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Abstract  Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the 

impacts are most severe. High resolution Synthetic Aperture Radar (SAR) sensors are able to detect flood 

extents in urban areas during both day- and night-time. If obtained in near real-time, these flood extents can be 

used for emergency flood relief management or as observations for assimilation into flood forecasting models. 

In this paper a method for detecting flooding in urban areas using near real-time SAR data is developed and 

extensively tested under a variety of scenarios involving different flood events and different images. The 

method uses a SAR simulator in conjunction with LiDAR data of the urban area to predict areas of radar shadow 

and layover in the image caused by buildings and taller vegetation. Of the urban water pixels visible to the SAR, 

the flood detection accuracy averaged over the test examples was 83%, with a false alarm rate of 9%. The 

results indicate that flooding can be detected in the urban area to reasonable accuracy, but that this accuracy is 

limited partly by the SAR’s poor visibility of the urban ground surface due to shadow and layover. 
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1  Introduction 

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas 

that the risks to people and the economic impacts are most severe. High resolution Synthetic 

Aperture Radar sensors are now commonly used for flood detection because of their ability to 

penetrate the cloud that is often present at times of flood, and to image at night-time as well 

as during the day. In the absence of significant wind or rain, flooded urban areas generally 

appear dark in a SAR image due to specular reflection from the water surface. A number of 

active SARs with spatial resolutions as high as 3m or better have been launched that are 

capable of detecting urban flooding. They include TerraSAR-X, RADARSAT-2 and the four 

satellites of the COSMO-SkyMed constellation. The latter is particularly useful because it 

allows image sequences of urban flooding to be built up with 12- or 24-hour revisit intervals. 

Most recently the Sentinel-1 constellation has been launched, though the 5 x 20m pixels this 
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gives in its normal interferometric wide swath mode have somewhat too coarse a resolution 

for urban flood detection, making it more suited to detecting rural flooding.  

The Sentinel-1 and RADARSAT-2 missions provide the user with processed multi-

look geo-registered SAR images about one hour after image reception at the ground station. 

Whilst this is not yet possible for TerraSAR-X and COSMO-SkyMed, it shows that the trend 

is towards providing near real-time processed imagery to the user. If the SAR image can be 

obtained in near real-time, an important use of the flood extent is as a tool for operational 

flood relief management. The Pitt Report
1
 pointed out the need to have near real-time flood 

visualisation tools available to enable emergency responders to react to and manage fast-

moving events, and to target their limited resources at the highest priority areas. The English 

Environment Agency (EA) now uses SAR images to detect the extent of flooding and the 

depth of floodwater as the flood evolves. A second important use is to provide near real-time 

data for assimilation into urban flood inundation models. Assimilation may be used to correct 

the model state and improve estimates of the model parameters and external forcing. 

Distributed water levels may be estimated along the SAR flood extents by intersecting them 

with the floodplain topography, and the water levels at various points along the modelled 

reach may be assimilated into the model run
2-4

. Alternatively, Ref. 5 has recently proposed 

the assimilation of probabilistic flood inundation maps that bypass the need to determine 

water levels explicitly
5
.  

A substantial amount of work has been carried out developing methods of flood 

detection in rural areas
6-19

. Several organisations including the EA and Copernicus 

Emergency Management Service (EMS) have developed semi-automatic systems to extract 

the flood extent from a SAR image. These systems tend to work well in rural areas, but not so 

well in urban areas. A difficulty of urban flood detection using SAR is that substantial areas 

of urban ground surface may not be visible to the SAR due to radar shadowing and layover 
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caused by buildings or taller vegetation. Shadow will appear dark, similar to most water, so 

may be misclassified as water if the ground in shadow is dry. Layover will generally appear 

bright, possibly leading to misclassification of flooded ground as un-flooded. 

As a result, the problem of urban flood detection has received less attention. Ref. 20 

developed a near real-time algorithm for flood extent delineation in both urban and rural 

areas of a high resolution SAR scene.  The method was based on the analysis of the SAR 

backscatter values, as the backscatter from undisturbed water in a flooded street should be 

low compared to that from much of the surrounding urban area. To cope with the 

shadow/layover effect in urban areas, the algorithm used a SAR simulator to estimate regions 

in the SAR image in which water would not be visible due to shadow or layover. The urban 

area that may be flooded but not visible to the SAR may be significant (e.g. 39% in the study 

of Ref. 15). A further difficulty is that roads and tarmac areas also exhibit low backscatter, 

though often not as low as undisturbed water
15

. Undisturbed water is smoother than tarmac, 

and the real part of its dielectric constant is considerably larger than that of tarmac, implying 

an increase of surface reflectivity and consequent reduction in backscatter
21

. In Ref. 20, a 

reasonable urban flood detection accuracy of 75% was achieved in urban areas that were 

visible to the SAR, with a false alarm rate of 19%. Following on from this, Ref. 22 used the 

same SAR image,  LiDAR data and SAR simulator to investigate whether urban flooding 

could be detected in layover regions (where flooding may not normally be apparent) using 

double scattering between the (possibly flooded) ground surface and the walls of adjacent 

buildings. Observations of the strengths of double scattering lines were compared to the 

predictions from an electromagnetic scattering model, and the method proved successful in 

detecting double scattering in urban areas due to flooding. 

Ref. 15 detected urban flooding used a change detection technique, in which a SAR 

image containing flooding was normalised using a second image acquired during dry 
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conditions, with the second image having the same look angle, orbit inclination, frequency 

and resolution as the first. This enabled the identification of regions not visible to the SAR 

(e.g. shadow) or that systematically behaved as specular reflectors (e.g. smooth tarmac, 

permanent water bodies). This reduced the over-detection of inundated areas, giving a flood 

detection rate of 82% with a false alarm rate of 2.6%. 

An alternative method of detecting urban flooding was developed in Ref. 23, which 

performed river flood mapping in urban areas by combining RADARSAT-2 and flood return 

period data derived from flood inundation models. The method finds the flood level in rural 

areas using the SAR data, then uses the flood return period data to calculate where the 

flooding should be in the urban area. No use is made of the SAR data in the urban area, so 

that no urban shadow/layover calculation is necessary. A high urban flood detection accuracy 

(87%) and low false alarm rate (14%) were achieved, and the results highlighted the ability of 

flood return period data to overcome limitations associated with SAR-based urban flood 

detection. The method does require the availability of accurate flood return period data, and 

assumes that the rainfall pattern across the catchment that caused the particular flood being 

investigated is the same as that used to calculate the flood return period data. 

