9 research outputs found

    Real time trajectory matching and outlier detection for assembly operator trajectories

    Get PDF
    Flexible, reactive and adaptive manufacturing systems are a prerequisite to cope with the demand for low volumes of highly customized products of today’s market. For years, manufacturing companies have been using real-time data capturing systems, such as RFID, to gather the necessary data to obtain insights in their production processes, mainly in the domain of quality control and inventory management. However, very few work has been done on monitoring an assembly operator during his work cycle in real-time. This paper presents a method to match operator trajectories, obtained through a multi-camera vision system, in real-time to predefined models. This way, the performance of the operator can be assessed online and problematic or anomalous work cycles can be detected. This information can then be used to support the operator in his pursuit for continuous improvement by pointing out improvement potential

    Automated Detection of Electric Energy Consumption Load Profile Patterns

    Full text link
    [EN] Load profiles of energy consumption from smart meters are becoming more and more available, and the amount of data to analyse is huge. In order to automate this analysis, the application of state-of-the-art data mining techniques for time series analysis is reviewed. In particular, the use of dynamic clustering techniques to obtain and visualise temporal patterns characterising the users of electrical energy is deeply studied. The performed review can be used as a guide for those interested in the automatic analysis and groups of behaviour detection within load profile databases. Additionally, a selection of dynamic clustering algorithms have been implemented and the performances compared using an available electric energy consumption load profile database. The results allow experts to easily evaluate how users consume energy, to assess trends and to predict future scenarios.The data analysed has been facilitated by the Spanish Distributor Iberdrola Electrical Distribution S.A. as part of the research project GAD (Active Management of the Demand), national project by DEVISE 2010 funded by the INGENIIO 2010 program and the CDTI (Centre for Industrial Technology Development), Business Public Entity dependent of the Ministry of Economy and Competitiveness of the Government of Spain.BenĂ­tez, I.; Diez, J. (2022). Automated Detection of Electric Energy Consumption Load Profile Patterns. Energies. 15(6):1-26. https://doi.org/10.3390/en1506217612615

    A COMPREHENSIVE METRIC FOR COMPARING TIME HISTORIES IN VALIDATION OF SIMULATION MODELS WITH EMPHASIS ON VEHICLE SAFETY APPLICATIONS

    Get PDF
    ABSTRACT Computer modeling and simulation are the cornerstones of product design and development in the automotive industry. Computer-aided engineering tools have improved to the extent that virtual testing may lead to significant reduction in prototype building and testing of vehicle designs. In order to make this a reality, we need to assess our confidence in the predictive capabilities of simulation models. As a first step in this direction, this paper deals with developing a metric to compare time histories that are outputs of simulation models to time histories from experimental tests with emphasis on vehicle safety applications. We focus on quantifying discrepancy between time histories as the latter constitute the predominant form of responses of interest in vehicle safety considerations. First we evaluate popular measures used to quantify discrepancy between time histories in fields such as statistics, computational mechanics, signal processing, and data mining. Then we propose a structured combination of some of these measures and define a comprehensive metric that encapsulates the important aspects of time history comparison. The new metric classifies error components associated with three physically meaningful characteristics (phase, magnitude and topology), and utilizes norms, cross-correlation measures and algorithms such as dynamic time warping to quantify discrepancies. Two case studies demonstrate that the proposed metric seems to be more consistent than existing metrics. It is also shown how the metric can be used in conjunction with ratings from subject matter experts to build regression-based val- * Corresponding author, Phone/Fax: (734) 615-8991/647-8403 idation models

    NEW METHODS FOR MINING SEQUENTIAL AND TIME SERIES DATA

    Get PDF
    Data mining is the process of extracting knowledge from large amounts of data. It covers a variety of techniques aimed at discovering diverse types of patterns on the basis of the requirements of the domain. These techniques include association rules mining, classification, cluster analysis and outlier detection. The availability of applications that produce massive amounts of spatial, spatio-temporal (ST) and time series data (TSD) is the rationale for developing specialized techniques to excavate such data. In spatial data mining, the spatial co-location rule problem is different from the association rule problem, since there is no natural notion of transactions in spatial datasets that are embedded in continuous geographic space. Therefore, we have proposed an efficient algorithm (GridClique) to mine interesting spatial co-location patterns (maximal cliques). These patterns are used as the raw transactions for an association rule mining technique to discover complex co-location rules. Our proposal includes certain types of complex relationships – especially negative relationships – in the patterns. The relationships can be obtained from only the maximal clique patterns, which have never been used until now. Our approach is applied on a well-known astronomy dataset obtained from the Sloan Digital Sky Survey (SDSS). ST data is continuously collected and made accessible in the public domain. We present an approach to mine and query large ST data with the aim of finding interesting patterns and understanding the underlying process of data generation. An important class of queries is based on the flock pattern. A flock is a large subset of objects moving along paths close to each other for a predefined time. One approach to processing a “flock query” is to map ST data into high-dimensional space and to reduce the query to a sequence of standard range queries that can be answered using a spatial indexing structure; however, the performance of spatial indexing structures rapidly deteriorates in high-dimensional space. This thesis sets out a preprocessing strategy that uses a random projection to reduce the dimensionality of the transformed space. We use probabilistic arguments to prove the accuracy of the projection and to present experimental results that show the possibility of managing the curse of dimensionality in a ST setting by combining random projections with traditional data structures. In time series data mining, we devised a new space-efficient algorithm (SparseDTW) to compute the dynamic time warping (DTW) distance between two time series, which always yields the optimal result. This is in contrast to other approaches which typically sacrifice optimality to attain space efficiency. The main idea behind our approach is to dynamically exploit the existence of similarity and/or correlation between the time series: the more the similarity between the time series, the less space required to compute the DTW between them. Other techniques for speeding up DTW, impose a priori constraints and do not exploit similarity characteristics that may be present in the data. Our experiments demonstrate that SparseDTW outperforms these approaches. We discover an interesting pattern by applying SparseDTW algorithm: “pairs trading” in a large stock-market dataset, of the index daily prices from the Australian stock exchange (ASX) from 1980 to 2002

    Warping the Time on Data Streams

    No full text
    Abstract. Continuously monitoring through time the correlation/distance of multiple data streams is of interest in a variety of applications, including financial analysis, video surveillance, and mining of biological data. However, distance measures commonly adopted for comparing time series, such as Euclidean and Dynamic Time Warping (DT W), either are known to be inaccurate or are too time-consuming to be applied in a streaming environment. In this paper we propose a novel DT W-like distance measure, called SDT W, which, unlike DT W, can be efficiently updated at each time step and experimentally show that it improves over DT W by orders of magnitude without sacrificing accuracy. For instance, with a sliding window of 512 samples, SDT W is 400 times faster than DT W. 1
    corecore