2011-12 as having disastrous drought 
seasons. The drought season 2004-05 is not mentioned for 
Burkina Faso in particular, but is for neighboring Niger, and 
will therefore be considered as well. 

Fig. 3 shows the surface water dynamics as cumulative 
water covered area, calculated as the number of water covered 
months for each year, using the large, artificial lake Barrage 
de Bagré (site e) as an example. Throughout the paper a year 
is considered to be from May to April of the following year, in 
other words from the start of the dry season to the end of the 
following wet season. Pixels colored in shades of blue are 
water covered throughout almost all the year, which 
corresponds to what was defined as near-permanent area, with 
water coverage between 9 and 12 months per year. Shades of 
green indicate the dynamic area, covered between 1 and 8 
months per year.  

From the five selected case studies, Bagré displays the 
largest seasonal variation between the dry and rainy seasons 
every year. As well as in area and width, the water body 
decreased significantly in length at the northern extent during 
the three periods of drought. In total, the maximum surface 
area associated with the drought seasons is considerably 
smaller than during non-drought years. The number of near-
permanent area pixels, however, is found to be similar in 
drought and non-drought years. Although it is lower than 
average during the 2011-12 drought year, this is not the case 
for 2000-01 and 2004-05, and some non-drought years are 
characterized by a lower than average permanent area. The 
dynamic area shows greater variability and is considerably 
smaller during the drought seasons. In the case of Bagré, an 
overall tendency toward a larger dynamic area is observed 
during the second half of the study period (Fig. 4). 

In this analysis, it was revealed that Barrage de Yakouta 
(site a) did not yet exist at the beginning of the study period, 
and started to appear in the satellite images of the 2004-05 
season. It is a northern artificial wetland with a recently 
constructed dam intended to enhance irrigation and water 
supply in the Sahelian area. Yakouta is situated in an area of 
strong agricultural use, close to the towns of Yakouta and 
Dori. Nearby, there are two natural wetlands: Djigo in the 
north and Mar de Dori in the east. The first displays variation 
in size and in number of flooded months, whereas the second 
is not visible in most years, which can be explained by both 
high vegetation cover during and after the rainy season which 
prevents water detection from NIR bands, as well as drying 
out in the dry season. Seasonal and inter-annual variations are 
not as pronounced in Lac Dem (site b) and Lac Bam (site c) as 
for the other sites. However, the years 2004-05 and 2011-12 
show less surface water extent for both lakes, and 2000-01 
shows less surface water extent just for Lac Dem. A decrease 
in flooding duration of Lac Bam’s central area become 
evident, as well as similar variations in Lac Bam-2, its 
neighbor which is situated 4.5 km to the west. Lac Dem’s 
neighboring wetland to the north shows a clear reduction of 
water in the seasons 2000-01 and 2011-12. Since the 
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Fig. 3. Surface water dynamics of Barrage de Bagré (site e), displayed as cumulative water covered surface area, from season 2000-01 to 2011-12. Drought 
seasons are marked in red.  

Fig. 4. Temporal development of near-permanent and dynamic area for 
Barrage de Bagré (site e), from season 2000-01 until 2011-12. 

construction of the Ziga dam (site d) along the Nakambé River 
was just completed in 2000, water coverage was low in area 
and duration for the year 2000-01. In 2004-05 a smaller 
maximum surface area and fewer near-permanent area pixels 
are observed in the northern part of the wetland. In 2011-12, 
the surface area was significantly smaller and the permanent 
area along the upstream part was strongly reduced. 
Additionally, it becomes obvious that two new small water 
bodies appeared during 2005-06, on either side of Barrage de 
Ziga.  

Results of the validation of water extent for October 2009, 
carried out using Landsat imagery, show that in all three cases 
the MODIS surface water area was slightly underestimated 
with respect to the water area derived from the Landsat 
imagery, but showed results with a reliable accuracy in terms 
of matching the Landsat surface area with 93.5% (Barrage de 
Bagré), 92.4% (Lac Bam) and 89.5% (Barrage de Yakouta) as 
stated in Table 2. Lac Bam is partially subjected to the 
presence of standing and floating vegetation that was not 
detected in either the MODIS or the Landsat water mask. 
When digitizing the water surface, including the vegetated 
parts, the resulting accuracy was 75.7%. Due to strong 
seasonal dynamics, however, the water surface calculated 
from the single-date Landsat image cannot strictly be 
compared with a MODIS monthly composite, and can serve 

only as an approximation. Fig. 5 shows a comparative 
illustration of water masks derived from Landsat TM images 
and MODIS composites of October 2009. 

A post-classification change detection was applied between 
the first (2000) and last (2012) years of the study period. As 
shown in Fig. 6, the occurrence of water pixels only in 2012 
(blue) or only in 2000 (orange) indicates new or no longer 
existing water bodies, respectively. Grey color indicates that 
no change has taken place (pixels are either water covered in 
both years or were not water covered in either). Due to yearly 
dynamics, there are changes in the size of many wetlands from 
season to season. It must be considered that both the first and 
the last year of the study period experienced droughts, and can 
thus be considered anomalous. After the elimination of change 
pixels caused by size changes of water bodies, the remaining 
water bodies are marked with black boxes (new) and orange 
boxes (no longer existing).  

In total, 21 new water bodies, each with a surface area of 
more than 0.5 km², were found to have appeared between 
2000 and 2012, and only a few small water bodies are found to 
have vanished. The previously discussed case studies Barrage 
de Yakouta (a), built during the study period, and Barrage de 
Ziga (d), in the final construction phase at the beginning of the 
study period, show up in blue (Fig. 6). Ziga (d) increased 
substantially in water surface but is not counted as a new 
water body since dam constructions were ongoing in 2000 and 
the water body already existed with smaller water extent.  

The three most significant new water bodies are highlighted 
in Fig. 6f, h and i. During expert interviews in the field, it was 
revealed that the water bodies (f) and (h) were not created as 
reservoirs for water supply or irrigation, but for gold mining 
by large international companies. Two sites seem to have 
disappeared: a small water body in the north-east of Lac Bam 
(Fig. 6g), and three smaller wetlands (Fig 6j) to the south-east 
of the capital, Ouagadougou. The reason might be disrupted 
dam performance due to floods, poor maintenance or 
destruction, causing the reservoir to dry out. Orange pixels in 
the west of Bagré are misclassifications caused by burn scars 
that did not persist long enough to be masked out. 
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Fig. 5. Water masks of Lac Bam from October 2009, derived by Landsat 
NDWI threshold (yellow), overlaid with the water mask from the October 
2009 MODIS NIR time series composite (blue), showing overlapping regions 
in green.  

TABLE 2: ACCURACY OF THE OCTOBER 2009 WATER MASK FROM THE 
MONTHLY MODIS COMPOSITE COMPARED TO A WATER MASK DERIVED FROM 
LANDSAT TM ON 9TH OCTOBER FOR (A) YAKOUTA, (B) BAM AND (C) BAGRÉ. 
Region MODIS (km²) Landsat TM 

(km²) 
MODIS % of 
Landsat TM 

Yakouta 12,8 14,3 89,5%
Bam 20,6 22,3 92,4%
Bagré 215,8 230,8 93,5%

The cumulative water covered area of the entire study 
region from all seasons from 2000-01 to 2011-12, with pixel 
values between 0 (never water covered) and 12 (all season 
water covered) was used as input to calculate a standardized 
anomaly trend (Fig. 7). Positive trends can be interpreted as a 
trend toward longer water coverage per season, and negative 
trends toward fewer months of water coverage. Fig. 7 shows 
the trend of anomalies for the entire study area and highlights 
the five case studies, including the mean cumulative water 
coverage per season on the left. Positive and negative trends 
are spread along all latitudes of the study area. Barrage de 
Yakouta (a) and Ziga (d) show a positive anomaly trend due to 
dam construction as previously discussed. New water bodies, 
as discovered in the change detection, such as site f and h, 
logically reveal to a very positive trend. However, site i, which 
did not exist prior to 2012, does not show up in the trend 
analysis considering only the time period until the end of the 
season2011-12. Strong negative trends are observed for Lac 
Bam (b) and for the natural wetland Bourzanga to the north of 
Lac Bam. Lac Dem (Fig. 7c) shows a partially negative trend 
but a positive trend on its eastern coast. A slightly negative or 
no trend are observed for the central part of Barrage de Bagré 
(e), surrounded by a zone of negative trending area followed 
by an extreme outer zone of positive trending pixels.  

Fig. 6. New water bodies (blue) and vanished water bodies (orange) as 
detected in the post-classification change detection between 2000 and 2012. 
Examples are shown in black zoom-boxes (new wetlands) and orange zoom-
boxes (vanished wetlands).  

Expert interviews in the field revealed that siltation causes 
the lake to become shallower, but also forces the water to 
spread out more in surface area. As documented in Fig. 4, a 
larger dynamic area over the past couple of years has become 
visible for Barrage de Bagré. This may explain the positive 
trend of the extreme outer pixels and the negative trend on 
adjacent pixels inside this. On the one hand, spreading to 
larger water extents occurs at the cost of reduced duration of 
water coverage in the more central areas, and on the other 
hand faster retreat of shallow water due to evaporation takes 
place. Additionally, Sonabel, the company operating the dam, 
reported that it had repeatedly filled the reservoir to its 
maximum capacity over the past years (2003, 2007, 2008, 
2009, 2010, and 2012) [46]. Although less pronounced, a 
similar negative trend in the central part of a wetland and 
positite trend at the outer limits can also be detected for the 
eastern coast of the natural wetlands Lac Dem (c), Lac Bam 
(b), the aforementioned Bourzanga and Lac Bam-2, as well as 
on several artificial water bodies along the east of the study 
area.  
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Fig. 7. Left: Mean cumulative water covered area over 12 seasons for the case studies: (a) Yakouta, (b) Lac Bam, (c) Lac Dem, (d) Ziga and (e) Bagré. Right: 
Anomaly trend of cumulative water covered area (2000-01 to 2011-12). Negative trend values (red) signalize a negative trend and positive values (blue) a 
positive trend. 

C. Temporal Dynamics of Water Covered Areas
A time series of the water covered surface area is visualized

to explore the trend analysis (Fig. 8). When and to what extent 
changes in the wetland temporal dynamics take place are 
analyzed by plotting monthly time series of the water covered 
area in km² per wetland. For each of the five case studies (a-e), 
time series smoothing was carried out using a Gaussian 
asymmetric fit. The values were rescaled to relative values in 
percentage (0-100%), with 100% defined as the maximum 
water area of the maximum year of each respective wetland. 

Fig. 8 shows the three artificial wetlands of the five case 
studies (a, d, e; above), and the two natural wetlands (b, c; 
below). It is observed that natural as well as artificial wetlands 
have a distinct annual cycle, demonstrating a characteristic 
seasonality with regards to their monthly water covered area in 
km². The two natural wetlands, Lac Dem and Lac Bam, appear 
to have a more regular seasonal cycle. One might assume that 
the cycle of the reservoirs regulated by dams would be more 
irregular due to rapid output of water to meet the needs of 
water supply to towns, irrigation, or industry. However, during 
expert interviews in the field and with local institutions, it has 
been found that water removal is done quite regularly and that  
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Fig. 8. Above: The three artificial wetlands: Barrage de Bagré (e) solid line, Barrage de Ziga (d) dashed line and Barrage de Yakouta (a) dotted line; Below: Two 
natural wetlands: Lac Dem (c) dashed line, and Lac Bam (b) solid line.  

there is no such rapid overspill of water. The only exception is 
in the case of large dams when maximum reservoir capacity is 
reached [46]. Fig. 8 shows that both Barrage de Bagré and 
Barrage de Ziga reached their maximum surface water area at 
the end of the 2003 rainy season, followed by the lowest water 
extent peak in the 2004-05 and 2011-12 seasons, the latter 
notably so for Bagré. The time series clearly reveals the effect 
of the newly built Yakouta dam in the middle of 2004, 
demonstrating the potential of retrieving dam construction 
timing from MODIS imagery. Yakouta reaches its maximum 
water extent at the end of the rainy season 2005, the year 
following its construction. It is observed that both Bagré and 
Yakouta display larger relative variation in water extent 
throughout the year than does Ziga. The two natural wetlands 
Lac Bam and Lac Dem reach their lowest peak values in 2000-
01, 2004-05, and 2007-08, and in the case of Lac Bam also 
2011-12.  

Fig. 9 displays the areal extent (km²) anomalies of each 
month relative to the mean of the same month from the entire 
study period (2000-12) for all five selected case studies, from 
north to south. Only the dry season, from October to May, has 
been considered for the anomaly analysis, due to too many 
missing data values during the rainy season caused by cloud 
cover. Seasons where more than two months had a negative 
anomaly, are shaded in grey. The anomalies of the Yakouta 
reservoir (a) are only considered starting in October 2005 after 
construction of the dam. Values before that date are not 
considered for calculation of mean and anomaly. Anomalies 

are in the range of -2 km² to +2 km² with the exception of the 
season 2005-2006 reaching almost +5 km². All other seasons 
display positive as well as negative anomalies throughout the 
season, from 2006-07 to 2008-09 the season begins with more 
negative anomalies and ends with positive anomalies. 
However, from 2009-10 to 2011-12 negative anomalies 
dominate the end of the dry season for all years. Lac Bam (b) 
shows greater anomaly variability, between -6 km² and +6 
km², high positive values are reached at the end of the rainy 
season in 2003 and 2005, and in the middle of the 2010-
11season, and low anomalies occur in the 2000-01 and 2004-
05 seasons, slightly in 2007-08, 2009-10 and particularly 
strong in 2011-12. Anomalies of Lac Dem (c) are in the range 
of -2 km² to +2 km², negative as well as positive anomalies 
occur throughout the whole time span. Lowest anomalies are 
seen in the 2000-01, 2004-05, 2007-08, 2009-10 and 2011-12 
seasons. Anomalies of Barrage de Ziga (d) are in the range of -
15 km² to +20 km², excluding the year 2000-01 during which 
anomalies as low as almost -30 km² occur, which are 
suspected to relate to the final stage of dam construction. Only 
positive anomalies are found from 2005-06 to 2010-11, 
negative anomalies in the dry season 2004, and 2004-05 and 
2011-12 seasons. The absolute anomalies for Barrage de 
Bagré (e) are much larger than for Barrage de Ziga, and range 
between -65 km² and +55 km². Positive anomalies are 
observed in all years except in 2004-05 and 2011-12, 
consisting of negative anomalies alone. The largest positive 
anomalies are found during the 2003-04 and 2005-06 seasons.  
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Fig. 9. Monthly anomalies with respect to the 13-year mean of each month, displayed for the dry season (October – May) 2000-01 to 2011-12 for the 5 case 
studies from north to south: (a) Yakouta, (b) Lac Bam, (c) Lac Dem, (d) Ziga and (e) Bagré. Seasons with significant negative anomalies are shaded grey.
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In summary, the seasons 2000-01, 2004-05 and 2011-12 are 
significant throughout the study area, with low maximum 
surface water area levels and negative anomalies in all studied 
wetlands. This corresponds with the seasons reported to be 
drought years. The seasons 2003-04 and 2005-06 show largest 
positive anomalies across all wetlands.  

V. DISCUSSION

The NIR based water detection using a latitudinal threshold 
gradient approach, as described in the Methodology section, 
performed well in the southern and central areas of the study 
area, where larger water bodies and artificial reservoirs with 
dams are predominant. The study remained challenging in the 
northern part, characterized by natural water bodies of smaller 
size, and which are frequently covered by floating vegetation 
or standing vegetation part of the year, or might completely 
dry out towards the end of the dry season (around April-May). 
In order to improve the water detection and surface wetness 
detection in northern vegetated wetlands, the MOD09A1 
product could be used. The product offers seven bands. Two 
bands are in the shortwave-infrared (SWIR) range and two in 
the visible range (blue, green) at 500 m resolution, which can 
be used for exploitation of further water indices [21], [22], 
[23], [24]. This is recommended in addition to the use of the 
250 m NIR band, used in this study, so as to not decrease the 
spatial resolution. The cumulative water covered surface area 
was frequently underestimated in northern wetlands as a result 
of floating vegetation coverage. Due to the wetland definition 
of a minimum of two months water coverage per year, one 
larger wetland in the north, Mar de Dori, was excluded from 
the analysis. Satellite data at medium resolution, such as 
MODIS, are subject to mixed pixels at shorelines, and in the 
case of floating vegetation cover or standing vegetation in the 
water body.  

Remote sensing satellites currently in orbit, such as 
RapidEye, Landsat-8 and DMCii, or the future Sentinel-2 
acquire high spatial resolution imagery with frequent time 
steps and therefore show great potential for water detection 
which is less prone to mixed water-vegetation pixels due to 
their higher spatial resolution. In this work, only wetlands 
greater than 0.1 km² surface water area were considered. For 
the observation of smaller wetlands, which are likely to be 
even more sensitive to climate fluctuations, higher resolution 
satellite data is needed. This has been demonstrated in various 
studies [31], [47], [48]. However, data from these satellites are 
not acquired with such a high temporal frequency, spatial 
coverage (swath width) and regular repeat cycle as MODIS. 
Furthermore, many have only been put into orbit quite 
recently. No data archives at regular time intervals exist for 
the past years and data are not permanently archived, 
particularly for West-Africa. As a result, MODIS data were 
considered appropriate for this study. Remote sensing 
techniques show the potential to map and monitor the number 
of wetlands. Using higher resolution data the number of dams, 
which is not precisely known, may also be observed. The 
current analyses were carried out on a monthly basis, both for 
performing cumulative surface water area and time series 
anomaly calculations. An increase in temporal resolution, 
through the use of 8-day composite or daily MODIS data for 

water detection is suggested to further characterize wetlands 
by their seasonal dynamics in greater detail [25].  

Since heavy precipitation occurs almost exclusively during 
the rainy season, which increases in duration towards the 
South, cloud cover dominates during these periods. MODIS 
quality state flags from the 500 m data were applied for cloud 
masking, together with applying a NIR threshold to the 250 m 
bands. This could be further improved by incorporating the 
500 m resolution blue band [24], [49]. Most images from 
between May and September were affected by cloud cover, 
which resulted in many invalid pixel values, particularly in 
July and August, and in considerably limited water detection. 
This finally led to the exclusion of four months (June to 
September) in the calculation of time series water covered area 
anomalies. Radar images may offer a solution to the problem 
of cloud cover. However, at present no Synthetic Aperture 
Radar (SAR) data archive is available for the past 13 years 
with regular recurrence. Envisat ASAR Side Swath Mode 
(WSM) data archives are available at 150 m resolution in 
irregularly repeated time steps (from weekly to scarce 
coverage) and were recently used for creating a global dataset 
of permanent open water bodies [50]. ScanSAR data from 
TerraSAR-X are currently being recorded. Further analysis 
will indicate the usefulness of regular SAR time series for 
wetland monitoring, providing an outlook on the possibilities 
of data from Sentinel-1, launched in April 2014 by the 
European Space Agency (ESA), which will provide such 
regular observations in the C-band wavelength. Also related to 
clouds are cloud shadows, which commonly account for 
uncertainty in water classification [24], [49]. This was not 
found to have a major impact in the current work since the 
images are already composites based on a per-pixel quality 
ranking over 8 days of daily acquisitions. However, 
topographic shadows appeared repeatedly in the same location 
and were needed to be masked out using their repeated 
occurrence and verification with Landsat imagery, if they were 
not already excluded by the slope threshold based on the 
DEM. Burn scars resulting from controlled savannah fires as 
well as bushfires also tend to be subject to misclassification as 
water. Due to fast vegetation succession, burn scars are 
typically only exposed for a few weeks before grass begins to 
grow again. Therefore, they were excluded by their occurrence 
in not more than one monthly composite, apart from a region 
in the north-west of the study area, in Mali, where burn scars 
persist over large areas for about 2-3 months, resulting in 
misclassification. There is a lack of official reference to 
drought periods, on the national as well as local scales. In this 
work, local expert interviews served as reference to drought to 
compliment data available at much larger scales (i.e., the 
Sahel). Drought can have a very local effect due to rainfall 
patterns, watershed characteristics, and soil properties. Such 
local data would be important in order to better define and 
record drought on a local scale.  

Based on the present results, a number of important avenues 
for future research are identified. It is suggested that further 
scientific work cover a larger spatial analysis, considering all 
wetlands in the area using methods developed for the case 
study regions in this paper. The availability of in situ data, and 
the quantification of differences related to the latitudinal 
gradient, natural and artificial water bodies, size classes, 
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adjacent land use activities and vicinities to villages, as well as 
further analysis of seasonal characteristics would provide great 
insight. Likewise, the comparative use of higher temporal and 
spatial resolution data is recommended. 

VI.  CONCLUSION

This work presents the application of NIR-based water 
monitoring using a latitudinal gradient approach applied to 
MODIS time series data from 2000 to 2012 for wetlands and 
reservoirs of semi-arid Burkina Faso. The method performed 
well in southern and central areas but was limited by aquatic 
vegetation cover occurring particularly in northern natural 
wetlands, and cloud cover increasing towards the south. 219 
wetlands larger than 0.1 km², among them 68 larger than 1 
km², were detected in the 150 km x 500 km large study area, 
spanning a gradient of different rainfall and land use 
characteristics. Five case studies consisting of two natural and 
three artificial wetlands are analyzed in further detail. Annual 
cumulative spatio-temporal observations of surface area were 
derived, revealing reduced water extent and duration of water 
coverage in the drought seasons of 2000-01, 2004-05 and 
2011-12. Only a few small wetlands were found to have 
completely disappeared during the study period, but 21 newly 
appearing water bodies greater than 0.5 km² size were 
detected, among them three large water bodies.  

Time series of water covered surface area and their monthly 
anomalies were retrieved, and display a distinct seasonal 
cycle. Low surface water area peak levels and negative surface 
water anomalies were found to be associated with the three 
drought periods mentioned above, for all case study sites. The 
2003-04 and 2005-06 seasons show the largest positive 
anomalies of all case study wetlands. Furthermore, the timing 
of dam constructions can be deduced from MODIS time series 
data, as shown through the example of the Yakouta reservoir, 
built in 2004. The successful application of remote sensing 
time series as a tool to monitor wetlands in semi-arid areas 
over large areal extents and with appropriate temporal 
resolution is shown. Information regarding spatio-temporal 
dynamics is derived and related to the occurrence of drought 
years, indicating the potential to serve as an important drought 
indicator.  
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MONITORING OF CRITICAL WATER AND VEGETATION 
ANOMALIES OF SUB-SAHARAN WEST-AFRICAN WETLANDS  
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20, 82234 Wessling, Oberpfaffenhofen, Germany (email: moser.linda@gmail.com) 

ABSTRACT 

Surface water is a critical resource in semi-arid west-
African regions that are frequently exposed to 
droughts. The application of time series from the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) to derive spatio-temporal changes of water 
and vegetation in and around West-African wetlands 
is demonstrated for the years 2000-2012. A near 
infrared (NIR) based gradient threshold and 
calculation of the Normalized Difference Vegetation 
Index (NDVI) is applied on the time series using the 
MOD09Q1 surface reflectance product. Surface 
water dynamics and vegetation anomalies of 
surrounding regions were found to coincide with the 
occurrence of drought seasons. This study 
demonstrates the successful application of remote 
sensing time series for wetland monitoring.  

Index Terms— Wetlands, MODIS, time series 

1. INTRODUCTION

The application of satellite data time series to 
characterize critical spatio-temporal changes of water 
and vegetation in wetlands is demonstrated 
exemplary for selected west-African wetland areas in 
Burkina Faso. In this work, wetlands are defined as 
areas covered by water during minimum two months 
per year. Burkina Faso is a semi-arid, land-locked 
country in the west-African sub-Saharan region. It 
has been frequently exposed to droughts leading to 
food crises, particularly in the mid-1970s and 1980s, 
as well as in the past 15 years. Burkina Faso’s 
freshwater resources are below the international 
threshold for water scarcity of 1000 m³ inhabitant-1 
year-1 [1].  

Wetland mapping and monitoring using time 
series of medium resolution data has been carried out 
using different remote sensing sensors and techniques 
[2], [3]. One of them is a near infrared band (NIR) 
threshold due to NIR energy being strongly absorbed 
by water [4], [5]. The Normalized Difference 
Vegetation Index (NDVI) serves not only to 
characterize vegetation conditions, but has also been 
used for studying wetland vegetation, as well as for 

detection of wetlands in semi-arid areas due to the 
high contrast to their environment in the dry season 
[5]. Sensors like the Moderate Resolution Imaging 
Spectroradiometer (MODIS) offer additional bands in 
the blue, green and mid infrared (MIR) range with 
500 m resolution [6], showing a greater potential 
for further water and vegetation indices [7], [8], 
however, with substantially decreased spatial 
resolution. Remotely sensed wetland monitoring in 
the Sahel region has been carried out for specific 
study areas [9], [10]. Only few studies have worked 
consistently on large regions [4], [5], [11] which is 
challenging due to the high temporal requirements 
caused by strong seasonal effects, and spatial 
requirements observing small, but significant 
wetlands. This study focuses on such a monitoring 
that can potentially be extended to larger areas. 

2. METHODOLOGY

The study area is defined as north-south transect 
ranging from the semi-arid Sahel to the Sudano 
Savannah in Burkina Faso. The main dataset used in 
this work are time series from MODIS from 2000 
until 2012. The chosen MODIS products are 250 m 
surface reflectance (MOD09Q1) for deriving 
information on surface water and vegetation, and 
500 m surface reflectance (MOD09A1) for the use of 
quality and state flags. MODIS 8-day red and NIR 
composites with a resolution of 250 m were imported. 
The quality and state flags were resampled to the 
250 m pixel size of the NIR and red bands, and 
further used for removal of low quality pixels and 
clouds. Monthly aggregation was carried out for all 
remaining data on a per pixel level. A slope map was 
calculated from a digital elevation model (DEM) 
from the Shuttle Radar Topography Mission (SRTM). 
Rock outcrops with steep slopes were excluded to 
avoid misclassifications as water. For surface water 
detection, a NIR threshold varying along a gradient 
ranging from 15% (10°N) to 25% (15.5°N) NIR 
surface reflectance was chosen based on validation 
with Landsat data from 2002, 2009, and 2013.  
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Fig. 1. Cumulative water covered surface area for May 
2010-April 2011. Two natural wetlands (Lac Bam, Mare de 
Darkoy) and two artificial wetlands (Barrage de Ziga, 
Barrage de Bagré) are shown as examples. 

Summing up each of the monthly water masks, a 
cumulative water covered surface area (Fig. 1) was 
calculated for each season (May to April of the 
following year), concluding to a near-permanent 
water covered area (>8 months/year) or dynamic area 
(2-8 months/year). The use of the NDVI that was 
calculated using the red and NIR MODIS bands is 
twofold: Firstly, anomalies of NDVI dry season sums 
in the surrounding areas are calculated and compared 
with spatio-temporal variations of surface water, and 
the occurrence of droughts (Fig. 2, Fig. 3). Secondly, 
it aids to detect increasing chlorophyll activities 
associated with irrigated cultivations around 
wetlands, or with flooded or floating vegetation in 
water. Thus, a trend analysis of the anomalies of each 
year’s cumulative water covered surface area, as well 
as dry season NDVI sums, was carried out (Fig. 4).  

3. RESULTS

Surface water dynamics are shown as cumulative 
water covered surface area for the study region. Four 
examples of different wetlands located along the 
gradient are highlighted (Fig. 1). The near-permanent 
area is visualized in shades of blue and the dynamic 
area in shades of green. A great variability between 
different wetlands persists. Northern natural wetlands 
(Lac Bam, Mare de Darkoy and surrounding 
wetlands) are mostly not water covered throughout 
the whole year and the dynamic area is larger, 
whereas large wetlands with dams located further 
South (Barrage de Ziga, Barrage de Bagré) show 
relatively large near-permanent areas. In some cases 
floating vegetation prevents the detection of water, as 
it is assumed for the example of Darkoy. 

The NDVI can be considered as a proxy for 
vegetation conditions and concludes to intensity or 
duration of chlorophyll activity during the chosen dry 
season. Fig. 2 and Fig. 3 show anomalies from the 
mean of the summed up NDVI values for each 
respective dry season (Oct-Apr).  

Fig. 2. NDVI anomalies of summed NDVI for the dry 
seasons (Oct-Apr) for a wet year (2010-11) and a drought 
year (2011-12), for Lac Bam and Barrage de Bagré.  

A wet year (2010-11) and a drought year (2011-
12) have been chosen for Barrage de Bagré and Lac
Bam, and are displayed in Fig. 2. Orange to red
colors indicate negative NDVI anomalies, blue colors
positive anomalies. In the 2010-11 wet year the
dynamic area inside Barrage de Bagré appears as
negative NDVI anomaly with a strongly negative
outer boundary, due to longer water coverage. Bam,
however, shows a positive anomaly on some of its
shoreline that could originate from strong irrigation
activities surrounding the wetland during the dry
season. In the 2011-12 drought year there is a
positive NDVI anomaly in the center of both
wetlands that has to be further investigated. The
strong positive trend on the coastline of Bagré is
assumed to be coastal vegetation due to fast water
retreat. Increasing irrigation activities adjacent to the
wetlands have been confirmed over the past couple of
years based on high resolution Landsat data.

Fig. 3 shows anomalies from the mean of the 
summed up NDVI values for each dry season (Oct-
Apr) between 2000 and 2012, over the whole study 
area. Wetlands are masked in black. Where drought 
seasons (2000-01, 2004-05, 2011-12) are marked in 
red, NDVI anomalies are mainly negative (red), and 
have been found to coincide with the smallest area 
and shortest water coverage of wetlands. In the two 
seasons of largest water coverage in terms of surface 
area and duration (2003-04, 2010-11) positive NDVI 
anomaly trends (blue) of the surrounding area are 
predominant.  

165 | P a g e



CHAPTER 5 

Fig. 3. NDVI anomalies of summed NDVI for the dry seasons (Oct-Apr) from 2000-01 until 2011-12. Drought years are 
marked in red.  

Fig. 4. Cumulative water covered surface area, anomaly trend of the cumulative water covered surface area, and anomaly 
trend of NDVI dry season sums are shown for Bagré and Bam. 

For the two case studies Barrage de Bagré 
and Lac Bam, Fig. 4 shows the cumulative water 
covered surface area, the anomaly trend of the 
cumulative water covered surface area, and the 
anomaly trend of NDVI dry season sums. Bagré 
shows a negative anomaly trend of water 
coverage duration in the center (red), but 
positive anomalies in the dynamic part (blue), 
assuming a tendency towards larger water extent, but 
of shorter duration. Bam shows a general negative 
trend (red), particularly on its east coast, where 
standing and floating vegetation in water has 

been confirmed in recent Landsat imagery. The trend 
of the dry season NDVI anomalies focuses on the 
regions close to the coastline, and the water covered 
area of the two wetlands is masked in black. Lac Bam 
shows a strong positive trend (blue) adjacent to the 
coast which concludes to the strong increase of 
irrigated cultivation. Barrage de Bagré, however, 
shows the opposite behavior (red), concluding to 
larger water areas, but no increased cultivation. An 
exception is the area of large irrigated rice fields in 
the south-east of Barrage de Bagré.  

