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English Summary 
Introduction 

In manufacturing industries in general and more specifically in 
assembly companies, there is a clear trend towards mass 
customization. Small batches of high varieties of products need to be 
produced by the production system with “batch-size-one production 
at the cost of mass production” as the ultimate goal. This requires 
highly flexible, reactive and adaptive production systems which are 
inherently complex. Despite the developments in the field of flexible 
automation, the required flexibility level of these production systems 
is often achieved through the use of human operators. Human 
operators possess cognitive capabilities which cannot be matched by 
the intelligence of current automated systems and therefore they are 
much more proficient in reasoning and making critical decisions.  
 

Problem statement 

There is a clear need for methods that are capable of providing 
accurate and up-to-date information on the performance of manual 
assembly work stations. Current time study and methods engineering 
techniques are not sufficient anymore to suit the needs of today’s 
complex and highly dynamic production environments.  
Video images have been used by methods engineers for years, but 
they are typically still manually analyzed. Video processing techniques 
have evolved over the last decade and make it possible to 
automatically retrieve information from video images. The use of 
video cameras for operator monitoring provides a number of 
advantages. Cameras are less intrusive for the operator than other 
monitoring systems based on wearable technology, cameras have 
become relatively inexpensive over the last years and they are a 
source of rich information about the process. 
For these reasons, we investigate how multi-camera monitoring 
systems can be used to facilitate time and method study techniques 



 
 

and drive continuous improvement on the shop floor level in modern 
flexible assembly environments. 
 
 

Approach 

The proposed monitoring framework uses the output of video 

processing algorithms developed by researchers of IMEC. These 

algorithms provide accurate information about the operators’ 

location throughout his work cycle. This video analysis framework is 

based on the visual hull concept to create a 3D model of the operator 

based on silhouettes provided by the different cameras using voxel 

carving. Silhouettes are extracted using foreground/background 

segmentation techniques. Industrial settings however, are very 

dynamic environments. One of the main issues when using cameras 

in these kind of environments, are occlusions. Many different static 

and moving objects might block the view on the operator partially or 

even completely. To overcome these issues, occlusion maps were 

introduced to model the occluded areas in every cameras viewpoint. 

These occluded areas are not taken into account when reconstructing 

the model of the human operator. 

The resulting raw trajectories generated by the video processing 

algorithm still contain a significant amount of noise. We propose a 

data processing procedure to clean up the raw output data of the 

video system and give meaning to the resulting trajectories. The data 

processing framework makes use of an annotated work station layout 

to segment trajectories into useful work cycles or tasks. It enables 

automatic generation of time standards and work instructions which 

can be documented with the captured video images.  

The use of video images makes it possible to monitor a work station 

for a prolonged period of time. Manual observations only provide 

snapshots of the situation and often lead to Hawthorne effects, 

meaning that the operator adjusts his/her behavior because of the 

presence of an observer. However, analyzing long streams of video 

images is time-consuming. Therefore we developed an off-line 

unsupervised clustering methodology that aims to separate normal 



 
 

operator behavior from anomalous events. By pointing the analyst 

directly to possible problems or issues in the work station, the analysis 

time can be significantly decreased. 

The proposed framework is based on Dynamic Time Warping (DTW) 

to assess the similarity of different work cycles, because of DTW’s 

capability to handle time deformations in time series. To cluster 

trajectories, traditional agglomerative clustering (AHC) methods were 

used. A statistical permutation testing method was developed to 

eventually decide which trajectories should be considered as outliers 

or anomalies and which represent normal behavior, based on the 

similarity structure provided by the AHC methods. 

The output of the off-line clustering algorithm is used to generate 

base models for normal patterns, which serve as the input for a real-

time work cycle classification and outlier detection framework. The 

real-time methods proposed rely on the Keogh lower bound concept 

for DTW to match newly incoming operator trajectories to these 

predefined base models. This real-time classification and outlier 

detection can be used to provide contextualized information to the 

operator in the work station and allows for immediate reaction when 

disturbances are detected. 

In order to provide this information to operators and production 

managers in a way they can use it to analyze and improve their own 

processes, an operational assembly work station analysis dashboard 

is developed. The dashboard can be customized to the needs of the 

user in order to facilitate root-cause analysis and drive continuous 

improvement on the shop-floor level. The dashboard incorporates a 

number of KPI’s that are directly relevant on the work station level 

and makes use of various automatically generated charts and graphs 

to provide transparency in the assembly process.  

An example of this dashboard is shown in the figure below. 

Conclusions 

In this dissertation we presented a methodology to automate the 

analysis of mixed-model assembly line work stations, making use of a 



 
 

multi-camera based monitoring system. Automated information 

extraction from operator trajectories and trajectory classification 

methods were developed to facilitate the monitoring of assembly line 

work stations and provide real-time support to drive continuous 

improvement actions on the shop-floor level. 

 

 

The methods presented in this dissertation were tested and validated 

on a number of experimental and industrial use cases. The results of 

these experiments are promising. The off-line clustering method is 

capable of classifying operator trajectories with an accuracy and 

precision of over 90%. With this, the method clearly outperforms 

more traditional clustering methods. What is even better, if mistakes 

were made, these were typically normal trajectories which were 

considered to be anomalous. The risk of not detecting possible 

problems is thus kept to a minimum. 

An experimental proof-of-concept of the real-time anomaly detection 

method shows that this method is capable of detecting issues with 

high accuracy. With a maximum calculation time per frame of 0.07 

seconds, real-time problem detection appears to be possible, knowing 

that a framerate of 2 frames per second seems to be the minimum to 



 
 

achieve acceptable classification results. The results of these methods 

were incorporated in an operational assembly work station analysis 

dashboard which supports production managers and assembly 

operators in their pursuit of operational excellence. 

The real-time monitoring and work station analysis framework 

proposed, could fundamentally change the way work study and 

continuous improvement of assembly line work stations is 

approached. On the level of the assembly station and assembly line, 

operators and production managers are enabled to analyze and 

rethink their processes by providing him with relevant real-time 

information and a very reactive feedback loop on both the work 

station and assembly line level respectively.  

The proposed framework also changes the role of the industrial or 

methods engineer. Some of the tasks typically performed by the 

methods engineer, such as setting time standards and generating 

work instructions, are (partially) taken over by the real-time 

monitoring system. These tasks are almost impossible to perform 

manually in current flexible high variety production environments. 

Instead, his main tasks now consist of disturbance handling and 

validating changes that originate from the shop floor level. This means 

that the engineer is now capable of managing multiple work 

stations/lines at once and react much faster. This reactivity is essential 

to stay competitive in today’s market. 

  



 
 

 

 

 

 

  



 
 

Nederlandstalige 

samenvatting 
Inleiding 

Bij maakbedrijven in het algemeen en meer specifiek de 

assemblagebedrijven, is er de laatste decennia een duidelijke trend 

naar maatwerk. Er moeten almaar kleinere hoeveelheden van een 

grotere variëteit  aan producten geassembleerd worden. 

Stukproductie aan de kostprijs van massaproductie is daarom het 

ultieme doel van hedendaagse productiebedrijven. Om dit te bereiken 

zijn flexibele, reactieve en adaptieve productiesystemen noodzakelijk, 

wat de complexiteit van dergelijke systemen enkel maar vergroot. 

Ondanks de vele ontwikkelingen om machines en automatisering 

flexibeler te maken, wordt er nog vaak gerekend op operatoren om 

de nodige flexibiliteit van het productiesysteem te garanderen. De 

menselijke intelligentie en het vermogen om te redeneren kan nog 

niet geëvenaard worden door de huidige generatie van 

geautomatiseerde systemen.  

Probleemstelling 

Het dynamische karakter van de hedendaagse markt zorgt voor een 

duidelijke nood aan methodes en systemen die in staat zijn om 

accurate en actuele informatie over het assemblageproces te 

genereren. De huidige analysemethodes in het domein van werk- en 

methodestudie voldoen niet langer aan de eisen van hedendaagse 

productiesystemen.  

Reeds vele jaren maken methode-ingenieurs  gebruik van 

videobeelden. De analyse van deze beelden gebeurt weliswaar 

meestal manueel en vergt daarom heel veel tijd. In de laatste 

decennia werd heel wat vooruitgang geboekt in het domein van 

automatische videoanalyse, wat het mogelijk maakt om heel wat 

informatie automatisch te extraheren uit deze beelden. Het gebruik 

van videocamera’s biedt een aantal voordelen. Video-opnames 



 
 

kunnen vanop een afstand gemaakt zonder de operatoren te hinderen 

of extra te belasten, camera’s zijn relatief betaalbare sensoren en de 

resulterende beelden bevatten meer informatie dan andere 

monitoring systemen die vandaag de dag gebruikt worden. 

Om deze redenen onderzoeken we in dit proefschrift de 

mogelijkheden die multi-camera systemen bieden om de analyse van 

assemblagestations te vereenvoudigen en verbeteringsacties op de 

werkvloer te ondersteunen. 

Methode en aanpak 

Het voorgestelde monitoring systeem maakt gebruik van video-

analyse algoritmes die ontwikkeld werden door onderzoekers binnen 

IMEC. Hun beeldverwerkingsalgoritmes zijn in staat om de locatie van 

de operator doorheen de volledige werkcyclus op een accurate 

manier te berekenen. Deze algoritmes maken gebruik van het ‘visuall 

hull’ concept om een 3D model van de operator te genereren voor elk 

frame in de videostream. Hiervoor wordt het silhouet van de operator 

geëxtraheerd uit de beelden van elke camera afzonderlijk en wordt er 

vervolgens ‘voxel carving’ gebruikt om de 3D-reconstructie stap voor 

stap op te bouwen.  Deze techniek kent echter een aantal uitdagingen 

die de toepassing in dynamische omgevingen zoals 

assemblagestations bemoeilijken. Het grootste probleem is occlusie. 

In industriële omgevingen kunnen zowel statische als bewegende 

voorwerpen het zicht van bepaalde camera’s op de operator 

belemmeren. Dit leidt tot inaccurate silhouetten die uiteindelijk 

leiden tot onvolledige modellen. Om dit probleem op te lossen, wordt 

een methode voorgesteld die gebruik maakt van occlusiekaarten die 

voor elke camera de zones waarin het zicht belemmerd is, 

modelleren. Deze zones worden niet in rekening gebracht wanneer 

het uiteindelijke model wordt opgesteld.  

De resulterende ruwe trajecten die gegenereerd worden door de 

video-analyse methodes, bevatten ruis die de uiteindelijke analyse 

kunnen verstoren. Daarom werd een dataverwerkingsmethode 

opgesteld die deze ruis verwijdert uit de ruwe trajecten en betekenis 

geeft aan deze trajecten. De dataverwerkingsmethode maakt gebruik 



 
 

van informatie over het werkstation om de lange stroom aan 

videobeelden op te delen in bruikbare cycli of taken. Verder is de 

methode in staat om standaard tijden en werkinstructies automatisch 

te genereren. Hierbij kunnen de originele videobeelden gebruikt 

worden om deze instructies beter te documenteren.  

Het gebruik van camera’s zorgt ervoor dat er voor een langere tijd 

gemeten kan worden. Manuele analyses en observaties zijn vaak 

slechts een momentopname. Regelmatig treden tijdens de 

observaties zogenaamde Hawthorne-effecten op, waarbij  operatoren 

hun gedrag aanpassen omdat ze geobserveerd worden. De manuele 

analyse van lange video opnames is echter en tijdrovende taak. 

Daarom hebben we een off-line clustering methode ontwikkeld die 

ons in staat stelt om normaal gedrag van operatoren te 

onderscheiden van verstoringen en problemen. Op deze manier kan 

de manuele analyse beperkt worden tot enkel deze stukken van de 

opname die noodzakelijk zijn.  

De voorgestelde methode vergelijkt verschillende trajecten door 

middel van “dynamic time warping” (DTW). Deze methode wordt 

reeds jaren gebruikt in spraakherkenning omwille van zijn capaciteit 

om om te gaan met tijdsvervormingen van tijdsseries. Hiërarchische 

clustering wordt gebruikte om een data set te ordenen op basis van 

de gelijkenissen tussen trajecten. Om finaal de beslissing te nemen 

welke trajecten er niet normaal beschouwd kunnen worden, werd een 

statistische permutatietest gebruikt ontwikkeld. 

De resultaten van de off-line clustering methode worden gebruikt om 

modellen van normale patronen op te bouwen. Deze modellen 

worden gebruikt als input voor een real-time classificatiemethode. 

Deze methode stelt ons in staat om online normale trajecten en 

fouten te detecteren. De methode is gebaseerd op een ondergrens 

berekening voor  DTW, zoals deze werd voorgesteld door Keogh. Deze 

methode kan gebruikt worden om  de informatie naar de operator te 

voorzien van context en maakt het mogelijk om snel in te grijpen 

wanneer mogelijke problemen gedetecteerd worden. 

Om deze informatie over te brengen naar operatoren en ploegbazen 

op een manier dat zij deze kunnen gebruiken om hun eigen processen 



 
 

te analyseren en verbeteren, werd een operationeel dashboard voor 

assemblagestations ontwikkeld. Het dashboard kan aangepast 

worden aan de noden van de gebruiker en maakt het op die manier 

gemakkelijker om oorzaken van bepaalde problemen op te sporen. 

Het dashboard omvat een aantal prestatie-indicatoren die 

rechtstreeks betrekking hebben op de taken die uitgevoerd worden in 

het werkstation. Door middel van een aantal schema’s en grafieken 

wordt een beter inzicht in het assemblageproces verschaft. 

Een voorbeeld van het dashboard wordt weergegeven in 

onderstaande figuur. 

 

  

Conclusie 

In deze verhandeling wordt een methode voorgesteld om de analyse 

van assemblage werkstations te automatiseren en verbeteren. De 

voorgestelde methode maakt gebruik van een systeem met meerdere 

camera’s om operatoren te volgen doorheen hun werkcyclus. De 

resultaten van dit onderzoek werden samengebracht in een 

operationeel dashboard dat de operatoren en ploegbazen 

ondersteunt en continue verbeterprocessen op de werkvloer 

aanwakkert. 



 
 

De methodes en algoritmes die voorgesteld worden in dit proefschrift, 

zijn getest en gevalideerd op een aantal experimentele in industriële 

cases. De resultaten van deze experimenten zijn veelbelovend. De off-

line clustering methode is in staat om trajecten van operatoren te 

classificeren met een accuraatheid en precisie van meer dan 90%, wat 

beter is dan meer traditionele clustering methodes. De fouten die 

gemaakt worden door de methode bestaan typisch uit normale 

trajecten die door het algoritme als verdacht worden beschouwd. Het 

risico om echte fouten niet te detecteren, werd tot een minimum 

herleid. 

Het real-time foutdetectie algoritme werd experimenteel getest. Uit 

deze testen blijkt dat fouten met een heel hoge kans gedetecteerd 

worden, terwijl de maximale rekentijd per frame tijdens deze testen 

beperkt bleef tot 0,07 seconden. Wetende dat er slechts 2 frames per 

seconde nodig zijn om accurate classificatie te doen, kunnen we 

concluderen dat deze methode zijn doel bereikt.  

De real-time monitoring methodes voorgesteld in dit proefschrift, 

veranderen de manier waarop methodestudie en continue 

verbeterprocessen worden aangepakt binnen de productieomgeving. 

Op het niveau van het werk station leveren deze methodes actuele en 

accurate informatie aan die operatoren en ploegbazen in staat moet 

stellen om hun eigen processen te analyseren en waar nodig bij te 

sturen. Het dashboard zorgt ervoor dat het effect van elke aanpassing 

heel snel teruggekoppeld wordt. 

Ook de rol van de methode-ingenieur zal door het gebruik van deze 

methodes gevoelig veranderen. Het monitoring systeem 

automatiseert een deel van de taken die typisch door ingenieurs 

worden uitgevoerd. Voorbeelden zijn het meten en opstellen van 

standaard tijden en genereren van werkinstructies. Deze taken zijn in 

de huidige omstandigheden te tijdrovend om nog manueel uit te 

voeren. Door deze uit de handen van de methode-ingenieur te 

nemen, verschuiven zijn taken meer naar het oplossen van problemen 

en valideren van nieuwe methodes die ontstaan vanop de werkvloer. 

Hierdoor kan de ingenieur een overzicht houden over de volledige lijn 

en kan hij veel sneller reageren wanneer nodig.  Deze verhoogde 



 
 

reactiviteit is essentieel om competitief te blijven in de huidige 

marktomstandigheden. 
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Chapter 1 Introduction  
 
In manufacturing industries in general and more specifically assembly 
companies, there is a clear trend towards mass customized products. 
Small batches of many different varieties of products need to be 
produced by the production system with “batch-size-one production 
at the cost of mass production” as the ultimate goal. This requires 
highly flexible, reactive and adaptive production systems which are 
inherently complex to manage.  
 

 
Figure 1: Trend towards mass customization 

Despite the developments in the field of flexible automation, the 
needed flexibility of these production systems is often achieved 
through the employment of human operators. Human operators 
possess cognitive capabilities which cannot be matched by the 
intelligence of current automated systems and therefore they are 
much more proficient in reasoning and making critical decisions.  
 
In order to stay competitive, flexible production companies are forced 
to continuously monitor, analyze and redesign their processes. One of 
the major challenges is the collection of reliable and detailed data 
about the current process. For many years, Real-time data capturing 
technologies, such as RFID, have already been used for some years in 
manufacturing environments, mainly for inventory management, 
planning and quality control. For manual work however, existing work 
measurement techniques are still relying on traditional techniques 
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such as stopwatch measurements and manual video analysis, making 
them prohibitively time-consuming. More advanced and automated 
techniques are therefore required to support improvement of the 
continuously evolving contemporary production facility. 
 

1.1. EVOLUTION OF INDUSTRIAL ENGINEERING METHODS 
 

Over the last decades, the market for manufacturing companies has 

undergone a shift from mass production to mass customization. The 

increasing number of product variants has increased the complexity of 

manufacturing processes and systems. Contemporary production 

systems require adaptive and reactive processes. Companies need to 

constantly monitor, analyze, evaluate and improve their processes in 

order to stay competitive. Accurate and up-to-date information about 

the process is a strict requirement to achieve this. For years, gathering 

this information has been one of the main concerns of Industrial 

Engineers. Industrial engineering is the branch of engineering that is 

concerned with the design, improvement and installation of integrated 

systems of people, materials, information, equipment and energy. 

Industrial Engineering (IE) can be defined as follows [2]: 

“Industrial engineering is that branch of engineering knowledge and 
practice which: 

• Analyzes, measures, and improves the method of 
performing the tasks assigned to individuals,  

• designs and installs better systems of integrating tasks 
assigned to a group, 

• specifies, predicts, and evaluates the results obtained. 
 
It does so by applying to materials, equipment and work specialized 

knowledge and skill in the mathematical and physical sciences and the 

principles and methods of engineering analysis and design. Since, 

however, work has to be carried out by people, engineering knowledge 

needs to be supplemented by knowledge derived from the biological 

and social sciences.” 

According to a study conducted by Miller and Schmidt [1] (Figure 2), 

Industrial Engineers spent more than half of their time on determining 
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standard times, improving methods and detecting and solving 

manufacturing related problems. Collecting data and making 

measurements accounts for a considerable amount of this time.   

 

a) Determining a time standards for a given work task 

b) Designing efficient and effective methods 

c) Determining the most appropriate manufacturing operations and tooling for 

manufacturing a particular product 

d) Analysis of manufacturing problems 

e) Determining the most appropriate location for one or more facilities 

f) Designing wage incentives for employees 

g) Safety 

h) Determining optimal reorder quantities and reorder points for  inventoried 

items 

i) Designing testing procedures to ascertain the quality level of a production 

process 

j) Other activities 

 

1.1.2. Work study 

Work study is the term generally used to describe all tools, techniques 

and methods which are used to analyze and evaluate human work. 

Work study aims to increase productivity by performing a systematic 

examination of the methods used by human operators while carrying 

out activities, such as assembly operations [3]. Work study consists of 

two types of techniques – method study and work measurement (also 

Figure 2: Typical IE Activities [1] 
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called time study) – that are used to assess human work in all its 

contexts.  

Work study

Method study:
Develop simplified and more economical 

methods of doing the job

Work Measurement:
Determine how long it should take to 

carry out the job/method

Increased 
productivity

 

Figure 3: Work Study framework 

1.1.2.1. Method Study 

Method study is a collection of techniques in which (human) work is 

critically and systematically examined and evaluated in order to 

establish new methods to complete the same task in a more efficient 

and easier way [4].  Originally, the focus of methods engineers was 

primarily on the analysis of human body motions involved in 

performing physical labor. Today, the scope is much broader. Groover 

[5] defines method study as the analysis and design of work methods 

and systems, including the tooling, equipment, technologies, 

workplace layout, plant layout, and environment used in these 

systems. Method study aims at accomplishing the following objectives 

[6]: 

• Improving the current processes and procedures. 

• Adding value to the operations under consideration or 

evaluation by eliminating the excess work content. 

• Improving the factory and work place layout. 
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• Improving the use of materials, plant, equipment and 

manpower. 

• Reducing the monotony of work to avoid mental and physical 

exhaustion.  

• Smoothen material flow with minimal backtracking and thus 

improving the layout. 

 

Method study techniques 

Method engineers use a systematic procedure to increase productivity 

[4, 7]. The steps of this procedure are described and explained below. 

• Select: Typically, the selection of the job is done based on 

economic or cost effective considerations. Also quality issues, 

technical problems and human considerations could be 

reasons to select a certain job. 

• Record: This phase involves gathering all necessary 

information needed for the further evaluation and 

examination of the job. A wide range of techniques are 

available for recording. The selection of the techniques used is 

done based on the type of work that is being studied and the 

level of detail that is needed. 

• Examine: The recorded data is examined in a critical way, 

often through a structured questioning process. The aim of 

this phase is to disclose where in the process the largest 

improvement is situated. 

• Develop: The aim of this stage is to identify possible 

improvements to the change areas defined in the previous 

stage. These possible solutions are then evaluated in order to 

develop the best or most preferred solution. 

• Install: The success of the newly developed method is heavily 

depending on the way it is transferred to the shop floor. In 

order to return the anticipated results, the method should be 

thoroughly and clearly explained to those responsible for the 

operation. Some methods will require new skills. In that case, 
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the operators should be provided with the necessary training 

and support to acquire these abilities. 

• Maintain: It is quite common that operators go back to older 

methods after a while. Therefore, it is necessary to check 

whether the new method is properly being followed and 

delivers the desired results.  

Method study involves a wide variety of techniques to record, visualize 

and analyze operations. These techniques can be classified in three 

categories: charts and diagrams, motion study and work design and 

facility layout planning [5]. 

Charts and diagrams: The most commonly used recording techniques 

in method study are charts and diagrams [3]. Besides generic 

engineering charts and diagrams such as histograms, statistical process 

control (SPC) charts and Pareto charts, there are several types of IE 

specific charts. An overview of the most commonly used chart types in 

method study is given Table 1 [3].  

Table 1: Overview of IE chart types 

A Charts indicating process 
sequence 

Outline process chart 

Flow process chart 

Two-handed process 
chart 

Procedure flow chart 

B Charts using a time scale Multiple activity chart 

Simo chart 

C Diagrams indicating movement Flow diagram 

String diagram 

Cyclograph 

Chronocyclograph 

Travel Chart 

 

Motion study and work design: This field of methods engineering 

involves the analysis and evaluation of the basic motions a human 

operator uses while performing manual work. In total 17 basic motions 
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have been defined, most of which are related to the hands and arms 

[5].  The most commonly used basic motions are reach, grasp, move 

and release. Years of research on basic motion elements and how they 

affect productivity, has resulted in a set of principles on how to 

perform manual work in an efficient and effective manner. Barnes 

codified these principles of motion economy in the 1930’s [8, 9]. These 

principles aim to eliminate wasted motion, make operator tasks easier, 

reduce fatigue and minimize the risk of injuries and cumulative 

traumas such as carpal tunnel syndrome and tendonitis [10]. 

Facility layout planning: Facility layout is an important field of study in 

methods engineering. The layout of a facility refers to the way 

functions and departments are arranged within the facility and the way 

materials, machines and equipment are positioned in a certain area [3, 

5]. The layout has a major influence on the efficiency of the operations 

performed in the facility. Recently Drira et al. have conducted a 

literature review on facility layout planning techniques [11]. The 

authors classify these techniques in two categories: exact methods and 

approximated approaches. They perceive a clear trend in recent 

research papers towards the use of metaheuristics instead of exact 

methods. 

1.1.2.2. Work Measurement 

Work measurement – often referred to as time study – is the technique 

of establishing time standards to perform certain tasks. These time 

standards can either be based upon the actual measurements of the 

work content of the prescribed method to carry out the task, 

estimations of the work content or historical data [7]. Additionally 

these time standards contain the necessary allowances to compensate 

for fatigue and other unavoidable delays. Meyers [12] defines time 

standards as the time required to produce a product at a work station 

fulfilling three conditions: (1) the work is performed by a qualified and 

well-trained operator, (2) the operator works at a normal pace and (3) 

the operator follows a well-specified method.  

A time standard is a valuable source of information for manufacturing 

companies. Method engineers will use time standards to formulate 

solutions for typical operational problems such as: 
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• Capacity: Determining how many workers should be hired, 

what equipment is needed, etc… 

• Planning: Scheduling operators and equipment so that jobs 

can be finished in time with the least amount of inventory 

possible. 

• Cost Calculation: Calculating production costs and selling 

prices. Estimating production costs beforehand can be 

important in preparing bids for new contracts. 

• Line balancing: Assigning the right amount of work to work 

stations and work cells and calculating the conveyer speed of 

the production line. 

• Performance measurement: Time standards serve as the 

benchmark to calculate productivity and efficiency of both 

operators and equipment. 

• Validate methods: Show the effect of the newly developed 

improved methods. 

 

History of work measurement 

Although it is generally believed that Frederick Winslow Taylor is the 

founder of the modern method and time study, it was the French 

engineer Jean Rudolphe Perronet who conducted the first time studies 

on the manufacturing process of 18th century clothing pins in 1760 [7]. 