The studies of Refs. 21 and 24 showed that a significant improvement in the detection 

of urban flooding could be made by using SAR coherence in conjunction with backscatter to 

detect the flooding. Coherence was measured using the phases and amplitudes of 

interferometric pairs of CSK images, with one image being obtained during the flooding, and 

the other prior to the flooding. An urban area that is not flooded should have high coherence, 

whereas if there is flooding the coherence should be low. The technique is likely to be of 

great assistance in detecting urban flooding in the future, though the spatial resolution of the 

coherence is less than that of the SAR backscatter, and shadow and layover are still present.  
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An advantage of the method of Ref. 20 is that it requires only a single single-

polarisation SAR image acquired during the flooding. In addition, while it could be applied in 

a change detection mode, in a near real-time situation it may be difficult to acquire a suitable 

SAR reference image over unflooded ground. However, to date the method has only ever 

been tested on only a single high resolution SAR image from a single flood event. The object 

of this paper is to test the method further on a variety of scenarios using other images of other 

events, and to modify it if necessary to make it more robust. In the event, we find that a 

number of improvements can be made, in particular to the estimation of the flood elevations 

and to the method of delineating the flooding in the urban area. 

 

2   Design considerations 

The algorithm design assumes that high resolution LiDAR data are available for at least the 

urban regions in the scene, in order that the SAR simulator may be run in conjunction with 

the LiDAR data to generate maps of radar shadow and layover in urban areas. The algorithm 

is therefore limited to urban regions of the globe that have been mapped using airborne 

LiDAR. However, in the UK most major urban areas in flood-plains have now been mapped, 

and the same is true for many urban areas in other developed countries.   

The approach adopted involves first detecting the flood extent in nearby rural areas, 

and then detecting it in the urban areas using a secondary algorithm guided by the rural flood 

extent
20

. A rural area is considered to be one not significantly affected by building shadow 

and layover. Note that this means that the method will not work in a situation where a flood is 

totally contained within an urban area. But even in a city rural areas (e.g. parks) can generally 

be found not far away from urban ones. 

The method is object-based, and adopts the approach of segmenting the SAR image 

into regions of homogeneity and then classifying them, rather than classifying each pixel 
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independently using a per-pixel classifier. The use of segmentation techniques provides a 

number of advantages compared to per-pixel classification. Because of the high resolution of 

these SARs, individual regions on the ground may have high spectral variances, reducing the 

accuracy of per-pixel classifiers. In addition, because the segments created correlate well with 

real regions of the earth’s surface, further object-related features such as object size, shape, 

texture and context may be used to improve the classification accuracy. The approach used 

for rural flood detection in Refs. 6 and 7 is adopted, which involves segmentation and 

classification using the eCognition Developer software
25

.  

As well as being used in the SAR simulator, a further advantage of the LiDAR data 

are that they can be used to estimate a mean backscatter threshold for segmented 

homogeneous regions (objects) of the SAR image, such that objects with mean backscatter 

less than the threshold are assigned to the class ‘flood’. The SAR image will invariably 

contain water regions, which will generally give no LiDAR return because they have acted as 

specular reflectors that have generated no backscatter at the sensor. These regions can be 

used as training areas for water, and can also be identified as permanent bodies of water that 

can be eliminated from the flooding if required. Similarly, it is possible to select non-water 

training pixels by searching in un-shadowed areas above the level of the flooding. A simple 

two-class Bayes classifier using the Probability Density Functions (PDFs) for water and non-

water can then be used to select the threshold, assuming equal prior probabilities for both 

classes.  

 

3   Study events and data sets 

Three different SAR images of two different flood events were studied. The locations of the 

three study sites in southern Britain (Wraysbury, Staines and Tewkesbury) are shown in fig. 

1. 
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The first two examples are based on the Thames flood of February 2014 in West 

London, which caused substantial urban flooding
26

. In January and February 2014, heavy and 

persistent rainfall left large parts of southern England under water. The flooding resulted 

from a long series of Atlantic depressions caused by the jet stream being further south than 

usual. The peak of the flooding in West London occurred around 11 February 2014, with 

peak flow being 404 m
3
/s. A substantial amount of urban flooding occurred in a number of 

towns, in particular Wraysbury and Staines. Two COSMO-SkyMed (CSK) (X-band) 2.5 m 

resolution Stripmap images of the flooding were acquired covering the flooded areas. Their 

processing level was GTC (Level 1D). A limited number of aerial photos acquired by the 

press were available to validate the SAR flood extents. These tended to cover small areas 

with substantial flooding. No high resolution visible band satellite (e.g. WorldView-2) data 

having sufficiently low cloud cover were available for validation.  

1.   A CSK image was acquired on 12 February 2014 just after the flood peak, and shows 

flooding in the Wraysbury area. An aerial photo for validation was acquired on 16
th

 February 

(fig. 2). The SAR sub-image covering the area is shown in fig. 3. 

Fig. 1. Locations of the 3 study sites in southern England (main rivers in blue). 
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2. Another CSK image showing flooding in Staines was acquired on 13 February 2014, when 

flow was only 5% less than the peak. An aerial photo for validation was acquired on 16
th

 

February, showing flooding in Blackett Close, Staines. 

3. The third example was based upon the 1-in-150-year flood that took place on the lower 

Severn around Tewkesbury, U.K., in July 2007
27

. This resulted in substantial flooding of 

Fig. 2. Aerial photo of flooding in Wraysbury, West London  

(about 300 x 300 m) (© Getty Images 2014). 

Fig. 3. CSK sub-image (1 x1 km) of Thames flood in Wraysbury, West London (pixel intensities are DN (Digital 

Number) backscatter  values, dark areas are water). Red outline shows the area covered by aerial photo of fig. 2. 

Yellow rectangle is high urban area. 