NDVI 
anomaly 
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4. CONCLUSIONS

This work shows the application of MODIS time 
series for spatio-temporal wetland monitoring. 
Surface water as well as vegetation can be jointly 
detected from satellite data and used to describe and 
categorize important wetland features relevant for 
better monitoring of critical water shortage situations. 
Surface water dynamics as well as vegetation 
anomalies in the surrounding region can be related to 
the occurrence of drought seasons. Increasing land 
use activities such as irrigated cultivation around Lac 
Bam could be detected with MODIS. The vegetation 
status of a wetland area is more an indicator for the 
available water during the past months, whereas the 
water covered area itself can be an indicator on 
minimum water availability in the coming dry season.  
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Abstract: Wetlands in semi-arid Africa are vital as water resource for local inhabitants and for
biodiversity, but they are prone to strong seasonal fluctuations. Lac Bam is the largest natural
freshwater lake in Burkina Faso, its water is mixed with patches of floating or flooded vegetation,
and very turbid and sediment-rich. These characteristics as well as the usual cloud cover during
the rainy season can limit the suitability of optical remote sensing data for monitoring purposes.
This study demonstrates the applicability of weather-independent dual-polarimetric Synthetic
Aperture Radar (SAR) data for the analysis of spatio-temporal wetland dynamics. A TerraSAR-X
repeat-pass time series of dual-co-polarized HH-VV StripMap data—with intervals of 11 days,
covering two years (2013–2015) from the rainy to the dry season—was processed to normalized
Kennaugh elements and classified mono-temporally and multi-temporally. Land cover time series and
seasonal duration maps were generated for the following four classes: open water, flooded/floating
vegetation, irrigated cultivation, and land (non-wetland). The added value of dual-polarimetric
SAR data is demonstrated by significantly higher multitemporal classification accuracies, where the
overall accuracy (88.5%) exceeds the classification accuracy using single-polarimetric SAR intensity
data (82.2%). For relevant change classes involving flooded vegetation and irrigated fields
dual-polarimetric data (accuracies: 75%–97%) are favored to single-polarimetric data (42%–87%).
This study contributes to a better understanding of the dynamics of semi-arid African wetlands
in terms of water areas including water with flooded vegetation, and the location and timing of
irrigated cultivations.

Keywords: Burkina Faso; Kennaugh decomposition; Lac Bam; monitoring; radar polarimetry; SAR;
time series; wetlands

1. Introduction

1.1. Remote Sensing of Wetlands in Semi-Arid Africa

Surface water located in water bodies, wetlands, and rivers is a critical resource in the semi-arid
West-African Sahel. Regular monitoring of water sources is often only carried out at few selected
wetlands or water bodies, and commonly applied as point-wise water level measurement. There is a
lack of documentation of monitoring locations and measurements in many African countries. Major
livelihood groups like farmers, pastoralists, and fishermen strongly depend on the existence and use
of water, as does the local population and wildlife. From an ecological point of view, water bodies and
wetlands are equally significant. They contain unique habitats, are of great importance for biodiversity,
and provide a number of ecosystem services. The study area for this work is Lac Bam, which is
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located in the southern Sahel zone of Burkina Faso in West Africa. Significant areas of Lac Bam are
covered by either floating or emergent flooded vegetation—resulting in areas of open water covered
by macrophytes—or flooded grasses, shrubs, and trees [1]. As the largest freshwater lake in Burkina
Faso, Lac Bam is of high importance for irrigated farming, animal watering, fishery, and extraction of
water for drinking and sanitation purposes. The banks of the lake are increasingly used for irrigated
agriculture—for which several motor pumps have been established [2]—and for animal watering,
since the lake is located on a transhumant pastoralist route. Lac Bam is part of the global Ramsar
List of Wetlands of International Importance, according to the intergovernmental Ramsar treaty [3].
Ramsar sites are selected according to their status as representative, rare, or unique wetland types,
as well as on their fulfilment of some of the eight criteria of biological diversity defined by Ramsar [3].
Wetland conservation and restoration plays an important role for Lac Bam which has been degraded
due to domestic use, farming, herding, and over-fishing, and suffers from increasing sedimentation
and pollution [2,4,5].

Remote sensing-based wetland monitoring can be a challenging task because wetlands are often
very dynamic—i.e., in terms of water area, water level, or vegetation presence and growth—especially
in semi-arid areas with dedicated rainy and dry seasons. In addition, anthropogenically generated
fluctuations due to water extraction for irrigated farming, domestic purposes, or power generation
occur, coupled with water level regulation by man-made dams. Such dynamic environments require
short temporal observation intervals, which is a key point of the study presented in this paper.
The presence of different wetland or land cover class types on a small surface area requires the use
of high spatial resolution data. Moreover, wetlands are very diverse, lack a unique land cover or
vegetation type or feature, and also contain water below the Earth’s surface [6]. Ground measurements
are only capable to provide local, point-wise information. This data can be provided with either a
high temporal resolution (e.g., water gauge) or a large spatial coverage (e.g., ground-based mapping).
The combination of both large area coverage and high spatial resolution requires remote sensing
solutions. At this point, remote sensing provides an advantage to ground-based measurements.
Observations at different spatial and temporal scales can aid as tool for wetland monitoring, in addition
to ground-based measurements or stand-alone. Ground-based monitoring of water in Africa is mostly
carried out in terms of water level measurement at dams of reservoirs. Particularly in Africa, regular
wetland monitoring using optical or radar remote sensing data is relatively scarce, and proper wetland
inventories might not even exist.

1.2. Wetland Monitoring Using Single-Polarized SAR Data

Wetland monitoring in this contribution assigns the regular area-wide mapping of the relevant
land cover and land use classes “open water”, “flooded/floating vegetation” and “irrigated fields”,
in the sphere of influence of the wetland. Synthetic Aperture Radar (SAR) data are often favored for
applications where cloud-cover is an issue or regular monitoring is important, among them water body,
flood, or wetland mapping and monitoring. SAR radiation is able to penetrate the vegetation canopy [7],
which is an advantage to map water below the vegetation canopy in areas of flooded or emergent
vegetation. Functioning at day- and nighttime, weather-independent, and under consistent geometry
conditions, the acquisition of time series with regular temporal intervals is possible. This requires
currently operational SAR satellites like TerraSAR-X (TSX) or RADARSAT-2, for which regular tasking
for scientific studies or operational programs is enabled. Such tasking was applied for this study,
but has yet been barely exploited for wetland areas in African semi-arid areas.

Single-polarized (single-pol) SAR data have proven to be suitable for monitoring open, calm water
surfaces for different applications, such as flood and inundation mapping, water body, or wetland
mapping. For that account, single-pol imagery was used in numerous studies using different SAR
sensors such as the C-band SAR sensor Advanced SAR (ASAR) on Envisat over large territories. Among
them, one study used ASAR for water body mapping in West Africa [8], and three studies focused
on global applications using Envisat ASAR Global Mode (GM) for global wetland monitoring [9],
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or recently, multitemporal Envisat ASAR Wide Swath Mode (WSM) for global open standing water
mapping [10,11]. Further work includes open water mapping using RADARSAT-1 [12,13] and
RADARSAT-2 [14] acquiring in C-band, or TSX [15–18] in X-band. HH-polarized C-band and X-band
SAR data have shown to be less sensitive to wind-induced surface roughness in open water and are
therefore favored to VV [15,19]. C-HH has been described to be the preferred polarization for mapping
flooded vegetation since it shows stronger contrast to non-flooded areas than VV [19]. Dense time
series of single-pol SAR imagery have been applied a few times in the context of wetland and flood
monitoring [20–22]. Temporal metrics denote pixel-based statistics calculated through the time series,
such as minimum, maximum, mean, standard deviation, or variance. They have been commonly used
in a number of remote sensing studies involving time series analysis, but only a few studies have used
temporal metrics from SAR time series for water body mapping [11]. Profiting from smooth water
reflecting almost all energy away from the sensor, water surfaces appear very dark in SAR intensity
images. Wind or currents can cause rough water surfaces, which lead to higher backscatter values than
over calm water. This effect is challenging for water monitoring. Additionally, emergent vegetation
can act as corner-like reflector in water and cause strong diplane or double-bounce scattering. This
effect is likely to be caused by open water reflecting the signal into preferably one direction into the
canopy of the flooded vegetation where it is scattered again. As a consequence, also in single-pol
SAR intensity data the backscatter measured by the radar sensor usually appears stronger for flooded
vegetation than over dry vegetation, or can be similarly strong as for vegetation on land or urban areas.
This presents a challenge for mapping and monitoring wetlands with solely SAR intensity information.

1.3. Wetland Monitoring Using Multi-Polarized SAR Data

Another approach is the use of multi-polarized SAR data. Polarimetric SAR enables the
discrimination between physical scattering mechanisms, such as surface or single-bounce scattering
(e.g., dominant in grasslands), diplane or double-bounce scattering (e.g., in urban areas or flooded
vegetation), and volume or diffuse scattering (e.g., in forests). Flooded vegetation, such as standing
vegetation in water, has been characterized by a significant double-bounce component [23–28]—that
might be the dominant scattering mechanism for flooded vegetation [25]—and can also be composed
of double-bounce and volume scattering [28]. Quadruple-polarimetric (quad-pol) SAR data from
RADARSAT-2 or ALOS PALSAR-1 have been successfully applied in the context of wetlands and
flooded vegetation [28]. Commonly applied polarimetric decompositions that are available only
for quad-pol data have been used for wetland studies, such as the Cloude-Pottier decomposition
applied in [26], the Freeman-Durden decomposition [29] utilized by [26,27], the Touzi incoherent
decomposition [30], the Yamaguchi four-component decomposition in [31], or the Hong and
Wdowinski four-component decomposition applied onto wetlands in [32]. Moreover, multiple
polarimetric parameters were exploited in [33]. Two recent studies have investigated the use of
simulated compact polarimetry for wetland change detection applying the m-chi decomposition [14]
or the Wishart-Chernoff distance [34], in preparation for the future RADARSAT Constellation
Mission (RCM).

The use of polarimetric SAR imagery to detect flooded vegetation in wetland environments
has shown promising results using dual-co-polarimetric (dual-co-pol) HH-VV data, mainly from
TerraSAR-X where this mode is enabled [26,35]. Already in 1997 the use of co-polarization (HH-VV)
for C-band was concluded to be most suitable for flooded vegetation mapping [36,37]. However,
since this mode did not exist on a satellite, a combination of RADARSAT-1 and European Remote
Sensing Satellite (ERS) data, one acquiring in HH and one in VV, was proposed [36], suffering, however,
from the missing phase relation which is essential for the identification of double bounces.

Schmitt and Brisco [26] confirmed that most of the information content could be deduced
from the HH and VV polarized modes with stable phase relation, which are described as most
suitable for wetland monitoring [25,26,37]. This is of advantage if no quad-polarized data but HH-VV
dual-polarimetric data are available, as it is the case for TSX. To date, most common polarimetric
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decompositions can only be computed for fully polarimetric data. Operational SAR sensors currently
in orbit (such as TSX, Sentinel-1, or RADARSAT-2) are mostly acquiring in dual-polarimetric mode,
with the exception of RADARSAT-2 and the recently operational ALOS PALSAR-2, which can be
tasked to acquire data with full polarimetry at the cost of reduced spatial resolution and areal coverage.
There is a lack of methods to be applied on dual-polarimetric data. One possibility is the computation
of the Shannon entropy which has been used for wetland studies [33,35,38], or the H-α decomposition
for which no wetland study has been published yet. SAR data in archives from the above mentioned
and previous sensors are mostly available with single and dual polarization in irregular time intervals.
Therefore, there is a need to exploit capabilities of dual-polarimetric SAR data time series for wetland
monitoring using existing archives or new data acquisitions.

The Normalized Kennaugh elements developed by Schmitt et al. [39] are a recently published
method that can be applied on dual- as well as quad-pol data of any wavelength. This method
has been chosen for the study presented in this paper. Besides being one of the few methods
applicable for dual-polarimetric HH-VV data—which have been described as the most suitable
polarimetric combination for wetland remote sensing—the Kennaugh elements allow the interpretation
of physical scattering mechanisms (double-bounce and surface scattering) for HH-VV dual-pol data
while retaining the phase information, and are applicable for any SAR sensor. The Kennaugh elements
have so far been applied on wetlands in two studies by Schmitt et al. performing pre-classification
change detection at the “Upper Rhine” site in Germany, and in New Brunswick, Canada, using TSX
and RADARSAT-2 data [26,40].

Studies using dense polarimetric SAR time series for wetland monitoring or the detection of
open water, flooded vegetation, and irrigated cultivation are still very rare, especially in semi-arid
areas, particularly in Africa. Wetland areas in Africa have been mapped in one study classifying the
Lake Chilwa and the Lake Urema in Malawi and Mozambique [41], under more humid conditions.
Semi-arid wetland areas have been mapped in central Spain [31,42], but at present there are no studies
published on monitoring freshwater wetlands in semi-arid areas in Africa with SAR polarimetry.

1.4. Alternative Remote Sensing Techniques for Wetland Monitoring

Wetland Monitoring using optical remote sensing data is widely applied [43]. Little research
has been done on the synergy of optical and SAR imagery for wetland monitoring using data from
optical satellites such as Landsat, RapidEye, or AVIRIS [27,32,44,45]. Alternative SAR remote sensing
techniques for soil moisture retrieval or water level measurements can be of relevance for wetland
monitoring as well. Data from SAR sensors have, among other remote sensing sensors, also been
used for surface soil moisture estimation in Africa on a medium resolution scale (around 1 km) [46].
Interferometric synthetic aperture radar (InSAR) has been used to detect water level changes in
wetlands [47–50]. Radar altimetry is another remote sensing technique able to derive point-wise
elevation measures in a very sparse spatial distribution. Recently, one study has been carried out
in West Africa and concluded that it is possible to measure water level below vegetation canopy in
West Africa with radar altimetry [51]. Due to the sparse single point measurements with a footprint
of several hundred meters each, it is not suitable for the monitoring of wetlands in a high spatial
resolution or for monitoring the wetland extent.

1.5. Objectives

The objective of this paper is to derive spatio-temporal dynamics of the following classes: open
water, flooded or floating vegetation, irrigated fields of the Lac Bam wetland, and land (non-wetland).
A dual-co-polarized (HH-VV) repeat-pass time series of TSX StripMap data, acquired between
September 2013 and April 2015, was chosen and processed with the Kennaugh element framework [39].
The processing and analysis chain aims to interpret seasonal dynamics in terms of: which kind of
change processes take place, where these processes take place, when changes and dynamics occur,
and how seasonal changes can be quantified in terms of area (how large) or time (how long). This work
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unites the advantages of using multi-polarized SAR data and dense time series. TSX data was chosen
due to the following reasons: (1) HH-VV being the favored polarimetric channel combination for
wetland studies as indicated by other studies [25,26,36,37]; (2) applicability of the Kennaugh method
on HH-VV dual-pol data leading to physically interpretable results; (3) high spatial resolution (in this
study 6.60 m in azimuth and 2.49 m in range, sampled to 5 m pixel spacing); (4) coverage of the study
area in a single acquisition (swath width: 15 km, length: 50 km); (5) acquisition of relatively dense and
regular time series (as compared to repeat cycles of other SAR satellites: 12 days for Sentinel-1, 14 days
for ALOS PALSAR-2, 24 days for RADARSAT-2, and 46 days for ALOS PALSAR-1); and (6) the option
for TSX data accessibility and tasking for scientific studies.

This study presents the first SAR polarimetry-based high spatial and high temporal resolution
time series monitoring for African wetlands, which are often rarely monitored, both on the ground and
from space. In this work we show how well-established classification approaches can be successfully
used to derive wetland change classes, for monitoring water area dynamics—including water with
flooded or floating vegetation—and deriving the location and timing of irrigated cultivations around
the wetland, by the use of dual-polarimetric SAR remote sensing time series.

2. Materials

2.1. Study Area—Lac Bam

Lac Bam, located in central-north Burkina Faso (13.40N, 1.52W) just 300 m above sea level is the
largest natural lake in Burkina Faso (Figure 1), with an area of 22–25 km2 at high water level [3,52].
It is a permanent freshwater lake located along the Nakambé River (White Volta). The lake catchment
is situated in the same-named province of Bam. Lac Bam is a Ramsar wetland site of international
importance [53], and an important habitat for many species of bird, fish, and the Nile Crocodile.

Figure 1. Study area: Lac Bam in Burkina Faso, West Africa, and footprint of the used datasets:
TerraSAR-X (dark red), RapidEye (yellow), and WorldView-2 (blue).

The people in the area significantly depend on Lac Bam. During the rainy season, the area is
characterized by rain-fed agriculture, but during the long-lasting dry season (October–May) the only
water source is surface water in reservoirs and wetlands, apart from some water points and wells with
access to ground water. Irrigated cultivation around the lake has increased particularly throughout the
past five years. This has been detected from remote sensing data by previous works of Moser et al. [1,54].
Irrigation activities result in vegetable gardening, mainly green beans that are also internationally
exported, tomatoes, and onion. An increasing number of motor pumps has been installed during
this time to irrigate fields at the banks of the lake, up to a distance of one to two kilometers from the
water, according to local authorities [55], see Figure 2. A total of at least 1000 motor pumps have been
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counted at Lac Bam in 2014 [2]. National and international livestock corridors pass through the area
leading transhumant nomads to stop by. Pollution and siltation are two major problems of the lake.
While increasing cultivation has caused an overuse of fertilizers and pesticides, it has also led to the
removal of natural vegetation while cultivating the fringe areas. This causes increasing sediment input
into the lake. A sedimentation rate of 500,000 m3 sediments per year has been stated, that caused
the lake to lose 1/3 of its depth between 1963 and 2006 due to siltation [4]. As a consequence, water
areas are spreading out further and formerly cultivated fields are now flooded [5,55]. The water depth
has been stated to be between 1.5 and 4 m varying with the rainy and dry seasons [4]. In the October
2013 field visit water depths between 1.2 and 3 m were measured at points with 100 m intervals along
three profiles crossing the lake closely located to the village of Bam. Areas of flooded vegetation had
water depths between 0.4 and 1.2 m as measured in the fieldwork in October 2015 (Figure 2). If human
pressure, water extraction and siltation continue, Burkina Faso’s largest natural freshwater lake might
turn into a river in about 25 years according to Ouedraogo [4]. Restoration efforts are for example
carried out by a local governmental project (le projet Restauration, protection et valorisation du lac Bam) [2].
Further restoration initiatives (e.g., constructing dikes along rivers to reduce sediment transportation,
or planting trees on the lake banks) are carried out by local fishermen and farmers [55].

Figure 2. (a) Location of the GPS data (from 15–18 October 2013 to 25–28 October 2015) with the
(a) RapidEye image from 19 October 2013 as backdrop (©BlackBridge 2013, Berlin, Germany), including
areas visited in greater detail (white circles), GPS/photo points on land (yellow dots), GPS/photo points
from the boat tracks on the open water (blue dots), and on water with flooded vegetation (green dots);
(b) floating water lilies; (c) shoreline including soil exposed after water retreat and flooded vegetation
in the background; (d) irrigated fields; (e) flooded and floating vegetation; (f) water, flooded vegetation,
and an island in the background, seen from the eastern shoreline; (g) barren land; (h) flooded trees next
to the dam in the south; (i) motor pump at the shoreline; (j) open water seen from the boat southwards,
(photos by L. Moser, F. Betorz Martìnez, R. Ouedraogo).

2.2. Synthetic Aperture Radar Data

A summary of data characteristics is described in Table 1. An 11-day repeat-pass time series of
TSX dual-co-polarized HH-VV StripMap data were acquired for the Lac Bam site. TSX StripMap data
cover a swath width of 15 km and a length of up to a 50 km, and were resampled to 5 m pixel spacing.
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The time series of a total of 42 TSX StripMap images between September 2013 and April 2015 covers
two consecutive years with 11-day intervals between the acquisitions, starting at the end of the rainy
season (mid-September) and ranging until the end of the dry season (mid-April). As described in
Table 2, the two seasons are covered with 21 image acquisitions each. The three missing TSX data were
linearly interpolated over time to keep equal distances between all images in the time series. Further
acquired data during the rainy season were not used for this analysis due to larger acquisition gaps
between June and August 2014.

Table 1. Sensor characteristics of the used datasets TerraSAR-X, RapidEye, WorldView-2, and GeoEye-1.

TerraSAR-X RapidEye WorldView-2 GeoEye-1

Wavelength 3.1 cm

Spectral Bands

440–510 nm (blue)
520–590 nm (green)

630–685 nm (red)
690–730 nm
(redEdge)

760–850 (NIR)

442–515 nm (blue)
506–586 nm (green)

624–694 nm (red)
765–901 (NIR)

450–510 nm (blue)
510–580 nm (green)

655–690 nm (red)
780–920 (NIR)

Mode StripMap

Polarization HH-VV dual-pol

Frequency X-band (9.6 GHz) Dynamic range 12 bits/pixel 11 bits/pixel 11 bits/pixel

Resolution
6.60 m (azimuth),

2.49 m (range) Resolution 6.5 m (ms) 2 m (ms), 0.5 m (pan) 2 m (ms), 0.5 m (pan)

Pixel spacing 5 m (resampled) Pixel spacing 5 m (resampled) 0.5 m (pansharpened) 0.5 m (pansharpened)

Inc. angle 27.4˝–28.9˝ Off-nadir angle
2.5˝–21.2˝

(different acquisitions) 22.0˝ 39.2˝

Swath width 15 km Swath width 77 km 16.4 km 15.2 km

Pass direction
Ascending,

right-looking Pass direction Descending Descending Descending

Product level
Level 1B (single

Look Slant Range
Complex (SSC))

Product level Level 1B (basic) Level 1B
(ortho-ready standard)

Level 1B
(ortho-ready standard)

Table 2. Remote sensing data used in this study. Main dataset: TerraSAR-X dual-co-polarimetric
HH-VV StripMap time series. Reference datasets: RapidEye (RE), WorldView-2 (WV-2), GeoEye-1
(GE-1), and GPS/photo data. Data marked in bold were used as reference datasets for the areas of
interest (AOIs).

2013–2014 2014–2015

No TerraSAR-X Data
Optical

Reference Data
GPS/Photo

Data
TerraSAR-X Data

Optical Reference
Data

GPS/Photo
Data

1 6 September 2013 4 September 2014
2 * 17 September 2013 15 September 2014
3 28 September 2013 * 26 September 2014 24 September (WV-2)
4 9 October 2013 7 October 2014
5 20 October 2013 19 October (RE) 15/18 October 18 October 2014
6 31 October 2013 29 October 2014
7 11 November 2013 9 November 2014 8 November (RE)
8 22 November 2013 20 November 2014
9 3 December 2013 1 December 2014
10 14 December 2013 12 December 2014
11 25 December 2013 23 December 2014
12 5 January 2014 * 3 January 2015 5 January (RE)
13 16 January 2014 14 January 2015
14 27 January 2014 25 January 2015
15 7 February 2014 7 February (RE) 5 February 2015 2 February (RE)
16 18 February 2014 16 February 2015
17 1 March 2014 27 February 2015
18 12 March 2014 10 March 2015
19 23 March 2014 21 March 2015
20 3 April 2014 7 April (RE) 1 April 2015 30 March (RE)
21 14 April 2014 12 April 2015 15 April (GE-1)

25/28 October

* Three TSX datasets were temporally interpolated.
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2.3. Optical Reference Data

The reference dataset consists of optical very high resolution (VHR) WorldView-2 and GeoEye-1
Level 1B images, with four multispectral bands and a spatial resolution of 0.5 m after pansharpening,
from September 2014 and April 2015, respectively. Additionally, optical high resolution (HR) Level
1B RapidEye images with five multispectral bands and a resolution of around 6.5 m were available
between October 2013 and March 2015 for selected dates (Tables 1 and 2).

2.4. GPS Reference Data

Global Positioning System (GPS) coordinates in latitude, longitude, and altitude were collected
with a hand-held GPS device (Garmin GPSMAP) at photo locations and measurement locations,
and GPS tracks were recorded at all major routes.

Figure 2 shows GPS data locations, including boat tracks on the water, and associated photos
from the two field campaigns at Lac Bam from 15 to 18 October 2013 and 25 to 28 October 2015
(compare Table 2). In October 2013 GPS data were collected with a handheld GPS device at Lac Bam
and its surrounding areas. The positioning error is estimated to be less than 10 m since the region is
characterized by flat topography and therefore, good visibility for GPS satellites. The timing coincides
with one TSX (20 October 2013) and RapidEye (19 October 2013) acquisition. The coastlines were barely
accessible due to dense flooded vegetation and cultivation around the lake at the end of the rainy
season. Three areas, marked with white circles in Figure 2, were observed in detail in October 2013.
Several photos were taken at or from the coastline, and from the boat when crossing the lake. Along a
triangular shaped line, the water depth was measured every 100 m crossing the lake by boat (blue dots).
A second field campaign was carried out from 25 to 28 October 2015, with the main objective to derive
information about areas of flooded vegetation that are difficult to be recognized or classified using
TSX data. Four regions of flooded vegetation were observed in detail in October 2015 (green dots).
Alongside taking photographs, GPS points and the water depth were measured, and vegetation
parameters such as type, height, and density were estimated. The GPS data were imported into Google
Earth, ArcGIS, and further used as ground truth combined with associated photographs and satellite
reference data of a similar time in the year from RapidEye (20 October 2013) and one year later from
WorldView-2 (24 September 2014).

3. Methodology

The overall workflow is illustrated in Figure 3. The first part is dedicated to data pre-processing,
split into the Kennaugh processing chain for polarimetric SAR imagery (Section 3.2), the Catena
processing chain for optical HR and VHR data (Section 3.3), the preparation of photo and GPS data
from fieldwork, and the definition and creation of training and validation datasets (Sections 4.1 and 4.2).
The second part deals with the spatio-temporal analysis and interpretation of the TSX dual-polarimetric
repeat-pass time series (Sections 4.3 and 5).
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Figure 3. Processing workflow.

3.1. SAR Data Processing to Kennaugh Elements

Using the Kennaugh element framework developed by Schmitt et al. [39], a decomposition
technique based on the Kennaugh matrix was applied for the time series of dual-polarized TSX
imagery. The Kennaugh matrix K is computed by linearly transforming the four-dimensional Stokes
vector, resulting in a four-by-four scattering matrix. The matrix elements Ki contain the total intensity
K0 and nine independent linear coefficients of the transformation K1´ 9. The total intensity K0 is acting
as scaling factor for the other Kennaugh elements which are related to the total intensity; see the right
side of Equation (1) showing the Normalized Kennaugh elements ki, as published by Schmitt et al. [39].
The normalized Kennaugh matrix enables the separation of intensity and polarimetric information on
the one hand. On the other hand, it guarantees a closed value range s´1, `1r of its elements ki which
is essential for effective image compression and therewith for delivery and archiving at the same time.

rKs “

»
———–

K0 K4 K5 K6

K4 K1 K9 K8

K5 K9 K2 K7

K6 K8 K7 K3

fi
ffiffiffifl “ K0 ¨

»
———–

1 k4 k5 k6

k4 k1 k9 k8

k5 k9 k2 k7

k6 k8 k7 k3

fi
ffiffiffifl “ K0 ¨ rks (1)

The respective Kennaugh elements can be computed, depending on the polarization direction
(HH, HV, VH, VV), the number of polarimetric channels (single, dual-, or quad-pol), and the type
of polarization (twin-pol, co-pol, or cross-pol). For this study dual-polarimetric TSX HH-VV data
were chosen due to a number of reasons: (1) HH-VV polarization has proven to be well applicable
for studies on wetlands [26,28,56,57]; (2) the difference between HH and VV backscatter aids to detect
flooded vegetation due to lower backscatter intensity in VV, in contrast to land areas where HH and
VV intensity are similar; (3) scattering mechanisms are separable and physically interpretable in terms
of distinguishing between single- and double-bounce scattering mechanisms using dual-co-pol data
(HH-VV), as opposed to dual-cross-pol data (HH-HV or VV-VH), where no physical interpretation of
single- or double-bounce scattering is possible. This is of great value considering that double-bounce
scattering is stronger in flooded vegetation than on water or vegetation on land, which can be
concluded from previous work as well [25,26]; (4) dual-co-pol data provide phase information in
addition to intensity-based information (as opposed to dual-cross-pol data). This leads to three
significant Kennaugh element outputs that can be computed (as opposed to two outputs with
significant information content only for dual-cross-pol data).
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In the case of the dual-polarized TSX data—with HH and VV channels with fixed inter-channel
phase shift—we are dealing with co-pol data. This results in two intensity-based elements (K0 and K4)
and two elements according to the inter-channel correlation’s real (K3) and imaginary part (K7), as
described in Equations (2)–(5):

K0 “ 1
2

!
|SHH|2 ` |SVV |2

)
(2)

K3 “ ´Re tSHHSVVu (3)

K4 “ 1
2

!
|SHH|2 ´ |SVV |2

)
(4)

K7 “ Im tSHHSVVu (5)

These four normalized Kennaugh elements split the backscatter signal into the total intensity
of HH and VV (K0), the intensity ratio between double bounce and surface intensity (K3), the ratio
between HH and VV intensity (K4), and the phase shift between double-bounce and surface scattering
(K7). These four Kennaugh elements are illustrated in Figure 4 as an example for the 20 October 2013.

Figure 4. From left to right: A RapidEye false color composite (band 5-3-2, i.e., NIR-red-green) reference
image from 19 October 2013 (©BlackBridge 2013); the four Kennaugh elements derived from the
dual-pol TSX image from 20 October 2013 (©DLR 2013): K0 (the total intensity as sum of HH plus
VV intensity); K3 (difference double-bounce minus surface scattering); K4 (difference HH minus VV
intensity); K7 (phase shift between double-bounce and surface scattering).

The Kennaugh elements were subsequently geocoded and calibrated to sigma naught coefficients
as implemented in the Kennaugh chain [39]. For the present imaging mode and mean incidence
angles, the pixel localization accuracy is assumed to be below 2 m [58] which is negligible regarding
the final 5 m pixel spacing on ground. Working with repeat pass acquisitions, even inaccuracies
comprised in the elevation model always affect the image in the same way and thus are not of great
importance. A recently published image enhancement algorithm called Multi-scale Multi-looking
was applied to stabilize the radiometric measurements without loss of geometric resolution [39].
The resulting image hence is characterized by a varying look number despite of a uniform pixel spacing.
For instance, the minimal look number of about 5.2 looks is preserved over very heterogeneous regions
like settlements. The maximum look number of about 1331 looks, i.e., incorporating 16 measurements
in each direction is reached over calm open water. This algorithm allows to preserve details and
therefore filter the parts of the image that contain fine details or fine texture (e.g., urban areas) with
a low number of looks, while it smooths parts of the image with low texture (e.g., open water) by
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applying a larger number of looks. A subsequent normalization step resulting in values between ´1
and +1, described as hyperbolic tangent scaling by Schmitt et al. [39], produces comparable radiometric
and polarimetric images throughout the time series. Each of the resulting Kennaugh elements is
displayed in Figure 4 as an example of the 20 October 2013. For further analysis and classification,
the images were scaled into decibel (dB), in order to derive nearly normally distributed values per
class and physically comparable measurements.