His work was followed by the time studies performed in 1820 by the 

English mathematician, philosopher and mechanical engineer Charles 

Whitmore Babbage, who also invented the first programmable 

computer. Later he also wrote the book “On the economy of 

machinery and manufactures”, the first book on operations research 

in which topics such as inventory control, machine maintenance, 

division of labor and time study were discussed [13]. 

Frederick W. Taylor joined Midvale Steel Works as a worker in 1878. 

After working his way up through the company, he started his time 

study work in 1881. He was the first person to perform stopwatch 

measurements as we know today and, as such, he is considered the 

godfather of scientific management and industrial engineering. In 
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1911 he wrote his book “The Principles of Scientific Management”. 

Taylors’ scientific management consists of four simple principles [14]:  

1. Develop a science for each element of a person’s work, 

thereby replacing the old rule-of-thumb method. 

2. Select the best worker for the task and train that worker in the 

prescribed method developed in Principle 1. 

3. Develop a spirit of cooperation between management and 

labor in carrying out the prescribed methods. 

4. Divide work into almost equal shares between management 

and labor, each doing what they do best. 

The effectiveness of Taylor’s method was proven in his shoveling 

experiment, where he experimented with different kind of shovels for 

different types of ore. The results of his experiment were nothing short 

of spectacular, as shown in Table 2 [12].  

Table 2: results of Taylors' shoveling experiments 

      

  BEFORE STUDY AFTER STUDY 

No. People 400-600 140 

Pounds/shovel 3,5 - 38 21,5 

Bonus NO Yes 

Work Unit Teams Individual 

Cost/Ton 7 to 8 cents 3 to 4 cents 

   
A total savings of $78000/year 

 

At the same time Taylor was developing his principles of scientific 

management, Henry Ford aimed to make his automobiles affordable 

to the masses. He incorporated the research of Taylor in the team he 

established to create a mass production system for the popular Model 

T [15]. Taylors’ concept of division of labor eventually formed the basis 

of Fords’ moving assembly line.  

Frank and Lillian Gilbreth are known as the parents of the modern 

motion study technique. Motion study is a method study technique in 
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which the body motions used to perform a certain operation are 

evaluated in order to improve processes by eliminating unnecessary 

motion and simplifying the necessary body motions. Frank developed 

the idea of motion study during his time as a bricklayers’ apprentice. 

He noticed that his instructor was using a different set of motions 

when he was working by himself compared to when he was explaining 

Frank how to lay bricks. Frank Gilbreth was convinced that there could 

only be one best method to lay bricks. In his search for the best 

method, the theory of motion study arose. He was able to increase the 

average number of bricks per hour from 120 to 350 [7]. Later on Frank 

and Lillian, a trained psychologist, went into consulting and developed 

numerous method study techniques such as micromotion study, 

process charts, the cyclograph and chronocyclographs. They also 

studied the effects of fatigue, monotonous work and skill transfer. 

The  work of Taylor was continued by two of his associates. Carl G. 

Barth introduced the concept of allowances in work measurement. 

Henry L. Gantt developed a performance control system based on 

simple charts that would measure performance while visually 

comparing it to the projected schedules. Gantt charts are still used in 

industrial engineering and project management today.  

Later on in the 20th century, Dr. Ralph M. Barnes became one of the 

first and probably best-known professors in the field of Industrial 

Engineering. He published a thorough description of Gilbreths’ micro-

motion study and developed the procedure for work sampling. He also 

performed a great number of method studies based on video images 

and created a number of videos for training time study engineers in 

the field of pace rating [12]. Video images as an analysis tool were 

introduced  Marvin E. Mundell with the development of memomotion, 

a stop-action filming technique used to determine time standards [16].  

Shigeo Shingo was a Japanese consultant who, among other things, 

worked for Toyota. Inspired by Taylor’s Principles of Scientific 

Management, he is considered to be an important contributor to some 

concepts of the Toyota Production system (TPS), which was created by 

Taiichi Ohno. Shingo was the first to document the TPS in his book “A 

study of the Toyota Production System from an engineering 
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viewpoint”.  This way, he lay the basis for lean manufacturing as we 

still know it today. 

 

Figure 4: Pioneers of Work Study: timeline 

 

Time standards in contemporary manual assembly 

environments 

According to Wacker and Sheu [17], manufacturing planning and 

control are two of the most important aspects to consider when 

improving the performance of manufacturing systems. With the 

development of the first MRP (material requirements planning) system 

in the 1960’s, the first computers and digital information systems were 

introduced in the planning and control of production environments 

[18]. In today’s era of Digital Manufacturing, the use of digital tools and 

models in production planning, control and optimization seems to be 

a matter of course. The effectiveness of these digital information 

systems is heavily depending on the data and information quality the 

system is provided with [19]. In that context, a number of studies have 

identified the availability of valid data as the critical factor for the 

successful implementation and operation of enterprise resource 

planning systems (ERP) [20, 21] .   

During the 1980’s and 1990’s, the use and significance of time data in 

manufacturing companies was consistently reduced [22]. However, 

more recently we have experienced a revival of time data 

management. In the last decade, manufacturing companies, research 
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institutes and non-profit organizations all recognized the importance 

of time data as a key factor in their decision making process [23].  

Time data can be used throughout the complete product emergence 

process (PEP), starting from the product design phase until the 

production phase [24]. When referring to assembly processes 

specifically, time data is used for assembly-oriented product design. 

The Design for Assembly (DFA) approach, as proposed by Boothroyd 

[25], uses time data to estimate the production cost of different design 

alternatives from the early product design phase on.  In the process 

planning phase, time data is mainly used for work station and 

production system design. As an example in assembly environments, 

we can mention the European assembly work sheet (EAWS) which 

uses, amongst other data, manual assembly time data to assess 

ergonomic risks of an assembly process [26]. On the operational level, 

time data is mainly used  for monitoring and short-term optimization 

purposes. 

 

Figure 5: use of time data throughout PEP (adapted from[24]) 

Figure 5 indicates how time data is used in the different phases of the 

PEP. Time data can be determined iteratively, starting from time 

estimations in the early product design phase. As the PEP progresses, 

the accuracy and use of time data will increase. However, decisions 

made based on time data in the early phases, will have a significantly 

larger impact on the  final production cost. 
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Despite the clear  importance of having up-to-date time data of 

production processes, only limited attention has been paid in 

literature to the gathering and management of accurate time data of 

manual assembly processes, as most researchers assume that this data 

is readily available. However, in reality, companies are often hesitant 

to implement real-life time data in the MPC systems. In a study in over 

60 manufacturing companies, Almström and Kinnander [27] found out 

that most of the time data in the MPC systems was incorrect and only 

25% of these companies ever updated their process times after they 

had been put into the MPC system. Kuhlang [28]   identifies the fact 

that gathering time data is time-consuming and expensive as the main 

reason for the gap between real production times and the data used 

in MPC systems. 

Despite the trend towards more automated production processes, 

manual assembly remains the most cost-effective method in the 

context of high variety low-volume production. According to El 

Maraghy [29], assembly tasks account for around 50% of the total 

production time and 20% of the total production cost. In automotive 

industry, 20 to 70 percent of the total production time is comprised of 

manual assembly tasks. Production times, especially manual task 

times, are not static. Manual assembly times evolve as the product and 

production process design changes over time. Also, manual assembly 

times are depending on the capability of the operator, his/her 

experience level and even the level of fatigue.  

Acquiring accurate timing data and keeping this data up-to-date is 

crucial and requires a rapid and precise measurement tool.  However, 

most companies are often stuck with traditional stopwatch and 

clipboard methods for work measurement. When these tools are used 

in today’s high variety, low-volume production environments, they fail 

miserably. As mentioned earlier, the cost of these methods is one 

reason for their failure. However, there are more reasons why 

traditional stopwatch measurement methods are not suitable for 

current manufacturing environments. Best [30] identified 8 barriers, 

technological or social in nature, that prevent these traditional 

methods from quickly acquiring accurate time data (Figure 6). 
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Figure 6: Work measurement barriers in modern manufacturing companies 

Social Barriers 

Hierarchy of Organization Culture: Many companies still use a rigid 

hierarchical management approach. New initiatives are often imposed 

on employees in a top-down manner. When work measurement is 

performed by Industrial Engineers without involving employees, 

experienced operators might feel that their knowledge and expertise 

is ignored. In this case, operators will have difficulties to support the 

imposed time standards. This approach also undermines any form of 

support for new work measurement initiatives. 

Lack of full support: As mentioned above, an effective work 

measurement system needs to be supported by everyone in the 

organization. However, in many cases management perceives the 

acquisition of accurate time data as a cost factor with little or no direct 

return on investment (ROI). Furthermore, management often fears the 

resistance of employees when setting up a work measurement system. 

Because of the difficulty to quantify benefits and the fear that the 

system will create more harm than good, management often discards 

work measurement programs. 

Reluctance to measure: Because work measurement techniques fell 

into disuse in the 1980’s, time standards were solely based on 

educated guesses. Operators rate their own performance against 

these inaccurate estimates. In many cases, this leads to an 

overestimation of the performance. Since they have been using the 

same methods for years and the company managed to survive, 

employees don’t see the need to change the evaluation process and 

therefore they are often reluctant to the implementation of more fact-

based systems [30]. 
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Fear of job loss: The main goal of gathering time data is identifying 

which processes or tasks need to be improved. Often, operators 

experience this as a direct threat to their job security, as they believe 

that the measurements will be used to evaluate them and test whether 

they can keep up with certain expectations or target speed. For this 

reason, operators will sometimes try to hinder the measurements or 

change their behavior to influence the results. This effect of changing 

behavior when under observation is often referred to as the 

Hawthorne effect. 

Technological Barriers 

Tedium of the Measurement Process: One of the main problems with 

traditional work measurement techniques is the effort it takes from 

the Industrial Engineer to perform the observation and the analysis of 

the results. Especially in a high-variety low volume production 

environment where certain tasks are only performed rarely. An 

observer completing a traditional time study would have to be 

available throughout the whole work day to capture these events. Also 

the analysis is a time-consuming process. In many cases the observer 

needs to transfer his/her written observations to a digital format to 

perform statistical analysis of the results.  

Variation of work methods: In high-variety production environments, 

different operators tend to deviate from the standard work method. 

According to Nadler [31] such variations are disastrous for the 

prediction value of a time study using traditional methods. 

Ambiguity of process elements: Unless the observer is very familiar 

with the task under investigation, he or she will find it difficult to 

determine which elements of the task are independent of each other. 

Independence in this context means that the variability of one work 

element is unrelated to the variability of other elements. In practice 

that means that there should be clear and defined break points that 

define the start and end of a specific work element. The definition of 

these separate work elements is important. If complete work cycles 

would be timed as a whole and the results show a lot of variation in 

task time, this variation is probably caused by a highly variable work 
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element. If the definition of these elements is not done properly, there 

is no way to explain the variability of the time estimates. 

Shortage of samples: Traditional work measurement relies on 

statistical analysis to provide accurate and significant time estimations. 

The more samples the observer collects, the more accurate the time 

estimation will be. In high-variety production environments where the 

number of different tasks and the variability on the task times are  

huge, the number of samples needed to obtain reliable time 

estimations is too large to acquire manually. 

 

Work measurement techniques 

As explained in the previous section, accurate and up-to-date 

production time data and time standards are still very important in 

today’s production environments. There exist a multitude of methods 

to determine time standards, each of them with their own 

characteristics and applications. According to Heinz and Olbrich [28] 

time determination methods can be classified in two main groups, as 

shown in Figure 7. The first set of methods is based on real production 

observations. These methods provide information on actual task 

times, but require extra processing to account for inefficiencies and 

disturbances when used to determine time standards. The second set 

of methods do not require measurements on the shop floor, but only 

provide theoretical time estimations or targets. In the remainder of 

this section, we will briefly present these methods, discuss their 

strengths and weaknesses and indicate which of the aforementioned  

barriers they address. 

 

Figure 7: classification of time standard setting techniques (adapted from[22]) 
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Each of these methods has its own strengths and weaknesses and 

operates at a specific level of the task hierarchy as shown in Figure 8 

[5]. Expert opinion estimates are very rough techniques to determine 

time standards. The fairly low accuracy of this information increases 

the risk of errors in the decision making, which is not desirable [32]. 

Work measurement techniques are based on facts and are a more 

reliable way to establish time standards.  

 

Figure 8: Standard setting techniques and their corresponding task hierarchy level 
(adapted from [5]) 

Theoretical times 

Expert knowledge: This method is based on the experience and 

knowledge of people that are familiar with the concerning jobs. This 

person is asked to estimate the time that should be allowed for a 

specific job [5, 12]. This estimation is completely based on the 

judgment and knowledge of the expert, which makes this technique 

one of the least accurate and reliable [5]. The lack of observations on 

the other hand, removes some of the social barriers for traditional 

work measurement techniques.  

Standard data systems (SDS): Standard data systems (SDS) involve the 

use of elemental times obtained from earlier time studies which are 

indexed and stored for late use [7]. Many different parameters can 

cause variation in the cycle time. Standard data systems aim to 

discover the relation between parameter changes and their effect on 

the operation time. There are a number of different techniques and 

tools that are used in standard data systems: graphs, tables, 

worksheets and formulas. Multiple regression analysis is a tool 
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typically used for developing mathematical models that describe the 

influence of the different process parameters on the cycle time. 

Standard data systems allow one to predict the operation time before 

the actual production begins [33]. SDS are often used in industry for 

estimating labor costs for bids. Standard data enables work analysts to 

develop accurate time standards fast without the need for time-

consuming techniques such as direct time study or predetermined 

time standards [12]. However, SDS are relying on historical data, 

therefore the accuracy of the models depends on the quality of the 

input data. These models are typically based on manufacturing data in 

manufacturing IT systems or operator self-measurement through so-

called time cards. This data is often unreliable and does not take into 

account inefficient work methods, disturbances and operator 

performance.   

Predetermined time standards (PTS): Performance rating has always 

been a thorny and controversial step in direct time study. 

Predetermined time standards don’t rely on the judgment of the 

analyst [5]. PTS divide manual work into basic motion elements which 

are each associated to a predefined normal time. Just like in direct time 

study, the normal times obtained through PTS require the addition of 

allowances to obtain fair and usable time standards. Since 1945, more 

than 50 different PTS have been developed and used in industry. Well-

known examples of PTS are MTM-1 (Methods Time Measurement) 

[34], Work Factor [6] and MOST (Maynard Operation Sequence 

Technique) [35].  PTS databases are the result of extensive research 

and generate very reliable time standards. The scientific foundation of 

these methods improves the credibility and support for these methods 

by both management as well as employees [30]. Because tasks are 

subdivided into basic motions, the analyst does not have to be very 

familiar with the job. The evaluation however, usually relies on an 

elaborate and time consuming frame-by-frame analysis of video 

footage of the task. On average, it takes around 200 minutes to analyze 

1 minute of video using MTM-1 [36]. The use of more condensed 

tables, such as MTM-3 or MTM-SAM, helps to reduce this effort (30 

minutes per minute of video), but accuracy of these faster methods is 

significantly lower. Because of the high amount of different tasks in 
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high-variety production environments, one can argue whether the use 

of PTS is economically viable.  

 

Recorded times 

Direct time study (DTS): Traditional work measurement or direct time 

study (DTS) is based on a direct observation of the task. The analyst 

will divide the task into usable work elements and use a stopwatch or 

other timing device to record the time for each element. Each work 

element should consist of a logical group of motion elements and have 

a clear start and end point. A typical work element consists of all 

motion elements that are related to the handling of one part or object 

(e.g. take a part, move it to its destination and place/fix the part) [5]. 

During the observation, the analyst evaluates the performance of the 

operator in order to establish fair time standards for both the 

employer and the employee. This performance rating is used to adjust 

the results of the stopwatch study to the normal time an average 

worker requires to perform that task [7]. Since one cannot expect an 

operator to be fully productive over the course of his whole work shift, 

extra allowances should be added to this normal time. These 

allowances account for some personal time an operator needs, speed 

losses due to fatigue and other delays that are not caused by the 

operator and on which he doesn’t have any influence [12]. Figure 9 

visualizes how time standards are established in a direct time study. 

Stopwatch measurement Pace rating Allowances

Observed time

Normal time

Standard time

 

Figure 9: from stopwatch measurement to standard time 

Just as in any other human activity, there is an inherent variability in 

manual work. Because of this reason work element times vary from 

cycle to cycle [5]. Direct time study involves a sampling procedure to 

overcome the issue of statistical variation in the times of these work 
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elements. A high sample size is expected to return very accurate 

results, but increases the cost of the study as well. Based on a 

preliminary study, the ideal number of cycles in the sample can be 

determined as follows [9]: 

 𝑛 = [(𝑧)(𝑠)/(𝐸)]2 (1) 
 

Where 

z depends on the desired confidence interval. These values can be 

found in tables. 

s is the sample standard deviation of the preliminary study. 

E is the desired absolute accuracy. 

n is the required number of samples. 

In Table 3 we calculate the required observation time for three 

different work stations. The first work station only performs one single 

task with limited variability in the task time. The average task duration, 

number of different tasks and variability is increased for work station 

2 and 3. Work station 3 could be exemplar for the typical work content 

for a work station in a large industrial equipment assembly line (atlas 

copco, CNHi) for one machine, not even taking into account the many 

different product variants. As shown in the table, the observation time 

required to obtain reliable data increases incrementally, making 

manual observations economically impossible. Note that the example 

only takes into account the observation time itself. 

To partially overcome the cost-issue of direct time measurements, 

stopwatch measurements are often replaced with modern technology 

that is more conducive to quick and accurate data collection. Software 

applications such as UmtPlus® [37] and TimerPro® [38] use mobile 

devices to easily collect the data and automatically perform the 

statistical analysis using custom software based on Microsoft Excel®. 

However, these tools have difficulties handling unforeseen 

circumstances and still require an observer that is present at the work 

station throughout the complete observation. 
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Table 3: Table 3: Calculation of sample size for DTS 

  WS1 WS2 WS3 

average time 1 3 10 

stdev 0.1 0.6 3 

Accuracy 0.95 0.95 0.95 

different tasks 1 5 10 

sqrt(n) 3.92 7.84 11.76 

n 15 61 138 

       
total observation time 
(minutes) 15.4 922.0 13829.8 

Total observation time (days) 0.03 1.9 28.8 

 

 

Figure 10: Timer Pro DTS application 

Work sampling (WS): This technique consists of random observations 

of the operators’ activities to determine how they distribute their 

available time over the different activities of interest [16]. Work 

sampling is a statistical technique in which a large number of 

observations are made over a prolonged period of time, and statistical 

conclusions are drawn about the proportion of time spent in each 

activity category based on the proportion of observations in that 

category [5]. Just like in DTS, we can reduce the statistical errors in 

work sampling by increasing the number of observations. The required 

number of observation is again depending on the desired confidence 
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level and accuracy [5]. Since a work sampling study results in an 

overview of the operators’ time distribution, it is not really suited to 

determine time standards. However, in situations where more 

accurate techniques, such as PTS and direct time study, require 

excessive analysis times, WS can be used to calculate average task 

times. To do so, the total time associated with one category is divided 

by the total count of parts produced over that time period. This 

calculation is summarized in the following equation [5]: 

 
𝑇𝑐𝑖 = 

𝑝𝑖 ∗ (𝑇𝑇)

𝑄𝑖
 (2) 

Where: 

Tci = average task time 

pi = proportion of observations associated with the category 

TT = total time: total duration of work sampling study 

Qi = total quantity of work units associated with the work category 

that are completed during the total time 

 

Figure 11: Comparison between time standards obtained through WS and DTS 

Figure 11 shows a comparison between time standards obtained 

through work sampling and more accurate DTS time standards. These 

time standards are significantly different, mainly because of the small 

sample size. If the number of sampling observations would increase, 

the outcome of the sampling study would converge to the real value. 

In the context of high variety production, it is often impossible to 

acquire a high number of samples of a specific task, because some 

tasks only occur vary rarely. This makes work sampling less suitable for 

high-variety low-volume production environments.  
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Self-Recording: All of the previously mentioned methods still require a 

significant effort to obtain accurate data. The cost of these 

measurements often forms a barrier for production companies to 

implement work measurement. To overcome this barrier, data 

collection can be conducted by the operators themselves [30]. 

Through the use of so-called tagging sheets, barcode scanners or 

mobile devices, employees determine separate work elements and 

perform the work study themselves. The operators’ knowledge and 

expertise overcomes the issue of task ambiguity and the employee 

empowerment increases the support and credibility of the 

observations. On the other hand, self-recording can be perceived as 

added work load for the operator and gives the operator the possibility 

to influence the measurements. 

Registering through devices: In the last decades, many manufacturing 

companies started implementing novel technologies for shop-floor 

monitoring and control in their production systems. The data logs of 

these IT systems usually contain time stamps which can be used to 

obtain time data.  

One example of such a technology is the Arkite HIM® system. The 

Human Interface Mate (HIM) is a standalone device equipped with a 

smart 3D sensor to support operators in manufacturing industry. By 

monitoring the assembly process, the HIM is able to detect mistakes 

and intervene when necessary. The HIM is also capable of 

collaborating with projection systems to show instructions and 

feedback in augmented reality on the final product. The process 

validation techniques used by the ARKITE HIM system, also enable 

capturing of production data, such as manual assembly times. 

However, the system requires that all production steps are a priori 

known and programmed into the system.  The system has difficulties 

to handle disturbances and variable assembly sequences. Since it only 

uses one single sensor, the HIM is also not suited for monitoring very 

large assembly work stations, because the sensors’ view on large parts 

of the work station will often be occluded by different objects in the 

work station. 
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Figure 12: ARKITE HIM in combination with projection technology 

 

Video-based tools for method study and work measurement 

Video recordings have a long history in the manufacturing 
environment. It was Frank Gilbreth who was the first to introduce 
cameras in scientific management [39]. Gilbreth was able to overcome 
the doubt that followed Taylors’ time studies through the use of film. 
Video images made these measurements replicable, more precise and 
open for public evaluation. In a time were movies became more 
popular and the working class’ leisure time was increasingly spent at 
the cinema, Gilbreth convinced the workers to participate in his work 
studies by giving them the opportunity to star in their own movie. 
Based on the films, time measurements were made and decisions 
regarding new best methods were open for discussion. This way, 
Gilbreth’s work was a big step forward in the acceptance of Taylor’s 
ideas by operators and the scientific community [40]. 
Until the invention of the VCR recorders however, making videos was 
too cumbersome and expensive and required too much skill to be used 
on a large industrial scale. In addition, most attempts to use motion 
recordings for the purpose of productivity improvement failed because 
manufacturing workers feared that those recordings could be used 
against them sooner or later [41]. The first project for which video 
images were systematically used was changeover time reduction. 
The advent of video tapes enabled analysts to forward, rewind and 
slow down video recordings which made data capturing a lot easier. 
The emergence of electronic spreadsheets omitted the need for 
manual spreadsheets and the corresponding counter intuitive time 
measures such as decimal minutes [41]. The cost of recording and 
analyzing videos kept on decreasing due to the emergence of digital 
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cameras, flash drives and media players. In digital videos, every frame 
is linked a timestamp. Today, video annotation software uses this 
characteristic to facilitate time and method studies. A wide variety of 
these software packages have been developed. They enable the 
analyst to break down videos into segments, label them, categorize 
them and analyze them. The software then uses the timestamps to 
determine cycle times of the total process and separate tasks. Video 
annotation software has a number of advantages over the traditional 
approach [41]: 

• Video annotation automates the collection and storage of 
timestamps. Manually entering timestamps in spreadsheets is 
tedious and error-prone. Automatic retrieval of timestamps 
speeds up the analysis while at the same time increasing the 
accuracy of the time study. 

• Video segments stay linked to their labels, text or other data 
you attach to it. This way the software can easily bring up the 
video segment which matches to the task or process you want 
to analyze. 

• Annotation software can use parallel tracks to simultaneously 
show what several different machines and operators do at the 
same time. 

• Most video annotation software packages offer the option to 
export the results into standard excels files, but they also offer 
easy-to-use built-in analytics. 

 
Video annotation software is often considered to be a time study tool. 
The use of video data, however, should not be restricted to 
determining time standards. A thorough analysis of videos can help in 
evaluating processes, identifying and quantifying improvement 
potential, and designing and validating new methods. Video images 
contain a lot of information and are a good way to document and 
improve work methods [42, 43]. An example of how video images can 
be used as a process improvement tool can be found with Nexteer 
automotive. Nexteer is a global leader in advances steering and 
driveline systems. In 2008, they collaborated with Dartfish to introduce 
video analysis in their continuous improvement program. Dartfish is a 
world leader in 2D video analysis technology for biomechanics and is 
often used as a training tool for athletes, such as figure skaters. In a 
first test,  Nexteer used the Dartfish software to record three different 
workers at the same operation, and then overlaid their images to show 
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differences in how they performed standard work such as parts set-up 
and quality checks. After the analysis, they achieved a 21 per cent 
improvement [44]. In the following years, Nexteer rolled out the video 
analysis software across more than 400 different processes. According 
to Nexteer, a typical workshop using the Dartfish technology results in 
a gain of 20% to 30% in operational availability, where the gain using a 
more traditional approach typically ranges between 5% and 7%.  
 

Work measurement techniques: summary 

In this section we described the existing work measurement 

techniques. Each of these techniques has its specific strengths and 

weaknesses.  

 

Figure 13: relative accuracy of work measurement systems (adapted from [5]) 

In [5], Groover describes the relative accuracy (Figure 13) and 

application speed (Figure 14) of the methods explained in this section. 

Work sampling is omitted in Figure 14 because it requires a prolonged 

period of gathering random observations. It is clear that the more 

accurate methods require the most analysis time. Predetermined time 

systems cover a wide range in both accuracy and application speed due 

to the plethora of different techniques used in industry. When using 

PTS, one always needs to make the trade-off between application 

speed and desired accuracy.  
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Figure 14: Relative application speed of work measurement systems (adapted 
from[5]) 

Despite their relatively high accuracy, PTS do not provide a good basis 

for performance measurement and monitoring. Disturbances, 

inefficiencies and variability can only be discovered through the 

analysis of observed data. DTS is still the most accurate work 

measurement methods. Yet to be economically viable in todays’ 

manufacturing environments, more automated observation and 

analysis methods based on advanced technologies are required.  