50 m 

100 m 
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urban and rural areas, about 1500 homes in Tewkesbury being flooded. Tewkesbury lies at 

the confluence of the Severn, flowing in from the northwest, and the Avon, flowing in from 

the northeast. The peak of the flood occurred on July 22, and the river did not return to 

bankfull until July 31. On July 25, TerraSAR-X (TSX) (X-band) acquired a 3 m resolution 

StripMap image of the region in which urban flooding was visible. The image was multi-look 

ground range spatially enhanced. Aerial photos of the flooding were acquired on July 24 and 

27, and these were used to validate the flood extent extracted from the TerraSAR-X image
28

. 

Table 1 gives the parameters of the SAR images considered in the study. All images 

were HH polarisation, which for flood detection is preferable to vertical or cross polarisation 

because it gives the highest contrast between open water and unflooded regions
29

. For each 

area, the EA LiDAR Digital Surface Model (DSM) and ‘bare-earth’ Digital Terrain Model 

(DTM) of the area were obtained at 2m resolution. The DTM was generated from the DSM 

using the EA’s processing algorithm. 

 

Table 1. Parameters of SAR images. 

 

 

 

 

  

Date River 

(Location) 

SAR Resolution 

(m) 

Pass Angle of 

inclination 

(°)  

Angle of 

incidence 

(°) 

12/02/2014 Thames 

(Wraysbury) 

COSMO-

SkyMed 

2.5 Descending 97.9 43.4 

13/02/2014 Thames 

(Staines) 

COSMO-

SkyMed 

2.5 Descending 97.9 31.6 

25/07/2007 Severn/Avon 

(Tewkesbury) 

TerraSAR-

X 

3.0 Descending 97.4 24 
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4   Method 

Steps in the processing chain are shown in Fig. 4. These include pre-processing operations 

carried out prior to image acquisition, and near real-time operations carried out after the geo-

registered SAR image has been obtained. The steps are illustrated using the SAR image for 

Wraysbury (fig. 3). Processing is carried out using SAR and LiDAR data re-sampled to 1m 

pixel size. This re-sampling naturally does not generate any additional spatial resolution in 

the SAR image, but has the effect of maintaining resolution during the region-growing 

process ultimately performed in the urban flood detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Pre-processing operations 

a) Delineation of urban areas: The main urban areas are delineated (fig. 5). Currently this 

process is performed manually as it is a pre-processing operation that is not time-critical. 
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b) Calculation of radar shadow and layover: The calculations of radar shadow and layover 

are performed using a SAR simulator in conjunction with the LiDAR DSM
28

. Substantial 

areas of urban flood water may not be visible to the SAR because of the presence of radar 

shadow and layover due to buildings or taller vegetation. The effect is described in Ref. 28 

and illustrated in Fig. 5 of that paper. In summary, sections of the image in radar shadow will 

appear dark in the SAR images, and may simulate water even if they are un-flooded. Other 

sections of ground may be subject to layover from adjacent structures such as walls, generally 

leading to a bright return even if the ground is flooded.  

The RaySAR SAR simulator
30

 is used to estimate regions of the SAR image in which 

water will not be visible due to the presence of shadow or layover. The estimation of these 

regions is purely geometrical, and uses the LiDAR DSM of the scene’s surface as well as the 

radar flight trajectory and incidence angle. RaySAR is open-source software written in 

MATLAB, and is based on the open-source POV-Ray software. POV-Ray
31

 is a ray tracing 

program developed for use with incoherent visible light. RaySAR extends POV-Ray by 

adding functions that allow it to cope with coherent SAR ray-tracing. RaySAR has been 

developed to support the understanding and interpretation of signal multiple reflections 

occurring at man-made objects. One of RaySAR’s capabilities is that it is able to model 

distortion effects in SAR images, such as layover and shadow. An important requirement 

Fig. 5. Urban areas (white). 
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when choosing the simulator was that it should not be too computationally-intensive, so that 

the shadow/layover map can be generated in near real-time as soon as the radar flight 

trajectory and incidence angle of the incoming SAR image are known. The RaySAR 

processing time on a Windows PC is of the order of minutes per scene. 

 

 

 

 

 

Fig. 6. (a) DSM, DTM and normalised DSM (nDSM), (b) simulated ground-range-projected 

SAR images generated from DEMs (looking West at DEMs, azimuth = horizontal, range = 

vertical), and (c) separate layers constructed from the simulated images (after Ref. 32). 

 

(a) (b) (c) 
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Ref. 32 developed RaySAR further to produce an enhanced SAR simulator 

GeoRaySAR that specializes in using LiDAR DSMs as input data and provides geocoded 

simulated SAR images for direct comparison with the real SAR image. Exploiting this 

simulator, different layers (e.g., layover, shadow) can be generated for different digital 

elevation models (whole DSM, individual buildings and walls) by combining simulated 

images. In order to estimate shadow and layover maps, the method suggested in Chapter 4.2 

of Ref. 32 (developed from the work of Ref. 33) was used (fig. 6). A normalised DSM 

(nDSM) is constructed by subtracting the DTM from the DSM. Then simulated ground-

range-projected SAR images are generated for DSM, DTM and nDSM. Layover is where 

backscatter > 0 in the nDSM SAR image. The layover layer includes not only building wall 

reflections but also signals from building roofs. Shadow is where backscatter = 0 in the DSM 

SAR image and backscatter > 0 in the DTM SAR image.  

RaySAR was developed for analyzing local urban scenes where the incidence angle of 

the radar signal is assumed constant over the scene (flat wave front assumption in the far field 

of the antenna). Therefore, a signal source emitting parallel light is defined in POV-Ray for 

representing the radar signal emitter and an orthographic camera receiving parallel light for 

representing the radar receiver. Thereby, the coordinates of signals in the far field can be 

directly simulated without modelling the synthetic aperture. 

The processing of the nDSM begins by using RaySAR to produce a Delaunay 

triangulation of the nDSM, as required by POV-Ray. Noise triangles of low height (<1m) are 

suppressed in the output. RaySAR is then used to simulate the SAR reflectivity map, using 

the SAR flight trajectory and incidence angle. A 2D histogram of scatterers is created, which 

contains a map of the number of scattering surfaces contributing at each pixel. 
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After the generation of these images, the method uses the geo-information in the 

nDSM as well as the orbit and projection parameters of the real SAR image to geocode the 

simulated image, which enables a comparison with the real SAR image. 