3.2. Optical Reference Data Processing

The RapidEye Level 1B images have been top-of-atmosphere corrected, co-registered,
orthorectified, and projected to UTM with the DLR-in-house processing environment Catena [59,60].
Due to the large swath and scene length of the L1B data scenes recorded from different satellite
orbit locations, Lac Bam could be displayed on a single scene of each image. For seven dates during
the analysis period, two RapidEye images (8 November 2014 and 2 February 2015) were chosen as
reference images for the definition of both monotemporal and multitemporal areas of interest (AOIs),
alongside with images from WorldView-2 (24 September 2014) and GeoEye-1 (15 April 2015). The latter
two were chosen due to their higher geometric resolution (VHR with 0.5 m after pansharpening)
that allowed accurate interpretation of the underlying land cover classes. The Catena processing
environment was used as well for orthorectification and pansharpening of the VHR images [59].
In order to guarantee comparability between the different datasets in terms of correct geolocation,
co-registration, and projection, all the optical data were matched to a common RapidEye master image
from 8 November 2014, with accuracies of 0.5 to maximum 1.9 pixels (RMSE in x and y is 0.6–1.5 pixels
for RapidEye and 0.5–1.4 pixels for VHR data). The master image was chosen since it was totally
cloud free, acquired with a small incidence angle, and located centrally with respect to all the other
image swaths.

3.3. Classification

For both years, a supervised classification was carried out for every image of
the Kennaugh-element-processed TSX data time series, and is hereby referred to as
monotemporal classification of each image. This served to analyze change locations (where), quantify the
area for each class at different times (how large), and derive the seasonal cycle of the area covered by
a certain class (when, how long). Four classes were defined: open water, flooded/floating vegetation,
irrigated fields, and land (non-wetland). By applying the maximum likelihood algorithm [61] on
logarithmically scaled Kennaugh elements, a probability value to belong to a certain class was
calculated for each pixel. The classification was carried out by assigning the pixels to the class
that contains the maximum observed probability with respect to the other classes. This approach was
chosen since it is a statistically comprehensible and traceable method that does not incorporate the use
of a black box component, as it is the case for commonly applied algorithms in remote sensing such as
random forest, artificial neural networks, or support vector machines. Sequentially, the training and
validation set had to be carefully determined and tested in advance. A mean vector and a covariance
matrix were calculated for each class, using the AOIs averaged for four different TSX images at t1–t4.
The class statistics gathered from different acquisitions in time provided a greater tolerance to random
variations with respect to using only one image as reference.

Consequent maps of the season duration of the wetland extent were calculated, and the wetland
area was compared for the two seasons. This was done by summing up the classification results of
each image over the time series, separately for the three wetland classes open water, flooded vegetation
and irrigated fields, and the total wetland area. These cumulative season duration maps reflect
spatio-temporal dynamics in terms of surface covered by a class (number of pixels converted into
hectare) and time (duration of the season in time steps)—hence addressing the quantitative questions
of how large areal dynamics are and how long they persist. Only for the calculation of the cumulative
season duration maps, a spatial and temporal 5-pixel median filter was applied. All pixels that were
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covered by a class only once or twice were discarded resulting in a tolerance for occurring random
misclassifications. In addition, the first five time steps (September–October) for irrigated cultivation
were not considered for the cumulative analysis since they can be accounted to rain-fed cultivation
and vegetation, and are not included in the definition for a wetland. Misclassified irrigated field pixels
at elevations higher than 315 m of altitude were deducted from a digital elevation model (DEM) from
the Shuttle Radar Topographic Mission (SRTM), and were excluded from the analysis for the class
irrigated fields. Pixels of the monotemporal classification time series were re-calculated into an area
(in hectare) per class. A buffer was created outside of the maximum extent of the wetland classes in
the cumulated area map, in order to exclude pixels out of the range of the wetland area.

In order to derive wetland change classes, a classification using the whole time series stack
as input, referred to as multitemporal classification, was carried out. Change classes were used to
derive information on which change processes take place and where. Analogous to the monotemporal
classification, training and validation sets were defined. A stack of all images in the time series
was created, placing the four Kennaugh elements of the first image, followed by the four Kennaugh
elements of the next image, resulting in a stack of 84 layers. Multitemporal class statistics were derived
for each class, resulting in an 84-element mean vector 84 ˆ 84 multitemporal covariance matrix. Along
the diagonal of the matrix, the covariance matrices for the classes of each image are located, and the
covariances between different images are in off-diagonal positions. The test runs of the multitemporal
classification yielded satisfying results for all classes except for open water, which was frequently
misclassified as land. Hence, the influence of the Kennaugh element K0 was enhanced for the class
open water in the multitemporal classification by applying a weighting factor on K0 on the covariance
matrix of the water class. This is justified because the low backscatter in K0 is very suitable to classify
water, whereas the polarimetric channels yield highly variable values.

The accuracy assessment was performed with the commonly applied error matrix, also named
confusion matrix [62,63]. This results in a Producer’s Accuracy (PA) representing the errors of exclusion
or omission, and a User’s Accuracy (UA) representing the errors of inclusion or commission, for every
class. The Overall Accuracy (OA) is calculated from the ratio of the correctly classified pixels (along the
diagonal) to the total number of pixels in the error matrix, for each classification [62,64]. According to
latest studies [64,65], the OA is favored over other common accuracy measures such as Kohen’s Kappa.
The validation dataset, based on optical reference data (Tables 1 and 2) is described in Section 4.1 for
the monotemporal case, and Section 4.2 for the multitemporal case.

4. Selection and Temporal Analysis of Training and Validation Data

4.1. Monotemporal Training and Validation Data

The design of the classification study and the selection of the training and validation set were
done the following way: For the monotemporal case, four classes were chosen that represent the
three main land cover units that the Lac Bam wetland is part of open water (W), flooded/floating
vegetation (V), and irrigated fields (F). The fourth class represents all other areas on land (L) that are
not flooded at any point in time, do not belong to the wetland, and should be discriminated from the
wetland areas. The most common change processes are described in Table 3 based on the four time
steps 24 September 2014 (t1), 8 November 2014 (t2), 2 February 2015 (t3), and15 April 2015 (t4).

AOIs were constructed, using the VHR and HR optical images at the four different reference
times as input, as well as information derived from the field campaigns. The AOIs were randomly
split into a training dataset and a validation dataset. The study design was constructed in a way
that—to the extent possible, for both the monotemporal and multitemporal classification—the same
AOIs were used. For each class an identical number of AOIs was defined and the size of the AOIs
was between 1000 and 6000 m2. In a few exceptions, smaller AOIs had to be generated, since the
desired land cover type was represented only on a very small area, e.g., a narrow region of retreated
water exposing the soil below and therefore being associated as the class “water to land”. A total of
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270 AOIs were generated—among which 200 were used for the monotemporal classification (Table 4),
and 270 for the multitemporal case (Table 5)—resulting in 45 AOIs per class. The 200 AOIs for the
monotemporal classification were split into 100 AOIs for the training dataset (25 per class), and
100 AOIs for the validation dataset (20 per class, with two different validation sets for the class
irrigated fields). According to Table 4, training areas have been used to derive spectral statistics from
four polarimetric TSX images at four different times of the year 2014–2015 (t1 = 24 September 2014,
t2 = 8 November 2014, t3 = 2 February 2015, t4 = 15 April 2015. This provides that the given class exists
during this time of the year. The classes “water” and “land” were derived from all four time steps
using the identical 25 AOIs, and “flooded vegetation” was derived from the same 25 AOIs at the first
and second time step. Training data for irrigated fields are only defined for the third time step, since
this class is so dynamic that fields barely occur in the same locations within a two-month interval.
The validation dataset for the monotemporal classification is created from 60 AOIs for each time step,
corresponding to 20 AOIs of three classes. Since the occurrence of the class “flooded vegetation” is
limited mainly to the first and second time step (t1, t2), and “irrigated fields” to the third and fourth
time step (t3, t4) the validation dataset contains three classes for every time step.

Table 3. Change processes at Lac Bam from the rainy to the dry season, illustrated for the four time
steps: 24 September 2014 (t1), 8 November 2014 (t2), 2 February 2015 (t3), and 15 April 2015 (t4):
W (water), V (flooded/floating vegetation), F (irrigated fields), L (dry land), main change processes are
marked bold.

Change
Class

Stable/Dynamic
t1

(24 September 2014)
t2

(8 November 2014)
t3

(2 February 2015)
t4

(15 April 2015)

W stable W W W W
W–L dynamic W W W L

W W L L
V–L dynamic V V V L

V V L L
V–F dynamic V V L F

F–L/L–F dynamic F L F L
L F F L
L L F L
L L L F

L1 stable L L L L
L2 stable L L L L

To estimate signature separability, the mean of each training and validation area is visualized
as a point in the 3-dimensional scatterplots in Figure 5, for the Kennaugh elements K0, K3, and K4

which are displayed in normalized scaling to 16 bit unsigned integer described by Schmitt et al. [39].
The same colors as for the classification results have been used: blue for open water, green for flooded
vegetation (only t1 and t2), yellow for land, and red for irrigated cultivation (only t3 and t4). Open
water has low values in K0 at all four time steps, and forms a cluster that can be clearly delimited from
the other classes, with the exception of t4 where a large number of land signatures show similarly low
values in K0 and can therefore be mistaken with water. This problem was observed for different end of
dry season images. The high variability of the polarimetric channels for open water can be interpreted
from the large range of values for water in K3 (apparent for t1) and K4 (apparent for t1–t4). Flooded
vegetation is clustered in the upper front left corner of the scatterplot, and is characterized by high
values in K4, medium values in K3 and lower values in K0. In almost all cases it can be well delimited
from the land points that are placed along a diagonal from low values in all three Kennaugh elements
(e.g., light soil and sand) to high values in all three Kennaugh elements (e.g., for urban areas). In t3
and t4 the irrigated field points show particularly strong backscatter in K0, whereas the values for K3

and K4 are in the lower range. In t3 the clusters of irrigated fields and land can be separated besides
a few points that mainly correspond to rocky areas where land is wrongly classified as cultivation.
For t4, however, the clusters are partially mixed and can therefore lead to misclassifications of fields
and other land areas towards the end of the dry season.

CHAPTER 6 

182 | P a g e



Table 4. Areas of interest (AOIs) for the training dataset (averaged for t1–t4) and validation dataset
(for each image t1–t4) of the monotemporal classification applied on each image in the time series:
W (water); V (flooded/floating vegetation); F (irrigated fields); L (land).

W V F L
Sum AOIs per

Time Step

Training t1 25 (av. t1–t4) 25 (av. t1–t2) 25 (av. t1–t4)

100 (t1–t4)
Training t2 25 (av. t1–t4) 25 (av. t1–t2) 25 (av. t1–t4)
Training t3 25 (av. t1–t4) 25 (t3 only) 25 (av. t1–t4)
Training t4 25 (av. t1–t4) 25 (av. t1–t4)

Validate t1 20 (t1–t4) 20 (t1–t2) 20 (t1–t4) 60 (t1)
Validate t2 20 (t1–t4) 20 (t1–t2) 20 (t1–t4) 60 (t2)
Validate t3 20 (t1–t4) 20 (t3 only) 20 (t1–t4) 60 (t3)
Validate t4 20 (t1–t4) 20 (t4 only) 20 (t1–4) 60 (t4)

Sum AOIs
per class 45 (t1–t4) 45 (t1–t2) 65 (val. t3

differs t4) 45 (t1–t4)

Figure 5. Scatterplots for the Kennaugh elements K0, K3, and K4 displaying the mean value of each
class of all 135 training and validation areas per time step: open water (blue), flooded vegetation (green),
irrigated cultivation (red), and land (yellow), for four time steps (t1–t4). The Kennaugh elements are
displayed in normalized scaling to 16 bit unsigned integer.

4.2. Multitemporal Training and Validation Data

For the multitemporal case seven classes were chosen, according to change processes that were
identified in the course of the study by inspection of the optical reference data at the four reference
time steps (t1–t4) and pre-classification, as described in Table 3. While the change from water to land,
flooded vegetation to land, and flooded vegetation to fields followed a seasonal cycle and mostly
occurred at similar dates, the change process from dry land (or barren fields) to irrigated fields and
vice versa is more complex—since changes happen during different times around the year, and in both
directions. Hence, three classes are temporally stable: open water (W), land covered with permanent
vegetation (L1) and land with soil, rock, urban (L2); and four of them are dynamic: water to land/soil
(W–L), flooded vegetation to land/soil (V–L), flooded vegetation to irrigated fields (V–F), and irrigated
fields to land/soil or land/soil to irrigated fields (F–L/L–F). Each class contains 45 AOIs, the land class
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was split into permanent vegetation (15 AOIs) and soil, rock, urban (30 AOIs). That adds up to a total
of 270 AOIs for the multitemporal case with seven change classes (Table 5).

In order to understand the temporal development of different classes as well as differences within
the classes, the mean of different AOIs of each class was plotted for the seasonal time series 2014–2015.
This analysis was done in advance and significantly contributed to the selection of AOIs and change
classes. Figure 6 shows all seven change classes plotted for the four Kennaugh elements: K0, K3, K4,
and K7. The plots correspond to the backscatter of an example training sets of each class. The most
significant Kennaugh element for monitoring open water (dark blue) or water to land (light blue) is
K0. For the flooded vegetation classes V–L (light green) and V–F (green) a seasonal decrease is well
described in K3 and K4, and complementary in K7. V–L is increasing followed by a steep decrease in K0,
while V–F is increasing again at the end of the dry season, due to the initiation of irrigated cultivation.
Irrigated fields (dark red) show a seasonal cycle best described in K0 and K3. This analysis provides
information about the stability or variability of a class and about the seasonal cycle of each class.

Table 5. Multitemporal AOIs for the training and validation dataset: W (water); W–L (water to
land/soil); V–L (flooded vegetation to land/soil); V–F (flooded vegetation to irrigated fields); F–L/L–F
(irrigated fields to land/soil or land/soil to irrigated fields); L1 (land: permanent vegetation); L2 (land:
soil, rock, urban).

W
Stable

W–L
Dynamic

V–L
Dynamic

V–F
Dynamic

F–L/L–F
Dynamic

L1
Stable

L2
Stable

Sum AOIs
Multitemp

Training
Multitemp 25 25 25 25 25 8 17 150

Validate
Multitemp 20 20 20 20 20 7 13 120

Sum AOIs
per Class 45 45 45 45 45 15 30

Figure 6. Temporal signature analysis from September 2014 until April 2015 for the Kennaugh elements
K0, K3, K4, and K7: W (dark blue); W–L (light blue); V–L (light green); V–F (green); L–F/F–L (dark red);
L1 (dark green); L2 (beige).
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4.3. Temporal Interpretation of the Kennaugh Elements

The temporal quantitative development of each Kennaugh element and its variability or stability in
terms of seasonal development is shown over a spatial profile with different land cover characteristics.
An east-west profile line through the village of Bam was defined to plot the Kennaugh element’s
backscatter development over time according to a rainbow-color scale (from blue to green, beige,
orange, and red), as seen in Figure 7. Each point along the smoothed profile is plotted along the
x-axis (unit in pixels). The y-axis represents the backscatter in decibel and is scaled differently for
each Kennaugh element. The land cover is validated at the beginning and at the end of the time
series, as displayed on an optical WorldView-2 (start in the rainy season) and RapidEye (end in the dry
season) image in Figure 7.

Figure 7. Spatio-temporal profiles for different land cover types along the spatial profile with time steps
of TSX Kennaugh elements visualized in the color scale. Optical reference images from WorldView-2
(24 September 2014) (©DigitalGlobe 2014 provided by EUSI, Westminster, CO, USA), and RapidEye
(7 April 2015) (©BlackBridge 2014, Berlin, Germany) define the land cover during the start and end
point of the temporal development.
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Open water is best characterized by the low backscatter in K0 (around ´22 to ´25 dB), showing a
slightly shrinking open water surface over time on both sides of the lake. For different times of the
year, remarkably higher backscatter values (up until ´16 dB) were observed for open water. This
effect can be explained by the sensitivity of SAR backscatter values on K0 due to external influences
(like wind) over water. Flooded vegetation shows a high seasonal variability from higher to lower
dB-values in K3 and K4, complementary to K7. A large range of seasonal change in backscatter in K3

(´10 dB to ´3 dB), K4 (´3.5 dB to 0 dB), and K7 (´6 dB to ´3 dB) is detected for flooded vegetation.
Features on land show smaller variability, and urban areas appear most stable.

5. Classification Results and Discussion

To enable a first interpretation of change processes (which and where) detected by polarimetric
SAR imagery, identically scaled RGB false color composites of the Kennaugh elements (Figure 4)
were generated for the time series. Figure 8 presents eight selected HH-VV polarized TSX
StripMap acquisitions with equal intervals of 33 days—corresponding to three time steps of 11 days
each—between the acquisitions. The following Kennaugh elements are visualized as RGB composites:
K4 (displayed in the red channel); K0 (displayed in green); and K3 (displayed in blue).

Figure 8. Time series of eight selected HH-VV polarized TerraSAR-X (TSX) StripMap acquisitions
from (a) 26 August 2013; (b) 28 September 2013; (c) 31 October 2013; (d) 3 December 2013; as well as
(e) 5 January 2014; (f) 7 February 2014; (g) 12 March 2014; and (h) 14 April 2014 (©DLR 2013–2015).
False color composites have been created from the Kennaugh elements (K4-K0-K3). Open water appears
in blue/purple, green colors stand for vegetated or irrigated areas, and pink colors are dominant in
areas of flooded vegetation.

Seasonal change of Lac Bam as detected by polarimetric SAR data can be visually interpreted
as described in the following. The blue color appears dominant over open water and can be seen
as purple/blue color throughout the year (i.e., where the sum of HH and VV intensities is very low
and the influence of double-bounce is mostly larger than surface scattering). Starting from the rainy
season (i.e., August/September), a steady open water surface can be observed, followed by a reduction
towards the end of the dry season (i.e., March/April). Open water is present in all eight images,
however, visually decreases at the northern as well as southern tip of the lake. Variability in the color
of water-covered areas from bright blue to dark blue or almost black is likely be caused by wind,
which affects the X-Band SAR signal in intensity as well as in the polarimetric contents.

Flooded vegetation is indicated by pink color, (i.e., a strong dominance of HH over VV scattering,
combined with stronger double-bounce scattering effects as compared to non-flooded areas). Therefore,
areas of flooded or floating vegetation can be well separated from the non-flooded environment around
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Lac Bam. Areas of flooded vegetation are well visible from the rainy season until the first half of the dry
season. Flooded vegetation is strongly present in the first three images from 26 August, 28 September,
to 31 October 2013. Due to retreating water the surface of flooded vegetation is decreasing, which is
strongly visible between the 3 December 2013 and 5 January 2014 images, and around January most of
the flooded vegetation is dried out. Particularly the central flooded area is rapidly changing into, first,
what is detected as field on 5 January 2014, and thereafter as dry land.

The light green color appears over both vegetated surfaces on land during the rainy season,
and irrigated fields during the dry season (i.e., where the sum of the surface intensity of HH and VV is
particularly strong, and surface scattering dominates over double-bounce scattering). Vegetation on
land can be observed only during the rainy season, when natural vegetation is present and rain-fed
agriculture is carried out. This can be observed in the 26 August 2013 image that shows vegetation
coverage of natural vegetation and rain-fed agriculture (in green) on all areas around Lac Bam which
are not rocky, barren, or urban areas. On 28 September, some rain-fed vegetation in the surroundings
is still visible, while on 31 October 2013 irrigated fields become the dominant vegetation. Irrigated
fields—with strongest visibility in the 3 December 2013 image—change dynamically within the course
of the dry season, according to their growing phase and with respect to their location, and decrease
towards March/April.

Urban areas, such as the town of Kongoussi located at the south-western corner of Lac Bam,
are displayed in light colors due to a strong contribution of all channels in the image. Rocky and hilly
areas change from light green to turquoise from the rainy to the dry season. Areas on land turn from
green to dark brown at the start of the dry season, indicating a development from strong backscatter
intensity to low contribution of all channels over dry soils.

5.1. Monotemporal Classification Results and Validation

5.1.1. Results of Monotemporal Classification

The main objectives are to analyze change locations (where), quantify the area for each class
at different times (how large), and derive the seasonal cycle of the area covered by a certain class
(when, how long). Therefore, a monotemporal supervised classification has been applied on each image
and all the images were consequently stacked to a time series. The three relevant wetland classes open
water, flooded/floating vegetation, and irrigated fields were classified in each image, in addition to dry
land (non-wetland). Figure 9 shows the classification results for eight selected TSX data with intervals
of 33 days between the acquisitions, identical to the chosen images that are displayed in Figure 8 as
polarimetric SAR false color composites. The classification results show open water in blue, flooded
vegetation in green, irrigated fields in red, and dry land in beige.

A decrease of open water (in blue) throughout the season is detectable, particularly at the southern
and northern tip of the lake and in the center-east area. Until about mid-February the open water
surface remains rather constant, and the decrease is initiated in the mid- or end of February. Flooded
vegetation (in green) is strongly present in the first four images in Figure 9 and then decreases rapidly.
Along tributary rivers—that are all seasonal rivers transporting water into Lac Bam during and at
the end of the rainy season—flooded vegetation is classified during this time. Irrigated fields (in red)
are visible at the banks of the lake during the dry season with a culmination of occurrence around
January/February. Misclassifications in areas of rocks or urban areas are visible particularly in the
southern part of the image. A few cultivations are already carried out in September and October,
primarily in the northern part of the lake, as it has been confirmed from the field visit in October 2013
(Figure 2d). In the August acquisition, a large part of the surrounding area is covered by the irrigated
cultivation class. This is in alignment with the fact that around 90% of the area in the surroundings is
dominated by rain-fed agriculture, which is classified as cultivation, possibly alongside with natural
vegetation. Areas of barren land (as visible in Figure 2g) are spared out.
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Figure 9. Monotemporal classification for eight selected time steps with intervals of 33 days between
the data: open water (blue); flooded/floating vegetation (green); irrigated fields (red); and dry land
(beige) for (a) 26 August 2013; (b) 28 September 2013; (c) 31 October 2013; (d) 3 December 2013; as well
as (e) 5 January 2014; (f) 7 February 2014; (g) 12 March 2014; and (h) 14 April 2014.

5.1.2. Validation of Monotemporal Classification

Validation of the classification results was carried out using an error-matrix for the multitemporal
classification, as well as for four monotemporal results—corresponding to the closest time of the TSX
data with respect to the optical VHR and HR reference data—as described in Table 2. The validation
dataset used was the one described in Table 4. There are no other comparable dynamic products from
other studies that have monitored Lac Bam using SAR or optical high resolution remote sensing data
or on the ground. Table 6 shows the PA and the UA for each class, and the OA for the four reference
time steps. Overall accuracies for each monotemporal classification are generally around or above 80%,
for the four reference time steps these are 85.5% (t1), 86.3% (t2), 83.6% (t3), and 79.7% (t4).

Table 6. Accuracy assessment of the monotemporal classification t1 (24 September 2014),
t2 (8 November 2014), t3 (2 February 2015), t4 (15 April 2015), with Producer’s Accuracy (PA) and
User’s Accuracy (UA) for each class, Overall Accuracy (OA) for each image, non-existing classes are
marked as N/A.

T1
(24 September 2014)

T2
(8 November 2014)

T3
(2 February 2015)

T4
(15 April 2015)

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Open Water 99.9 99.1 100.0 99.3 99.9 99.2 95.1 90.0
Flooded Veg. 94.9 83.6 91.2 84.2 N/A N/A N/A N/A

Irrigated fields N/A N/A N/A N/A 82.1 68.6 69.2 66.1
Land 56.2 93.4 61.7 91.6 60.4 85.4 63.2 74.1

OA (%) 85.5 86.3 83.8 79.7

Very high accuracies of 99%–100% PA and UA were achieved for open water for t1–t3, whereas
t4 shows less accuracy, 95.1% and 90.0%, for the PA and UA, respectively. This is caused by the TSX
image from 12 April 2015 containing higher backscatter values for open water (in the range of ´14 dB
to ´18 dB) as most of the images in the time series (´18 dB to ´23.5 dB), causing some water areas to
be misclassified as land. This is also illustrated in the spatio-temporal profile in Section 4.3. Flooded
vegetation shows a PA of 94.9% and 91.2% in the first two time steps t1 and t2, respectively. The lower
UA of around 84% for both time steps is caused by misclassifications as land areas. This can be mainly
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accounted to a thin boundary line between open water and flooded vegetation which was wrongly
classified as land, both in t1 and t2. Since flooded vegetation is not represented in t3 and t4—and
therefore not included in the validation dataset for these dates—flooded vegetation is marked as N/A
in Table 6, likewise to the class irrigated fields for t1 and t2. Despite of the irrigated field class not
being part of the validation dataset in t1 and t2, there are still some pixels classified as irrigated fields.
This effect can be mainly found in areas of rain-fed agriculture or natural vegetation during and after
the rainy season. The PA for irrigated fields is 82.1% for t3 and 69.2% for t4, the UA 68.6% for t3
and 66.1% for t4. These lower accuracies are caused by land pixels wrongly classified as irrigated
cultivation (mainly in hilly or rocky areas), and vice-versa, even more pixels of irrigated cultivation
wrongly classified as land. For the same reason, the PA for land/non-wetland shows low values
for all four time steps (between 56.2% and 63.2%). The UA for Land in t1 and t2 remains very high
(93.4% and 91.6%), for t3 good (85.4%), but for t4 the UA is only at 74.1%. As mentioned above, the TSX
image of 12 April 2015 represents an outlier image where a lot of water pixels and irrigated field pixels
were anomalously classified as land.

It can be concluded that water and flooded vegetation are detected with very satisfying accuracies
though no post-classification filtering or exclusion of particular training or validation areas was applied.
Irrigated fields are generally detected, however they are sometimes underestimated (low PA). It has to
be emphasized that the class land is the only non-wetland class and serves primarily to distinguish
wetland classes from land. For reaching higher classification accuracies, the land class should be split
into sub-units of land cover, separating urban areas, vegetated areas, and rocky areas from the soil
classes, since they show a quite different signature in the radar image.

5.1.3. Discussion of the Monotemporal Classification Results

The landscape characteristics of the West African Savannah and Sahel areas pose additional
challenges for working with remote sensing imagery, in particular with SAR imagery. Misclassifications
as flooded vegetation or irrigated cultivation are scattered throughout the landscape. This can be
explained by the characteristics of the Sahelian and Savannah landscape with open spaces where
shrubs and trees commonly occur every couple of meters, in natural grassland as well as in agricultural
areas (as visible in the background of Figure 2g). They represent scattering targets for the SAR signal.
On the one hand, most of the misclassifications as flooded vegetation occur in urban areas which can
be explained by the strong double-bounce component dominant in urban areas as well as flooded
vegetation. On the other hand, most of the misclassifications as cultivation occur in rocky areas that
are mistaken as cultivation throughout the whole year. Moreover, the land is split into small land
cover entities, as a result of predominantly subsistence lifestyle of the population. There are only a few
misclassified pixels that are wrongly classified as water. These account to very bright soil as visible
in the optical reference images. These light and dry soils are reflecting the SAR signal away from
the sensor, similar to water. Pre-processing the data with the Multi-scale Multi-looking method [39]
showed very satisfying results with respect to the classification accuracy of wetland classes, and was
chosen as image enhancement method. Detailed structures–also single shrubs and trees—are preserved,
and smooth surfaces with low texture—such as open water or smooth soil—are smoothed. A way
to reduce noise is post-classification filtering. Post-classification filtering was performed only for the
consecutive cumulative season duration calculations from the monotemporal classification time series
(Section 5.2).

5.2. Spatio-Temporal Analysis of the Monotemporal Classification Results

Spatio-temporal changes—in terms of to what extent (location and size) and duration
(in time steps) dynamics occur for open water, flooded vegetation, and irrigated cultivation—can
be studied by calculating cumulative season duration area maps of each class from the results of
the monotemporal classification (Section 5.1). Figure 10 shows the cumulative area for the rainy to
dry season 2014–2015 for the three classes (a) open water; (b) flooded vegetation; and (c) irrigated
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cultivation. Every pixel covered by either (a), (b), or (c) was dedicated as wetland at each time step,
and then summarized to the wetland duration map (d). Below, a focus region showing the same classes
for the year 2013–2014 is visualized.

The season 2013–2014 shows a larger surface water area than the season 2014–2015
(Figures 10a and 11e). The duration of flooded vegetation is generally longer in the year 2014–2015
(gree n to blue colors in Figure 10b) than in 2013–2014 (green colors in Figure 10f). The second year is
concluded to be a year with stronger flooded/floating vegetation coverage, since additional patches
of flooded vegetation were detected. This explains furthermore the larger surface water area in the
first year. Areas of water lilies that are floating on water surfaces of Lac Bam (in the north and
center-east) are not detected as flooded vegetation. No strong double-bounce effect (as in all other
areas of flooded vegetation) occurred in these regions, since there is no reflection from the water surface
to the vegetation canopy. Moreover, no significant difference between HH and VV intensity could be
observed. Consequently, floating water lilies are classified as land (non-wetland) in the cumulative
seasonal duration maps. Irrigated fields appear in different locations in the two years.

Figure 10. Cumulative season duration areas of 21 time steps of the year 2014–2015 for (a) open water;
(b) flooded/floating vegetation; (c) irrigated fields; and (d) wetland, and (e–h) selected focus region for
the year 2013–2014 below.
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Figure 11. Time series of the wetland area per class for (a) 2013–2014 and (b) 2014–2015: open
water (blue), flooded/floating vegetation (green), irrigated fields (dark red), and rain-fed cultivation
(light red).

Figure 11 shows the seasonal cycle of each class as well as a comparison between the two different
years. The open water area (plotted as blue line) increases slightly during the first couple of image
acquisitions at the end of the rainy season, until the water surface reaches its maximum. A rapid
decrease of the water surface only happens during the last five to seven image acquisitions in the
time series, starting at the beginning of February in 2013–2014 and the end of February in 2014–2015.
In the season 2013–2014, a slightly larger water area is detected with respect to the season 2014–2015.
The steady decrease of flooded vegetation (green line) can be first accounted to the very northern
and southern areas of flooded vegetation during and at the end of the rainy season, marked in green
colors in Figure 10b,f. A second rapid decrease is detectable through five to six consecutive image
acquisitions, corresponding to a 1.5–2 month time span. It can be accounted to most of the flooded
vegetation areas around the water area, including the large flooded area in the center of the image.
A shift of this rapid decrease of flooded vegetation between 2013–2014 and 2014–2015 was detected
when comparing the two time series. While an apparent decrease of flooded vegetation is detected
firstly in the image of 3 December 2013, this is not the case until 15 January 2015 of the second year.
A steep descend of flooded vegetation (green line) is visible in the time series in Figure 11a, even more
pronounced Figure 11b. This is in accordance with the longer duration of flooded vegetation in the
second year, detected in Figure 10. The seasonal cycle of the area of irrigated cultivation shows a
similar pattern in both years, characterized by a steep descend from rain-fed cultivation (plotted as
light red line) until the beginning of the dry season—around the beginning of November—when
irrigated cultivation (plotted as dark red line) becomes more dominant and reaches the maximum
around the end of December/beginning of January in 2013–2014, and end of January in 2014–2015.