Video cameras and image recognition could facilitate the analysis of 

manual assembly and manufacturing tasks. Video images are being 

used in method study and work measurement for years. However, 

most video-based methods and software tools still rely on manual 

analysis of the images. By partially automating the analysis of video 

footage, valuable and accurate production data could become 

available with less effort. 

1.2. TOWARDS INDUSTRY 4.0 

 
Throughout history, manufacturing industry has undergone a number 
of major revolutions and paradigm shifts. Most of these shifts were 
based on novel and game changing technologies. The first industrial 
revolution began at the end of the 18th century and was characterized 
by mechanical production plants based on steam engines. These steam 
engines made the transitions from hand production to machines 
possible, increasing the productivity of manufacturing plants 
enormously. A well-known example of these developments is the 
weaving loom used in textile industry. At the beginning of the 20th 
century, the advent of electrical energy, internal combustion engines 
and communication technologies initiated the second industrial 
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revolution, characterized by mass production lines. The third 
revolution was a digital transformation. Around 1970’s manufacturing 
companies started automating their production processes with the 
help of novel electronics and information technologies [45]. 
 

 
Figure 15: evolution of manufacturing industry [46] 

 
Currently, manufacturing companies are undergoing a fourth 
revolution, commonly referred to as Industry 4.0. The initial concept 
for Industry 4.0 was proposed by the German government in 2011 as 
a development program for the German economy [47]. Industry 4.0 
transfers the principles of the Internet of Things on to the production 
environment. At the basis of Industry 4.0 are the so-called cyber 
physical systems (CPS). They are systems of collaborating 
computational entities which are in intensive connection with the 
surrounding physical world and its on-going processes, providing and 
using, at the same time, data-accessing and data-processing services 
available on the Internet [48]. Cyber physical production systems 
(CPPS) combine the latest and foreseeable advances in computer 
science and information and communication technologies with 
manufacturing science and technology to fulfill the agile and dynamic 
production requirements and to increase the effectiveness and 
efficiency of the manufacturing industry.  
 
So far, CPPS research and development is mainly focusing on 
technological advances that enable Industry 4.0, such as the 
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development of cheaper sensors. The involvement of the operator 
however is greatly underappreciated. Consequently, there is a risk that 
novel technologies outpace the adaptive capacity of their users, in this 
case manufacturing operators. This would result in a gap between the 
state-of-the art manufacturing system and operators that are unable 
to perform well in collaboration with the system. To have a disruptive 
impact on organizations, it is necessary that operators trust the CPS 
and AI-techniques [49]. The importance of self-explaining systems is 
demonstrated through the growing interest of industry and academics 
in developing explanatory AI technologies and solutions [50].  
Furthermore, the importance of operator involvement becomes 
obvious in a study performed in Belgium in 2016. This study states that 
an average of 7% of the operators is absent on any given day. 
Moreover, 3% of the operators working in manufacturing companies 
are absent for more than one year. On the other hand, the study also 
showed that motivated and involved operators were 50% less likely to 
be absent and are 16% more productive [51]. These results are 
confirmed in a poll performed by the German Innovation Center for 
Industry 4.0, where manufacturing managers were asked about the 
main challenges they encounter in implementing Industry 4.0 in their 
production environment. Over 35% of the respondents identified 
employee involvement as their main challenge.   
 
The results of these surveys show a clear need for the development 

intelligent operator workspaces. Human-Cyber-Physical systems (H-

CPS) make use smart sensor systems and wearable devices to integrate 

the human operator into flexible and multi-purpose manufacturing 

systems [52].  

1.2.1. The human operator in Industry 4.0 manufacturing 

As the manufacturing systems have evolved over time, also the tasks 

of the operators have undergone major changes. Until the first halve 

of the 20th century, Operator 1.0 was mainly performing manual tasks, 

supported by some limited mechanical tools. With the advent of 

numerical controlled machines (f.e. CNC) and enterprise information 

systems, the tasks of the operator changed into more assisting tasks. 

The operator 3.0  generation works in close collaboration with 

machines and even robots (cobots). In future human-cyber physical 
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systems, operator 4.0 will be a smart and skilled operator that 

performs tasks, assisted by machines and information systems when 

needed. The aim is to develop adaptive automation that seamlessly 

interacts with operators and enables them to make full use of their 

unique capabilities [53]. 

 

Figure 16: Evolution of operator tasks in manufacturing environments [53] 

The operator 4.0 framework for future work place design entails many 
different aspects important for human operators. Analytical operator 
solutions based on big data analytics help to collect, organize and 
analyze large datasets created by numerous sensors and monitoring 
systems. This information supports the operator in his decision making 
process [54]. This information can be transferred to the operator 
through Augmented Reality techniques to make information transfer 
easier and less time-consuming. Healthy operator solutions make use 
of information coming from hearth-rate sensors, cognitive load 
sensors and activity trackers to safeguard the operators well-being. 
Smarter operators seamlessly interact with all other resources in the 
production system as well as with the information systems to provide 
information to support their work and decision making process.  Social 
operators use methods developed in social robotics and intuitive 
human-machine interfaces to interact with smart factory resources. 
Interaction with virtual models of the work station provides 
advantages when it comes to training operators and helps to reduce 
change-over times between different tasks. Most of the aspects 
mentioned above have an impact in the mental of cognitive 
capabilities of the operator. Super-strength operator systems, such as 
exoskeletons, aim to enhance to physical capabilities to allow the 
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operator to perform an extended range of manual tasks. The 
collaborative operator on the other hand is able to work in close 
interaction with cobots which take over tasks that are ergonomically 
or cognitively challenging for the human. 
 

 
Figure 17: Operator 4.0 concept in Industry 4.0 manufacturing environment 

1.2.2. IoT-Based solutions for operator activity tracking 

Smart sensors form the basis of CPPSs, as they are able to provide real-
time information on the state of the production resources [55]. The 
operator 4.0 concept aims to create human-cyber-physical production 
systems (H-CPPS) that enhance the operators’ capabilities thanks to 
the dynamic interaction between human operators and production 
systems based on context-aware information flows. In these H-CPPS, 
smart sensors the key enabling components that allow accurate 
context gathering through real-time operator activity tracking [56].  
Usually, Radio Frequency Identification (RFID) technology is used to 
monitor operator activity [57]. RFID sensors can be used to track 
motion of operators and machine activity as well as material 
movement [58] and the flow of workpieces [59, 60] through the 
production system. These RFID sensor systems enable on-line 
measurement of task times, waiting times and production lead times. 
They even unveil useful information about resource and operator 
utilization and can help to measure critical performance indicators, 
such as overall equipment effectiveness (OEE). Based on this 
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information, shop floor control (SFC) and process optimizations can be 
realized. 
As wearable sensors are becoming more and more accessible, they are 
being used more frequently in real-world applications. Various 
examples of the application of wearable sensor systems for human 
operator activity tracking in manufacturing environments have been 
presented in literature. Koskimaki et al. [61] described a case study in 
which they used a wrist-worn inertia sensor to recognize four types of 
basic activities: hammering, screwing, spanner use and the use a 
power drill for screwing. In their study they were able to detect these 
activities with an accuracy of over 90%. The monitoring of these 
activities enables the development of proactive systems: f.e. the 
operator can be given specific instructions when performing a specific 
tasks. Furthermore, this monitoring system can be used as a quality 
control system by checking whether all necessary actions are 
performed before sending the product to the next work station. A 
similar application was proposed by Ward et al. [62], where 2 body-
mounted accelerometers were combined with microphones to 
develop a sensor system that recognizes typical activities in a wood 
shop.  Stiefmeier et al. [63] aim to use wearable sensor systems to 
reduce the cognitive load of automotive assembly line workers. Their 
sensor system consists of an inertial measurement unit (IMU) mounted 
on the back of the palm of the operators’ hand, a number of force-
sensitive resistors (FSR) placed on both arms and an RFID reader 
mounted between the thumb and the index finger. This last sensor 
recognizes when a specific RFID-tagged tool is utilized. Their sensor 
system was integrated in a motion suit which the operators had to 
wear while performing assembly tasks. 
Most of the sensor systems proposed, require the operator to wear 
specific sensors or suits which may cause hindrance when performing 
their tasks. Vision-based tracking systems are less intrusive. On top of 
that, video images contain more and richer information than any other 
smart sensor used in aforementioned applications. Despite the clear 
potential, the use of computer vision in manufacturing remains very 
challenging. Production environments are rather dynamic 
environments. Typical stereo-vision applications [64, 65] are not able 
to cope with objects occluding the view of the sensor on the object 
that is being tracked. Networked smart-camera systems can help to 
overcome this issue, but the large amount of data generated by these 
systems can make the transmission and storage of this data difficult 
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[66]. The constant development of novel IoT and decentralized 
computing technologies however, strengthen our believe that multi-
camera operator monitoring systems could be a valuable source of 
contextualized assembly process information. 
 

1.2.3. IoT based solution for operator support 

It is clear that smart IoT sensors facilitate the collection of critical data 
from the operator. This information however, only becomes really 
valuable when it is used to provide real-time operator support. When 
operator activities are recognized in real-time, contextualized work 
instructions, warnings and information on his performance can be 
shown to the operator. This enables the operator to make better 
decision, resulting in more efficient, safer and more qualitative 
processes.  
Real-time information can be shown to the operator using fixed 
screens, mobile devices (tablets, smartphones) or wearable devices 
such as smart glasses. The design of intuitive operational dashboards, 
apart from the device used, increases the performance of the operator 
by speeding up the information transfer [67]. The advent of wearable 
devices increased the flexibility and efficiency of real-time information 
transfer by combining the hands-free operation of fixed screens with 
the mobility of mobile devices. As an example, Airbus claims the 
introduction of smart AR glasses on their final assembly line helped 
them to reduce the installation time of the flight test equipment on 
the A330Neo aircraft from one complete day with 3 operators to 6 
hours for one operator [68]. Similar results were reported in [69], 
where smart glasses were used in the assembly of heavy agricultural 
equipment at AGCO. By presenting context-aware instructions for next 
assembly steps and information about quality inspection procedures, 
learning rate of new operators was reduced with 50%, inspection time 
by 30% and 25% decrease of the overall production time was achieved.  
These results are supported by an extensive evaluation of 385 existing 
use cases in German industry [70]. This study proves that the operator 
4.0 framework works in practice and has many advantages: (1) 
elimination of paper-based administration; (2) real-time feedback 
about the manufacturing process from and to the operator; (3) 
increased productivity; (4) decreased  number of errors; and (5) 
operator training time reduction. 
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1.2.4. Towards I4.0: summary 

It is clear that the implementation IoT technologies will result in more 
efficient and smarter workplaces. Production systems will become 
safer, more controllable and manageable than ever before. Especially 
in complex high variety low volume manufacturing settings, these 
benefits will be clearly visible. Despite the development in the field of 
flexible automation, the human operator will still play a significant role 
in future production systems, as also stated by Elon Musk when talking 
about the excessive automation in the Tesla manufacturing process. 
 

 
Figure 18: Elon Musk: "excessive automation was a mistake" 

 

In a study in over 215 use cases [51] where human operators are 
involved, better employee support and information transfer are 
considered to be the most important benefits of Industry 4.0 concept. 
By providing contextualized real-time information, IoT technology will 
empower human operators to make well-funded decisions and enable 
them to exploit their unique capabilities to their full potential. 
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Figure 19: Industry 4.0 benefits for human operators [51]  

According to this same study, one of the main challenges to exploit the 
opportunities provided by IoT technologies to their full potential lies in 
the monitoring and recognition of human operator activities. 

1.3. DISCUSSION AND RESEARCH GAP 

 
In the last decades, the market demand for manufacturing companies 
has undergone a shift from mass production to mass customization. 
Increasingly more variants of products are being produced in ever 
smaller batch sizes. This shift increases the complexity of 
manufacturing systems, often resulting in less efficient and productive 
processes. To counteract the performance losses, manufacturing 
systems need to be flexible, adaptive and reactive. This can only be 
achieved when accurate and up-to-date information about the 
manufacturing processes is available. 
 
Despite the trend towards more automated processes, human 
operators still play a significant role in these flexible production 
systems. Human workers possess unmatched cognitive capacities 
which makes them the most flexible asset in modern production 
systems. The advent of IoT technologies creates opportunities to 
provide accurate and real-time information about the production 
processes. Mobile or wearable devices can be used to feed this 
information back to the operator. This way the operator receives the 
necessary contextualized information that empowers him to make 
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well-funded decisions. This results in smarter operators that receive 
the necessary support to use their strengths to their full potential. 
 
There is a clear need for methods that are capable of providing 
accurate and up-to-date information on the performance of manual 
assembly work stations. Current time study and methods engineering 
techniques are not sufficient anymore to suit the needs of today’s 
complex and highly dynamic production environments.  
 
Video images have been used by methods engineers for years, but they 
are typically still manually analyzed. Video processing techniques have 
evolved over the last decade and make it possible to automatically 
retrieve information from video images. The use of video cameras for 
operator monitoring provides a number of advantages. Cameras are 
less intrusive for the operator than other monitoring systems based on 
wearable technology, cameras have become relatively inexpensive 
over the last years and they are a source of rich information about the 
process. 
 
For these reasons, throughout this PhD thesis, we investigate how 
multi-camera monitoring systems can be used to facilitate time and 
method study techniques and drive continuous improvement on the 
shop floor level in modern flexible assembly environments. 

1.4. RESEARCH QUESTIONS 
 
This doctoral dissertation investigated the use of multi-camera based 
operator monitoring systems to automate the analysis process and 
support assembly operators and production managers in their pursuit 
of operational excellence and continuous improvement. The main 
research questions that are tackled in this dissertation are the 
following: 
 

• How can normal video cameras be used to provide useful 
data on the behavior and performance of human operators 
in mixed-model assembly work stations?  
 

• How can machine learning techniques be used to speed up 
and improve the work station analysis process, typically 
performed by industrial engineers.  
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• What are the key performance indicators in manual assembly 
processes and how can they be extracted from the video 
images.  
 

• To what extent is it possible to provide all stakeholders in the 
process with real-time support for continuous improvement 
and operational excellence on the shop floor level?  

 

1.5. RESEARCH OUTLINE AND CONTRIBUTIONS 
 
This section provides an overview of the structure of the remainder of 
this dissertation and the main research contributions: 
 
In CHAPTER 2, we present a multi-camera based monitoring 
framework for assembly operators. The framework makes use of video 
processing techniques developed by IMEC researchers, to derive 
trajectories followed by the operator during his work cycle. In this 
chapter we propose a data processing procedure to clean up the raw 
output data of the video system and give meaning to the resulting 
trajectories. The data processing framework makes use of an 
annotated work station layout to segment trajectories into useful work 
cycles or tasks. It enables (partial) automatic generation of work 
instructions which can be documented with the captured video 
images. Furthermore, the framework is capable of generating up-to-
date time standards. This way, the proposed framework relieves the 
methods engineer of some typical time-consuming tasks.  
 
In CHAPTER 3 we describe an operator trajectory clustering method. 
The aim of this method is to distinguish normal operator behavior from 
anomalous events. Trajectories that represent similar tasks are 
automatically grouped together. Outliers or anomalous events are 
automatically detected and presented to the methods engineer for 
further investigation. This way, the proposed framework is capable of 
monitoring work stations for a prolonged period of time and 
automatically highlights the sequences which are relevant for more 
detailed investigation to speed up work station analysis process. 
 
An empirical study, based on a number of different experimental data 

sets, was performed to determine the most suitable combination of 
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clustering method and similarity measure for this application. The 

proposed algorithm uses dynamic time warping to calculate the 

similarity between trajectories because of its’ capability to deal with 

time deformations. The classification itself is based on normal 

hierarchical clustering methods. Hierarchical clustering however only 

provides insights in the similarity structure of a data set, therefore 

probabilistic permutation testing is used to automate the final 

clustering step. The proposed method reaches an average precision 

and accuracy that exceeds 90% based on the experimental data sets 

used in this research. This exceeds the performance of more 

commonly used classification methods. For every resulting cluster, 

average sequences are also calculated which serve as base models for 

the real-time trajectory classification method presented in the 

following chapter. 

 
CHAPTER 4 aims to describe how the results of previous chapters can 
be used in real-time to drive continuous improvement on the shop 
floor level and create a highly reactive feedback loop. Based on the 
results of the clustering method presented in chapter 3, a real-time 
work cycle classification and outlier detection procedure is proposed. 
The method uses the Keogh lower bound concept for DTW to compare 
live trajectories to the previously calculated base models. This way, 
incoming sequences that are not matched to one of these models are 
classified as an outlier which is send to the methods engineer for 
further investigation. The proposed procedure is capable to process a 
new video frame every 0.07 seconds, which is more than sufficient 
knowing that only 2 frames per second are actually needed to provide 
accurate classification results.  
The second section of this chapter focusses on real-time decision 
support on the shop floor level. In this section an operational assembly 
work station analysis dashboard (OAWSAD) is presented. Dashboards  
are being used more and more in manufacturing environments, 
however there is a clear lack of dashboards that drive and accelerate 
continuous improvement on the work station or shop floor level. The 
OAWSAD presented in this section aims to bridge this gap by 
integrating real-time performance data and automatically generated 
charts and diagrams that have proven their value in industrial 
engineering and continuous improvement for many years. The 
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proposed dashboard is customizable to the needs of the user. This way 
it facilitates root-cause analysis and drives continuous improvement 
processes on the shop floor level. In that respect, it distinguishes itself 
from existing manufacturing dashboards typically used today. 
 
CHAPTER 5 presents the conclusions of this research. The answers to 
the research questions described above, are summarized. Also the 
limitations of this research and perspectives for further research are 
discussed. 

1.6. PUBLICATIONS 
 
The results of this research are published in international journals and 
the proceedings of a number of international peer-reviewed 
conferences. The complete list of all publication is provided below. 
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• Bauters, Karel, Cottyn, J., Claeys, D., Slembrouck, M., 
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cycle classification and performance measurement for 

manual work stations. (A. Sharon, Ed.)ROBOTICS AND 
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• Bauters, Karel, Govaert, T., Limère, V., & Van Landeghem, H. 

(2015). Forklift free factory: a simulation model to evaluate 
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INTERNATIONAL JOURNAL OF COMPUTER AIDED 

ENGINEERING AND TECHNOLOGY, 7(2), 238–259. (A2) 

 

 

 

Peer reviewed conferences – first author 

• Bauters, Karel, Cottyn, J., & Van Landeghem, H. (2018). Real 
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operator trajectories. In P. Gerril (Ed.), Proceedings of 16th 

the International Industrial Simulation Conference. Presented 
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at the International simulation conference, Eurosis. (Best 

paper award) 
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Simulation conference, Eurosis.  
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Presented at the 9th International Industrial Simulation 
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Abnormal work cycle detection based on dissimilarity 
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Chapter 2 Multi-camera operator 

monitoring system 

 

The recent developments in mobile computing and location-
acquisition technologies have made it easier to generate trajectories 
of moving objects such as vehicles, animals or people [71]. Typical 
examples are GPS (global positioning system),  Radio Frequency 
Identification (RFID) or Wi-Fi and Bluetooth based indoor location 
systems. 
 
A spatial trajectory can be defined as a trace generated by a moving 
object. It is generally described by a series of chronologically ordered 
data points: L(a1, a2, …, an), where L is a trajectory of length n 
consisting of chronologically ordered points a1, a2, …, an. Points a1, a2, 
…, an are typically described by a geospatial coordinate and a 
timestamp: a = (x, y, t). The vision system used in this research is 
capable of returning three-dimensional space coordinates. However, 
in further experiments, the third dimension is less relevant and 
therefore not taken into account. 
 
Production management and continuous improvement of production 
processes requires precise performance measurements and complete 
process visibility. In logistics, the ever increasing use of RFID 
technology has proven its value. Automatic and continuous object 
tracking can provide valuable information for production planning and 
control and problem detection [72] [73] [74] [59, 75].    
 
In this chapter we present a multi-camera based operator monitoring 
system that is capable of generating the trajectories followed by the 
operator throughout his/her work cycle. The choice for video 
technology is based on a number of reasons: (1) Video cameras cause 
minimal hindrance for the operator during his work, (2) the raw video 
images are a rich source of information which has proven its value in 
industrial engineering for decades and (3) because of decreasing 
prices, video capturing and data storage technology has become more 
accessible. 
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This chapter is outlined as follows. In the first section we describe the 
experimental set-up used in this research and provide an analysis of 
the data sets used for developing and validating the operator 
monitoring and performance evaluation framework. In the second 
section we describe the video processing methods used to derive 
operator trajectories from multiple camera images. This method was 
developed by researchers of IMEC, but is briefly explained in this 
chapter to provide a better understanding of the complete 
framework. The output of the video processing algorithms consists of 
raw trajectory data (time stamped XYZ-coordinates) which contain a 
significant amount of noise. In the third section we present a data 
processing framework to filter noise and give meaning to the raw 
trajectory data.  
 

2.1. Design of Experiments 
Throughout this research, a number of different data sets have been 

used. This section describes how these data sets are collected. The 

first data set is collected through a series of experiments in a 

simulated work station in a laboratory setting and consist of 11 

different scenarios. The second data set is a larger dataset, containing 

over 200 trajectories. This data set was created by monitoring people 

entering and leaving a research lab. The last data set was captured in 

a real assembly work station at a supplier of subassemblies for the 

automotive industry. 

2.1.1. Experimental data set 

The assembly work station 

For the first data set, an assembly work station was simulated in our 

laboratory in Kortrijk. The assembly line was mimicked by a conveyer 

belt which brings the assembly to the work station. This conveyer belt 

can either by manually controlled by the operator (OD) or externally 

driven (ED) to assure a constant TAKT time. Parts are picked from a 

2.5m wide picking rack which is equipped with a pick-to-light system 

and which is located 1.5m from the point where the assembly takes 

place. A grid was taped on the floor to validate whether the calculated 
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trajectories are aligned with the trajectories observed in the video 

images. The work station is equipped with four ceiling-mounted HD 

cameras, one in every corner of the scene. The avoid the risk of 

occlusion, one camera with a fisheye lens was mounted centrally 

above the workstation. An overview of the simulated work station is 

provided in Figure 20 and Figure 21. 

 

Figure 20: Ground plan of simulated work station 

 

Figure 21: Overview of the simulated work station 
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Hardware 

The cameras used for these experiments are Allied Vision Manta CCD 

Cameras. They have a resolution of 9 megapixel and a maximum 

frame rate of 125 fps. However the video processing techniques used 

to generate the trajectories, are not really depending on the exact 

type of IP cameras used. Most cameras offer a framerate and 

resolution which largely exceeds the requirements for the proposed 

methods (cfr. Chapter 3).  

 

Figure 22: Allied Vision Manta camera used in the experimental setup 

The video cameras are connected to a local server station to store all 

video data.  

The data processing framework described in this chapter and the 

clustering and classification algorithms (chapter 3 & 4) are 

implemented in Python. All experiments are run on a standard 

Windows 10 workstation with an Intel Core I7 2.7GhZ 64 bit processor 

and 16GB RAM. 

Scenarios 

The parts produced in the experimental work station consist of a 

Duplo® base block on which a pattern of different Lego® blocks needs 

to be assembled. The use of Duplo and Lego blocks allows us to easily 

create new product variants and vary the complexity of the assembled 

products. An example of a finished product is provided in Figure 23. 
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Figure 23: Example of a finished product 

Based on these simple products, a number of scenarios was 

developed in order to validate the system and test its performance. 

These scenarios contain different events which are modeled after 

situations which can be found in real-life work stations. The different 

scenarios in this data set are summarized in Table 4. The parameters 

and events described in this table are explained below: 

• Ext_Takt: The conveyor which delivers the base blocks to the 
work station can be controlled in two ways: operator driven 
(OD) or externally controlled (EC). OD means that the 
conveyor is activated by a button pushed by the worker 
whenever a part is finished. When externally controlled, the 
conveyor will deliver parts with a fixed time interval (TAKT). In 
that case, the TAKT is indicated in the table. 

• Variants: The number of variants that are produced in the 
sequence. Custom means that every single part is unique. 

• Parts_pres: Indicates the way parts are presented to the 
operator. In the one-variant scenarios parts have fixed 
locations in the picking rack (F). In other scenarios parts are 
randomly placed in the rack. Their location can be indicated 
by colored labels (L), small labels on the boxes themselves (l) 
or a pick-to-light (PtL) system is used to guide the operator. 

• Worker:  Indicates which worker performed the scenario. In 
total three different workers were assessed during the 
experiments. 

• Work cycles: The number of different end products produced 

in this scenario. These scenarios only contain a limited 

number of work cycles because of the data storage and 

transfer limitations of the video system. However, since the 
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setting for all these scenarios is the same, different scenarios 

can a posteriori be merged to form larger data sets. 

Table 4: Overview of different scenarios in the experimental data set 

Scenario Ext_takt Variants Parts_pres Worker Work cycles 

1 OD 1 F A 12 

2 OD 1 F B 14 

3 OD Custom PtL B 14 

4 OD Custom PtL A 14 

5 OD Custom PtL C 11 

6 OD Custom l B 14 

7 OD Custom l A 14 

8 OD 3 L B 14 

9 OD Custom L B 14 

10 OD 2 L B 14 

11 EC(25s) Custom L B 14 

 

2.1.2. OmniLab Data Set 

The second data set is a larger set of trajectories which was developed 

by Morris and Trivedi [76]. The dataset consists of 206 trajectories in 

total and contains 7 different patterns. The data set was created by 

recording all people walking through a research lab in one day. The 

video images were made using one single omni-directional camera. 

The resulting trajectories are depicted in Figure 24. 

Although this data set does not contain trajectories of operators in 

industrial settings, it describes the path followed by humans in indoor 

environments while performing a number of tasks. Also, because of 

the fact that this data set is created by using vision technology to 

measure the behavior of the human, we believe that it can provide 

valuable input for the development of our classification and 

performance measurement framework. 
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Figure 24: Overview OmniLab dataset 

2.1.3. Industrial Case Study 

This data set is generated by monitoring an assembly operator when 

performing assembly tasks in a work station at a supplier of 

subassemblies for the automotive industry. The assembly line under 

investigation produces rear axles for cars. In this work station, parts 

of the suspension system are assembled on both sides of the axle. All 

parts are stored in a picking rack located at the BoL. The torque 

wrenches used to fix the parts, are placed above the work piece. A 

picture of this work station is provided in Figure 25. This case study 

was performed as part of the IOF StarTT Project Complexity [77].  

