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ABSTRACT 

 
Flexible, reactive and adaptive manufacturing systems are a 

prerequisite to cope with the demand for low volumes of 

highly customized products of today’s market. For years, 

manufacturing companies have been using real-time data 

capturing systems, such as RFID, to gather the necessary data 

to obtain insights in their production processes, mainly in the 

domain of quality control and inventory management. 

However, very few work has been done on monitoring an 

assembly operator during his work cycle in real-time. This 

paper presents a method to match operator trajectories, 

obtained through a multi-camera vision system, in real-time 

to predefined models. This way, the performance of the 

operator can be assessed online and  problematic or 

anomalous work cycles can be detected. This information can 

then be used to support the operator in his pursuit for 

continuous improvement by pointing out improvement 

potential. 

 
INTRODUCTION 

 
Over the recent years, the consumer market has made a shift 

towards more customized and highly variant products. To 

answer these demands, production systems need to be very 

reactive and flexible. Contemporary flexible production 

systems are able to react and adapt their behavior to the 

current circumstances, based on real-time data and 

information obtained through a variety of sensor systems. 

Industrial applications of data gathering using sensor systems 

can be found in inventory control  (Visich, et al. 2009) and job 

floor control (Arkan and Van Landeghem 2013). RFID 

technology for example, is used to provide accurate real-time 

process data which can be used to keep the manufacturing 

execution system (MES) up-to-date. These examples are all 

part of the current paradigm shift in manufacturing companies 

towards Industry 4.0. This  fourth industrial revolution is 

based on digital transformation and cyber-physical systems to 

overcome the challenges posed by the changing market 

demands (Sogeti Labs, 2016). 

Also within assembly line work stations, sensor systems are 

being used to monitor the progress of the production process 

and use this information to update the central production 

database  (Wang 2012). This information can also be used to 

provide the operator with contextualized work instructions 

and information about the required inspections and test 

procedures. These systems are mainly focused on the product 

rather than on the operator performing the assembly tasks. 

However, gaining insights in the performance of the operator 

could provide the assembly line worker with critical 

information to support him in the continuous improvement of 

his work methods. Up until today, this kind of information can 

only be obtained through manual analysis of video-images or 

at the work station. These analysis methods are prohibitively 

time-consuming and therefore not tailored to the flexibility 

and reactivity requirements of contemporary work stations. 

Recently researchers presented an analysis system for manual 

assembly work stations in which multiple cameras are used to 

track the operators’ position in the work station throughout the 

complete work cycle (Bauters, et al. 2018). These trajectories 

are then classified into clusters based on their similarity in 

order to detect outliers or anomalous work cycles. These 

outliers are work cycles in which irregularities or problems 

took place and are therefore interesting subjects for further 

investigation. By pointing towards these anomalous work 

cycles, this system can significantly decrease the time needed 

to perform the manual analysis. Furthermore the system 

calculates a number of performance indicators and visualizes 

the operators’ performance indicators in an operational 

dashboard to unveil improvement potential. 

One of the disadvantages of this system is the fact that the 

analysis of the video-images is still done offline. This is 

because the classification method relies on the dynamic time 

warping algorithm (DTW) to calculate the similarity between 

different trajectories. This method yields better classification 

results for this application than other existing similarity 

measures (Bauters, et al. 2018). However, calculation time for 

DTW is exponential, making it impossible to calculate the 

warping between a large number of rather long trajectories in 

real-time. 

In this paper we present a method to match an operators’ 

trajectory to a number of pre-recorded model trajectories in 

real time. This method makes it possible to detect anomalies 

in real-time and immediately ask the operator for feedback on 

what exactly happened during that particular work cycle. 

Furthermore it enables us to assess to operators’ performance 

in real-time and suggest improvements to his work procedure.  

The remainder of this paper is structured as follows. In the 

next section, a description of the data sets used in this research 

is given. Afterwards the real-time trajectory matching method 

is explained before presenting some results. Finally, the 
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conclusions of this research are presented and some ideas for 

further research are proposed. 