A similar processing sequence is then applied to the DSM and DTM images. When all 

three Digital Elevation Models (DEMs) have been processed, the layover and shadow maps 

can be calculated. Fig. 7 shows the DSM, DTM and nDSM for the SAR image of Fig. 3. The 

LiDAR data are 1 x 1 km, 2m resolution. Fig. 8 shows the shadow and layover maps 

produced, which seem sensible. The radar is travelling approximately North-South and 

looking West. It can be seen that most shadow and layover occur in streets that are parallel to 

the satellite direction of travel, whereas streets perpendicular to this have less 

shadow/layover. 

c) Construction of compound DEM: A compound DEM is constructed for the whole area, 

being the DSM in the urban areas and the DTM in the rural areas of the image. The 

compound DEM is required because different processing is applied in the urban and rural 

areas. The local slope of the DTM is also calculated in the rural areas. 
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(a) (b) 

Fig. 7. (a) LiDAR DSM, (b) DTM, and (c) nDSM. 

(c) 

(a) 
(b) 

Fig.8. (a) Shadow map (radar looking West, bright areas are shadow), (b) layover 

map (bright areas are layover). 
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d) Identification of high land height threshold: In order to identify a set of pixels in regions of 

high land that potentially contain no water, the height (hh) identifying the 90
th

 percentile of 

pixel heights in the compound DEM is calculated. 

e) Identification of training areas for water and high land: The water training area is where 

there are unassigned heights in the LiDAR data, where the water has acted as a specular 

reflector. So the LiDAR automatically provides training pixels for the water class, which is a 

further advantage of using it. The high land is the highest 10% of pixels in the area, which 

must not contain unassigned heights so that they are not water. The high land is not likely to 

be flooded. In the high land class, regions of shadow are omitted, so that the high land class 

does not contain pixels having low backscatter values similar to water. High land pixels are 

suppressed only in shadow and not in layover regions. If the region is flat it will also contain 

roofs of houses, which would be suppressed if a layover map was used as well as a shadow 

map to suppress high land pixels. The training areas selected are shown in fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Water (blue) and high land (red) training regions. 
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4.2   Near real-time processing operations 

 

f) Calculation of SAR backscatter threshold: 

As soon as the processed geo-registered SAR image becomes available, the threshold that 

best separates the SAR backscatter values of the water and high land pixels in the training 

classes can be calculated. A histogram of the backscatter values in each class is constructed. 

Each histogram is normalised to form a probability density function, and equal prior 

probabilities are assumed for each class. The backscatter threshold Tu giving the minimum 

misclassification of water and high land (non-water) pixels is calculated from the measured 

histograms using Bayes rule
34

 i.e.  

   if P(ω1 | g) > P(ω2 | g)   classify g as ω1 , else as ω2   (1) 

where P(ωi | g) is the  posterior probability of a pixel with DN value g being from class ωi , 

where ω1 = water and ω2 = non-water. For the Wraysbury example, the minimum error rate 

was obtained with a threshold Tu of 52 DN units (Fig. 10).  
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Fig. 10. Variation of misclassified water and non-water (high land) pixels with pixel 

intensity threshold Tu. 
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g) Flood detection in rural areas: The SAR image in the rural areas was segmented using the 

multi-resolution segmentation algorithm of the eCognition Developer software
25

. This 

employs an iterated bottom-up segmentation technique based on pair-wise merging of 

adjacent regions. The merging is governed by a local mutual best fitting algorithm. This aims 

to achieve the lowest increase in object heterogeneity by merging the two adjacent regions 

separated by the smallest distance in a feature space determined by mean spectral and textural 

features. The maximum allowable heterogeneity of the objects is set by a user-defined scale 

parameter, homogeneity criterion h, which is comprised of object spectral homogeneity hc 

and shape homogeneity hs factors, with hs in turn being made up of object compactness 

hcompact and object smoothness hsmooth  factors. The larger the scale parameter is, the larger are 

the image objects. All resulting objects with a mean SAR backscatter intensity less than the 

threshold Tu are classed as ‘flood’. 

The parameters were set by a process of trial-and-error based on visual interpretation 

of the segmentation results, in order to produce objects such as fields corresponding to those 

visible in the SAR image. No special interpretation skills were required in this process. It was 

found that good results could be obtained using a large scale parameter (h = 100), coupled 

with a larger shape homogeneity (hs = 40%) and larger compactness (hcompact = 40%) than the 

eCognition Developer default settings, in order to select for compact objects that were not 

over-segmented. These parameters were used in this and subsequent multi-resolution 

segmentations in the processing chain, and are viewed as constants that do not need to be 

reset by the user, at least for these SAR image types.  

h) Rural flood refinement: The segmentation of the rural flood generated in step (g) is then 

refined. Details of the method are given in Ref. 20, and are only summarised in this section. 

Shadow/layover objects adjacent to flood objects in the rural areas are reclassified as flooded, 

as they are often adjacent to rows of trees along field boundaries, which are likely to be 
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flooded. In a similar manner, unclassified objects in rural areas that are long and thin and 

adjacent to flood objects are often hedgerows that are likely to be flooded even though 

emergent, so these are also reclassified as flooded. While flood-water usually appears dark 

compared to the surrounding un-flooded land because of specular reflection from the smooth 

water surface, wind or rain may cause roughening of the water such that the backscatter from 

it may rise to similar or greater levels than the surrounding land. Because different parts of 

the flooded reach may have different exposures to wind and rain, it is unlikely that a single 

mean SAR backscatter intensity threshold will be appropriate for all flood objects along the 

reach. This problem does not appear to be particularly widespread, and as a result a simple 

iterated rule is introduced to the effect that an unclassified object bordering the flood with 

mean SAR backscatter intensity ≤ Tuʹ  (where Tuʹ  = 1.1Tu) is reclassified as flooded. Fig. 11 

gives the refined rural flood classification for the Wraysbury example. 

