
NEW METHODS FOR MINING
SEQUENTIAL AND TIME SERIES

DATA

by

Ghazi H. Al-Naymat

BSc, Mu’tah University, Jordan, 1998

MIT, The University of Sydney, Australia, 2005

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in the School of Information Technologies

THE UNIVERSITY OF SYDNEY

June 2009

c© Copyright 2009

by

Ghazi H. Al-Naymat

c© All rights reserved. This work may not be reproduced in whole or in part, by photo-

copy or other means, without the permission of the author.

ii

Abstract

Data mining is the process of extracting knowledge from large amounts of data. It

covers a variety of techniques aimed at discovering diverse types of patterns on

the basis of the requirements of the domain. These techniques include association rules

mining, classification, cluster analysis and outlier detection. The availability of applica-

tions that produce massive amounts of spatial, spatio-temporal (ST) and time series data

(TSD) is the rationale for developing specialized techniques to excavate such data.

In spatial data mining, the spatial co-location rule problem is different from the asso-

ciation rule problem, since there is no natural notion of transactions in spatial datasets

that are embedded in continuous geographic space. Therefore, we have proposed an ef-

ficient algorithm (GridClique) to mine interesting spatial co-location patterns (maximal

cliques). These patterns are used as the raw transactions for an association rule mining

technique to discover complex co-location rules. Our proposal includes certain types of

complex relationships – especially negative relationships – in the patterns. The relation-

ships can be obtained from only the maximal clique patterns, which have never been used

until now. Our approach is applied on a well-known astronomy dataset obtained from the

Sloan Digital Sky Survey (SDSS).

ST data is continuously collected and made accessible in the public domain. We present

an approach to mine and query large ST data with the aim of finding interesting pat-

terns and understanding the underlying process of data generation. An important class

of queries is based on the flock pattern. A flock is a large subset of objects moving

iii

along paths close to each other for a predefined time. One approach to processing a

“flock query” is to map ST data into high-dimensional space and to reduce the query

to a sequence of standard range queries that can be answered using a spatial indexing

structure; however, the performance of spatial indexing structures rapidly deteriorates in

high-dimensional space. This thesis sets out a preprocessing strategy that uses a random

projection to reduce the dimensionality of the transformed space. We use probabilistic

arguments to prove the accuracy of the projection and to present experimental results that

show the possibility of managing the curse of dimensionality in a ST setting by combin-

ing random projections with traditional data structures.

In time series data mining, we devised a new space-efficient algorithm (SparseDTW) to

compute the dynamic time warping (DTW) distance between two time series, which al-

ways yields the optimal result. This is in contrast to other approaches which typically

sacrifice optimality to attain space efficiency. The main idea behind our approach is to

dynamically exploit the existence of similarity and/or correlation between the time se-

ries: the more the similarity between the time series, the less space required to compute

the DTW between them. Other techniques for speeding up DTW, impose a priori con-

straints and do not exploit similarity characteristics that may be present in the data. Our

experiments demonstrate that SparseDTW outperforms these approaches. We discover

an interesting pattern by applying SparseDTW algorithm: “pairs trading” in a large stock-

market dataset, of the index daily prices from the Australian stock exchange (ASX) from

1980 to 2002.

iv

Statement of Originality

This thesis contains no material that has been accepted for the award of any other

degree in any university or other institution. To the best of my knowledge, this

thesis contains no material previously published or written by another person, except

where due reference is made in the text of the thesis.

Ghazi Al-Naymat

June 8, 2009

v

gÉ Åç ytÅ|Äç

Whatever you do will be insignificant, but it is very important
that you do it.

Mahatma Gandhi (1869 - 1948)

Supervision

This work was carried out under the supervision of
Associate Professor Sanjay Chawla and Professor
Albert Zomaya.

Acknowledgements

Thanks to my supervisor, Associate Professor Sanjay Chawla, for his strong sup-

port and invaluable guidance throughout my degree. I would also like to thank

my associate supervisor, Professor Albert Zomaya who provided me with his insightful

comments and advices.

I am very grateful to my parents and all my family members for their love, continu-

ous support and the everlasting encouragement. I hope I will make them proud of my

achievements, as I am always proud of them.

My gratitude and appreciation also goes to Joachim Gudmundsson, Mohamed Medhat

Gaber and Javid Taheri for the helpful and constructive discussions.

Thanks to my colleagues and friends, Abed Kasiss, Noor Indah, Lorraine Ryan, Tony

Souter, Mohammed Al-Khatib, Neda Zamani, Mohammed Al-kasasbeh, Elizabeth Wu,

Bavani Arunasalam, Florian Verhein, Tara McIntosh and Paul Yoo for their help, love,

friendship and encouragement.

I would also like to thank the technical support staff in our school for being helpful during

my study years.

This work was financially supported by the Capital Markets Research Center (CMCRC).

ix

Publications

Here is a list of the publications that were arisen from this thesis.

1. Ghazi Al-Naymat, Sanjay Chawla and Joachim Gudmundsson. Random Projec-

tion for Mining Long Duration Flock Pattern in Spatio-Temporal Datasets.

In communication with the journal of GeoInformatica, 2008 (Al-Naymat et al.,

2008a).

2. Ghazi Al-Naymat, Sanjay Chawla and Javid Taheri. SparseDTW: A Novel Ap-

proach to Speed up Dynamic Time Warping. In communication with the journal

of Data and Knowledge Engineering (DKE), 2008 (Al-Naymat et al., 2008b).

3. Ghazi Al-Naymat. Enumeration of Maximal Clique for Mining Spatial Co-

location Patterns. Proceedings of the 6th ACS/IEEE International Conference on

Computer Systems and Applications (AICCSA), Doha, Qatar. Mar 31st – Apr 4th,

2008. Pages (126–133) (Al-Naymat, 2008).

4. Ghazi Al-Naymat and Javid Taheri. Effects of Dimensionality Reduction Tech-

niques on Time Series Similarity Measurements. Proceedings of the 6th ACS/IEEE

International Conference on Computer Systems and Applications (AICCSA), Doha,

Qatar. Mar 31st – Apr 4th, 2008. Pages (188–196) (Al-Naymat and Taheri, 2008).

5. Ghazi Al-Naymat, Sanjay Chawla and Joachim Gudmundsson. Dimensionality

Reduction for Long Duration and Complex Spatio-Temporal Queries. The

x

2007 ACM Symposium on Applied Computing (ACM SAC). Seoul, Korea. March

11–15, 2007. Pages (393–397) (Al-Naymat et al., 2007).

6. Florian Verhein and Ghazi Al-Naymat. Fast Mining of Complex Spatial Co-

location Patterns using GLIMIT. The 2007 International Workshop on Spatial

and Spatio-temporal Data Mining (SSTDM) in cooperation with The 2007 IEEE

International Conference on Data Mining (ICDM). Omaha NE, USA. October 28–

31, 2007. Pages (679–684) (Verhein and Al-Naymat, 2007).

7. Ghazi Al-Naymat, Sanjay Chawla and Joachim Gudmundsson. Dimensionality

Reduction for Long Duration and Complex Spatio-Temporal Queries. TR 600.

ISBN 1 86487 874 6. School of Information Technologies, The University of Syd-

ney – Australia. October, 2006 (Al-Naymat et al., 2006).

8. Ghazi Al-Naymat and Sanjay Chawla. Data preparation for Mining Complex

Patterns in Large Spatial Databases. TR 576. ISBN 1 86487 786 3. School

of Information Technologies, The University of Sydney – Australia. November,

2005 (Al-Naymat and Chawla, 2005).

xi

Glossary of Terms

This glossary contains the key concepts and terms that are used in this thesis. These

concepts are defined in detail where they appear in the thesis chapters; however,

they have been listed here for ease of reference.

Term Description

Association rule An implication expression of the formA→ B, where

A and B are disjoint items, i.e., an expression that

provides the relationship between the items A and

B (Tan et al., 2006)

Clique A group of objects such that all objects in that group

are co-located with each other

Co-location pattern A group of spatial objects so that each is located in

the neighborhood of another object in the group

Co-location rule A representation that signifies the presence or absence

of spatial features in the neighborhood of other spatial

objects (Huang et al., 2004)

Curse of dimensional-

ity

A term to describe the problem caused by the expo-

nential raise in volume associated with adding more

dimensions (features) to a space (Bellman, 1961)

xii

Term Description

Data Mining Is the process of analyzing large datasets from dif-

ferent perspectives and summarizing them into useful

information. It is a synonym of the Knowledge Dis-

covery in Database

Flock pattern A group of objects that move close to each other for a

period of time

Knowledge Discovery

in Database

A process of extracting interesting (non-trivial, hid-

den, formerly unknown and potentially handy) in-

formation or patterns from large information reposi-

tories, such as relational database, data warehouses,

XML repository

Long-buy A practice of buying stocks in the hope of selling them

in the future at a higher price

Maximal clique A clique that does not appear as subset of another

clique in the same co-location pattern

Pairs trading An investment strategy that involves buying the un-

dervalued security and short-selling the overvalued

one, thus maintaining market neutrality

Random projections A technique that tackles the curse of dimensionality,

using sparse random matrices

Short-sell A practice of selling stocks which are not owned by

the seller, in the hope of repurchasing them in the fu-

ture at a lower price

Sparse matrix A matrix populated mostly with zeros

xiii

Term Description

Spatial Data Data or information that identifies the geographic lo-

cation of features and boundaries on Earth, such as

natural or constructed features, oceans, and more.

Spatial data is usually stored as coordinates and topol-

ogy, and is data that can be mapped. It is known as

geospatial data or geographic information

Spatio-Temporal Data Data that manages both space and time information,

such as biological Databases, wireless communica-

tion networks, and processing of objects with uncer-

tainty

Spread The difference between bid and ask prices

Time Series Data A sequence of data points, measured typically at suc-

cessive times, where each data points represents a

value

xiv

Acronyms

Acronym Expanded term

DBMS Database Management System

TDBMS Temporal Database Management System

DM Data Mining

KDD Knowledge Discovery in Database

S-Data Spatial data

SIS Spatial Information System

AM/FM Automated Mapping Facilities Management

GIS Geographic Information Systems

GPS Global Positioning System

ST Spatio-Temporal

TSD Time Series Data

TSDM Time Series Data Mining

DTW Dynamic Time Warping

LCSS Longest Common Subsequence

DC Divide and Conquer

BandDTW Sakoe-Chiba Band

SparseDTW Sparse Dynamic Time Warping

EucDist Euclidean Distance

R Real numbers

N Natural numbers

xv

Acronym Expanded term

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

SVD Single Value Decomposition

PCA Principle Components Analysis

RP Random Projections

REMO RElative MOtion

Xn×d Original data set

Rn×κ Random matrix

rand(·) Function to generate random numbers between 0 and 1

princomp(·) Function to retrieve the principle Components of a matrix

MaxPI Maximum Participation Index

|S| The length of the time series S

dist Distance function

ε A real value for a predefined matching threshold

D A set of time series (sequences) data

D Warping Matrix

S Time series (Sequence)

Q Query time series (Sequence)

C Candidate time series (Sequence)

si The ith element of sequence S

qi The ith element of sequence Q

Pi The price of stock i

nPi Normalized price of stock i

DTW (Q,S) DTW distance between two time series Q and S

LB Keogh(Q,C) Lower bound for query sequence Q and candidate sequence C

SP Stock pair

k-NN k Nearest Neighbors

MBR Minimum Bounding Rectangle

xvi

Acronym Expanded term

d Number of dimensions

n,m Number of data points such as rows, objects

r Radius

τ Number of time steps

κ Number of desired dimensions

MCCR Mining Complex Co-location Rules

parsec Unit of length used in astronomy. It stands for “parallax of one arc

second”

Mpc An abbreviation of “Mega-parsec”, which is one million parsecs, or

3261564 light years

arcmin Unit of angular measurement. Sizes of objects on the sky, field of view

of telescopes, or practically any angular distance “Arc of Minutes”

z RedShift

zWarning Parameter used to guarantee that the corrected RedShift values are used

zConf RedShift confidence

U Ultraviolet

R Red light magnitude

r-band r-band Petrosian magnitude

Ho Hubble’s constant

LRG Luminous Red Galaxies

minPI Minimum Participation Index

maxPI Maximum Participation Index

SDSS Sloan Digital Sky Survey

O Spatial objects with fixed locations

oi The ith spatial object

G Undirected graph

CM Maximal Clique

T Set of transactions

xvii

Acronym Expanded term

g(·) Function that performs a transformation on the transposed dataset

◦ An operator that combined two itemvectors together to create a new

itemvector corresponding to the union of the two itemsets

P A set of complex types

N(·) Number of maximal cliques that contain the set of complex types

I Item set

f(·) Item set size

| · | Number of elements in a set

Card(·) Cardinality of a set

X X coordinate

Y Y coordinate

Z Z-coordinate

w/o Without

w With

d·e Function that gives the ceiling of a value

b·c Function that gives the floor of a value

NDSSL Network Dynamics and Simulation Science Laboratory

R Random matrix

rij An entry of a matrix

ASX Australian Stock eXchange

LBF Lower Bound Function

SM Sparse Matrix

W Warping path

SIRCA Securities Industry Research Centre of Asia-Pacific

UCR University of California - Riverside

xviii

Contents

Abstract iii

State of Originality v

Dedication vi

Quotation vii

Supervision viii

Acknowledgements ix

Publications x

Glossary of Terms xii

Acronyms xv

1 Introduction 1

1.1 Background and Rationale . 2

1.1.1 Mining Complex Co-location Rules (MCCRs) 2

xix

1.1.2 Mining Complex Spatio-temporal Patterns 5

1.1.3 Mining Large Time Series Data 7

1.1.4 Mining Pairs Trading Patterns 9

1.2 Objectives and Contributions . 10

1.2.1 Mining Complex Co-location Rules 10

1.2.2 Mining Complex Spatio-Temporal Patterns 11

1.2.3 Mining Large Time Series Data 11

1.2.4 Mining Pairs Trading Patterns 12

1.3 Organization of the Thesis . 12

2 Related Work 14

2.1 Data Mining Overview . 16

2.2 Overview of Databases . 19

2.3 Spatial Data . 19

2.3.1 Spatial Patterns Mining . 21

2.3.2 Spatial Challenges . 24

2.4 Spatio-Temporal Data . 25

2.4.1 Spatio-Temporal Applications 27

2.4.2 Motion Patterns . 29

2.4.3 Spatio-Temporal Mining . 30

2.4.4 Spatio-Temporal Challenges . 33

2.5 The Curse of Dimensionality . 34

xx

2.5.1 Dimensionality Reduction Techniques 36

2.5.1.1 Principle Components Analysis (PCA) 36

2.5.1.2 Random Projections (RP) 38

2.5.2 Comparison of Dimensionality Reduction Techniques 41

2.6 Time Series Data Mining . 41

2.6.1 Time Series Similarity Measures 43

2.6.2 Euclidean Distance (EucDist) 44

2.6.2.1 Euclidean Distance Limitations 45

2.6.3 Dynamic Time Warping (DTW) 47

2.6.3.1 DTW Features . 47

2.6.3.2 DTW Calculation . 48

2.6.3.3 DTW Applications . 50

2.6.3.4 DTW Complexity . 51

2.6.3.5 Speeding up DTW . 51

2.6.4 Longest Common Subsequence (LCSS) 56

2.6.5 Comparison between Similarity Measures 57

2.7 Summary and Conclusions . 58

3 Mining Complex Co-location Rules (MCCRs) 59

3.1 Introduction . 60

3.1.1 Problem Statement . 65

3.1.2 Contributions . 65

xxi

3.2 Related Work . 67

3.3 Mining Complex Co-location Rules (MCCRs) 68

3.3.1 Mining Maximal Cliques . 69

3.3.1.1 Basic Definitions and Concepts 69

3.3.1.2 GridClique Algorithm 71

3.3.1.3 GridClique Algorithm Analysis 76

3.3.2 Extracting Complex Relationships 77

3.3.3 Mining Interesting Complex Relationships 78

3.4 Experiments and Results . 80

3.4.1 Experimental Setup . 80

3.4.2 Results . 81

3.4.2.1 Galaxy Types in Large Maximal Cliques 83

3.4.2.2 Cliques Cardinalities 83

3.4.2.3 GridClique Performance 83

3.4.2.4 Association Rules Mining Performance 88

3.4.2.5 Interesting Rules from SDSS 92

3.5 Summary and Conclusions . 92

4 Mining Complex Spatio-Temporal Patterns 94

4.1 Introduction . 95

4.1.1 Main Contribution and Scope 97

4.2 Related Work . 98

xxii

4.3 Approximating Flock Patterns . 102

4.3.1 Previous Approach . 102

4.4 Random Projections . 105

4.4.1 A Theoretical Analysis . 107

4.4.2 Random Projection in a Database Management System 109

4.5 Experiments, Results and Discussion . 111

4.5.1 Experimental setup and datasets 111

4.5.1.1 Synthetic datasets . 111

4.5.1.2 Real world datasets 112

4.5.2 Random Projection Parameters 115

4.5.3 Assessment methods . 116

4.5.4 Results . 117

4.5.4.1 Synthetic dataset experiments: 118

4.5.4.2 Real dataset results 121

4.6 Random Projection (RP) and Principal Components Analysis (PCA) . . . 125

4.6.1 Principal Components Analysis (PCA) 125

4.6.2 Comparison on a Synthetic Dataset 126

4.6.3 Comparison on Real Datasets 127

4.7 Summary and Conclusions . 128

5 Mining Complex Time Series Patterns 129

5.1 Introduction . 130

xxiii

5.1.1 Main Contribution . 132

5.2 Related Work . 133

5.3 Dynamic Time Warping (DTW) . 136

5.4 Global Constraint (BandDTW) . 138

5.5 Divide and Conquer Technique (DC) . 139

5.6 Sparse Dynamic Programming Approach 142

5.6.1 Key Concepts . 143

5.6.2 SparseDTW Algorithm . 144

5.6.3 SparseDTW Complexity . 149

5.7 Experiments, Results and Analysis . 149

5.7.1 Experimental Setup . 150

5.7.2 Datasets . 150

5.7.3 Discussion and Analysis . 152

5.7.3.1 Elapsed Time . 152

5.7.3.2 SparseDTW Accuracy 156

5.8 Summary and Conclusions . 157

6 Pairs Trading Mining using SparseDTW 158

6.1 Introduction . 159

6.1.1 Problem Statement . 161

6.1.2 Contributions . 162

6.1.3 Key Concepts . 162

xxiv

6.2 Related Work . 163

6.3 Pairs Trading Framework . 166

6.4 Finding Pairs Trading Approach . 168

6.4.1 Preprocessing Stock Data . 169

6.4.2 Choosing a Proper Similarity Measure 171

6.4.3 Report Stock Pairs . 171

6.4.4 Trading Process (TP) . 175

6.5 Summary and Conclusions . 178

7 Conclusion and Future Work 180

7.1 Summary of the Research . 180

7.1.1 Mining Complex Co-location Rules 181

7.1.2 Mining Complex Spatio-Temporal Patterns 182

7.1.3 Mining Large Time Series Data 183

7.1.4 Mining Pairs Trading Patterns 184

7.2 Implications to Different Domains . 185

7.3 Future Work . 186

A Spatial Data Preparation 187

A.1 Data Extraction . 187

A.2 Data Transformation . 191

A.3 New Attributes Creation . 191

A.4 Galaxies Categorization . 192

xxv

A.5 Final Format of the Spatial Data . 193

A.6 Summary . 194

B Spatio-Temporal Data Preparation 195

B.1 Spatio-Temporal (ST) data . 195

B.1.1 Synthetic datasets . 195

B.1.2 Real-world datasets . 196

B.2 Dimensionality Reduction Techniques 198

B.3 Summary . 198

C Time Series Data Preparation 201

C.1 Time Series Data . 201

C.1.1 UCR Data . 201

C.1.2 ASX Data . 202

C.2 Summary . 202

Bibliography 204

xxvi

List of Tables

2.1 Description of the notations used. 15

2.2 Comparison of dimensionality reduction techniques (PCA and RP). . . . 40

2.3 Comparison between three different distance measures on raw represen-

tation of time series data. 57

3.1 Description of the notations used. 60

3.2 Representing maximal cliques of Figure 3.1 as complex relationships . . . 62

3.3 An example of two-dimensional dataset. 70

3.4 Spatial relationships with real-life examples from the astronomy domain. 77

3.5 Description of the resulting sets of maximal cliques. 81

3.6 Sample of association rules produced by our MCCR technique, where

the antecedents and consequents of these rules are galaxy-type objects. . . 92

4.1 Description of the notations used. 95

4.2 Datasets description. 114

4.3 Summarizing our experimental results, with and without random projec-

tion using 16K, 20K, 32K, 64K and 100K data sizes. 118

4.4 Number of flocks before and after applying random projection onto real

life datasets. 121

xxvii

4.5 Accuracy based on the flock members after the random projections. . . . 122

4.6 Number of dimensions before and after applying the random projection. . 123

5.1 Description of the notations used. 130

5.2 Bins bounds, where Bk is the kth bin. 146

5.3 Number of computed cells if the optimal path is close to the diagonal. . . 152

5.4 Performance of the DTW and SparseDTW algorithms using large datasets. 153

5.5 Statistics about the performance of DTW, BandDTW, and SparseDTW.

Results in this table represent the average over all queries. 155

6.1 Description of the notations used. 159

6.2 Indices (S&P 50) in the Australian Stock eXchange (ASX). 168

6.3 Comparison between the EucDist and DTW measures for five different

pairs. 171

6.4 Comparison between standard DTW and SparseDTW techniques when

calculating the DTW distance for five different pairs. 172

A.1 Description of the notations used. 188

A.2 The SDSS schema used in this work. 188

A.3 An example to show the final data after the preparation. 193

B.1 Description of the notations used. 196

B.2 An example of 8 caribou cow locations. This data is an example of the

ST data that we used in this thesis. 196

C.1 Description of the notations used. 202

xxviii

List of Figures

2.1 The process of Knowledge Discovery in Databases(KDD). 16

2.2 Data Mining and Business Intelligence (Han and Kamber, 2006). 17

2.3 Examples of spatial patterns. 20

2.4 A plot of different spatial co-location patterns. 23

2.5 The eight possible spatio-temporal changes. 26

2.6 Two mobile-phone users’ movements over 500 timesteps (Taheri and

Zomaya, 2005). 27

2.7 Relationships between two objects in 2-D space. 28

2.8 A flock pattern among four trajectories. If m = 3 and the radius r = 1

then the longest-duration flock lasts for six time steps. Entities e1, e2 and

e4 form a flock, since they move together within a disk of radius r, while

e3 is excluded in this pattern. Here, the flock uses Definition 2.1. 31

2.9 Dimensionality reduction process. The mining process is only effective

with vector data of not more than a certain number of dimensions. Hence,

high-dimensional data must be transformed into low-dimensional data

before it is used in the mining system. 35

2.10 A query sequence from a stock time series dataset. 42

2.11 Point correspondence when two time series contains local time shifting. . 46

xxix

2.12 Aligning two time series S and Q using DTW. The lines between the

points are the warping costs. 48

2.13 Illustration of the two well known global constraints used on DTW. The

global constraint limits the warping scope. The diagonal gray areas cor-

respond to the warping scopes. 52

2.14 The lower bound introduced by (Kim et al., 2001). The squared differ-

ence is calculated from the difference in first points (a), last points (d),

minimum points (b) and maximum points (c). 53

2.15 An illustration of the lower bound introduced by (Yi et al., 1998). The

sum of the squared length of the gray lines is the over all DTW distance. . 54

2.16 An illustration of the lower bound LB Keogh, where C is the candidate

sequence, Q is the query sequence, U and L are the upper and lower

bounds of Q, respectively. The sum of the squared length of the gray

lines is the overall DTW distance. The figure is adopted from (Keogh

and Ratanamahatana, 2004). This lower bound used Sakoe-Chiba Band. . 55

3.1 An example of clique patterns. 61

3.2 An interesting question which can be answered by our method. 66

3.3 The complete process of Mining Complex Co-location Rules (MCCRs). . 68

3.4 An example to illustrate the process of extracting maximal clique patterns

from 2 dimensions dataset. 73

3.5 Undirected graph contains two maximal cliques. 75

3.6 The existence of galaxies in the universe. 82

3.7 Cliques cardinalities for Main galaxies using threshold = 4 Mpc. 84

xxx

3.8 The runtime of GridClique using different distances and number of ob-

jects. The distance and the number of objects were changed in increments

of 1 Mpc and 50K, respectively. 85

3.9 The runtime of GridClique using different large distances and small num-

ber of objects. The distance and the number of objects were changed in

increments of 5 Mpc and 5K, respectively. 86

3.10 The runtime of the Naı̈ve algorithm. 87

3.11 Runtime comparison between the GridClique and the Naı̈ve algorithms.

The used distance was 1 Mpc. 88

3.12 Number of interesting patterns found. 89

3.13 Runtime on non-complex maximal cliques. The MinPI threshold was

changed in increments of 0.05. 89

3.14 Runtime on complex maximal cliques without negative patterns. The

MinPI threshold was changed in increments of 0.05. 90

3.15 Runtime on complex maximal cliques with negative patterns. The MinPI

threshold was changed in increments of 0.05. We set an upper limit of

2,000 seconds (33 minutes). 90

3.16 The runtime of GLIMIT on complex maximal cliques with negative pat-

terns, versus the number of interesting patterns found. The MinPI thresh-

old was changed in increments of 0.05. 91

4.1 Illustrating a flock pattern among four trajectories. If m = 3 and the ra-

dius r = 1 then the longest duration flock lasts for six time steps. Entities

e1, e2 and e4 form a flock since they move together within a disk of radius

r, while e3 is excluded in this pattern. Figure(a) illustrates a flock using

Definition 4.1 while Figure (b) illustrates a flock using Definition 4.2. . . 100