5.3. Multitemporal Classification Results and Validation

5.3.1. Results of Multitemporal Classification

In order to identify which change processes occur throughout the time series and where they
take place, a multitemporal classification was carried out considering 21 time steps with their four
Kennaugh elements (Figure 12). As previously described in Table 3, the most significant change
processes were defined from optical high resolution reference images at four dates, resulting in seven
major changes classes. Three of them are temporally stable: open water, land covered with permanent
vegetation and land covered with soil, rock, urban; and four of them are dynamic: water to land/soil,
flooded vegetation to land/soil, flooded vegetation to irrigated fields, and irrigated fields to land/soil
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or land/soil to irrigated fields. From the four change classes, the first three follow a seasonal cycle, only
F–L/L–F occurs dynamically at different points in time and in different directions (compare Table 3).

For two randomly chosen regions (a) and (b) in Figure 12 a zoom into the classification is provided,
displayed side by side with the optical reference images representing the early time series (t1), mid-late
(t3) and late time series (t4). The class W (dark blue) is present in both regions. In region (b) the
open water area does not significantly decrease, whereas in region (a) there are large changes in the
open water surface. The class W–L (light blue) is present as well, but is underestimated throughout
the whole image. The classes V–L and V–F are largely present and were correctly classified for both
sites. This becomes apparent when comparing the flooded vegetation in the zoom image from t1,
compared with later images (for V–L). Particularly t4 reflects the irrigated fields in areas of former
flooded vegetation (for V–F). Region (a) shows the class F–L/L–F (red) which can be well compared to
the locations of irrigated fields that are visible in t3. Fields close to the water are classified as V–F and
are visible in t3 and t4. Region (b) features the class L1 (dark green) with a large patch in the upper
right part of the image, corresponding to a permanent plantation visible at all time steps.

Figure 12. Multitemporal classification for the time series stack of the year 2014–2015 resulting in
seven change classes: open water (W); water to land/soil (W–L); flooded vegetation to land/soil (V–L);
flooded vegetation to irrigated fields (V–F); and irrigated fields to land/soil or land/soil to irrigated
fields (F–L/L–F); land with permanent vegetation (L1); and land with soil, rock, urban (L2). Two sites
representing all classes are displayed in zoom windows: The northern site (a) features open water,
the change from water to land, and large areas of cultivation in the east. The centrally located site (b)
shows permanent open water, large areas that changed from flooded vegetation to land or to fields,
and a permanently vegetated area in the north-east. Optical reference images (©DigitalGlobe 2014
provided by EUSI) for t1, t3, and t4 serve for comparison with the multitemporal classification results.

5.3.2. Validation of Multitemporal Classification

Table 7 shows the error matrix for the multitemporal classification. The columns reflect the
assigned validation data and the rows the actual classified pixels. The pixels off the diagonal have
been misclassified as the class that is indicated in the headline of each column. The PA and UA of
each class are displayed in the last two columns. With an overall accuracy of 88.5% and correctly
classified percentages of pixels between almost 90% and 100% for both, PA und UA, the classes open
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water, flooded vegetation to land, and irrigated fields were very reliably classified. The class water
to land is the only class with non-satisfying PA of 56.6%, whereas the UA is very high. This can be
explained by the fact that a large number of reference pixels were classified as another class (mainly W
or to a smaller extent V–L). The class W–L is prone to errors also because it is mostly located at
the narrow transition boundary between the classes of open water and flooded vegetation to land
consisting of just a few pixels. At this point, mixed pixels occur which cause very shallow water
not to be correctly classified as such. The class vegetation to fields shows satisfying accuracies with
PA: 84.9%/UA: 75.0%, as well as the land classes L1 and L2 (PA and UA between 82% and 94%).
Most of the non-detected V–F pixels were assigned as V–L, the other change class originating from
flooded vegetation. No post-classification filtering was necessary, and no AOIs needed to be excluded.
Therefore, the accuracies reflect a pixel-based result directly after classification. Besides for the class
W–L the classification results are very satisfying and a multitemporal classification can be well applied
for deriving areas of change classes with high classification accuracy.

Table 7. Accuracy assessment of the multitemporal classification with the classes open water (W);
water to land/soil (W–L); flooded vegetation to land/soil (V–L); flooded vegetation to irrigated fields
(V–F); and irrigated fields to land/soil or land/soil to irrigated fields (F–L/L–F); land with permanent
vegetation (L1); land soil, rock, urban (L2). The error matrix including Producer’s Accuracy (PA) and
User’s Accuracy (UA) are stated for each class.

W
(st.)

W–L
(dyn.)

V–L
(dyn.)

V–F
(dyn.)

F
(dyn.)

L1
(st.)

L2
(st.)

PA
(%)

UA
(%)

Water (stable) 4407 535 0 0 0 0 0 100.0 89.2
Water to Land (dynamic) 0 996 0 0 0 0 0 58.8 100.0
Flooded Veg. to Land (dynamic) 0 129 2196 106 7 3 8 90.1 89.7
Flooded Veg. to Field (dynamic) 0 2 222 1102 39 20 85 84.9 75.0
Land (Perm. Veg.) (stable) 0 0 8 14 1092 41 156 86.4 83.3
Irrigated Fields (dynamic) 0 29 1 60 79 2010 46 96.8 90.3
Land (Soil, Urban) (stable) 0 4 10 16 47 2 1346 82.0 94.5

5.3.3. Comparison of Single- and Dual-Pol Multitemporal Classification

In order to evaluate the added value of the dual-polarimetric information with respect to using
only single-pol SAR intensity two multitemporal classifications were performed. Firstly, this step is
carried out on a stack of all Kennaugh elements at all time steps, and secondly, on a stack of only
K0 data (sum of intensities) at all time steps (as shown in Figure 13). The classes open water and
open water to land are classified with accuracies of PA 100%/UA 89% and PA 57%/UA 100% in the
multi-channel stack with respect to PA 99%/UA 100% and PA 98%/UA 99% in the K0 stack (as shown
in Table 8). The accuracies for the classes “flooded vegetation to land” and “flooded vegetation to
field” decrease from PA 90%/UA 90% to PA 79%/UA 87%, and PA 85%/UA 75% to PA 45%/UA 42%,
respectively. As seen in Table 8, significantly lower classification accuracies for the class “irrigated
fields” are shown when using only SAR intensity (PA 79%/UA 84% for K0, whereas PA 97%/UA
at 90% when using all Kennaugh elements), similarly as for the class “flooded vegetation to fields”,
as described before.
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Figure 13. Multitemporal classification results using as input (a) dual-polarimetric SAR intensity and
phase data vs. (b) single-polarimetric SAR intensity (K0) only to classify the following change classes:
open water—stable (dark blue); water to land (light blue); flooded vegetation to land (light green);
flooded vegetation to field (green); irrigated fields (red); land with permanent vegetation—stable
(dark green); and land with soil, rock, urban (beige).

Table 8. Accuracy assessment of the multitemporal classification using a stack of all time steps of all
four Kennaugh elements (left), compared to using only K0 (right).

K0-K3-K4-K7 K0

PA (%) UA (%) PA (%) UA (%)

water (stable) 100.0 88.5 98.7 100.0
water to land (dyn.) 56.6 100.0 98.1 98.7
flooded veg. to land (dyn.) 90.1 89.7 79.0 87.0
flooded veg. to field (dyn.) 84.9 75.0 44.7 42.1
land/perm. veg. (stable) 86.4 83.3 57.6 49.5
irrigated fields (dyn.) 96.8 90.3 79.0 83.7
land/soil/urban (stable) 82.0 94.5 78.9 73.7

OA (%) 88.5 82.2

5.3.4. Discussion of the Multitemporal Classification Results

In fact, the high double-bounce backscattering greatly aids the detection of flooded vegetation
and the discrimination from vegetation on land as expected [23,25]. The complementary low
backscatter values of the phase difference between the surface and double-bounce scattering event
(K7)—which depends on the radar wavelength and position where a target is hit—cannot be physically
interpreted [39]. As shown in the scatterograms (Figure 5) it still aids the discriminability between
flooded vegetation and land.

Multitemporal approaches for wetland mapping were also preferred in other studies [35] though
no comparable study in African wetlands has been published to date, and besides studies based
on optical medium resolution time series [52] Lac Bam has not been monitored with optical high
resolution data.

The second field campaign, carried out in October 2015, was specifically tailored to collect
ground-truth information for areas of flooded vegetation that were not detected by the Kennaugh
elements. Four areas in the center-eastern part of the lake and a large area in the north were not
correctly classified when applied on each single image (i.e., the monotemporal case), where they
appear as non-flooded land. Since water lilies are a common vegetation type on wetlands and lakes
in Burkina Faso, and can be very dense and not detected on single radar images, the importance of
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temporal information has to be taken under consideration. The shallow flooded area in the center of
the lake is the only feature that appears characteristically different in K7. While being interpreted as
shallow water with visible ground in optical data, polarimetric SAR interprets it as water with flooded
vegetation, with slightly different signatures in K7 (weaker) and K3, K4 (same or stronger) than the
other parts of flooded vegetation. Without the polarimetric contribution and using solely SAR intensity,
there would be confusion between flooded vegetation, irrigated cultivation, and land. The preceding
multitemporal analysis (e.g., spatio-temporal profiles, Figure 7) already provided estimation on the
successful use of polarimetric information, comparing the range of flooded vegetation in the three
polarimetric channels with respect to K0.

The intensity sum (K0) is particularly high for urban areas as well as for irrigated fields during
a particular time in their crop cycle. According to the optical reference images, there is still a lot of
soil exposed and yet there is not a lot of chlorophyll detected in the infrared band of the optical VHR
reference data. Since no field data is available for different states of the crop cycle, these processes
are not fully understood by now. Possible explanations include higher humidity due to irrigation,
or surface structures due to farming practices (compare Figure 2d). The irrigated fields around the lake
are mostly classified thanks to their high intensity (K0) and stronger contribution of surface scattering
than double-bounce, also with respect to the environment (K3). However, there is no significant
contribution of the difference between HH and VV (K4) and the phase difference (K7). Therefore,
the use of polarimetric SAR aids the detection of fields with respect to only using intensity. This has
been proven by performing the multitemporal classification also on a stack of K0 data.

The multitemporal classification presented in this paper shows potential not only for wetland
extent mapping and monitoring, but also for the definition of the wetland extent using remote sensing,
when including the temporal aspect over the course of a season. One study was recently published
using between four and six Landsat images per season, with the result of a wetland indicator for
Mediterranean wetlands consisting of water, wetland vegetation, and rice fields [65]. This is in the line
with the idea exploited in this paper and could be further extended to other wetlands in semi-arid
African areas or possible semi-arid areas around the globe, using multitemporal optical or SAR remote
sensing images.

5.4. Transferability and Outlook

The issue of transferability to different time series, different geographic areas, or different datasets
is not equal for the two presented approaches: (1) monotemporal classification of every image in a
time series with consequent spatio-temporal analysis; and (2) multitemporal classification using all
images of a time series as input. The transfer of the monotemporal classification statistics derived from
four reference dates in 2014–2015 to another time series is already proven by successful application on
all the images from 2013 to 2014. This was, however, not possible for the multitemporal classification
in this study, when applying the multitemporal AOIs derived from the 2014–2015 reference data on
the time series of the previous year. Particularly irrigated fields change their location and seasonal
cycle from year to year, as well as few areas of flooded vegetation. In this study, insufficient reference
data and VHR imagery was available for the year 2013–2014 to deduct the same quality of AOIs.
This approach requires the creation of a training set for each particular temporal interval of the time
series. The multitemporal approach should be transferable to any other region or time as long as
training areas and reference data exist, likewise as for the transfer to different geographic regions.
The transfer to another type of dataset is already carried out in this work by applying the multitemporal
classification on a stack of only K0 Kennaugh SAR intensity. The transfer to a different SAR dataset in
terms of different wavelength and characteristics (e.g., to a time series of RADARSAT-2 or Sentinel-1
imagery) is subject to future research.

Further work will also include two RADARSAT-2 fine Beam time series. As Schmitt [26]
successfully applied the Kennaugh decomposition for wetlands using RADARSAT-2, transferability is
guaranteed. The Kennaugh method will be applied on a dual-pol HH-HV RADARSAT-2 time series

CHAPTER 6 

195 | P a g e



and will provide three valuable scientific insights: the comparison of the results derived from X- and
C-band SAR data (TSX and RADARSAT-2), the comparison of the results derived from dual-co-pol
(HH-VV) and dual-cross-pol (HH-HV) data, and the comparison of HH-HV data acquired from
ascending and descending orbit, over the same site. These results will be of use in preparation for
applications on data from the European Space Agency’s Sentinel-1 satellite that is carrying a C-Band
SAR instrument. Lac Bam has been covered by Sentinel-1 in April 2015 for the first time, followed by
further acquisitions between May and December 2015.

Due to relevant fields of applications for water, flooded vegetation, and irrigation
monitoring—e.g., domestic use, irrigated farming, pastoralism, fishery, biodiversity, and drought
mitigation—and due to significant human and environmental pressures on Lac Bam, the lake is
recommended as site for further studies. This work has proven that remote sensing time series,
in particular from polarimetric SAR sensors, show a lot of potential for wetland monitoring.

6. Conclusions

This study presents the first X-band SAR dual-co-polarized high resolution time series monitoring
for African wetlands, which are often rarely monitored both on the ground and from space. As case
study for this work serves Lac Bam, which is the largest freshwater lake in Burkina Faso and a major
Ramsar wetland site of international importance. The objective was to monitor Lac Bam with main
focus on the extraction of spatio-temporal dynamics. In this work, we suggest that a well-conceived
sequence of already established pre-processing techniques and supervised classification approaches
is sufficient to successfully monitor water area dynamics—including water with flooded or floating
vegetation—as well as irrigated cultivations around the wetland from dual-co-polarized SAR data.

Because of its flexibility and robustness, the Kennaugh element framework including the
Multi-scale Multi-looking image stabilization was chosen. Two methods were applied for classification
and spatio-temporal analysis: (1) a monotemporal classification on every image of the time series,
which is thereafter combined to cumulative areas of seasonal duration and time series of the spatial
extent of wetland classes; and (2) a multitemporal classification using the whole image stack as input
to directly derive dynamic classes.

Important findings of the study are summarized in the following. The main wetland classes
open water, flooded vegetation (i.e., water areas containing different types of flooded or floating
vegetation), and irrigated fields could be successfully detected and monitored, alongside with dry
land (non-wetland), using dual-co-polarimetric HH-VV SAR time series from TSX. Cumulative season
duration maps and time series of the spatial extent of wetland classes revealed a shift of about five
weeks towards longer flooded vegetation coverage in the second year of the analysis (2014–2015).
It was found that only in the last five to seven weeks of the dry season a reduction in open water
surface takes place, the major reduction of the water area occurs in the shallower parts of flooded
vegetation. A seasonal cycle of the area of dynamically changing irrigated fields was determined.
The comparison of spatio-temporal profiles additionally reveals areas with a similar temporal change
in land use and land cover. This multi-temporal classification delivers exceptionally stable and accurate
results. Quantitative answers to the questions which change processes occur, where and to what extent
(how large) can be summarized in diagrams for easier interpretation.

The multitemporal classification shows high classification accuracies for wetland change classes
in terms of Producer’s Accuracy/User’s Accuracy of 100%/89.2% for permanent open water,
90.1%/89.7% for flooded vegetation to land, and 86.4%/83.3% for irrigated fields. The added value of
dual-polarimetric SAR was proven with classification accuracies (overall accuracy: 88.5%) exceeding
by far the classification accuracies when only using single-polarimetric SAR intensity data (overall
accuracy: 82.2%). While open water or water to land change is well monitored with SAR intensity
only, change classes from flooded vegetation to land show lower accuracies (in the range of 80%) and
single-polarimetric images are not suitable for detecting and monitoring change classes involving
irrigated fields (accuracies in the range of 40%–55%). Thus, the use of dual-co-pol SAR data is
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most recommended since the difference between HH and VV in phase and amplitude significantly
contributes to the distinction of flooded from non-flooded vegetation.

In summary, nearly continuous wetland monitoring based on dual-co-polarized SAR acquisitions
is possible. Beyond monitoring, this enables to define the wetland extent when including the temporal
aspect over the course of a season. Future studies on Lac Bam and further sites in semi-arid regions
will focus on the intra- and inter-yearly change of the location and timing of irrigated fields. Regarding
the wetland as reservoir, the long-term balance of water availability and water withdrawal is one key
feature of wetland conservation. Therefore, the long-term monitoring of selected site is envisaged.
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1. INTRODUCTION

It is well known that the global warming predicted for the 
coming decades goes along with an increasing severity of 
weather phenomena. While temperate regions will be more 
affected by heavy rains and some (minor) droughts, already 
semi-arid regions will suffer extremely from the changing 
climate. The transition from rainy to dry seasons (e.g.) is 
expected to vary much more than nowadays. Wetlands fulfil 
their function as fresh water reservoirs that are filled once a year 
and have to supply the inhabitants, agriculture, and industry 
until the next rainy season, and therefore, the sophisticated 
water management is indispensable. In return, this requires an 
up-to-date estimation of the water reserve, which raises serious 
problems. 

The current standard is the installation of water gauges at 
selected locations, e.g. dams. Though this allows a near-real 
time measurement of the water level at a certain point, and 
consequently modelled water volumes, it provides no reliable 
information about the remaining water resource, particularly for 
wetlands like Lac Bam where siltation rates are so high that the 
lake floor topography is constantly changing (Moser et al., 
2016). Therefore, area-wide measurements are needed for a 
better water resource estimation. Instead of installing and 
connecting a large number of water level loggers, remote 
sensing solutions might be a convenient alternative. Optical 
remote sensors share three main problems: First, they require 
cloud-free conditions and sufficient sun illumination. Second, 
they only report the reflectance directly on the illuminated 
surface, i.e., water covered by plants will be detected as green 
canopy (vegetation). Third, the turbid and sediment-rich water 
bodies show very high reflectance values in the visual part of 
the spectrum, similar to bare soil, and much higher than usual 

reflectance in the near infrared part, which is favoured for water 
detection because almost all the radiation is absorbed, resulting 
in very low values over surface water. 

In contrast to that, Synthetic Aperture Radar (SAR) sensors 
provide numerous advantages: Being an active sensor system, 
they are independent of external illumination, therefore they can 
operate day and night. The microwave bands typically used can 
pass through clouds and thus, make the sensor weather 
independent. Last, but not least, the measurement of 
electromagnetic backscattering in wavelengths of 1 cm until 
about 1 m does not reflect the surface material, but the 
geometric structure of the surface. Calm water surfaces 
therefore act like a mirror that reflects all the radiation away 
from the sensor. Water thus appears very dark, regardless of its 
turbidity, which has been exploited in many studies for different 
SAR sensors (Santoro and Wegmuller, 2014, White et al., 2014,
Martinis et al., 2015). The longer wavelengths even allow to 
penetrate forest canopy at a certain extent and therewith, to look 
through plant cover. The microwaves reflector formed by plants 
and soil is characteristic for the moisture content. As dry soil 
has a very weak response, the backscattering is dominated by 
the plants, which form a more or less smooth surface imaged by 
shorter wavelengths (X-band, e.g.) or a diffuse backscattering 
volume in longer wavelengths (C-band, e.g.). By the help of
multi-polarized SAR, the scattering mechanisms can be well 
distinguished. As soon as the soil moisture reaches its 
maximum, the water surface forms a diplane reflector together 
with the plant stems. This causes a high double-bounce 
component when imaged by multi-polarized SAR (Henderson 
and Lewis, 2008, Schmitt and Brisco, 2013, Gallant et al., 2014,
Brisco et al., 2011). Dual-co-polarimetric SAR imagery has 
been successfully used to detect flooded vegetation, mainly 
using TerraSAR-X where this mode is enabled (Schmitt and 
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ABSTRACT:

Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs 
are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the 
intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of 
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are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series 
analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.
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Brisco, 2013, Betbeder et al., 2015). In summary, SAR 
represents the optimal sensor group for the regular remotely 
sensed monitoring of water bodies and wetlands.  

One limiting factor is the availability of suitable space-borne 
SAR sensors with a high spatial, temporal, and polarimetric 
resolution. The polarimetric resolution determines the 
distinguishability of different scattering mechanisms.
TerraSAR-X (TSX) supports dual-co-polarized measurements 
able to identify surface and double-bounce scattering, and dual-
cross-polarized measurements that report the volume scattering. 
RADARSAT-2 (RS-2) only allows the dual-cross-polarized
imaging. Fully polarized images were not of interest in this 
work, since the focus is on the exploitation of partial-
polarimetric data. Because of the longer wavelength the dual-
cross-polarized mode seems to be suitable to map the volume 
component. The shorter wavelength of TerraSAR-X in contrast 
is expected to better distinguish between surface and double-
bounce. Therefore, a combination of this two sensors is chosen
in this study. The temporal resolution is related to the repeat 
pass orbits, i.e. the time gap between two acquisitions from the 
same imaging geometry. TerraSAR-X provides repeat pass 
acquisitions in an eleven day period, and RADARSAT-2
requires twenty-four days. For this study we acquired images 
from two different RADARSAR-2 orbits (one in ascending and 
one in descending direction) in order to increase the sample rate 
to the one provided by TerraSAR-X. Last, the spatial resolution 
describes the distinguishability of two targets in close 
neighbourhood. In favour of the comparability a common pixel 
grid of five by five meter on the ground was chosen for both 
sensors which implies a slight oversampling in the case of 
RADARSAT-2 and a subsampling in the case of TerraSAR-X. 

The research question followed in this contribution is whether 
the methodology developed on TerraSAR-X dual-co-polarized 
data in former studies (Moser et al., 2016) is directly 
transferable to C-band dual-cross-polarized SAR data from 
RADARSAT-2 with a lower spatial resolution. The 
supplementary C-band measurement might be used to construct 
a multi-frequency SAR image, which is quite new in space-
borne SAR remote sensing, or just to fill temporal gaps in order 
to generate extremely dense time series. With view to the 
Sentinel-1 mission inter alia providing dual-cross-polarized C-
band SAR data with a temporal sampling of six days only (after 
launch of the second satellite sensor), the time series aspect 
attracts much attention. Therefore, this study will perform a 
multitemporal classification on the full time series stack, and 
check each reasonable combination of sensor and polarization 
mode in order to estimate the expectable accuracy. 

The focus of this paper is on, firstly, the interpretation of SAR 
scattering mechanisms in different types of flooded or floating 
vegetation using dual-polarimetric X- and C-band SAR data and 
secondly, the derivation of change classes applying a 
multitemporal classification on the full time series stack. The 
objective is to classify the following wetland classes and 
respective change classes: open water, flooded or floating 
vegetation in water, and irrigated fields from multi-polarized 
SAR imagery, based on the semi-arid wetland site Lac Bam in 
Burkina Faso. This study is unique due to the dense time series 
of multi-polarized SAR data in conjunction with a ground-truth 
field campaign that has been recently carried out. This 
campaign was specifically tailored towards areas that are prone
to classification errors for flooded vegetation, tested in previous 
work using polarimetric SAR imagery (Moser et al., 2016).
Results will contribute as preparation for possible applications 
using Sentinel-1 time series over African wetlands.  

This paper is organized as follows: The next section introduces 
the study site in detail and gives an overview to the available 
data sets such as the images acquired by SAR sensors or the 
reference data gathered in field campaigns. Then, the 
methodology is presented consisting of the Kennaugh element 
framework (Schmitt et al., 2015) and multitemporal 
classification including SAR time series fusion. The results are 
shown, discussed and validated with respect to the available 
reference data in the fourth section of the paper. A brief 
summary and an outlook on ongoing studies conclude the paper.

2. STUDY SITE AND DATA

2.1 Area of Interest

Lac Bam, a Ramsar wetland of international importance, was
chosen as a test site for this study. Lac Bam is the largest 
freshwater lake in Burkina Faso and of high significance for the 
local population, for biodiversity, and fulfils various ecosystem 
functions. The site is located at the transition between the 
Sahelian and Sudano Savannah climate of Burkina Faso, 
characterized by a rainy season between the summer months of 
June and September/October, and a long dry season where 
water availability is particularly important for different 
livelihoods (farming, pastoralism, fishing) as well as for 
domestic households. Large areas of Lac Bam contain different 
emerging or floating vegetation in water, mainly grasses, water 
lilies and trees (Moser et al., 2016). More than 1000 motor 
pumps extract water for the irrigation of fields for vegetable 
gardening during the long dry season. These fields are situated 
around the lake and change dynamically throughout the season 
as well as between the different years. Irrigated cultivations are 
part of the wetland by common nomenclatures defined for 
example by the Ramsar convention (Ramsar., 2016). They are
very relevant to be monitored for water availability and food 
security issues. Lac Bam is only monitored in terms of water 
level at the dam in the South, but no area-wide water monitoring
has been carried out to date, considering open water as well as 
waters including flooded or floating vegetation. Moser et al. 
(2014) used Lac Bam as one case study to monitor open water 
areas using optical medium resolution time series from MODIS. 
This work builds on the study recently published by Moser et al. 
(2016) which is the first attempt for an area-wide monitoring 
applied at Lac Bam. 

2.2 Synthetic Aperture Radar Data

Three different dual-polarimetric repeat-pass time series have 
been acquired, two from RADARSAT-2 in C-band (5.405 GHz, 
wavelength: 5.6 cm), and one from TerraSAR-X in X-band 
(9.65 GHz, wavelength: 3.1 cm), between October 2014 and 
May 2015. The data, presented in Table 1, contain regular 
temporal intervals and are acquired under the same geometry 
conditions. RADARSAT-2 data is available in dual-cross-pol 
(HH-HV) Fine Beam mode, as two different repeat-pass time 
series with an interval of 24 days each. Acquisitions from the 
orbits in ascending and descending pass direction were 
performed, which are shifted with distances of 11 and 13 days 
with respect to each other, resulting in a higher temporal 
coverage when using both of them. TerraSAR-X data has a 
temporal repeat frequency of 11 days and was acquired from an 
ascending orbit (Table 1).  
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TerraSAR-X
ascending

RADARSAT-2 
ascending

RADARSAT-2 
descending

18.10.2014 18.10.2014

29.10.2014 29.10.2014

09.11.2014 11.11.2014

20.11.2014 22.11.2014

01.12.2014 05.12.2014

12.12.2014 16.12.2014

23.12.2014

03-01.2015* 29.12.2014

14.01.2015 09.01.2015

25.01.2015 22.01.2015

05.02.2015 02.02.2015

16.02.2015 15.02.2015

27.02.2015 26.02.2015

10.03.2015 11.03.2015

21.03.2015 22.03.2015

01.04.2015 04.04.2015

12.04.2015 15.04.2015

23.04.2015 28.04.2015

04.05.2015 09.05.2015

15.05.2015 22.05.2015

* image was interpolated due to missing acquisition

Table 1. Synthetic aperture radar time series

Figure 1. Map used for the field campaign in Region A and 
Region B which both feature flooded vegetation areas that are 

well classified (yellow) and not detected (blue), using dual-
polarimetric TerraSAR-X or RADARSAT-2 imagery 

2.3 GPS and Photo Field Campaign

A field campaign at Lac Bam was carried out between 25 and 
29 October 2015, with the main purpose to gather ground truth 
photo, GPS data, a description of the flooded vegetation and the 
water depth of regions that were not correctly classified by 
polarimetric SAR data. Field Data were collected for four 
regions, region A and B are displayed in Figure 1. Different 
vegetation types: well detected flooded vegetation, with and 
without containing trees (yellow) and not detected flooded 
vegetation, with an without containing trees (blue), and sparse 
vegetation (green) Every approximately 100 m photos and 
measurements were taken with a digital camera, a GPS camera, 
and a GPS device. The vegetation type, the distance between the 
photo point and the vegetation, the height and density of the 
vegetation, and the water depth has been estimated or measured 
at every photo spot. 

3. METHODOLOGY

3.1 Partial-Polarimetric SAR Processing

Traditionally, the analysis of single-polarized and polarimetric 
data is completely different. In the case of single-polarized data, 
where only one intensity value per pixel is available, the 
strength of the backscattering as well as the local texture is 
studied. In contrast to that, the interpretation of polarimetric 
data focusses on so-called polarimetric decompositions that 
transform the measured complex values into physically 
interpretable measures. The decompositions always require 
fully-polarized “quadpol” images, i.e. four perpendicular 
polarizations at the same time. Consequently, the swath width 
and the azimuth resolution are significantly reduced when using 
quad-pol acquisitions modes. The trade of spatial resolution 
versus polarimetric information content leads to so-called 
“partial-polarimetric” or “multi-polarized” SAR images. In 
general, only two of four possible polarizations are measured: 
the combination HH-VV often is referred to as “dual-co-
polarized”, both combinations HH-HV and VV-VH are named 
“dual-cross-polarized”. The decompositions developed for dual-
polarized SAR images are mostly restricted to one special 
polarization combination and with respect to model-based 
approaches, even to one special wavelength. The comparison of 
two different polarization combinations or even two different 
SAR sensors is thus inhibited. 

A very basic scattering description was published recently that 
overcomes this drawback by the strict distinction between 
intensity and polarimetric information. The decomposition into 
normalized Kennaugh elements (Schmitt et al., 2015) is 
applicable to any SAR measurement in single, dual, or quad-
polarized mode, or even acquired in one of the future hybrid-
compact-pol modes. The main idea is to generate one total 
intensity layer and a variable number of channels holding the 
polarimetric information. In the case of dual-co-polarized 
images, the Kennaugh elements compose like this:= 12 {| | + | | } = { } = 12 {| | | | } = { }              (1)

The total intensity is kept in K0. K3 describes the relation 
between double-bounce and surface scattering events. K4 relates 
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the horizontal component to the vertical component. The phase 
shift induced by the imaged target is captured by K7.  

Dual-cross-polarized data is described by the total intensity in 
K0 as well. The remaining polarimetric information unfolds to 
K1 as relation between co- and cross-polarized intensity, and 
two correlation measures K5 and K8, which are of minor 
importance for application in natural environments.= | | + | |= | | | |= { }= { }      (2)

The Kennaugh elements in linear scale are then normalized by 
their total intensity or a synthetic reference in the case of K0

(calibration). The projection on a closed and uniform data range
is very suitable for data storage or delivery because the 
radiometric sampling rate can be reduced considerably without 
losing too much information. When using typical classifiers 
from optical remote sensing applications like the maximum 
likelihood classification, the logarithmic scaling is preferred 
because of the normal-like distribution of the data. Therefore,
the Kennaugh elements are converted to the unit decibel, which 
is most common in SAR remote sensing. 

The coregistration is performed automatically by projecting the 
image on the same coordinate frame by the help of exact (post-
processing) orbit data and an accurate elevation model. 
Therewith, the geometric and radiometric comparability is 
assured and synergies resulting from the multifrequency image 
stack (in C- and X-band) can be fully exploited. Figure 2 
displays the Kennaugh elements for two selected images that 
have both been acquired on 18 October 2014: 

Figure 2. Kennaugh elements deducted from (a) TerraSAR-X 
dual-co-pol HH-VV data: K0, K3, K4, and K7 (top row), and (b) 

RADARSAT-2 dual-cross-pol HH-HV data: K0, K1, K5, K8

(bottom row). Both images were acquired on 18 October 2014.