This experiment was mainly performed to test the performance and 

accuracy of the vision system in an industrial setting. However, the 

results of this experiment provide useful input to validate the 

classification and performance measurement framework developed 

in following chapters. 

During this experiment, the operator was monitored using a mobile 

camera system consisting of only four cameras. One camera was 

placed on each corner of the work station. To reduce the risk of 

occlusions, the cameras were mounted on tripods and elevated 

approximately 2.5 meters above the ground. The worker was also 
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asked to wear a fluorescent vest for better detection by the vision 

system.  

 

Figure 25: Overview of the assembly line work station 

During the experiment, only one product variant of the axle was 

produced. This means that the operator had to perform exactly the 

same tasks in every work cycle. The operator was monitored 

continuously for almost 10 minutes. In total, 12 different work cycles 

were recorded.  

Figure 26 shows the recorded trajectories this data set. 

 

Figure 26: Resulting trajectories of industrial use caseVision Technology 
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In this section we describe the algorithms used to obtain the operator 

trajectories from the video images. These algorithms are developed 

by researchers of IMEC. However, to create a better understanding of 

the complete monitoring system, we briefly explain them below. 

2.2.1. Visual hull principle 

To obtain the trajectory of operators during their work cycle, a 3D 

representation of the operators body is generated for every frame of 

the video sequence. Afterwards, the center of mass of this 3D 

representation is calculated and taken as the operators’ position. 

Every second, the cameras each generate 20 images, which means 

that we can calculate the operators’ position every 50 milliseconds. 

The trajectory thus consists of a set of xyz-coordinates of the 

operators’ location which are chronologically ordered. 

The 3D representation of the operators body is generated using the 

visual hull concept proposed by Laurentini [78]. Since their 

introduction, Shape-from-silhouettes algorithms as these techniques 

are also called, have been used by many researchers to obtain 3D 

models from multiple 2D images [79, 80]. The basic idea behind these 

algorithms is the following: first the 3D-space under consideration is 

divided in a 3-dimensional grid pattern. The cubical cells of these grids 

are called voxels and can best be compared to pixels in 2D-image 

representations. Then, the silhouette of the followed object is 

extracted from the 2D-view of every camera and a 3D infinity cone 

with the camera as the apex and the extracted silhouette as the base, 

is generated. This infinity cone is basically a collection of the voxels in 

which the object might be situated, given the information one single 

camera can provide. 
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Visual hull algorithm: 

Input: camera calibration,foreground/background masks 

Output: voxelated visual hull 

 

for all voxel in voxel_space do 
 while voxel occupied and not all camera views evaluated 
do 
  lookup voxel’s projection on next camera view 
  if projection is foreground then 
   classify voxel as occupied 
  else 
   classify voxel as unoccupied 
  end if 
 end while 
end for  

Figure 27: Visual hull algorithm 

For the extraction of the operators silhouette from the video images, 

foreground-background segmentation is used. The idea behind this 

approach is to detect moving objects by evaluating the difference 

between the current frame in the video stream and a reference frame, 

often called "background image" or "background model". 

The 3D model of the operator is then generated by carving away 

voxels that are not within the infinity cones of all cameras. It is 

therefore easy to understand that the quality of the 3D model 

increases with the number of cameras added to the system. The visual 

hull concept is explained in Figure 28. In this figure the blue circle is 

the object that is being tracked. The resulting visual hull consists of 

the object and all parts indicated in gray. It is clear that the accuracy 

of the visual hull method increases with number of cameras that are 

added to the system. 
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Figure 28: voxel carving principle [81] 

The same principle can be used when there are more operators active 

in the work station. In that case, the visual hull will contain two 

separate point clouds, which can be distinguished from each other 

through an additional clustering step. This is shown in Figure 29. 
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Figure 29: Visual hull in multi-operator work stations 

To get accurate models, all cameras should have a full view on the 

object under investigation. In industrial settings there is a high risk 

that objects in the work station partially block this view. For example, 

an assembly table can completely occlude the view of one camera on 

the operators legs. Because of this occlusion, the operators’ legs will 

not be included in the final model. Therefore, compensation for 

occluding objects needs to be taken into account. 

2.2.2. Compensating occlusions 

Occlusion is one of the main difficulties encountered when using 

camera systems in industrial environments. Static and moving objects 

can block the view of one or more cameras on the object under 

observation. When using the voxel carving algorithm, a partially 

blocked view on the operator leads to incomplete point cloud models 

of the operator. To overcome this problem, a self-learning algorithm 

is implemented to build occlusion maps for each camera in the 

system. These occlusion maps are later on used to determine which 

viewpoints should be taken into account when reconstructing the 3D 

model and which viewpoints should be discarded, and this for every 

voxel in the scene [82]. In general, three cameras are considered the 

minimum to generate an accurate model of an object in the three 

dimensional space. Because the occlusion algorithm sometimes omits 
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viewpoints, we use two extra cameras to safeguard the quality of the 

generated 3D-models. 

To create this occlusion map for one camera C0, first the visual hull is 

calculated for that one camera. This visual hull is actually the 

generalized infinity cone with camera as the apex of the cone and the 

operator’s body projection as the base. Then, three cameras, Ca, Cb 

and Cc, are randomly selected and this visual hull is projected on the 

view plane of these cameras, leading to the so-called reprojection 

masks maskrepr,Ca , maskrepr,Cb and maskrepr,Cc. These reprojected masks 

are the compared to the foreground-background masks of these 

cameras (maskfgbg,Cx, x = a, b or c) to create the occlusion masks 

(maskoccl,Cx) which describe the invisible parts of the scene for C0 in the 

view of camera Cx. These occlusion masks are subsequently used to 

create a new visual hull which describes the occluded voxels for 

camera C0. This is done for every camera in the system. These 

occlusion maps are then used to determine which voxels in the 

viewpoint of the camera should be taken into account when 

reconstructing the 3D model of the operator. This algorithm is further 

explained in Figure 30. Examples of the generated masks are provided 

for camera Ca in Figure 31. 

 

Figure 30: outline of the occlusion removal algorithm 
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Figure 31: occlusion removal example 

2.2.3. Vision System Output 

The visual hull algorithm results in a 3D model of the operator for 

every frame in the video sequence. An example of such a model, is 

shown in Figure 32. 
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Figure 32: Output of the vision system 

By calculating the models’ center of gravity and projecting it on to the 

ground plane, we determine the location of the operator in every 

frame of the video stream. By doing this, we are able to track the 

movement of the operator in the workstation. An example of such a 

data stream is visualized in Figure 33. In principle, also the z-

coordinate of the operators’ center of mass can be calculated. 

However, this height data provides no real added information (no 

clear patterns can be identified) and therefore the z-coordinate is 

ignored in the remainder of this PhD thesis. 

 

Figure 33: Trajectories calculated based on vision system output 
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2.3. Data Processing Framework 
 

The output of the vision system only consists of one long stream of 

sampled data points describing the location of the operator in each 

frame of the video footage. Due to illumination changes and 

occlusions that are not compensated for, this data stream can contain 

some noise, which might negatively influence the accuracy of the 

classification method and the performance measurements. Also, the 

output of the vision system provides no information about different 

work cycles or tasks performed by the operator. This information is 

added to the data set by subdividing the data stream in useful 

segments and by adding semantic information to the trajectories. 

In this section we describe how the data is processed before being 

used for outlier detection and performance measurement. The data 

processing framework contains three different steps: first there is a 

preprocessing step, afterwards the data is translated into tasks 

performed by the operator before being divided in different segments 

which describe different work cycles or tasks. This framework for data 

processing is visualized in Figure 34. 

 

Figure 34: Data processing framework 
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In the remainder of this section, each of these data processing steps 

is discussed in detail. 

2.3.1. Noise reduction 

Due to disturbances such as illumination changes or remaining 

occlusions, the resulting trajectories might contain some noise. The 

calculated location points of the operator are therefore randomly 

scattered around his real location in the work station. This noise leads 

to errors on the calculation of various measures such as the travelling 

distance or speed of the operator. To eliminate these inaccuracies, we 

first need to filter the raw data to smoothen out the noise. 

A Gaussian kernel [83] smoothing filter was used to cancel the noise 

in the trajectory data. It is widely used in image processing to remove 

noise and or detail in pictures. Gaussian kernel smoothing can be 

compared to a moving average filter. The output of these methods is 

obtained through a convolution of the input signal with a predefined 

function, the so-called kernel function. Moving average filters make 

use of box-shaped kernel functions, where in the case of Gaussian 

smoothing, a bell-shaped curve is used. The main advantage of the 

Gaussian kernel function is that it increases the weight of the most 

nearby points in the trajectory and attaches less importance to the 

data points that are more remote in time. 

For every point p(x, y) in the trajectory, the smoothed value at time t 

�̃�(𝑡) is calculated as follows: 

 
�̃�(𝑡) = ( 

∑ (𝑤(𝑡𝑗)∗𝑥(𝑡𝑗))𝑗

∑ 𝑤(𝑡𝑗𝑗 )
 ,
∑ (𝑤(𝑡𝑗)∗𝑦(𝑡𝑗))𝑗

∑ 𝑤(𝑡𝑗𝑗 )
 )    (3) 

   
where pj(x(tj), y(tj)) is the measured location at time j and w(tj) the 

Gaussian kernel function: 

 
𝑤(𝑡𝑗) = 𝑒

−
(𝑡−𝑡𝑗)

2

2 𝜎2  (4) 

In this calculation,  determines the bandwidth of the kernel function, 

which is in this case set to 1 second. Figure 35 shows how the Gaussian 

smoothing filter cancels the noise in the raw data.  
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Figure 35: Results of noise reduction method 

2.3.2. Data Translation 

The trajectory data coming from the vision system only consists of a 

collection of time-stamped sample points, but they do not carry any 

information about the operators’ tasks or performance. In order to 

provide useful information, the trajectory data needs to enriched with 

information, explaining what is actually observed in the video images. 

Therefore we use a framework, based on the model proposed by 

Alvares [84], to enrich the trajectory data with semantic information. 

This framework defines stops and moves in GPS trajectory data by first 

defining candidate stop locations, for example a museum. These 

candidate stop locations are described by a polygon and the object 

(person) is considered to have visited this location, of his/her stay time 

in that polygon exceeds a predefined threshold duration. 

Although claimed to be generic enough for use in many applications, 

there are some issues when this model is applied on the specific 

problem of assembly operator trajectories. In our application, zones 

would be very close to each other and stay times are very short, which 

makes it nearly impossible to determine accurate threshold durations 

for specific zones (f.e. picking rack). 
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To solve this issue, the model proposed by Alvares was adapted. In 

our framework, stops are defined when the velocity of the operator  

drops below a user-specified threshold value for a prolonged period 

of time. These stops can happen anywhere in the work station, 

however they are only considered to be relevant if a stop happens 

within reaching distance of a so-called Point-of-Interest (PoI) in the 

work station layout. Stops that are outside reaching distance of a 

specific POI are considered to be disturbances. 

To determine the location of those POI’s, a heatmap of the resulting 

trajectory is generated. This heatmap visualizes how frequent specific 

locations are visited by the operator. This heatmap is generated by 

creating a square grid for the whole scene and calculating for each grid 

cell the number of frames in which the operator is located in that cell. 

Such a heatmap Is shown in Figure 36.  

 

Figure 36: Heatmap of visited locations 

This heatmap is subsequently used to determine the location of the 

points of interest (PoI) in the work station. Points of interests are 

characterized by the fact that operators spend a significant amount of 

their time at those locations. Their location is determined by finding 

the local maxima in the heatmap as shown in Figure 37.  
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Figure 37: Calculation of PoI based on heatmap 

These locations can be linked to typical actions that happen in an 

assembly work station. Typical actions in assembly work stations are 

parts picking, assembling parts on the final product or reading 

instructions. This way an annotated map of the work station is 

generated.  

In some cases, the necessary information about the work station  is 

readily available in the form of, for instance, CAD drawings. In that 

case, the location of the PoI’s can be matched to the information in 

the CAD files to automate the generation of this annotated map. If this 

information does not exist, the calculated locations of the PoI’s are 

presented to the methods engineer. Based on his knowledge of the 

work station or the video images, he is able to link specific locations 

to certain actions.  

Two different types of actions are defined: stops and moves.  Events 

are defined when a stop occurs in the neighborhood of one of the 

points-of-interest in the work station layout. The description on the 

PoI where the event happens, defines what task is performed during 

in this event. For each event, the location and duration are saved to 

an event list file. 

When the operator has to move from one PoI to another in between 

events, moves are registered. These moves are also added to the 

event list. This way the event list describes the trajectories and all 
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actions performed in a human-readable manner. An excerpt from 

such an event list is provided in Figure 38. Besides the description of 

the tasks performed, crucial information such as task times is logged 

in the event list. 

 

Figure 38: Excerpt from the automatically generated eventlist 

2.3.3. Trajectory segmentation 

The vision systems provides one single stream of time-stamped xy-

coordinates of the operators position. If we want to use this 

information to evaluate the operators’ performance, this data stream 

needs to be divided into segments. These segments could be a 

complete work cycle or a specific task, depending on the level of detail 

required for the analysis. Sometimes this segmentation can be done 

by synchronizing the vision systems’ output to information coming 

from the MES system. This information can indicate when a specific 

product is finished and when a new work cycle starts. 

However,  this information is not always available. Performing the 

segmentation manually, on the other hand, would be time-

consuming. Therefore, the segmentation of the resulting trajectory in 

interesting segments, has been automated. 

To do this, the resulting trajectory is linked to the information in the 

annotated work station map, generated earlier. More specific, we 

define an assembly zone around the location of the end product.  

Typical assembly actions are structured as follows: first a part is picked 

from a kitting cart or rack, then it is moved towards the assembly 

zone, subsequently it is positioned on the final assembly before 

ultimately being fixed to the end product. Under the assumption that 
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each assembly task or work cycle ends with an action on the final 

assembly, we can define a new work cycle when the operator leaves 

the assembly zone. The segmentation could also be performed based 

on the event list previously described. However we opted to start 

from the raw trajectory data so we could use the framework purely 

for outlier detection without the need to define completely annotated 

work station layouts. 

Due to disturbances and noise around the edges of the assembly zone, 

this segmentation method may sometimes result in unrealistically 

short segments. When the duration of a particular segment is 

significantly less than the average duration of a  work cycle, it is 

considered to be a noisy result of the segmentation procedure and 

this cycle is added to the previous work cycle. This filtering method is 

purely based on the duration of the resulting segments. Therefore it 

does not guarantee that small corrective actions, such as going back 

to check if there are no mistakes, are filtered before classification. 

However, since the nature of these corrective cycles will strongly 

differ from normal work cycles, the classification method will 

eventually treat them as outliers, which are returned to the analyst 

for further investigation. 

Figure 39 shows how the trajectory data set visualized in Figure 33 is 

subdivided in segments describing different work cycles. 
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Figure 39: Segmentation of the trajectory 

 

 



2-24 
 

2.4. Conclusions 
Camera systems offer three advantages compared to other Real-Time 

location systems when monitoring assembly line operators: (1) 

cameras are less intrusive than wearable sensors, cameras have 

become relatively inexpensive and (2) the resulting video images 

contain large amounts of useful information which can be used for the 

analysis of the work stations’ performance. Therefore, we propose a 

multi-camera based operator monitoring system in this chapter. 

Throughout this research, three different data sets have been used. In 

the first section of this chapter, these data sets are described in more 

detail. The first data set was created by monitoring the movements of 

human operators in a simulated assembly line work station in a 

laboratory setting. The second data set was found in literature and 

contains a higher number of trajectories, which is useful to validate 

the classification framework described in the next chapter. The final 

data set was created by recording the behavior of an assembly line 

operator in a real assembly work station at a supplier of 

subassemblies for the automotive industry.  

In the second section, a multi-camera vision system to monitor the 

behavior of human operators was introduced. Through the use of the 

voxel carving principle, a 3D reconstruction of the operators’ body is 

generated for every time frame in the video images. Thereby, special 

attention was given to the issue of occluding objects in the view of the 

cameras. This 3D reconstruction is then used to monitor the 

operators’ movement through the work station. The presented video 

processing algorithms were developed by researchers of IMEC and 

improved during the joint StarTT project Complexity [77] for use in 

industrial environments. 

The trajectories returned by this vision system contain noise and lack 

the necessary information to explain the operators’ behavior. 

Therefore a data processing framework, based on the layout of the 

work station, is presented in the third section of this chapter. This 

framework results in an automated transcription of the events that 

took place in the recorded video images. This so-called event list can 
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be used to facilitate the generation of work instructions and provides 

automated time measurements of all tasks performed. 
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Chapter 3 Operator Trajectory 

Clustering 
 

With the development of new location based positioning devices, 

there is an increasing trend to monitor and capture the trajectories of 

moving objects. The captured data potentially contains a lot of 

valuable information. This has led to an increasing interest of 

researchers in trajectory clustering methods and algorithms.  

Trajectory clustering is an efficient method to group similar objects, in 

this case trajectories, in clusters, thereby finding the underlying 

structure in a large unstructured data set of non-categorized objects. 

In this chapter, a method to automate the analysis of the work 

performed in assembly line work stations is developed. The method 

automatically clusters the trajectories followed by the operators 

during his work cycle and differentiates between normal and irregular 

patterns. There are two main advantages to clustering human 

operator trajectories: (1) Irregular trajectories indicate a source of 

variability in the process. This kind of variability in a manufacturing 

process is not desirable and is often caused by all sorts of different 

problems. These trajectories are worth further investigation. The 

classification method speeds up the analysis process by filtering the 

trajectories and only feeding back relevant events to the analyst. (2) 

Most time study techniques rely on statistical methods. In order to 

obtain significant results, a large amount of measurements needs to 

be done. The method presented in this chapter, supports the analyst 

in this time-consuming task by grouping the similar trajectories and 

automatically performing the time measurement. This way, the 

operator can be monitored over a longer period of time without the 

need for manual measurements. This provides more accurate and 

reliable data with less effort. 

This chapter provides an overview of existing clustering methods and 

algorithms described in literature. Based on this literature review, a 
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suitable method for clustering human operator trajectories in an 

industrial setting is presented. Finally this method is validated based 

on a number of experimental datasets and compared to commonly 

used alternative methods. 

3.1. LITERATURE REVIEW 
The rapid development of GPS devices, sensor networks, wireless 

communication technology and video analysis techniques has made it 

possible to capture massive amounts of trajectory data of all kinds of 

moving objects. On top of that, cloud computing and storage 

technology provides practically unlimited data storage capacity. This 

results in an ever increasing amount of trajectory data of all sorts to 

be stored captured and stored in massive databases. These data sets 

potentially contain large amounts of valuable information. To unveil 

this information, efficient and effective methods and algorithms to 

analyze this data are required. Therefore, trajectory clustering 

methods have drawn a lot of attention of researchers in the past 

couple of years. Clustering methods group data instances into subsets 

in such a manner that similar instances are grouped together, while 

different instances belong to different clusters [85]. Clustering 

methods unveil the underlying structure of a data set in an efficient 

manner. Formally, the clustering structure of a data set S can be 

described as a set of subsets C = C1, C2, …, Ck, such that:  𝑆 =  ⋃ 𝐶𝑖
𝑘
𝑖=1  

and 𝐶𝑖⋂𝐶𝑗 =  ∅  for 𝑖 ≠ 𝑗. This means that each instance of the data 

set S belongs to exactly one single subset. Clustering methods also 

produce an interesting by-product, namely outliers. These are single-

instance subsets of the data set. Therefore, outliers or anomalies are 

trajectories that show little or no similarity to the other trajectories in 

the data set [86]. In an industrial context, these  anomalies are 

considered to be interesting for further investigation, since they may 

indicate irregularities or problems in the concerning process. 

3.1.1. (Dis)similarity measures for trajectories of moving objects 

An important factor in the success of clustering algorithms is the 

choice for a suitable distance or similarity measure. In traditional 

clustering methods, the distance between data points is 

unambiguously determined by an intuitive distance measure, such as 
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Euclidean or Manhattan distances. Trajectory data however are time 

series which are often multi-dimensional in nature and in most cases 

have different lengths. Traditional distance measures are not easily 

applicable to this type data. Therefore, it is important to select a 

measure which can comprehensively compare the similarity and 

differences between two trajectories. With the advent of novel 

tracking and recording technologies and the related increase of 

available trajectory data, there is a growing interest in literature in 

new, more suitable distance measures for trajectory data. This section 

provides an overview of existing similarity measures and their 

applicability to the trajectory clustering problem. 

Euclidean distance 

One of the most intuitive distance measures for clustering trajectory 

data is the Euclidean distance. It was applied by Fu [87] on the 

problem of anomaly detection in the trajectories of vehicles. Given 

two p-dimensional trajectories Li (a1, a2, …, an) and Lj (b1, b2, …, bn)  with 

length n, the Euclidean distance can be calculated as follows[86]: 

 

𝐷(𝐿𝑖 , 𝐿𝑗) =  
1

𝑛
 ∑√∑(𝑎𝑘

𝑚 − 𝑏𝑘
𝑚)²

𝑝

𝑚=1

𝑛

𝑘=1

 (5) 

 
There are two main advantages to evaluating the similarity of two 
trajectories using the Euclidean distance: (1) Euclidean distance is 
parameter-free and (2) the complexity of the algorithm is linear which 
means that it can be applied to larger data sets. Despite the clear 
advantages, there exist only a limited number of successful 
applications of the method to the trajectory clustering problem. 
Reasons are the sensitivity of the measure to noise in the dataset, the 
inability to cope with time deformations of the trajectories and the 
requirement that the length of both trajectory segments needs to be 
equal.  
Bashir [88] used a combination of principle component analysis (PCA) 
and Euclidean distance to reduce the dimensions of the data. The 
trajectory was first represented as a 1-dimensional signal by 
concatenating the x and y projections before being converted into the 
most significant PCA coefficients. Trajectory similarity is subsequently 
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calculated as the Euclidean distance calculated with PCA coefficients. 
The reduction in dimensions leads to a faster method and an 
increased ability to cope with noise in comparison with the application 
of Euclidean distance on the raw data. However, the requirement for 
trajectories of equal length remains, which limits the practical use of 
the method. 
 
Hausdorff distance  
 
The Hausdorff distance is a similarity measure commonly used in 
computer vision [89]. More recently it has been successfully applied 
on the problem of trajectory clustering [90, 91]. The Hausdorff 
distance Dh is defined as follows: 
 

 𝐷ℎ(𝐿𝑖, 𝐿𝑗) = max (ℎ(𝐿𝑖, 𝐿𝑗), ℎ(𝐿𝑗, 𝐿𝑖)) (6) 

   
 ℎ(𝐿𝑖, 𝐿𝑗) = max𝑎∈𝐿𝑖  (min𝑏∈𝐿𝑗  (𝑑𝑖𝑠𝑡(𝑎, 𝑏)) 

 

(7) 

In the case of trajectory data, dist(a, b) is the Euclidean distance 
between a and b belonging to Li and Lj respectively.  
The Hausdorff distance can intuitively be explained as the greatest of 
distances between a sampling point in the first trajectory to the 
closest point in the second trajectory. In practice this means that two 
trajectories are close in the Hausdorff distance, if every point of the 
first trajectory is close to some point of the second trajectory. 
Despite its successful application in a number of applications, the 
Hausdorff distance has two major shortcomings. Since the Haussdorf 
distance is shape-based, it doesn’t take into account time 
deformations of the trajectory. Also, looking at the intuitive definition 
of the measure, it is clear that the Hausdorff distance is very sensitive 
to outliers in the trajectory data. One deviating point in the trajectory 
data will yield a poor similarity score between two trajectories, even 
if most parts of the two trajectories are very similar. 
 
One way distance 
 
Shape-based similarity measures, such as the Hausdorff distance, tend 
to be rather sensitive to noise and outliers in the trajectory data. Also, 
most existing similarity measures that are commonly used for 
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comparing trajectory data, require a mapping in which the order of 
data points is preserved at all times. For example: assume a1 and a2 
are two points of trajectory L1 and b1 and b2 are two points of 
trajectory L2. This would mean that, if b1 is mapped on to a1, b2 is 
mapped on to a2 and if a1 appears in L1 before a2, then b1 is required 
to appear in L2 before b2. 
In some cases, this is a limitation to the similarity measurement. To 
overcome these problems, Lin and Su [92] developed a similarity 
measure based on the one-way distance (OWD).  
 