 

 

 

 

 

 

 

 

 

 

i) Calculation of local waterline height threshold map: As a precursor to flood detection in 

urban areas, a local waterline height threshold map is calculated using the rural flood map. It 

seems reasonable to assume that water in the urban areas should not be at a substantially 

higher level than that in the nearby rural areas. Unless there is significant ponding (for 

Fig. 11. Flood classification (blue) in rural areas after 

refinement, overlain on SAR image of fig. 3. 
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example, on the falling limb of the hydrograph), there should be very little water at higher 

urban levels. However, unless a height threshold is imposed, there could be a substantial false 

alarm rate of water at these levels
28

.  

Waterlines are detected by applying the Sobel edge detector to the binary flood map. 

Because the flood map has errors at this stage, edges will be present at the true waterlines, but 

also in the interior of the water objects due to regions of emergent vegetation and 

shadow/layover (giving water heights that are too low), as well as above the waterline due to 

higher water alarms. To increase the signal-to-noise ratio of true edges, a dilation and erosion 

operation is performed on the water objects to eliminate some of the artefacts. Water objects 

are first dilated by 12 pixels, then eroded by the same amount. It is required that an edge pixel 

is present at the same location within a 2-pixel-wide buffer before and after dilation and 

erosion. The buffer is required because an edge that has been dilated and eroded may be 

smoother than the original edge, and may be slightly displaced from it as a result. This tends 

to select for true waterline segments on straighter sections of exterior boundaries of water 

objects. To suppress false alarms further, waterline heights in regions that are sufficiently far 

(20 m) from high (> 0.5) DSM slopes are selected, provided that they are also within ±1.5m 

of the mean water height. This avoids false alarms near high DSM slopes, which may give 

rise to shadow/layover areas. 

In order to find the mean waterline height in the rural area, a histogram is constructed 

of the waterline heights, and the positions of the histogram maxima are found, including that 

of the global maximum. Generally, the mean waterline height in the quadrant is set to 

correspond to the height of the global maximum. However, if any substantial maxima greater 

than half that of the global maximum is present at a higher waterline height, the highest of 

these is chosen instead. This latter rule copes with the situation where a substantial number of 

erroneous low waterline heights in the interior of water objects have not been eliminated. An 
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example histogram is shown in fig. 6 of Ref. 20. An additional (guard) height of 0.6 m is 

added to the mean waterline height to allow a height tolerance. 

This waterline height calculation holds provided the area under consideration is not 

too large, yet able to supply sufficient waterline heights to construct a sensible histogram. 

This is true, for example, for the 1 km
2
 area of Wraysbury considered. However, if it is 

required to detect local mean waterline heights in a larger urban area, the method divides the 

area into non-overlapping tiles of area about 1 km
2
, and the local mean waterline heights in 

adjacent tiles are interpolated to a spatially-varying height threshold image ht_thresh(x,y) 

using bilinear interpolation. The spatial variability of this threshold reflects the fact that 

different parts of a larger area can be flooded to different heights
28

.  

 

j) Flood detection in urban areas:  

A revised approach to that of Ref. 20 was developed for flood detection in urban areas, which 

in the analysis proved superior to the original method. The urban flood detection algorithm is 

of necessity different from the rural one, because it has been found that the PDF of pixels in 

flooded urban streets has a substantial tail towards higher backscatter values compared to the 

PDF of rural water pixels
20

. For the Wraysbury example, the median value was 78 DN units 

compared with 50 DN units for the water training area. This appears to be caused by high 

backscatter from e.g. cars and street furniture, as well as inaccuracies in image registration 

and in the shadow/layover calculation caused by the limited resolution of the LiDAR.   

Unclassified pixels in the urban area are first classified as water seeds if they have 

SAR backscatter less than Tu, heights that are less than the (possibly spatially-varying) 

waterline height threshold  ht_thresh(x,y) calculated in step (i), and do not lie in 

shadow/layover areas. 
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A flooded region not in shadow/layover should have high-density clusters of seed 

pixels, whereas an unflooded region should have a low density of these. A convolution 

approach is used to help ensure that seed pixels survive if they are close to other seed pixels, 

as they reinforce each other.  A convolution window of half-side wsize is applied in a parallel 

transform over a binary image in which seed pixels have a value of 1, and non-seed pixels 0. 

Provided that the number of surrounding seeds present in the convolution sum at a particular 

seed pixel is greater than hitlim, the seed is retained, otherwise it is set to zero. A sensitivity 

study indicated that values of wsize = 25 m and hitlim = 6 seemed optimum. 

A weighted distance transform is used to grow the surviving seed pixels into larger 

clusters (see e.g. Ref. 20). In the normal Euclidean distance transform each unflooded pixel’s 

distance value is the Euclidean distance to the nearest flooded pixel, with the distances at 

flooded (seed) pixels being set to zero. To approximate a Euclidean distance, distance 

increments of 2 and 3 are used between adjacent pixels in the axial and diagonal directions, 

respectively
35

. In the weighted distance transform, the distance increment d between an 

unflooded pixel (x,y) and its neighbour is weighted by weight w which depends on its SAR 

backscatter DN(x,y) - 

      w   = (DN(x,y) – Tu)/Tu  if height(x,y) < ht_thresh(x,y)  (2) 

However, if height(x,y) >= ht_thresh(x,y), d is set to a large increment (the maximum 

allowed distance). The technique assigns small distance increments to unflooded pixels in 

regions with low backscatter that are less than ht_thresh(x,y). It ensures that flood regions are 

grown preferentially e.g. along roads with low SAR backscatter and low height.  

Flood regions are also grown into shadow/layover areas if these have height < 

ht_thresh(x,y). As SAR backscatter in shadow/layover may not be meaningful, the pixel DN 

values are ignored, and w is simply set to 1 in these areas. This helps to overcome a limitation 

of urban flood detection using SAR that the SAR cannot see into shadow/layover areas.  



23 
 

Pixels with weighted distance less than a threshold (dthresh) are then classed as urban 

flood. Again a sensitivity study was performed, which indicated that a value of dthresh = 15 

m seemed optimum.  