 
DATA SETS 

 
Two different data sets have been used to validate the 

trajectory matching methodology. In this section, these data 

sets are briefly discussed.  

 
Experimental data set 

 

The first data set is created by recording a human operator 

performing simulated assembly tasks in a laboratory setting. 

The parts produced in this experiment consist of a Duplo® 

base block on which different patterns of Lego® blocks are 

placed. The Duplo® base blocks are delivered to the work 

station using a conveyer belt that mimicks a moving assembly 

line. The Lego® blocks are stored in different locations in a 

picking rack equipped with a pick-to-light system. This way, 

each different product produced yields a different pattern or 

trajectory followed by the operator (Bauters, et al. 2018). An 

overview of the laboratory setting is given in Figure 1. 

 
Figure 1: overview of the laboratory setting for data set 1 
 

In this case, a system of multiple cameras (5 in total) was used 

to determine the operators’ position throughout his work 

cycle. To do this, the principle of voxel carving is used to 

create a visual hull of the operators’ body in every frame of 

the video sequence as described by several researchers 

(Laurentini 1994) (Slembrouck, et al. 2015). The position is 

then determined by projecting the center of mass of this visual 

hull on the ground plane (x, y). To filter the noise in the 

resulting trajectories, a Gauss kernel smoothing approach was 

implemented. Figure 2 shows the resulting visual hull, based 

on the images obtained through the five cameras.  

 

 
Figure 2: Output of the multi-camera system 

 

This dataset contains 22 different trajectories. Two different 

patterns can be observed as well as 2 anomalous work cycles. 

In this paper, this dataset is mainly used to show the ability of 

the developed methodology to accurately distinguish normal 

trajectories from anomalous work cycles in real-time. 

 
Omni1 

 

The second data set used in this research is a data set 

containing over 200 trajectories of people walking through a 

lab as described in (Morris and Trivedi 2011). All trajectories 

were recorded within a 24 hour period without the knowledge 

of the people entering and leaving the laboratory. This dataset 

was constructed with one single omni-directional camera. 

Figure 3 provides an overview of the laboratory setting. 

 
Figure 3: overview of the laboratory setting for data set 2 

 

This dataset contains 7 different activities or patterns in total. 

All 206 trajectories in this data set are labeled, meaning that 

for each trajectory the class of the activity performed by the 

subject is known. In this research, this data set was mainly 

used to validate whether the trajectory matching methodology 

is capable of handling a higher number of trajectory models.  

 

Real-time trajectory 

 

For both data sets discussed above, determining the location 

of the operator/human subject is done off-line. Indeed, 

obtaining robust and accurate location data from video-

images in real-time at high sample rates with existing image 

processing algorithms remains a challenging task. Allthough 

a lot of research in the field of image processing is being 

performed and real-time localization algorithms based on 

video images are expected to become available in the near 



 

future. Also, there exist a number of different sensors which 

could deliver exactly the same information. 

To overcome this problem, in this research we choose to use 

trajectory data which is calculated off-line and feed a new 

location to the system at fixed time intervals, which simulate  

the frame rate of the cameras. This way, we are able to prove 

that the developed methodology is capable of handling real-

time data once it becomes available. 

 
METHODOLOGY 

 

In this section, the existing method for off-line classification 

of work cycle trajectories is briefly discussed. Afterwards the 

challenges encountered when using this method in real-time 

are clarified and the newly developed method for real-time 

trajectory matching is presented. 

 

Off-line classification 

 

The inherent variation in the assembly process leads to 

trajectories that vary in speed and length, even if the tasks 

performed by the operator are the same. Therefore, one can 

not simply use the Euclidean distance between concurrent 

points in two trajectories as a distance measure. To overcome 

this challenge, trajectories are compared using dynamic time 

warping (DTW). DTW is a technique that originally was 

implemented in speech recognition applications, but by now 

it has successfully been used to cope with deformations in all 

kinds of (multi-dimensional) time-dependent data (Müller 

2007). The idea behind DTW is to find an optimal warping 

path that minimizes the distance between two trajectories, 

taking into account a number of warping constraints. The 

DTW distance can recursively be calculated: given two time 

series X := (x1, x2, … , xN) and Y := (y1, y2, …, yM) with 

respective lengths N, M ∈ ℕ, the cost of the alignment 

between these two time series can be calculated as follows: 
 