Assume Dpoint(a, L2) represents the distance between point a and 
trajectory L2: 

 𝐷𝑝𝑜𝑖𝑛𝑡(𝑎, 𝐿2) =  min
𝑏 ∈ 𝐿2

(𝐷𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑎, 𝑏)) (8) 

 
In that case, we can define the one-way distance between trajectory 
L1 and trajectory L2 as follows: 

 
𝐷𝑂𝑊𝐷(𝐿1, 𝐿2) =  

1

|𝐿1|
∑ 𝐷𝑝𝑜𝑖𝑛𝑡(𝑎, 𝐿2)

𝑎∈𝐿1

  (9) 

 
The one-way distance is not symmetrical, therefore the distance 
between two trajectories is calculated by taking the average of their 
respective one way distances: 

 
𝐷 = 

1

2
∗ (𝐷𝑂𝑊𝐷(𝐿1, 𝐿2) + 𝐷𝑂𝑊𝐷(𝐿2, 𝐿1)) (10) 

 
Longest common subsequence 

Vlachos, Buzan and Liu [93-95] used the longest common 

subsequence (LCSS) measure for the classification of 2D trajectory 

data to overcome issues other distance measures have with noisy 

data. LCSS is a similarity measure that finds the alignment between 

two trajectories that maximizes the length of the common 

subsequence and can be recursively calculated as follows: 

 

{
 

 
0, 𝑖𝑓 𝐿1 𝑜𝑟 𝐿2 =  ∅ 

1 + 𝐿𝐶𝑆𝑆 ,𝛿(𝐻𝐸𝐴𝐷(𝐿1),𝐻𝐸𝐴𝐷(𝐿2)), 𝑖𝑓 ||𝑎𝑥,𝑛 − 𝑏𝑥,𝑚|| < 휀, ||𝑎𝑦,𝑛 − 𝑏𝑦,𝑚|| < 휀 𝑎𝑛𝑑 ||𝑛 −𝑚|| < 𝛿 

𝑀𝐴𝑋 (𝐿𝐶𝑆𝑆 ,𝛿(𝐻𝐸𝐴𝐷(𝐿1), 𝐿2), 𝐿𝐶𝑆𝑆 ,𝛿(𝐿1, 𝐻𝐸𝐴𝐷(𝐿2))) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

Where 𝐿1 𝑎𝑛𝑑 𝐿2 are two trajectories respective lengths n and m and 

where HEAD(𝐿1) represents the subsequence ((𝑎𝑥,1, 

𝑎𝑦,1),… , (𝑎𝑥,𝑛−1, 𝑎𝑦,𝑛−1)) of subsequence 𝐿1 = ((𝑎𝑥,1, 
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𝑎𝑦,1),… , (𝑎𝑥,𝑛 , 𝑎𝑦,𝑛)).  LCSS is controlled by two parameters: 𝛿 limits 

how far one can go to match a given point of one trajectory to a point 

in the other trajectory. The matching threshold 휀 determines whether 

two points in two trajectories are close enough to be considered as a 

match. Based on the longest common subsequence, the similarity of 

two trajectories can be calculated as follows: 

 
𝑆𝐿𝐶𝑆𝑆(𝐿1, 𝐿2, 휀, 𝜕) =

𝐿𝐶𝑆𝑆 ,𝛿(𝐿1, 𝐿2)

min (𝑛,𝑚)
 (12) 

Most clustering and classification methods require a distance 

measure instead of a measure of trajectory similarity. Therefore, a 

distance measure based on the LCSS of two trajectories can be 

computed according to Vlachos [93] using following formula: 

 𝑑𝑖𝑠𝑡𝐿𝐶𝑆𝑆(𝐿1, 𝐿2, 휀, 𝜕) = 1 − 𝑆𝐿𝐶𝑆𝑆(𝐿1, 𝐿2, 휀, 𝜕) (13) 
 

The LCSS distance measure has been effectively and efficiently applied 

to a wide range of different trajectory data classification problems. 

One of the main advantages of LCSS lies in the fact that it allows for 

unmatched points in the trajectories under comparison. This way, the 

effect of erroneous data points or noise in the trajectory data is 

limited. However, LCSS heavily relies on two user-defined parameters. 

Choosing the optimal values for these parameters remains a 

challenging problem which can have a severe impact on the results of 

the clustering method. 

Fréchet distance 

Another commonly used distance measure to compare two 

trajectories was introduced by Maurice Fréchet. It is often referred to 

as the “dog-leash distance” because it can intuitively be explained by 

imagining a person walking its dog on a leash. If the two of them are 

each walking on two separate paths without backtracking from one 

endpoint to another, then the Fréchet distance can be represented by 

the minimum length of the leash required to connect the dog and its 

owner [96]. Formally, the discrete Fréchet distance can be described 

as follows: 
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Given two trajectories Li (a1, …,an) and Lj(b1, …, bm) with respective 

lengths n and m, we can define a coupling C ((au1, bv1), …, (aul, bul)) 

between distinct pairs of Li and Lj such that u1 = , v1 = 1, ul = n, vl = m, 

and for all I = 1,…, l, vi+1 = vi or vi+1 = vi+1 and ui+1 = ui or ui+1 = ui+1. 

The length ||C|| of such a coupling C is the length of the longest link 

in C: 

 ||𝐶|| =  max
𝑖=1,…,𝑙

(𝑑(aui, bvi)) (14) 

Where d(aui, bvi) represents the Euclidean distance between points aui 

and bvi. The Fréchet distance between two given polygonal 

trajectories Li and Lj is defined to be [97]: 

 𝐷𝑓(𝐿𝑖, 𝐿𝑗) =  min (||𝐶||, 𝑤ℎ𝑒𝑟𝑒 𝐶 𝑖𝑠 𝑎 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐿𝑖  𝑎𝑛𝑑 𝐿𝑗) (15) 
 

Different from the distance measures previously mentioned, the 

Fréchet distance takes into account the sequential relationships of the 

points in the trajectories while measuring their similarity. This 

typically results in a more valuable similarity estimation than 

measures that are purely shape-based. This is visualized in  Figure 40, 

where H indicates the Hausdorff distance and F represents the Fréchet 

distance. However both trajectories are geometrically close to each 

other and even share common points, they are in reality very 

different. This is indicated by a low Hausdorff distance compared to a 

very high Fréchet distance estimation. 

Dynamic time warping 

Dynamic time warping is originally developed to compare sound 

signals for speech recognition purposes. By now, It has been 

successfully applied on various types of time-dependent data in order 

to cope with time deformations of time series [98]. 
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Figure 40: Frechet vs. Haussdorf 

Dynamic time warping makes it possible to compare time series of 

different lengths. The warping method aims to minimize the distance 

between two time series by stretching them in a well thought out 

manner. Originally, the DTW algorithm was developed for one-

dimensional time series. However the method can easily be adapted 

to cope with multi-dimensional time series, such as trajectory data. 

There are numerous examples of the application of DTW on all sorts 

of trajectory data. Vaughan [99] used this technique to assess the skill 

level of aspiring physicians by comparing trajectories obtained 

through a virtual reality haptic simulator for epidural needle insertion. 

Cheng [100] proposed a framework to identify paths with a high 

probability of traffic congestion by using DTW to compare the 

similarity of trajectories in intelligent transportation systems. 

Successful applications of the warping algorithm on human motion 

trajectories, however not in an industrial setting, can be found in the 

work presented by Pohl [101] and Blackburn [102].  

Given two time series L1 := (a1, a2, … , aN) and L2 := (b1, b2, …, bM) with 
respective lengths N, M ∈ ℕ, DTW tries to find an optimal warping 
path that minimizes the distance between two time-dependent 
sequences. The warping path p is a sequence of points, p = (p1, p2, …, 
pK) with pk = (nk, mk) ∈ [1:N] x [1:M] for k ∈ [1:K] under three 
conditions: 
 

• Boundary condition: p1 = (1, 1) and pk = (N, M). The 
warping path starts and ends at the respective 
beginning and end of both sequences. 
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• Monotonicity condition: n1 ≤ n2 ≤ … ≤ nK and m1 ≤ m2 

≤ … ≤ mk. The warping path preserves the time 
sequence in trajectory matching. In other words, 
“Backtracking” is not allowed. 

• Continuity condition: pk+1 – pk ∈ {(1, 0), (0, 1), (1, 1)} 
for k ∈ [1:K-1]. All points of both time-dependent 
sequences are included in the warping path. 
 

To find the optimal alignment path, an n by m cost matric C is 
constructed recursively as follows [103] 
 

 C(Xi, Yj)  = δ(xi, yj)  +  min{ C(Xi − 1, Yj − 1) , C(Xi − 1, Yj), C(Xi, Yj − 1) } (16) 
 

where Xi an Yj are the respective subsequences (x1, x2, … , xi) and (y1, 

y2, …, yj) and (xi, yj) is the Euclidean distance between xi and yj. The 
DTW distance between two time series X and Y based on their optimal 
warping path, can be calculated using the equation below: 
 

 DTW(X, Y) = 
𝐶(𝑋𝑛,𝑌𝑚)

𝐾
 (17) 

 
where K = m + n. This weighing factor is used to normalize the length 
difference of different warping paths [104]. Figure 41 and Figure 42 
demonstrate how two one-dimensional time series, indicated by the 
dotted and triangular markers, are aligned using the DTW algorithm. 
Points that are matched by the algorithm are connected by the dashed 
lines. The time-warped distance between the two time series is 
calculated by summing up the difference in value for all matched data 

Figure 41: DTW alignment example 
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points. In case of the two-dimensional paths, the time-warped 
distance is equal to the sum of the sum of the Euclidean distance 
between matched data points. 
 

 

Figure 42: DTW Warping path 

The pseudocode of the DTW algorithm is provided in Figure 43. 

 

Figure 43: DTW algorithm outline 

Similarity measures: summary 
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In this section, an overview of commonly used similarity measures for 

moving object trajectories is provided. While the Euclidean distance is 

the most intuitive measure, it is not capable of handling trajectories 

of different length. Therefore, this measure will not be investigated 

further in this chapter. The fit-for-purpose of the other measures is 

investigated experimentally later on in this chapter. The advantages 

and disadvantages of these measures are summarized in Table 5. 

Table 5: Similarity measures overview 

 

In many clustering applications, a normalization step is performed 
first. According to recent literature concerned with time series  
clustering, z-normalization is an essential preprocessing step in 
structural pattern mining [105] because it allows a mining algorithm 
to focus on the structural similarities/dissimilarities rather than on the 
amplitude-driven ones. However, in our case, amplitude is important 
as we are interested in the absolute location of the operator. In Figure 
44 we show how valuable information about the operators’ position 
could get lost through normalization. Therefore, we use non-
normalized trajectories as input for the clustering algorithm. 
 

 
Figure 44: Effect of z-normalization of trajectory data 

 

parameter 

independent

time 

deformations
noise sensitivity calculation time

euclidean P O O(n)

haussdorf P O -- O(n+m)

OWD P O - 0(n+m)

LCSS O O + O(n*m)

Fréchet P O - O(n*m)

DTW P P ++ O(n*m)
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3.1.2. Clustering methods for trajectories of moving objects 

A wide range of different clustering methods and algorithms have 

been proposed in literature. Traditionally, these clustering methods 

are subdivided into two main categories, namely hierarchical and  

partitional clustering methods [106].  According to Han [107] three 

more categories can be identified: density-based, model-based and 

grid-based clustering methods. Each of these methods are based on 

different principles and therefore have their own preferred 

application domain. Below, the basic principles of each of these 

categories of clustering methods that are commonly used for 

trajectory clustering, are described together with their advantages 

and drawbacks when applied to this domain. 

Partitioning-based methods 

Partitioning-based methods start from an initial (random) partitioning 

of the objects in the data set and try to minimize a given criterion by 

iteratively relocating objects between k clusters until a (local) 

optimum is achieved [85]. These methods require only one parameter 

k (𝑘 ≤ 𝑛, where n is the number of objects in the data set), which is 

mostly predefined by the user. Typical examples of partitioning-based 

methods are k-means [108] and k-medoids clustering [109]. The 

convergence of typical partitioning-based methods is local and 

therefore a global optimum cannot be guaranteed. Theoretically, this 

problem of local minima could be overcome be using exhaustive 

enumeration since the number of objects in the data set and the 

number of clusters are both finite numbers. In practice however, 

finding a globally optimal solution for this problem is proven to be NP-

hard and therefore not useful in practice. The number of possible 

partitions for n observations into K clusters is a Stirling number of the 

second kind and can thus be calculated as follows: 
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𝑆𝑛
𝐾 = 

1

𝐾!
 ∑−1𝑘−𝑖  (

𝐾

𝑖
) 𝑖𝑛

𝐾

𝑖=0

 (18) 

 

As an example, a small data set containing 20 objects and 3 possible 

clusters would require more than 580 million possible solutions to be 

evaluated. This shows that exhaustive enumeration of all possible 

partitions is practically unfeasible, even for relatively small datasets 

and a predefined number of clusters [110]. If the number of clusters 

would be unknown, the problem would become even more extensive.  

Partitioning methods such as k-means and k-medoids are often used 

because of their speed of convergence towards a local optimum, their 

ease of implementation and interpretation of the results and their 

adaptability to sparse data [111]. However there exist a number of 

disadvantages to these methods which render them difficult to apply 

on human motion trajectory data:  (1) the number of clusters needs 

to be known beforehand, requiring a priori knowledge which is 

unavailable in most cases, (2) the choice of the initial partitioning 

largely determines whether a local or global optimum is reached, (3) 

these methods are very sensitive to outliers and noisy data [85] and 

(4) partitioning and relocation methods require that the complete 

data set is loaded into the memory, leading to problems of memory 

cost when dealing with larger data sets [112]. 

Hierarchical methods 

Hierarchical clustering methods aim to structure a given data set by 

building a hierarchy of clusters. These methods can either follow a 

bottom-up or top-down approach. The first case is referred to as 

agglomerative hierarchical clustering (AHC) methods. These methods 

start by partitioning each object in the data set in its own cluster and 

proceeds by incrementally merging the ‘most similar’ clusters as it 

moves up the hierarchy. Divisive methods take a top-down approach 

on the clustering problem. In this case, all objects are considered to 

belong to the same cluster, which is subsequently split up as the 

method moves down the hierarchy [113]. 
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Hierarchical clustering methods usually result in a dendrogram. 

Dendrograms are a visual representation of the nested grouping of 

data objects and the similarity levels at which these groupings change. 

An example of a dendrogram is given in Figure 45. 

 

Figure 45: dendrogram example 

As mentioned earlier in this chapter, there are several different 

distance measures that can be used in hierarchical clustering 

methods. Besides the distance measure, the decision to merge or 

divide certain clusters is also based on a linkage rule, which decides 

what criterion is optimized by the clustering algorithm. Commonly 

used linkage rules are: 

Linkage criteria 

1. Single linkage: In single linkage agglomerative clustering 

methods, the similarity between two clusters is based on the 

similarity of their most similar elements [114]. In other words, 

single linkage clustering methods combine the clusters that 

contain the closest pair of elements which don’t belong to the 

same cluster. In this case, the assessment of cluster similarity 

is solely based on the similarity of a single pair of elements. 

This results in a very local linkage criterion which does not 

fully reflect the distribution of elements in a cluster. As a 

consequence, clusters that are very distant from each other 

may be merged because of the presence of a single pair of 
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elements that are close to each other. This phenomenon, 

called the chaining effect, is visualized in Figure 46. 

 

 

 

 

 

 

 

 

2. Complete linkage: The complete linkage or ‘furthest 

neighbor’ criterion works in a similar way as single linkage, 

with the difference that this method considers the furthest 

distance between pairs instead of the minimum distance. This 

approach solves the problem of possible chaining effects, but 

introduces a new issue. When a cluster contains outlying data, 

the complete linkage criterion could prevent the merge of 

close-by clusters because the distance between these clusters 

is only determined by the outlying object. This is shown in 

Figure 47, where the outlying data point in the green cluster 

results in a large distance between the blue and green cluster 

[115]. 

 

Figure 46: Chaining effect in single linkage AHC 
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Figure 47: disadvantage of complete linkage 

3. Average linkage: The average linkage criterion, also referred 

to as Unweighted Pair-Group Method using Arithmetic 

Averages, calculates the distance between to separate 

clusters as the average distance between one object in one 

cluster to all entities in the other cluster. This linkage criterion 

overcomes the shortcomings of complete and single linkage 

clustering methods [116]. 

4. Ward’s linkage method: Ward’s minimum variance method is 

a special case of the objective function approach presented 

by Ward [117]. In this approach, the decision on which 

clusters to merge next in the agglomerative clustering is 

based on the optimal value of a certain objective function. 

This objective function can be any function that reflects the 

goal the user aims to achieve.  In the case of Ward’s minimum 

variance method, the aim is to find the pair of clusters that 

results in the minimum increase of total within-cluster 

variance after merging. 

Hierarchical clustering methods offer two main advantages. First of 

all, hierarchical clustering algorithms result in a similarity structure 

instead of one single partitioning of the data objects. Depending on 

the application, the user can choose between different partitions 

according to the desired similarity level. The second advantage is the 

versatility of hierarchical clustering methods. Hierarchical methods 

tend to work well with a wide variety of similarity measures and 

maintain good performance on data sets with non-isotropic clusters 

[85]. On the downside, hierarchical methods have no backtracking 
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capability, which means that once a merge or division is performed, it 

cannot be undone. Furthermore the time complexity of these 

methods is at least O(m²) (where m is the number of data objects in 

the data set), which yields rather large computational time when 

dealing with larger data sets. 

Alternative methods 

Most clustering methods can only deal with clusters of convex 

(spherical) shape. Typical density based methods such as DBSCAN 

[118] and OPTICS [119] are able to group clusters in any shape. These 

methods differ substantially from other clustering algorithms in the 

way clusters are defined. The basic idea behind density-based 

clustering is that for each object in a particular cluster, the 

neighborhood of a given radius  must contain at least a minimum of 

npts data objects [120].  In other words: the cardinality of this 

neighborhood has to exceed a specified threshold value. Density-

based methods tend to perform rather well on real-world applications 

because they are robust to problems such as noise and outliers. This 

can be explained by the fact that outliers usually only have a limited 

effect on the overall density distribution of the data set. However, 

these methods are heavily depending on user-defined parameters. 

Determining the right parameter settings for a specific case remains a 

difficult task.  

To bypass the parameter-dependency of traditional density-based 

methods, [121] proposed an adaptive trajectory clustering method 

based on grids and density (ATCGD). ATCGD consists of three separate 

phases: (1) in the partitioning phase all trajectories are approximated 

by a set of linear subtrajectories in order to compress the trajectory 

data. In this case, the partitioning of trajectories is based on the 

average angular difference. (2) Afterwards these subtrajectories are 

mapped into cells of a predefined grid during the mapping phase. 

During this mapping procedure, the optimal values for npts and  are 

computed and used during the clustering phase (3), using a clustering 

method that is based on the DBSCAN algorithm.  

Similar partition and group algorithms have been proposed for 

classifying trajectory data to overcome two main shortcomings of 



3-18 
 

traditional clustering methods that consider the whole trajectory as 

the basic unit: (1) these methods overlook local characteristics that 

occur in complex moving object trajectories and (2) common sub-

trajectories or local patterns can’t be found [86]. Partitioning of 

trajectories can be performed based on a wide range of spatial and 

temporal criteria, such as velocity, curvature, acceleration, location 

and shape. Buchin [122] proposed a framework that partitions a given 

trajectory in a minimum number of segments based on any 

(combination) of these criteria. Partition and group algorithms tend to 

perform very well on very long and complex trajectories of high 

dimensionality. These algorithms use certain partitioning criteria to 

form basic units for the clustering algorithm. The main drawback of 

this concept lies in the fact that the results of the clustering method is 

heavily relying on the partitioning criteria used. 

A number of authors focus on the reduction of the trajectory 

uncertainty to improve clustering results and enhance the utility of 

trajectory data and clustering methods. The uncertainty of 

trajectories means that,  although objects move continuously, 

tracking technology only allows for location updates at discrete times. 

What happens to the object in between these sampling points, 

remains unknown and can only be estimated, creating uncertainty in 

the data at hand. Examples of clustering methods for uncertain 

trajectory data are described in [123] and [124] . 

Today, the wide range of available sensors makes it possible to enrich 

the trajectory data, which generally only consists of a stream of 

timestamped locations, with additional information such as elevation, 

rotation, direction or acceleration. Recently, an increasing number of 

researchers started to focus on using this kind of semantic information 

in the clustering process. Palma [125] proposed a method that defines 

moves and stops in trajectory data. Stops are interesting locations 

where the object stayed for a certain amount of time. This 

information, when linked to geographical data, results in a semantic 

description of a trajectory. Such a description, for example the 

touristic places a person visited and the time he/she stayed at that 

place, can be used as a basis for clustering. Other examples of 

semantic trajectory data clustering can be found in [126-128]. 
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3.1.3. Determining the number of clusters in a data set 

Because of its capability to find a similarity structure in a data set 

without prior knowledge about the number of patterns (different 

trajectories) in that data set, hierarchical agglomerative clustering is 

selected as the most suitable clustering method for this application. 

AHC works with practically any (dis)similarity measure and its 

outcome is not dependent of any specific parameter settings. The 

results of a AHC routine are typically visualized in a so-called 

dendrogram. The final decision on which trajectories can be classified 

in the same cluster and which trajectories represent abnormal 

operator behavior, is taken by cutting the dendrogram at a particular 

height. There exist different methods to determine the optimal 

cutting height. In this section, four commonly used methods are 

explained. These four methods were implemented and their 

suitability for clustering human operator trajectories was investigated 

later on in this chapter. 

Threshold cut 

A commonly used and straightforward method to decide on the 

number of clusters in a data set consists of cutting the dendrogram at 

a predetermined height, usually expressed as fraction of the total 

height of the dendrogram. The threshold cut method is visualized in 

Figure 48. 
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Figure 48: threshold dendrogram cut-off 

The main advantage of this method lies in its simplicity, however the 

results are heavily depending on the chosen cut-off value. Also, the 

method doesn’t take into account the structure of the dendrogram. 

For example, consider a data set that consists of only one cluster of 

similar trajectories, based on manual analysis of the trajectories. In 

that case, cutting the dendrogram at a predetermined height will 

probably result in a relatively high number of clusters of similar size, 

as demonstrated in Figure 49. 

 

Figure 49: Shortcomings of threshold cut-off 

Elbow method 
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The elbow method is based determining the knee or elbow of an error 

curve through visual evaluation of the error plot. This error-curve is 

constructed by dividing the data set in k cluster, for k ranging from 1 

to n. This is done by cutting the dendrogram horizontally in a way the 

dendrogram is divided in k branches. For each value of k, the error is 

calculated by taking the squared sum of the distance between all 

objects in the data set to their cluster centroid.   An example of such 

an error curve is shown in Figure 50. 

 

Figure 50: elbow method error curve 

This error curve typically looks like an arm or leg. The point of maximal 

curvature of this curve is called the elbow or knee of the plot. This 

point represents the optimal number of clusters in the data set.  

The idea behind this method is the following. When increasing the 

number of clusters, each trajectory in the data set will be closer to the 

centroid of its cluster. Past the elbow of the error-curve, the benefits 

of adding an extra cluster is significantly decreasing. 

The elbow method, although less arbitrary than the threshold cut-off 

method, performs less well in cases where the data is not clearly 

clustered. In that case, the error curve is a rather smooth curve in 

which it is difficult to determine the optimal number of clusters. An 

example of the error-curve of such a data set is shown in Figure 51. 
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Figure 51: elbow method error curve: flat similarity structure 

There exist a number of methods that aim to automate the evaluation 

of the error curve. The L-method [129] makes use of the property that 

both the parts left and right of the elbow are often approximately 

linear. Therefore, for every possible value of k, two lines are fitted 

through the error curve, one through the points on the left side of the 

presumed elbow and one through the points on the right side. These 

two lines intersect at the elbow of the curve. The pair of lines that 

most closely fits the curve, determines the optimal number of clusters 

in the data set. The best-fit is calculated using the least squared 

method. The L-method is further explained in Figure 52. 

 

 

Figure 52: L-method: finding knee of error curve 
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Gap statistic  

The GAP-statistic also makes use of the plot of an error measure. The 

basic idea is to standardize this error graph and compare it to its 

expectation under an appropriate null reference distribution of the 

data [130]. 

In this case, let {Li}, I = 1,…,n be our data set consisting of n different 

trajectories. Then dii’ is the squared distance between trajectory i and 

i’. Suppose this data set is clustered into k clusters C1, C2, …, Ck, with Cr 

denoting the indices of the trajectories in cluster r and nr = |Cr|. 

Now we can calculate the pooled within-cluster sum of squares 

around the cluster means as follows: 

 

 
𝑊𝑘 = ∑

1

2 𝑛𝑟
 𝐷𝑟

𝑘

𝑟=1

 (19) 

 

where Dr is the sum of all pairwise distances between all trajectories 

in cluster r: 

 𝐷𝑟 = ∑ 𝑑𝑖𝑖′
𝑖,𝑖′∈ 𝐶𝑟

 (20) 

Wk is evaluated for a different number of clusters k. The optimal 

number of clusters is determined by the value of k for which the 

normalized error curve log(Wk) falls the furthest below the expected 

error curve of the reference curve. 

 𝐺𝑎𝑝𝑛(𝑘) =  𝐸𝑛
∗{log𝑊𝑘} − log𝑊𝑘 (21) 

 

Where 𝐸𝑛
∗  describes the expected value under a sample size n from 

the reference distribution. In this case, the reference distribution 

consists of trajectories of which the pairwise distance is uniformly 

distributed between the minimum and maximum pairwise distance 

between the trajectories in the data set.  
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To estimate 𝐸𝑛
∗{log𝑊𝑘}, we calculate the average of B copies log𝑊𝑘

∗, 

each of which is from a Monte Carlo sample  𝑋1
∗, 𝑋2

∗, …, 𝑋𝑛
∗  drawn from 

the reference distribution. As a result, we need to take into account 

the sampling distribution of the gap statistic. If sd(k) describes the 

standard deviation of the B Monte Carlo sample replicates log𝑊𝑘
∗, 

then the simulation error sk in the estimation 𝐸𝑛
∗{log𝑊𝑘} can be 

calculated:  

 

𝑠𝑘 = √(1 + 
1

𝐵
) 𝑠𝑑(𝑘) (22) 

 

Using this correction, we consider the smallest value of k for which 

𝐺𝐴𝑃(𝑘) ≥ 𝐺𝐴𝑃(𝑘 + 1) − 𝑠𝑘+1. This arbitrary 1-standard deviation 

rule has been used before in literature [131] and was experimentally 

validated by [130]. 

The outline of the GAP-statistic method is provided in Figure 53. 

 

Figure 53: GAP-statistic method outline 
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Tree Cut through permutation testing 

The three methods for determining the optimal dendrogram cuts 

described above, are all based on simple horizontal cuts. When the 

structure of the dendrogram is more complex, these methods might 

yield poor clustering results. To overcome this problem, Bruzesse 

[132] suggested to slice the dendrogram using permutation testing. 

The basic idea behind the method is that if all elements of two 

clusters are mixed together and split up randomly, the distance 

between the newly created clusters should not be significantly 

different from the distance between the original clusters. This idea 

was used to develop a more dynamic tree cutting method which is 

capable of making cuts at different heights in order to efficiently 

handle nested clusters in the data set. 

The method starts from the root of the dendrogram where all 

trajectories in the data set are grouped into one single cluster. Then 

the method moves down the tree with a partial threshold until a new 

link joining two clusters is encountered. At each of these nodes, a 

permutation test is performed to investigate whether the two clusters 

that arise when cutting the branch at that node, must be accounted 

as a unique group (null hypothesis) or not (alternative hypothesis). In 

the case the null hypothesis cannot be rejected, the two clusters will 

form one single cluster in the final partitioning of the dataset and their 

sub-branches will not be further explored. If this null hypothesis is 

rejected, each of the two branches of the dendrogram will be further 

investigated in the procedure. The algorithm stops if there are no 

more branches left for which the null hypothesis can be rejected. 