xxxi

4.2 Random projection using “DB friendly” operations. To compute the ran-

dom projection without actually generating the matrix with random en-

tries, project the original database and process these new projections (ta-

bles) further to generate the final database that consists of low number of

dimensions (i.e., number of columns). 109

4.3 Caribou’s locations in Northern Canada (pch, 2007). 112

4.4 Two mobile users’ movements for 500 timesteps (Taheri and Zomaya,

2005). 114

4.5 Illustrating the difference between the theoretical and experimental bounds

on the minimum number of dimensions using random projection. The top

line is the theoretical bound and the bottom line is derived experimentally

using a brute force procedure. 116

4.6 Results- with and without random projection using 16K, 20K, 32K, 64K

and 100K data sizes. 119

4.7 Accuracy after applying random projections on the real datasets. 120

4.8 Distance matrix distributions for the three datasets flocks (Caribou, Mo-

bile Users, and NDSSL) before and after applying the random projection

100 times and averaging the results. 124

4.9 Two flocks before projection (a) and after projection (b). It is clear that

RP leads to better flock preservation. 126

4.10 Accuracy after applying random projections (RP) and principal compo-

nents analysis (PCA) on the real datasets. 127

4.11 The accuracy of RP and PCA on Caribou dataset as a function of the

dimension. 128

5.1 Illustration of DTW. 135

xxxii

5.2 Global constraint (Sakoe Chiba Band), which limits the warping scope.

The diagonal green areas correspond to the warping scopes. 139

5.3 An example to show the difference between the standard DTW and the

DC algorithm. 141

5.4 An example of the SparseDTW algorithm and the method of finding the

optimal path. 144

5.5 Elapsed time using real life datasets. 151

5.6 Percentage of computed cells as a measure for time complexity. 152

5.7 Effect of the band width on BandDTW elapsed time. 153

5.8 Effects of the resolution and correlation on SparseDTW. 154

5.9 The optimal warping path for the GunX and Trace sequences using three

algorithms (DTW, BandDTW, and SparseDTW). The advantages of SparseDTW

are clearly revealed as only a small fraction of the matrix cells have to be

“opened” compared to the other two approaches. 156

6.1 The complete Pairs trading process, starting from surfing the stocks data

until making the profit. 166

6.2 An example of pair of indices, Developer & Contractors (XDC) and

Transport (XTP). Divergence in prices is clearly shown during the pe-

riod of 200 days and 300 days. 169

6.3 Index All Industrials (XAI) before and after the normalization. 170

6.4 Dendrogram plot after clustering the ASX indices. The closest three pairs

(smallest distance between the indices) are chosen as examples of pairs

trading pattern. 173

xxxiii

6.5 Plot of index ASX 200 as a query sequence and ASX 300 as a candidate

sequence from the ASX index daily data. LB and UB are the lower bound

and upper bound of index ASX 200, respectively. 174

6.6 Two examples of index pairs. 176

6.7 An example of two indices, Information Technology (XIJ) and Retail

(XRE), which do not form pair. 177

6.8 Pairs Trading rules. 178

A.1 The front end of the SDSS SkyServer. It provides an SQL search facilities

to the entire stored data. 189

xxxiv

Chapter 1

Introduction

Rapid advances in data collection technology have enabled organizations and busi-

nesses to store massive amounts of data. This growth in the size of datasets has

meant that it is now beyond human capacity to analyze them to discover useful informa-

tion rules, hidden clusters and implicit regularities. A major problem has arisen, because

it is hard to use traditional data analysis tools to analyze large datasets. Differences in the

information stored by non-traditional datasets, which include spatial, spatio-temporal and

time series, mean that traditional analysis tools cannot be used to analyze non-traditional

data. Thus, new tools need to be designed and developed to mine the large collection of

non-traditional datasets.

Data mining combines traditional data analysis methods with sophisticated techniques

to process large volumes of data. Data mining includes a range of different techniques

that reveal diverse kinds of patterns from a given database, based on the requirements of

the application area. These techniques include association rules mining, classification,

cluster analysis and outlier detection. Due to the availability of applications that pro-

duce large amounts of spatial, spatio-temporal (ST) and time series data (TSD), we have

proposed in this research specialized data mining techniques to mine such data.

1

CHAPTER 1. INTRODUCTION 2

This thesis is composed of four parts. The first shows the need to develop efficient meth-

ods to mine complex patterns from large spatial datasets. The knowledge uncovered using

these methods could help scientists to prove existing facts. The second pertains to min-

ing long-duration and complex spatio-temporal patterns, such as flock patterns; it deals

specifically with the problem of monitoring moving objects, with potential significance

to organizational planning and decision-making processes. The third part introduces an

efficient algorithm to the area of time series mining, which can be used to mine similarity

between time series. The last part shows the successful application of our algorithm (pro-

posed in the third part) to successfully and correctly discover interesting patterns (pairs

trading) from real-world data.

The chapter is organized as follows. Section 1.1 gives an overview of research prob-

lems, and provides the rationale behind the approaches used in the project. Section 1.2

summarizes the objectives and contributions of the thesis, followed by its organization in

Section 1.3.

1.1 Background and Rationale

This section provides a motivation for the thesis by discussing a number of open prob-

lems.

1.1.1 Mining Complex Co-location Rules (MCCRs)

Spatial databases regularly contain not only traditional data, but the location or geo-

graphic details of the corresponding data; in other words, spatial data captures informa-

tion about our surroundings by storing both conventional (aspatial) data and spatial data.

CHAPTER 1. INTRODUCTION 3

Spatial data is often described as geo-spatial data. In this thesis, we use a large astron-

omy dataset containing the location of different types of galaxies. The widespread use

of spatial databases is leading to a rising concentration in the mining of interesting and

valuable but implicit patterns (Koperski et al., 1996). One such pattern is the co-location

pattern – group of objects (such as galaxies) located so that each is in the neighborhood

(within a given distance) of another object in the group.

Mining spatial co-location patterns is a significant spatial data-mining task with wide-

ranging applications (Huang et al., 2004); examples include public health, environmental

management, transportation and ecology. The mining of co-location patterns is very

important, since its results can be used to mine interesting co-location rules; i.e., co-

location patterns will be represented as the raw data for the mining rules process.

In this thesis, we will mine complex co-location rules, which are defined as representa-

tions that indicate the presence or absence of spatial features in the neighborhood of other

spatial objects (Huang et al., 2004). The complex rules are a combination of two different

types of rules. The first, positive rules, defines the presence of one or more objects of

the same type in the neighborhood of another object. This rule appears as A → B or

A+ → B, where the sign (+) indicates the presence of more than one object-type. The

second, negative rules, defines the absence of an object from the neighborhood of another

object – for example, −A → B, where the sign (−) indicates the absence of an object.

To give a real-life example of such rules, we will provide two rules from the astron-

omy domain, such as {elliptical galaxy} → {spiral galaxy} and {elliptical galaxy} →

{−spiral galaxy}. The last is interpreted as the presence of an elliptical galaxy, implying

the absence of a spiral galaxy.

The transportation development domain is another interesting example that shows that

mining complex rules provides more detailed insights into the domain. The rule {more

trains} → {quick service} might be a valid positive rule, and the rule {− maintenance}

CHAPTER 1. INTRODUCTION 4

→{slow service}might be a valid negative rule. The question is: what is the implication

of the combination {more trains, − maintenance}? Positive or negative rules by them-

selves will be unable to provide us with knowledge that may found from the presence or

absence of services and facilities together. However, a complex rule might indicate that

{more trains; − maintenance}→ {bad service}. This rule offers more insight into the

transportation development management than the other.

To mine complex co-location rules, two major points need to be considered. The first

is that the spatial data must be transformed into a transactional-type dataset – to allow

the association rule mining technique to be applied. The transformation is performed by

extracting co-location patterns such as clique patterns from the raw spatial data. A clique

is a special type of co-location pattern, which can be described as a group of objects

in which all objects are co-located with each other. The second point is discovering

maximal cliques, which are cliques that do not appear as a subset of another clique in the

same co-location pattern. The problem of extracting maximal clique patterns is NP-hard

problem (Arora and Lund, 1997). Mining maximal clique patterns allows us to mine

interesting complex spatial relationships between the object types, as will be described

in Chapter 3.

Huang et al. (2004) defined co-location patterns as the presence of a spatial feature

in the neighborhood of instances of other spatial features. The authors developed an

algorithm for mining valid rules in spatial databases, using an Apriori-based approach.

Their algorithm does not separate the co-location mining and interesting pattern-mining

steps. The authors did not consider complex relationships or patterns, because they were

pruning most items on the basis of their prevalence measure, known as the “maximum

participation index” (MaxPI); however, these items might contribute to forming complex

rules. Munro et al. (2003) used cliques as a co-location pattern, and in an approach

similar to ours, they separated the clique mining from the pattern-mining stages; however,

CHAPTER 1. INTRODUCTION 5

they did not use maximal cliques. Arunasalam et al. (2005) used a similar approach

to Munro et al. (2003), proposing an algorithm (NP maxPI) that also used the MaxPI

measure.

The main motivations behind our proposed approach in Chapter 3 are:

1. Previous approaches used the concept of clique to mine complex co-location pat-

terns. This allows redundancy in the co-location pattern itself as well as precluding

the inference of the negative relationship between objects. However, the use of

maximal clique patterns makes more sense in the mining of complex co-location

patterns, because it ensures that all of the members are co-located; this means that

it is possible to infer negative relationship (relationships which indicate the absence

of some items that gives useful information about other present items). Therefore,

this requires the development of an efficient algorithm to extract maximal clique

patterns.

2. All previous approaches used Apriori-type algorithms, which are not efficient for

mining large datasets consisting of complex relationships; this has motivated us to

use an efficient algorithm, called GLIMIT.

1.1.2 Mining Complex Spatio-temporal Patterns

Spatio-temporal (ST) data contains the evolution of objects over time as well as their spa-

tial features (Tsoukatos and Gunopulos, 2001). A wide range of scientific and business

applications need to capture the ST characteristics of the entities (objects) they model. ST

applications are becoming popular with the increasing abilities of computer systems to

store and process large amounts of data. Examples of such applications include land man-

agement, weather monitoring, natural resources management and the tracking of mobile

CHAPTER 1. INTRODUCTION 6

devices. Another reason for the availability of ST data is the widespread use of GPS-

enabled mobile devices and location-aware sensors. A distinctive example of a project

that is continuously producing ST data is related to the tracking of caribou in Northern

Canada. Since 1993, the movement of caribou has been tracked through the use of GPS

collars, with the underlying hope that the data collected will help scientists to understand

the migration patterns of caribou and to locate their breeding and calving locations (pch,

2007). While the number of caribou tagged at a given time is small, the time interval (the

temporal data) for each animal is long.

In data mining research, the focus is to design techniques for discovering new patterns in

large repositories of ST data – for example, Mamoulis et al. (2004) mine periodic patterns

moving between objects. More recently, Verhein and Chawla (2008) have proposed effi-

cient association mining-type algorithms to discover ST patterns such as sinks, sources,

stationary regions and thoroughfares. In this thesis, we focus on the fixed-subset flock

pattern (where objects are moving close together in coordination). Benkert et al. (2006)

described efficient approximation algorithms for reporting and detecting flocks. Their

main approach is a (2 + ε)-approximation, where the dependency on the duration of the

flock pattern is exponential.

Mining moving object patterns is an important problem in many domains. This thesis

focuses on mining “flock-query” – that is, a query that reports group of moving objects

that move together for a period of time. This query can readily be applied to better

understand the scenarios below:

1. The “pandemic preparedness” studies, which have an ultimate goals to answer

number of question, such as “How does a contagious disease get transmitted in

a large city given the movement of people across the city?”

2. Applications in the area of defence and surveillance, where analysts aim to obtain

CHAPTER 1. INTRODUCTION 7

knowledge about patterns that might be of interest, such as smugglers or terrorist

groups.

Previous approaches have developed algorithm to report flock patterns; however, they

were unable to report long-duration patterns. The reason was the exponential dependency

on the pattern duration (the trajectory length). This requires the development of a robust

algorithm with a smaller dependency on duration (number of dimensions in the ST data).

This has become the reason for our proposed approach in Chapter 4.

1.1.3 Mining Large Time Series Data

A time series is a sequence of data points that are typically measured at successive time

intervals, where each data point represents a value; therefore, time series data (TSD) is

a collection of sequences. In the remainder of the thesis, the terms “time series” and

“sequence” are used interchangeably.

Similarity searches in TSD is very popular (Sakurai et al., 2005). The similarity can be

evaluated using distance measures, such as Euclidean distance or dynamic time warping

(DTW). Since TSD normally consists of sequences of different length as well as out of

phase, DTW is a highly accepted mechanism because it allows sequences to be stretched

along the time axis to minimize the distance between the sequences. Chapter 2 uses an

example to highlight the differences between Euclidean distance and DTW.

DTW uses the dynamic programming paradigm to compute the alignment between two

time series. An alignment “warps” one time series onto another, and can be used as a

basis to determine the similarity between the time series. The standard DTW algorithm

has O(mn) space complexity, where m and n are the lengths of the two sequences being

aligned.

CHAPTER 1. INTRODUCTION 8

Given the expensive space complexity of DTW, many researchers have developed tech-

niques to increase the speed of DTW. A brief categorization of these techniques includes

those that add constraints on DTW to reduce the search space, such as the work per-

formed by Sakoe and Chiba (1978) and Itakura (1975). While these approaches provide

a reduction in space complexity, they do not guarantee the optimality of the alignment.

The second technique is based on data abstraction, where the warping path is computed at

a lower resolution of the data and then mapped back to the original resolution (Salvador

and Chan, 2007). Again, discovering the optimal alignment is not guaranteed. The third

technique, indexing techniques, such as those proposed by Keogh and Ratanamahatana

(2004) and Sakurai et al. (2005) that do not directly speed up DTW, but limit the number

of DTW computations.

TSD is naturally produced by many different applications, such as computational biology

and economics. The data generated by those applications continues to grow in size,

placing increased demand on developing tools that capture the similarities among them.

Interesting examples of real-life queries that can be answered by reporting the similarity

between sequences are:

1. Financial sequence matching, where investors intend to monitor the movement of

stock prices to obtain information about price-changing patterns or stocks that have

similar movement patterns. One of the most sought-after patterns in this sector is

called “pairs trading”, where investors seek knowledge to make more profit and

reduce their expected loss. Our approach will be applied in large stock data to

mine such patterns, which will be described in Chapter 6.

2. Speech recognition applications that handle large audio/voice data. For example,

analysts aim to answer a query such as “find clips that sound like a given person”.

Most researchers have tried to increase the speed of DTW as the underlying similarity

CHAPTER 1. INTRODUCTION 9

measure in time series mining, by either reducing the space search with the sacrifice of

some accuracy, or proposing lower bounding techniques, which reduce the number of

DTW computations rather than the computational time. Because of these limitations,

we have devised an algorithm that reduces the DTW search space while guaranteeing

accuracy as will be described in Chapter 5.

1.1.4 Mining Pairs Trading Patterns

Many researchers have developed algorithms and frameworks that concentrate on mining

useful patterns in stock market datasets. The literature demonstrates that pairs trading

is one of the most sought-after patterns because of its market-neutral strategy (Vidya-

murthy, 2004). Pairs trading is an investment strategy that involves buying undervalued

stock, while short-selling the overvalued, thus maintaining market neutrality. Finding

pairs trading is one of the pivotal issues in the stock market, because investors tend to

conceal from others their prior knowledge about the stocks that form pairs, to gain the

greatest advantage.

Several methods have been proposed to mine pairs trading. Association rules are used

to predict the movement of the stock prices, based on recorded data (Lu et al., 1998;

Ellatif, 2007); this will help to find the convergence in stock prices. However, association

rule mining techniques usually generate a large number of rules, which presents a major

interpretation challenge for investors. Basalto et al. (2004) have applied a non-parametric

clustering method to search for correlations between stocks. Cao et al. (2006b) introduced

fuzzy genetic algorithms to mine pair relationships and proposed strategies for the fuzzy

aggregation and ranking to generate the optimal pairs for the decision-making process.

Investors who monitor stock price movements (changes) are often looking for patterns

that are indicative of profit. It would be a great advantage to use a computer to monitor the

CHAPTER 1. INTRODUCTION 10

evolution of stock prices, to assist investors to make optimal decisions when buying and

selling stocks. This should be achieved by reporting all stock pairs (stocks that are most

similar in their price-movement profiles). This is the main motivation for our approach

in Chapter 6, where we efficiently mine pairs trading patterns in large stock market data,

using DTW as the underlying similarity measure. To the best of our knowledge, previous

approaches have never used DTW for the purpose of mining pairs trading patterns. Since

DTW has been used as a successful shape-similarity measure, we have used it to monitor

time series similarity.

1.2 Objectives and Contributions

To summarize, the main objectives and contributions are given in the following subsec-

tions.

1.2.1 Mining Complex Co-location Rules

This section sets out our main objectives and contributions to the area of complex co-

location rules mining. The ultimate goal is to efficiently mine complex co-location rules

from a large spatial dataset (astronomy dataset). To accomplish this, we propose an algo-

rithm (GridClique) based on a divide-and-conquer strategy, to efficiently mine maximal

clique patterns. We show that in conjunction with the GridClique algorithm, any associ-

ation rule mining technique can be used to mine complex, interesting co-location rules

efficiently. The results from our experiments, which are carried out on a real-life dataset

obtained from an astronomical source – the Sloan Digital Sky Survey (SDSS) – are of

potentially valuable to the field of astronomy and can be interpreted and compared easily

to existing knowledge.

CHAPTER 1. INTRODUCTION 11

1.2.2 Mining Complex Spatio-Temporal Patterns

We summarize our objectives and contributions to the area of mining complex spatio-

temporal patterns (flock patterns). Our main objective is to efficiently report long-duration

flock patterns in large ST datasets. To achieve this, we use a new approach that combines

random projections, as a dimensionality reduction technique, with an approximation al-

gorithm. To the best of our knowledge, this is the first time that random projection has

been used to reduce dimensionality in a the ST setting presented in this thesis. We prove

that the random projection will return the “correct” answer with high probability. Our ex-

periments on real, quasi-synthetic and synthetic datasets strongly support our theoretical

bounds.

1.2.3 Mining Large Time Series Data

In this section, we summerize our objective and contribution to the area of mining large

time series data.

The main objective is to speed up the computation of DTW as the similarity measure

without sacrificing any accuracy. To attain this, we devise an efficient algorithm (SparseDTW)

that exploits the possible existence of inherent similarity and correlation between the two

time series whose DTW is being computed. We always represent the warping matrix us-

ing sparse matrices, which lead to better average space complexity compared with other

approaches. The SparseDTW technique can easily be used in conjunction with lower

bounding approaches. Our experiments show that SparseDTW gives exact results, unlike

other techniques, which give approximate or non-optimal results.

CHAPTER 1. INTRODUCTION 12

1.2.4 Mining Pairs Trading Patterns

A summary of our objectives and contribution, to the area of mining financial data, is

described in this section. To help investors in the finance sector to make profit and reduce

the risk of their investments, our goal is to report to those investors, accurately, all pairs

patterns from large daily TSD (e.g., stock market data). To accomplish this, we propose

a framework to successfully find pairs trading patterns in large stock market data, using

DTW as a the similarity between stocks and by applying our algorithm SparseDTW to

reports all pairs. Our experiments show that SparseDTW is a robust tool for mining pairs

trading patterns in large TSD.

1.3 Organization of the Thesis
The thesis is structured as follows:

Chapter 2 introduces the key concepts and the foundations of three different areas. These

are spatial, ST and time series data mining. It provides a review of the recent previous

work that has been conducted in these three areas. In Chapter 3, we discuss the imple-

mentation of the proposed approach, that is Mining Complex Co-location Rules (MCCR).