C(Xi, Yj) = (xi, yj) + min{C(Xi-1, Yj-1) , C(Xi-1, Yj), C(Xi, Yj-1)} 

 

where Xi an Yj are the respective subsequences (x1, x2, … , xi) 

and (y1, y2, …, yj) and (xi, yj) is the Euclidean distance 

between two two-dimensional points xi and yj. C(Xn, Ym) 

determines the DTW distance between the two trajectories. 

Figure 4 visualizes how this alignment works for two one-

dimensional time series. More detailed information on the 

implementation can be found in (Bauters, et al. 2018). 

 
Figure 4: example of DTW alignment between two time-

series 

 

The distinction between regular or normal work cycles and 

anomalies for a set of trajectory sequences, is made based on 

a hierarchical clustering procedure. Hierarchical clustering 

methods are used to find a similarity structure in a dataset by 

initially dividing the data set in n clusters, with n being the 

number of objects in the data set. The most similar clusters are 

then merged into a new cluster and this is repeated until all 

objects are grouped into the same cluster. The similarity 

structure of the data set is typically visualized in a dendrogram 

Figure 5, showing the sequence in which clusters are merged. 

The distance between two merged clusters is indicated by the 

height of the links in the dendrogram. 

 
Figure 5: example of a dendrogram 

 

To determine where to cut the dendrogram and thus decide 

whether the objects in two clusters actually represent the same 

or a different activity, an adapted version of the permutation 

testing method proposed by Bruzesse (Bruzesse and Vistocco 

2015) is applied. This procedure is based on the assumption 

that, if two clusters contain similar objects, the distance 

between two-randomly sampled sets of objects from these 

clusters will not be significantly different from the distance 

between the original clusters.  

Applying this method on a set of work cycle trajectories, this 

set is divided into groups or clusters of similar trajectories and 

single-item clusters which we call outliers or anomalies. The 

similar trajectories all represent the same assembly process 

under normal circumstances and can be used to build a model 

that serves as a template for real-time trajectory matching later 

on. To build this model, an average trajectory of all sequences 

in the cluster is calculated. This average trajectory is 

iteratively calculated using the DBA algorithm as proposed by 

Petitjean (Petitjean, et al. 2014). The resulting model for one 

of the 7 patterns in the Omni1 data set is shown in Figure 6. 

 
Figure 6: average trajectory model 

 



 

 

Real-time trajectory matching 

 

A naïve approach to try to match sequences to the previously 

calculated models, would be to calculate the DTW distance 

between the incoming sequence and all of the models, each 

time a new point is added to the new sequence. The sequence 

can then be matched to the model resulting in the minimal 

DTW distance. However, there are a number of downsides to 

this approach: (1) The calculation of the DTW has a O(n*m) 

computation time complexity, where n is the length of the 

incoming sequence and m represents the length of the model. 

Performing the DTW calculation for every new datapoint, 

leads to computation times far exceeding the framerate of the 

camera system, especially if the sequences are becoming 

longer and the number of trajectory models is high. (2) The 

incoming trajectory sequence only represents a fraction of the 

full work cycle. One can rightfully question wether matching 

such a partial sequence to the model of a complete work cycle 

actually provides meaningful results.  

To overcome these challenges another approach was taken, 

based on Keogh’s lower bound calculation for DTW (Keogh 

and Ratanamahatana 2005). The idea behind the approach is 

to calculate a lower bound for the DTW distance between the 

incoming sequence and a subsequence of the model that has 

the same length as the incoming trajectory. Based on this low-

complexity lower bound calculation, it is possible to eliminate 

trajectory models from the set of possible candidate matches.  