The principle of the permutation test can be explained as follows. Each 

branch under investigation is split up into two clusters at its root node: 

𝐶𝐿
𝑖  and 𝐶𝑅

𝑖 .  
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Figure 54: permutation method: branch cutting 

For these two clusters, the inter-cluster distance is calculated by 

calculating the distance between the clusters centroids. The 

calculation of these cluster centroids is done using the DBA trajectory 

averaging method proposed by [103]. Subsequently, these two 

clusters are mixed up together and randomly split up, with the only 

constraint that the group cardinality stays the same. This procedure is 

performed m times, each time calculating the inter-cluster distance of 

the newly formed clusters 𝑚𝐶𝐿
𝑖  and 𝑚𝐶𝑅

𝑖 . 

The basic idea behind this method is that, if 𝐶𝐿
𝑖  and 𝐶𝑅

𝑖  are two 

separate clusters, the inter-cluster distance between 𝐶𝐿
𝑖  and 𝐶𝑅

𝑖  will 

likely be higher than the inter-cluster distance between 𝑚𝐶𝐿
𝑖  and 

𝑚𝐶𝑅
𝑖 . Thus, when the number m is large enough, a monte carlo p-

value can be calculated as follows: 

 𝑝 =  
# [𝑖𝑛𝑡𝑒𝑟𝑐𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝐶𝐿

𝑖 , 𝑚𝐶𝑅
𝑖 ) ≥ 𝑖𝑛𝑡𝑒𝑟𝑐𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝐿

𝑖 , 𝐶𝑅
𝑖 )] + 1

𝑀 + 1
 (23) 

The null hypothesis can then be rejected when this p-value is lower 

than a predetermined threshold value. The outline of this method is 

provided in Figure 55. 
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Figure 55: Dynamic tree cutting algorithm outline 

Tree cutting methods: summary 

In this section, four different dendrogram cutting or slicing 

methodologies have been discussed. Each of these methods has been 

implemented and tested on different data sets in order to find the 

best-fitting method for classifying human operator trajectories. The 

results of these experiments are described later on in this chapter. 

Table 6 provides an overview of these methods and summarizes the 

advantages and disadvantages of each algorithm. 

Table 6: overview of tree cutting methods 

 

 

unsupervised
parameter 

independent
nested clusters calculation time

treshold cut-off P O O ++

elbow method O P O +

gap statistic P P O -

permutation testing P O P --
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3.2. METHODOLOGY FOR HUMAN OPERATOR TRAJECTORY 

CLUSTERING 
In this section, we develop a suitable classification and outlier 

detection method for human operator trajectories through a series of 

experiments.  

Agglomerative hierarchical clustering is used as the clustering 

algorithms because it is parameter-independent, capable of handling 

various similarity measures and does not require any prior knowledge 

about the number of clusters and outliers in the trajectory data set. In 

a first experiment, a combination of different linkage criteria and 

similarity measures is evaluated using an experimental data set. In a 

second series of experiments based on two different data sets, a 

suitable dendrogram cutting method is selected and validated. 

3.2.1. Experiment 1: selecting linkage criterion and similarity 

measure 

Design of experiments 

The performance of the agglomerative clustering method can be 

influenced by both the applied (dis)similarity measure  and the linkage 

criterion used to decide which clusters to merge. Also, these two 

factors might influence each other, meaning that a specific similarity 

measure yields good clustering results in combination with single 

linkage AHC, but leads to poor results when combined with the ward’s 

linkage criterion. Therefore a full factorial design was set-up, based on 

the experimental data set presented in the previous chapter.  

This data set consists of 11 different scenarios. Each of these scenarios 

were manually analyzed. This way every trajectory was either 

assigned to a cluster or labeled as an anomalous event. The manual 

analysis is considered to be the correct solution of the clustering 

problem and serves as a basis for validating the developed clustering 

methodology. An overview of the different scenarios in the dataset is 

provided in Table 7. 
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Table 7: Experimental data set: overview 

 

For each of these scenarios AHC was applied using five different 

(dis)similarity measures in combination with the four linkage criteria 

mentioned above. Based on our literature review, the similarity 

measures that were selected are: One-way distance (OWD), Fréchet 

distance, Dynamic Time Warping distance (DTW), Hausdorff distance 

and longest common subsequence (LCSS). 

For each scenario, this analysis leads to 20 different clustering 

dendrograms. Subsequently, horizontal cuts were made in these 

dendrograms to divide the data set into clusters and outliers. Cuts are 

made until the sum of outliers and clusters is equal to the sum of 

outliers and clusters in the ground truth obtained through the manual 

analysis. For example, 2 horizontal cuts were made in the dendrogram 

for scenario 3. This way the trajectories in this scenario are divided 

into three groups or single element clusters. In this experiment we use 

knowledge about the real data structure and number of clusters, 

which would normally not be available. However, this experiment 

aims to determine which combination of AHC method and distance 

measure provides the best similarity structure. By making these cuts 

manually, we are able to assess whether the resulting dendrogram 

represents the actual similarity structure of the data set using the 

evaluation methods described in the following sections. 

clusters outliers

scenario 1 1 0

scenario 2 1 0

scenario 3 1 2

scenario 4 2 0

scenario 5 1 1

scenario 6 1 1

scenario 7 3 2

scenario 8 1 1

scenario 9 3 1

scenario 10 2 0

scenario 11 1 0
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By performing this procedure for every possible combination of 

linkage criterion and similarity measure, 20 different classifications of 

the same set of trajectories were performed. These classifications are 

then compared to the ground truth which is determined through the 

manual analysis. 

Evaluation of clustering methods  

Four different evaluation criteria were used to assess the quality of 

the classification obtained through a specific combination of linkage 

criterion and similarity measure.  

• Rand Index Score (RI): RI is  measure of the accuracy of the 

clustering method. For every pair of trajectories in a data set, 

the classification method has to make the decision whether 

these two trajectories are actually similar or not. If the 

classification method assumes similarity, it will return a 

positive result, otherwise it will output a negative result. 

Compared to the ground truth, this result can either be false 

or true. Therefore, each decision made by the classification 

algorithm can be considered to be true positive, true 

negative, false positive or false negative, as explained in Table 

8.  

Table 8: classification evaluation 

 
 

The rand index score calculates the ratio of true decisions to 

the total number of decisions taken. In this case, the total 

number of decisions is equal to the total number of trajectory 

pairs in the data set. The rand index score can be calculated 

as follows: 

same class different class

same cluster True Positive (TP) False Positive (FP)

different cluster False Negative (FN) True Negative (TN)

ground thruth

cl
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𝑅𝐼 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (24) 

 

• Precision: The precision measure is used to assess the chance 

that a predicted positive result is actually true. High precision 

means that trajectories that are grouped in the same cluster 

by the classification method, will be similar in reality. It also 

means that there is only a small chance that the proposed 

method will assign anomalies to clusters containing regular 

trajectories. The precision score is however no indication 

whether the method tends to unnecessarily split up larger 

clusters into smaller groupings of regular trajectories. 

 

The precision of a classification method is calculated by 

dividing the number of correct positive results by the total 

number of positives returned by the method. 

 
𝑃 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (25) 

 

• Recall: Recall or “probability of detection” is a measure of the 

sensitivity of a classification method. In our case, it calculates 

what percentage of similar trajectory pairs actually results in 

a positive output from the classifier. A high recall percentage 

means that there is only a small chance that the classification 

method will split up clusters which only consist of similar 

trajectories.  

 

To calculate the recall score, the true positive results are 

divided by the total number of positives in the data set. 

 
𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (26) 
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• F-measure: The F-measure is the harmonic mean of the recall 

and precision scores. It is calculated as follows: 

 𝐹 = (1 + 𝛽2) 
𝑃∙𝑅

𝛽²∙𝑃+𝑅
   where >0 

(27) 

 

Depending in the  value, the F-measure attaches more 

importance to the recall ( >1) or precision ( <1). In this 

section we use the F1-measure (=)  

Experimental results 

The detailed results of this analysis are added in appendix 1. Figure 56 

and Figure 58 below visualize these results. Figure 56 shows the 

average performance of the different similarity measures for all 

linkage criteria. Figure 58 shows the performance of the different 

linkage criteria, averaged over the different similarity measures. 

 

On first sight, the Fréchet distance and DTW seem to perform 

consistently better than the other similarity measures. When looking 

at the different linkage criteria, single linkage seems to be 

outperforming the other criteria. However, a quick look at the 

resulting dendrograms shows that the single linkage criterion results 

in rather flat clustering results, decreasing the ability of this method 

to make a clear discrimination between different clusters (chaining 

effect). This is visualized for a number of scenarios in Figure 57.  
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Figure 56: evaluation of similarity measures 

WARD’s linkage criterion appears to yield the worst overall results. 

But it’s capability to detect outliers, indicated by the precision 

measure, seems to be at the same level of its counterparts. Drawing 

conclusions just based on these results is very difficult, therefore a 

series of statistical tests is performed to check similarities and 

differences between different similarity measures and linkage criteria. 

To test the statistical significance of the observed differences 

obtained through different clustering methods, a Friedman test was 

applied on the results of this experiment. The Friedman test is a  non-

parametric procedure that is often used in a hypothesis testing 

situation involving a design with two or more samples and is often 

used as an alternative for ANOVA [133]. It can be used as a multiple 

comparison test that aims to detect significance in the observed 

difference in the behavior of two or more algorithms. The reason to 

choose the Friedman test above a regular ANOVA test, lies in the 

distribution assumption of ANOVA. In ANOVA, the dataset is supposed 

to be normally distributed. This is clearly not the case for this 

experiment. 
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Figure 57: linkage criteria: discrimination capability 
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Figure 58: evaluation linkage criteria 

 

The null hypothesis tested using Friedman’s test is H0: 

1 = 2 =  = k  the median of population i represents the median of 

population j for 1≤ i ≤ k and 1 ≤ j ≤ k. In other words: the results 

obtained through one algorithm in the experiment are also 

representative for the results obtained through any other algorithm 

in this experiment. The alternative hypothesis is H1 = not H0. In the 

case this is true, there exists a significant difference between the 

results, which means that one or more algorithms perform 

remarkably better or worse than the others. 

This Friedman test was performed four times, each time using a 

different evaluation criterion as the algorithms’ result. For every 

scenario in the dataset, the results of each algorithm were ranked, 

starting at 1 for the best result. Under the null hypothesis, based on 

the assumption that all proposed algorithms are equivalent and 

therefore there rankings are as well, the Friedman test statistic can be 

calculated: 
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𝜒𝐹
2 = 

12 𝑁

𝑘 ( 𝑘 + 1)
 [∑𝑅𝑗 − 

𝑘 (𝑘 + 1)²

4
𝑗

] 
(28) 

 

Where 𝑅𝑗 = ∑ 𝑟𝑖
𝑗

𝑖 , N equals the number of cases or scenarios 

considered for every algorithm and k represents the number of 

algorithms tested in the experiment. Once N ≥ 10 and k ≥ 5, the critical 

values of this test statistic coincide with the ones established in the 𝜒² 

distribution. 

 

The detailed results for this test are summarized in Table 9 below. 

 

Table 9: Friedman test results 20 methods 

FRIEDMAN TEST RESULTS 

  RI Precision Recall F1 

N 11 11 11 11 

df 19 19 19 19 

test statistic Qf 83.1 82.1 84.7 84.7 

significance level 5.4E-10 8.0E-10 6.2E-10 2.9E-10 

 

The critical value for this experiment, using a significance level α=0.05, 

is 30.144 [134]. For every evaluation criterion, the calculated test 

statistic exceeds this critical value. The null hypothesis can thus be 

rejected, meaning that there is a significant difference in classification 

performance between the different tested methods. 

 

Since the Fréchet and DTW distances seem to perform better than the 

other similarity measures, the same test was performed only 

withholding the results obtained by using these two measures. This 

new Friedman test only has 7 degrees of freedom which means that 

the critical value in this case is 14,067. The results of this analysis are 

summarized in the following Table 10. 
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Table 10: Friedman test results condensed test 

FRIEDMAN TEST RESULTS  

  RI Precision Recall F1 

N 11 11 11 11 

df 7 7 7 7 

test statistic Qf 11.7 9.8 12.2 11.7 

significance level 1.1E-01 2.0E-01 9.6E-02 1.1E-01 

 

According to these results there appears to be significant difference 

in performance between the Fréchet distance and DTW. Also, there is 

no noticeable difference between the results obtained through one of 

the four linkage criteria. Therefore, the performance of both DTW and 

Fréchet distance as well as all linkage criterions in combination with 

different tree cutting methods, will be investigated. 

Experiment 1: conclusion 

In this experiment, five different similarity measures and four linkage 

criteria were are evaluated. Based on the results obtained through a 

full factorial design, where each of these measures was tested in 

combination with each of the linkage criteria on 11 different sets of 

trajectory data, it can be concluded that the DTW and Fréchet 

distance measures perform better than shape-based measures such 

as Hausdorff and one-way distance. Therefore we will only use DTW 

and Fréchet distance in further experiments. 

 

The aim of this experiment was to select suitable similarity measures 

as well as the best linkage criterion for agglomerative clustering. 

However, it is hard to draw any conclusions on which linkage criterion 

to use. On average, single linkage seems to outperform the other 

criteria. A closer look into the results on the other hand, shows that 

the combination of complete linkage and dynamic time warping is the 

only method that performs flawlessly in this experiment. Also, the 

dendrograms generated through single linkage clustering show that 

the discrimination ability of this method is rather low. Ward’s linkage 
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criterion turns out to be the least promising method, but performs as 

good as any other method when it comes to its ability to detect 

outlying trajectories. 

 

It is clear that similarity measures and linkage criteria cannot be 

treated separately. This gives us good reasons to assume that also the 

best way to make the final decision on the dendrogram cutting height, 

is depending on the similarity measure and linkage criterion it is 

combined with. Therefore a new experiment was designed in order to 

find the most suitable combination of these three factors. 

 

 

3.2.2. Experiment 2: Determining the dendrogram cut-off method 

Design of experiments 

To determine which is the best dendrogram cut-off methodology, a 

new series of experiments was designed on the same experimental 

data set as used in experiment 1. In this case, the number of cluster in 

the sets of trajectories, is considered to be unknown. From the 

previous experiment we learned that both DTW and Fréchet distance 

seem to be suitable similarity measures. In this experiment all 

combinations of these two measures, the four linkage criteria and four 

different dendrogram cut-off methods are investigated.  

For evaluating the results of this experiment, we focus on the two 

most important performance measures: random index score and 

precision. These two measures respectively quantify the accuracy of 

the clustering algorithm and its capability to detect outliers, which is 

the main goal of our classification framework. 

Experimental results 

The results of this experiment are summarized in Table 11. Out of the 

16 methods tested in this experiment, there are 5 methods that yield 

an accuracy and precision of over 90%. These methods are indicated 

in gray. 
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Table 11: Evaluation tree cutting methods 

  DTW FRECHET 

  Treshold cut-off (0.7) 

Linkage RI Precision RI Precision 

single 0.69 0.83 0.66 0.85 

average 0.75 0.92 0.71 0.96 

complete  0.79 0.92 0.82 0.98 

ward 0.74 0.92 0.79 0.98 

  Elbow Method 

single 0.78 0.95 0.74 0.98 

average 0.87 0.97 0.76 0.98 

complete  0.83 0.97 0.82 0.98 

ward 0.78 0.94 0.80 0.98 

  GAP Statistic 

single 0.82 0.97 0.90 0.96 

average 0.79 0.92 0.83 0.96 

complete  0.79 0.92 0.81 0.96 

ward 0.70 0.92 0.78 0.96 

  Dynamic tree cut: permutation testing 

single 0.91 0.98 0.89 0.95 

average 0.81 1.00 0.84 0.96 

complete  0.80 1.00 0.92 1.00 

ward 0.90 0.93 0.94 0.99 

 

Overall, the dynamic tree cutting algorithm based on permutation 

testing outperforms the other dendrogram slicing methods. In 

contrast to the results of the first experiment, ward’s linkage criterion 

performs rather well with both similarity measures. However, making 

a well-funded choice between similarity measures and linkage criteria 

is still impossible based on the experiments with these small data sets.  

Validation of the results 

The second experiment shows that there are a number of 

classification methods that yield promising results. While some 

methods seem to have a very good outlier detection capability, their 

overall accuracy seems to be inferior to that of some other methods. 
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It is clear that a trade-off between precision and accuracy needs to 

made. Therefore, as a rule of thumb, we only consider those methods 

that achieve a score of 90% or higher on both performance indicators 

as relevant candidates. These candidate methods are: DTW-single 

linkage, DTW-Ward linkage, Frechet-complete linkage and Frechet-

Ward linkage 

The experiments described in previous sections were performed on 

rather small experimental data sets. To decide on the most suitable 

classification framework for human operator trajectories, we want to 

test candidate methods on larger data sets as well. Therefore, the 

performance of the selected methods was validated using the 

Omnilab data set, which contains over 200 trajectories distributed 

over 15 different clusters. The results of this test are plotted in Figure 

59. 

 

Figure 59: Validation classification framework 

conclusion 

The results of this experiment show that, on average, the dynamic 

tree cutting procedure using permutation testing clearly results in 

superior clustering results.  

Based on the results shown in Table 11 and Figure 59, this dendrogram 

cutting method works most consistently in combination with dynamic 

time warping and using Ward’s linkage criterion. Throughout the 

different experiments, this combination of linkage criterion and 

similarity measure almost never seemed to be the absolute best 
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method. However it almost always results in satisfying clustering 

results and it is less  depending on the case under investigation. 

The reason for this is that single and complete linkage consider single-

point measurements to determine the distance between clusters, 

while ward’s linkage aims to minimize variance within the cluster and 

takes all elements in that cluster into account. This strongly reduces 

the chance for chaining effects or the risk that one single outlying 

trajectory prevents the merge of two nearby clusters. The major 

drawback of the Fréchet distance is the fact that the similarity 

calculation is solely based on the closeness of the values 

independently of the local trends. In other words, in this case the 

Fréchet distance only takes into account the locations visited by the 

operator, but does not consider the time the operator spent at a 

specific location. DTW does make this alignment, resulting in better 

clustering results in some cases.  

3.2.3. Parametrization and robustness analysis of the classification 

framework 

The focus of this chapter is the development a classification 

framework that is able to detect outliers in a data set of human 

operator trajectories. In the ideal case, this framework works 

unsupervised, is independent of any parameters and is capable of 

handling complex data sets. The similarity measures and linkage 

criteria under investigation all comply with these requirements. 

However, the dynamic tree cutting method proposed relies on two 

parameters, the p-value and the number of monte carlo simulations 

M.  

To check how these parameters influence the clustering results, the 

framework has been tested using different values for these 

parameters. In permutation testing, typical confidence levels used are 

95% and 97%, resulting in p-value thresholds of 0.05 and 0.03. 

It is clear that the number of monte carlo replications M influences 

the calculation time. Therefore, a trade-off between M and the 

calculation time needs to be made. This was done by running the 

classification method for a number of different values of the 
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parameter M. Each of these runs was replicated 10 times and average 

values of the random index score, precision and calculation times are 

exhibited in Figure 60 and Figure 61 for p equals 0.03 and 0.05 

respectively.  

 

Figure 60: clustering performance vs calculation time p=0.03 

The calculation time increases exponentially with the number of 

monte carlo replications. The selected confidence level has only a 

limited influence on the precision and accuracy level. As expected, the 

outlier detection capability increases as the p-value increases, but the 

effects are only marginal. The very low performance observed for p-

value threshold = 0.03 and M = 20 can be easily explained by the way 

the p-value is calculated. Even if the monte carlo simulation doesn’t 

return one single positive result, the calculated p-value equals: 

 
𝑝 =  

1

20 + 1
= 0.047 > 0.03 (29) 

In this case, the trajectories in this data set will always be considered 

to belong to the same cluster. The calculation also shows that 

increasing M decreases the influence of a coincidental positive result 

of the monte carlo simulations. These graphs indicate that, in this 

case, a setting the parameter M at 100 provides the desired 

classification results in a reasonable time span. Further increasing this 

value doesn’t really contribute to the performance of the 
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classification method while it increases the calculation time 

exponentially. 

 

Figure 61: clustering performance vs calculation time p=0.05 

The parameter setting does not only influence the average 

performance, but also the variation on the clustering results. In order 

to make sure that classification framework consistently provides 

acceptable clustering results, this variation needs to be minimal.  

In Figure 62 the average performance of the classification method is 

plotted for a p threshold value of 0.05 together with its variation over 

the different calculation runs for M values ranging from 20 to 200. 

These results are also exhibited in Table 12. 

Table 12: clustering variability 

M RI Precision sd RI sd Precision 

20 0.949 0.885 0.003 0.070 

50 0.951 0.919 0.002 0.057 

100 0.951 0.941 0.002 0.003 

200 0.951 0.946 0.001 0.010 
 

Again we can conclude that a M-value of 100 provides consistent 

clustering results. Note that the selection of a parameter setting of M 
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will be depending on the number of elements in a data set, the 

number of clusters and the variation in cluster cardinality within that 

data set. The optimal parameter setting will thus need to be 

determined case by case. 

 

Figure 62: Clustering variability 

3.3. IMPLEMENTATION OF THE CLUSTERING FRAMEWORK 
 

The framework described in this chapter is implemented in Python 

2.7, using Eclipse Neon®. The agglomerative clustering method used 

is part of the open source SciPy python library. Since ward’s linkage 

criterion is not implemented in this library, also the python Fastcluster 

library was used. 

The remaining functions of the framework are all programmed 

specifically for this research. Code snippets of the implementation of 

all similarity measures are provided in appendix 2.  

3.4. OUTPUT OF THE CLUSTERING FRAMEWORK 
The output of the clustering method divides a data set of human 

operators in different clusters. Objects that are classified in single-

item clusters are considered outliers. For each of the clusters, average 

trajectories are calculated. Examples of the output for a number of 

clusters in the Omnilab data set are visualized in Figure 63 and Figure 

64. 
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Figure 63: Clustering output example 1 

 

Figure 64: Clustering output example 2 

The average trajectories of a cluster serves as a model for the specific 

work cycle represented by the trajectories in this cluster. These 

models will later on be used as a basis for the real-time monitoring 

and outlier detection framework, discussed in Chapter 4. After the 

classification procedure, average work cycles and best practices are 

calculated for every cluster/pattern. These best practice work cycles, 

together with the event list, can serve as automatically generated 

work instructions for the operator and serve as a benchmark for real-

time operator performance measurement. 

One of the main assets of the clustering method is its ability to detect 

outlying patterns, which usually indicate problems or irregularities in 
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the operators’ work flow. After clustering, outlying trajectories can be 

linked to their originating video images. This way, the analysis time of 

a stream of video images can be significantly decreased by pointing 

directly to the interesting fragments in the video footage. 

3.5. CONCLUSIONS 
In this chapter, a framework for human operator trajectory clustering 

and outlier detection is presented. The framework relies on 

agglomerative hierarchical clustering methods to structure the 

dataset based on the trajectory similarity. To asses this similarity, 

trajectories are aligned through a dynamic time warping procedure 

and similarity score is calculated. The final partitioning of trajectories 

into clusters is done using a statistical tree cutting algorithm that is 

based on permutation testing.  

This framework was developed through a series of experiments on 

experimental data sets. First a literature study was performed to 

identify existing similarity measures, clustering methods and tree 

cutting algorithms which could potentially be applied on human 

operator trajectories. These methods were implemented and 

assessed on their accuracy and capability to find anomalous events in 

the dataset. These experiments showed that the proposed framework 

outperforms the other methods in both performance and consistency. 

The framework presented in this chapter is capable of capable of 

classifying human operator trajectories which are deduced from video 

images, with an accuracy and outlier detection rate of over 90%. 

Detected outliers can afterwards be linked  to the original video 

images and fed back to the operator or analyst to find the cause of the 

problems. This provides the method engineer with an approach to 

efficiently analyze long video streams with minimal effort. Also, the 

resulting models of the normal trajectories can serve as a basis for 

real-time monitoring purposes, as will be explained in the next 

chapter.
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Chapter 4 Real-time anomaly 

detection and performance 

measurement 
 

In this chapter, we investigate how we can use the operator 

monitoring and trajectory classification framework to support 

assembly operators and production managers in real-time. The first 

section focuses on the development of a real-time trajectory matching 

methodology which uses the results of the classification framework 

presented in chapter 3. Real-time task recognition enables online 

operator support through the use of an operational dashboard. In the 

second section of this chapter we evaluate existing manufacturing 

dashboard concepts and present a new dashboard (OAWSAD) 

concept to better support continuous improvement on the shop-floor 

level. The outcome of this chapter is summarized in discussed in 

section 3. 

4.1. REAL- TIME CLASSIFICATION AND OUTLIER DETECTION 
The classification method described in the previous chapter, results in 

clusters of normal trajectories and some outliers. For each of the 

clusters, the average trajectory is calculated. These average 

trajectories provide models of normal trajectories which can be 

observed frequently. These models can serve as a template to 

recognize tasks and detect issues or outliers in real-time. 

A naïve approach to do this, would be to compare every incoming 

trajectory to all calculated models. This comparison could be based on 

the DTW distance and the variance in the cluster could be used to set 

threshold values to determine whether the observed trajectory 

matches one of the models. However, there are two major issues to 

this approach: (1) DTW can only be calculated for the full trajectories 

and (2) DTW has a O(n*m) calculation time complexity. Performing 

these calculations in real-time for a number of different models is 
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impossible. Therefore, a real-time matching procedure, based on a 

lower-bound calculation method for DTW, was developed. 

4.1.1. Keogh Lower bound calculation 

The real-time outlier detection and classification method relies on the 

DTW lower bound calculation as proposed by Keogh and 

Ratanamahatana [135]. The basic idea behind the method is to 

compare the incoming sequence to a subsequence of the generated 

models based on a low complexity lower bound calculation. These 

subsequences of the previously calculated models have the same 

length as the incoming sequence. The incoming trajectory sequence 

only represents a fraction of the full work cycle. One can rightfully 

question whether matching such a partial sequence to the model of a 

complete work cycle would actually provide meaningful results. 