5   Processing of the validation data 

For the first two examples, the flood extent used for validation could have been extracted 

from the aerial photos by converting each aerial photo from an oblique projection to nadir, 

registering to the DSM image, and classifying the water in the registered aerial image. Both 

the projection change and the classification of water in visible band imagery are difficult. 

Instead, the technique used was to map the projection of the aerial domain onto the DSM 

image, find the position of the flood edge in the aerial image manually, then find the height of 

this position in the DSM image. A difficulty was that the aerial photos were acquired several 

days after SAR imagery. However, the flooding was long-lasting, and data from the Staines 

flood gauge indicated that the river level had fallen only 20cm in the intervening period. The 

mean waterline height was raised by 20cm to compensate for this. All pixels lower than this 

corrected height were then set to ‘flood’ in the aerial photo validation image. Some minor 

editing was necessary to correct obvious errors. 

A similar though more involved method was used to determine the validation flood 

extent for the third example, and details are given in Ref. 28. 

6   Validation of the urban flood extents 

The flood extent extracted from the SAR image was validated against the aerial photo flood 

extent for each of the three example data sets. 

a) Wraysbury 

The high land height threshold in step (e) (hh) was 19.0 m. Fig. 9 shows that, because the 

Wraysbury area is rather flat, most high land was the roofs of houses (fig. 9). In step (i), the 

local waterline height threshold in the adjacent rural area (including the guard height) 
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(ht_thresh) was 16.9 m. Table 2 gives the flood detection and false alarm rates for the 

Wraysbury image. 

Table 2. Flood detection and false alarm rates for Wraysbury. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shadow/layover flag  Flood detection 

accuracy (%) 

False alarm rate 

(%) 

Predicted false 

alarm rate in high 

urban area (%) 

(see this section) 

ON in validation 87 4 22 

OFF in validation 84 5 48 

No shadow/layover 

map used in system  

87 6 62 

(a) 

(b) 

Fig. 12. (a) Correspondence between the SAR and aerial photograph flood extents in urban area of Wraysbury, 

superimposed on the LiDAR image (yellow = wet in SAR and aerial photos, red = wet in SAR only, green = wet in 

aerial photos only), and (b) extract from SAR image. 
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Fig. 12 shows the correspondence between the SAR and aerial photo flood extents in 

the Wraysbury validation area, together with an extract from the SAR image for comparison. 

If shadow/layover areas are masked out in the validation in both SAR image and aerial photo 

(shadow/layover flag ON), then 87% of the flooded urban pixels in the validation area are 

correctly detected by the SAR, with a false alarm rate of 4%.  This detection rate is probably 

as good as can be expected given the substantial variation of the SAR backscatter intensities 

in the flooded urban area. It is noticeable that, while a good deal of the flooding in the roads 

is detected, in the gardens it is often hidden in regions of shadow and layover.  

This detection accuracy is the percentage of the urban flood extent that is visible to 

the SAR and also detected by it. However, it is more pertinent to consider the percentage of 

the urban flood extent that is visible in the aerial photo that is detected by the SAR. This 

percentage will be lower because flooded pixels in the shadow/layover regions must now be 

included. If shadow/layover areas are not masked out in the validation (shadow/layover flag 

OFF), 84% of the flooded urban pixels are now detected by CSK, with a false alarm rate of 

5%. This is only a small reduction from the 87% detection rate, implying that the method of 

growing the flooded region into shadow/layover areas below the height threshold 

ht_thresh(x,y) seems to be working to some extent at least.  

A difficulty in the Wraysbury case is that a substantial part of the validation area is 

flooded, making it difficult to estimate an accurate false alarm rate. To improve the estimate 

of this, a predicted false alarm rate has been measured using an urban area that is probably 

not flooded because it is too high (the yellow area in fig. 3), by switching off the height 

threshold in this area and seeing what fraction of this is classed as flooded (there are no aerial 

data). This would give a predicted false alarm rate in an area below the height threshold that 

was not flooded. In a normal scene probably only a small fraction of the scene would be 

below the height threshold and not flooded, so this would be an upper limit on the false alarm 
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rate. Areas above the height threshold would have a zero false alarm rate. Using this high 

area, if the shadow/layover map is used in the validation, the predicted false alarm rate of 

urban non-water pixels visible to CSK and incorrectly classified as water is 22% (table 2). 

However, if the area within shadow or layover is included, the predicted false alarm rate rises 

substantially to 48%. 

A further question to ask is, is it actually necessary to use a shadow/layover map at 

all? This can be achieved by not using the shadow/layover map in processing steps (b), (e), 

(h), (j) and in the validation. If the shadow/layover map is not used at all, then the flood 

detection rate actually rises slightly from 84% to 87%. Probably this is due to the fact that in 

this case a large percentage of the validation area is flooded, and the shadow areas, which get 

detected as flood seed pixels, in this case really are flooded. Other possible causes are the 

limited resolution of the SAR and LiDAR, geo-registration error and errors in the 

shadow/layover map. The false alarm rate in the validation area only rises from 5% to 6%. 

However, in the high urban area there is a large predicted false alarm rate of 62%. Probably 

this is due to the fact that, in contrast to the validation area, the shadow areas in this case are 

actually unflooded, but still get detected as flood seed pixels. As a consequence, in the 

Wraysbury case there does seem to be an advantage in using a shadow/layover map. 

 

b) Blackett Close, Staines 

For Blackett Close, the aerial photo used for validation is shown in fig. 13 and the CSK sub-

image covering this in fig. 14. The high land height threshold in step (e) was 18.0 m. The 

SAR backscatter threshold in step (f) was 60 DN units. In step (i), the local waterline height 

threshold in the adjacent rural area (including the guard height) was 14.2 m. Table 3 gives the 

flood detection and false alarm rates for the Blackett Close image. 
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Fig. 13. Aerial photo of flooding in Blackett Close, Staines  

(about 150 x 150 m) (© Getty Images 2014). 

Fig. 14. CSK sub-image (1 x1 km) of Thames flood in Staines, West London (pixel intensities are DN 

(Digital Number) backscatter values, dark areas are water). Red outline shows the area covered by the 

aerial photo of fig. 13. Yellow rectangle is high urban area. 