To calculate the Keogh lower bound, a bounding envelope is 

constructed for each of the trajectory models (Capitani and 

Ciaccia 2006). Let M(a1, …, am) be a trajectory model of 

length m and Env(M) is the envelope around M defined by 

two time series Up(M) and Low(M). Then Up(M) and Low(M) 

as follows: 

 

𝑈𝑝(𝑀) = max(𝑀𝑗| 𝑗 ∈ [max(1, 𝑖 − 𝑏) , min (𝑚, 𝑖 + 𝑏)]) 

𝐿𝑜𝑤(𝑀) = min(𝑀𝑗| 𝑗 ∈ [max(1, 𝑖 − 𝑏) , min (𝑚, 𝑖 + 𝑏)]) 

 

In other words, Upi(M) and Lowi(M) are respectively the 

maximum and minimum values of M in the interval [i-b, i+b], 

where b is a user-defined parameter and taking into account 

the border effects. The squared Keogh LB distance between a 

subsequence Mn of the model M and an incoming sequence Sn 

of length n, is defined as follows: 

 

𝐿𝐵𝐾𝑒𝑜𝑔ℎ(𝐸𝑛𝑣(𝑀), 𝑆)2

=  ∑ {

(𝑆𝑖 − 𝑈𝑝𝑖(𝑀))
2

     𝑖𝑓 𝑆𝑖 > 𝑈𝑝𝑖(𝑀) 

0        𝑖𝑓 𝐿𝑜𝑤𝑖(𝑀) ≤ 𝑆𝑖 ≤ 𝑈𝑝𝑖(𝑀)

(𝑆𝑖 − 𝐿𝑜𝑤𝑖(𝑀))
2

     𝑖𝑓 𝐿𝑜𝑤𝑖(𝑀) > 𝑆𝑖

𝑛

𝑖=1

 

 

It can be proven that the Keogh LB distance is a lower bound 

for the DTW distance for 1-dimensional time series. However, 

the trajectory sequences under investigation in this case, are 

2-dimensional.  This issue can be overcome by constructing 

separate envelopes for the x and y component of the model 

and performing the Keogh LB distance calculation on both the 

x and y component of the incoming sequence. Rath and 

Manmatha (Rath and Manmatha 2002) proved that in this 

case: 

 

𝐿𝐵𝐾𝑒𝑜𝑔ℎ(𝐸𝑛𝑣(𝑀𝑥), 𝑆𝑥)2 + 𝐿𝐵𝐾𝑒𝑜𝑔ℎ(𝐸𝑛𝑣(𝑀𝑦), 𝑆𝑦)
2

≤  𝐷𝑇𝑊(𝑀𝑥, 𝑆𝑥)² +  𝐷𝑇𝑊(𝑀𝑦 , 𝑆𝑦)²

= 𝐷𝑇𝑊(𝑀, 𝑆)² 

 

The Keogh LB calculations for the respective x- and y-

component of a sequence and model in the Omni1 data set are 

visualized in Figure 7 and Figure 8. 

 

 
Figure 7: Keogh LB calculation x component 

 

 
Figure 8: Keogh LB calculation y component 

 

This lower bound calculation requires less computation time 

than the full DTW calculation. Based on this knowledge, the 

real-time trajectory matching methodology was developed. In 

this methodology, the lower bound distance between the 

incoming sequence and an even long subsequence of all the 

candidate models is calculated. For the model yielding the 

best lower bound distance, the DTW distance is calculated and 

saved as the best_so_far distance. Subsequently the LB 

distances of all candidate models are compared to this 

best_do_far DTW distance and candidate models for which 

the LB distance is higher than the best_so_far are eliminated 

from the set of candidate models, under  the assumption that 

those models are unlikely to provide a good match for the 

incoming sequence. The outline of the method is provided in 

Figure 9. 