This work has been published in various conference proceedings (Al-Naymat, 2008; Ver-

hein and Al-Naymat, 2007). Chapter 4 presents the dimensionality reduction approach

(random projections) that has been used to mine long duration flock patterns. The experi-

ments in this chapter show the correctness of the approach. This work has been published

in technical reports and various conference proceedings (Al-Naymat et al., 2006, 2007,

2008a). In Chapter 5, we present our novel algorithm (SparseDTW), which used to

mine similarity in large time series datasets. This work will appear in journal and (Al-

Naymat et al., 2008b). Chapter 6 exhibits an interesting case study where SparseDTW

is applied to successfully mine pairs trading patterns in large time series dataset (stock

market dataset). This appears in (Al-Naymat et al., 2008b). A summary of the research

CHAPTER 1. INTRODUCTION 13

conducted in this thesis, conclusion and future directions are presented in chapter 7.

There are three appendices. Appendix A demonstrates a comprehensive explanation for

the data preparation stage that was performed on the large spatial dataset used in Chap-

ter 3. In Appendix B, we present a description of the data preparation conducted on the

ST datasets used in Chapter 4. Appendix C provides a detailed description of the process

used to obtain the TSDs used in Chapters 5 and 6.

Chapter 2

Related Work

This chapter defines key concepts in the field of data mining, and presents an overview

of previous work in the areas of spatial, spatio-temporal and time series mining.

After the data mining and database overviews (Sections 2.1 and 2.2), the chapter reviews

three main areas of the literature: spatial data mining (Section 2.3), spatio-temporal data

mining and dimensionality reduction (Sections 2.4 and 2.5, respectively), and time se-

ries mining and the similarity measures used in the mining of large time series datasets

(Section 2.6).

This chapter lays the foundations for the thesis. The research that is more specifically

related to each of our proposed methods will be discussed in more detail in the Chap-

ters 3, 4, 5 and 6. Table 2.1 lists the notations used in this chapter.

14

CHAPTER 2. RELATED WORK 15

Symbol Description
DM Data Mining
KDD Knowledge Discovery in Database
DBMS Database Management System
TDBMS Temporal Database Management System
S-Data Spatial data.
GIS Geographic Information Systems
GPS Global Positioning System
ST Spatio-Temporal
TSD Time Series Data
TSDM Time Series Data Mining
DTW Dynamic Time Warping
LCSS Longest Common Subsequence
DC Divide and Conquer
BandDTW Band constraint on DTW
SparseDTW Sparse Dynamic Time Warping
EucDist Euclidean distance
R Real numbers
N Natural numbers
DFT Discrete Fourier Transform
DWT Discrete Wavelet Transform
SVD Single Value Decomposition
PCA Principle Components Analysis
RP Random Projections
REMO RElative MOtion
MaxPI Maximum Participation Index
|S| The length of the time series S
S Time series (Sequence)
Q Query time series (Sequence)
C Candidate time series (Sequence)
si The ith element of sequence S
qi The ith element of sequence Q
dist Distance function
DTW (Q,S) DTW distance between two time series Q and S
ε A real value for a predefined matching threshold
D A set of time series (sequences) data
D Warping Matrix
k-NN k Nearest Neighbors
MBR Minimum Bounding Rectangle
d Number of dimensions
n Number of data points, such as rows, objects
r Radius
τ Number of time steps
κ Number of desired dimensions
minPI Minimum Participation Index

Table 2.1: Description of the notations used.

CHAPTER 2. RELATED WORK 16

Data

Pre-processing
Data

Mining
Post-processing

(Evaluation)

Databases

Data

Warehouse

Cleaning
Integration

Feature Selection

Dimensionality Reduction

Normalization

Evaluation

Pattern Interpretation

Visualization

Knowledge

and

Information

Figure 2.1: The process of Knowledge Discovery in Databases(KDD).

2.1 Data Mining Overview

Data mining is defined by Piatetsky-Shapiro and Frawley (1991) as the process of ex-

tracting interesting (non-trivial, hidden, formerly unknown and potentially useful) infor-

mation or patterns from large information repositories such as relational databases, data

warehouses and XML repositories.

Although data mining is one of the core tasks of Knowledge Discovery in Databases

(KDD), many researchers understand it as a synonym for KDD (Figure 2.1). The KDD

process typically consists of four stages. The first is the pre-processing stage, which is

executed as a preliminary step before applying data mining. The pre-processing step

includes data cleansing, integration, selection and transformation. The main process of

KDD is data mining, in which different algorithms are applied to produce knowledge

that is out of sight. Following this, another process called pattern evaluation evaluates

all results according to users’ requirements and domain knowledge. Once complete, an

evaluation displays the results if they are suitable; otherwise some or all of the KDD

stages have to be run again until suitable results are obtained. In greater detail, the KDD

stages work in the following sequence:

In the first step, it is mandatory to clean and integrate the databases. Since the data source

CHAPTER 2. RELATED WORK 17

Increasing potential
to support
business decisions End User

Business
Analyst

Data
Analyst

DBA

Making
Decisions

Data Presentation
Visualization Techniques

Data Mining
Information Discovery

Data Exploration

OLAP, MDA

Statistical Analysis, Querying and Reporting

Data Warehouses / Data Marts

Data Sources
Paper, Files, Information Providers, Database Systems, OLTP

Figure 2.2: Data Mining and Business Intelligence (Han and Kamber, 2006).

may come from domains that may have inconsistencies and duplications, such as noisy

data. The cleaning process is performed by removing such undesirable information. For

example, if there are two different database resources, different attributes are used to refer

to the same description in the schema. When integrating these two resources, one of these

attributes can be chosen, and the other discarded. Real-world data tends to be incomplete

and noisy due to manual input errors. One way of integrating these data sources is to

store the data in a data warehouse, in the process removing redundant and noisy data.

Although databases are a good way to avoid redundancy and eliminate noise, the raw

data is not necessarily used for data mining. Therefore, the second stage is to select

the related data from the integrated resources and convert them into a format that is

acceptable for data mining. For example, an end user who wants to find which items

are often purchased together in a supermarket may find that the database recording the

CHAPTER 2. RELATED WORK 18

purchase history contains attributes such as customer ID, items bought, transaction time,

prices, quantity. However, for this specific task, the only information necessary is a list

of the purchased items. Consequently, selecting only the relevant information will reduce

the size of the experimental database; this will have a positive impact on the efficiency of

the KDD process.

After pre-processing the data, a variety of data mining techniques can be applied. Differ-

ent data mining techniques allow the discovery of different knowledge, which needs to

be evaluated according to certain rules, such as domain knowledge or user requirements.

The last stage in the KDD process is the evaluation (Figure 2.1). In this stage, the pro-

duced results are matched with the user’s requirements or the domain rules. If the results

do not suit the domain or the end user’s requirements, two procedures may be applied.

First, the mining process must be run until the desired results are achieved and/or the re-

quirements must be modified. One of the main steps of the stage of evaluating the results

is to visualize them. This helps users to understand and interpret the results in a way that

is meaningful to them and meets their desired purpose. The results can be visualized in

tools such as tables, decision trees, rules, charts or 3D graphics. Visualization is normally

achieved by the business analyst as shown in Figure 2.2. Ultimately, the end user (top

of the pyramid in Figure 2.2), will use the produced knowledge in the decision-making

process.

An example is the market basket applications that produce daily massive amounts of

transactional data. If we apply the association rule mining technique, the produced

knowledge (rules) will be of the form {antecedent → consequent} – for example,

{bread→ cheese}. This signifies that customers who buy bread are likely to buy cheese

as well. Such rules are useful for product pricing, promotion and placement, and when

making decisions on store management and organization.

CHAPTER 2. RELATED WORK 19

2.2 Overview of Databases

After the overview on the KDD process, this section will provide a general overview on

databases relevant to this research.

Saraee and Theodoulidis (1995) categorized databases into four groups, or shapes:

(1) snapshot databases (conventional databases without time “past state”); (2) rollback

databases (those that store each transaction’s creation time); (3) historical databases

(those that store the real time for each event); and (4) bi-temporal databases, which merge

rollback and historical databases (which together are also known as temporal databases).

In other words, bi-temporal databases contain both valid and transaction time-stamp for

the event. Lopez and Moon (2005) defined valid time as the time at issue when the event

is true; they defined transaction time as the time at issue when the event is in the database.

The focus of this thesis is to develop new methods for mining a mixture of these four

types of databases. Specifically, this will involve spatial data, which adds a location

feature to the conventional databases; spatio-temporal data, which is spatial data that

captures the time-stamps for each object location; and time series data, which is defined

as a sequence of data points, typically measured at successive periods/intervals.

The following sections review the literature on spatial, spatio-temporal, and time series

data mining.

2.3 Spatial Data

Spatial databases usually contain not only traditional data, but the location or geographic

information about the corresponding data. In other words, spatial data captures infor-

mation about our surroundings by storing both conventional (aspatial) data and spatial

data. Judd (2005) defined spatial data as location-based data. However, a spatial database

CHAPTER 2. RELATED WORK 20

island_januarytemp.gif (GIF Image, 454x562 pixels) http://www.wesleyjohnston.com/users/ireland/maps/island_januarytemp.gif

1 of 1 16/11/2008 4:55 PM

(a) Example of temperature patterns. Mean
daily temperature in Ireland over January (Ire,
2008).

Canopy of lowland hill dipterocarp forest in Sinharaja taken from the top of a lowland
hill - Sinhagala (about 800m asl). It shows different species in different stages of
leaf flushing (light green) and early fruiting (pinkish - red) stages but none in the
picture in bloom.

Credit: Nimal Gunatilleke

 www.UberDiets.com Feedback - Ads by Google

Back to the main plant science blog page

Subscribe To Plant Science Blog RSS Feed

Spatial patterns in tropical forests
The high
biodiversity in
tropical forests has
both fascinated and
puzzled ecologists
for more than half a
century. In the
hopes of finding an
answer to this
puzzle, ecologists
have turned their
attention to the
spatial patterns of
such communities
and mapped the
location of each
tree with a stem
larger than a pencil
in plots covering 25
to 52ha of tropical
forest around the
world. As per a

research findings published in The American Naturalist a German - Sri Lankan
research team has now undertaken thousands of spatial pattern analyses to paint
an overall picture of the association between tree species in one of these plots in
Sri Lanka.

"The problem of studying spatial association between species is that habitat
association confounds the effect of plant-plant interactions" says Dr Wiegand,
senior scientist at the Helmholtz Centre for Environmental Research in Leipzig,
Gera number of. The breakthrough in their analysis is that it allowed them to
disentangle these two effects and to look in a new way at their data. "From prior
studies we knew that growth and survival of trees depends quite strongly on their
neighbors" say Savitri Gunatilleke and her husband Nimal, both professors at the
University of Peradeniya, "we had therefore expected to find strong signatures of
positive or negative interactions between species in our data". "However, the fact
that not more than 5 percent of the 2070 species pairs we have analyzed showed
significant associations is quite remarkable." A conclusion of their study is that
neighborhood-dependent processes may equilibrate, thereby producing neutral
association patterns in the spatial distribution of trees. "This is certainly not the
last word in this debate," says Wiegand "but it is a step towards an understanding
of the complexities of the origin and maintenance of species richness in tropical
forests".

Improve Your Lot in
Life
Are You Ambitious
Beyond Your Current
Situation? Nothing to
Lose
www.AbundantWealth-Now.com

Newborn sleep system
Step-by-step program
teaches any newborn to
sleep through the night!
www.sleepsense.net

Pattern Makers :
FASHION
Pattern making, Grading,
Markers, Sample
Making, Made to Order
www.CarynLuxtonDesign.com.au

Cairns Accommodation
Magical QLD- 7 Nights -
Get 1 Free. 12
Nights-Get 2 Free - Don't
Delay!
BookAccomOnline.com

Colouring Patterns
Find Kids Colouring
Patterns Online & Near
You. Look No Further!
Kidspot.com.au/Classes

Spatial patterns in tropical forests http://www.biology-blog.com/blogs/permalinks/9-2007/spatial-patterns...

1 of 2 16/11/2008 4:42 PM

(b) Example of landscape patterns.

D1

C1

D5

D2A4

B2

A2

D4

D7 C5

B1

D3 D6

A5C3

A1

A3

C2

C4

C6

(c) Example of co-location patterns.

Figure 2.3: Examples of spatial patterns.

is defined simply as a collection of data that contains information on observable facts of

interest, such as daily temperature over a period of time (Figure 2.3(a)), forest condition

(Figure 2.3(b)), and the location of observable objects in any space (Figure 2.3(c)).

CHAPTER 2. RELATED WORK 21

Spatial databases and their related processes are handled by a system named Spatial Infor-

mation System (SIS). This system is categorized into four systems: Geographical Infor-

mation Systems (GIS), Automated Mapping Facilities Management (AM/FM) Systems,

Land Information Systems (LIS), and Image Processing Systems (Egenhofer, 1993). Ac-

cording to Güting (1994), there are three different architecture types of SIS: dual, layered,

and integrated architectures.

Jeremy and Wei (2005) mentioned several tasks for GIS, such as integrating diverse

datasets, extracting spatial relationships and classifying numeric data into ordinal cate-

gories (useful when applying the association rule mining technique).

Spatial data has different granularities, which show the level of detail of the examined

space, and thus define the characteristics of the spatial domain (Tsoukatos and Gunopu-

los, 2001).

2.3.1 Spatial Patterns Mining

Although there are many types of spatial patterns, the research will focus on the discovery

of the co-location patterns. These patterns are defined on the basis of the relationships

between the spatial objects. For example, the neighborhood relationships between spatial

objects indicate that objects are co-located. To define a co-location relationship, there

should be at least two spatial objects which are close to each other (neighbors). Two

objects are neighbors if the distance between them is less than or equal to a predefined

distance.

Co-location patterns are considered one of the most complex and interesting spatial re-

lationships that can be reported from large spatial databases. Figure 2.3(c) illustrates

an example of spatial objects forming co-location patterns. The set of spatial objects

{A2, B2, D4} is an example of a co-location pattern. This section provides an overview

CHAPTER 2. RELATED WORK 22

of the techniques used to retrieve different types of co-location patterns.

Morimoto (2001) defined new co-location patterns that he called the k − neighboring

class-set. His method uses the number of instances of a pattern as a prevalence mea-

sure. However, this measure does not satisfy the anti-monotone property, because of

overlapping, and hence the number of the instances increases by the size of the pattern.

Morimoto (2001) dealt with this case by using a constraint to obtain the same benefit as

the anti-monotone property. The constraint was “Any point object must belong to only

one instance of a k-neighboring class set”. Based on this constraint, he encountered

problems obtaining different support for the same k−neighboring class-set. The reason

for the problem is that the selectivity process counted the instances from the same feature

as one instance. If the order of the instances changed, then both the support value and

the co-location patterns will change. Morimoto’s method does not allow the generation

of complex rules because of that constraint.

Huang et al. (2003) defined co-location patterns as the presence of a spatial feature in the

neighborhood of instances of other spatial features. The authors developed an algorithm

for mining valid rules in spatial databases, using an Apriori-based approach. Their algo-

rithm does not separate the co-location mining and interesting pattern mining steps. The

authors did not consider complex relationships or patterns, because they were pruning

most items on the basis of their prevalence measure; this is known as the “Participation

Index”; however, these items might contribute to forming complex rules in spatial min-

ing. In contrast, our proposed technique, presented in Chapter 3, allows some items to

be redundant as one of the reasons to form complex rules. Our approach distinguishes

co-location mining from interesting pattern mining steps.

Munro et al. (2003) used cliques (a group of spatial objects located close to each other)

as a co-location pattern. Similar to our approach, they separated clique mining from the

pattern mining stages. However, they did not use maximal cliques (cliques not part of

CHAPTER 2. RELATED WORK 23

(a) Star pattern (b) Clique pattern (c) Generic pattern

a

b c

d d

a

c c d

bab

Figure 2.4: A plot of different spatial co-location patterns.

another clique). They treated each clique as a transaction and used an Apriori-based tech-

nique for mining association rules. Since they used cliques (rather than maximal cliques)

as their transactions, the counting of pattern instances was very different. They consid-

ered complex relationships within the pattern mining stage. However, their definition

of negative patterns was very different – they used infrequent types, while we base our

definition on the concept of absence in maximal cliques. They used a different measure:

maxPI.

Arunasalam et al. (2005) used a similar approach to that of Munro et al. (2003). They

proposed an algorithm called NP maxPI that used the MaxPI measure. Their proposed

algorithm prunes the candidate itemsets using a property of maxPI. They used an Apriori-

based technique to mine complex patterns. A primary goal of their work was to mine

patterns which have low support and high confidence. As with the work of Munro et al.

(2003), they did not use maximal cliques.

Zhang et al. (2004) enhanced the algorithm proposed in Huang et al. (2003) and used it

to mine special types of co-location relationships – spatial stars – in addition to cliques

CHAPTER 2. RELATED WORK 24

and generic patterns (Figure 2.4). They used grid structure over space and a distance

threshold ε to indicate the spatial relation between objects; that is, they located the ob-

ject’s neighbors by extending its coordinates by ε to form a disk. All grids that intersect

with this disk will be hashed and all items inside these grids will be checked using the

Euclidean distance measure to ensure they are close to the center of the star. Although

their method for finding star patterns was based on two steps – a hashing and a mining

step – they were insufficient to find clique-type patterns.

2.3.2 Spatial Challenges

Most of the work performed in the area of spatial databases has considered problems

which treat spatial objects as lines, rectangles or points. These types are a challenge,

given that special techniques are usually required to deal with them.

Since spatial data is fundamentally different from conventional data, no conventional

technique can solve spatial problems. For example, the aggregation queries that retrieve

the sum, count, and average from the conventional data are unusable in spatial data. These

queries need to be modified, since the spatial objects consider the region features (Tao

et al., 2004).

The shape of the spatial object plays a role as one of the challenges. In other words,

taking the Minimum Bounding Rectangle (MBR) of the object leads approximately to

the size of the object, which will be always bigger than the exact size. Analyzing spatial

data is considered to be a big challenge, because objects’ information may influence the

objects that locate in the same region (Kriegel, 2005; Mamoulis et al., 2004).

CHAPTER 2. RELATED WORK 25

2.4 Spatio-Temporal Data

This section gives an overview of spatio-temporal (ST) data. ST data contains the evo-

lution of objects over time as well as their spatial features (Tsoukatos and Gunopulos,

2001). As with conventional databases, ST data can be used for retrieving information

through queries. However, the retrieval process of information from data containing both

spatial and temporal features is more complex. Tao et al. (2004) described the spatial

query as one that focuses on retrieving data within boundaries, such as regions, districts

and areas. For example, Find the number of cars present in a district. On the other hand,

temporal queries focus on retrieving data within a time interval (i.e., a query interval).

For example, the query Find the traffic volume in a district during the past two hours.

One potential use of ST data is to store representations of interesting visual events as

data records, such as moving body parts or human objects performing an activity (Kol-

lios et al., 2001).

A Global Position System (GPS) is one example of a system that produces ST data. GPSs

are used for mapping out objects’ movements by storing their dynamic attributes, whose

values change continuously over time (Wolfson et al., 1998). Geographic Information

System (GIS) researchers compile the requirements for a ST information system, which

merges the temporal and spatial features of the objects. This raises many issues, such as

the components of change – the metrics, topologies and attributes of geographic objects

– that may or may not change over time. Roshannejad and Kainz (1995) defined these

changes as the “W-triangle” (where–what–when), which shows the component of the ST

object. Abraham and Roddick (1999) reproduced eight combinations of these changes

(Figure 2.5).

ST data stores the time interval (lifespan) of discrete phenomena. It contains the valid

CHAPTER 2. RELATED WORK 26

Geo-Referenced
Object

Change in
Geometry

Change in
Geometry,
Topology

and
Attribute

Change in
Topology and

Attribute

Change in
Attribute

No Change

Change in
Geometry and

Topology

Change in
Topology

Change in
Geometry and

Attribute

Figure 2.5: The eight possible spatio-temporal changes.

and transaction times explicitly. The data should support objects with identifiers to dis-

tinguish the investigated objects from each other; these identifiers play the role of the

primary keys in the database.

Abraham and Roddick (1997) explained that extending spatial data to become ST data

by adding the temporal element yields two kinds of rules: ST evolution rules, which

demonstrate the changes of the objects over time; and ST Meta-rules, which describe

the changes between the rules. The following section sheds light on the some of the

interesting applications that produce ST data.

CHAPTER 2. RELATED WORK 27

Figure 2.6: Two mobile-phone users’ movements over 500 timesteps (Taheri and Zomaya,
2005).

2.4.1 Spatio-Temporal Applications

ST applications use information that describes moving objects within a district or re-

gion (spatial feature) during a given time interval (temporal feature). Many real-life

applications naturally provide huge amounts of data that contains a mixture of spatial

and temporal features; for instance, traffic supervision and analysis, human and animal

trajectories, and mobile services (Cheqing et al., 2004; Tao et al., 2004), land manage-

ment, weather monitoring, and the tracing of mobile devices (e.g. tracking mobile-phone

users’ trajectories) – Figure 2.6. Another example is the tracking the shapes of forests,

an application that stores information about the region of a forest as an object (spatial

coverage) that might change between time intervals (temporal coverage) due to natural

phenomena such as bushfires or drought (Laube and Imfeld, 2002; Lopez and Moon,

CHAPTER 2. RELATED WORK 28

Disjoint Meet Overlap Equal

Covers CoveredBy Inside Contains

Figure 2.7: Relationships between two objects in 2-D space.

2005). Traffic management, sensor networks, and stock control are further examples of

ST applications (Verhein and Chawla, 2008).

As mentioned previously, ST data is a combination of objects’ spatial attributes (points,

lines, rectangles) and temporal attributes (events, interval). Abraham and Roddick (1999)

demonstrated that besides the temporal and spatial features and conventional attributes,

there are relationships between ST objects that provide useful information. These rela-

tionships describe the real-life interaction between objects (Figure 2.7).

Lopez and Moon (2005) defined ST objects as objects with spatial and temporal extents.

The spatial extent includes points, rectangles and lines; the temporal extent can be either

the valid time or the transaction time for objects.

ST objects are described as moving objects (i.e., those that change their location over

time). Cao et al. (2005) defined the objects’ movement (i.e., trajectories) as ordered se-

quences of spatial sites sampled at multiple time stamps.

CHAPTER 2. RELATED WORK 29

The most common type of ST data consists of movement traces of point objects. The

widespread availability of GPS-enabled mobile devices and location-aware sensors has

led to an increase in the generation and availability of ST data. A unique example of

a project that is continuously generating ST data is related to the tracking of caribou

in Northern Canada. Since 1993, the movement of caribou has been tracked through

the use of GPS collars with the underlying expectation that the data collected will help

scientists to understand the migration patterns of caribou and help them to locate their

breeding and calving locations (pch, 2007). While the number of caribou tagged at a

given time is small, the time interval the temporal data for each animal is long. One

of the major challenges in ST query processing and patten discovery is to efficiently

handle “long duration” ST data (Chapter 4). Interesting ST queries can be formulated on

this particular dataset. For example, How are herds formed and does herd membership

change over time? Are there specific regions in Northern Canada where caribou herds

tend to rendezvous?