20 m 

100 m 
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Table 3. Flood detection and false alarm rates for Blackett Close, Staines. 

 

 

Fig. 15 shows the correspondence between the SAR and aerial photo flood extents in 

the Blackett Close validation area, together with an extract from the SAR image for 

comparison. Assuming that the shadow/layover map is used in the validation, 82% of the 

flooded urban pixels in the validation area are correctly detected by the SAR, with a false 

alarm rate of 1%.  If the shadow/layover map is not used in the validation, 79% of the flooded 

urban pixels are detected by CSK, with a false alarm rate of 2%. This is only a small 

reduction from the 82% detection rate, again implying that the method of growing the 

flooded region into shadow/layover areas seems to be working.  

Again, a difficulty in the Blackett Close case is that almost all the validation area is 

flooded, making it difficult to estimate an accurate false alarm rate. As in the Wraysbury 

case, a further estimate has been made in an urban area that is probably not flooded because it 

is too high (the yellow area in fig. 14). Using this high area, if the shadow/layover map is 

used in the validation, the predicted false alarm rate of urban non-water pixels visible to CSK 

and incorrectly classified as water is 26%. If the area within shadow or layover is included, 

the predicted false alarm rate rises to 30%. 

 

 

Shadow/layover flag Flood detection 

accuracy (%) 

False alarm rate 

(%) 

Predicted false 

alarm rate in high 

urban area (%) 

ON in validation 82 1 26 

OFF in validation 79 2 30 

No shadow/layover 

map used in system 

83 2 61 
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If no shadow/layover map is used at all in the processing and validation, the flood 

detection accuracy again rises slightly from 79% to 83%. This again is probably because a 

large percentage of the validation area is flooded, and the shadow areas, which get detected 

as flood seed pixels, in this case really are flooded. The false alarm rate remains at 2%. 

However, as in the Wraysbury case, in the high urban area there is a large predicted false 

alarm rate of 61%, so that again the shadow/layover maps seems to be serving a useful 

purpose. 

For the Blackett Close case, it was also investigated whether, instead of using the 

weight w in the weighted distance transform (equation (2)), there was any advantage in using 

a weight w*w. However, the flood detection rate reduced when the quadratic weight was 

used. 

 

(a) 

(b) 

Fig. 15. (a) Correspondence between the SAR and aerial photograph flood extents in urban area of Blackett Close, 

superimposed on the LiDAR image (yellow = wet in SAR and aerial photos, red = wet in SAR only, green = wet in 

aerial photos only), and (b) extract from SAR image. 
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c) Tewkesbury 

Fig. 16 shows the TerraSAR-X image showing flooding in the urban areas of Tewkesbury in 

July 2007. The aerial photos used for validation are shown in fig. 3 of Ref. 28. The 

shadow/layover map used is shown in fig. 7 of Mason et al. (2010). The high land height 

threshold in step (e) was 17.5 m. The SAR backscatter threshold in step (f) was 64 DN units. 

In step (i), the local waterline height threshold in the adjacent rural area (including the guard 

height) was a spatially-distributed height map. Table 4 gives the flood detection and false 

alarm rates for the Tewkesbury image. 

 

 

 Fig. 16. TerraSAR-X image showing flooding in the urban areas of Tewkesbury in July 2007 (pixel 

intensities are DN (Digital Number) backscatter values, dark areas are water, 2.6 x 2 km, © DLR). 

Yellow rectangle covers unflooded urban area sample. 

200 m 
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Table 4. Flood detection and false alarm rates for Tewkesbury. 

 

Fig. 17 shows the correspondence between the SAR and aerial photo flood extents in 

the urban areas of Tewkesbury. If the shadow/layover map is used in the validation, 80% of 

the flooded urban pixels in the validation area are correctly detected by the SAR, with a false 

alarm rate of 23%. If the shadow/layover map is not used in the validation, 74% of the 

flooded urban pixels are detected by CSK, with a false alarm rate of 24%. The small 

reduction in the flood detection rate from 80% again implies that the method of growing the 

flooded region into shadow/layover areas seems to be working.  

The object of this work has been to further develop the urban flood detection 

algorithm of Ref. 20 to improve it and make it more robust. In Ref. 20, of the urban flood 

pixels that were visible to TerraSAR-X, 76% were correctly detected, with an associated false 

alarm rate of 25%. The equivalent flood detection accuracy in the present work is 80%, with 

a false alarm rate of 23%. Also in Ref. 20, if all the urban flood pixels were considered, 

including those in shadow and layover regions, the flood detection accuracy fell to 57%, with 

a 19% false alarm rate. The equivalent flood detection accuracy in the present work is 74%, 

with a false alarm rate of 24%. For the Tewkesbury case at least, the present method of urban 

flood detection therefore seems an improvement over that of Ref. 20. 

Shadow/layover flag  Flood detection 

accuracy (%) 

False alarm rate 

(%) 

Predicted false 

alarm rate in 

unflooded urban 

area sample (%) 

ON in validation 80 23 58 

OFF in validation 74 24 58 

No shadow/layover 

map used in system  

78 25 88 
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The predicted false alarm rate in a sample of the higher urban area that is unflooded 

(the yellow area in fig. 16) is poor for the Tewkesbury image, being 58% whether the 

shadow/layover map is used in the validation or not. This appears to be because the 

TerraSAR-X image has more speckle than the CSK images. Unfortunately removal of the 

speckle using an adaptive filter (e.g. Frost filter) causes significant blurring of the urban 

areas, and reduces the flood detection accuracy. It might be possible to perform directional 

despeckling using a filter oriented along roads, but this was not attempted. The waterline 

height threshold appears essential in this case to reduce false alarms in unflooded areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Correspondence between the SAR and aerial photograph flood extents in urban area of Tewkesbury, 

superimposed on the LiDAR image (yellow = wet in SAR and aerial photos, red = wet in SAR only, green = wet 

in aerial photos only). 
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If no shadow/layover map is used at all in the processing and validation, the flood 

detection accuracy again rises slightly from 74% to 78%, while the false alarm rate only rises 

from 24% to 25%. However, in the sample high unflooded urban area, there is a very large 

false alarm rate of 88%. In the Tewkesbury case there again seems to be an advantage in 

using a shadow/layover map. 