3.2 Multitemporal Classification

An analysis chain as developed in Moser et al. (2016) for 
TerraSAR-X time series is transferred onto the RADARSAT-2
time series, and used for both sensors – TSX and RS-2 – 
comparatively and in conjunction. A supervised classification 
approach was chosen using a pixel-based maximum likelihood 
algorithm, which is a well traceable and a basic approach that 
needs only a short time frame for computation. Each pixel is 

classified according to the highest probability value to belong to 
a certain class. No post-classification filtering or processing was 
performed. First, the classification was applied on every image 
in the time series, deriving the three wetland classes open water 
(W), flooded/floating vegetation (V), irrigated cultivation (F), 
and land/non-wetland (L). To derive change classes and 
delineate the wetland extent throughout the season a 
multitemporal classification was applied with the following 
change classes of interest: permanent open water (W), water to 
land (W–L), flooded vegetation to land (V–L), flooded 
vegetation to irrigated fields (V–F) (with land in the transition 
between), the dynamic class of rapidly changing irrigated fields 
(F–L/L–F), and the two land classes land/permanent vegetation 
(L1), and land/soils and rocks (L2). 

A training and validation dataset (AOIs) were generated based 
on four optical data at four different time steps: a very high 
resolution (VHR) WorldView-2 and GeoEye-1 image, as well 
as two high resolution (HR) RapidEye images. The AOIs were 
randomly separated into training and validation data, with the 
same number of AOIs and area size (to the extent possible) for 
each class. The same AOIs were used for the four different time 
steps and were constructed for two different purposes: (1) for 
classifying each image with the four classes W, V, F and L; (2) 
for the multitemporal classification resulting in the above-
mentioned seven change classes. Additionally, photos and GPS 
points from the field campaigns in October 2013 and October 
2015 were very helpful for the definition and interpretation of 
the reference data. Seven change classes were derived from the
four optical images at different times throughout the year, out of 
which five relevant wetland classes are validated in Table 2.

The design of the study aimed to exploit different combinations 
of Kennaugh elements, polarizations (dual-co-pol and dual-
cross-pol), and wavelengths (C-band and X-band) – separately 
and in synergy – for a multitemporal classification applied on 
the full time series of the geocoded, calibrated, and multi-scale 
multi-looking filtered Kennaugh elements. A weighting matrix 
to enhance the influence of the Kennaugh element K0 for the 
class permanent open water was applied on the covariance 
matrix prior to classification, due to instability of the water class
in the other polarimetric channels. Other than that, no further 
pre-processing or spatial or temporal post-classification filtering 
was performed. 

4. RESULTS AND DISCUSSION

4.1 Interpretation of Polarimetric SAR Scattering 
Mechanisms

Photos and GPS points have been measured in the field in four 
regions that were difficult to classify using polarimetric SAR 
(Region A and B are indicated in Figure 1). Figure 3 shows four 
photographs from the field campaign representing (a) flooded 
grasses seen from the shoreline that were well classified using 
TSX, (b) flooded grasses, here on a picture taken from the lake 
towards the shoreline, (c) dense water lilies that were not 
classified with both X- and C-band, and (d) sparse flooded 
vegetation in shallow waters, with visibility through to the 
ground in the optical VHR reference satellite images, that were 
only classified with TerraSAR-X as areas of flooded vegetation, 
but not with RADARSAT-2.

a)

b)
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Figure 3. Ground truth photos taken during the October 2015 
field campaign: (a) flooded grasses seen from the shoreline, (b) 
flooded grasses from the lake towards the shoreline, (c) dense 

water lilies, and (d) sparse flooded vegetation in shallow waters,
photos by R. Ouedraogo and L. Moser  

Figure 4 shows a supervised classification with the three 
wetland classes: water (blue), flooded vegetation (green) and 
irrigated fields (red) that was performed on one Kennaugh 
element image of both, TSX and RS-2 (compare Figure 2),
acquired at the same day (18 October 2014). This should result 
in the same information, however, from Figure 4 it becomes 
apparent that flooded vegetation can be well delineated applying 
the classification on the TSX image, which is not at all the case 
for RS-2. Also irrigated cultivations are detected using TSX, but 
using RS-2 the classes flooded vegetation and irrigated 
cultivation are inter-mixed and further extended to non-wetland 
areas. This represents a pixel-based result on the 5 m grid scale 
to which TSX has been sampled (with slight undersampling), as 
well as RS-2 (with slight oversampling). No further post-
classification filtering has been applied. Misclassifications 
outside the wetland area occur for both sensors, which is 
expected due to the fact that there are a lot of trees, shrubs and 
dwellings that can be accounted for high backscatter, 
particularly at the end of the rainy season where there is still a
lot of natural green vegetation.

Figure 4. Supervised classification applied on the Kennaugh 
elements of (a) TerraSAR-X and (b) RADARSAT-2, both from 

18 October 2014. The classes are: open water (blue), flooded 
vegetation (green), irrigated cultivation (red) and non-wetland 

(beige). Region A, B, and C contain floating vegetation that was 
not classified by either of the two sensors. 

The regions studied in the field campaign in in October 2015 – 
Region A and B, as marked in Figure 1 and Figure 4 – were not 
detected as flooded vegetation with both sensors, and flooded 

vegetation in Region C was only detected using TerraSAR-X.
The assumption is that no strong double-bounce or difference 
between HH and VV occurs in X-band, and no strong volume 
scattering occurs in C-band, since the vegetation is mainly 
floating on the water surface and is very dense, so that the SAR 
radiation cannot trespass the canopy, and scatter from the water 
surface into the vegetation, and back to the sensor. 

As shown in Figure 5, the temporal development of each class 
was observed in terms of the temporal profile of AOIs, plotted 
over the time series, in order to define change classes and 
compare the change of the scattering mechanisms over one 
season. The mean of the AOIs was plotted for K3 and K4 from 
TerraSAR-X for different flooded and floating vegetation types: 
water lilies in purple, grasses in pink, grasses with flooded trees 
in green, and shallow flooded soil/fields in turquoise.

Figure 5. Temporal development of flooded vegetation classes 

Despite the fact that the single image classification did not have 
the same success for TerraSAR-X HH-VV and RADARSAT-2
HH-HV images, adding a temporal component presents new 
opportunities and again highlights the importance of time series 
for wetland remote sensing (see Figure 6): A multitemporal red-
green-blue (RGB) stack of K0 for TSX (sum of HH and VV 
intensity), and K0 for RS-2 (sum of HH and HV intensity) 
appears promising for detecting temporal changes from both 
sensors. Both, TSX (X-band) and RS-2 (C-band) are able to 
capture similar dynamics – in this case considering only the 
intensity (K0) – however, under the condition that the temporal 
change is considered. The starting point of the time series (18 
October 2014 for TSX and RS-2) is visualized as red channel, 
resulting in some flooded vegetation on the wetland’s outer 
boundaries and in the north of Lac Bam being coloured in bright
red, and most of the background image being coloured in dark
red, due to still present natural vegetation at the end of the rainy 
season. An image in the middle of the dry season (25 January 
2015 for TSX and 22 January 2015 for RS-2) is displayed as 
green channel, which causes areas of both, flooded vegetation 
and irrigated cultivation, appear in light green. An image 
representing the end of the dry season (15 May 2015 for TSX, 9 
May 2015 for RS-2) is assigned to the blue channel, showing 
areas where open water retreated at the end of the dry season in 
dark blue. Rocky and urban areas that are characterized by 
strong backscatter throughout the whole year appear in light 
blue to grey and white. 

C C

a)

c) d)

b)

a) b)

CHAPTER 7 

206 | P a g e



Figure 6. Multitemporal red-green-blue (RGB) stack of K0 for 
(a) TerraSAR X: 18 Oct. 2014, 25 Jan. 2015, 15 May 2015; and
(b) RADARSAT-2: 18 Oct. 2014, 22 Jan. 2015, 09 May 2015

4.2 Multitemporal Classification

Different experiments have been conducted using the same 
training dataset for different classification results. Both for 
RADARSAT-2 and TerraSAR-X a classification was carried 
out, using: (1) all four Kennaugh elements, (2) combinations of 
the most significant Kennaugh elements, and (3) only the sum 
of intensities K0. For RADARSAT-2 only the difference 
between ascending and descending orbit was explored using as 
classification input (4) all four Kennaugh elements of only 
images acquired in ascending orbit, and (5) images acquired in 
descending orbit. After fusion of the multi-frequency time series 
of both sensors (TSX + RS-2) the classification was performed 
with: (6) all four Kennaugh elements of both sensors, (7) the 
most significant Kennaugh elements of both sensors, and (8) 
only K0 of both sensors. 

Figure 7 shows the two best multitemporal classification results: 
For TerraSAR-X this was the combination of Kennaugh 
element K0, K3 and K4, for RADARSAT-2 the combination of 
K0 and K1. For a combined X-band and C-band time series the 
fusion of the before mentioned two combinations yielded the 
best results. Permanent open water (W) displayed in blue, the 
change class water to land (W–L) in light blue, flooded 
vegetation to land (V–L) in light green, flooded vegetation to 
irrigated fields (V–F) (with land in the transition between) in 
green, the dynamic class of rapidly changing irrigated fields (F–
L/L–F) in red, and the two land classes land/permanent 
vegetation (L1) in dark green, and land/soils and rocks (L2) in 
beige. 

Figure 7. Multitemporal classification results for (a) TerraSAR-
X (K0–K3–K4), and (b) RADARSAT-2 (K0–K1)

Though classification using the same classes (water, flooded 
vegetation, irrigated fields and non-wetland) on a single dual-
pol image was only successful for TerraSAR-X but not 
RADARSAT-2, the multitemporal classification proofs that 
using the full time series stack a classification is possible, and
the same information can be extracted from X-band dual-co-
polarimetric as well as C-band dual-cross-polarimetric channels, 
as well as a combination of the two sensors. 

4.3 Classification Accuracy Assessment

The validation dataset was created based on the same four 
optical VHR and HR data as the training set, see Chapter 3.2). 
The same number of AOIs per class – with approximately the 
same size – was used for validation. No AOIs were excluded, 
and no post-classification filtering was applied, in order to 
guarantee that the direct output of the pixel-based multitemporal 
classification of the Kennaugh element time series stacks is 
validated. Hence, the validation results refer to the whole 
monitoring system, including acquisition, data processing, and 
automated interpretation. 

Table 2 shows the results of the accuracy assessment in terms of 
Producer’s Accuracy (PA) and User’s Accuracy (UA) for the 
five relevant wetland change classes, and the Overall Accuracy 
(OA) of the entire classification that includes also further land 
classes. Combinations of different Kennaugh elements, 
polarizations (dual-co-pol and dual-cross-pol), and wavelengths 
(C-band and X-band) – separately and in synergy – are ranked 

a) b) a) b)
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according to the classification OA (Table 2). The five relevant
wetland classes out of the seven change classes are: permanent 
open water (W), water to land (W–L), flooded vegetation to 
land (V–L), flooded vegetation to irrigated fields (V–F), and 
dynamic irrigated fields to land or land to fields (F–L/L–F).  

A color scale was applied on the validation table based on five 
categories formed by a joint evaluation of the percentage of the 
Producer’s and User’s accuracy of correctly classified pixels: 
(1) both PA and UA between 90 and 100% (green), (2) the
lower value between 80% and 90% and the higher one can be
the same or above (yellow), (3) the lower value between 70%
and 80% (light orange), (4) one value lower than 70% (dark
orange), and (5) both values lower than 70% (brown). We
consider values lower than 70% accuracy as not applicable for
wetland classification or monitoring.

W 
(PA/UA)

W–L
(PA/UA)

V–L
(PA/UA)

V–F
(PA/UA)

F–L/L–F
(PA/UA)

OA

TSX (K0-
3-4)+RS2 
(K0-1)

100% /
93.8%

71.0% /
100%

93.3% /
90.9%

88.5% /
78.3%

97.6% /
93.7%

92,8%

TSX (K0-
3-4)

100%  /
95.7%

84.0% /
100%

92.2% /
94.8%

86.1% /
74.4%

94.3% /
93.5%

92.1%

RS2 (K0-
1)

100%  /
96.0%

86.0% /
100%

90.8% /
90.5%

78.0% /
68.9%

91.9% /
86.2%

90.6%

TSX (all)
100%  /
91.5%

67.8% /
100% 

91.8% /
93.0%

87.1% /
72.2%

94.8% /
92.1%

89.9%
TSX (K0)
+ RS2 
(K0)

98% /
100%

95.1% /
99.3%

89.7% /
91.4%

65.5% /
64.0%

90.4% /
83.2%

88.6%
TSX (all) 
+ RS2 
(all)

100% /
95.3%

48.4% /
100% 

89.3% /
76.2%

86.4% /
64.4%

97.6% /
87.5%

87.4%

RS 2 (all) 
desc.

100% /
98.0%

89.1% /
98.4%

78.5% /
87.5%

83.6% /
60.3%

81.8% /
78.4%

86.7%

RS2 (K0) 
99.1% /
100%

95.2% /
99.5%

84.2% /
89.3%

57.0% /
52.1%

79.8% /
70.5%

84.4%

RS2 (all) 
asc.

100% /
96.1%

80.7% /
100%

84.8% /
81.8%

59.1% /
48.0%

81.7% /
76.4%

83.5%

RS2 (all) 
asc+desc

100% /
93.1%

49.7% /
100%

79.6% /
72.6%

81.4% /
50.6% 

90.9% /
80.1%

81.7%

TSX (K0) 
99.6% /
100%

97.5% /
100%

80.7% /
83.5%

38.0% /
39..5%

75.0% /
82.6%

81.6%

Table 2: Accuracy Assessment for the multitemporal 
classification of different polarimetric, frequency, and 

Kennaugh element combinations of the TerraSAR-X and 
RADARSAT-2 time series, ranked by Overall Accuracy (OA) 

The main findings of the validation are that multitemporal 
classification results for (a) TerraSAR-X (K0–K3–K4), and (b) 
RADARSAT-2 (K0–K1), or a multi-frequency combination of 
the two sensors are most suitable for wetland extent delineation 
and the derivation of wetland change classes. Furthermore, the 
comparison between ascending and descending orbit of 
RADARSAT-2 was tested, with the result that descending orbit 
is favoured for the multitemporal wetland classification of Lac 
Bam, reasons for that are subject to further investigations. 

In all experiments the class permanent open water (W) was 
classified with a very high accuracy. The class W–L is best 
detected using only K0 – the sum of intensities of the dual-pol 
data – in TSX (K0), RS-2 (K0) and TSX (K0) + RS-2 (K0). 
Therefore it can be concluded that the monitoring of open water 
or open water to land can be very successfully carried out with 
SAR intensity data and without any contribution of the 
polarimetric channels. This, however, is not the case for many 
studies considering also vegetation or cultivation in wetlands. 

TerraSAR-X dual-co-pol data is favoured for applications 
where the classification of flooded vegetation is of high
relevance. This is reflected in very high classification accuracies 
for the class V–L with TSX using (1) all Kennaugh elements, 
(2) the most relevant Kennaugh elements K0–K3–K4, or (3) a
combination of the most relevant Kennaugh elements from TSX
and RS-2. Using RS-2, very high accuracies of V–L could be
achieved with the favoured Kennaugh elements K0–K1, but the
class V–F shows only low accuracies in the order of PA
78%/UA69%. Using TSX, the class V–F achieves higher
accuracies in the order of 86–87% PA and 72%–74% UA. A
combination of TSX and RS-2 would also lead to the desired
results. Using only K0 is the worst choice for classifying V–F,
and so are most other combinations of RS-2 data. Moreover, the
single image classification (see Figure 4) showed that TSX data
could very successfully delineate flooded vegetation, whereas
RS-2 data could not. 

As far as irrigated fields are concerned, the best choice is to 
work with the Kennaugh elements of TSX or the combined 
most significant Kennaugh elements of TSX and RS-2. 
Tendentially, all other combinations involving RS-2 show too 
low accuracies (70–82% for PA and UA) for F–L/L–F, and as 
well lower accuracies for V–F, as mentioned in the previous 
paragraph. Therefore TSX dual-co-pol data can be considered to 
be preferred for monitoring irrigated fields. 

5. CONCLUSIONS

Especially in semi-arid regions, where water reservoirs and 
wetlands are the main water resource during the long dry 
season, monitoring of water – including waters of flooded or 
floating vegetation – is vital, as is monitoring of irrigation 
activities around wetlands extracting water from the wetland. In 
this study an approach for wetland delineation and the 
derivation of change classes from regular, dense time series is 
performed, using different dual-polarimetric SAR data time 
series. Using a well-established supervised classification 
method, based on a maximum likelihood classifier, a 
multitemporal classification approach developed for wetland 
monitoring using TerraSAR-X data could be successfully 
transferred onto RADARSAT-2 data. This study represents the 
first multi-frequency wetland monitoring using partial-
polarimetric SAR data. 

Results demonstrate the importance of the temporal component 
in remotely sensed information. Though a supervised 
classification of the wetland classes open water, flooded 
vegetation and irrigated cultivation on single Kennaugh images 
of TerraSAR-X was successful, it failed when using 
RADARSAT-2 data. Comparable information, however, could 
be derived when focussing on a stack of a time series as input to 
a multitemporal classification, adding the temporal aspect. This 
could be realized thanks to the Kennaugh element framework
(Schmitt et al., 2015), enabling multi-scale and multi-frequency 
processing and the derivation of geolocated and calibrated 
Kennaugh elements from different sensors and polarizations.
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This study presents the first multi-frequency data fusion using 
the Kennaugh element framework. A fusion of the TerraSAR-X
and RADARSAT-2 Kennaugh elements could therefore be 
applied, leading to similarly high classification accuracies 
(almost 93% overall accuracy) than when using the TerraSAR-
X time series with the most significant Kennaugh elements: K0,
K3, and K4 (92% overall accuracy). Moreover, using the two 
most significant Kennaugh elements K0 and K1 of 
RADARSAT-2 high classification accuracies (almost 91% 
overall accuracy) could be achieved.

The classification accuracies exceeded our expectations. Open 
water and the change class water to land could be well detected 
in the Kennaugh element K0 from both sensors, representing the 
total intensity from co-polarized HH-VV TerraSAR-X data, as 
well as cross-polarized HH-HV RADARSAT-2 data. For all 
classes related to flooded vegetation or irrigated cultivation, the 
use of multi-polarized imagery, and therefore the use of further 
Kennaugh elements, is required. The classification accuracies 
for change classes of flooded vegetation to land or to irrigated 
fields were significantly higher for most combinations involving 
TerraSAR-X dual-co-polarimetric data, with respect to 
RADARSAT-2 dual-cross-polarimetric data. The multitemporal 
classification approach could be successfully transferred from 
TerraSAR-X to RADARSAT-2 data. 

While the results in this study focus on wetland extent, 
delineation, and dynamic change classes, a next step would be 
to perform time series analysis to derive seasonal start, duration 
and end maps and time series of areal change for every time 
step in the dense polarimetric SAR time series. This has been 
successfully done by Moser et al. (2016), using dual-
polarimetric TSX time series for wetland monitoring. This work 
shows, that the approach classifying every image in the time 
series cannot be directly transferred to dual-cross-pol C-band 
data – such as RADARSAT-2 – and there is still a need for 
further research. This study concludes to an outlook on future 
possibilities and the feasibility to establish an operational 
monitoring system of prime importance for a whole region, like 
semi-arid areas in West Africa. RADARSAT-2 data can be 
considered to be comparable with the European Space Agency’s
Sentinel-1 (S-1) data, which are systematically acquiring data 
since April 2015 over a large coverage of African areas, 
including the Lac Bam site. In May 2016 there will be a full S-1
time series from the rainy to the dry season acquired, such as 
the one used in this work. With a repeat frequency of 12 days 
for Sentinel-1 – that is reduced to 6 days once both satellites are 
in orbit – there is great potential for the exploitation of regular 
dual-cross-polarimetric time series over wetland sites. Besides 
Sentinel-1, also the TSX time series will be further on acquired 
for the Lac Bam site. This study shows that a coverage of 2–3
images per year – as it is currently applied for many wetland 
studies and projects – is not enough to correctly delineate 
wetlands or capture their seasonal dynamics and change classes. 

We also want to emphasize that this the approach applied in this 
work was based on a basic, well-established and statistically 
comprehensible supervised maximum likelihood classification 
method, that was only minimally modified enhancing the 
weight of K0 for open water classification. The performance in 
terms of processing time was very good, and – without any 
other pre-classification time series analysis or post-classification 
filtering – very high classification accuracies could be achieved 
on a per-pixel level. We therefore conclude to the suitability of 
the multi-scale, multi-frequency Kennaugh element framework, 
and the potential of dual-polarimetric SAR time series for 
wetland classification and monitoring. 
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Abstract

Lac Bam is one of the most important wetlands in the semi-arid Sahel zone of Burkina Faso. The natural lake fills up

during the short rainy season and continuously dries during to the long dry season, enhanced by the extensive water

extraction by farmers. The present study classifies 119 dual-co-polarised TerraSAR-X stripmap acquisitions collected

with the highest possible temporal sampling of eleven days between 2013 and 2018. Seasonal and annual changes

are visualised in order to recognize spatio-temporal variations. Evidently, the high siltation rates at Lac Bam cause a

deterioration of the effects of droughts and floods pointing out the need for coordinated water exploitation.

1 Introduction

Never before has the discussion about the causes and con-

sequences of climate change been held so passionately as it

is today. The first effects of climate change can already be

seen worldwide. The special report on climate change pub-

lished on 07.08.2019 by IPCC (Intergovernmental Panel
on Climate Change) shows that the global average temper-

ature has risen by 1.41◦C since 1880 and an ongoing rise

in temperature has to be expected. Furthermore, the IPCC

predicts that climate zones will shift further north [1]. The

report notes that weather extremes such as heat waves and

flooding from heavy rainfall have already increased [1].

The Sahel zone of West Africa is affected in particular. For

example, the number of extreme thunderstorms has tripled

since the 1980s [2]. It is expected that the rainfall in the

Sahel zone will increase in the next few years, but in a way

that the precipitation will fall much more intensely in much

shorter time [3]. For the people, animals and plants of the

region, the amount of rainfall is of existential importance:

The fallen rain accumulates in rivers which, depending on

the amount, can swell up to lakes. These natural water

reservoirs are of great importance in the Sahel zone, since

they are the only water source besides deep wells during

the dry season [4]. Synthetic Aperture Radar (SAR) sen-

sors can deliver a valuable data base for continuously sur-

veying the available water resources. The use of optical

satellite data generally is restricted to the commonly cloud-

free dry season. During the rainy season, only SAR sensors

are able to provide regular acquisitions due to their inde-

pendence from weather and illumination. That is the rea-

son why this study bases on time series of TerraSAR-X in

the Stripmap mode in HH-VV polarisation exclusively. In

this manner, an unprecedented data set was collected from

2013 until today from which five years with 119 images

will be evaluated in detail. All images are processed by the

MultiSAR system [5][6] before classification.

Figure 1 The characteristic land cover around Lac Bam:

Floating vegetation along the shoreline (a), distinct wet-

land landscapes with flooded herbaceous vegetation (b),

and irrigated agriculture near the lake (c).

Photo source: Raymond Ouedraogo and Linda Moser

1.1 The Area of Lac Bam
Lac Bam (English: Bam Lake) is located in the province

of Bam in Burkina Faso. Situated at 115 kilometers north

of the capital Ouagadougou, it forms one of the largest nat-

ural water reservoirs as well as the most important wetland

of the country (see Fig. 1) [4]. It fills up with freshwa-

ter during the rainy season and loses a lot of its volume

during the dry season [7]. Therefore, the size of the lake
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varies a lot throughout the year. For the local population

the water of the lake is essential, because the majority of

the people in the province of Bam is living from fishing,

agriculture and livestock [4]. Irrigated agriculture takes

place near the lake. However, the increased use of mod-

ern motor pumps also allows the transport of water over

long distances. In recent years, more agricultural land has

been cultivated, even further away from the lake, but irriga-

tion activities and schedules are largely uncoordinated. By

2014 more than one thousand motor pumps were in opera-

tion [8]. The resulting steady increase of water abstraction

along with over-fishing is one of the major problems that

the lake faces nowadays. Since years a gradual decrease

of the water volume of the lake is noticeable [4]. In addi-

tion, the overuse of the lake shore by agriculture leads to

erosion and thus to sedimentation at the bottom of the lake

[4]. This sedimentation is intensified by deforestation and

overgrazing on the nearby meadows [7][4]. Lac Bam thus

gradually silts up and loses its water depth. As a result,

the lake dries out more rapidly. In addition, the water qual-

ity decreases more and more since the use of pesticides in

agriculture has increased [4]. An improvement of the situ-

ation cannot be expected, because the population of Burk-

ina Faso is growing [9] and thus, the influence of human

activity will even increase in future [7]. Therefore, several

projects were initiated in recent years to improve the sit-

uation of the local population which unfortunately do not

necessarily promise an amelioration of the wetlands at the

same time. The present study thus contributes to the under-

standing of the ecosystem of Lac Bam and consequently to

its long-term preservation.

1.2 The Climate of Lac Bam
Lac Bam is part of the Sahel Zone of West Africa, which

is known for its extreme climate variability that has caused

numerous weather extremes such as droughts and floods in

the past. The area of Lac Bam is no exception: the length

and intensity of the rainy season and the dry season varies

considerably over the last decades. Moreover, since 1970

there has been less annual average precipitation than ex-

pected (see Fig. 2). Lac Bam‘s climate is strongly influ-

enced by the Passat circulation and the Sahara desert north

of Burkina Faso. Researchers agree that first consequences

of climate change are already perceived or at least, will ap-

pear during the coming decades [3].

2 Data and Evaluation

2.1 TerraSAR-X
For this study, preprocessed radar data acquired by the

TerraSAR-X satellite mission was used. Out of the man-

ifold imaging modes, the Stripmap mode was chosen be-

cause of the sufficient coverage, the optimal orientation in

relation to Lac Bam and the high spatial resolution. Re-

garding polarimetry, we chose the dual-co-polarised mode

delivering HH and VV complex images with a fixed inter-

channel phase reference [10][6]. This special polarimetric

mode promising a high spatial resolution at the same time

Figure 2 Precipitation anomalies in the Sahel Zone from

1950 until 2017 with respect to the longtime average. The

dry decades from the seventies to the start of the new mil-

lennium are clearly visible [11].

is exclusively available within the TerraSAR-X mission

so far. The co-polar phase difference was reported to be

of extreme importance for the distinction of surface from

diplane scattering, which is essential for wetland mapping

[12]. Fully polarimetric data unfortunately is not contin-

uously available due to the sensor design. Switching to

other sensors like ALOS-Palsar-2 or RADARSAT-2 would

reduce the spatial resolution and consequently decrease the

radiometric stability with view to the multilooking gener-

ally required for polarimetric interpretation [8].

The HH-VV images were preprocessed in the so-called

MultiSAR system, which was implemented at DLR Oberp-

faffenhofen [5][6] and still is further developed in close

cooperation with the Munich University of Applied Sci-

ences [13]. It enables the processing of a wide variety of

SAR data, regardless of its geometric, radiometric or po-

larimetric resolution in the Kennaugh framework. The use

of normalized Kennaugh elements ensures that all kinds of

multiscale, multitemporal, multipolarisation and multifre-

quency data, i.e. data from a wide variety of radar sen-

sors, can be displayed in a consistent and comparable way.

In the case of dual-co-polarised data, the normalized Ken-

naugh elements k0 (total intensity), k3 (diplane vs. surface),

k4 (horizontal vs. vertical), and k7 (phase shift) were cho-

sen (see Fig. 3). All normalized Kennaugh elements share

a closed data range of ]− 1,+1[, and thus can easily be

transformed into digital numbers with negligible loss of in-

formation [6]. A total of 119 data sets from the area around

Lac Bam between 15.08.2013 and 20.10.2018 are available

for evaluation. This is a remarkable data set and unique in

its temporal and spatial resolution as well as in its coverage

with respect to the region of interest. The minimum repeat

pass time is eleven days between two scenes. However,

there are some irregular data gaps of several weeks in the

time series due to sensor occupancy. Besides the SAR data

of TerraSAR-X, optical images acquired by Landsat-8 and

Sentinel-2 were used additionally in order to derive refer-

ence information, e.g. for the creation of training areas.

Further information on the local rainfall was drawn from

the First Guess Monthly dataset of the GPCC (Global Pre-
cipitation Climatology Centre) in absence of usable gauge

measurements.
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Figure 3 TerraSAR-X images of the Lac Bam area in

Kennaugh elements k0, k3, and k4: at the end of the rainy

season (left) and at the end of the dry season (right).

3 Methodology

The available data was sorted into six cycles. Each cy-

cle begins with a rainy season followed by a dry season.

A cycle ends when a new rainy season can be observed.

The classes wetlands, floating vegetation, open water and

irrigated agriculture are defined for further evaluation (see
Fig. 1). Each radar scene is classified for wetland, float-

ing vegetation and irrigated agriculture classes in QGIS us-

ing the Semi-Automatic Classification Plug-In. The used

method is the so-called Maximum Likelihood Classifica-

tion which can be directly applied on the normalized Ken-

naugh elements. The open water surface areas were con-

firmed separately with a threshold approach. The com-

bined classification was filtered using a majority filter. The

resulting raster image is then reduced to the characteristics

of each desired class and finally vectorised (see Fig. 4).
These steps were repeated for all of the 119 radar scenes.

The surface area is calculated from the derived polygons.

4 Results

In general, certain patterns can be identified over the course

of the evaluated period: At the end of the rainy season

the water surface of Lac Bam has its largest extension.

Right after the end of the rainy season a small decrease

of open water and floating vegetation is observed. Over

Figure 4 Classification of a radar scene based on the

example of 22.10.2017: (a) wetlands in green, (b) open

water in blue, (c) irrigated agriculture in brown, and (d)

floating vegetation in turquoise.

the winter months, however, the water surface remains sta-

ble or shows only a slight decrease. Once the wetlands of

the lake, consisting of shallow water with flooded vegeta-

tion, have disappeared, the open water area decreases more

rapidly (see Fig. 5). The lake reaches its smallest extent at

the end of the dry season. In addition, it can be observed

that over the whole period, the decline in water surface ar-

eas within a cycle becomes more extreme: The maximum

water area at the end of the rainy season tends to increase,

while the minimum water area at the end of the dry season

decreases. The yearly change of the water area reached

more than 10 km2 in recent years which equals an annual

loss of about 60% in comparison to its original size, see

Fig. 5. At the same time, the minimum extent at the end

of the dry season decreases by 23% over the study period,

see Fig. 7. This trend is also shown in Fig. 6. This figure

visualises the change of the water surface areas over one

cycle for four of the five cycles under study. For each cy-

cle, a trend line derived by linear regression is added. It

is noticeable that the respective trend line shows a strictly

more decreasing gradient from cycle to cycle.

15.07. 23.10. 31.01. 11.05.
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10
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d

Figure 5 Surface changes of the classes total water sur-
face area (a), open water surface area (b), wetland area
(c), and irrigated agriculture (d) over one cycle by the

example of cycle 2017

Wetlands form an essential part of the Lac Bam ecosys-

tem. They surround the open water surface area and float-

ing vegetation along the entire length of the lake. In gen-

eral, wetlands appear shortly after the beginning of the
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rainy season and increase in size over the course of time.