2.4.2 Motion Patterns

Moving objects have special attributes that describe their behavior (motion). For exam-

ple, each object should comprise ID, coordinates to indicate its location, and a timestamp

for each location – a combination of normal (ID), spatial (coordinates), and temporal

(timestamp) features describe the object’s movement. Most of the applications that store

information about moving objects produce huge amounts of daily data, especially if the

number of the monitored objects is substantial.

Laube and Imfeld (2002) described the motion pattern as a defined set of motion pa-

rameters that could be valued either over time or across objects. Hence, three types of

patterns exist: patterns of the same object defined over several time intervals (t, 1) are

called sequences; patterns across more than one object at the same timestamp (1, n),

CHAPTER 2. RELATED WORK 30

which are called incidents; combined patterns over time and across objects, i.e., a combi-

nation of several time intervals and several objects (t, n), which are called interactions.

Motion patterns are described as “Group patterns”. Where, for example, these patterns

are a group of users, intuitively the motion of these users is a series of information points

containing spatial and temporal dimensions (Wang et al., 2003).

2.4.3 Spatio-Temporal Mining

The focus in data mining research is to design techniques to discover new patterns in large

repositories of ST data. For example, Mamoulis et al. (2004) mine periodic patterns mov-

ing between objects and Ishikawa et al. (2004) mine ST patterns in the form of Markov

transition probabilities. More recently Verhein and Chawla (2008) have proposed effi-

cient association mining-type algorithms to discover ST patterns such as sinks, sources,

stationary region, and thoroughfares. The emphasis in what this thesis will propose is not

to mine new unknown patterns, but to efficiently query existing complex ST-patterns.

The problem of detecting movement patterns in ST data has recently received consid-

erable attention from several research communities, e.g., geographic information sci-

ence (Gudmundsson et al., 2008; Shirabe, 2006), data mining (du Mouza and Rigaux,

2005; Jeung et al., 2008; Kollios et al., 2001; Koubarakis et al., 2003; Verhein and

Chawla, 2008), databases (Asakura and Hato, 2004; Güting et al., 2003, 2000; Güting

and Schneider, 2005; Park et al., 2003; Wolfson and Mena, 2004; Wolfson et al., 1998),

and algorithms (Buchin et al., 2008a,b; Gudmundsson et al., 2007). One of the first move-

ment patterns studied (Jensen et al., 2007; Jeung et al., 2007, 2008; Kalnis et al., 2005;

Laube and Imfeld, 2002) was moving clusters. Unsurprisingly, this was one of the first

patterns to be studied since it is the ST equivalent of point clusters in a spatial setting.

A moving cluster in a time interval T consists of at least m entities, such that for every

point within T there is a cluster of m entities. The set of entities might be much larger

CHAPTER 2. RELATED WORK 31

Figure 2.8: A flock pattern among four trajectories. If m = 3 and the radius r = 1 then the
longest-duration flock lasts for six time steps. Entities e1, e2 and e4 form a flock, since they
move together within a disk of radius r, while e3 is excluded in this pattern. Here, the flock
uses Definition 2.1.

than m, thus entities may join and leave a cluster during the cluster’s lifetime. A moving

cluster is sometimes called a variable subset flock. Closely related to moving clusters

is the flock pattern, or fixed subset flock (Gudmundsson and van Kreveld, 2006). This

problem has been studied in several papers (Benkert et al., 2006; Gudmundsson and van

Kreveld, 2006; Gudmundsson et al., 2007; Jeung et al., 2007; Laube and Imfeld, 2002;

Laube et al., 2004). Even though different papers use slightly different definitions, the

main idea is that a flock consists of a fixed set of entities moving together as a cluster

during the duration of the flock pattern.

More recently, further movement patterns have been studied. Jeung et al. (2008) modified

the definition of a flock to what they call a “convoy”, formed from a group of entities

that are density-connected. Intuitively, two entities in a group are density-connected

if a sequence of objects exists that connects the two objects, and the distance between

consecutive objects does not exceed a given constant.

CHAPTER 2. RELATED WORK 32

In this thesis we will focus on the fixed subset flock pattern. Laube and Imfeld (2002) pro-

posed the REMO framework (RElative MOtion), which defines similar behavior within

groups of entities. They define a collection of ST patterns based on similar direction of

motion or change of direction. Laube et al. (2004) extended the framework by not only

including direction of motion, but the location itself. They defined several ST patterns,

including flock (moving close together in coordination), leadership (spatially leading the

movement of other objects), convergence (converging towards a spot), and encounter

(gathering at a spot), and designed algorithms to compute them efficiently.

However, these algorithms only consider each time step separately; that is, given m ∈ N

and r > 0, a flock is defined by at least m entities within a circular region of radius r

and moving in the same direction at a given point in time. Benkert et al. (2006) argued

that this is insufficient for many practical applications – e.g., a group of animals may

need to stay together for days or even weeks before it is defined as a flock. They pro-

posed the following definition of a flock that takes the minimum duration (k) into account

(Figure 2.8); m, k and r are given as parameters, and are hence fixed values.

Definition 2.1 (m, k, r)-flockA - Given a set of n trajectories where each trajectory con-

sists of τ line segments, a flock in a time interval I = [ti, tj], where j− i+1 ≥ k, consists

of at least m entities, such that for every point in time within I there is a disk of radius r

that contains all of the m entities, and m, k ∈ N and r > 0 are given constants.

Benkert et al. (2006) proved that there is an alternative, algorithmically simpler definition

of a flock that is equivalent provided that the entity moves with constant velocity along

the straight line between two consecutive points.

Benkert et al. (2006) described efficient approximation algorithms for reporting and

detecting flocks, where the size of the region is permitted to deviate slightly from what

is specified. Approximating the size of the circular region within a factor of ∆ > 1

CHAPTER 2. RELATED WORK 33

means that a disk with radius between r and ∆r that contains at least m objects may or

may not be reported as a flock, while a region with a radius of at most r that contains at

least m entities will always be reported. Their main approach is a (2 + ε)-approximation

with running time T (n) = O(τnk2(log n + 1/ε2k−1)). Even though the dependency

on the number of entities is small, the dependency on the duration of the flock pattern

is exponential. Thus, the only significant open problem that remains in Benkert et al.

(2006) is to develop a robust algorithm with a smaller dependency on k. This is exactly

our focus in this thesis, and will be discussed thoroughly in Chapter 4.

2.4.4 Spatio-Temporal Challenges

Although many real-life applications generate ST data, the data is unattainable for re-

search purposes, primarily because of the need for data privacy; for this reason, re-

searchers tend to design their own (synthetic) data.

Even though ST data can be obtained from some applications, it needs to be transformed

and designed to suit the mining process. This transformation typically requires more

time than generating synthetic data does. This has been another common reason that

researchers have designed synthetic data to represent their desired format.

ST data size is a vital challenge, it makes the mining process infeasible. An example of

an application that generates massive data is mobile device applications. These record

the location of mobile users periodically. For example, if the location of a user is stored

every 60 seconds, the number of stored locations over a year is 525600 locations. Gen-

erated data involving this many locations is described as a high-dimensional, and can

be significantly larger depending on the time interval and how frequent the location is

stored.

Using the spatial and temporal features for an object at the same time is complex because

CHAPTER 2. RELATED WORK 34

of the striking differences in their features. One of these main differences is that time has

natural ordering feature, but space does not (Verhein and Chawla, 2008).

2.5 The Curse of Dimensionality

We now consider the situation when data has been collected and is in the form shown in

Array 2.1. In matrix notation, the data is described as Xn×d, where n is the number of

described objects and d is the number of features (dimensions).

X =

x11 x12 · · · x1d

x21 x22
. . . x2d

...
...

xn1 xn2 · · · xnd

(2.1)

For example, one of the interesting features of microarray experiments is the fact that

they gather information on a large number of genes (for example, 6000). If we consider

genes as variables, this means that our observations are in a 6000-dimensional space and

d >> n (where d is the number of dimensions and n is the number of gene expressions).

Another example of high-dimensional data is in Section 2.4, that is ST data. For example,

one of the applications that produce ST data is tracking cell-phone users’ trajectories.

This application generates an enormous number of data points that describe the users’

locations. Therefore, if we consider each location as a variable (dimension), this yields a

massive number of dimensions (Example 2.1).

Example 2.1 If we intend to track 100 mobile users for three months, and the location is

stored every second for each user. That means our raw data (Xn×d) will have 100 rows,

and the number of dimensions will consist of three months of data, that is –

CHAPTER 2. RELATED WORK 35

High Dimensional
Data Set

Dimension
Reduction

Mining System Low Dimensional
Data Set

Figure 2.9: Dimensionality reduction process. The mining process is only effective with
vector data of not more than a certain number of dimensions. Hence, high-dimensional data
must be transformed into low-dimensional data before it is used in the mining system.

d = 3× 30 days

= 3× 30× 24 hours

= 3× 30× 24× 60 minutes

= 3× 30× 24× 60× 60 seconds

= 7776000.

As a result, our matrix will be of size 100 × 7776000, which is a massive number of

dimensions.

Example 2.1 shows the “curse of dimensionality”, a term coined by (Bellman, 1961).

Such high dimensionality brings the need for a dimensionality reduction process to (i)

reduce the dimension of the data to a manageable size, (ii) keep as much of the original

information as possible, and (iii) feed the reduced dimension data into the system. Fig-

ure 2.9 summarizes this situation, showing the dimension reduction as a preprocessing

stage in a data mining system.

CHAPTER 2. RELATED WORK 36

2.5.1 Dimensionality Reduction Techniques

Dimensionality reduction is a process of mapping the original data into lower-dimensional

space while retaining the structure of the original data as much as possible. It can be ap-

plied to solve the curse of dimensionality, introducing only minimal distortion.

Several techniques are available for carrying out the dimensionality reduction, e.g., PCA

(Principal Components Analysis), Discrete Fourier Transform (DFT), Discrete Wavelet

Transform (DWT), Single Value Decomposition (SVD), and random projection (RP)

(Achlioptas, 2003). This section presents two techniques (PCA, RP) and briefly de-

scribes several of their uses. We will not study the other techniques (SVD, DFT, and

DWT) given that they are all ranking techniques, similar to PCA.

2.5.1.1 Principle Components Analysis (PCA)

PCA (Principle Components Analysis) is a well-known dimensionality reduction tech-

nique. It searches for the vectors that best describe the data in a minimum squared error

sense. PCA can be calculated in several ways, including finding the eigenvectors of the

sample covariance matrix across all classes.

The way PCA operates is as follows. It rotates the coordinate system, “drops” some of the

dimensions (axes), and effectively projects the data into a lower-dimension space. The

new coordinate system is determined based on the direction of the variance in the data.

For most real datasets, most of the variance is captured in the first few new dimensions; by

“dropping” the other dimensions, while preserving the “essential structure” of the data.

PCA does not guarantee the preservation of the pairwise distance (even approximately)

between data points. Bishop (2006) is a good source for a geometric and algebraic

introduction to PCA.

CHAPTER 2. RELATED WORK 37

PCA can be used to project an m × n matrix A into a rank κ < min(m,n) matrix Aκ,

which minimizes the Frobenius norm1 ||A− C||F over all matrices of rank κ. Since our

objective is to project points into a lower-dimensional space to efficiently use spatial data

structures and preserve pairwise distances, PCA may not be particularly useful. The time

complexity of PCA is O(mn3).

Algebraically, PCA works as follows. Let A be an m× n matrix, where m is the number

of objects, each of dimension n. Then A can be decomposed as

A = Σr
i=1σiuiv

t
i .

Here, σ′is are the eigenvalues of the mean-centered covariance matrix AtA, v′is are the

corresponding eigenvectors, r is the rank of the matrixA, and u′is are the new coordinates

in space spanned by the new eigenvectors. The decomposition of A is organized in a way

such that σ1 > σ2 > . . . > σr. Geometrically, the σ′is are variance in the direction

determined by the v′is. Thus, for k < r,

A′ = Σk
i=1σiuiv

t
i

is effectively a lower-dimension projection of the objects in A.

PCA has been used by Hotelling (1933) as the best-known statistical analysis tech-

nique for detecting network traffic anomalies. Recent papers in the networking literature

have applied it to the problem of traffic anomaly detection with promising initial re-

sults (Lakhina et al., 2004b,a; Ringberg et al., 2007).

PCA has been used as a popular technique for parameterizing shape, appearance and

motion (Cootes et al., 2001; Black et al., 1997; Moghaddam and Pentland, 1995; Murase

1It is also known as the Euclidean norm.

CHAPTER 2. RELATED WORK 38

and Nayar, 1995). These learned PCA representations have proved to be valuable for

solving problems such as face and object recognition and background modeling (Cootes

et al., 2001; Moghaddam and Pentland, 1995; Oliver et al., 2000; Belhumeur et al., 1997;

Witten and Frank, 2000) .

Malagón-Borja and Fuentes (2005) presented an object detection system to detect pedes-

trians in gray-level images, without assuming any prior knowledge of the image. The sys-

tem works as follows: in the first stage, a classifier based on PCA examines and classifies

each location in the image at different scales; in the second stage, the system eliminates

all false detections.

2.5.1.2 Random Projections (RP)

Random projection (RP) has recently emerged as a powerful method for dimensionality

reduction. In Example 2.1, our data matrix n × d, where d, is huge. In random projec-

tion, the original d-dimensional data is projected to a κ-dimensional (κ << d) subspace

through the origin, using a random κ × d matrix R whose columns have a given unit

lengths.

Intuitively, the data will be projected into a new space X ′ using a basic matrix multipli-

cation operation; this is given in Equation 2.2.

Projected Data = Original Data×Random Matrix

X ′ = Xn×d ×Rd×κ (2.2)

The key idea of random mapping arises from the Lemma by (Johnson and Lindenstrauss,

CHAPTER 2. RELATED WORK 39

1982). If points in a vector space are projected onto a randomly selected subspace of suit-

ably high dimension, then the distances between the points are approximately preserved.

The choice of the random matrix R is one of the key points of interest. The elements rij

of R are often Gaussian distributed N(0, 1). Achlioptas (2003) has recently refined the

Johnson-Lindenstrauss Lemma. He proposed sparse random projections by replacing the

N(0, 1) entries in R with entries in {−1, 0, 1} with probabilities {1
6
, 2

3
, 1

6
} accomplishing

a threefold increase in processing time. In other words, Achlioptas (2003) refined the

Johnson-Lindenstrauss Lemma. The random matrix entries will be defined as:

rij =
√

3×

+1 with probability 1/6

0 .. 2/3

−1 .. 1/6.

The sparse random projections method (Achlioptas, 2003) has recently become popu-

lar. It was first applied and experimentally tested on image and text data by (Bingham

and Mannila, 2001). Random projections have been used in Machine Learning (Arriaga

and Vempala, 1999; Bingham and Mannila, 2001; Fern and Brodley., 2003; Fradkin and

Madigan, 2003; Kaski, 1998) – more specifically, in the analysis of phenomena such

as Latent Semantic Indexing (Vempala, 1998; Tang et al., 2004), finding motifs in bio-

sequences (Buhler and Tompa, 2001), face recognition (Goel et al., 2005), and privacy

preserving distributed data mining (Liu and Ryan, 2006). Random projections have been

used in a number of contexts in recent high-dimensional geometric constructions and al-

gorithms (Johnson and Lindenstrauss, 1982; Frankl and Maehara, 1987; Chor and Sudan,

1998; Kleinberg, 1997). For example, Kleinberg (1997) built a data structure from the

projection of a set P onto random lines through the original data.

Random projections are used in the area of data clustering. Kaski (1998) showed that

the inner product (the similarity) between the mapped (projected) vectors closely follows

CHAPTER 2. RELATED WORK 40

Dim Reduction Length Computational Space Indexable
Technique Limitation cost cost
PCA No O(dN3) O(dN) Yes
RP No O(kdN) O(kN) Yes

Table 2.2: Comparison of dimensionality reduction techniques (PCA and RP).

the inner product of the original vectors. He showed that the random mapping method

is computationally feasible choice for dimensionality reduction in circumstances where

the reduced dimensional data vectors are used for clustering or similar approaches; this

is especially the case if the original dimensionality of the data is very large and it is

infeasible to use more computationally expensive methods such as PCA.

Urruty et al. (2007) proposed a new method of clustering using random projections.

Their algorithm consists of two phases: a projection phase (which creates uni-dimensional

histograms and aggregates these histograms to produce the initial clusters) and the second

phase that consists of certain post-processing techniques of clusters obtained by several

random projections. Their experiments show the potential of the algorithm as a segmen-

tation technique and provide a reliable criterion for the validation of clusterings2.

Li et al. (2006) have proposed new probabilities for random matrix entries, in which they

recommended using R of entries in {−1, 0, 1} with probabilities { 1
2
√
d
, 1− 1√

d
, 1

2
√
d
} for

accomplishing a significant
√
d-fold speedup, with only a small loss in accuracy.

Incorporating RP in our method – which reports long durations and a complex ST pat-

tern named “flock” – has solved the dimensionality burden with high levels of accuracy

(Chapter 4).

2Clusterings: is another synonym of the clustering process.

CHAPTER 2. RELATED WORK 41

2.5.2 Comparison of Dimensionality Reduction Techniques

Table 2.2 provides a comparison between two dimensionality reduction techniques (PCA

and RP) when applying them on a dataset (Xn×d), where n is the number of described

objects and d is the number of dimensions. The comparison shed light on important fea-

tures of these techniques, such as whether they have a limitation on length, computation

cost, and space cost, and whether they are indexable.

2.6 Time Series Data Mining

This section provides an introduction to time series data and the similarity measures used

when mining time series data.

Definition 2.2 A time series is a sequence of data points, which are measured typically

at successive times, where each data point represents a value. For example, a time series

(sequence) S is described as follows:

S = {st : t ∈ N}, (2.3)

where st represents a data point at time t.

Definition 2.3 A time series data TSD is a collection of sequences (trajectories), which

is described as follows:

TSD = {Si : i ∈ N}, (2.4)

where Si is the ith sequence.

CHAPTER 2. RELATED WORK 42

0 50 100 150 200 250 300 350 400 450 500
500

550

600

650

700

750

800

850

900

950

Day

P
ri

ce
 (

A
U

S
$)

Query sequence

Figure 2.10: A query sequence from a stock time series dataset.

An example of a time series (sequence) is shown in Figure 2.10; the sequence represents

the movement of stock price over 500 days. To distinguish between time series data and

trajectory (ST) data, there are two differences:

1. Most time series are one-dimensional data where d = 1, whereas, trajectory data

is often two or more dimensions d ≥ 2.

2. In many applications the time dimension is very important. In ST data, the time

feature of a trajectory is important for answering special queries that involve “time

slice” or “time interval” (Pfoser et al., 2000; Tao and Papadias, 2001; Xu et al.,

1990).

As mentioned in Chapter 1, one of the focuses in this thesis is on time series shape simi-

larity. Thus, throughout the thesis, the time component of the time series and trajectories

data is disregarded when measuring the similarity. More examples about application that

CHAPTER 2. RELATED WORK 43

produce time series data will be provided in Chapters 5 and 6.

2.6.1 Time Series Similarity Measures

This section sheds light on these measures, focusing on previous work which used three

famous distance measures: Euclidean distance, Dynamic Time Warping, and Longest

Common Subsequence.

Definition 2.4 Given a data space D defined on time series (trajectory) data and any

two data points x, y ∈ D, a distance function, dist, on D is defined as:

dist : D ×D −→ R (2.5)

where R denotes the set of real numbers. The distance function dist is known as a metric

if it satisfies the following properties:

• Nonnegativity: distance is positive between two different points.

dist(x, y) ≥ 0. (2.6)

• Reflexivity: distance is zero precisely from a point to itself.

dist(x, y) = 0 if and only if x = y. (2.7)

• Symmetry: distance between x and y is the same in either direction.

dist(x, y) = dist(y, x). (2.8)

CHAPTER 2. RELATED WORK 44

• Triangle inequality: distance between two points is the shortest distance along any

path.

dist(x, y) ≤ dist(x, z) + dist(z, y). (2.9)

Definition 2.5 Given a data space D, x, y ∈ D, distance function dist on D, and a

predefined threshold ε: x and y are considered similar if dist(x, y) ≤ ε, and dissimilar if

dist(x, y) > ε.

The similarity between time series is achieved by matching the points in the first time

series with the corresponding points in the second. A distance function and a predefined

threshold, as mentioned in Definition 2.5, should be used to measure the similarity. The

distance function is application- and data-dependent, and needs to be carefully designed

to meet application requirements.

2.6.2 Euclidean Distance (EucDist)

Euclidean distance is the first distance function that was used as similarity measure in

time series database literature (Agrawal et al., 1993; Faloutsos et al., 1994; Rafiei and

Mendelzon, 1998). The definition of the Euclidean distance depends on the type of the

data – dimensionality of the data indicates which equation we should use when calculat-

ing the distance. Therefore, there are two main definitions:

Definition 2.6 For any two 1-dimension points, S = (sx), and Q = (qx), the Euclidean

distance is defined as follows:

EucDist =
√

(sx − qx)2

= |sx − qx|. (2.10)

CHAPTER 2. RELATED WORK 45

Definition 2.7 EucDist: Given two n-dimensions sequences Q = (q1, . . . , qn) and S =

(s1, . . . , sn) where n > 1 and denotes to the length of the two sequences, the Euclidean

distance between them is:

EucDist =
√

(q1 − s1)2 + · · ·+ (qn − sn)2

=

√√√√ n∑
i=1

(qi − si)2. (2.11)

2.6.2.1 Euclidean Distance Limitations

Two of the main advantages of the EucDist are that it is easy to compute and the compu-

tational cost is linear in terms of the time series length. However, EucDist has limitations

that make it unsuitable for similarity mining in time series data: it requires sequences

to be of the same length, and does not support local time shifting. Local time shifting

occurs when one element of one sequence is shifted along the time axis to match an ele-

ment of another time sequence (even when the two matched elements appear in different

positions in the sequences). This is useful when the sequences have similar shape but are

out of phase. It is called “local”, because not all of the elements of the query sequence

need to be shifted and the shifted elements do not have the same shifting factor. By con-

trast, in “global” time shifting, all of the elements are shifted along the time axis by a

fixed shifting factor. More specifically, local time shifting cannot be handled by EucDist,

because EucDist requires the ith element of query sequence to be aligned with the ith

element of the data sequence. Figure 2.11(a) shows an example on how elements from

two time series could be matched (aligned) when EucDist is computed in the presence of

local time shifting. These limitations of the Euclidean distance are the reasons for using

another similarity measure – the Dynamic Time Warping (DTW) measure, which will be

CHAPTER 2. RELATED WORK 46

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Candidate Sequence Query Sequence

(a) Using Euclidean distance. EucDist=11.2458

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Candidate Sequence Query Sequence

(b) Using DTW distance. DTW=1.895

Figure 2.11: Point correspondence when two time series contains local time shifting.

CHAPTER 2. RELATED WORK 47

introduced in the following section.

2.6.3 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) is a dynamic programming technique for measuring the

similarity between any two sequences (i.e., two time series) which may differ in time or

speed. For example, similarities in walking patterns would be detected, even if in one

video the person was walking slowly and in another was walking quickly, or even if there

were accelerations and decelerations during the course of the video.