To calculate this lower bound of the DTW distance, a bounding 

envelope is generated for every trajectory [136]. Let M(a1, a2, …, am) 

be a trajectory model of length m, then we calculate the bounding 

envelope Env(M) by generating two different time series Up(M) and 

Low(M) as follows: 

 𝑈𝑝(𝑀) = max(𝑀𝑗| 𝑗 ∈ [max(1, 𝑖 − 𝑏) ,min (𝑚, 𝑖 + 𝑏)]) (30) 
 𝐿𝑜𝑤(𝑀) = min(𝑀𝑗| 𝑗 ∈ [max(1, 𝑖 − 𝑏) ,min (𝑚, 𝑖 + 𝑏)]) (31) 

 

In other words, Upi(M) and Lowi(M) are respectively the maximum 

and minimum values of M in the interval [i-b, i+b], where b is a user-

defined parameter and taking into account the border effects. 

The squared Keogh lower bound distance between the incoming 

trajectory Sn of length n and an equally sized subsequence Mn of the 

model M(a1, a2, …, am) with n<=m, is calculated as follows: 

 𝐿𝐵𝐾𝑒𝑜𝑔ℎ(𝐸𝑛𝑣(𝑀), 𝑆)
2

= ∑{

(𝑆𝑖 − 𝑈𝑝𝑖(𝑀))
2
     𝑖𝑓 𝑆𝑖 > 𝑈𝑝𝑖(𝑀) 

0        𝑖𝑓 𝐿𝑜𝑤𝑖(𝑀) ≤ 𝑆𝑖 ≤ 𝑈𝑝𝑖(𝑀)

(𝑆𝑖 − 𝐿𝑜𝑤𝑖(𝑀))
2
     𝑖𝑓 𝐿𝑜𝑤𝑖(𝑀) > 𝑆𝑖

𝑛

𝑖=1

 

 

(32) 
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It can be proven that LBkeogh distance is a lower bound for the DTW 

distance in the case of one-dimensional time series. The trajectories 

under consideration in this research, are however 2-dimensional. 

Therefore, the lower bounds for both the x- and y-component of the 

trajectory are calculated separately. Rath and Manmatha [137] 

proved that in this case: 

 𝐿𝐵𝐾𝑒𝑜𝑔ℎ(𝐸𝑛𝑣(𝑀𝑥), 𝑆𝑥)
2

+ 𝐿𝐵𝐾𝑒𝑜𝑔ℎ(𝐸𝑛𝑣(𝑀𝑦), 𝑆𝑦)
2

≤  𝐷𝑇𝑊(𝑀𝑥 , 𝑆𝑥)²

+  𝐷𝑇𝑊(𝑀𝑦, 𝑆𝑦)² = 𝐷𝑇𝑊(𝑀, 𝑆)² 

(33) 

 

The calculation of the Keogh lower bound is further explained in 

Figure 65 and Figure 66 for the x and y component of a sequence and 

model in the Omnilab dataset. 

 

Figure 65: bounding envelope x 
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Figure 66: bounding envelope y 

4.1.2. Real-time trajectory matching 

Based on the LBkeogh concept, a real-time trajectory matching method 

was developed. When the real-time location system starts returning a 

new trajectory, the LBkeogh distances between the incoming trajectory 

and an equally sized subsequence of all model trajectories are 

calculated. The model resulting in the lowest LBkeogh distance is 

considered to be the provisional best match (best_so_far) and for this 

subsequence, the real DTW distance is calculated. Subsequently, the 

LB distance values are compared to this best_so_far DTW distance 

and all models for which LBkeogh > best_so_far are removed from the 

list of candidate matching models, under the assumption that those 

models are unlikely to provide a good match for the incoming 

sequence. This procedure is repeated as the incoming sequence is 

growing and as there are still multiple models in the list of candidate 

matches. The outline of this method is provided in Figure 67. 
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Real_Time_Trajectory_Matching(M: [(x1, y1), …, (xm, ym)], S: [(x1, y1), …, (xn, yn), …]) 

1. Initialization 
2. Best_so_far  inf. 

3. Incoming_traj  [] 

4. Start 

5. For new data point: 

6.            LBs := [Keogh_LB for model in traj_models] 

7.            Best_so_far = DTW(model with best LB) 

8.            For model in traj_models: 

9.                      If LB>Best_so_far: 

10.                                 Remove from traj_models 

11.                       End if 

12.             End for 

13.             Return best model 

14. End for 

 

Figure 67: outline real-time trajectory matching algorithm 

As shown in Figure 67, the algorithm uses the Keogh LB to guess the 

best matching model. This way, only one DTW calculation needs to be 

performed per new incoming data point. The algorithm was then 

further sped up by implementing a warping window for the DTW 

calculation. Such a warping window restricts the range of the time 

deformation that can be used to match the sequences. 

To detect outliers, the average distance between the average 

trajectory of the best matching model and all the trajectories used to 

build up that model (avg_dist), is calculated together with the 

standard deviation d on those distances. Once the incoming 

trajectory is fully completed, the DTW distance between the new 

trajectory and the average trajectory of the best matching model is 

compared to avg_dist. If DTW(incoming, avg_traj) > avg_dist + z. d 

the incoming trajectory is considered to be an outlier. 

Figure 68 and Figure 69 show what the output of the method looks 

like for a normal and outlying trajectory respectively through a 

number of screenshots. The incoming sequence is shown in blue, the 

best matching model in the set of normal trajectories is drawn in red. 

When a match is found, this is indicated by a green background, when 
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the best matching model is not similar to the incoming trajectory, the 

red background color indicates that a problem is detected. 

 

Figure 68: Real-time trajectory matching algorithm - matching trajectory 

 

Figure 69: Real-time trajectory matching algorithm - outlying trajectory 

4.1.3. Validation of the real-time trajectory matching procedure 

To validate the real-time outlier detection and classification 

procedure described in the previous paragraph, an artificial data set 

was created. This data set uses models from different scenarios in the 

experimental data set. Scenario 1 is used to create the first model of 

a normal trajectory, the second model was build using the trajectories 

of one of the two variants in scenario 10. The created models together 

with the individual trajectories used to generate these models, are 

visualized in Figure 70 and Figure 71 

 

Figure 70: model based on sequence 1 
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Figure 71: model based on sequence 10 

After training the models, the trajectories were presented to the 

framework and compared to these models. To mimic the framerate of 

the camera system, one location point per 0.2 seconds was added to 

the incoming trajectory. This corresponds to a vision system which 

works at a framerate of 5 frames per seconds, which is higher than 

what the current vision system can provide. On the other hand, we 

showed in chapter 3 that we could safely sample the trajectories to a 

frame rate of 2 samples per second, without losing classification 

performance. For each new location point added to the trajectory, the 

calculation time was determined to check whether the method is 

capable of performing all calculations in real-time.  

Simulation run 1: 

In a first simulation run, trajectories returned by the simulated vision 

system are the same trajectories used to train the models. This set of 

trajectories was extended with two outlying sequences taken from 

scenario 9 to test the framework’s outlier detection capability. This 

Figure 72: outlying trajectories 
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data set thus contains 2 outliers and a set of normal trajectories of 

two different patterns.  

For this simulation run, the method filters out the two outlying 

sequences and matches the other trajectories to the right model. 

Since the incoming trajectories in this test are the exact same 

trajectories used to generate the models of normal patterns, we 

expect that the method yields a high classification accuracy. Using test 

sequences that are part of the training set, leads to overfitting. 

Therefore this simulation runs provides no information on the validity 

of the method, but helps to test whether the implementation is done 

correctly and provides information on the expected calculation times. 

On average, the calculation time per frame for this simulation run is 

0.0613 seconds, with a maximum calculation time of 0.07314 seconds.  

Simulation run 2: 

In sequence 2 of the experimental data set, the exact same tasks as 

sequence 1 were performed by a different operator without any 

issues. Therefore, the trajectories in sequence 2 should be 

comparable to the ones in sequence 1. Using the same models used 

in the first simulation run, a new simulation run was set-up. The 

trajectories returned by the vision system are the trajectories of 

sequence 2. Since the test trajectories are not used to generate the 

models, the chance of detecting classification mistakes grows. 

This is however not the case, again all trajectories are matched to the 

right model in an average time of 0.072 seconds, which is still 

acceptable considering a required framerate of 2 frames per second. 

Simulation run 3 

To test how well the method behaves when there are multiple 

models, we extracted a training and test object set from the Omnilab 

data set. To create the models, we used trajectories of the 7 most 

appearing patterns in the data set. Per pattern, at least 5 trajectories 

were used to create the model. Next, we selected the leftover 

trajectories describing those same patterns, to create a set of 50 test 

objects. 
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Because there are more models in the data set, one would expect that 

the average calculation time would increase. However this is not the 

case: in this test run the average calculation time amounts to 0.0678 

seconds. The reason for this is the fact that the calculation time is still 

heavily determined by the DTW calculation for the best fitting model. 

Since the models in this data set contain less location points, the time 

required for this calculation decreases. 

On the downside, applying the proposed method on this data set only 

yields an accuracy 94.3% percent. In this simulation run, no false 

negatives (no matching pattern was found when it does exist) were 

detected. The 5.7% mistakes detected are trajectories that are 

matched to the wrong model (false positive). This can be explained by 

the fact that some of the models in this data set share common sub-

trajectories. Sometimes this results in a slightly higher similarity of the 

incoming trajectory to a sub-trajectory of the wrong model. This 

occasionally leads to the preliminary elimination of the actual best 

matching model. 

4.2. OPERATIONAL ASSEMBLY WORK STATION ANALYSIS DASHBOARD 
 

4.2.1. Dashboards in manufacturing environments 

  

Target-oriented and real-time information provisioning across all 

hierarchy levels is a critical success factor for a manufacturing 

company to attain agile and efficient manufacturing processes [138]. 

Operational performance dashboards are a tool that is often used by 

manufacturing companies to effectuate this information transfer. 

Dashboards are a means to measure performance and initiate 

continuous improvement initiatives. By visualizing KPI’s and setting 

targets, dashboards help operators and production managers to focus 

on achieving these targets and identifying improvement potential 

[139]. Just as an automobile dashboard controls and directs the 

behavior and decisions of a car driver, operational manufacturing 

dashboards are a critical tool to manage manufacturing operations. 
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Since the beginning of this millennium, we have seen an upgoing trend 

in the use of dashboards across manufacturing companies [140]. The 

use of these dashboards is perfectly complementary to the PDCA 

approach often used in manufacturing companies. The Deming cycle, 

also known as the PDCA (Plan-Do-Check-Act) cycle, is an iterative four-

step lean management tool used to facilitate continuous 

improvement of processes and products [141].  The four stages of the 

method are the following [142]: 

• Plan: Identify issues and potential root causes, propose 

alternative methods to overcome issues. 

• Do: Implement solutions, measure the results. 

• Check: Analyze the results, measure effectiveness and 

decided whether implemented solution overcomes the issue. 

• Act: Make adaptations to the solution if necessary, 

standardize improved method. 

 

Figure 73: PDCA methodology for continuous improvement 

By providing accurate and up-to-date process information, 

dashboards have become a valuable support tool for all 

manufacturing stakeholders (operators, production managers, sales, 

customers, etc.) in their pursuit of operational excellence. Dashboards 

are extremely helpful to identify gaps between targets and 

performance, identify root causes and analyze the effects of 

adaptations made to the process. 
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Their exist many different types of dashboards in the context of 

manufacturing. Depending on the hierarchy level they are used on, 

these dashboards incorporate different performance metrics. 

According to Gröger [143], manufacturing dashboard concepts in 

industry can be categorized  in three groups, each acting on a different 

strategical level: (1) Business activity Monitoring dashboards, (2) 

Manufacturing Control Panels and (3) Operational Process 

dashboards.  

 

Figure 74: Classification of manufacturing dashboard concepts [143] 

Business Activity Monitoring (BAM) dashboards are typically used on 

the enterprise control level and mainly focus on monitoring critical 

business processes and generating alerts when action is needed. 

Examples of indicators that are typically monitored in a BAM 

dashboard are sales, customer satisfaction, income and expenses, etc. 

According to Yusof [140], these dashboards are used for strategic 

decision-making on the long term. 

Manufacturing control panels are typically used by production 

managers on the operations control level. They are typically used to 

support detailed scheduling, capacity and resource planning, process 

monitoring (f.e. quality, maintenance). 

Operational process dashboards are designed to support decisions on 

the very detailed process level. They are typically shown at the work 

station and contain information that is relevant for the operators in 

the work station. Many examples of operational dashboards can be 
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found in literature [144-146]. However, most of them only provide 

high level process information such as machine utilization and product 

quality. Also commercial providers of business intelligence software 

solutions offer operational dashboard solutions. SAP has a standard 

Production Operator Dashboard in their product portfolio. But this 

dashboard is mainly focused on data acquisition and providing 

digitized work instructions. 

To overcome these issues, Gröger et al. [143] developed a generalized 

operational process dashboard for manufacturing (OPDM) to support 

the workers on the shop floor. The dashboard mainly aims to extend 

the services of existing dashboards with process knowledge such as 

video-based work instructions and a platform to improve 

communication on both shop-floor and enterprise level. However, the 

performance component of their dashboard still contains rather high 

level information on which operators only have limited influence, as 

shown in Figure 75. 

 

Figure 75: Process performance dashboard presented by Gröger [143] 

The effectiveness of manufacturing dashboards is influenced by both 

the information it contains and the way this information is 

represented. In a survey  of dashboard design methodologies and 

dashboard implementations, Yusof and Othman [140] discovered a 

number of common features that are beneficial for the effectiveness 
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of the dashboard. First-of-all, dashboards should contain real-time 

information. Secondly this information should be visualized using 

clear graphs and charts that are easy to interpret and lastly, the users 

should be able to retrieve this information on different aggregation 

levels (task level, job level, day, shift, …) to support root cause 

analysis.  

In literature, most research on these dashboards address the design 

aspects and IT issues [147-150]. Tokola et al. presented a survey in 

which they identified relevant KPI’s for manufacturing companies and 

the time frames and hierarchy level where these KPI’s should be used 

[138].  However, the resulting Operational Dashboard for Workers 

merely provides insights in the state of the production system and 

lacks drivers for improvement (Figure 76). 

 

Figure 76: Operational dashboard for workers as presented by Tokola [138] 

Through a review of existing commercially available dashboards [151-

154], we identified which information is commonly used in 

operational manufacturing dashboards currently used in 

manufacturing environments: 

• Count: number of products produced in a certain time interval 

• Target: Expected number of products produced over a certain 

time interval. By showing count and target numbers, a high 

level evaluation of the performance can be made. 
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• Scrap: Proportion of bad or scrap pieces produced in a certain 

time interval.  

• Rework: Number of reworked parts in a certain time interval. 

• Overall Equipment Effectiveness (OEE): measures how 

effective production equipment is being used. 

• Down time: Indicates what proportion of the available time 

equipment or a work station is unavailable due to failures, 

breakdowns, lack of material, etc… 

• Labor Efficiency Variance: Measures the difference between 

the standard cost of actual direct labor hours utilized and the 

expected standard hours necessary to achieve the output 

realized.  

• Injuries: Indicates the time period without work-related 

injuries caused by accidents. Showing this number creates 

awareness among workers about health and safety risks in 

their work environment. 

Although their relevance cannot be denied, these KPI’s act on a more 

managerial level and provoke almost no actions for improvement in 

the work station itself. Both operators and production managers have 

little or no impact on these indicators. For this reason, the effect of 

these dashboards on the process level. 

4.2.2. Dashboard information 

To overcome the issues with existing dashboards described above, a 

new operational assembly work station analysis dashboard 

(OAWASD) concept was developed. As mentioned earlier, method 

study often relies on the use of graphs, diagrams and charts to identify 

issues and their root causes. These charts are rather simple tools that 

provide transparency and better insights into various process 

parameters. Together with some of the traditional performance 

indicators, a selection of relevant charts is integrated in the OAWSAD 

to drive continuous improvement on the work station and shop floor 

level.  

The dashboard is based on information generated by the real-time 

trajectory classification and monitoring framework presented earlier. 
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By linking the OAWSAD to real-time trajectory information, charts and 

performance indicators can automatically be generated and updated 

with minimal effort. Because it provides real-time information, all 

users can evaluate the effects of implemented changes almost 

immediately, speeding up the PDCA cycle significantly.  

The dashboard can be used by both assembly operators as production 

managers and team leaders. The remainder of this section provides 

an overview of these charts and performance indicators. As a 

conclusion of this section, the OAWSAD is presented. 

TAKT: takt time is the maximum amount of time in which a product 

needs to be finished in order to meet the customer demand. Takt 

means pulse in German, by using the takt concept, a natural rhythm 

is created across all processes. In assembly lines, work stations are 

balanced against the takt time. That means that every work station in 

the line should be able to finish every work cycle within takt 

requirements. If not, the assembly line needs to be stopped and 

valuable production time goes to waste. Visualizing TAKT and 

comparing it to the actual performance of the work station, helps to 

detect capacity problems and process synchronization issues. 

YAMAZUMI CHART: Yamazumi charts are often used as a visual 

management tool in Lean implementations [155] . A Yamazumi chart 

is a stacked bar chart that visualizes the total cycle time of work 

stations or operators. Yamazumi charts can be generated for different 

aggregation levels. By comparing the Yamazumi charts for all work 

stations in the line, the charts support production managers to 

identify and solve line balancing issues. In work stations with multiple 

operators, charts per individual worker can trigger the redistribution 

of tasks to achieve a balanced work load per operator.  

In our dashboard solution, we developed a yamazumi chart to 

compare the actual performance of the operator to the targeted 

process time. This is especially interesting for assembly work stations 

with very long cycle times, where takt monitoring is often difficult. The 

developed chart allows operators to evaluate in the meantime if they 

will be able to finish their work cycle within TAKT by showing the 

expected time buffer. Once this buffer drops below zero, the column 
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will turn red to indicate that corrective actions need to be taken.  The 

chart can be used in real-time by the operator. When for example the 

operator encountered a problem with a specific task, he/she can 

quickly evaluate whether he will still finish in time or needs to ask help 

from the team leader or so-called butterfly workers. These are highly 

skilled operators which are typically used in assembly lines to provide 

some flexible work force capacity. An example of such a Yamazumi 

chart is provided in Figure 77. 

 

Figure 77: Work Cycle Progress Yamazumi Chart 

The use of real-time trajectory data offers makes it possible to keep 

these Yamazumi charts up-to-date with real-time observations and 

updated time standards. The use of the real-time trajectory 

classification method previously described offers some extra 

advantages over existing commercial monitoring solutions. Since the 

monitoring system recognizes the task done by the operator, there is 

no need for a fixed assembly sequence (in contrast to f.e. the Arkite 

HIM® system). This way, the operator gets the freedom to change the 

assembly sequence whenever he thinks it is beneficial, for example 

when parts for the next task are missing or when the operator believes 

he can improve the process by using a different assembly sequence.  

Besides the Yamazumi chart shown in Figure 77, other Yamazumi 

chart options on different aggregation levels are added to the 

dashboard. For example, a chart to evaluate the work distribution 
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between two workers in the same work station and a line balancing 

chart are available for the user. 

STATISTICAL PROCESS CONTROL (SPC) CHARTS: SPC charts are one of 

the main tools used in the six sigma quality management strategy. 

Control charts allow the user to analyze how the process performance 

changes over time. It is mainly applied to quality measurement, but 

there are also examples in literature where SPC charts were used for 

process control in assembly environments [156]. The main goal of 

control charts is to determine whether a process is in control or not. 

A process is in control of the observed variability is random and a 

natural part of the process. For out-of-control processes, this 

variability is no longer random and patterns can be discovered. These 

patterns are caused by specific external sources and require further 

investigation. 

SPC charts are constructed by plotting the evolution of the observed 

variable  (in this case, task time) over time, together with the average 

value. Six extra lines are added to the chart, the Upper and Lower 

control limit (UCL and LCL), typically 3 times the standard deviation 

above and under the average value respectively. All these control 

values are calculated based on a test run or historical data. Also the 

�̅�  ± 2𝜎 and �̅�  ± 𝜎 limits are added to create six control zones, as 

shown in Figure 78. 

 

Figure 78: SPC control limits 
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To determine whether a process is in control or not, there are 8 

control rules that indicate when special causes of variation are 

present. These rules are explained in Table 13. 

Table 13: Control chart rules 

 

In the proposed dashboard, SPC charts can be generated on the level 

of individual tasks or complete work cycles. When one of the above 

patterns is recognized, the dashboard will trigger an alert to initiate 

corrective actions. In assembly work stations, SPC charts can indicate 

many different issues. Some examples are: 

• Order sequencing issues: when multiple variants of a 

product with a high workload for a specific task are 

scheduled consecutively, this can lead to balancing issues in 

the line. 

• High variability for a specific task can indicate a lack of 

operator training for that task. 

• A trend of increasing task time can be an indicator for 

fatigue. 

• A Zone A or Zone B violation can be an indication the 

operator is not well trained for a specific task. 

These examples are mainly scheduling and organizational issues, 

therefore these SPC charts  are more likely to be used by the 

production manager. 

Besides pointing to issues, these charts can also show positive effects. 

When linked to the real-time trajectory data for example, when a 

method is improved, a Zone A or Zone B pattern below the average 

Rule Rule Name Pattern

1 Beyond limits One or more points beyond the control limits

2 Zone A 2 out of 3 consecutive points in Zone A or beyond

3 Zone B 4 out of 5 consecutive points in Zone B or beyond

4 Zone C 7 or more consecutive points on one side of the average

5 Trend 7 consecutive points trending up or down

6 Mixture 8 consecutive points with no points in Zone C

7 Stratification 15 consecutive points in Zone C

8 Over-Control 14 consecutive points alternating up and down
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might be discovered. This pattern can serve as a trigger to adapt the 

time standards based on the latest observations.  

SPAGHETTI CHARTS / WIRE DIAGRAMS: A spaghetti diagram is a 

quick and easy way to track distances of people or sometimes parts 

on the shop floor. In typical assembly environments, especially larger 

work stations, operators spend a significant amount of their time 

walking from one point to another. Since this time is considered to be 

non-value-adding, it should be reduced as much as possible. Spaghetti 

charts have been used industry to reduce operator movement with 

great success, especially in repetitive environments such as assembly 

work stations [157, 158]. They are typically used by production 

managers to evaluate the layout of the work station, but they can also 

trigger the operator to adapt his behavior (f.e. taking a shorter path 

or changing the task sequence to reduce ‘unloaded’ walking). 

Spaghetti charts typically start from a layout and are manually drawn 

while observing the operator in the work station [159]. The spaghetti 

charts in our dashboard start from the annotated layout described in 

chapter 2. Because spaghetti diagrams can sometimes be cluttered 

and unclear, different colors are used to discern separate tasks. Based 

on the calculation of the POI’s and the number of moves between 

those POI’s, a relationship graph is added to the spaghetti diagram. 

The weight of the vertices in this graph, indicates the frequency of 

certain moves between POI’s. These graphs are often used in method 

study as a basis for graph-based layout optimization methods. The use 

of real-time operator trajectories makes it possible to automatically 

generate and update the chart. This way both the observation time 

and the feedback loop to evaluate process or layout changes are 

significantly reduced. 

TRAVEL DISTANCE: Excessive movement is one of the main causes of 

inefficiency in typical assembly work stations. Operators constantly 

move around to pick parts, collect tools or gather information. Besides 

productivity losses, unnecessary movement induces fatigue and 

increases the risk of injuries. Therefore, reducing the travelled 

distance in the work station has a direct positive effect on the 

performance of the operator. 
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Figure 79: example of a spaghetti chart 

Spaghetti charts make unnecessary movement visible and induce 

layout and process changes. By showing the distance covered by an 

operator during his/her shift and comparing it to the expected value, 

the effects of layout changes can immediately be evaluated. 

Therefore, the travel distance as a performance measure, is perfectly 

complementary to the spaghetti diagrams described earlier. 

The travelled distance of the operator is calculated by taking the sum 

of the distances between all consecutive locations in the operator’s 

trajectory. 

 
𝑡𝑟𝑎𝑣𝑒𝑙 =  ∑√(𝑥𝑖 − 𝑥𝑖+1)

2 + (𝑦𝑖 − 𝑦𝑖+1)
2

𝑛−1

𝑖=1

 (34) 

 

Where n equals the length of the trajectory. To avoid inaccuracies in 

this calculation due to noise in the raw trajectory data, distance 

calculations are done on the smoothed data, but before sampling. 

Low sampling rates come with the risk of underestimating the 

travelled distance, as shown in Figure 80. 
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Figure 80: effect of sampling on calculation accuracy 

BALANCE DELAY: Balance delay is a measure of the inefficiency in the 

assembly line, caused by idle time due to imperfect allocation of tasks 

among work stations [160]. The balance delay is an indicator of spare 

capacity in the production line. Through continuous improvement, 

task times should naturally decrease leading to an increasing balance 

delay. Increased balance delay figures can be a trigger to rearrange 

the production line (f.e. remove one work station). Balance delay for 

an assembly line is calculated as follows: 

 
𝐵𝐷 = 

𝑛 ∗ 𝑇𝐴𝐾𝑇 − 𝑇𝑛𝑐
𝑛 ∗ 𝑇𝐴𝐾𝑇

 (35) 

In this case n is the number of work stations in the line and 𝑇𝑛𝑐 is the 

total measured task time for all work stations. 

SMOOTHNESS INDEX (SI): Where the balance delay indicates spare 

capacity in the process, the smoothness index is an indication of how 

this capacity is distributed over the different work stations [160]. In 

most assembly lines, smooth balances with equal time buffers for 

every work station are pursued to guarantee robustness. The 

smoothness index calculated as follows: 
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𝑆𝐼 =  √∑(𝑇𝐴𝐾𝑇 − 𝑇𝑐𝑖)
2

𝑛

𝑖=1

  (36) 

Tci represents the observed work content for work station i. It is clear 

that the SI is an absolute measurement which depends on the number 

of work stations. Therefore it is difficult to compare SI figures between 

different assembly lines, however the SI can be useful for the 

production manager to evaluate newly implemented balancing 

schemes. 