The largest extent is reached at the end of the rainy sea-

son. The maximum extension varies significantly over the

cycles and is closely related to the amount of precipitation

(see Fig. 8). After the end of the rainfall, a steady decrease

of the wetland areas can be observed. In all cycles, wet-

lands can be classified until February or March. During

the dry season, irrigated agriculture is practised around the

lake. In general, the first field areas appear in September

or October. The peak of the extent is reached in December

or January. From this time on the extent of irrigated agri-

culture decreases continuously. It can be concluded that

crop cycles and irrigation schedules vary with the distance

to the lake, and not all field areas are still cultivated by the

end of the dry season. (see Fig. 5). This is partly due to

the decline in total water and wetland area. Crop cycles and

irrigation schedules vary throughout the year, therefore dif-

ferent areas are irrigated, but not all at the same time. The

extent of the actual agricultural area that can be seen in a

single radar scene does not reflect the total area of agricul-

tural use of a cycle. In the long-term course, it can be ob-

served that the extent of irrigated agriculture coincides with

the maximum area of wetlands. A further expansion of irri-

gated agriculture into areas further away from the lake over

the cycles can be observed as well, especially in the north

of the lake (see Fig. 9). The classification of the 119 radar

scenes of the TerraSAR-X satellite over the comparatively

short period of only five years shows clear trends. Water

surface areas show a more extreme change in size over the

years and irrigated agriculture tends to move further away

from the lake (See Fig. 9). Both phenomena are closely

related to the increasing silting up of the lake and the re-

sulting reduction in water capacity. It can also be assumed

that the irrigation of more distant fields was made possible

by the increased use of modern tools such as motor pumps.

Additionally, it has become apparent over the course of the

period that dry seasons and rainy seasons have very differ-

ent lengths and that precipitation varies in intensity. This

change naturally has an impact on the Lac Bam ecosystem.

A direct connection of the results with the climate change

could not be proven, which is however also understandable

due to the relatively short observation period. Anyways, it

is fascinating, how the above mentioned results could be

determined even over such a short period of time.

5 Discussion

The area of Lac Bam is a well-documented region thanks

to the continuous remote sensing by the TerraSAR-X satel-

lites since 2013. This is unique for a country like Burkina

Faso. The preprocessing with the MultiSAR system is very

helpful, since the different characteristics of the lake are

very well represented in the Kennaugh elements and thus,

the further classification of water surface areas, wetlands

and irrigated agriculture is possible using standard GIS

software. One problem though are the gaps in the time se-

ries. The period between the first radar image (15.08.2013)
and the last radar image (20.10.2018) is 1892 days. Ide-

ally 172 radar scenes should be available for this period.
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Figure 6 Changes in total water area (open water surface
areas and floating vegetation) in km2 during cycles 2013
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Figure 7 Total precipitation (a), length of dry seasons
(b), maximum water area (c) and minimum water area (d)
in the period 2013–2018.

However, only 119 radar images are available. Since some

cycles show larger data gaps, the changes of the water, ir-

rigated agriculture and wetland areas cannot be compared

to those of other cycles. A comparison between the cycles

is possible only under restriction. Despite those problems,

the increasing sedimentation of Lac Bam can be confirmed

[4] [7]. It results largely from excessive agriculture and the

related overstraining of the soil. The lake bottom silts up

and results in a loss of water depth [7][4]. The trend shown

in Fig. 6 for the water surface areas and can be interpreted

as an indication of this: while the total area of water tends

to continuously increase at the end of a rainy season, the

minimum extent at the end of a dry season continues to de-

crease. The volume loss associated with silting could be
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Figure 8 Area changes of the classes total water area (a), wetlands (b) and irrigated agriculture (c), as well as the av-
erage precipitation (derived using GPCC data) (d) in the period from 15.08.2013 to 20.10.2018

one of the reasons why the water surface area increases, as

the lake is no longer able to store the same amount of water

as usual and therefore floods the banks. This trend can be

seen in cycles 2014 and 2017 especially and was confirmed

by farmers and villagers in personal interviews with one of

the authors. The water surface loss over the dry season in

cycle 2014 was at 40%. In cycle 2017 however the loss was

already at 64%. The GPCC data shows that the total pre-

cipitation of the rainy season in cycle 2014 was low, while

the dry season was long. Accordingly, the minimum ex-

tent of the lake is only 6.5 km2. This represents the second

smallest measured water area in the observed period. The

cycle 2017 has a dry season with about the same length.

But the precipitation in this period was higher than in cy-

cle 2014. Despite the higher precipitation the minimum

extension at the end of the dry season was 5.8 km2, once

again, less than in cycle 2014. One reason for the stronger

decrease in the total water area can be the increased agri-

cultural activity: The total area of agricultural land in 2017

was 10.3 km2, whereas in 2014 it was just around 6.7 km2.

This suggests that water consumption tended to be higher

in 2017. Of course, other factors could also play a role be-

sides the supposedly shallow depth, but it can be noted that

an increase in Lac Bam’s extreme extents is recognizable

that cannot be explained by an increase in precipitation.

6 Conclusion

The 5-year TerraSAR-X data set of Lac Bam revealed the

changes to this extremely exposed landscape in an un-

precedented temporal and spatial resolution. The HH-VV

stripmap mode proved to be most suitable for the obser-

vation of wetlands with flooded and floating vegetation as

well as irrigated land. Thanks to the MultiSAR preprocess-

ing, the classification was simply possible with open source

GIS software. The results of the inter-annual analysis un-

derline the need for coordinated of water exploitation. In

the future, it is recommended to continue remote sensing

observations of Lac Bam, ideally in regular temporal in-

tervals without gaps. This is the way to continue research

in this area and to investigate and prove possible effects of

both, climate change as well as anthropogenically induced

effects and ongoing restoration efforts on a long-term ba-

sis.
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Figure 9 Inter-annual change of the class irrigated agriculture over the years 2013-2018 at Lac Bam.
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9. Synthesis, Conclusions and Outlook  

This Chapter presents a joint synthesis of the work and findings of this thesis with focus on 

the presented six research papers (section 9.1). In section 9.2 the conclusions and research 

contributions are detailed out: the original research contributions are highlighted in 

section 9.2.1, and conclusions and a discussion in response to the two research questions 

phrased in section 1.2.1 are presented in sections 9.2.2 and 9.2.3. Moreover, based on identified 

challenges and research needs, an outlook on future recommended research paths related to 
the study area as well as the thematic field of wetland remote sensing in semi-arid areas is 

provided in section 9.3.  

9.1 Summary of the Work and Results 

This thesis’ work shows the successful monitoring of sub-Saharan wetlands using remote 

sensing, and provides added value and new research contributions related to methodological 

innovations as well as the interpretation of environmental processes. Remote sensing time 
series of optical data (mainly from the Moderate Resolution Imaging Spectroradiometer, 

MODIS) are used to analyze spatio-temporal developments of wetlands in Burkina Faso, West 

Africa, and to monitor processes taking place within seasonal cycles and between different 

years. Synthetic Aperture Radar (SAR) data – from TerraSAR-X (TSX) and RADARSAT-2  

(RS-2) – are chosen specifically for the Lac Bam study site. All these datasets were selected due 

to their suitability for wetland detection in terms of spectral capabilities, 

wavelengths/frequency, polarization as well as temporal availability for time series analysis 

and monitoring.  

The monitoring of water bodies and wetlands based on optical medium resolution time series 

from MODIS covers the first subject area of this thesis’ work (Chapters 3, 4 and 5). MODIS 
data with 250 m spatial resolution (MOD09Q1), complemented by 500 m data (MOD09A1), 

were used to monitor wetlands and reservoirs in semi-arid Burkina Faso for the period  

2000–2012, along a latitudinal gradient of different rainfall and land use characteristics, 

crossing three different climatic zones. Ancillary data from SRTM and Landsat as well as 

photos geolocated with GPS that were collected in the fieldwork in October/November 2013 in 

Burkina Faso were also used. Firstly, the focus was on exploiting near infrared-capabilities to 

dynamically detect open surface water. Results could be successfully derived from September 

to May of the entire analysis period. The classified water areas were in very good accordance of 

89.5%–93.5% with respect to single-date Landsat-based reference water masks. The method 

performed well but was limited by (i) cloud cover during the rainy season leading to data gaps 

between June and August, increasingly towards the south, and (ii) aquatic vegetation cover 
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occurring particularly in natural wetlands, predominantly located in the northern part of the 

study site (for further details it is referred to section 9.2.2, response to the question 1B). In 

total 219 wetlands larger than 0.1 km², among them 68 larger than 1 km², were detected. Only a 

few small wetlands were found to have significantly diminished or completely disappeared 

during the analysis period. 21 newly appeared artificial water bodies greater than 0.5 km² were 
detected, among them three substantially large water bodies, concluding to strong 

anthropogenic influence on water distribution and land use in the region. Spatio-temporal 

observations of the water surface area were derived and visualized as annual cumulative water 

covered area. A trend analysis thereof shows a tendency toward larger water coverage but of 

shorter duration, which is connected to siltation effects causing wetlands to become 

shallower, water spreading out further and evaporating faster, which has a dramatic impact on 

lakes and land use around them. The dynamics of the near-permanent water area (i.e., 9–12 

months per year) and the dynamic area (i.e., 2–8 months per year) were compared between 

the different years. Five case studies consisting of two natural and three artificial wetlands 

were analyzed in further detail. This analysis reveals reduced water extent and duration of 

water coverage in the drought seasons of 2000–2001, 2004–2005 and 2011–2012, particularly of 

the dynamic area. Plotting time series of the classes’ spatial extent, seasonal cycles of natural 

wetlands appear more regular than for artificial wetlands, and water coverage duration 

increases from north to south. Moreover, monthly anomalies of water coverage were retrieved 

from the time series. Negative surface water anomalies and low surface water peak levels were 
found to be associated with the three drought periods mentioned above, for all case study 

sites, no matter if natural or artificial. The largest positive anomalies of all case study wetlands 

corresponded to the 2003–2004 and 2005–2006 seasons. Furthermore, the timing of dam 

constructions or development of new reservoirs could be seen in MODIS time series. For more 

details it is referred to section 9.2.2, response to the questions 1C, 1D and 1E.  

In a second step, surface water was jointly observed with vegetation applying the NDVI, 

computed on the MODIS time series, both within and around the wetland area and in the 

surroundings (Chapters 3 and 5). Results demonstrated a connection of the occurrence of 

drought seasons with negative vegetation anomalies in the whole study area, as well as 

negative anomalies of surface water coverage. Despite the only medium spatial resolution of 
the MODIS sensor, increasing land use activities in terms of small-scale irrigated agriculture 

could be observed with MODIS, as well as larger irrigated areas downstream of artificial water 

bodies. For further details it is referred to section 9.2.2, response to the questions 1D and 1E. 

To summarize, this work shows the successful application of medium resolution 
remote sensing time series from MODIS with high temporal repetition as a tool to 
monitor wetlands in semi-arid areas over large areal extents.  

In its second part this thesis presents the first X-band SAR dual-co-polarized high resolution 

time series monitoring of African wetlands (Chapters 3, 6 and 8). This is also the first remote 
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sensing study dedicated to Lac Bam, which is the largest natural freshwater lake in Burkina 

Faso and a major Ramsar wetland site of international importance, serving as case study for 

this work. An impressive dataset of SAR data was built up specifically for this work, which is 

unique for the region. As primary input dataset serves an 11-day repeat-pass time series from 

TSX dual-co-pol (HH-VV) data of 5 m pixel spacing, which was first used for a detailed study 

between 2013 and 2015 and later extended until 2018. Moreover, optical VHR data from 

WorldView-2 and GeoEye-1 as well as various HR RapidEye images were utilized as 

reference for the definition of the training and validation datasets, alongside with 

geolocated photos from fieldwork expeditions in October/November 2013 and October 2015. 

The Kennaugh element framework was chosen for SAR image processing because of its 

flexibility and robustness, enabling the application onto different sensors, frequencies and 

polarization combinations. This framework consists of a full SAR pre-processing chain 

including two features of major relevance for this study: (i) a decomposition based on the 

Kennaugh matrix resulting in four geolocated and calibrated Kennaugh elements in the case 

of dual-pol data, which represent layers with physically interpretable scattering 

mechanisms; and (ii) the Multi-scale Multi-looking image stabilization which is a method to 

stabilize radiometric measurements without the loss of geometric resolution where a 

varying look number is applied despite uniform pixel spacing. As a result, water surfaces or 

barren land could be smoothed, whereas finer structures of the semi-arid savannah 

landscape and flooded vegetation could be preserved. The analysis was two-fold:  

(i) The wetland parameters of open water, flooded vegetation (i.e., water areas containing 

different types of flooded or floating vegetation) and irrigated cultivation were of particular 

interest in terms of time series monitoring. A monotemporal supervised classification was first 

computed on each image for the three wetland classes, alongside with the dry land (non-

wetland) class. A detailed analysis was performed for the seasons 2013–2014 and 2014–2015, for 

which TSX dual-co-pol (HH-VV) data was almost completely available every 11 days. The 

accuracy assessment based on four selected dates in the time series resulted mostly in very 

high producer’s accuracies (PA) of 99.9–100% and user’s accuracies (UA) of 99.1–99.3% for 

open water, with the exception of one dataset which was potentially affected by wind on the 

water surface (PA 95.1%/UA 90.0%). Accuracies for flooded vegetation were very satisfying for 
a single-image classification (PA 91.2–94.9%/UA 83.6–84.2%) and medium accuracies for 

irrigated fields could be achieved (PA 69.2–82.1%/UA 66.1–68.6%), see Table 6 of Chapter 6. 

For the latter two, producer’s accuracies were typically higher than users’ accuracies, due to 

some misclassifications as non-wetland. Cumulative season duration maps showing open 

water, flooded vegetation and irrigated fields were computed. Time series of the spatial extent 

of these wetland classes were plotted revealing expected seasonal cycles for each class. 

A reduction in open water surface took place only in the last five to seven weeks of the dry 

season. The major decrease of water could be detected earlier in the shallower parts of the lake 
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which are mostly covered with flooded or floating vegetation. The reduction of these areas of 

flooded vegetation had two rapid decreases in the time series which could be assigned to local 

regions. There is a clear peak in the summed-up area of irrigated fields but the seasonal cycles 

differ for every field. Also shifts between the seasons 2013–2014 and 2014–2015 were 

determined, e.g. a temporal shift of about five weeks towards longer flooded vegetation 
coverage in the second year, or a spatial reduction in terms of smaller areas of open water and 

irrigated fields in the season 2014–2015. For more details on the geographic interpretation see 

section 9.2.3, reply to question 2E(i).   

A similar analysis was carried out until 2018 over a 5-year period, classifying each image and 

adding GPCC gridded precipitation data for comparative purposes. The resulting smaller areas 

of open water and irrigated fields in the season 2014–2015 were confirmed in this analysis and 

associated with a year that was considerably low in precipitation during the previous months. 

Over the five years, an increase in maximum water surface was detected, paired with a 

decrease of the minimum water surface at the end of the dry season; the latter did not always 

coincide with lower precipitation. This can be explained with increasing siltation rates and 
matches with the findings from the work carried out with MODIS data (Chapter 4), and with 

reports of the local population. The considerably larger water extent at the end of the last 

rainy season of the time series (2018) is likely explainable by the fact that in 2017 a local project 

was launched targeting the restoration of Lac Bam, one of the first accomplishments being the 

rise of the spillway (acting as a dam) by 25 cm. An expansion of irrigated fields moving further 

away from the lake was detected over the five seasons using TSX; this has been the case for the 

MODIS study as well, and a very rapid increase could be confirmed using selected available 

HR Landsat and RapidEye images from recent years. This cultivation increase might be among 

the reasons for smaller water areas at the end of the dry season, since the smaller water 

surfaces were not connected with lower precipitation during the corresponding rainy season. 

For more information it is referred to section 9.2.3, reply to question 2E(i) and 2E(ii), and 

section 9.3.  

(ii) With the goal to classify dynamic change classes over a season directly from a stack of 

input data, the 11-day repeat-pass time series from TSX dual-co-pol (HH-VV) data was used for 

a multitemporal supervised classification. First, a visual analysis was carried out based on 

spatio-temporal profiles plotting the backscattering processes in terms of the four Kennaugh 

elements (i.e., K0, K3, K4, K7) for all time steps along a spatial profile line. Furthermore, these 

profiles were compared with the optical VHR and HR reference data. This allowed the 

interpretation of the seasonal behavior of the backscatter in terms of the four Kennaugh 

elements, leading to the definition of wetland change classes, three of them static (no-change 

during the season) and four of them dynamic. The multi-temporal classification for the season 

2014–2015 delivered exceptionally stable and accurate results (see Table 7 of Chapter 6). Very 

high classification accuracies were achieved for permanent open water (stable) with 
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PA 100%/UA 89.2%, the change of flooded vegetation to land (dynamic) with 

PA 90.1%/UA 89.7%, and the dynamically changing irrigated fields (dynamic from land/soil to 

field as well as field to land/soil or both processes) with PA 96.8%/UA 90.3%. High accuracies 

were obtained for the change of flooded vegetation to irrigated fields (dynamic) with 

PA 84.9%/UA 75.0%, permanently vegetated land (stable) with PA 86.4%/UA 83.3%, and land 
in terms of soil, rock, urban (stable) with PA 82.0%/UA 94.5%. Solely the change class from 

water to land (dynamic) was underestimated, resulting in lower producers’ accuracies 

(PA 58.8%/UA 100%). The added value of dual-polarized SAR was proven with classification 

accuracies exceeding by far the ones using only the Kennaugh element of the total intensity of 

both channels (K0), the latter being comparable with a time series of single-polarized SAR 

intensity data, see section 9.2.3, reply to question 2B(ii). For all change classes involving 

flooded vegetation and irrigated fields, multi-polarized data is recommended. Only the 

dynamic change class from water to land was much better classified when using SAR intensity 

alone (PA 98.1%/UA 98.7%), since the polarized channels introduced noise and did not show 

added value. Also the permanent water class was slightly improved using K0. Moreover, single-

polarized images were not suitable for detecting and monitoring change from flooded 

vegetation to irrigated fields, resulting in low accuracies below PA and UA 50% (see Table 8 of 

Chapter 6).  

The next study represents the first multi-frequency wetland monitoring using dual-polarized 

SAR data in semi-arid Africa, as well as the first multi-frequency data fusion using the 

Kennaugh element framework (Chapter 7). In conjunction with the 11-day repeat-pass time 

series from TSX dual-co-pol (HH-VV) data, two 24-day repeat-pass time series from RS-2 dual-

cross-pol (HH-HV) data were acquired for this work, one in ascending and one in descending 

pass direction, shifted with an interval of 11 and 13 days between them. The time span for the 

analysis was the season 2014–2015. Also for RS-2 four Kennaugh elements could be computed 

(i.e., K0, K1, K5, K8). However, scattering mechanisms are less interpretable in the case of dual-

cross-pol data, the only comparable Kennaugh element with TSX is the total intensity of both 

channels (K0). The two meaningful Kennaugh elements from TSX: the relation between 

surface and double bounce scattering (K3) and the relation between the horizontal and vertical 

component (K4) are not available for the dual-cross-pol case. As it was done for the TSX time 
series in the previous study, the same monotemporal supervised classification of the wetland 

classes of open water, flooded vegetation and irrigated cultivation was applied on each time 

step of the RS-2 Kennaugh elements. Whereas flooded vegetation and irrigated fields were 

well classified on the monotemporal TSX images, this was not the case for RS-2, however, the 

open water class worked well for both sensors. In contrast, the results of the multitemporal 

classification exceeded the expectations by far, which demonstrates the importance of the 

temporal component for supervised classification of dual-cross-pol SAR data. Choosing the 

full RS-2 time series as input to a multitemporal classification, comparable information could 
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be derived with respect to TSX. The same seven change classes and training areas as for the 

TSX study were utilized. Very high overall accuracies (OA 90.6%) could be retrieved applying 

the two most significant Kennaugh elements of RS-2 (K0, K1). This was slightly improved 

(OA 92.1%) by the use of the three meaningful Kennaugh elements of TSX (K0, K3, K4). The 

accuracies of the change classes of flooded vegetation to land or to irrigated fields were 
significantly higher for most combinations involving TerraSAR-X dual-co-polarized data, with 

respect to RADARSAT-2 dual-cross-polarized data. A fusion of the most meaningful Kennaugh 

elements from both sensors could be applied thanks to the calibrated and geolocated output 

of the Kennaugh element framework, leading to even higher classification accuracies 

(OA 92.8%). The classes of the fused classification reached very high accuracies for open water 

(PA 100%/UA 93.8%), flooded vegetation to land (PA 93.3%/UA 90.9%), flooded vegetation to 

fields (PA 88.5%/UA 78.3%), and fields to land and vice versa (PA 97.6%/UA 93.7%); only 

water to land (PA 71.0%/UA 100%) showed some limitations. Hence, the multitemporal 

classification approach could be successfully transferred from TerraSAR-X to RADARSAT-2 

data, and the two datasets could be utilized in fusion. All classes related to flooded vegetation 

or irrigated cultivation required the use of multi-polarized imagery, and therefore further 

Kennaugh elements (i.e., K3, K4 from TSX and K1 from RS-2). Only open water and the change 

class water to land could be even better detected using just the total intensity (K0), for both 

sensors (see Table 2 of Chapter 7). It should also be emphasized that this work is based on 

well-established and statistically comprehensible methods that were only minimally modified, 
enabling statistical interpretation without having to deal with a black-box. The performance in 

terms of processing time was very good, and the processing could be run automatically 

without manual intervention. Without any other pre-classification time series analysis or post-

classification filtering very high classification accuracies could be achieved on a per-pixel level. 

This work shows the high potential of dual-polarized SAR time series for wetland 
classification and monitoring, as well as the added value of multi-frequency SAR 
analysis which could be successfully applied thanks to the Kennaugh element 
framework. The use of dual-co-pol SAR data is most recommended for monitoring 
wetlands of this type. Given the fact that regular acquisitions are available, continuous 
wetland monitoring can be established.  

In summary, the successful application of remote sensing time series – from both optical 

medium resolution data from MODIS, as well as SAR high resolution data from TSX and RS-2 

– is shown. Important wetland features relevant for better monitoring of water coverage, 

wetland vegetation as well as irrigated cultivation could be analyzed. Such an analysis enables 

the monitoring of water availability in sub-Saharan African wetland areas, and can aid 

spotting critical water shortage situations and the influence of land use changes.  
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9.2 Conclusions and Research Contributions 

The conclusions to the scientific work performed in this thesis are initiated with a selection of 

original research contributions (section 9.2.1) that have been developed as part of the work of 

this thesis, and were not published before the corresponding research papers (Chapters 3–8). 

Whereas the first part of this thesis is focused on long-term and large-area optical MR time 

series and primarily exploits the potential for geographical interpretation (section 9.2.2), the 

second part of the short-term and case study-based dual-polarized SAR HR time series focuses 

more on methodological aspects (section 9.2.3).  

9.2.1 Original Research Contributions 

As part of Research Question #1, the following original research contributions are presented:  

The results represent the first dynamic water product derived from 250 m MODIS data in the 

study area (Chapter 4), based on the ideas of a previously developed 1 km product from SPOT 

VEGETATION (Haas et al., 2009, Haas et al., 2011) and the Global Water Pack based on 

MODIS which was developed in parallel (Klein et al., 2017).  

Novel results for geographic interpretation on surface water dynamics have been developed 

(Chapters 3, 4 and 5), which are not otherwise documented as such in other studies on 

wetlands in Burkina Faso, and are in line with the interpretation of experts in the field and 

local authorities:  

• Observation of trends (2000–2012) toward water area spreading out further but
retreating/evaporating faster, are explained by siltation of the lake bottoms, one of

the most important issues to observe for wetlands in the area.

• Demonstration for the co-occurrence of drought seasons with surface water dynamics

and vegetation anomalies in the surrounding regions of the wetlands are shown.

• Novel insights on the water covered area itself being an indicator for water
availability in the coming dry season are presented, with a recommendation to a

potential inclusion in drought monitoring.

• Detection of anthropogenic effects such as dam constructions and increasing land

use in terms of irrigation activities over time is performed, which are both not

quantified or mapped by local authorities.
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As part of Research Question #2, the following original research contributions are presented:   

The research on dual-polarized SAR time series constitutes the first type of a polSAR analysis 

of that kind:  

• The first remotely-sensed monitoring study dedicated to Lac Bam has been 

performed (Chapters 3, 6, 7 and 8).  

• The first X-band SAR dual-co-polarized (HH-VV) and high-resolution time series 
monitoring for African wetlands with dense and regular image acquisitions has been 

carried out (Chapters 3, 6 and 8). 

• The first multi-frequency (X- and C-band) SAR data fusion study in semi-arid African 

wetland areas using multi-polarized partial-polarimetric (HH-VV and HH-HV) time 

series has been performed (Chapter 7).   

• The first multi-frequency data fusion applying the Kennaugh element framework by 
Schmitt et al. (2015) has been tested (Chapter 7).  

• One of the novel polSAR studies applying multitemporal wetland classification with a 

dense time series as input has been performed (Chapters 6 and 7).  

 

The following novel methodological demonstrations have been developed in this thesis’ work:  

• A demonstration that the method can be applied onto dual-polarized SAR time series 

of any polarization has been provided (Chapter 7).   

• The novel analysis method of the “multitemporal profile” is merging the idea of a 

geographic profile analysis and remote sensing time series analysis (Chapter 6).  

• Novel insights on the scattering characteristics of dual-pol SAR data on certain types 
of flooded vegetation have been discovered (Chapters 6 and 7).  

• A novel idea on the derivation of the “wetland extent”, which is not concurrent in up-

to-date scientific work and projects, has been proposed (Chapter 6 and section 9.3).  

 

Novel insights on the geographic interpretation deducted from the 5-year polSAR time series 

are shown, which are in line with the results of the long-term optical MR analysis and the 

interpretation by experts in the field and local authorities (Chapter 8).  

These original research contributions as well as further aspects and results of this work are 

concluded in the sections 9.2.2 and 9.2.3, as a response to the research questions stated in 

section 1.2.1, and accompanied by a discussion to provide additional insights.   
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9.2.2 Research Question #1: Can spatio-temporal dynamics for sub-

Saharan wetlands be derived using MODIS medium resolution time 

series? 

(A) ON THE (I) SPECTRAL, (II) SPATIAL AND (III) TEMPORAL CAPABILITIES FOR DYNAMICAL WETLAND 

MONITORING USING MODIS 

With respect to the spectral, temporal and spatial characteristics for dynamic wetland 

monitoring using MODIS, the successful application for water body and wetland monitoring, 

as well as for vegetation monitoring in semi-arid areas is shown. In short, this is due to: 

spectral bands in the visible, NIR and SWIR range, data in a well-documented format and of 

manageable data size with 250 m spatial resolution, and the high temporal frequency as well 

as up to 20 years of historical data archives. Therefore, MODIS is the favorable sensor for this 

work.  

(i) First of all, a key point was to analyze how water bodies and wetlands can be generally 

detected in terms of spectral capabilities of remote sensing sensors and how this applies to 

MODIS. Primarily to this research, from the literature (see section 2.2.3.2) it could be 

concluded to the successful application of MODIS data for open water mapping and 

monitoring, or flood detection. MODIS-based studies on wetlands have diverse objectives: 

some studies focus on open water in wetlands (e.g., Li et al., 2015, Li et al., 2020) as well as on 

further wetland classes such as wetland vegetation, often in combination with HR Landsat 

data (Chen et al., 2018, Mu et al., 2020) or generally, wetland delineation (e.g., Bansal et al., 

2017). With well documented formats and well calibrated bands in the NIR and red range at 

250 m resolution the main requirements for open water as well as vegetation monitoring are 

set, shown also by other authors which have been exploiting NIR capabilities for water and 

wetland applications, e.g. Landmann et al. (2010), Klein et al. (2014) and Klein et al. (2017). For 
this work data from the MODIS sensors on both, the Terra and Aqua satellites were chosen: 

NIR and red surface reflectance bands at 250 m resolution and as 8-day composite product 

(MOD09Q1), amended by the quality flags from the 500 m resolution 8-day composite surface 

reflectance product (MOD09A1).  

(ii) Regarding the spatial resolution, at the time of commencing this work there was no 

sensor of higher resolution available that recorded regular time series of narrow temporal 

intervals. This, however, is a prerequisite for spatio-temporal analysis, more precisely for the 

derivation of trends and anomalies. The 250 m of MODIS are well suitable for a larger-scale 

analysis or the analysis of large wetlands and water bodies. For example, Klein et al. (2017) has 

presented an example of a lake in a semi-arid area: spatial and temporal patterns of flooding 

and drying out are well detected with MODIS, but as expected, small rivers and lakes which 
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are clearly below the 250 m spatial resolution are underestimated. Similar conclusions can be 

drawn from this thesis’ studies. For a graphic representation of different spatial resolutions see 

Figure 10 of Chapter 3. Related to lowering the spatial resolution in favor of further bands from 

MODIS to a 500 m resolution, Guerschman et al. (2011) reported that no significant difference 

between the 250 m and 500 m data was found related to the dynamics of floods, however, the 

flood boundaries were more precisely delineated using the 250 m data. For smaller wetlands 

and water bodies, as well as for specific study sites, the application of HR data is 

recommended, considering new sensors in orbit. For the study region there are no data 

archives back into the past with densely spaced HR data available. Even to date, there is no HR 

sensor with more than a few years of data history, i.e. Sentinel-2 acquiring regularly in the 

study site since 2017 (with both sensors every 6 days from autumn 2017; this would provide 

only 3 seasons of analysis up to now) (ESA, 2021b). Alternatively, Landsat-8 is acquiring over 

the study area since April 2013, however, in monthly to bi-monthly intervals (16 days, if all 

acquisitions are provided) (USGS, 2021). Landsat 4, 5 and 7, which are the only HR satellites 

that had the capabilities to acquire regularly in the past, showed large data gaps in the past 

few years before the launch of Landsat 8 and was therefore not useful for the desired time 

period (Figure 11 of Chapter 3). The work as part of this thesis focuses on dense time series 

analysis. The objectives might have to be adjusted to the data situation of irregularly spaced 

data or few available years to look into the past. One possibility is the detection of long-term 

changes using HR data in specific years of good data availability, but taking into account 

uncertainties when comparing the results, due to unknown inter-yearly changes. For example, 

the project GlobWetland-II has provided wetland classifications around those years of 

good coverage of Landsat archive data, namely 1975, 1990 and 2005 (Weise et al., 2016).  

(iii) The main aspect of this work is to perform dynamic monitoring and conclude to spatio-

temporal information from a stack of dense time series data, rather than computing static 

products or a snapshot map – as this is the case for many existing water and wetland 

classification products. Therefore, the temporal resolution is a key factor for wetland 

monitoring. MODIS fulfills the ideal requirements with 1-2 days revisit time when combining 

both sensors on Aqua and Terra, and composite products thereof, which are available in e.g. 