2.6.3.1 DTW Features

DTW has valuable features: it does not require that the two sequences being compared are

of the same length, and can handle local time shifting (Figure 2.11(b)). However, is not

considered as a metric, because it does not satisfy the triangular inequality. Theorem 2.1

state this and we give a proof for our theorem by a counter example.

Recall the definition of the triangular inequality in Definition 2.4. Here, we restate it

when dealing with time series data as in Definition 2.8.

Definition 2.8 Given three time series Q, S and R. The distance function dist, defined

on a data space D, satisfies the triangular inequality if and only if Inequality 2.12 holds.

∀ Q,R, S ∈ D, dist(Q,R) + dist(R, S) ≥ dist(Q,S) (2.12)

Theorem 2.1 DTW is not a metric because it does not satisfy the triangular inequality

which is given in the Inequality 2.12.

Proof Given three time series data, Q = {1}, R = {1, 0, 2} and S = {2, 13, 4}.

CHAPTER 2. RELATED WORK 48

0

1

2

3

4

5

6

S

Q

(a) Warping S and Q where the lines be-
tween the points are the warping costs.

3532343334282525563
3231313029252424522
3236373739292424514
2830262829232020423
2727261919382
4443393834302219373
4443393834302118333
4547404442402517295
3637313228261598134
33322827231910653
2121101221D

Q

S

8

4

17

18

19

20 24 25 26

27

31

32

33

(b) The warping matrix D produced by
DTW; highlighted cells constitute the op-
timal warping path.

Figure 2.12: Aligning two time series S and Q using DTW. The lines between the points are
the warping costs.

DTW (Q,R) = 2,DTW (R, S) = 7, andDTW (Q,S) = 14. It is clear thatDTW (Q,S) >

DTW (Q,R) +DTW (R, S). This violates the triangular inequality. 2

Chapter 5 provides more explanation about the DTW constraints and provides its pseu-

docode.

2.6.3.2 DTW Calculation

In general, DTW is a technique designed to find an optimal match between any two given

sequences with certain constraints. The sequences are “warped” non-linearly in the time

dimension (Figure 2.12). Definition 2.9 provides more about how DTW works.

Definition 2.9 DTW: Is a dynamic programming technique which divides the problem

into several sub-problems, each of which contribute in calculating the distance between

any two sequences cumulatively. Equation 2.13 shows the recursion that governs the

computation:

CHAPTER 2. RELATED WORK 49

D(i, j) = d(i, j) +min

D(i− 1, j)

D(i− 1, j − 1)

D(i, j − 1).

(2.13)

Example 2.2 Given two sequences (S,Q) each of which consists of 10 data points:

S = {3, 4, 5, 3, 3, 2, 3, 4, 2, 3}

and

Q = {1, 2, 2, 1, 0, 1, 1, 2, 1, 2}.

Figure 2.12(a) illustrates the process of warping S and Q, where the lines between the

points are the warping costs. By applying the Equation 2.13, the warping matrix D is

produced (Figure 2.12(b)); highlighted cells constitute the optimal warping path between

S and Q.

The previous example showed the warping process between two sequences of the same

length. Definition 2.10 gives a general formula for the DTW distance between any two

sequences.

Definition 2.10 The general definition of DTW distance between two time series S and

Q of lengths M and N , respectively, is defined as:

CHAPTER 2. RELATED WORK 50

DTW (S,Q) =

∞ ifM = 0 or N = 0

0 ifM = 0 and N = 0

dist(s1, q1) +min

DTW (S ′, Q′)

DTW (S ′, Q)

DTW (S,Q′)

 otherwise.

(2.14)

where dist(s1, q1) is the EucDist as defined in Equation 2.10. S ′ andQ′ are the remaining

subsequences of S and Q, respectively.

2.6.3.3 DTW Applications

DTW has been applied to many applications, such as video (Blackburn and Ribeiro,

2007) and graphics (Chen et al., 2004). Any data which has a linear representation can

be analyzed using DTW. A well-known application has been automatic speech recogni-

tion (Itakura, 1975; Tappert and Das, 1978; Myers et al., 1980; Sakoe and Chiba, 1978;

Sankoff and Kruskal, 1999; Rabiner and Juang, 1993), enabling it to cope with different

speaking speeds.

In bioinformatics, Aach and Church (2001) successfully applied DTW to RNA expres-

sion data. DTW has been effectively used to align biometric data, such as signatures (Mu-

nich and Perona, 1999) and even fingerprints (Kovacs-Vajna, 2000).

DTW was first introduced to the data mining community in the context of mining time

series (Berndt and Clifford, 1994). Since it is a flexible measure for time series simi-

larity, it is used extensively for ECGs (Electrocardiograms) (Caiani et al., 1998), speech

processing (Rabiner and Juang, 1993), and robotics (Schmill et al., 1999).

CHAPTER 2. RELATED WORK 51

2.6.3.4 DTW Complexity

The time and space complexities of DTW in the best case are both quadratic, O(MN),

where M and N are the lengths of the two time series being compared. Therefore, when

the dataset size increases, a large amount of time is required when computing DTW to

answer a particular query. This can be solved in two ways: by using indexing methods

to reduce the number of computations required, and by speeding up the technique used

to calculate the DTW itself. Several techniques have been introduced to speed up DTW

and/or reduce the space overhead (Hirschberg, 1975; Berndt and Clifford, 1996; Yi et al.,

1998; Kim et al., 2001; Keogh and Ratanamahatana, 2004).

2.6.3.5 Speeding up DTW

This section explains the state-of-the-art techniques used to speed up DTW. The tech-

niques are grouped into three different categories – adding constraints on DTW, lower

bounding, and approximating techniques.

1. Adding Constraints on DTW.

Many researchers have added constraints on DTW to increase its speed by limiting

how far the warping path may stray from the diagonal of the warping matrix (Tap-

pert and Das, 1978; Berndt and Clifford, 1994; Myers et al., 1980). The divi-

sion of matrix that the warping path is allowed to visit is called the warping win-

dow. Two popular global constraints are Itakura Parallelogram and Sakoe-Chiba

Band (Itakura, 1975; Sakoe and Chiba, 1978); they used to speed up the DTW by

adding constraints which force the warping path to lie within a band around the di-

agonal; if the optimal path crosses the band, the DTW distance will not be optimal.

Figures 2.13(a) and 2.13(b) illustrate the Itakura Parallelogram and Sakoe-Chiba

bands, respectively.

CHAPTER 2. RELATED WORK 52

(a) Global constraint (Itakura Parallelo-
gram).

(b) Global constraint (Sakoe Chiba Band).

Figure 2.13: Illustration of the two well known global constraints used on DTW. The global
constraint limits the warping scope. The diagonal gray areas correspond to the warping
scopes.

2. Lower Bounding DTW.

Kim et al. (2001) introduced a lower bound function which extracts only four

features from each sequence. The features are the first and the last of the ele-

ments of the sequence, together with the maximum and minimum values in the

same sequence. The lower bound of DTW distance between candidate and query

sequences is calculated as the maximum squared difference of corresponding fea-

tures extracted from both sequences. Figure 2.14 illustrates this technique.

Yi et al. (1998) introduced another lower bound function which exploits the ob-

servation that all points in the query sequence are larger than the maximum of the

candidate sequence (or smaller than the minimum). The squared difference of these

values is the final DTW distance. Figure 2.15 illustrates this technique.

CHAPTER 2. RELATED WORK 53

a

b

c

d

Candidate

Sequence

Query
Sequence

Figure 2.14: The lower bound introduced by (Kim et al., 2001). The squared difference
is calculated from the difference in first points (a), last points (d), minimum points (b) and
maximum points (c).

Keogh and Ratanamahatana (2004) introduced an efficient lower bounding tech-

nique, LB Keogh. It reduces the number of DTW computations in a time series

database context; however, it does not reduce the space complexity of the DTW

computation. The idea is to use a cheap lower bounding calculation, which will

allow us to do the expensive calculations when are they essential. Equation 2.15

shows the LB Keogh between a query Q and a candidate C sequence. Figure 2.16

depicts two sequences (Q,C) as well as the lower (L) and upper (U) bound of

Q. After finding the lower and upper bounds, the distance is calculated based on

Equation 2.15. LB Keogh can be treated similarly as the MBR index, since the

two bounds (Upper and Lower) appear as an envelope around the query sequence;

this is similar to the idea of having a rectangle (box) around the spatial object.

CHAPTER 2. RELATED WORK 54

Candidate

Sequence

Query
Sequence (Q)

Max(Q)

Min(Q)

Figure 2.15: An illustration of the lower bound introduced by (Yi et al., 1998). The sum of
the squared length of the gray lines is the over all DTW distance.

LB Keogh(Q,C) =

√√√√√√√√√
n∑
i=1

(ci − Ui)2 if ci > Ui

(ci − Li)2 if ci < Li

0 otherwise.

(2.15)

The LB keogh function can be readily visualized as the Euclidean distance between

any part of the candidate matching sequence not falling within the envelope and the

nearest (orthogonal) corresponding section of the envelope (Figure 2.16).

DTW has been used in data streaming problems. Capitani and Ciaccia (2007) pro-

posed a new technique, Stream-DTW (STDW). This measure is a lower bound of

the DTW. Their method uses a sliding window of size 512. They incorporated a

band constraint, forcing the path to stay within the band frontiers, as in (Sakoe and

Chiba, 1978).

Sakurai et al. (2005) presented FTW, a search method for DTW; it adds no global

constraints on DTW. Their method designed based on a lower bounding distance

CHAPTER 2. RELATED WORK 55

C

U

LQ

Figure 2.16: An illustration of the lower bound LB Keogh, where C is the candidate se-
quence, Q is the query sequence, U and L are the upper and lower bounds of Q, respectively.
The sum of the squared length of the gray lines is the overall DTW distance. The figure
is adopted from (Keogh and Ratanamahatana, 2004). This lower bound used Sakoe-Chiba
Band.

measure that approximates the DTW distance. Therefore, it minimizes the number

of DTW computations but does not increase the speed the DTW itself.

3. Approximating DTW.

Salvador and Chan (2007) introduced an approximation algorithm for DTW called

FastDTW. Their algorithm begins by using DTW in very low resolution, and pro-

gresses to a higher resolution linearly in space and time. FastDTW is performed in

three steps: coarsening shrinks the time series into a smaller time series; the time

series is projected by finding the minimum distance (warping path) in the lower res-

olution; and the warping path is an initial step for higher resolutions. The authors

refined the warping path using local adjustment. FastDTW is an approximation

algorithm, and thus there is no guarantee it will always find the optimal path. It

CHAPTER 2. RELATED WORK 56

requires the coarsening step to be run several times to produce many different res-

olutions of the time series. The FastDTW approach depends on a radius parameter

as a constraint on the optimal path; however, our technique does not place any

constraints while calculating the DTW distance.

2.6.4 Longest Common Subsequence (LCSS)

The LCSS problem is defined as finding the longest common subsequence to all se-

quences in a dataset of sequences.

LCSS is a matching measure proposed to handle a special case of time series data, when

the data may contain possible noise (Hirschberg, 1975; Boreczky and Rowe, 1996). The

noise could be introduced by hardware failures, disturbance signals, or transmission er-

rors. The intuition of LCSS is to remove the noise effects by counting only the number

of matched elements between two time series. The LCSS definition is given in Defini-

tion 2.11.

Definition 2.11 The general definition of LCSS measure between two time series S and

Q of lengths M and N , respectively, is defined as:

LCSS(S,Q) =

∞ ifM = 0 or N = 0

0 ifM = 0 and N = 0

LCSS(S ′, Q′) + 1 if dist(s1, q1) ≤ ε

max

 LCSS(S ′, Q)

LCSS(S,Q′)

 otherwise.

(2.16)

where dist(s1, q1) is the EucDist as defined in Equation 2.10. S ′ andQ′ are the remaining

CHAPTER 2. RELATED WORK 57

subsequences of S and Q, respectively. ε is the matching threshold.

We will not use this measure, because our datasets are noise-free data. Our problem is

to find the similarity between time series, not the longest common subsequence. The

reason we introduced LCSS was merely to show the difference between it and the other

measures.

Distance Different Local time Noise Setting matching Computational Metric
measure lengths shifting threshold cost
EucDist No No No No O(N) Yes
LCSS Yes Yes Yes Yes O(N2) No
DTW Yes Yes No No O(N2) No

Table 2.3: Comparison between three different distance measures on raw representation of
time series data.

2.6.5 Comparison between Similarity Measures

Table 2.3 gives a comparison between the three distance measures, based on six criteria:

the ability to handle sequences with different lengths; the ability to handle sequences

with local time shifting; the ability to handle sequences that contain noise; whether a

matching threshold is needed; computational cost; and whether the distance function is a

metric. From Table 2.3, the following remarks can be made:

• The computational cost of DTW is quadratic, and it is not metric distance measure;

it is not possible to improve the retrieval efficiency with distance-based access

methods. The same applies to LCSS.

• DTW does handle time sequences with different lengths and local time shifting,

but EucDist does not.

• LCSS is not sensitive to noisy data. DTW and EucDist are both sensitive but the

datasets that used in this research are noise-free data.

CHAPTER 2. RELATED WORK 58

• LCSS needs a predefined matching threshold to handle noisy data.

2.7 Summary and Conclusions

This chapter has reviewed the state-of-the-art research in three areas: spatial, spatio-

temporal and time series data. We summarize them as follows:

• In the area of spatial data , we have provided an overview about spatial applications

and the challenges encountered when mining spatial data.

• This chapter provides most of the interesting work in the area of ST data that has

been conducted recently. More specifically, it describes the work that was per-

formed on the moving objects problems. We described the term curse of dimen-

sionality as a challenge that made many of the proposed techniques do not work

efficiently. Two dimensionality reduction approaches and the differences between

them were explored.

• An introduction about time series data has been given. A thorough explanation

about three different similarity measures was provided. The three measures in-

clude: Euclidean, DTW, and LCSS distances. This chapter provides a comparison

between these similarity measures as well as the most interesting applications that

have used them recently.

Chapter 3

Mining Complex Co-location Rules

(MCCRs)

Following a comprehensive summary of the related work, this chapter proposes a

heuristic (GridClique) to mine efficiently the maximal clique patterns from a

large spatial dataset. It combines the proposed algorithm with an association rule mining

technique to efficiently generate complex co-location rules. The chapter is organized as

follows: Section 3.1 provides an introduction, and Section 3.2 places our contributions

in the context of related work. Further details of our proposed method (MCCR) are pro-

vided in Section 3.3. Our experiments and the analysis of the results are explained in

Section 3.4, and Section 3.5 concludes the chapter. Table 3.1 lists all notations used in

this chapter1.

1This chapter is based on the following publications:

• Ghazi Al-Naymat. Enumeration of Maximal Clique for Mining Spatial Co-location Patterns.
Proceedings of the 6th ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA), Doha, Qatar. Mar 31st – Apr 4th, 2008. Pages (126–133) (Al-Naymat, 2008).

• Florian Verhein and Ghazi Al-Naymat. Fast Mining of Complex Spatial Co-location Patterns
using GLIMIT. The 2007 International Workshop on Spatial and Spatio-temporal Data Mining
(SSTDM) in cooperation with The 2007 IEEE International Conference on Data Mining (ICDM).
Omaha NE, USA. October 28–31, 2007. Pages (679–684) (Verhein and Al-Naymat, 2007).

59

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 60

Symbol Description
MCCR Mining Complex Co-location Rule
parsec Unit of length used in astronomy. It stands for “parallax of one arc

second”
Mpc An abbreviation of “Mega-parsec”, which is one million parsecs, or

3261564 light years
arcmin Unit of angular measurement. Sizes of objects on the sky, field of view

of telescopes, or practically any angular distance “Arc of Minutes”
minPI Minimum Participation Index
maxPI Maximum Participation Ratio
SDSS Sloan Digital Sky Survey
O Spatial objects with fixed locations
oi The ith spatial object
G Undirected graph
CM Maximal Clique
g(·) Function that performs a transformation on the transposed dataset
◦ An operator that combined two itemvectors together to create a new

itemvector corresponding to the union of the two itemsets
P A set of complex types
N(·) Number of maximal cliques that contain the set of complex types
T Set of transactions
I Item set
f(·) Item set size
| · | Number of elements in a set
Card(·) Cardinality of a set
w/o Without
w With
X X coordinate
Y Y coordinate
d·e Function that gives the ceiling of a value
b·c Function that gives the floor of a value
EucDist Euclidean distance

Table 3.1: Description of the notations used.

3.1 Introduction

Spatial data is essentially different from transactional data in its nature. The objects in a

spatial database are distinguished by a spatial (location) and several non-spatial (aspatial)

attributes. For example, an astronomy database that contains galaxy data may contain the

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 61

B4

A3 B1 C1

B3 B2
(a)

A2

A1

(b)

Figure 3.1: An example of clique patterns.

x, y and z coordinates (spatial features) of each galaxy, their types and other attributes.

Spatial datasets often describe geo-spatial or “astro-spatial” (astronomy related) data. In

this work, we use a large astronomical dataset containing the location of different types of

galaxies. Datasets of this nature provide opportunities and challenges for the use of data

mining techniques to generate interesting patterns. One such pattern is the co-location

pattern. A co-location pattern is a group of objects (such as galaxies) each of which is

located in the neighborhood (within a given distance) of another object in the group.

A clique is a special type of co-location pattern. It is described as a group of ob-

jects such that all objects in that group are co-located with each other. In other words,

given a predefined distance, if a group of objects lie within this distance from every

other object in the group, they form a clique. Figure 3.1 shows eight different ob-

jects {A1, A2, A3, B1, B2, B3, B4, C1}. The set {B1, B2, A3} is a clique. However,

{B1, B2, A3, C1} is not, becauseC1 is not co-located withB2 andA3, therefore {B1, B2, A3, C1}

is a co-location pattern only.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 62

ID Maximal Cliques Raw Maximal Non-Complex Complex Without Complex With
Cliques Relationships Negative Negative

Relationships Relationships
1 {A3, B1, B2, B3} {A, B, B, B} {A, B} {A, B, B+} {A, B, B+, -C}
2 {B1, C1} {B, C} {B, C} {B, C} {-A, B, C}
3 {A1, A2, B4} {A, A, B} {A, B} {A, A+, B} {A, A+, B, -C}

Table 3.2: Representing maximal cliques of Figure 3.1 as complex relationships

In this chapter we consider maximal cliques. A maximal clique is a clique that does not

appear as a subset of another clique in the same co-location pattern (and therefore the

entire dataset, as each object is unique). For example, in Figure 3.1, {A1, A2, B4} forms

a maximal clique as it is not a subset of any other clique. However, {A3, B2, B3} is not

a maximal clique since it is a subset of the clique {A3, B1, B2, B3} (which in turn is

a maximal clique). The second column of Table 3.2 shows all the maximal cliques in

Figure 3.1.

In our dataset, each row corresponds to an object (galaxy) and contains its type as well

as its location. We are interested in mining relationships between the types of objects.

Examples of object types in this dataset are “early-type” galaxies and “late-type” galax-

ies. To clarify, we are not interested in the co-locations of specific objects, but rather, the

co-locations of their types. Finding complex relationships between such types is useful

information in the astronomy domain – this will be shown in Section 3.1.2. In Figure 3.1,

there are three types: {A,B,C}.

In this chapter we focus on using maximal cliques to allow us to mine interesting complex

spatial relationships between the object types. A complex spatial relationship includes

not only whether an object type, say A, is present in a (maximal) clique, but:

• Whether more than one object of its type is present in the (maximal) clique. This

is a positive type and is denoted by A+.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 63

• Whether objects of a particular type are not present in a maximal clique – that is,

the absence of types. This is a negative type and is denoted by −A.

The inclusion of positive and / or negative types makes a relationship complex. This

allows us to mine patterns that state, for example, that A occurs with multiple Bs but

not with a C. That is, the presence of A may imply the presence of multiple Bs and the

absence of C. The last two columns of Table 3.2 show examples of (maximal) complex

relationships. We propose an efficient algorithm (GridClique) to extract all maximal

clique patterns from a large spatial data – the Sloan Digital Sky Survey (SDSS) data.

We are not interested in maximal complex patterns (relationships) in themselves, as they

provide only local information (that is, about a maximal clique). We are however in-

terested in sets of object types (including complex types) that appear across the entire

dataset (that is, among many maximal cliques). In other words, we are interested in min-

ing interesting complex spatial relationships (sets), where “interesting” is defined by a

global measure. We use a variation of the minPI (minimum Participation Index) mea-

sure (Shekhar and Huang, 2001) to define interestingness (Equation 3.1).

minPI(P) = min
t∈P
{N(P)/N({t})} (3.1)

Here P is a set of complex types we are evaluating, and N(·) is the number of maximal

cliques that contain the set of complex types. We count the occurrences of the pattern

(set of complex types) only in the maximal cliques. This means that if the minPI of a

pattern is above α, then we can say that whenever any type t ∈ P occurs in a maximal

clique, the entire pattern P will occur at least as a fraction α of those maximal cliques.

Using minPI is superior to simply using N(P) because it scales by the occurrences of

the individual object types, thus reducing the impact of a non-uniform distribution on the

object types.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 64

In this work we focus on maximal cliques because:

• The process of forming complex positive relationships makes sense. Suppose we

extract a clique that is not maximal, such as {A1, B4} from Figure 3.1. We would

not generate the positive relationship {A+, B} from this, even though each of

{A1, B4} are co-located with {A2}. So we get the correct pattern only once we

have considered the maximal cliques.

• Negative relationships are possible. For example, consider the maximal clique in

row 1 of Table 3.2. If we did not use maximal cliques, then we would consider

{B1, B2, B3}, and from this we would incorrectly infer that the complex rela-

tionship {B,B+,−A} exists. However, this is not true because A is co-located

with each of {B1, B2, B3}. Therefore, using non-maximal cliques will generate

incorrect negative patterns.

• Each maximal clique will be considered as a single instance (transaction) for the

purposes of counting. In other words, we automatically avoid multiply counting

the same objects within a maximal clique.

• Mining maximal cliques reduces the number of cliques by removing all redun-

dancy. It is possible to mine for maximal cliques directly. And because negative

types cannot be inferred until the maximal clique is mined, it does not make sense

to mine cliques that are not maximal.

The previous reasons demonstrate the value of our proposed algorithm GridClique given

it mines all maximal clique patterns from large spatial data and puts them into a format

which can be mined easily using association rule mining techniques.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 65

3.1.1 Problem Statement

The problem that we are considering in this chapter consists of two parts:

1. Given a large spatial dataset (astronomy dataset), extract all maximal clique

patterns. More specifically, extract all co-location patterns that are not subsets

of any other co-location patterns.

2. Given the set of maximal cliques, find all interesting and complex patterns

that occur among the set of maximal cliques. More specifically, find all sets of

object types, including positive and negative (that is, complex) types that are

interesting as defined by their minPI being above a threshold.