VALUE ADDED RATIO (VAR): An important concept in lean 

manufacturing is the difference between value added and non-value 

adding activities. The value added ratio indicates the proportion of 

time actually spend on adding value to the final product. Value added 

ratios are typically rather low, the VAR in work stations of a world class 

manufacturing company such as Toyota, rarely exceeds 20% [161]. 

The value added ratio is presented in the dashboard using a 

speedometer-like graph. It allows users to rapidly gain insights in the 

improvement potential present in the work station. 

RUN-AT-RATE (RAR): When a work station is not capable of finishing 

its work cycle within TAKT time, it creates disturbance in the whole 

assembly line. In some situations, the line needs to be stopped with 

clear productivity losses as a result. In some cases, the operator is 

allowed to continue his tasks across the borders of his own work 

station, however this should be avoided as much as possible, because 

the extra time spent should be compensated on the next product to 

stay on schedule. 

Since work cycles that exceed TAKT lead to direct productivity losses, 

it is an imported factor to monitor. The RAR factor is calculated as 

follows:   

 
𝑟𝑢𝑛 − 𝑎𝑡 − 𝑟𝑎𝑡𝑒 =  

#𝑐𝑦𝑐𝑙𝑒𝑠_𝑤𝑖𝑡ℎ𝑖𝑛_𝑡𝑎𝑘𝑡

#𝑐𝑦𝑐𝑙𝑒𝑠
 (37) 

 

A low RAR score can have different causes: it can be due to poor line 

balancing or it can be caused by excessive variability of a specific work 
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element. The RAR factor can be visualized for a specific time interval 

(typically one shift), but in the dashboard it is also possible to show 

the RAR factor for one specific product variant to support root cause 

analysis. The choice to provide this information on the work cycle level 

and not on the individual task level was made because the inherent 

variability on task level would yield distorted results. In every work 

cycle there are tasks that take some more time than expected, but 

usually this time is compensated for by taking into account a time 

buffer while balancing the line or the operator can catch up this time 

during other tasks. 

OUTLIER RATIO: Is a quality measure which indicates the proportion 

of work cycles that follow a normal pattern. It captures human errors 

such as picking mistakes that may arise due to the lack of standardized 

work instructions or poor operator training. These mistakes would not 

necessarily be detected in the quality measures that are typically 

used, because those measures mainly focus on the quality of the 

finished products. However, they lead to inefficiencies that negatively 

impact that performance of the work station. The outlier ratio is 

calculated based on the number of outliers detected by the 

classification framework. 

 
𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =  

#𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠

#𝑐𝑦𝑐𝑙𝑒𝑠
 (38) 

 

WORK INSTRUCTIONS: Besides monitoring, one of the main functions 

of an operational dashboard is to inform its users. Work instructions 

are the main source for assembly operators. Based on the event list 

described in chapter 2, we can automatically generate high level work 

instructions and link them to the video recordings of the best practice 

for that specific task. The real-time trajectory analysis framework 

makes it possible to assess different assembly sequences used by 

different operators and make suggestions on what is the best 

sequence to use. Together with textual and video instructions, the 

dashboard also visualizes the preferred path to follow for a specific 

task. 
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4.2.3. Operational Assembly Work Station Analysis Dashboard 

All this information is integrated in an Operational Assembly Work 

Station Analysis Dashboard (OAWSAD) concept, which can be used by 

both assembly work station operators and production managers. 

Unlike most existing manufacturing dashboards, the proposed 

OAWSAD aims to provide its users with relevant process information 

and charts to drive continuous improvement on the shop-floor level. 

The dashboard was designed following the design rules proposed by 

Yusof and Othman [140]. 

Different users require different information on various aggregation 

levels. All this information is accessible through the dashboard. 

However, in order to keep it clear, we do not want to overload the 

user with information that is irrelevant to him/her. Therefore, the 

dashboard uses drop-down menus to allow the user to customize the 

dashboard to his/her needs.   

The real-time trajectory analysis and classification methods presented 

earlier, enable us to keep the dashboard updated with real-time 

process information. All charts in the dashboard can be automatically 

generated and updated, which speeds up the feedback loop to 

evaluate improvement actions implemented by the operator or 

production manager.  

An example of the OAWSAD is presented in Figure 81. The dashboard 

was built in excel and uses a standard input file generated by the 

Python framework. All information in the dashboard is color coded to 

allow the user to assess in a glance whether a work station is 

performing as it should. The threshold values used for the color 

coding, can be easily adapted to fit the needs of the user.   

Figure 82 shows a second example for a simulated assembly line. The 

figure shows how the drop-down menus can be used to customize the 

dashboard and how this functionality can be used for root cause 

analysis. In this example, The RAR (A), Smoothness Index (B) and line 

balancing Yamazumi (C) indicate a clear balancing problem in Work 

Station 2. Looking at the Yamazumi chart (D) for this work cycle, one 

task appears to take significantly  longer than expected. When 
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retrieving the SPC chart (E) for this specific task, a clear shift can be 

noticed for the last 5 iterations. This shift could for instance be due to 

the fact that a different operator who lacks the appropriate training, 

is manning the work station after a shift change.   

 

Figure 81: Example of the OAWSAD 
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Figure 82: OAWSAD balancing problem 

The experimental cases used to develop the real-time trajectory 

analysis and classification framework do not grasp the complexity of 

a real life production environment. Therefore we were not able to 
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investigate the effect of implementing such a dashboard in real 

assembly line work stations. 

4.3. CONLUSIONS AND DISCUSSION  
In the first section of this chapter, a real-time classification and outlier 

detection method was presented. The method starts from the models 

generated by the classification framework presented in Chapter 3.  

The method makes use of the Keogh lower bound concept and is 

capable of accurately matching incoming trajectories to predefined 

models in and detect issues of problems in real-time. The real-time 

task recognition capabilities enable us to build a real-time updated 

operational dashboard for assembly work station analysis, which is 

presented in section 2 of this chapter. 

The operational assembly work station analysis dashboard (OAWSAD) 

concept presented in section 2, aims to drive continuous 

improvement on the shop floor level.  The dashboard provides the 

user with real-time performance information to evaluate his own 

performance. Furthermore the OAWSAD contains a number of charts 

and graphs which are frequently used in method study and lean 

manufacturing to optimize processes. These graphs are automatically 

generated and updated to provide instant insights on the effects of 

process changes. This significantly accelerates the PDCA improvement 

cycle often used on the shop floor in manufacturing companies.  The 

customizable dashboard was created in an excel-file and linked to the 

python framework described in chapter 3.  

The real-time monitoring and work station analysis framework 

presented in this chapter, could significantly change the way work 

study and continuous improvement of assembly line work stations are 

approached. On the level of the assembly station and assembly line, 

operators and production managers are enabled to analyze and 

rethink their by providing him with relevant real-time information and 

a very reactive feedback loop on both the work station and assembly 

line level respectively.  

The proposed framework fundamentally changes the role of the 

industrial or methods engineer. Some of the tasks typically performed 

by the methods engineer, such as setting time standards and 
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generating work instructions, are (partially) taken over by the real-

time monitoring system. These tasks are almost impossible to perform 

manually in current flexible high variety production environments. 

Instead, his main tasks now consist of disturbance handling and 

validating changes that originate from the shop floor level, as shown 

in Figure 83. This means that the engineer is now capable of managing 

multiple work stations/lines at once and react much faster. This 

reactivity is essential to stay competitive in today’s market. 

 

Figure 83: Real-time monitoring data flow 
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Chapter 5 Conclusions and further 

research perspectives 
 

Manufacturing industry is undergoing a clear trend towards mass 

customization. The ever increasing number of product variants to be 

produced, forces companies to make their processes more flexible 

and reactive, making them inherently more complex. In the specific 

case of mixed model assembly lines, flexibility is often still achieved 

through the use of human operators because of their capability to 

adapt and make their own decisions. 

In order to stay competitive, flexible production environments need 

to be constantly monitored and re-evaluated. To do this, accurate and 

up-to-date information is required to provide insights in the 

performance of the system and support the decision-making process. 

In more automated environments, real-time monitoring systems 

based on for example RFID have already been used for some years, 

mainly in the fields of inventory management, production planning 

and quality management. However, to evaluate the performance of 

human in manual production environments, companies are still 

relying on traditional time and method study techniques. These 

techniques are mainly based on manual observations and are 

exorbitantly time-consuming. In this doctoral dissertation, we 

investigate the possibilities to use multi-camera based monitoring 

systems to evaluate the performance of mixed-model assembly work 

station operators and provide them with the necessary information to 

drive continuous improvement of their processes.  

A number of reasons led to the choice to use camera-based systems. 

(1) In order to be accepted, an operator monitoring system should be 

as non-intrusive as possible. Existing tracking systems, such as motion 

capture suits, could hinder the person during his work and therefore 

these systems are typically not well received by the operators. (2) 

Video images are a rich source of information and have been used by 
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industrial engineers for many decades. Video images have an 

explanatory capability that is unmatched by any other motion capture 

sensor used today. Although they are not directly used by the 

proposed framework, the video images are a valuable by-product of 

the monitoring framework which can be used whenever deemed 

necessary. (3) Over the past decades, the price of cameras and data 

storage capacity has been constantly decreasing. Thereby it becomes 

possible to equip multiple work stations with camera systems that 

monitor the operator for longer time periods in a relatively 

inexpensive manner. 

5.1. RESEARCH CONTRIBUTIONS 
In chapter 1, the framework for this research is being created. General 

trends in manufacturing industries and their challenges are being 

outlined. Through a literature review of the existing time study and 

operator monitoring techniques, we identified a gap between  

methods and the challenges of contemporary and future 

manufacturing systems and more specific, assembly systems. 

Furthermore, we elaborate on the role of human operators in these 

flexible environments and how novel (IoT) technology can be used to 

enhance human operator capabilities.  

In chapter 2 we present a multi-camera based monitoring system that 

calculates the trajectory of the operator during his work. The video 

analysis method used, is based on the visual hull concept and was 

developed by IMEC. In the beginning of the chapter we describe the 

experimental setup and data sets used to perform and validate our 

research. Subsequently, although not developed in this research, we 

briefly describe the video analysis method to provide better 

understanding of the complete framework. In a third section of the 

chapter, we present a data processing procedure  to clean up the raw 

output of the video analysis method and extract useful information 

from the raw trajectories. By linking the raw data to work station 

layout information, detailed information about the time distribution 

of the operator and the performance of the work station can be 

generated. The data framework proposed in this research, supports 

the methods engineer to automatically annotate captured video 

sequences and provide basic time measurements. 
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Chapter 3 presents a work cycle clustering algorithm. Unsupervised 

clustering  of moving object trajectories has been of interest for many 

researchers. There are two main aspects that determine the accuracy 

of clustering frameworks: the distance measure and the classification 

procedure itself. An empirical study, based on a number of different 

experimental data sets, was performed to determine the most 

suitable combination of clustering method and similarity measure for 

this application. The proposed algorithm uses dynamic time warping 

to calculate the similarity between trajectories because of its’ 

capability to deal with time deformations. The classification itself is 

based on normal hierarchical clustering methods. Hierarchical 

clustering however only provides insights in the similarity structure of 

a data set, therefore probabilistic permutation testing is used to 

automate the final classification. The proposed method reaches an 

average precision and accuracy that exceeds 90% based on the 

experimental data sets used in this research. This exceeds the 

performance of more commonly used classification methods. 

Chapter 4 focuses on real-time operator monitoring and decision 

support. In order to provide the operator with real-time accurate and 

contextualized information, we need to be able to recognize his/her 

actions rapidly. Therefore we present a real-time trajectory matching 

method in the first section of the chapter. The method matches 

incoming trajectories to a set of models that were generated in the 

off-line classification analysis. Using the Keogh lower bound concept 

for dynamic time warping, the developed methodology only requires 

0.07 seconds on average to process one frame in the video sequence. 

This is more than sufficient, knowing that experiments show that a 

rate of two frames per second still provides accurate classification 

results. The second section of this chapter focusses on real-time 

decision support on the shop floor level. In this section an operational 

assembly work station analysis dashboard (OAWSAD) is presented. 

Dashboards  are being used more and more in manufacturing 

environments, however there is a clear lack of dashboards drive and 

accelerate continuous improvement on the work station or shop floor 

level. The OAWSAD presented in this section aims to bridge this gap 
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by integrating real-time performance data and automatically 

generated charts and diagrams that have proven their value in 

industrial engineering and continuous improvement for many years. 

5.2. LIMITATIONS AND FUTURE RESEARCH PERSPECTIVES 
The classification framework developed in this research is only 

validated on a set of experiments which don’t really match the 

complexity of real-life assembly work stations.  Changing regulations 

(GDPR) on the use of personal data of employees cause companies to 

be rather cautious about  the use of video cameras on the shop floor. 

This eventually made experiments in real-life production 

environments more difficult than anticipated. However, we still feel 

that field test to validate the research results and prove the benefits 

for operators should be performed.  

Another limitation is the speed of the video processing algorithms. 

The video analysis methods used in this research prove to be valuable 

for off-line analysis. However, real-time processing is not possible, 

even if the framerate of the cameras would be decreased to the 

minimum (2fps). Further research should therefore identify 

alternative means of location tracking, that provides the same 

accuracy and unobtrusiveness. 

The methods presented in this research PhD thesis, remove the need 

for the industrial engineer to be physically present in the work station. 

This offers new perspectives for remote work station analysis and 

operator guidance. This concept is already in use for maintenance 

tasks, where maintenance engineers can offer support to field 

technicians through the use of wearable augmented reality devices 

such as google glasses. In further research projects we could translate 

these same concepts to the assembly environment. In recent years, 

we notice a trend towards more decentralized production facilities to 

increase the reactivity of the supply chain. Our framework enables 

industrial engineers to manage and support multiple assembly lines 

from a distance, as they are notified when disturbances arise and  they 

are provided with the videos to perform further analysis. 

The research presented in this doctoral thesis is not isolated and 

provides the first steps in a larger body of research projects to develop 
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production systems that are resistant to the challenges posed by the 

current market trends. Some of these research projects are described 

below. 

SBO-FLEXAS-VR aims to develop a design framework for future 

flexible assembly work stations. Within this project, we aim to define 

and quantify assembly work station flexibility in order to adapt the 

work station design to the flexibility requirements. Human operators 

are still indispensable for many of these future assembly work 

stations, therefore suitable operator monitoring systems are a crucial 

part of the work station design to guarantee qualitive and efficient 

assembly processes. 

As mentioned earlier, human operators are still by far the most 

flexible form of resources in the assembly system. In future flexible 

work stations the strengths of the human (creativity, problem solving 

ability, dexterity) are combined with the rapidly improving 

performance and affordability of robot systems with intuitive controls 

and context-aware information systems. This research thesis aligns 

well with this last aspect and is complementary to a number of 

ongoing research projects. ICON Operator Knowledge aims to 

develop a framework that is capable of capturing both implicit and 

explicit knowledge of experienced operators to improve the quality of 

assembly work instructions. To do this, a sensor-array will be 

developed to monitor human operators in their work station and 

provide information which can be used in the off-line creation and 

adaptation of assembly work instructions. Furthermore, a tool to 

automatically generate assemble sequences from the product CAD-

files is being developed by researchers of UHasselt. This tool can 

suggest multiple assembly sequences, but does not take into account 

efficiency or quality aspects. On the other hand, the framework 

proposed is capable of automatically generating high-level work 

instructions based on the actual operations performed by the 

operator. Providing a link between these two methods, would enable 

us to automatically generate detailed work instructions, taking into 

account the feasibility and performance of the resulting assembly 

process. 
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ICON Operator Knowledge builds upon the results of another ICON 

project: Operator Info. The aim of this project is to provide assembly 

line operators with contextualized digital work instructions. 

Contextualized in this sense, means that the operator receives 

instructions which are adapted to his/her specific needs and the 

situation he/she is in. This concept of contextualized information is 

also used in ADAPT, an innovation project in collaboration with 

ARKITE. The aim of this project is to increase the adaptivity of the 

ARKITE HIM monitoring system and match the information provided 

by the guidance projector system to the specific profile of the 

operator. To do so, Bayesian belief networks will be used to estimate 

latent variables such as dexterity and the experience level of the 

operator. This information will be used to determine the profile of the 

operator. These Bayesian belief networks will mainly use time-based 

data as the input. The outcome of this PhD research will certainly help 

gather accurate manual assembly task times required to feed these 

Bayesian networks. 

Real-time operator performance monitoring will also play a crucial 

role in the future ICON project OperatorCapability. There, the project 

goal is to develop a learning management system for manufacturing 

operations which allows to take up-to-date operator capability 

information into account for decision-making on operator-task 

allocation and operator on-the-job training. In this project we will 

develop a set of indicators which provide insights in the competences 

and capabilities of the operator. Operator capability is a dynamic 

concept however, operators learn but also lose knowledge and skills 

when these competences are not used for a longer period of time 

[162]. A generic model for an operator and workforce capability 

profile will be constructed based on physical competences, cognitive 

qualities, certifications, training results, performance stats, etc. In this 

context, the real-time operator performance monitoring system 

presented in this PhD thesis can provide valuable input to keep the 

work force capability matrix accurate and up-to-date and could 

therefore be integrated and extended in the framework developed in 

this project. 
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The OAWSAD presented in chapter 4  shows how real-time assembly 

process information can be used to support line balancing decisions. 

Keeping timing data of processes accurate and  up-to-date is one of 

the main goals of the ICON AssemblyBalance project. The aim of this 

project is to develop more robust and dynamic methods to minimize 

productivity losses related to balancing issues of flexible assembly 

systems. This project was initiated by a number of assembly 

companies who identified a clear lack of supportive tools to stay 

within TAKT, level out imbalances and provide triggers to change the 

line balancing strategy. The OAWSAD already provides insights in the 

performance of line balancing strategies, however, the information 

shown in the dashboard could be used to automatically generate 

triggers and initiate actions when required. 

In this research, we mainly start from the trajectories generated by 

the video analysis methods. However, the video images contain 

additional information that hasn’t been used today. In the ICON 

ErgoEyeHand, the goal is to develop a real-time ergonomics 

assessment tool for assembly operators. The proposed framework 

uses motion capture suits to estimate the operators’ posture and uses 

this information to automate the  ergonomics risk assessment. 

However, the motion capture suits are very intrusive and often cause 

hindrance when used in real-life situations. The video analysis 

methods used in this research, provide 3D-models of the operator. 

This opens up perspectives to assess the posture of the operator 

based on the output of the video system without bothering the 

operator. The real-time ergonomics assessment tool could 

subsequently generate warnings or triggers when specific risks are 

detected. The OAWSAD could be extended with ergonomics 

information to create awareness amongst the operators and reduce 

the risk of long lasting injuries.  

An overview of these projects is provided in Table 14. 
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Table 14: overview ongoing and future linked research projects 

 

Project name role lead status

SBO Flexas-VR

Design framework for flexible assembly work 

stations UGent Ongoing

ICON Operator Knowledge

Automatically generated and adapted work 

instructions based on operator feedback Flanders Make Ongoing

ICON ErgoEyeHand Real-time ergonomics assessment and support Flanders Make Ongoing

O&O ADAPT Operator-specific monitoring and guidance ARKITE Submitted

ICON OperatorCapability

Learning management systems for assembly 

operators UGent Submitted

ICON AssemblyBalance Robust and reactive assembly line balancing UGent Submitted
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Appendix 2 
 

 One Way Distance 
 
def OWD(traj1, traj2): 
    ts1 = traj1.route 
    ts2 = traj2.route 
     
    a = [Dpoint(ts1[i], ts2) for i in range(len(ts1))] 
    b = [Dpoint(ts2[i], ts1) for i in range(len(ts2))] 
     
     
    Dowd12 = sum(a)/traj1.distance() 
    Dowd21 = sum(b)/traj2.distance() 
    owd = (Dowd12 + Dowd21)/2 
    return owd 
 
Hausdorff distance 
 
def hausdorff(traj1, traj2): 
    h = 0 
     
    ts1 = traj1.route 
    ts2 = traj2.route 
    for a in ts1: 
        shortest = 1000000000000000000 
        for b in ts2: 
            d = dist(a, b) 
            if d<shortest: 
                shortest = d 
        if shortest > h: 
            h = shortest 
    return h 
 
Longest common subsequence 
 
def LCSS(traj1, traj2, e, d): 
    l1 = len(traj1.route) 
    l2 = len(traj2.route) 
    C = [[0 for j in range(l2)] for i in range(l1)] 
     
    for i in range(1, l1): 



 
 

        for j in range(1, l2): 
            a = traj1.route[i] 
            b = traj2.route[j] 
             
            if abs(a[0]-b[0])<e and abs(a[1]-b[1])<e and 
abs(i-j)<d: 
                C[i][j]=C[i-1][j-1] + 1 
            else: 
                 C[i][j] = max(C[i-1][j], C[i][j-1]) 
                  
 
    return 1-float(C[-1][-1])/min(l1-1,l2-1) 

 

 

Dynamic time warping 
 
def dist(l1, l2): 
    #calculates the distance between two points in a 
route 
    d = math.sqrt((l1[0]-l2[0])**2 + (l1[1]-l2[1])**2) 
    return d 
 
def DTWdist(traj1, traj2): 
    #calculates the DTW distance between two time series 
 
     
    numrows = len(traj1.route) 
    numcolumns = len(traj2.route) 
     
     
    matrix = [[0 for j in range(numcolumns)] for i in 
range(numrows)] 
   
    for i in range(numrows): 
        for j in range(numcolumns): 
            d = dist(traj1.route[i], traj2.route[j])/100 
            matrix[i][j] = d 
     
    DTW = [[0 for j in range(numcolumns)] for i in 
range(numrows)] 
     
    #initialize rows and colums 
    DTW[0][0] = matrix[0][0] 



 
 

 
    #first row 
    for i in range(1,numrows): 
        DTW[i][0] = DTW[i-1][0] + matrix[i][0] 
     
    #first column 
    for j in range(1,numcolumns): 
        DTW[0][j] = DTW[0][j-1] + matrix[0][j] 
     
    # rest of the matrix 
     
    for i in range(1, numrows): 
        for j in range(1, numcolumns): 
            choices = DTW[i-1][j], DTW[i][j-1], DTW[i-
1][j-1] 
            DTW[i][j] = min(choices) + matrix[i][j] 
         
    
     
    #mprint(DTW) 
     
    distance = DTW[-1][-1] 
     
 
     
     
    #calculate warping path 
    #init 
    i = numrows-1 
    j = numcolumns-1 
    wp = [(i, j)] 
     
    while (i>0 and j>0): 
        choices = DTW[i-1][j], DTW[i-1][j-1], DTW[i][j-
1] 
        val, idx = min((val, idx) for (idx, val) in 
enumerate(choices))  
        if idx==0: 
            wp.append((i-1, j)) 
            i -=1 
             
        elif idx==1: 
            wp.append((i-1, j-1)) 
            i -= 1 
            j -= 1 
             



 
 

        elif idx==2: 
            wp.append((i, j-1)) 
            j -=1 
             
        else: 

            print "something went terribly wrong ☹, 
check the DTW traceback part of the DTW algorithm"   
     
     
    if(i>0): 
        for k in reversed(range(i)): 
            wp.append((k, 0)) 
    elif(j>0): 
        for l in reversed(range(j)): 
            wp.append((0, l))    
    
    wp.reverse() 
      
     
     
    norm = len(wp) 
   # print "DTW distance "+str(distance) 
    return distance/norm, wp 
 
Dynamic time warping (recursive calculation – used in 
real-time framework) 
 
ef euc_dist(pt1,pt2): 
    return math.sqrt((pt2[0]-pt1[0])*(pt2[0]-
pt1[0])+(pt2[1]-pt1[1])*(pt2[1]-pt1[1])) 
 
def _c(ca,i,j,P,Q): 
    if ca[i,j] > -1: 
        return ca[i,j] 
    elif i == 0 and j == 0: 
        ca[i,j] = euc_dist(P[0],Q[0]) 
    elif i > 0 and j == 0: 
        ca[i,j] = max(_c(ca,i-
1,0,P,Q),euc_dist(P[i],Q[0])) 
    elif i == 0 and j > 0: 
        ca[i,j] = max(_c(ca,0,j-
1,P,Q),euc_dist(P[0],Q[j])) 
    elif i > 0 and j > 0: 
        ca[i,j] = max(min(_c(ca,i-1,j,P,Q),_c(ca,i-1,j-
1,P,Q),_c(ca,i,j-1,P,Q)),euc_dist(P[i],Q[j])) 



 
 

    else: 
        ca[i,j] = float("inf") 
         
    return ca[i,j] 
 
 
def _dtw(traj1, traj2): 
 
    x1, y1, t1, z1 = zip(*traj1.route) 
    x2, y2, t2, z2 = zip(*traj2.route) 
    P = zip(x1, y1) 
    Q = zip(x2, y2) 
    i = len(P)-1 
    j = len(Q)-1 
    ca = np.ones((len(P),len(Q))) 
    ca = np.multiply(ca,-1) 
     
    if ca[i,j] > -1: 
        return ca[i,j] 
    elif i == 0 and j == 0: 
        ca[i,j] = euc_dist(P[0],Q[0]) 
    elif i > 0 and j == 0: 
        ca[i,j] = max(_c(ca,i-
1,0,P,Q),euc_dist(P[i],Q[0])) 
    elif i == 0 and j > 0: 
        ca[i,j] = max(_c(ca,0,j-
1,P,Q),euc_dist(P[0],Q[j])) 
    elif i > 0 and j > 0: 
        ca[i,j] = min(_c(ca,i-1,j,P,Q),_c(ca,i-1,j-
1,P,Q),_c(ca,i,j-1,P,Q)) + euc_dist(P[i],Q[j]) 
    else: 
        ca[i,j] = float("inf") 
     
    distance = ca[i, j] 
 
    print "DTW iterative results" 
    print distance 
 
         
    return ca[i,j] 
 
Frechet Distance 
 
def frechetDist(traj1,traj2): 
    x1, y1, t1, z1 = zip(*traj1.route) 
    x2, y2, t2, z2 = zip(*traj2.route) 



 
 

    P = zip(x1, y1) 
    Q = zip(x2, y2) 
    ca = np.ones((len(P),len(Q))) 
    ca = np.multiply(ca,-1) 
    return _c(ca,len(P)-1,len(Q)-1,P,Q) 
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