 



 

Real_Time_Trajectory_Matching(M: [(x1, y1), …, (xm, 

ym)], S: [(x1, y1), …, (xn, yn), …]) 

1. Initialization 
2. Best_so_far  inf. 

3. Incoming_traj  [] 

4. Start 

5. For new data point: 

6.            LBs := [Keogh_LB for model in 

traj_models] 

7.            Best_model  traj_models[min(LBs)] 

8.            Best_so_far = DTW(Best_model) 

9.            For model in traj_models: 

10.                      If LB>Best_so_far: 

11.                                 Remove from traj_models 

12.                       End if 

13.             End for 

14.             Return best_model 

15. End for 
 

Figure 9: outline of the real time trajectory matching 

algorithm 

 

As shown in Figure 9, the algorithm uses the Keogh LB to 

estimate what the best matching model is. This way, only one 

DTW calculation needs to be performed per new incoming 

data point. The algorithm was then further sped up by 

implementing a warping window for the DTW calculation. 

To detect outliers, the average distance between the average 

trajectory of the best matching model and all the trajectories 

used to build up that model (avg_dist), is calculated together 

with the standard deviation  on those distances. Once the 

incoming trajectory is fully completed, the DTW distance 

between the new trajectory and the average trajectory of the 

best matching model is compared to avg_dist. If 

DTW(incoming, avg_traj) > avg_dist + z.  the incoming 

trajectory is considered to be an outlier. 

 

RESULTS 

 

Experimental data set 

 

The first data set contains two regular trajectories, one in 

which parts are only picked on the left side of the rack and one 

for which the necessary parts are stored on the left and right 

side of the picking rack. In the anomaluous work cycles, the 

operator travels back-and-forth alongside the rack to set right 

a picking mistake. The models and outliers are visualized in 

following Figure 10. 

For this data set, the proposed method was able to classify all 

incoming segments correctly. For every segment, the average 

calculation time per frame was logged. The average 

calculation time is 0.07710 seconds, with a maximum time of 

0.089 seconds. Twenty frames per second are obtained 

through the camera system. However, trajectories can safely 

be downsampled up to a factor 10, without compromising the 

classification results  (Bauters, et al. 2018). Therefore, it can 

be concluded that the proposed method is capable of 

performing real-time trajectory matching on this particular 

data set. 

 

 
Figure 10: models and outliers experimental data set 

 

Omni1 data set 

 

This data set contains seven models. Therefore one would 

expect the average calculation time per frame to be higher. 

The opposite however is true. Due to the fact that the 

trajectories in this data set are generally shorter than the ones 

in the first data set, the average calculation time per frame 

only amounts up to 0.0678 seconds, with a maximum of 0.077 

seconds.  

On the downside, applying the proposed method on this data 

set only yields an accuracy 94.3% percent. In the experiments 

described in this paper, no false negatives (no matching 

pattern was found when it does exist) were detected. The 5.7% 

mistakes detected are trajectories that are matched to the 

wrong model (false positive). This can be explained by the 

fact that some of the models in this data set share common 

subtrajectories. Sometimes this results in a slightly higher 

similarity of the incoming trajectory to a subtrajectory of the 

wrong model. This occasionally leads to the preliminary 

elimination of the actual best matching model. 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

In this paper, a method for real-time trajectory matching and 

outlier detection was presented. The aim of the method is to 

develop a system that is able to monitor assembly line work 

station operators and detect problems and mistakes in real-

time. The monitoring of the operator is done using a multi-

camera video analysis system. By detecting difficulties and 

problems on-line and linking this to real-time operator 

feedback and video images, a vast amount of valuable 

information for improving the process and/or redesigning the 

work station is created. Until today, this kind of information 

can only be obtained through manual analyses of video 

recordings and interviews with operators, which are heavily 

time-consuming. 

The developed outlier detection method is based on dynamic 

time warping. The Keogh lower bound concept was used to 

speed up the similarity measurement to enable real-time 

outlier detection. The method was validated on two different 

experimental data sets. Results show that the proposed system 

is capable to accurately detect outliers in real-time. 

Further research will focus on accelerating the video analysis 

in order to evolve to a (near) real time analysis tool.  The 

vision technology and the 3D-model of the operator created 



 

by the visual hull method can also be used to perform an 

ergonomics analysis of the work cycle. This would be a 

valuable extra to the system. 
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