To solve the above problem efficiently, we propose a heuristic based on a divide-and-

conquer strategy. Our proposed heuristic is GridClique (Al-Naymat, 2008) as it will

be described in Section 3.3.1. After obtaining the maximal clique patterns the prob-

lem therefore becomes an itemset mining task. To achieve this very quickly, we use the

GLIMIT algorithm (Verhein and Chawla, 2006) as we will describe in Section 3.3.3.

Including negative types makes the problem much more difficult, as it is typical for spatial

data to be sparse. This means that the absence of a type can be very common. Approaches

relying on an Apriori style algorithm find this very difficult, however, this is not a problem

for our approach.

3.1.2 Contributions

In this chapter we make the following contributions:

1. We introduce the concept of maximal cliques. We describe how the use of maximal

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 66

Imply the absence of
?

Elliptical Galaxy
(Early)

Spiral Galaxy
(Late)

Does the presence of

Figure 3.2: An interesting question which can be answered by our method.

cliques makes more sense than simply using cliques, and we show that they allow

the use of negative patterns.

2. We propose a heuristic GridClique on the basis of a divide-and-conquer strategy,

to mine maximal clique patterns that will be used in mining complex co-location

rules.

3. We show that GLIMIT can be used to mine complex, interesting co-location pat-

terns very efficiently in very large datasets. We demonstrate that GLIMIT can be

almost three orders of magnitude faster than using an Apriori based approach.

4. We propose a general procedure that splits the maximal clique generation, complex

pattern extraction and interesting pattern mining tasks into modular components.

5. We contribute to the astronomy domain by proving existing facts when analyzing

the complex association rules that are generated by our proposed approach. For

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 67

example, we managed to answer questions such as the one depicted in Figure 3.2.

3.2 Related Work

Huang et al. (2003) defined the co-location pattern as the presence of a spatial feature in

the neighborhood of instances of other spatial features. They developed an algorithm for

mining valid rules in spatial databases using an Apriori-based approach. However, their

algorithm does not separate the co-location mining and interesting pattern mining steps

as our approach does, and they did not consider complex relationships or patterns.

Munro et al. (2003) used cliques as a co-location pattern. Similarly to our approach, they

separated the clique mining from the pattern mining stages. However, they did not use

maximal cliques. They treated each clique as a transaction and used an Apriori-based

technique for mining association rules. Since they used cliques (rather than maximal

cliques) as their transactions, the counting of pattern instances is different. They consid-

ered complex relationships within the pattern mining stage. However, their definition of

negative patterns is very different – they used infrequent types while we base our def-

inition on the concept of absence in maximal cliques. They used a different measure,

namely, maximum Participation Ratio (maxPI).

Arunasalam et al. (2005) used a similar approach to Munro et al. (2003). They pro-

posed an algorithm (NP maxPI) which used the MaxPI measure. The proposed algorithm

prunes the candidate itemsets using a property of maxPI. They used an Apriori-based

technique to mine complex patterns. A primary goal of their work was to mine patterns

which have low support and high confidence. As with the work of Munro et al. (2003),

they did not use maximal cliques.

Zhang et al. (2004) enhanced the algorithm proposed in Huang et al. (2003) and used

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 68

Global: Mines co-locations that are globally
interesting (considers all complex cliques)

Mine All
Maximal
CliquesSpatial

Data
(SDSS)

Extract
Complex
Cliques

(Relationships)

Mine
Interesting

(and
Complex)
Patterns

A,B,B,B
B,C
A,A,B
…

A,B,B+,-C
-A,B,C
A,A+,B,-C
…

A1 (5,2)
A2 (4,0)
B4 (6,0)
…

Local: only members of the maximal clique
are considered.

GLIMIT

…
A,B
A,-C
-A,C
…GridClique

Prepare
the

Extracted
Data

Figure 3.3: The complete process of Mining Complex Co-location Rules (MCCRs).

it to mine special types of co-location relationships in addition to cliques, namely the

spatial star, and generic patterns.

To the best of our knowledge, previous work has used Apriori-type algorithms for mining

interesting co-location patterns. We use GLIMIT (Verhein and Chawla, 2006) as the

underlying pattern mining algorithm; this will be discussed in Section 3.3.3. To the best

of our knowledge, no previous work has used the concept of maximal cliques.

3.3 Mining Complex Co-location Rules (MCCRs)

The MCCR process is illustrated through the flowchart in Figure 3.3. It consists of four

stages. First, the data preparation process, which starts by downloading the spatial data

from the SDSS repository and then putting it in the desired format. Appendix A provides

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 69

comprehensive details about this stage. Second, the GridClique algorithm finds all max-

imal clique patterns, and strips them of the object identifiers – producing raw maximal

cliques (Table 3.2). The GridClique algorithm is described in Section 3.3.1. One pass is

then made over the raw maximal cliques in order to extract complex relationships. We

describe this in Section 3.3.2. This produces maximal complex cliques, each of which is

then considered as a transaction. An interesting itemset mining algorithm, using minPI

as the interestingness measure, is used to extract the interesting complex relationships.

We describe this in Section 3.3.3.

Figure 3.3 shows that the clique generation and complex relationship extraction are local

procedures, in the sense that they deal only with individual maximal cliques. In contrast,

the interesting pattern mining is global – it finds patterns that occur across the entire

space. We consider subsets of maximal cliques only in the last step – after the complex

patterns have been extracted.

3.3.1 Mining Maximal Cliques

The stage of mining maximal cliques is the process of transforming the raw spatial data

into transactional type data that can be used by any association rule mining techniques.

This is a crucial step and it is performed using the our proposed algorithm (GridClique).

3.3.1.1 Basic Definitions and Concepts

Consider a set of objects O with fixed locations. Given an appropriate distance measure

d : O × O → R we can define a graph G as follows; let O be the vertices and construct

an edge between two objects o1 ∈ O and o2 ∈ O if d(o1, o2) ≤ τ , where τ is a chosen

distance. A co-location pattern is a connected subgraph.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 70

Object type X-Coordinate Y -Coordinate
A1 2.5 4.5
A2 6 4
A3 2 9
B1 1.5 3.5
B2 5 3
B3 5 4
C1 2.5 3
C2 6 3
D1 3 9
D2 7 1.5

Table 3.3: An example of two-dimensional dataset.

Definition 3.1 (Clique) A clique C ∈ O is any fully connected subgraph of G. That is,

d(o1, o2) ≤ τ ∀{o1, o2} ∈ C × C.

As we have mentioned in Section 3.1, we use maximal cliques so that we can define and

use complex patterns meaningfully and to avoid double counting.

Definition 3.2 (Maximal Clique) A maximal clique CM is a clique that is not a subset

(sub-graph) of any other clique. So that CM 6⊂ C ∀C ∈ O.

Definition 3.3 (Clique Cardinality) A cardinality (Card) is the size of a clique and

it is given in Equation 3.2. For example, if we have a clique C = {o1, o2, o3}, then

Card(C) = 3.

Card(C) = |{o ∈ O : o ∈ C}|, (3.2)

where | · | denotes the number of elements in a set.

Generally, cardinality of a set is a measure of the “number of elements of the set”.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 71

3.3.1.2 GridClique Algorithm

The GridClique algorithm uses a heuristic based on a divide-and-conquer strategy to

efficiently extract maximal clique patterns from large spatial dataset (SDSS). That is

achieved by dividing the space into a grid structure based on a predefined distance. The

use of the grid structure plays a vital role for reducing the search space. Our heuristic

treats the spatial objects (galaxies) as points in a plane and it uses grid structure when

mining the maximal clique patterns. We use the Euclidean distance as the distance mea-

sure, because it is very efficient to compute.

The aim of the GridClique algorithm is to extract maximal clique patterns that exist in any

undirected graph. It is developed using an index structure through grid implementation.

Table 3.3 contains 10 objects and their X and Y coordinates; this information will be

used to explain the functionality of the GridClique algorithm. The SDSS is a three-

dimensional dataset, but in our example we use two-dimensional dataset for simplicity.

Algorithm 3.1 displays the pseudocode of the GridClique algorithm.

The ten spatial objects in Table 3.3 are depicted in Figure 3.4. The figure will be used

as an example when we explain our algorithm. The objects are used as spatial points

and are placed in the plane using their coordinates. The edges in each subgraph are

generated between every two objects on the basis of the co-location condition. That is, if

the distance between any two objects is ≤ d, where d is a predefined threshold, an edge

will be drawn between the two objects (Figure 3.4(a)). The GridClique algorithm works

as follows.

1. It divides the space into a grid structure which contains cells of size d × d (Lines

1 to 12). The grid space is structured where each cell has a key (GridKey). This

key is a composite of X , Y and Z coordinates (Line 5). We used a special data

structure (hashmap) which is a list that stores data based on an index (key) to speed

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 72

Algorithm 3.1 GridClique algorithm.
Input: Set of points (P1, · · · , Pn), Threshold d
Output: A list of maximal clique patterns.
{Generating grid structure.}

1: GridMap← φ
2: PointList← {P1, · · · , Pn}
3: for all Pi ∈ PointList do
4: Get the coordinates of each point Pkx, Pky, Pkz
5: Generate the composite key (GridKey=(Pkx, Pky, Pkz)).
6: if GridKey ∈ GridMap then
7: GridMap← Pi
8: else
9: GridMap← new GridKey

10: GridMap.GridKey ← Pi
11: end if
12: end for
{Obtaining the neighborhood lists.}

13: for all pi ∈ GridMap do
14: pi.list← φ
15: NeighborGrids← (the 27 neighbor cells of pi)
16: NeighborList← φ
17: if NeighborGridsi.size() > 1 then
18: for all pj ∈ NeighborGridsj do
19: if EucDist (pi, pj) ≤ d then
20: pi.list← pj (pi, pj are neighbors)
21: end if
22: end for
23: end if
24: NeighborList← pi.list
25: end for
{Pruning neighborhood list if at least one of its items violates the maximal clique defi-
nition.}

26: TempList← φ
27: MCliqueList← φ
28: for all Recordi ∈ NeighborList do
29: RecordItems← Recordi
30: for all pi ∈ RecordItems do
31: for all pj ∈ RecordItems do
32: if EucDist(pi, pj) ≤ d then
33: Templist← pj (pi, pj are neighbors)
34: end if
35: end for
36: end for
37: MCliqueList← Templist
38: end for

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 73

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8

A3 D1

A2 B3

B2 C2

D2

A1

B1 C1

(a) Spatial objects in a plane.

0

2

4

6

8

10

0 2 4 6 8

A3 D1

A2 B3

B2 C2

D2

A1

B1
C1

C1 Grid

(b) Grid structure.

D2

A2B3C2B3

B2B2B3C2B1C1C1

C2D1C2A2A2B2A3A1A1B1

B3A3D2C2B2A2D1C1B1A1

10987654321

(c) Neighborhood lists.

B3

C2C1

C2B2A3B1

D2A2D1A1

8541

(d) Maximal clique patterns.

Figure 3.4: An example to illustrate the process of extracting maximal clique patterns from
2 dimensions dataset.

up retrieving the stored data. The number of cells depends on the maximum value

of X and Y coordinates in the dataset. Having coordinates for each cell, helps

in placing the points in their corresponding cells. The total number of cells is

calculated using Equation 3.3.

Number of Cells = dmax(X)

d
e × dmax(Y)

d
e, (3.3)

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 74

where max(X) and max(Y) are the maximum of X and Y coordinates, respec-

tively. The function d·e is the ceiling of any value.

In our example data, the maximum values of X and Y coordinates are 7 and 9,

respectively. The predefined distance d = 2. Using Equation 3.3, the number

of cells will be 20. After structuring the grid space, the algorithm then places

the points into their corresponding cells (Lines 6 to 11). This is performed by

considering the X and Y coordinates of the corresponding cell as the bXc2 and

bY c coordinates of the placed point (Figure 3.4(b)). For example, if we consider

object {A1}, its X and Y coordinates are 2.5 and 4.5, respectively; to place it in

the grid space, its corresponding cell will be the one which has GridKey = (2, 4).

2. GridClique finds (Lines 13-25) each object’s neighbors and adds them to a list – this

list is the neighborhood list. The algorithm checks the neighborhood list members

with respect to the definition of maximal clique which is all members (objects) are

co-located with each other. In other words, the distance between every two objects

is ≤ d. For each object, the algorithm considers 9 cells3 (NeighborGrids in Line

15) to check their members if they are co-located with the object being checked.

Considering the example in Figure 3.4, a list for each object is created. Our concern

is to find only co-location patterns that have at least two objects (i.e., cardinality

≥ 2), because one object does not give co-location information. Therefore, there is

no need to count objects that do not have connections (i.e., a relationship) with at

least one other object. However, in our example all objects share relationships with

others. For example, object {A1} has a relationship with objects {B1,C1}. It can

be seen that these objects share the same neighborhood (co-located) – a neighbor-

hood list will be generated for object {A1}. Figure 3.4(c) shows the neighborhood

2b·c is a function that gives the floor of a value.
3In two-dimensional space the number of neighbor cells is 9, however, in three-dimensional space it is

27.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 75

C

D

A, B
A, C
A, B, C

B, C
B, D
B, C, D

A, B, C

B, C, D

Undirected Graph Neighborhood
List

Maximal
Cliques

A

B A, B, C, -D

-A, B, C, D

Maximal
Complex
Cliques

Figure 3.5: Undirected graph contains two maximal cliques.

list for each object.

3. It prunes any neighborhood list that contains at least one object that violates the

maximal clique definition (Lines 26-38). For example, list 7 is pruned because one

of its members {A2} is not co-located with {D2}. The shaded lists (2, 3, 6, 9, and

10) in Figure 3.4(c) are pruned for the same reason. The MCliqueList (Line 27)

is a special data structure called hashset. This set does not allow repetition – this

has helped us to report only distinct maximal clique patterns.

As a result of the previous steps, a list of distinct maximal clique patterns will be re-

ported. For example, {A1, B1, C1} is a maximal clique, and so forth for lists 4, 5 and 8

(Figure 3.4(d)).

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 76

3.3.1.3 GridClique Algorithm Analysis

This section discusses the GridClique algorithm completeness, correctness, and com-

plexity.

Completeness: All points in neighborhood lists appear as set or subset in maximal clique

lists. After acquiring the entire neighbors for each point, another check among these

neighbors is conducted to assure that all points are neighbors with each other. Intuitively,

doing that results to have repeated neighborhood lists. Therefore, this ensures finding

all maximal cliques in any given graph. The repeated neighborhood lists will be pruned

using the hashset data structure.

Correctness: Every subset of a maximal clique appears in the neighborhood list. Thus,

all maximal cliques that appear in maximal clique lists will not be found as a subset in

another maximal clique, since this is the definition of maximal clique. Figure 3.5 displays

an undirected graph and the neighborhood list and the existing maximal clique patterns.

As can be seen, the pair {A,D} does not appear in the neighborhood list, because the

distance between A and D does not satisfy the co-location condition. Therefore, the pair

{A,D}will not be included in the maximal cliques list. In other words, any subset of any

maximal clique that appears in the neighborhood list will not appear as an independent

maximal clique. In this way, the correctness of the proposed algorithm is shown.

Complexity: Firstly, assume there are N points and c cells, and assume that all points

are uniformly distributed. Hence, on average there is N/c points per cell. Assume each

cell has l neighbors. Then to create the neighborhood list of one point, l(N/c) points

need to be examined to check if they are within distance d. Since the total number of

points is N , the cost is O(N2l/c). And since c >> l, an assumption, that this part of the

algorithm is sub-quadratic, can be stated.

Secondly, the pruning stage for the neighborhood lists. Again assume that on average the

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 77

Relationship Notation Description Example
Non-Complex A→ B Presence of B in the neigh-

borhood of A.
Sa type spiral galaxies→ Sb
type spiral galaxies.

Positive A→ A+ Presence of many instances
of the same feature in a
given neighborhood

Elliptic galaxies tend to
cluster more strongly. E→
E+.

Negative A→ −B Absence of B in the neigh-
borhood of A.

Elliptic galaxies tend to ex-
clude spiral galaxies. E→-S.

Complex A+→ −C,B Combination of two or more
of the above relationships.

Clusters of elliptic galaxies
tend to exclude other types
of galaxies. E+→-S.

Table 3.4: Spatial relationships with real-life examples from the astronomy domain.

length of each neighborhood list is k. Then for each neighborhood list, k points have to

be checked against the co-location condition – the cost is O(k2). The total cost for this

step is O(Nk2) .

Ultimately, the total cost is the cost of putting the points in cell (O (N)), the cost of

creating the neighborhood lists O(N2l/c), and the cost of pruning the lists O(Nk2).

Therefore, the complexity of the algorithm is O(N(Nl/c+ k2 + 1)).

3.3.2 Extracting Complex Relationships

A relationship is complex if it consists of complex types as defined in Section 3.1.

Extracting a complex relationship R from a maximal clique CM is straightforward – we

simply use the following rules for every type t:

1. If CM contains an object with type t, R = R ∪ t (non-complex relationship).

2. If CM contains more than one object of type t, R = R∪ t+ (positive relationship).

3. If CM does not contain an object of type t, R = R ∪ −t (negative relationship).

IfR includes a positive typeA+, it will always include the basic typeA. This is necessary

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 78

so that maximal cliques that contain A+ will be counted as containing A when we mine

for interesting patterns.

As mentioned earlier, the negative type makes sense only if we use maximal cliques. The

last three columns of Table 3.2 show the result of applying Rule 1, Rule 1 and Rule 2,

and all three rules, respectively. Table 3.4 provides four relationship types supported with

real-life examples from the astronomy domain.

3.3.3 Mining Interesting Complex Relationships

In itemset mining, the dataset consists of a set of transactions T , where each transaction

t ∈ T is a subset of a set of items I; that is, t ⊆ I . In our work, the set of complex

maximal cliques (relationships) becomes the set of transactions T . The items are the

object types – including the complex types such as A+ and −A. For example, if the

object types are {A,B,C}, and each of these types is present and absent in at least one

maximal clique, then I = {A,A+,−A,B,B+,−B}. An interesting itemset mining

algorithm mines T for interesting itemsets. The support of an itemset I ′ ⊆ I is the

number of transactions containing the itemset: support(I ′) = |{t ∈ T : I ′ ⊆ t}|.

So called frequent itemset mining uses the support as the measure of interestingness.

For reasons described in Section 3.1 we use minPI (see Equation 3.1) which, under the

mapping described above, is equivalent to Equation 3.4.

minPI(I ′) = min
i∈I′
{support(I ′)/support({i})} (3.4)

Since minPI is anti-monotonic, we can easily prune the search space for interesting

patterns.

GLIMIT (Verhein and Chawla, 2006) is a very fast and efficient itemset mining algorithm

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 79

that has been shown to outperform Apriori (Agrawal and Srikant, 1994) and FP-Growth

(Han et al., 2000). GLIMIT works by first transposing the dataset, so that each row,

known as an itemvector, corresponds to an item. GLIMIT then makes one pass over the

result (the itemvectors). It is an item enumeration algorithm, which means that it searches

through the space of possible itemsets. It does this in a bottom up (the size of the itemsets

increases along a branch of the search) fashion, so is suitable for measures that possess a

form of anti-monotonic property (Verhein and Chawla, 2006). The search progresses in

a depth first fashion, which enables very little space to be used – specifically, space linear

in the size of the dataset (Verhein and Chawla, 2006). GLIMIT uses a framework defined

by the following functions and operator (Verhein and Chawla, 2006):

• g(·) performs a transformation on the transposed dataset.

• ◦ is an operator that combined two itemvectors together to create a new itemvector

corresponding to the union of the two itemsets.

• mI′ = f(·) is a measure on an itemset I ′ ⊆ I (evaluated over the corresponding

itemvector) that depends only on that itemset.

• MI′ = F (·) is a measure on an itemset I ′ ⊆ I that uses f(·) and may depend on

said itemset as well as any of its subsets.

The minPI measure can be incorporated into GLIMIT as follows (let I ′ = {1, 2, ..., q}

for simplicity): g(·) is the identity function (there is no transformation on the dataset),

◦ = ∩ and f(·) = | · | (the set size). This means that mI′ = support(I ′). Finally,

MI′ = F (mI′ ,m1, ...,mq) = mini∈I′{mI′/mi}.

We use GLIMIT with the above instantiations of its framework to mine interesting co-

locations (Figure 3.3). For comparison, we will use an Apriori (Agrawal and Srikant,

1994) implementation.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 80

The Apriori (Agrawal and Srikant, 1994) and Apriori-like algorithms are bottom up item

enumeration type itemset mining algorithms. Apriori works in a breadth first fashion,

making one pass over the dataset for each level expanded. This is in contrast to GLIMIT,

which makes only one pass over the entire dataset. In Apriori, a candidate generation

step generates candidate itemsets (itemsets that may be interesting) for the next level,

followed by a dataset pass (support counting) where each candidate itemset is either

confirmed as interesting, or discarded. The support counting step is computationally

intensive as subsets of the transactions need to be generated. GLIMIT operates on a

completely different principle (Verhein and Chawla, 2006).

3.4 Experiments and Results

3.4.1 Experimental Setup

All experiments were carried out on “Windows XP Pro” operated laptop with a 2.0GHz

Pentium 4M processor and 2 GB main memory. The data structures and algorithms were

implemented in Java.

We used a real life three-dimensional astronomy dataset from the Sloan Sky Digital Sur-

vey (SDSS)4. We extracted all galaxies from this dataset, giving a total of 365, 425 ob-

jects. There were 12 types of galaxies. The distance threshold used for generating the

maximal cliques was 1 Mpc. Comprehensive details about the data preparation process

are given in Appendix A.

A total of 121, 506 maximal cliques (transactions) were generated in 39.6 seconds. This

is quite a large dataset. We processed these in a number of ways as described in Sec-

tion 3.3.2:
4http://cas.sdss.org/dr6/en/tools/search/sql.asp

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 81

Maximal Average Size
Clique Set Items (Transaction Width)
Non-Complex 12 1.87
Complex w/o Negative 21 2.69
Complex w Negative 33 13.69

Table 3.5: Description of the resulting sets of maximal cliques.

• Non-Complex: We removed duplicate items (object types) in the maximal cliques.

For example, a set of object types {A,A,B} becomes {A,B}.

• Complex w/o Negative: We included positive types: if an object type A occurred

more than once in a maximal clique, we replaced it with A and A+. For example,

a set of object types {A,A,B} becomes {A,A+, B}.

• Complex w Negative: The same as Complex w/o Negative, but we included neg-

ative types. That is, we added all object types that were not present in the maximal

clique as negative items. For example, a set of object types {A,A,B} becomes

{A,A+, B,−C}.

Table 3.5 describes the resulting sets of maximal cliques we used for mining interesting

patterns.

The “Complex w Negative” dataset is very large. It has 121, 506 transactions (like the

others), but each transaction has an average size of 13.7.