8-day or larger intervals. For performing cumulative surface water area and time series 

anomaly calculations, the current analyses were carried out on a monthly basis. An increase in 

temporal resolution of the present study using the 8-day composite data without further 

averaging would be feasible under a similar setup. Moving to the level 2G surface reflectance 

data of 1–2 days interval (MOD09GQ) would require more processing effort and cloud 

screening for which additional cloud flags from the 500 m data (MOD09A1), or alternatively 

the MOD10A1 product as used by Klein et al. (2017) would be needed as well. As noted by 

different authors, though the MOD09 data are atmospherically corrected, an additional 

cloud screening is necessary to remove artifacts.  
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An increase of the temporal interval would allow characterization of wetlands by their 

seasonal dynamics in greater detail. For targeting flood or inundation events, a daily product 

would be recommended, which might not be needed for long-term wetland analysis. MODIS 

daily data and 8-day composites were compared for wetland floodplain mapping, e.g. by 

Guerschman et al. (2011), Chen et al. (2013). The latter reported that both, the daily as well as 

8-day MODIS products provided similar results and accuracies in terms of dynamic extent of 

floodplain mapping. In contrast, Guerschman et al. (2011) analyzed that the “best” pixel 

approach as applied to compute the 8-day composite has missed some standing water in case 

of a flooding, and therefore there has been an underestimation of water when using the 

MOD09A1 8-day product. The following 8-day composite, however, captured the previously 

missed standing water. Concluding from these authors, there are advantages and limitations 

when using 1-2 daily or 8-day MODIS land products, but both types of time series data seem 

very appropriate for wetland monitoring.  

(B) ON THE CHALLENGES IN TERMS OF (I) SPECTRAL, SPATIAL, TEMPORAL AND (II) GEOMETRIC 

ASPECTS FOR DYNAMICAL WETLAND MONITORING USING MODIS 

(i) Spectral issues leading to misclassifications are often a combined result of spectral, 

spatial and temporal limitations. The applied NIR-threshold-based method for water detection 

including additional compositing and the use of cloud flags, topographic masking as well as 

burnt scar masking (Moser et al., 2014b) performed well in the center and southern part of the 

study region, where larger wetlands and water bodies as well as artificial reservoirs dominate 

the area. However, problems appeared mainly in the northern region, due to the wetlands 

(a) being largely natural and covered with flooded or floating vegetation (spectral challenge), 

(b) being smaller in size (spatial challenge), and (c) having shorter annual water coverage 

duration (temporal challenge). For these northern regions, the use of the SWIR and blue 

bands of the 500 m product could be tested to improve the quality of the outcome, on the cost 
of lower spatial resolution, higher data volume and higher processing power and time. Some 

studies, which however, cannot be compared in terms of geographical location, have 

successfully reported the use of 500 m bands in the blue and SWIR range (i.e., the MOD09A1 

product as 8-day composite) to improve water/flood detection (Sakamoto et al., 2007, Yan et 

al., 2010, Islam et al., 2010, Huang et al., 2012, Chen et al., 2013, Martinis et al., 2013).  

Particularly when exploring HR RapidEye or Landsat data for comparative purposes, it was 

apparent that highly turbid, sediment rich or eutrophicated waters are likely prone to 

errors of water detection. As also noted by Klein et al. (2017) this was an issue for MODIS 

250 m daily reflectance data since such highly turbid waters were observed to have not only 

altered NIR reflectance but also caused higher reflectance in NIR than red. The use of water 

indices involving SWIR bands (e.g., Xu, 2006, Gao, 1996, Lacaux et al., 2007) could be tested to 
improve water detection results in these cases.  
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Vegetation-covered waters are typically not addressed in remotely sensed surface water 

products. NIR and red channel-based water detection is subject to the limitation that only 

open surface water is detected, but no waters with densely flooded or floating vegetation. For 

the wetland vegetation types prominent in Burkina Faso it could be shown that for herbaceous 

flooded vegetation the detection of water was mostly still possible with MODIS using the NIR-
threshold approach as well as Landsat computing the NDWI. This might be due to flooded 

vegetation being an irregularly structured feature and a consequent mixed spectral response of 

e.g. water and floating vegetation, which keeps the NIR response low enough or water index 

high enough to detect water. Based on the example of the main study site Lac Bam, grasses 

standing in water with intermittent floating vegetation were largely detected as water from 

both sensors. This might be because herbaceous vegetation occurs with different densities, but 

does not fully cover the water surface. In contrast, dense floating vegetation such as water 

lilies did not permit water detection with both optical sensors. In areas of flooded trees and 

bushes water detection was mostly not successful with MODIS but partially with Landsat, 

which might be connected to the higher spatial resolution of the data. As discussed in the 

analysis of the following research question, SAR data are much more sensible to every slight 

disturbance of open surface water due to e.g. flooded vegetation, which prevents open water 

from being detected but opens up new opportunities to detect flooded or floating vegetation. 

SAR sensors or HR optical sensors are recommended for the detection of flooded vegetation. 

In a second step of this work (Moser et al., 2014a), the NDVI signal was used for detecting 
wetland vegetation on or in water, rather than viewing it as a misclassification of water. This 

has also been exploited by other authors (Landmann et al., 2013, Chen et al., 2018, Mu et al., 

2020). 

Cloud cover dominates during the rainy season, since heavy precipitation occurs almost 

exclusively during this time of the year. The duration of the rainy season increases from the 

northern Sahel zone towards the southern Sudano Savannah. In this study, cloud masking was 

tackled by applying, on the one hand, MODIS quality state flags from the 500 m data 

(MOD09A1), and on the other hand, a NIR threshold to the 250 m band. This could be further 

improved by additionally thresholding the blue band at 500 m resolution (Martinis et al., 2013, 

Luo et al., 2008). Cloud cover was affecting most MODIS acquisitions from between May and 

September, with particularly strong cloud cover in July and August. Due to invalid pixel 

measurements water detection was considerably limited during these months. Hence, for the 

calculation of time series of water covered area anomalies (see Figure 9 of Chapter 4) the four 

months (June to September) were excluded. As an alternative solution, SAR images could be 

used, however, there was no consistent time series with regular occurrence until availability of 

the Sentinel-1 satellites (see section 9.3). One dataset of potential for time series back into the 

past could be the Envisat ASAR Side Swath Mode (WSM) data archive at 150 m resolution; 

however, in irregularly repeated time steps (from weekly to scarce coverage). Santoro et al. 
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(2013) created a static global dataset of permanent open water bodies using ASAR SWM. 

Cloud shadows are another challenge that can be a common cause for uncertainty in water 

classification (Martinis et al., 2013, Luo et al., 2008). Cloud shadows can occur at any time and 

in any location, and are only linked to a cloud if the cloud is part of the image and does not 

fall into an adjacent scene which is usually recorded at a different date. The solution applied in 
the present study of this thesis is to use a dataset processed with a composite approach, based 

on a per-pixel quality ranking over 8 days of daily acquisitions, for which pixels affected with 

cloud shadow were not selected as “best” pixel. Another approach by Pekel et al. (2016) is the 

application of a temporal sliding window with the logic that if a water-classified pixel is 

temporally located between two water classifications it is likely to be water, but if it is between 

two land classifications it is likely to be shadow.  

Burn scars resulting from controlled savannah fires as well as uncontrolled bushfires also 

tend to be causes of misclassification as water. In the savannah, burn scars remain for about a 

few weeks before grassy vegetation succession will cover the scar. In this study, burn scars 

could be excluded by their presence in not more than one monthly composite. The only region 
with burn scars over about 2–3 months that had to be masked out is an area in the very north-

west which was located within the MODIS tile but out of the area of interest. If the temporal 

resolution of the analysis is to be increased, a solution could be the use of burnt area products, 

e.g., from MODIS (Justice et al., 2006), from other sensors and products (Mouillot et al., 2014)

or the own computation of burnt area indices. Moreover, in other regions of the world, snow & 

ice, glaciers (supraglacial moraines and shadow), urban building shadows or lava might need 

to be masked out, and for that further auxiliary datasets could become relevant.  

To tackle the question of the minimum size of wetlands that can be captured with MODIS, 

five Landsat images from October 9 and October 16 2009, at high water level at the end of the 

rainy season were analyzed for comparative purposes. The cumulative water covered surface 

area for the year 2009–2010 (Moser et al., 2014b) is the basis for identifying the smallest 

detected wetlands. 30 small water bodies equally distributed over the study area were 

measured in the Landsat images. The average area of the measured small water bodies is 

0.16 km². This provides an indication of the size of water bodies that are still included 

in the analysis. One has to consider that small water bodies are subject to mixed pixels at 

the water boundary or potentially inside the wetland due to flooded or floating 

vegetation. In heterogeneous wetland environments such a mixing is likely below the pixel 

level and may prevent water detection. As an example, Guerschman et al. (2011) provided 

an analysis of mixed MODIS pixels related to the spectral response of water mixed with 

other land covers or frequency of water recurrence, with the goal to quantify the fraction of 

standing water in a pixel. In this study “mixed” water classes were defined in terms of 

standing water fraction as well as recurrence in time.  
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(ii) In terms of geometric aspects impacting wetland monitoring with MODIS, topographic 
shadows or terrain shadows play a major role in false water detection. They are a static 

artifact for disturbing the signal in terms of their location, but they can vary in size and 

direction according to the elevation and azimuth angle of the sun as well as the sensor view 

angle. The slope and other topographic variables derived from a DEM have been applied by 

various authors, e.g. Feng et al. (2016). In the study of this thesis, a slope threshold deducted 

from a DEM was applied to mask out areas which are potentially inclined and therefore 

cannot feature any wetlands. In the study area there are no high mountains which could 

potentially cast large shadows. If not already masked out using the slope threshold, pixels 

were excluded by their repeated occurrence and verification with Landsat imagery. As noted 

by Pekel et al. (2016) locations where the sun is close to nadir, which is depending not only on 

the latitude but also on the month of the year, water is likely to be detected as water, and 

less shadows are casted. Therefore, pixels detected as water at different times during a year 

are not subjected to be seasonal cast shadow.  

The MODIS view angle is decisive for the water detection result, particularly when using 
daily MODIS data, but this is a minor issue in the case of composited data: An analysis by 

Ticehurst et al. (2014) compared 100% water covered pixels as detected with the mNDWI and 

OWL algorithms with the MODIS view angle (or range distance, i.e. the distance from the 

sensor to the pixel). In both cases a clear linear relationship could be determined: In pixels of a 

low view angle (small range distance) more water was detected than with a high view angle 

(large range distance), the latter one was described as poor. This was found to be unrelated to 

the physical properties of the water area. A low view angle of a range distance less than 1000 

km is recommended. Moreover, independently from the MODIS view angle, pixels of smaller 
relative azimuth angles (i.e., between the MODIS’ and the sun’s azimuth angles) showed 

greater errors of water detection, due to reduced reflectance (Ticehurst et al., 2014). Another 

issue related to the angle of the sun and the sensor is that reflection of water can be altered 

strongly by sunglint, which occurs when sunlight is reflected off the water surface at the same 

angle where the sensor’s detectors are pointed to.  

(C) ON THE DIFFERENCES IN SEASONAL AND YEARLY DYNAMICS (I) OF NATURAL AND ARTIFICIAL 

WETLANDS, AND (II) OF WETLANDS LOCATED AT DIFFERENT LATITUDES 

(i) In terms of comparison of seasonal variations between natural wetlands and artificial 
wetlands (created by building a dam) it has been found that both wetland types have a 

distinct annual cycle showing characteristic seasonal curves with regard to their monthly 

water covered area in km². The largest water bodies and wetlands in the study area are 

artificial, e.g. Barrage de Bagré (approx. 175 km²) which also shows the largest absolute 

seasonal variations from rainy to dry season. The main study site Lac Bam is the largest 
natural wetland with approximately 23.3 km². More regular seasonal cycles can be detected in 
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natural wetlands, whereas artificial wetlands show greater variability in terms of percentage 

surface water coverage with respect to their 13-year maximum (Figure 8 of Chapter 4). On the 

assumption that artificial wetlands regulated by dams have irregular cycles due to rapid water 

supply to towns, irrigation or industry, from interviews with experts at local institutions it 

could be deducted that water removal is usually done quite regularly. An exception are large 
reservoirs (such as the above-mentioned Bagré) where a rapid overspill of water is performed 

when maximum reservoir capacity is reached (Société Nationale d'electricité du Burkina Faso 

(SONABEL), 2013). A tendency toward a larger dynamic area (i.e., 2-8 months per year) and 

consequently smaller permanent area (i.e., 9-12 months per year) for the second half of the 

study period is detected for Bagré (Figures 3 and 4 of Chapter 4), but this has another reason: 

The cumulative water covered area from all seasons from 2000–2001 to 2011–2012 was used as 

input to calculate a standardized anomaly trend. An effect of a positive trend on outer limits 

of the wetland, followed by a negative trend just a little bit more inside into the wetland can 

be interpreted as water area spreading out further but retreating faster due to siltation. Many 

medium to large wetlands, of both natural and artificial type show this pattern (Figure 7 of 

Chapter 4). Moreover, northern natural wetlands often completely dry out during the dry 

season, whereas most artificial wetlands (northern as well as southern) do not dry out. 

Another aspect, particularly relevant for analyzing natural wetlands is floating and flooded 

vegetation. It must be taken into account that natural wetlands contain higher vegetation 

coverage than artificial ones, which may limit successful water detection and therefore 
underestimate water in natural wetlands. In the main study site Lac Bam both the MODIS and 

reference-Landsat water masks missed out on areas with densely floating vegetation on the 

water surface (Figure 5 in Chapter 4).  

(ii) In terms of differences in dynamics at various latitudes, most of the wetlands larger 

than 0.1 km² are detected in the central part of the study area (57%), followed by the 

northern part (35%) and southern part (only 8%) (Table 1 of Chapter 4). In the northern 

and north-eastern pastorally dominated Sahel and savannah, natural wetlands are 

predominant. Going further south, anthropogenic influence increases. The center region is a 

region of substantial agricultural activities. The south is dominated by the largest water body 

Barrage de Bagré, and a few smaller artificial water bodies. Northern wetlands generally 

show a shorter annual duration of water coverage, which is connected to the fact that 

they are mainly of natural character and located in a climatic zone of a shorter rainy 

season, and therefore they dry out during the dry season. Due to larger flooded vegetation 

coverages in norther wetlands – as described in (i) of this question – open water detection 

is sometimes less reliable, whereas stronger cloud cover has a greater impact on water 

detection in the south. Regarding the trend analysis revealing surface water areas 

becoming larger but retreating faster over time, a dependency on latitude could not 

be determined, and it is assumed to be rather an issue related to siltation.  
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(D) ON THE CO-OCCURRENCE OF REMOTELY SENSED DYNAMICS OF (I) WETLANDS AND (II) THEIR 

SURROUNDING ENVIRONMENT WITH DROUGHT EVENTS 

Both, water anomalies (Chapter 4) (Moser et al., 2014b) and water and vegetation anomalies of 

the surrounding areas (Chapter 5) (Moser et al., 2014a) were investigated regarding a co-

occurrence of remotely sensed parameters from MODIS with drought events. There is a lack of 

official reference to drought periods on national as well as local scales, and the information 

from the EM-DAT and Reliefweb databases as well as reports from local authorities were taken 

as reference, stating the seasons 2000–2001 at the beginning of the analysis period, 2004–2005 

and 2011–2012 as drought seasons (EM-DAT, 2009, Reliefweb, 2021, Ouedraogo and Tigré, 

2013). Droughts can have local effects due to fine-scale rainfall patterns, watershed 

characteristics or soil properties. More detailed in-situ data on a local scale would be desirable 

to better understand and record a drought on a local scale. The results of the MODIS analysis 

show that the occurrence of drought seasons can be related to surface water dynamics as well 
as vegetation anomalies in the surrounding regions of wetlands.  

(i) To evaluate wetland dynamics in drought seasons vs. normal years, three types of 

analyses were undertaken: first, the derivation of cumulative water-covered surface areas 

(Figure 3 of Chapter 4), where large variations in the dynamically covered water areas are seen, 

whereas the near-permanent area remains similar for drought and non-drought years. Second, 

the inspection of seasonal and yearly time series of various wetlands (Figure 8 of Chapter 4) 

shows that the large artificial wetlands Barrage de Bagré and Barrage de Ziga as well as the 

natural wetlands Lac Bam and Lac Dem peak in maximum surface water area at the end of the 

2003 rainy season. The lowest water extent follows in the 2004–2005 and later in the 2011–2012 

seasons. In addition, the natural wetlands also show low water surface area in the 2007–2008 

season. And third, the calculation of anomalies with respect to the 13-year mean water 

coverage on a monthly basis for the dry season (Figure 9 of Chapter 4) indicates that the three 

drought seasons show negative surface water are anomalies for all wetland case studies, 

whereas the largest positive anomalies were recorded in 2003–2004 and 2005–2006. For the 

season 2007–2008, however, negative anomalies were only recorded for the natural wetlands 

Lac Bam and Lac Dem; the season 2009–2010 was also partially of less than average water 

coverage. The water covered area itself is an indicator on minimum water availability in the 

coming dry season – therefore a very relevant parameter related to drought mitigation – which 

is so far not exploited in drought indices or models (see section 9.3).  

(ii) To evaluate vegetation dynamics of the surrounding areas in drought seasons vs. 
normal years, the NDVI as proxy for vegetation conditions was obtained from the MODIS 

250 m bands. Therefore, dry season images (Oct–Apr) were analyzed taking into account the 

intensity and duration of chlorophyll activity. Calculating the mean summed-up NDVI for 
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each respective dry season, the three drought seasons show negative anomalies in most parts 

of the larger study site (Figure 2 of Chapter 5).  

(E) ON DETECTING ANTHROPOGENIC INFLUENCES SUCH AS (I) NEWLY CREATED ARTIFICIAL 

WETLANDS AS WELL AS (II) IRRIGATION ACTIVITIES WITH MODIS 

(i) The use of MODIS data to detect newly created or vanished wetlands is twofold: On the 

one hand a post-classification change detection reveals newly classified or vanished water 

pixels between the first and last year of the study period. 21 new wetlands (> 0.5 km²) were 

detected and just a few have disappeared (Figure 6 of Chapter 4). The computation of a 

standardized anomaly trend through all yearly cumulated water-covered areas supports these 

results with strongly positive anomalies for new wetlands (Figure 7 of Chapter 4). Of the three 

very large new water bodies two were not created as reservoirs for water supply or irrigation, 

but for gold mining by large international companies. It can be speculated that the reasons for 

the disappearance of wetlands might be connected to disrupted dam performance due to 

floods, poor maintenance or destruction, causing the reservoirs to dry out. On the other hand, 

in order to know not only the location but the timing of dam construction of new water 

bodies, time series were plotted. As an example (Figure 8 of Chapter 4), it is revealed that 

low water coverage in 2000–2001 was related to the final phase of the construction of the 

Ziga dam. The Yakouta dam did not yet exist until small detectable fluctuations of a former 

river were turned into a reservoir in the season 2004–2005, with the aim to enhance 

irrigation and water supply in the Sahelian environment.  

(ii) For the use of MODIS to detect irrigation activities the anomaly trends of the NDVI 

were compared. As visualized in Figure 4 of Chapter 5, the strongly positive NDVI trend 

around the shoreline of Lac Bam was verified as increased irrigation activity in this time period 

in HR reference imagery as well as reports during field work. Around but especially in the 

south of the much smaller neighboring reservoir of Koumbango, such a positive NDVI trend is 

as well detectable, and HR imagery show a considerable increase of irrigated fields between 

2010 and 2014 (Figure 4 of Chapter 3). The large irrigated rice fields of Bagré, which are located 

downstream in the south of the dam, are visible in terms of a positive NDVI trend. Therefore, 

with MODIS 250 m time series it is possible to detect irrigation activities also around small to 

medium-size wetlands, as well as larger irrigated areas.  
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9.2.3 Research Question #2: Can the wetland classes open water, flooded 

or floating vegetation, and irrigated cultivation be monitored using 

dual-polarized SAR time series from TerraSAR-X and RADARSAT-2? 

(A) ON THE FEASIBILITY TO (I) CLASSIFY AND (II) DYNAMICALLY MONITOR WATER, 
FLOODED/FLOATING VEGETATION AND IRRIGATED CULTIVATION OVER TIME, AS WELL AS (III) DERIVE 

SEASONAL CHANGE CLASSES USING DUAL-POLARIZED SAR IMAGERY TIME SERIES 

(i) In order to explore the feasibility to use dense dual-polarized SAR time series to classify 
and monitor the main wetland classes open water, flooded and floating vegetation and 
irrigated cultivation dynamically over time, the main input layers, the Kennaugh 

elements, first had to be interpreted qualitatively before classification of each image: (1) open 

water, best interpreted from K0 (due to very low intensities in HH and VV), sometimes 

affected by wind on the water surface; (2) flooded vegetation, best characterized by K3 (much 

stronger double-bounce scattering effects as compared to surface scattering of flooded 

vegetation, and to non-flooded areas) and K4 (strong dominance of HH over VV scattering for 

flooded vegetation), an exception provides dense floating vegetation such as water lilies (i.e., 

in the north and center-east of Lac Bam), where neither the double-bounce effect nor 

difference between HH and VV intensity occurs to correctly classify these type of floating 

vegetation in monotemporal imagery; (3) irrigated fields, best classified from Ko (high 

intensity in HH and VV) and K3 (higher surface scattering than double-bounce, also with 

respect to the surrounding environment), see Figure 4 of Chapter 6.  

(ii) Second, the dynamic interpretation over time could be derived from classifying every 

image in the time series, using a well-established supervised classification method, based on a 

maximum likelihood classifier, and further analysis of the results along the time series. The 

classifications were successful throughout the season for all wetland areas, except for dense 
floating water lilies. As further detailed out in the reply to question 2E(i): (1) open water 

occurs during all times of the season, after a rather stable period where mainly shallow and 

flooded vegetation-covered waters retreat, a decreasing water surface from mid-dry season to 

end-dry season can be detected; (2) flooded vegetation is present from the rainy season until 

the first half of the dry season, decreasing rapidly with water recession around 

December/January, and also occurring along some tributary rivers until the end of rainy 

season; (3) irrigated fields change dynamically within the course of the dry season, according 

to their growing phase and with respect to their location. Irrigated cultivation occurs from the 

start of the dry season, on both sides of the lakes’ banks with a peak of occurrence in 

January/February, and decreases toward March/April. Some irrigated fields in the north of Lac 

Bam are already present in September/October (Figures 8 and 9 of Chapter 6).  
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(iii) To interpret changes throughout a season, seven seasonal change classes were 

defined for this study: Four of them are highly dynamic throughout the season: (1) water to 

land/soil, (2) flooded vegetation to land/soil, (3) flooded vegetation to irrigated fields, and 

(4) irrigated fields to land/soil or land/soil to irrigated fields. Besides the latter one that varies 

in timing and direction, the first three follow a seasonal cycle. The remaining three classes 

(5) permanent open water, (6) land covered with permanent vegetation and (7) land covered 

with soil, rock and urban areas, are seasonally stable. As detailed out in the reply to question 

2C(ii) and 2D, the method of a multitemporal classification, using all or a selection of 

Kennaugh elements of the full time series as input, and applying a well-established supervised 

classification method based on a maximum likelihood classifier with minimal adaptions for 

the open water class, was first successfully applied onto a TSX dual-co-pol time series, and 

then transferred to a RADARSAT-2 dual-cross-pol time series. In contrast to the 

monotemporal analysis, densely floating vegetation such as water lilies are well classified for 

the multitemporal case (Figures 12 and 13 of Chapter 6). 

(B) ON THE (I) SUITABILITY OF METHODS USING DUAL-POLARIZED DATA, THE (II) ADDED VALUE 

TOWARDS SINGLE-POLARIZED DATA AND THE (III) OPPORTUNITIES/DRAWBACKS WITH RESPECT TO 

QUAD-POLARIMETRIC DATA 

(i) The methodological focus of this thesis’ work is on dual-polarized SAR time series 

capabilities. Despite dual-pol data are being increasingly available from SAR sensors currently 

in orbit, including Sentinel-1, there is a lack of methods to interpret the scattering matrix from 

dual-pol data, a few known methods are the H-α decomposition (Cloude, 2007, Shan et al., 

2011) and the Shannon Entropy deducted from a 2x2 covariance matrix (Lee and Pottier, 2009) 

(see section 2.3.2). The chosen method for this thesis’ work, the Kennaugh Elements (Schmitt 

et al., 2015), enables an interpretation also for dual-pol data. Two advantages of the Kennaugh 

element decomposition method are: It can be applied for any combination of polarization, for 

quad- as well as dual-pol data; and with respect to other incoherent decompositions it is 

possible to scale and directly interpret the backscattering matrix elements themselves so that 

the information can be directly used for physical interpretation on the Kennaugh elements, 

and no further generalization of information is needed (see also: Schmitt and Brisco, 2013). 

Dual- and quad-pol data pre-processed with the Kennaugh element method were used by 

Schmitt and Brisco (2013) for wetland applications, selecting imagery at specific dates. They 

concluded that the co-polarized channels (HH-VV) may be appropriate for wetland 

monitoring, showing that dual-co-polarized imaging modes are sufficient. Another wetland 

study by Mahdianpari et al. (2017b) compared various decompositions based on quad-

polarimetric data, among them the Kennaugh elements. They noted that the greatest variable 

importance for classification is represented by the Kennaugh elements, Yamaguchi and 

Freeman-Durden decompositions, and moreover, that the Kennaugh elements add to the 

overall accuracy or may outperform other polarimetric parameters. It was reported that the 
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Kennaugh elements may contain the highest polarimetric information content while also 

having the least amount of noise. Based on these studies, amongst others, the interpretation of 

dual-pol SAR data for wetland applications was selected for the work as part of this thesis and 

applied onto time series, using the Kennaugh element method. The studies by Moser et al. 

(2016b), Moser et al. (2016a) and Klingebiel et al. (2021) remain the only studies so far that 
apply the multi-polarized Kennaugh element framework on a dense time series of imagery for 

wetlands, among them also one multi-frequency study (Moser et al., 2016a). These are also 

some of the few wetland studies that focus on TSX HH-VV polarized time series. Another 

study by Heine et al. (2016) used a TSX HH-VV time series of similar length as the work done 

in this thesis, and computed 16 different polarimetric indices for classifying reed belts. They 

concluded to the intensity difference HH-VV and intensity ratio HH/VV being among the 

most relevant indices for reed classification. The results of the work of this thesis, as also 

outlined in section 9.1, were very satisfying for the X-band HH-VV case, both for 

monotemporal classification of each image (Figure 9 of Chapter 6) and consecutive time series 

analysis (Figures 10 and 11 of Chapter 6), as well as for multitemporal classification of seasonal 

change classes (Figure 12 of Chapter 6). For the C-band HH-HV case, however, there are 

limitations for the monotemporal case (Figure 4 of Chapter 7), whereas for the multitemporal 

classification also dual-cross-pol data in C-band proved almost similarly suitable compared to 

dual-co-pol data in X-band (Figure 7 of Chapter 7). The reply to this question is further 

detailed out in the parts 2B(ii), 2B(iii) and 2C(ii) of the coming paragraphs.  

(ii) On the added value of dual-pol with respect to single-pol data, the monotemporal 

classification using solely SAR intensity shows confusions between flooded vegetation, 

irrigated cultivation and land, whereas classifications of open water work well. The added 

value of the polarized channels could already be estimated when interpreting the spatio-

temporal profiles of all TSX Kennaugh elements (Figure 7 of Chapter 6). The multitemporal 

classification was carried out with different experiments, using different combinations of 

Kennaugh elements, among them also only the intensity sum K0 for both, TerraSAR-X and 

RADARSAT-2 time series. The added value of dual-polarized SAR data is demonstrated by 

significantly higher accuracies – TerraSAR-X (OA 92.1%) and RADARSAT-2 (OA 90.6%) – 

compared to performing the multitemporal classification with single-polarized SAR intensity 
data from TerraSAR-X (OA 81.6%) and RADARSAT-2 (OA 84.4%). For both sensors, separately 

and in fusion, the class permanent open water was classified with a very high accuracy using 

all or a selection of Kennaugh elements (PA 100%/UA 91.5–96.0%), slightly improved in UA 

when using only K0 while discarding the other Kennaugh elements (PA 98.0–99.6%/UA 100%). 

This effect was even more pronounced for the seasonal change class from water to land, which 

resulted in significantly better accuracies when using only K0 (PA 95.1–97.5%/UA 99.3–100%) 

versus multiple Kennaugh element combinations (PA 48.4–89.1%/UA 98.4–100%) (Figure 13 

and Table 8 of Chapter 6, and Table 2 of Chapter 7). Therefore it can be concluded that SAR 
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intensity data without any polarized channels is very well suited for the monitoring of open 

water and advantageous for deriving a seasonal change class from open water to land. This, 

however, is the opposite case for studies considering vegetated or cultivated wetlands. Any of 

the change classes from or to flooded vegetation or irrigated cultivation strongly profit from 

the contribution from further polarized Kennaugh elements, which significantly enhance the 
classification accuracies (which are in the order of PA 80–97%/UA 70–95% for polarized 

combinations and PA and UA ranging from 38–90% for only K0); particularly the class flooded 

vegetation to irrigated fields causes the highest uncertainties in the single-polarized case. 

Therefore, for wetland studies beyond the classification of open water, dual-co-pol as well as 

dual-cross pol data provide a clear added value with respect to single-polarized data. 

(iii) No quad-polarimetric data was available for this work over the study site. Considering the 

theoretic advantages of quad-polarimetric data – which are majorly the enhanced 

information content due to the full polarimetric capabilities, the physical interpretability of 

the different scattering mechanisms and multiple known decomposition methods for analysis 

– one has to take into account advantageous aspects of dual-pol data with respect to quad-pol
data. These are: easier availability from a larger number of sensors, partial existence of regular 

time series that were tasked from previous sensors or are regularly acquired by new sensors 

such as Sentinel-1, higher spatial resolution, larger swath coverage, smaller number of required 

layers, and lower data volume. The question if dual-pol data are sufficient for wetland 

monitoring, in a sense that dual-pol could be a serious alternative to quad-pol analysis for 

wetland monitoring, has been explored by other authors.  Schmitt and Brisco (2013) concluded 

that the co-polarized channels (HH-VV) may be appropriate for wetland monitoring, showing 

that dual-co-polarized imaging modes are sufficient, as opposed to the use of quad-

polarimetric imagery. In their study, RADARSAT-2 HH-VV data provide high classification 

accuracies when decomposing the data with the Kennaugh element method, with accuracies 

close to the use of quad-pol data. They therefore conclude that the use of quad-pol data may 

not be needed for wetland classification, and that it is feasible to replace quad-pol data with 

dual-pol HH-VV data, since the relevant Kennaugh elements for wetland monitoring contain 

mainly information from co-polarized layers (Schmitt and Brisco, 2013). Therefore, provided 

that adequate polSAR methods are available to derive scattering mechanisms based on dual-
pol data, co-polarized dual-pol SAR time series are found to be appropriate for wetland 

monitoring. However, for cross-polarized dual-pol SAR time series some limitations have to be 

taken into account.   