 

7   Discussion and conclusion 

The three test cases tend to exhibit rather similar results, and as such it seems fair to average 

them. In the aerial photo validation areas, if the percentage of the urban flood extent that is 

visible to the SAR and also detected by it is considered, the flood detection accuracy 

averaged over the three test examples is 83%, with a false alarm rate of 9%. If the more 

pertinent measure is considered, namely the percentage of the urban flood extent visible in 

the aerial photo that is detected by the SAR, the average accuracy falls only slightly to 79%, 

with a false alarm rate of 10%. On this basis, it can be concluded that flooding can be 

detected in the urban area to good but perhaps not very good accuracy, partly because of the 

SAR’s poor visibility of the ground surface due to shadow and layover. It can also be 

concluded that the method of growing the flooded regions into shadow/layover areas using 

the weighted distance transform seems to function reasonably well. On the other hand, a 

difficulty with the urban flood detection is that the edge of the flooding may be rather 

imprecise, due to size of the distance transform threshold and convolution window width. 

An alternative approach would be to ignore the SAR returns in the urban area, and use 

them only in the rural area to determine the waterline height threshold ht_thresh(x,y). 

Flooding in the urban area could be estimated by simply classifying all urban pixels with a 

height less than ht_thresh(x,y) as floodwater. This would obviate the need for an urban 

shadow/layover map, and would propagate the flooding into shadow/layover areas. This 
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approach would work well e.g. in the Blackett Close case, where almost all the urban area is 

flooded. But if low urban areas were protected from the flooding e.g. by embankments, this 

would predict flooding where there was none. In this case the method of Ref. 23, which 

combines the use of high resolution SAR data with flood return period data generated by 

flood inundation models, would have an advantage over the method discussed here as the 

flood return period map would contain such information. A further advantage of the return 

period method is that could possibly use lower resolution SAR data than very high resolution 

CSK or TSX data (e.g. Sentinel-1 data  at 5 x 20 m resolution in interferometric wide swath 

mode), since it is does not require the flooding to be resolved in urban areas. On the other 

hand, the method of Ref. 23 may be susceptible to error if the rainfall pattern of the particular 

flood being studied differs from the rainfall pattern used by the flood inundation model to 

predict the flood return period data. Such a situation might occur, for example, when 

considering the flooding of a town at the confluence of two rivers. The pattern of flooding in 

the town would probably be different from that predicted by the return period data if there 

was extreme rainfall over one river catchment and not the other, so that the flood levels in the 

two rivers differed. Another example might be where fluvial flooding correctly predicted by 

the return period data was combined with additional surface water flooding e.g. due to a 

blockage. In these cases it should help to predict the urban flooding by using very high 

resolution SAR data from within the urban area, even if these sensors do have poor visibility 

of the urban ground surface. It is possible that a hybrid method could be developed that could 

fuse the best elements of the method discussed in this paper and that of Ref. 23. 
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Caption list 

Fig. 1 Locations of the 3 study sites in southern England (main rivers in blue). 

 

Fig. 2 Aerial photo of flooding in Wraysbury, West London (about 300 x 300 m) (© Getty 

Images 2014). 

 

Fig. 3 CSK sub-image (1 x1 km) of Thames flood in Wraysbury, West London (pixel 

intensities are DN (Digital Number) backscatter values, dark areas are water). Red outline 

shows the area covered by aerial photo of fig. 2. Yellow rectangle is high urban area. 

 

Fig. 4 Steps in the processing chain. 

 

Fig. 5 Urban areas (white). 

 

Fig. 6 (a) DSM, DTM and normalised DSM (nDSM), (b) simulated ground-range-projected 

SAR images generated from DEMs (looking West at DEMs, azimuth = horizontal, range = 

vertical), and (c) separate layers constructed from the simulated images (after Ref. 32). 

 

Fig. 7 (a) LiDAR DSM, (b) DTM, and (c) nDSM. 

Fig. 8 (a) Shadow map (radar looking West, bright areas are shadow), (b) layover map (bright 

areas are layover). 

 

Fig. 9 Water (blue) and high land (red) training regions. 

Fig. 10 Variation of misclassified water and non-water (high land) pixels with pixel intensity 

threshold Tu. 
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Fig. 11 Flood classification (blue) in rural areas after refinement, overlain on SAR image of 

fig. 3. 

 

Fig. 12 (a) Correspondence between the SAR and aerial photograph flood extents in urban 

area of Wraysbury, superimposed on the LiDAR image (yellow = wet in SAR and aerial 

photos, red = wet in SAR only, green = wet in aerial photos only), and (b) extract from SAR 

image. 

 

Fig. 13 Aerial photo of flooding in Blackett Close, Staines (about 150 x 150 m) (© Getty 

Images 2014). 

 

Fig. 14 CSK sub-image (1 x1 km) of Thames flood in Staines, West London (pixel intensities 

are DN (Digital Number) backscatter values, dark areas are water). Red outline shows the 

area covered by the aerial photo of fig. 13. Yellow rectangle is high urban area. 

 

Fig. 15 (a) Correspondence between the SAR and aerial photograph flood extents in urban 

area of Blackett Close, superimposed on the LiDAR image (yellow = wet in SAR and aerial 

photos, red = wet in SAR only, green = wet in aerial photos only), and (b) extract from SAR 

image.  

 

Fig. 16 TerraSAR-X image showing flooding in the urban areas of Tewkesbury in July 2007 

(pixel intensities are DN (Digital Number) backscatter values, dark areas are water, 2.6 x 2 

km, © DLR). Yellow rectangle covers unflooded urban area sample. 

 

Fig. 17 Correspondence between the SAR and aerial photograph flood extents in urban area 

of Tewkesbury, superimposed on the LiDAR image (yellow = wet in SAR and aerial photos, 

red = wet in SAR only, green = wet in aerial photos only). 

 

Table 1 Parameters of SAR images. 

Table 2 Flood detection and false alarm rates for Wraysbury. 

Table 3 Flood detection and false alarm rates for Blackett Close, Staines. 

Table 4 Flood detection and false alarm rates for Tewkesbury. 