3.4.2 Results

This section reports the results obtained from the use of the GridClique algorithm and

the process of mining co-location rules.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 82

−5 0 5 10 15 20 25
0

50

100

150

200

250

300

No. of Late Galaxies in a Clique

F
re

q
u

en
cy

Mean =7.426
Std.Dev =3.8726

(a) MainLate

−5 0 5 10 15 20 25
0

50

100

150

200

250

300

No. of Early Galaxies in a Clique

F
re

q
u

en
cy

Mean =11.61
Std.Dev = 3.4269

(b) MainEarly

Figure 3.6: The existence of galaxies in the universe.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 83

3.4.2.1 Galaxy Types in Large Maximal Cliques

In this experiment we applied the GridClique algorithm on the “Main” galaxies5 extracted

from SDSS data to generate maximal cliques with neighborhood distance as 4 Mpc. We

selected the cliques with the largest cardinality (Card = 22). Figures 3.6(a) and 3.6(a)

show the distribution of “Late” and “Early” type galaxies in the reported cliques, re-

spectively. These results show that large cliques consist of more “Early” type galaxies

(Elliptic) than “Late” type galaxies (Spiral). This conforms with the fact which says “El-

liptic galaxies tend to cluster more strongly than any other galaxy objects” (Gray et al.,

2002).

3.4.2.2 Cliques Cardinalities

Figure 3.7 shows the clique cardinalities in the “Main” galaxies. It shows that cliques

with cardinality between 2 and 5 (small cliques) are more frequent than large cliques. In

other words, in the universe there are no large clusters of galaxies. We mean by large

clusters, large number of galaxy objects that are in the same neighborhood of each other.

Although in this experiment we used very large threshold (4 Mpc), but we obtained a

large number of small cliques.

3.4.2.3 GridClique Performance

Since the previously proposed algorithms, which enumerate maximal clique patterns,

are not specifically designed to mine the SDSS, a Naı̈ve algorithm was implemented on

the basis of brute force approach to obtain bench marks – this allows us to check the

completeness of our algorithm. In this section we show the effect of two factors on the

GridClique algorithm, namely, distance and number of spatial objects. This section gives

5The process of categorizing the galaxies objects is provided in Appendix A.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 84

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Clique Cardinality

Fr
eq

ue
nc

y

Main Galaxy Cliques

Figure 3.7: Cliques cardinalities for Main galaxies using threshold = 4 Mpc.

a comparison between the GridClique and Naı̈ve algorithms as well.

Figure 3.8 shows the runtime of the GridClique algorithm with various numbers of ob-

jects (galaxies) and distance values. It illustrates that the runtime increases slightly as the

number of objects and distance increase. The distance and the number of objects were

changed in increments of 1 Mpc and 50K, respectively.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 85

0

50

100

150

200

250

300

350

400

50000 100000 150000 200000 250000 300000 350000
Number of Objects

Ru
nt

im
e

(S
ec

on
ds

)
d=1 d=2 d=3 d=4 d=5

Figure 3.8: The runtime of GridClique using different distances and number of objects.
The distance and the number of objects were changed in increments of 1 Mpc and 50K,
respectively.

To explain further, when the distance increases the grid size increases. By increasing

number of objects at the same time, it allows more objects to appear in the same cells

or in the neighbor cells of the grid. In other words, increasing the number of objects

increases the cell density. Hence, the two factors (distance and number of objects) affect

the runtime of the GridClique algorithm.

In Figure 3.9 we show the performance of the GridClique algorithm using large distances.

We changed the distance and the number of objects in increments of 5 Mpc and 5K,

respectively. This experiment shows that although the distances is large, the GridClique

algorithm run time trends are similar to those when the distance is small, because the

sparse nature of the astronomy data.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 86

0

20

40

60

80

100

120

5000
10000

15000
20000

25000
30000

35000
40000

45000
50000

55000
60000

Number of objects

Ru
nt

im
e

(S
ec

on
ds

)
D=5 D=10 D=15 D=20 D=25 D=30

Figure 3.9: The runtime of GridClique using different large distances and small number of
objects. The distance and the number of objects were changed in increments of 5 Mpc and
5K, respectively.

Figure 3.10 shows the effects of two factors (number of objects and the distance) on

the Naı̈ve algorithm runtime. It is clear that the algorithm is not affected when using

different distances. However, its runtime increases exponentially as the number of objects

increases.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 87

0

2000

4000

6000

8000

10000

12000

14000

16000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Number of objects (Thousands)

Ru
nt

im
e

(S
ec

on
ds

)
D=1 D=2 D=3 D=4 D=5

Figure 3.10: The runtime of the Naı̈ve algorithm.

We have carried out an experiment to compare the GridClique performance with the

Naı̈ve. Figure 3.11 shows that GridClique outperforms the Naı̈ve algorithm with a dif-

ference of several order of magnitudes! We have used a distance of 1Mpc; the number

of objects was changed in increments of one thousand objects. The run time is given in

logarithmic scale.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 88

The used distance =1 Mpc

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of objects (Thousands)

R
un

tim
e(

S
ec

on
ds

) l
og

 s
ca

le
Naïve GridClique

Figure 3.11: Runtime comparison between the GridClique and the Naı̈ve algorithms. The
used distance was 1 Mpc.

3.4.2.4 Association Rules Mining Performance

Since most co-location mining algorithms are based on the Apriori algorithm, we use

this as the comparison. That is, we evaluate both GLIMIT and Apriori for the interesting

pattern mining task of Figure 3.3.

Figure 3.12 shows the number of interesting patterns found on the different sets of

cliques. The experiment was carried out for the three type of relationships (Non-Complex

relationship, Complex w/o Negative relationship, and Complex w Negative relationship).

The MinPI threshold was changed in increments of 0.05.

Figures 3.13, 3.14 and 3.15 show the runtime of the pattern mining. It is clear that

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 89

1

10

100

1000

10000

100000

1000000

10000000

0 0.2 0.4 0.6 0.8 1
minPI Threshold

Nu
m

be
r o

f I
nt

er
es

tin
g

Pa
tte

rn
s

Fo
un

d
(lo

g
sc

al
e)

Non-Complex Relationships

Complex w/o Negative Relationships

Complex w Negative Relationships

Figure 3.12: Number of interesting patterns found.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1
minPI Threshold

Ru
nti

me
 (S

ec
on

ds
)

Apriori
GLIMIT

Figure 3.13: Runtime on non-complex maximal cliques. The MinPI threshold was changed
in increments of 0.05.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 90

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1
minPI Threshold

Ru
nt

im
e (

Se
co

nd
s)

Apriori
GLIMIT

Figure 3.14: Runtime on complex maximal cliques without negative patterns. The MinPI
threshold was changed in increments of 0.05.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 0.2 0.4 0.6 0.8 1
minPI Threshold

Ru
nti

me
 (S

ec
on

ds
)

Apriori
GLIMIT

Figure 3.15: Runtime on complex maximal cliques with negative patterns. The MinPI thresh-
old was changed in increments of 0.05. We set an upper limit of 2,000 seconds (33 minutes).

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 91

0

10

20

30

40

50

60

70

80

0 20000 40000 60000 80000
Interesting Patterns Found

Ru
nti

me
 (S

ec
on

ds
)

Figure 3.16: The runtime of GLIMIT on complex maximal cliques with negative patterns,
versus the number of interesting patterns found. The MinPI threshold was changed in incre-
ments of 0.05.

GLIMIT easily outperforms the Apriori technique. In particular, we draw the readers at-

tention to the difference between the run-times when negative items are involved; namely,

Figure 3.15. For example, with a minPI threshold of 0.85, Apriori takes 33 minutes

(1967 seconds), while GLIMIT takes only 2 seconds. This is a difference of almost

three orders of magnitude!

As can be seen from Table 3.5, the use of negative types increases the average transaction

width substantially. This has a large influence to the runtime of the Apriori algorithm,

due to the support counting step where all subsets (of a particular size) of a transaction

must be generated. This is not true of GLIMIT, which runs in roughly linear time in the

number of interesting patterns found, as can be seen in Figure 3.16. The “non-complex”

and “complex w/o negative” datasets, due to their small average transaction width, may

be considered easy. The “complex w negative” dataset is very difficult for Apriori, but

very easy for GLIMIT. Indeed, even with a minPI threshold of 0.05 it takes only 76

seconds to mine 68, 633 patterns.

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 92

Rule Number Neighborhood distance = 1 Mpc
Minimum Confidence = 0.75

1 LrgEarly→ LrgLate
2 LrgLate→ LrgEarly
3 LrgEarly+→−LrgLate
4 LrgLate+→−LrgEarly
5 MainEarly+→−MainLate
6 MainLate+→−MainEarly

Table 3.6: Sample of association rules produced by our MCCR technique, where the an-
tecedents and consequents of these rules are galaxy-type objects.

3.4.2.5 Interesting Rules from SDSS

By applying the itemset mining algorithm on the maximal cliques which are generated by

GridClique, very interesting rules have been discovered. Table 3.6 lists sample of these

interesting rules. Rules 1 and 2 show that while single instances of “Early” and “Late”

galaxies are found in the neighborhood of each other, their clusters are found in isolation.

Rules 3 and 5 answer the question mentioned in Figure 3.2. That means, the existence of

a cluster of elliptical galaxies “Early” repels the existence of spiral “Late” ones.

3.5 Summary and Conclusions

In this chapter, we demonstrated the problem of mining complex co-location rules (MC-

CRs). That is, a systematic approach to mine complex spatial co-location pattern in Sloan

Digital Sky Survey (SDSS) data. We defined the term maximal clique in the context of

mining complex spatial co-location. Maximal clique is fundamental to our work.

The MCCRs approach consists of two mining steps: First, it enumerates efficiently maxi-

mal clique patterns. In order to achieve the first mining step, we have proposed a heuristic

(GridClique) based on a divide-and-conquer strategy that considers all spatial objects as

points in a plane. Then it divides the plane into grid structure which helps in reducing the

CHAPTER 3. MINING COMPLEX CO-LOCATION RULES (MCCRS) 93

search space. The reported maximal cliques are considered to be the transactional data.

MCCRs then uses the transactional data for mining interesting co-location rules using an

association rule mining technique.

Most work in this area has used an Apriori style algorithm to do the association rule

mining step. We showed that GLIMIT is a much better choice, especially when complex

patterns are involved. We argued that complex patterns only make sense in the context of

maximal cliques. Using maximal cliques allowed us to easily split the clique generation

from the interesting pattern mining tasks and avoid redundant cliques.

The achieved results conformed to real facts in the astronomy domain and this has weighed

up our proposed method favorably.

Chapter 4

Mining Complex Spatio-Temporal

Patterns

This chapter proposes a method to tackle the curse of dimensionality in large spatio-

temporal datasets. It is organized as follows: We provide an introduction in Sec-

tion 4.1. Then in Section 4.2, we give an overview of the related research on movement

patterns. The approximation algorithm is presented and analyzed in Section 4.3. In

Section 4.4, our proposed approach of combining random projections with approxima-

tion algorithms to efficiently process long-duration ST queries will be outlined. In Sec-

tion 4.5, the design of the experiments and the results are discussed. Section 4.6 gives a

comparison between random projections (RP) and principle components analysis (PCA).

Table 4.1 lists the notations used in this chapter1.

1This chapter is based on the following publications:

• Ghazi Al-Naymat, Sanjay Chawla and Joachim Gudmundsson. Random Projection for Mining
Long Duration Flock Pattern in Spatio-Temporal Datasets. In communication with the GeoIn-
formatica, 2008 (Al-Naymat et al., 2008a).

• Ghazi Al-Naymat, Sanjay Chawla and Joachim Gudmundsson. Dimensionality Reduction for
Long Duration and Complex Spatio-Temporal Queries. The 2007 ACM Symposium on Applied
Computing (ACM SAC). Seoul, Korea. March 11–15, 2007. Pages (393–397) (Al-Naymat et al.,
2007).

94

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 95

Symbol Description
GPS Global Positioning System
ST Spatio-Temporal
R Real numbers
N Natural numbers
PCA Principle Components Analysis
RP Random Projections
REMO RElative MOtion
d Number of dimensions
n Number of data points, such as rows, objects
r Radius
τ Number of time-stamps
κ Number of desired dimensions
R Random matrix
rij An entry of a matrix

Table 4.1: Description of the notations used.

4.1 Introduction

The most common type of spatio-temporal (ST) data consists of movement traces of point

objects. The widespread availability of GPS enabled mobile devices and location-aware

sensors have led to an explosion of generation and availability of this type of ST data.

GPS devices promote the capture of detailed movement trajectories of people, animals,

vehicles and other moving objects that open new options for a better understanding of the

processes involved. This has lead to the analysis of moving objects in a multitude of ap-

plication areas, such as socio-economic geography (Frank, 2001), transport analysis (Qu

et al., 1998), animal behavior (Dumont et al., 2005) and in defense and surveillance ar-

eas (Ng, 2001).

The number of projects tracking animals has in recent years increased rapidly (wtp,

2008). An example of a project which is continuously generating ST data is related

to the tracking of caribou in Northern Canada. Since 1993 the movement of caribou is

being tracked through the use of GPS collars with the underlying expectation that the

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 96

data collected will help scientist understand the migration patterns of caribou and help

them locate their breeding and calving locations (pch, 2007). While the number of cari-

bou tagged at a given time is small, the length of the temporal data associated with each

caribou is long. As we will see one of the major challenges in ST query processing and

patten discovery is to efficiently handle “long-duration” ST data. Very interesting ST-

queries can be formulated on this particular dataset. For example, how are herds formed

and does herd membership change over time? Are there specific regions in Northern

Canada where caribou herds tend to rendezvous?

Another example is the tracking of vehicles. The collection and use of GPS tracker data

offers a solution for producing detailed and accurate journey time and journey speed

outputs. As the number of vehicles that contains GPS devices grows, the collected data

is a prosperous source of traffic information that facilitates transport planning (Storey

and Holtom, 2003). The recent Swedish Intelligent Speed Adaptation (ISA) study (Wolf

et al., 2004) included the installation of GPS devices in hundreds of cars in three Swedish

medium size cities; Borlänge, Lund, and Lidköping, where the vehicles were traced for

up to 2 years. This dataset contains a wealth of travel behavior information. To analyze

this data requires an automated process that can collect travel behavior details from the

collected GPS trajectories.

A more sombre example project involving ST data is related to the study of “pandemic

preparedness”. How does a contagious disease get transmitted in a large city given the

movement of people across the city? A recent workshop held on spatial data mining (pan,

2006) exclusively focused on how to use spatial and ST data mining techniques to help

answer such questions. The ST-queries that we will discuss can readily be applied to

better understand this scenario.

The aim of this research is to develop general tools to compute simple movement patterns

efficiently, hence, our focus is to find a simple, and general, but useful definition of a

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 97

movement pattern while keeping in mind the possibility of computing it. This general

approach has already found applications in the area of defence and surveillance where

analysts use these tools to obtain patterns that might be of interest (i.e., as a preprocessing

step to detect movements that should be analyzed further).

In practice the definition of flock should be customized to the application domain. For

example, a caribou flock should certainly include both geographical features, such as

inter visibility between caribou, and expert knowledge about the behavior of caribou.

To abstract the problem we assume that we are given a set P of n moving point objects

p1, . . . , pn whose locations are known at τ consecutive time steps t1, . . . , tτ . By connect-

ing every pair of consecutive locations by a straight-line segment the trajectory of each

object is a polygonal line that can self-intersect. For brevity, we will call moving point

objects entities from now on.

As is standard in the literature in this area (Benkert et al., 2006; Gudmundsson et al.,

2008; Laube and Imfeld, 2002; Mamoulis et al., 2004) we will assume that the velocity

of an entity along a line segment of the trajectory is constant. At first glance this looks

as a major constraint since there are many more reasonable models (Tremblay et al.,

2006), e.g. Bézier, hermite and cubic splines. However, the main proof only requires the

following property: if two entities are close to each other at two consecutive time steps

then they are assumed to be close to each other in between the two time steps. We believe

that this is a reasonable assumption.

4.1.1 Main Contribution and Scope

The most well-known algorithms for computing fixed subset flocks either have a quadratic

dependency on n (Gudmundsson and van Kreveld, 2006) (number of entities) or an ex-

ponential dependency on the duration of the flock (Benkert et al., 2006). This became

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 98

the motivation of this work, and our main contributions are:

• We can use random projection to manage the exponential dependency while prov-

ably retaining a high-quality solution.

• We will present experimental results which will confirm that using random projec-

tion, as a preprocessing step, can effectively help overcome the “curse of dimen-

sionality” for ST pattern processing.

• We specifically focus on using random projection as a dimensionality reduction

technique to retrieve long-duration flock patterns.

• We discuss the reasons behind choosing random projection as the technique to be

used in this type of problems.

4.2 Related Work

The problem of detecting movement patterns in spatio-temporal data has recently re-

ceived considerable attention from several research communities, e.g., geographic in-

formation science (Gudmundsson et al., 2008; Shirabe, 2006), data mining (du Mouza

and Rigaux, 2005; Jeung et al., 2008; Kollios et al., 2001; Koubarakis et al., 2003; Ver-

hein and Chawla, 2008), data bases (Asakura and Hato, 2004; Güting et al., 2003, 2000;

Güting and Schneider, 2005; Park et al., 2003; Wolfson and Mena, 2004; Wolfson et al.,

1998), and algorithms (Buchin et al., 2008a,b; Gudmundsson et al., 2007). One of the

first movement pattern studied (Jensen et al., 2007; Jeung et al., 2007, 2008; Kalnis et al.,

2005; Laube and Imfeld, 2002) was moving clusters. It is not surprising that this was one

of the first patterns to be studied since it is the ST equivalent of a point cluster in a spatial

setting. A moving cluster in a time interval T consists of at least m entities such that for

every point in time within T there is a cluster of m entities. The set of entities might be

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 99

much larger than m, thus entities may join and leave a cluster during the cluster’s life-

time. A moving cluster is also called a variable subset flock. Closely related to moving

clusters is the flock pattern, or fixed subset flock (Gudmundsson and van Kreveld, 2006).

This problem has been studied in several papers (Benkert et al., 2006; Gudmundsson and

van Kreveld, 2006; Gudmundsson et al., 2007; Jeung et al., 2007; Laube and Imfeld,

2002; Laube et al., 2004). Even though different papers use slightly different definitions

the main idea is that a flock consists of a fixed set of entities moving together as a cluster

during the duration of the flock pattern.

More recently, further movement patterns have been studied. Jeung et al. (2008) modi-

fied the definition of a flock to what they call a convoy, where a group of entities forms

a convoy if they are density-connected. Intuitively, two entities in a group are density-

connected if a sequence of objects exists that connects the two objects and the distance be-

tween consecutive objects does not exceed a given constant. Gudmundsson et al. (2008)

developed approaches to detect leadership patterns. They proposed a definition of a pat-

tern to be the geometrical relation of one individual moving in front of its followers such

that all the followers can ‘see’ the leader. Similar results were recently obtained for

“single file” patterns (Buchin et al., 2008a).

In this chapter we will focus our attention on the fixed subset flock pattern. Laube and

Imfeld (2002) proposed the REMO framework (RElative MOtion) which defines similar

behavior within groups of entities. They define a collection of ST patterns on the ba-

sis of similar direction of motion or change of direction. Laube et al. (2004) extended

the framework by not only including direction of motion, but the location itself. They

defined several ST patterns, including flock (co-ordinately moving close together), lead-

ership (spatially leading a move of others), convergence (converging towards a spot), and

encounter (gathering at a spot), and gave algorithms to compute them efficiently.

However, these algorithms only consider each time step separately, that is, given m ∈ N

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 100

e1

e2

e3

e4

e1

e2

e3

e4

1 1

(a) (b)

Figure 4.1: Illustrating a flock pattern among four trajectories. Ifm = 3 and the radius r = 1
then the longest duration flock lasts for six time steps. Entities e1, e2 and e4 form a flock since
they move together within a disk of radius r, while e3 is excluded in this pattern. Figure(a)
illustrates a flock using Definition 4.1 while Figure (b) illustrates a flock using Definition 4.2.

and r > 0 a flock is defined by at least m entities within a circular region of radius r

and moving in the same direction at a given point in time. Benkert et al. (2006) argued

that this is not enough for many practical applications, e.g., a group of animals may need

to stay together for days or even weeks before it is defined as a flock. They proposed

the following definition of a flock that takes the minimum duration (k) into account (Fig-

ure 4.1); m, k and r are given as parameters, and are hence fixed values.

Definition 4.1 (m, k, r)-flockA - Given a set of n trajectories where each trajectory con-

sists of τ line segments, a flock in a time interval I = [ti, tj], where j− i+1 ≥ k, consists

of at least m entities such that for every point in time within I there is a disk of radius r

that contains all the m entities, and m, k ∈ N and r > 0 are given constants.

Benkert et al. (2006) proved that there is an alternative, and algorithmically simpler,

definition of a flock that is equivalent provided that the entity moves with a constant

velocity along the straight line between two consecutive points. As discussed in the

introduction their proof does not require this property, it only requires that if two entities

are close to each other at two consecutive time steps then they are assumed to be close to

each other in between the two time steps. We believe that this is a reasonable assumption.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 101

If this is true then the following definition is equivalent to the above (Figure 4.1b).

Definition 4.2 (m, k, r)-flockB - Given a set of n trajectories where each trajectory con-

sists of τ line segments a flock in a time interval [ti, tj], where j − i + 1 ≥ k consists of

at least m entities such that for every discrete time step t`, i ≤ ` ≤ j, there is a disk of

radius r that contains all the m entities.

The latter definition only discrete time points are considered, while the former definition

considers time in between two consecutive time steps, see Figure 4.1.

Definition 4.3 A flock query (m, k, r) returns all (m, k, r)-flockB.

In the remainder of this chapter we refer to Definition 4.2 whenever we discuss flocks.

Using this model, Gudmundsson and van Kreveld (2006) showed that computing the

longest duration flock and the largest subset flock is NP-hard to approximate within a

factor of τ 1−ε and n1−ε, respectively, for any ε > 0.

Benkert et al. (2006) described an efficient approximation algorithms for reporting and

detecting flocks, where they let the size of the region deviate slightly from what is speci-

fied. Approximating the size of the circular region within a factor of ∆ > 1 means that a

disk with radius between r and ∆r that contains at least m objects may or may not be re-

ported as a flock while a region with a radius of at most r that contains at least m entities

will always be reported. Their main approach is a (2 + ε)-approximation with running

time T (n) = O(τnk2(log n + 1/ε2k−1)). Even though the dependency on the number

of entities is small the dependency on the duration of the flock pattern is exponential.

Thus, the main remaining open problem in (Benkert et al., 2006) is to develop a robust

algorithm with a smaller dependency on k, which is exactly the focus of this chapter.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 102

4.3 Approximating Flock Patterns

The nature of a flock is that they involve a “sufficiently large” group of entities passing

through a “small” area. This is formalized by the parameters m and r in the definition

that represent the number of entities and radius of the region, respectively. An exact

value of m and r has no special significance - 20 caribou meeting in a circle of radius

50 is as interesting as 19 caribou meeting in a circle of radius 51. Therefore the use

of approximation algorithms is ideally suited for these scenarios (Gudmundsson et al.,

2007).