(C) ON THE TRANSFERABILITY ONTO (I) TIME SERIES OF DIFFERENT TEMPORAL INTERVALS, AND (II) 

TIME SERIES FROM DIFFERENT SENSORS, I.E. FREQUENCIES AND POLARIZATIONS 

(i) The issue of transferability of the approach onto time series of different temporal 
intervals of the same data type is addressed in Chapter 6. This is not equal for the two 
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presented approaches: a monotemporal classification of every image in a time series with 

consequent spatio-temporal analysis; and a multitemporal classification using all images of a 

time series as input. A successful application of the monotemporal classification on all the 

images of the season 2013–2014 using the statistics from training areas from four reference 

dates over the season 2014–2015 proves the transferability of the approach on a time series of 

different time intervals or years (Figures 10 and 11 of Chapter 6). However, for the 

multitemporal classification it was unsuccessful to classify the previous 2013–2014 season with 

the multitemporal AOIs from the 2014–2015 reference data. This is explainable by the fact that 

irrigated fields in an African subsistence-driven culture change their location and seasonal 

cycle from year to year, and hence, the training data for irrigated fields have to be adjusted 

with reference data of each season. Also for the class flooded vegetation not all training areas 

matched the earlier season’s flooded vegetation areas. For 2013–2014, fewer optical VHR data 

and field data were available to derive the same quality of AOIs (Tables 3, 4 and 5 of Chapter 6, 

as well as Figures 5 and 6 of Chapter 6). It can be concluded that the monotemporal 

approach is transferable, but for the multitemporal approach a careful creation of a 

training set for each particular temporal interval of the time series is needed.  

(ii) The possibility to transfer the approach onto data from different sensors, i.e. 
frequencies and polarizations, is investigated in Chapter 7. The transfer from dual-co-

polarized (HH-VV) TSX time series in X-band with an 11-day interval onto two dual-cross-

polarized (HH-HV) RADARSAT-2 time series in C-band and of ascending and descending 

passes, with intervals of 24 days respectively, was tested. In contrary to 2C(i), the 

monotemporal approach classifying every image in the time series could not be directly 

transferred to dual-cross-pol C-band data of HH and HV polarization. The single image 

classification showed that open water was well classified with TSX as well as RS-2. Regarding 

flooded vegetation and irrigated fields, the delineation worked very well when using TSX data, 

however, with RS-2 data there was a high level of confusion (Figure 7 of Chapter 7). These 

results are explainable by the fact that the decisive Kennaugh elements derived from TSX (i.e., 

K3 and K4, representing the double bounce effect versus surface scattering and the ratio 

between HH and VV intensity, respectively) are not available for the RS-2 polarization 

combination. Unlike for higher vegetated wetlands, the volume scattering in HV does not 

seem to have an important effect on herbaceous flooded wetlands in this study, as is has been 

also confirmed by some other studies favoring HH-VV (Pope et al., 1997, Kasischke et al., 1997, 

Schmitt and Brisco, 2013, Betbeder et al., 2014b, Betbeder et al., 2015). However, considering 

the temporal component, of the above-mentioned studies only Betbeder et al. (2015) tested on 

a small time series. The multitemporal approach developed for wetland monitoring using 

TerraSAR-X time series could be successfully transferred onto a stack of a time series of 

RADARSAT-2 data as input, using the same training dataset as for the TSX time series. Despite 

of the so important Kennaugh elements K3 and K4 for flooded vegetation and irrigated fields, 



CHAPTER 9  –  CONCLUSIONS 

242 | P a g e

the multitemporal RS-2 classification results in almost the same high overall accuracy 

(OA 90.6%) as for the TSX data stack (OA 92.1%), concluding to the power of dense temporal 

information in remotely sensed data. Whereas there is no major difference between using the 

two sensors for classes of stable open water or involving changes from water to land, for 

changes from flooded vegetation to land, and irrigated fields to land or land to irrigated fields, 
both TSX and RS-2 showed good accuracies when considering the most significant Kennaugh 

elements (i.e., K0, K3 and K4 for TSX, and K0 and K1 for RS-2), with a superiority of results 

derived from TSX data in all cases (PA as well as UA increase between 2–4 % for TSX). The 

class flooded vegetation to land, which is the class of lowest accuracies for all combinations, is 

better classified with TSX (PA 86.1%/UA 74.4%) than with RS-2 (PA 78.0%/UA 68.9%). A 

comparison between ascending and descending passes of RADARSAT-2 time series showed 

that the overall results of the descending orbit are favored for the multitemporal wetland 

classification (increase in OA of about 4%), which is mainly due to a strong improvement of 

the change class flooded vegetation to irrigated fields (Table 2 of Chapter 7, and Figure 7 of 

Chapter 7). In summary, the transfer from a time series of X-band dual-co-pol data to C-band 

dual-cross-pol data was successful. However, X-band dual-co-pol data can be considered to be 

preferred with regard to C-band dual-cross-pol data for monitoring flooded vegetation and 

irrigated fields.  

(D) ON THE ADDED VALUE WHEN FUSING TIME SERIES FROM DIFFERENT SENSORS, I.E. FREQUENCIES 

AND POLARIZATIONS 

The study carried out in Chapter 7 examined also the added value of fusing datasets of 
different frequencies and polarizations into a common multitemporal classification, 

merging inputs from both time series’ Kennaugh elements. Precisely, dual-co-pol TerraSAR-X 

(HH-VV) data in X-band, and dual-cross-pol RADARSAT-2 (HH-HV) data in C-band were 

fused. Thanks to the pre-processing applying the Kennaugh element framework (Schmitt et 
al., 2015), which enables multi-scale and multi-frequency processing and the derivation of 

geolocated and calibrated Kennaugh elements from different sensors and polarizations, this 

could be realized. Both datasets were sampled to the same pixel spacing of 5 m, accepting a 

slight oversampling for RADARSAT-2. The highest overall classification accuracies among all 

experiments could be derived from a fusion of the TSX (K0, K3 and K4) and RS-2 (K0 and K1) 

Kennaugh elements (OA 92.8%). The results were similar using only the Kennaugh elements 

from TSX (OA 92.1%), but provided a better result for the change from water to land. An 

experiment merging the sum of intensities (K0) from TSX and RS-2 (OA 88.6%) showed that a 

fusion of the time series of the two sensors’ K0 yielded better results than when using either of 

the sensors separately (Table 2 of Chapter 7). It is therefore concluded to added value of fusing 

datasets of different frequencies, if only intensity data is available. The dual-co-pol Kennaugh 

elements from TSX, however, provide an ideal basis for deriving dynamic wetland change 
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classes, and by adding further Kennaugh elements from RS-2 there is only a marginal overall 

improvement, thus not providing a considerable added value.  

(E) ON THE GEOGRAPHIC INTERPRETATION OF THE RESULTS (I) DEDUCTING SEASONAL 

DEVELOPMENTS AND DEPENDENCIES, EXTENDING A TWO-YEAR TIME SERIES TO FIVE YEARS, AND (III) 

DRAWING PARALLELS TO OTHER STUDIES, REPORTS FROM FIELD WORK AND ONGOING RESTORATION 

PROJECTS.  

(i) Seasonal developments show a slightly larger open surface water area of Lac Bam in the 

season 2013–2014 with respect to 2014–2015 when summing up water occurrence from the time 

series (Figure 10 and 11 of Chapter 6). In terms of yearly cycle, the open water area increases 

slightly during the first couple of image acquisitions with maximum water surface at the end 

of the rainy season. After non-vegetated open water remains constant for some weeks, a rapid 

decrease of the water surface can be identified only in the last five to seven image acquisitions 

of the time series. The decrease of open water started in the beginning of February in 

2013–2014, and the end of February in 2014–2015. Naturally, a decrease of open water occurs 

from the rainy to the dry season, however, this is first affecting the shallow water areas 

covered by flooded or floating vegetation. The duration of flooded vegetation is generally 

longer in the year 2014–2015 (Figure 10b of Chapter 6) than in 2013–2014 (Figure 10f of 

Chapter 6). Additional patches of flooded vegetation were detected in the second year, which 

might also be a partial explanation for the smaller open water surface in the second year. In 

terms of timing, depicted in Figure 11 of Chapter 6, first a steady decrease of flooded vegetation 

is detectable especially in the very northern and southern areas of flooded vegetation during 

and at the end of the rainy season. A second rapid decrease that occurs within 1.5–2 months 

(five to six consecutive image acquisitions) can be accounted to most of the remaining flooded 

vegetation area, and in particular the large shallow flooded and sparsely vegetated area in the 

center of Lac Bam. A shift of this rapid decrease of flooded vegetation between 2013–2014 and 

2014–2015 becomes apparent, starting with the image of 3 December 2013, but only on 15 

January 2015 for the second season. The locations of irrigated fields vary among the two years, 

although the summed-up seasonal cycles show similar patterns starting with a steep descend 

when taking into account also rain-fed cultivation in the summer months. In the beginning of 

the dry season (i.e. early November) irrigated cultivation becomes more dominant and peaks 

around the end of December/beginning of January in 2013–2014, and end of January in 

2014–2015. In a later work by Klingebiel et al. (2021), presented here as Chapter 8, the 

monotemporal classification approach was transferred to a TSX time series from 2013–2018, 

covering five seasons. Above the expectations, it was possible to characterize and interpret 

processes similar to the conclusions from the time series analysis of 12 years of MODIS data 

and as described by local experts (see answer 2E(ii)). Despite of five seasons being too short 

to characterize reliable trends, the following tendencies can be clearly noted: The 

analysis showed that over the five years an increase in maximum water surface was 
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detected (apart from the season 2017–2018), paired with a decrease of the water surface area 

at the end of the dry season (apart from the season 2016–2017) (Figure 6 of Chapter 8). In 

comparison with GPCC gridded precipitation data it becomes apparent that overall there 

was an increase of precipitation (Figures 7 and 8 of Chapter 8). On the one hand, the 

decrease of minimum water area is assumed to be connected with the increasing siltation 

rates, and on the other hand, there might be a relation to irrigation practices. A connection 

between the area of the flooded vegetation (hence the water extent beneath flooded 

vegetation) and the irrigated fields occurs. An expansion of irrigated fields moving further 

away from the lake was detected as well in the five-year time series of TSX, especially in 

the north of the lake (Figure 9 of Chapter 8). Summarizing, the deduction of seasonal 

developments and dependencies among different classes could be successfully achieved 

with TSX time series, first between two and then extended to five seasons.  

(ii) Reports and findings of other studies, from field work and an ongoing restoration 
project coincide with findings from Chapter 8 (Klingebiel et al., 2021). When compared to 

Chapters 4 and 5 (Moser et al., 2014a, Moser et al., 2014b) the finding from a 5-year TSX time 

series (2013–2018) continue upon the findings from a 12-year MODIS time series (2000–2012). 

Both, increasing water surface extents as well as higher NDVI values concluding to stronger 

agricultural activities around the lake were detected from MODIS (Figure 7 of Chapter 4, and 

Figure 4 of Chapter 5), and an increase of the water surface extent and expanded irrigated 

cultivations could as well be identified with TSX (Figures 7, 8 and 9 in Chapter 8). In optical 

data from Landsat and RapidEye it could be seen how much change can happen in five years 

related to irrigated farming, e.g. between 2010 and 2014 in Moser et al. (2017), see Figure 4 of 

Chapter 3. The remotely sensed results correspond with reports from the local population and 

authorities, gathered during field work expeditions and thereafter. The considerably larger 

water as well as flooded vegetation extent at the very end of the TSX time series, peaking at 

the end of the last rainy season 2018 (Figure 8 of Chapter 8), is likely explainable and expected 

by the fact that in 2017 a local project was launched targeting the restoration of Lac Bam. One 

of the first accomplishments was that the spillway (acting as a dam) was built 25 cm higher in 

the course of the season 2018, leading to the water spreading out further and opening up new 

land for agricultural activities further away from the shore (see section 1.1.3.2). The signal was 

clearly seen at the end of the time series, during the rainy season 2018. Data more into the 

future are currently acquired from TSX and are subject to further analysis (see section 9.3).  

9.3 Future Research Directions 

This last section focuses on recommended future research directions: (i) geographically in the 

study region, (ii) in terms of new and future remote sensing sensors and techniques, as well as 

addressing (iii) challenges and gaps in wetland-related classification and monitoring aspects.  
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(I) OUTLOOK & FUTURE RECOMMENDED RESEARCH IN SEMI-ARID AFRICAN AREAS SUCH AS BURKINA 

FASO AND AT THE LAC BAM SITE:  

For Burkina Faso or semi-arid African areas in general, a remote sensing-based regular 

monitoring using MODIS data as suggested in this work would be a feasible task and low-cost 

solution. Additionally, time series analysis reaching more than 20 years back into the past 

could reveal unprecedented knowledge about the development of wetlands and land use 

impacts around them. The current situation is the following: The number and age of wetlands, 

including the artificial ones with dams, is currently not known and varies from source to 

source (Cecchi et al., 2008, Ouedraogo, 2010, Forkuor et al., 2019a). Only some reservoirs are 

monitored in terms of water level from the ground, but no surface water measurements or 

bathymetric analyses are carried out. Uncoordinated subsistence agriculture – which is 

dynamically changing – occurs throughout the country, also as irrigated cultivation around 

wetlands. For monitoring these smaller-scale effects, low-cost but higher effort scenarios 

based on Sentinel-1 or Sentinel-2 could be a better option. Moreover, new artificial wetlands 

are created on rivers, affecting the regions downstream of the newly built dams. To monitor 
their appearance no high temporal frequency is required, and therefore even HR archive 

imagery could be considered for studying the creation of artificial wetlands back into the past.  

As for the main study site Lac Bam, the first plans for its future monitoring using SAR time 

series have already been realized. The dual-pol SAR dataset that has been acquired specifically 

for the research in this thesis, featuring time series of two years from wet (mid of rainy season) 

to dry (end of dry season) conditions, has been first extended to five seasons until summer 

2018, and results are included in this thesis featuring the 5-year analysis of Lac Bam 

(Chapter 8). Data collection of TSX time series is presently still ongoing and will be further on 

acquired for future studies, extending this unique dataset for an African region. These time 

series alongside other data could be utilized to observe effects of the ongoing Lac Bam 

restoration project – as described in detail in section 1.1.3.2 – allowing performing research 

on the effects of natural as well as human-induced variations on wetland parameters. Up until 

recently there were no other remote sensing studies known dedicated to Lac Bam. Being a 

Ramsar wetland of international importance with high significance for the society as well as 

nature, there is an utmost importance for action and monitoring of the region. Recently, the 

Lac Bam site has been added as a case study to ESA’s GlobWetland-Africa project 

(GlobWetland-Africa, 2020), which will enable higher visibility on an international level. In 

the framework of WASCAL (WASCAL, 2021), two research works dedicated to Lac Bam were 

published: one on the subject of irrigated crop water productivity, exploiting also Sentinel-1 

and -2 remote sensing data (Ouattara, 2018, Ouattara et al., 2020) and another one on the 

water balance of Lac Bam (Nikiema, 2017), see section 1.1.3.3.  
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(II) TRANSFER OF THE PRESENTED APPROACHES TO NEW AND FUTURE SENSORS 

Both MODIS sensors are still operating in orbit for more than impressive 20 years (Terra: since 

December 1999, Aqua: since May 2002), which is far beyond their planned lifetime of six years. 

The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor, brought into orbit in 2011, was 

designed to improve some of the measurements of MODIS and other MR missions. Due to 

certain similarity of spectral bands and a spatial resolution of 750 m (LAADS DAAC, 2021), 

approaches such as the one developed for MODIS in this thesis’ work in Chapter 4 (Moser et 

al., 2014b) should be transferable. Another idea would be to go back into the past before 

MODIS in 1999. MODIS is already used in conjunction with AVHRR mounted on various 

NOAA satellites, and therefore the long-term legacy of NDVI products (since 1981) can be 

continued (Brown et al., 2006), e.g. the Long-Term Data Record (LTDR) consisting of a 

synergy of AVHRR and MODIS products (Pedelty et al., 2007), however, with reduced 

geometric resolution between 1 and 4 km. In terms of temporal coverage the combined data 

from SPOT-4 and SPOT-5 VEGETATION and Proba-V would be comparable to MODIS, with 

SPOT-4 launched back in March 1998 (eoPortal, 2020, VITO, 2020). In June 2020, however, the 

Proba-V sensor has ended its mission of global plant tracking, as reported by ESA in April 

2020. The mission focus will be, amongst others, re-allocated to test observations in Europe 

and Africa, in particular the African Sahel. Drought early warning should be one of its 

main applications. This may open up whole new opportunities for drought, vegetation and 

wetland studies in the Sahel region. The data with a spatial resolution of 100 m are described 

to cover a niche between Sentinel-2 (10 m) and Sentinel-3 (300 m). Due to orbital 

decay, however, Proba-V will finish its lifetime in October 2021 (ESA, 2020b).  

Striving towards time series analysis at a higher resolution with optical data, the most 

prominent recently launched satellites are the Sentinel-2 satellites, acquiring systematically 

at the research site Lac Bam with Sentinel-2A and -2B in a 6-day rhythm since September 

2017, and with some irregular spacing since the beginning of 2017 (ESA, 2021b). 

Sentinel-2 initiated a paradigm change in remote sensing time series analysis. Multiple 

wetland studies and projects have focused on Sentinel-2 (see sections 2.2.3.1 and 2.5), 

sometimes in combination with Sentinel-1 (see section 2.4.2), in the past few years. 

Alternatively, Landsat-8 (launched February 2013) is acquiring data at 30 m spatial 

resolution and with 16-day interval (USGS, 2021). The continuity of the Landsat program 

is also established, with a planned lauch of Landsat-9 in September 2021, carrying two 

instruments continuing the measurements of Landsat-8: OLI-2 and TIRS-2 (NASA, 2021). 

Future studies may also focus on data at even higher resolution, e.g. Planet data, Spot-6 or 

Spot-7, taking into account, however, small swath width and larger data size.  

One of the reasons for adding RADARSAT-2 time series to the analysis of Moser et al. (2016a) 

(Chapter 7), was also to approximate possible applications with Sentinel-1. As of 2021, some 
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studies can be found in the literature where 1–2 years of Sentinel-1 time series are applied for 

wetland applications (see section 2.3.3.2). Data from the C-band SAR satellite Sentinel-1A has 

been acquired over the Lac Bam site systematically since October 2016 with a 12-day repeat 

cycle, and in dual-cross-polarized VV-VH Interferometric Wide swath (IW) mode. 

Additionally, single-polarized Wave (WV) mode data in VV were added but only from March 

2019 to May 2020 (ESA, 2021b). Therefore, a combined analysis of ascending and descending 

orbits as it was done for RADARSAT-2 (Chapter 7) will not be possible considering different 

modes and timing, but it is recommended to exploit the VV-VH time series in IW mode and 

ascending pass. By the time of 2023, 5 years of data will be available, and the continuity of the 

Sentinel-1 series is guaranteed. Regarding the present methodology based on TSX, the 

Kennaugh elements K3 and K4, which exploit ratios and differences between HH and VV, are 

so decisive for flooded vegetation characterization of herbaceous wetlands (see section 9.2.3). 

They are missing for dual-cross-pol SAR data like Sentinel-1. Therefore, there are some 

expected limitations of dual-cross-pol data for the monitoring of flooded and floating 

vegetation, and additionally, of the VV-VH polarization. HH-HV is not available, however 

would be preferred for monitoring flooded vegetation due to C-HH increasing the canopy 

penetration with respect to C-VV, and therefore enhancing the double bounce scattering of 

the flooded vegetation (Brisco et al., 2008, Mohammadimanesh et al., 2018a, Mahdianpari et 

al., 2020). For herbaceous wetland classes with sparse canopy closure in Canada, however, VV 

observations have proven useful in the study of Mahdianpari et al. (2020), for more details 

read section 2.3.1. Deducted from the successful transferability of the multitemporal approach 

from TSX to RS-2 (Moser et al., 2016a), the focus is recommended to be put on multitemporal 

classification or classification of temporal metrics, for which Sentinel-1 time series show great 

potential. Another use of Sentinel-1 could be filling the acquisition gaps of the TSX time series 

in the summer months during the rainy season, e.g., due to the sensors being occupied for 

other tasks. Therefore, Sentinel-1 can aid to characterize also the filling of reservoirs and 

wetlands during the rainy season, where C-band SAR is not influenced by the high cloud 

cover. C-band SAR has proven effective in many past studies as well as this work (Chapter 7) 

for open water detection (see section 2.3.3.1). 

There are simulations for wetland studies in place (Dabboor et al., 2015, White et al., 2017, 
Mahdianpari et al., 2017a, Mohammadimanesh et al., 2017, Olthof and Rainville, 2020) related 

to the future use of the recently launched (June 12, 2019) Radarsat Constellation Mission 

(RCM) data, with three identical satellites operating in C-band. This is a successor (and 

complementary) mission to RADARSAT-2 with higher revisit time. The envisaged applications 

are tailored towards multiple topics of interest for Canada, however, global land surface 

observation services for the SAR user community are to be continued as well (eoPortal, 2020). 

Apart from ALOS-2 in L-band these are the only sensors that would enable dual-co-pol as well 

as quad-pol acquisitions, and feature compact-polarimetric (CP) data in addition. The 
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required spatial resolution is met, as well as a possible increase of the temporal resolution with 

three satellites. With the known power of dual-co-pol data for wetland applications (Schmitt 

and Brisco, 2013, Betbeder et al., 2014b, Betbeder et al., 2015, Moser et al., 2016b, Moser et al., 

2016a, Klingebiel et al., 2021) and many studies that have performed research on RADARSAT-2 

quad-pol data, the use of RCM data for wetland monitoring shall be envisaged, also in 
combination with RADARSAT-2. Wetland studies using the data from this mission can be 

expected in the near future. 

Considering historical SAR time series in data archives before 2016, e.g., as an alternative to 

MODIS or other optical time series that are affected by cloud cover, at present no SAR data 

archive is available with regular recurrence. Taking into account, however, low temporal 

density at irregular repeated time steps (from weekly to scarce coverage), the idea of using 

Envisat ASAR Wide Swath Mode (WS) data could be taken up from Santoro et al. (2013), who 

have applied global ASAR WS data archives at 150 m resolution and computed a global static 

dataset of permanent open water bodies. One study performed time series analysis using 

ASAR WS from 2005–2007 for wetlands in Zambia, Africa (Schlaffer et al., 2016), providing an 
example of possibilities for African regions.  

For recent and future studies, a combination of Sentinel-1 and -2 is encouraged. Up to now no 

adequate optical HR and SAR datasets were available to exploit a fusion of optical and SAR 

datasets of similar spatial and temporal resolution. Most authors of wetland studies describe 

the use of Sentinel-2 as superior to Sentinel-1 data, with a fusion leading to the best 

classification results (Hird et al., 2017, Whyte et al., 2018, Niculescu et al., 2020, Slagter et al., 

2020), and address it as a solution to limitations of either sensor, e.g., related to cloud 

cover (optical) or phenological variations in vegetation (SAR) (Mahdianpari et al., 2019). In 

contrast, some authors conclude that the inclusion of Sentinel-1 does not provide much 

added value when already using Sentinel-2 (Chatziantoniou et al., 2017). In any case, 

Sentinel-1 and -2 can offer a multitude of research opportunities by performing studies in 

synergy with Lac Bam’s TSX time series.  

(III) CHALLENGES AND GAPS IN WETLAND-RELATED CLASSIFICATION AND MONITORING SYSTEMS AND 

ASPECTS  

During the last years a paradigm change took place regarding remote sensing analysis, moving 
from the best available imagery, at most a few images per year, to dense time series analysis. 

This opens up possibilities for the extraction of temporal metrics, synonymously also called 

temporal statistics or time features, on a HR scale which are computed on either single image 

bands or indices from different bands. They can range from simple statistical metrics until 

more complex calculations; the results are comprised layers of extracted temporal information 

over the full time period or a selected part of a time series, bringing added temporal 

information while reducing the data size. Despite of that, various indices, bands and time 



CHAPTER 9  –  CONCLUSIONS 

249 | P a g e

intervals lead to a high number of temporal metrics.  Some commonly used algorithms like 

Random Forest (Breiman, 2001) offer feature selection options, in order to determine the key 

features comprising most of the information while reducing noise. Some recent studies 

showed successful applications of temporal metrics for wetland remote sensing using 

Sentinel- 1 and -2 time series (Slagter et al., 2020, CLMS, 2020b, Ludwig et al., 2019), or previously 

MR MODIS data (Landmann et al., 2010). These approaches have rarely been applied in wetland 

research and are more known from vegetation or land cover studies, but given the fact that 

time series of higher density and larger data size become increasingly available, it is 

recommended to consider such methods for future work. Multitemporal approaches aiming at 

characterizing dynamic seasonal change classes (i.e., a change from one to another class 

throughout a season) is also a field of research which is not yet commonly applied using 

optical HR or SAR data. In this thesis a multitemporal classification was applied on dual-pol SAR 

time series in Chapters 6 and 7 (Moser et al., 2016b, Moser et al., 2016a). This approach is 

recommended for future applications on wetland classification using optical and SAR data. 

Moreover it is recommended to further exploit temporal analysis ideas, similar to the 

presented methods of cumulative water covered area and derived trend thereof, as well as 

time series analysis of water covered area sums and anomalies (Moser et al., 2014a), as well as 

seasonal parameters such as season start, duration and end etc.  

The definition of the “wetland extent” is not unique among different studies, initiatives or 

projects, neither is there a common method to derive the wetland extent. Beyond wetland 

monitoring, time series-based classifications fulfil a second purpose: a possible way for a 

unified definition of the extent of a wetland. The use of remote sensing time series has 

potential for wetland extent definition when including the temporal aspect over the course of 

a season. This is exploited in Chapters 6, 7 and 8 (Moser et al., 2016b, Moser et al., 2016a, 

Klingebiel et al., 2021), bringing up the idea that a mono- as well as multitemporal 

classification can define the wetland extent in semi-arid areas, in this case by classifying open 

water, flooded or floating vegetation and irrigated fields and respective change classes on a 

multitemporal stack of remote sensing images. Not only the maximum wetland extent (the 

outer boundaries of the change classes), but also the minimum extent (defined by stable open 

water or flooded vegetation areas in the course of a year) can be defined. Since neither 
irrigated cultivation nor flooded vegetation is present during the whole season, it has to be 

noted that the maximum wetland extent does not equal the wetland extent at maximum water 

surface at the end of the rainy season; the maximum wetland extent can only be derived 

multitemporally. One study by Sanchez et al. (2015) computed a wetland indicator for 

Mediterranean wetlands consisting of water, wetland vegetation and rice fields using between 

four and six Landsat images per season. This is in the line with the idea exploited in this thesis 

and could be further extended to other wetlands in semi-arid African areas or possible semi-

arid areas around the globe.   
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Not only the wetland extent, also the classification scheme varies among different wetland 

studies and projects, due to a desired focus on a specific topic or wetland vegetation type or 

land cover type. Some studies focus on classifying a larger number of classes or integrating 

their wetland classification in existing land cover classification schemes. Examples of LC 

classifications schemes are FAO’s Land Cover Classification System (LCCS FAO), which is 

commonly applied for studies in Africa or the Mapping and Assessment of Ecosystems 

and their Services (MAES) classification system, or Corine Land Cover (CLC) for Europe. 

Related to wetlands there is the Ramsar typology (Finlayson, 2018), which has been taken 

up and was integrated into such existing LC classification schemes as part of recent wetland 

projects like GlobWetland-II, SWOS, or DeMo-Wetlands (Weise et al., 2016, SWOS, 2018, 

DeMo-Wetlands, 2018). In contrast, other studies move more towards seasonal parameters 

of a few generic classes, e.g. to derive permanent or seasonal cover of water or wetness, as 

an example see the GlobWetland-Africa project (GlobWetland-Africa, 2020) or, for Europe, 

the High Resolution Layer Water and Wetness of the Copernicus Land Monitoring Service 

(CLMS, 2020b). This brings up another topic: the difference between wetland and wetness 

is used differently by various studies and projects, and a confusion between wetlands 

and inundated areas is reported as well (Perennou et al., 2018). The work in this thesis 

goes more in the direction of the second idea but beyond water and wetness, deriving 

temporal/seasonal information related to water, flooded vegetation and irrigated cultivation 

as this fulfils the purpose of the local study site (Chapters 3–8). For the larger study site a 

classification using the Ramsar typology (Finlayson, 2018) combined with LCCS could 

be an idea for future research. Moreover, the development of basic wetland indices 

or indicators would be encouraged, enabling a wider generic view such as described in 

one study by Sanchez et al. (2015) for Mediterranean wetlands, or as totally different global 

approach of the Wetland Extent Trends index by Dixon et al. (2016).  

Remotely sensed time series have the potential to serve as a low-cost tool for regular, wide-

area, consistent wetland monitoring. Such monitoring systems do not exist to date in West 

Africa, despite the importance of wetlands, e.g., as water resource for the most important 

livelihoods and for biodiversity. Research and projects often focus on case studies rather than 

on consistent large area monitoring, or on static wetland inventories. Dynamic remote sensing 

products focus on open surface water only or provide vegetation indices for vegetation on 

land. A MODIS-based monitoring system could be a large area and low-cost solution for open 

water monitoring including the detection of new artificial reservoirs, and could also consider 

wetland vegetation via vegetation indices and – if the spatial resolution allows – also irrigated 

cultivation. For monitoring smaller-scale effects, this could be extended by low-cost but 

higher effort systems based on Sentinel-1, Sentinel-2 or Landsat. Remote sensing might not 

always be able to replace field data, but could also be used in synergy for water body detection 

or wetland inventorying, water level or volume estimation, flood detection, large area 
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vegetation monitoring, and analysis of human-made impacts such as timing and location of 

newly built dams and artificial reservoirs or irrigated cultivations. Related to the main case 

study of this work at Lac Bam, an integration of ground-based water level measurements 

(DGRE, 2013) with remote sensing time series would be recommended.  

Besides the work presented in Moser et al. (2014a), Moser et al. (2014b) and Moser et al. 

(2017) (Chapters 3, 4 and 5) only a few studies connecting remotely sensed water body or 

wetland dynamics with drought can be found. From the perspective of wetland research, a 

study recently included two drought indices among further indices for wetland detection 

(Ludwig et al., 2019). A relation between drought occurrence and negative anomalies for 

both water coverage duration and vegetation indices has been shown in the work of this 

thesis. The water covered area at the end of the rainy season can be an indicator of the 

minimum water availability in the coming dry season, and the water surface development 

from the start of the dry season can be further monitored. Drought indices and models, 

however, are not using the information on surface water dynamics, despite the fact that the 

surface water coverage at the end of the rainy season can be an indicator for available 

water in the dry season. Common drought index models mostly use estimations from 

parameters like vegetation, precipitation, temperature, soil type or soil water content (Mishra 

and Singh, 2010). With optical sensors like MODIS both dynamic surface water and multiple 

vegetation indices could be captured on a weekly to bi-weekly basis. Other remotely 

sensed parameters such as soil moisture (e.g. derived by from scatterometers or SAR 

sensors), precipitation (e.g. rainfall estimates from the Tropical Rainfall Measuring Mission 

(TRMM)), or water level height (e.g. from the SWOT mission as well as the SRAL 

instrument on board Sentinel-3) could offer further parameters for remotely sensed drought 

indices (see Chapter 3) (Moser et al., 2017).  

Despite the importance of wetlands for humans and for biodiversity, as well as for fulfilling 

diverse ecosystem services, wetlands are barely monitored at all in Africa. Spatio-temporal 
monitoring of surface water dynamics, wetland vegetation and land use can aid researchers in 

assessing the long-term impact of water extraction, sedimentation, and climate change on 

wetlands. As this thesis shows, for all these issues remote sensing solutions are available, and 

would have the potential to greatly contribute to water management in Africa.  
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Annex 1: Feasibility Analysis for Wetland Parameter Monitoring 
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