Our approach can be seen as an extension, or modification, of the approach presented

by Benkert et al. (2006). We will therefore briefly describe their approach in this section.

4.3.1 Previous Approach

The input is a set P of n trajectories, where a trajectory pγ is generated by a moving

entity eγ , 1 ≤ γ ≤ n. Each trajectory pγ is a sequence of τ coordinates in the plane

(xγ1 , y
γ
1), (xγ2 , y

γ
2), . . . , (xγτ , y

γ
τ), where (xγj , y

γ
j) is the position of entity eγ at time tj .

The basic idea builds on the fact that a polygonal line with k vertices in the plane can be

modeled as a point in 2k dimensions. The trajectory of an entity p in the time interval

[ti, tj] is described by the polygonal line p(i, j) = 〈(xi, yi), (xi+1, yi+1), . . . , (xj, yj)〉,

which corresponds to a point p′(i, j) = (xi, yi, xi+1, yi+1, . . . , xj, yj) in 2(j − i + 1)-

dimensional space.

The first step when checking whether there is a flock in the time interval [ti, ti+k−1] is

to map each trajectory into a point in R2k. The second step is to characterize a flock in

high-dimensional space. It turns out that a flock can be expressed in terms of a high-

dimensional pipe.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 103

Definition 4.4 ((Benkert et al., 2006))

An (x, y, i, r)-pipe in R2k is the region:
{

(x1, . . . , x2k) ∈ R2k | (xi−x)2+(xi+1−y)2 ≤

r2
}

.

An (x, y, i, r)-pipe is an unbounded region in R2k and contains all the points that are

only restricted in two of the 2k dimensions (namely in dimensions i and i+ 1) and when

projected on those two dimensions lie in a circle of radius r around the point (x, y).

Equivalence 4.1 gives the key characterization of flocks.

Equivalence 4.1 (Equivalence 1 in (Benkert et al., 2006))

Let F = {p1, . . . , pm} be a set of trajectories and let I = [t1, tk] be a time interval. Let

{p′1, . . . , p′m} be the mappings of F to R2k w.r.t. I . It holds that:

F is a (m, k, r)-flock ⇐⇒

∃x1, y1, . . . , xk, yk : ∀p ∈ F : p′ ∈
k⋂
i=1

(xi, yi, 2i− 1, r)-pipe.

Equivalence 4.1 just restates the definition of a flock for trajectories as a definition using

the corresponding points in 2k dimensions. It simply says that if a set of entities form a

flock in the time interval I = [t1, tk] then the projection of the points corresponding to the

trajectories of these entities in the plane spanned by the xi-axis and yi-axis, 0 ≤ i ≤ k,

will lie in a disk of radius r for every two consecutive dimensions.

Equivalence 4.1 has been used by Benkert et al. (2006) to design a ∆-approximation al-

gorithm to find flocks (∆ > 1) by performing a set of n range counting queries (Eppstein

et al., 2005) in the transformed space.

Definition 4.5 ((Benkert et al., 2006))

A ∆-approximation algorithm will report every (m, k, r)-flock, it may or may not report

an (m, k,∆r)-flock and it will not report a (m, k, r′)-flock where r′ > ∆r.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 104

For each time interval I = [ti, ti+k−1], where 1 ≤ i ≤ τ − k + 1, do the following

computations. For each trajectory p let p′ denote the mapping of p to R2k with respect to

I . For each point p′ perform a range counting query where the query range Q(p′) is the

intersection of the k pipes (xi, yi, 2i− 1, 2r) and (xi, yi) is the position of entity p at time

step ti. Every counting query containing at least m entities corresponds to an (m, k, 2r)-

flock according to (Benkert et al., 2006), where the same flock may be reported several

times.

Since the theoretical bounds for answering range counting queries in high-dimensions

are close to linear Benkert et al. (2006) instead used (1 + δ)-approximate range counting

queries, to obtain the following result.

Fact 4.1 (Lemma 7 in (Benkert et al., 2006))

The algorithm is a (2+δ)-approximation algorithm and requiresO(kn(2k log n+k2/δ2k−1))

time and O(τn) space, for any δ > 0.

In (Benkert et al., 2006) the skip-quadtree by Eppstein et al. (2005) was used to achieve

the theoretical bounds. However, in practice it turns out that a standard quadtree performs

slightly better. Let S = p1, p2, . . . , pn be a set of n points in the plane contained in a

square C of length l. A quadtree QT for S is recursively constructed as follows: The

root of QT corresponds to the square C. The root has four children corresponding to

the four squares of C of length 1
2
. The leaves of QT are the nodes whose corresponding

square contains exactly one point. Using a compressed quadtree (Arya et al., 1998) for

QT reduces its size to O(n) by removing nodes not containing any points of S and

eliminating nodes having only one child. A compressed quadtree for a set of n points in

the plane can be constructed in O(n log n) time, see the book by Samet (2006) for more

details.

In (Benkert et al., 2006), it was shown that this approach is very effective for small

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 105

values of k, they performed experiments with k in the range of 4 to 16. However, since

the running time has an exponential dependency on k it is obvious that it cannot handle

long-duration flocks very well. As mentioned before this is a serious drawback since

flocks may stay together for a very long time.

4.4 Random Projections

Several techniques are available for carrying out the dimensionality reduction, e.g., PCA

(Principal Components Analysis), discrete wavelet transform, discrete cosine transform,

and random projection (RP) (Achlioptas, 2003). We used in this thesis the PCA and RP

techniques. A wide range of applications that used both techniques were discussed in

Chapter 2.

We have chosen to use random projections technique because:

1. Random Projections yield a point-wise bound on the distortion on the distance

between two points before and after projection (Theorem 4.1).

2. PCA on the other does not provide any guarantee on point-wise distortion. PCA

can be used to project an m × n matrix A into a rank κ < min(m,n) matrix

Aκ which minimizes the Frobenius norm2 ||A − C||F over all matrices of rank κ.

Since our objective is to project points into a lower dimension space in order to

efficiently use spatial data structures and preserve pair-wise distances, PCA may

not be particularly useful.

3. Random Projections are far more efficient than PCA. For Random Projections

the time complexity of mapping mn−dimensional points into κ dimensions is

O(Ndκ). On the other time complexity of PCA is O(mn3).

2It is also known as the Euclidean norm.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 106

Thus in order to handle long-duration flocks, we extend the algorithm of finding flocks

by adding a preprocessing step. The added step is intended to reduce the number of

dimensions so that we can apply the algorithm in (Benkert et al., 2006). However, a flock

is defined as a group of entities that at all times lie within a disk in the plane of radius r.

If two entities lie within the same query range that means that the distance between them

is at most 2r in every dimension. However, the distance between them in 2k-dimensions

may be roughly r ·
√

2k (Definition 4.4). This observation makes it clear that we cannot

perform a dimensional reduction and then use the same approach as above since the error

will be too large.

However, if we slightly modify the definition, the generalization can still be performed.

Definition 4.6 (m, k, r)-flockC - Given a set of n trajectories where each trajectory con-

sists of τ line segments a flock f in a time interval [ti, tj], where j − i + 1 ≥ k con-

sists of at least m entities such that for every pair of trajectories p, q ∈ f it holds that∑j
`=i |p` − q`| ≤ r ·

√
2k.

That is, instead of using a maximum distance of r in each time step we bound the sum of

the differences. Intuitively this means that two entities that are very close to each other

in all but one time step may still belong to the same flock in the new definition while this

would not be possible in the definition by Benkert et al. (2006).

Recall that in a step we consider a set of n points in R2k. Our first approach reduces the di-

mensions by using random projections by (Johnson and Lindenstrauss, 1982), (Achliop-

tas, 2003) and (Indyk and Motwani, 1998).

Theorem 4.1 (Achlioptas, 2003)

Let P be an arbitrary set of n points in Rd, represented as an n × d matrix A. Given

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 107

β, ε > 0 let

κ0 =
4 + 2β

ε2/2− ε3/3
log n.

For integer κ ≥ κ0, let R be a d × κ random matrix with R(i, j) = rij , where rij are

independent random variables from the following probability distributions:

rij =
√

3×

+1 with probability 1/6

0 .. 2/3

−1 .. 1/6.

Let E = 1√
κ
·AR and let f : Rd → Rκ map the ith row of A to the ith row of E. We have,

for all u, v ∈ P it holds that:

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2,

with probability at least 1− n−β .

Recall that all the trajectories with k vertices in the plane can be modeled as a point in 2k

dimensions. Thus after the transformation we have a set P of n points in 2k dimensions.

Next, instead of performing n range counting queries, as in (Benkert et al., 2006), we first

apply the random projection on P to obtain a set P ′ of n points in κ = 4+2β
ε2/2−ε3/3 log n

dimensions. Then, for each entity p perform a (1 + δ)-approximate range counting query

where the query range Q(p′) is the κ-dimensional ball of radius O(
√
k) and center at p′

which is the mapping of p in P ′.

4.4.1 A Theoretical Analysis

Here we briefly give a probabilistic analysis on how the dimensional reduction affects

the algorithm. We say that an algorithm is an α-probabilistic (m, k,∆r)-approximation

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 108

algorithm if all (m, k, r)-flock are reported with probability α, an (m, k,∆r)-flock may

or may not be reported, while no (m, k,∆′r)-flock will be reported with probability α.

Theorem 4.2 The modified algorithm is a (1−n1−β)-probabilistic (m, k,∆r)-approximation

algorithm with running timeO(τnk2(log n+1/δ2κ)) time, where κ = 4+2β
ε2/3−ε3/3 log n and

∆ = 2(1 + δ) · (1 + ε)2 for any constants ε, δ > 0 and β > 1.

Proof Consider the trajectories and let P = {p1, . . . , pn} be the corresponding points in

2k-dimensions, and let f(pi) be the point in P ′ corresponding to pi ∈ P .

First we show that each (m, k, r)-flockc f is reported by the algorithm with high prob-

ability. Let pf be a point in P corresponding to an arbitrary entity of f and assume

that f is a flock in the time interval I = [ti, ti+k−1]. We will prove that the approxima-

tion algorithm returns an (m, k,∆r)-flock g such that f ⊆ g with high probability and

∆ = (1 + δ) · (1 + ε)2.

According to Definition 4.6 there exists a 2k-dimensional ball with radius r ·
√

2k that

contains the points in P corresponding to the entities in f . According to Theorem 1 the

corresponding points in P ′ will lie within a κ-dimensional ball of radius (1 + ε)r ·
√

2k

with probability at least (1− n1−β), which is the probability that a flock g containing the

entities in f is reported.

For the stated bound to hold we have to prove that the probability that an (m, k,∆′r)-

flockc is reported is small for ∆′ > ∆. Let g be a flock reported by the algorithm in

the interval I . The points in P ′ corresponding to the entities in g must lie within a

κ-dimensional ball of radius (1 + δ) · ((1 + ε)r ·
√

2k) and center at a point f(p′) ∈

P ′. Recall that the algorithm performs (1 + δ)-approximate range counting queries.

Using Theorem 4.1 it then follows that the maximum distance between p′ and every

point corresponding to an entity in g is at most (1 + ε)((1 + δ) · ((1 + ε)r ·
√

2k)) =

(1+δ) ·((1+ε)2r ·
√

2k) with probability (1−n1−β). From the triangle inequality we get

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 109

21

26

44

-65

2

1

6

1

7

6

5

2

8412216543

3276432121

6543542213

3987654321

8263

3621

6323

3741

963

321

523

541

1082

936

963

1037

Random 1/3

Minus

1

6

4

5

NewCol k=1

Original Matrix A A’
C

B

Step1 Step2 Step3 Step4

Projected
Matrix E

NewCol k=2
2

1

6

1

7

6

5

2

8412216543

3276432121

6543542213

3987654321

7225

6141

5652

2163

725

541

752

963

972

761

1156

321

Original Matrix A

Minus
Random 1/3

2

2

4

-6

A’

B

C

Figure 4.2: Random projection using “DB friendly” operations. To compute the random
projection without actually generating the matrix with random entries, project the original
database and process these new projections (tables) further to generate the final database that
consists of low number of dimensions (i.e., number of columns).

that the distance between any two points in g is bounded by 2(1 + δ) · ((1 + ε)2r ·
√

2k)

which completes the proof of the theorem. 2

4.4.2 Random Projection in a Database Management System

In 2003, (Achlioptas, 2003) showed how a random projection can be carried out us-

ing “database friendly” operations, i.e., computing a random projection without actually

generating the matrix with random entries. We clarify the process with the help of an

example shown in Figure 4.2.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 110

Given an integer κ and a table A of dimension size(A) = n× d, where n is the number

of rows, d is the number of columns and κ is the reduced dimension. We want to generate

a new table E of size n × κ without actually multiplying A with a randomly generated

matrix.

For each i, 1 ≤ i ≤ κ we produce a new field in the new table and then at the end we

merge them together. Effectively, we repeat for each i the following steps:

1. Uniformly at random select 1/3 of A’s attributes. Call the obtained table A′. In

other words, we project A to A′ (Figure 4.2):

A′ =
∏

Ad/3.

The size of A′ is n × e, where e is 1/3 of the columns in the original table, i.e.,

e = round(d/3).

2. Uniformly at random vertically partition A′ into two equal column-sized tables B

and C:

B =

e/2∏
1

A′ and C =
e∏

e/2+1

A′,

as shown in Figure 4.2.

3. We combine B and C to generate a new column as follows. We first create a

NewCol1 from B and NewCol2 from C. The third column in each B and C are

subtracted to form the columns in the projected matrix E:

NewCol1 =

∑e/2

j=1B1,j

...∑e/2
j=1Bn,j

 and NewCol2 =

∑e/2

j=1C1,j

...∑e/2
j=1Cn,j.

 .

4. The ith column of table E is defined as NewCol2 −NewCol1.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 111

4.5 Experiments, Results and Discussion

We report on the experiments that we have carried out to determine how the use of random

projection as a preprocessing step will effect the accuracy of detecting flocks in long-

duration ST datasets.

4.5.1 Experimental setup and datasets

All experiments were carried out on a Linux operated PC with a Pentium-4 (3.6 GHz)

processor and 2 GB main memory. The data structures and algorithms were implemented

in C++ and compiled with the GNU compiler.

We use both real datasets and synthetic datasets to demonstrate the efficiency of our ap-

proach. The use of synthetic data allows us to control the number of flocks present in

the data, which helps in determining the correctness of our approach experimentally. Ap-

pendix B provides details about the ST data preparation process as well as the techniques

used to obtain it. A description, however, of the used datasets is given below.

4.5.1.1 Synthetic datasets

Twenty datasets with varying number of points, number of flocks and duration of flocks

were created. In particular, five datasets each of size 16K, 20K, 32K, 64K and 100K were

seeded with 32, 40, 64, 128 and 200 flocks respectively of duration (number of time step)

8, 16, 500 and 1000. The size of each flock was set to 50 entities and the radius was fixed

to 50 units. In the original data (before the random projection), each point coordinate

was selected from the integer interval [0, . . . , 216].

In our experiments, which use synthetic data, we always searched for flocks with at least

50 entities within a circle of radius 50 and full time duration (8, 16, 500 or 1000).

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 112

4.5.1.2 Real world datasets

Three different real world datasets were used in our experiments. These datasets were

generated by three different projects, namely, Network Dynamics and Simulation Science

Laboratory (NDSSL), Caribou Herd Satellite Collar Project, and Mobile Users profiles.

A brief description about these projects is as follows:

• NDSSL Data:

Network Dynamics and Simulation Science Laboratory (NDSSL) has produced

several synthetic datasets that have been released to the academic community for

research purposes (NDS, 2007). The dataset used in this chapter represents the

movement of a synthetic population (derived from the census data) of the city of

Portland. It shows a number of activities that people do in daily life, such as work-

ing, studying, shopping, recreation, and picking up and dropping off passengers.

(a) (b)

Figure 4.3: Caribou’s locations in Northern Canada (pch, 2007).

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 113

The data is related to the study of “pandemic preparedness”. Pandemic influenza

viruses have demonstrated their ability to spread worldwide within months, or

weeks, and to cause infections in all age groups. Retrieving movement patterns

can help in understanding the movement of people in a city and in understanding

how pandemic may spread.

• Caribou Herd Satellite Collar Project:

This is a collaboration between a number of wildlife agencies that use satellite

radio-collars to track and collect information about the migration of the caribou

herds (pch, 2007). At the start of the project, 10 cow caribou were captured in

October and November of 1997. Until the end of 2006, the total number of caribou

that have been captured was 44. Over that period of time, these cows were tagged

with satellite collars. Over time some collars were added and changed as new

caribou were tagged, caribou died, or the collars fell off. The total home area

that has been used to track the caribou herds is roughly 260, 000km2, between

Kaktovik, Alaska to Aklavik, NWT to Dawson City, Yukon. Figure 4.3 shows the

area where caribou cows migrate or meet for calving, this area is bounded by the

red line. It shows the problem of visualizing this kind of data. In Figure 4.3(a), one

trajectory is shown and in Figure 4.3(b) a subset of all the trajectories is shown in

an attempt to visualize the migration behavior.

• Mobile Users profiles:

A realistic simulation approach was developed by Taheri and Zomaya (2005) to

simulate mobile user profiles which consist of a collection of different categories

of users. These profiles show a variety of users on the basis of their activities.

They include, for example, workers, ordinary users, travelers, and users who go

out for work only at night. These activities represent the users’ movements. By

using this generator, an entire population consisting of 10K users has been created.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 114

Figure 4.4: Two mobile users’ movements for 500 timesteps (Taheri and Zomaya, 2005).

The total number of time steps that has been generated for each user is roughly

500. Figure 4.4 presents the design of the network that was used to represent the

mobile users’ movements. It consists of 10× 10 cells, where each cell represents a

circle with a diameter of 60 units. The small dots that appear in the figure show the

location when a user makes a phone call. It should be noted that, for the purpose

of this work, we do not care about these locations. We focus on the location of the

users during their movements regardless of their tasks.

dataset # Objects # TimeSteps # Dimensions Distance Unit (Radius) Percentage
NDSSL 10K 18 36 20 0.0007
Caribou 44 359 718 200 2
Mobile users 10K 500 1000 9 0.025

Table 4.2: Datasets description.

The flock radius for each dataset is shown in column 5 in Table 4.2. These values were

chosen arbitrarily and will be used as benchmark values. Column 6 contains the relative

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 115

area of a flock compared to the area of the universe described by each dataset.

The size of each flock was set to at least 3 entities for the Caribou and Mobile users

datasets, and to at least 4 entities for the NDSSL data. These numbers were chosen so

that the number of flocks in each set is “reasonable”.

4.5.2 Random Projection Parameters

The theoretical lower bound for the reduced dimensions using random projection is

Ω(ln(n)
ε2

) (Achlioptas, 2003). Notice that the bound is independent of the dimensionality

of the original space. For a dataset of size 32K and a distortion of ε = 0.5, the dimen-

sionality of the projected space will be at least 165. This is too large for the quadtree

indexing structure to handle in practice. However, several research studies (Bingham

and Mannila, 2001; Fradkin and Madigan, 2003) have noted that the theoretical bound is

quite conservative. For example, Bingham and Mannila (2001) have noted that for their

image data the theoretical bound required was κ ≈ 1600 but κ ≈ 50 “was enough”.

In order to test the difference between the theoretically derived and experimentally ac-

ceptable bound (κ) we carried out several experiments for different values on the size

of the dataset generated synthetically (n), the dimensionality (d), the error tolerance (ε)

and the confidence (β). We report on two sets of parameters (Figure 4.5). Notice that

while the theoretical bound depends on n (as expected) the experimentally derived bound

quickly stabilizes for different values of n. This confirms that the theoretical bound is too

conservative and that for practical applications we can use a much smaller κ.

In the end we settled for projecting the data to 32 dimensional space. The primary reason

being that the experiments reported in (Benkert et al., 2006) only go up to sixteen time

steps (32 dimension) after which the authors note that a range query search using quadtree

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 116

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

Number of points (n)

Lo
w

es
t d

im
en

si
on

 (κ
)

d = 1000
epsilon = 0.125
distortion = 12.5%

(a)

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

Number of points (n)

Lo
w

es
t d

im
en

si
on

 (κ
)

d = 1000
epsilon = 0.25
distortion = 25%

(b)

Figure 4.5: Illustrating the difference between the theoretical and experimental bounds on
the minimum number of dimensions using random projection. The top line is the theoretical
bound and the bottom line is derived experimentally using a brute force procedure.

effectively reduces to a linear scan. Since random projection is being used as a pre-

processing step, it is reasonable to project to a space where the use of a quadtree is still

effective.

Another major difference in the experiments compared to the theoretical results is the

choice of the flock radius in the projected space. In Section 4.4, it was shown that the new

flock radius should be a factor
√

2k larger than the original radius; for 500 dimensions

that would be approximately a factor of 32. However, it is easily seen that this would

only occur in extreme cases so instead we decided to use the original flock radius for the

projected data.

4.5.3 Assessment methods

We perform three different assessments of the different approaches. The first one is

the performance time in finding the flock patterns, both with and without using random

projection as a preprocessing step.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 117

Secondly, we test the accuracy of the approaches by:

1. Comparing the number of reported flocks in the dataset before and after applying

the random projection. Optimally we would want the numbers to match.

2. Comparing the retrieved flock’s members from each dataset. That is, by comparing

the flock’s members before and after the projection. A measure CommonRatio was

used to calculate the ratio of the common members. That is by counting the number

of common members between every two flocks (flock before and after projection)

and dividing this number by the size of the original flock (Equation 4.1). This ratio

is used to find the average accuracy of each data set that is shown in Equation 4.2:

CommonRatio =
#CommonMembers

s
and (4.1)

AvgAcc =

∑n
i=1CommonRatio

n
, (4.2)

where n is the total number of flocks in the dataset, CommonMembers is the

number of common members between flocks and s is a positive integer represent-

ing the flock’s size in the original data.

Thirdly, we considered the interpoint distances before and after the projection. That

is, the distance matrix was calculated for all flocks before and after the projection and

histograms were plotted to show the difference between the two matrices.

4.5.4 Results

This section demonstrates the experimental results that we achieved after applying ran-

dom projections on synthetic and real datasets.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 118

Data Brute Force(BF) BF-With Proj Pipe Pipe-With Proj
Data Size #TS #Flocks Sec #Flocks Sec. #Flocks Sec. #Flocks Sec.

1 16K 8 32 < 1 N.A N.A 32 < 1 N.A N.A
2 16K 16 32 < 1 N.A N.A 32 < 1 N.A N.A
3 16K 500 32 50 32 < 2 32 (BF) 50+ 32 < 2
4 16K 1000 32 59 32 < 2 32 (BF) 59+ 32 < 2

5 20K 8 40 < 1 N.A N.A 40 < 1 N.A N.A
6 20K 16 40 2 N.A N.A 40 1 N.A N.A
7 20K 500 40 82 40 3 40 (BF) 82+ 40 2
8 20K 1000 40 87 40 3 40 (BF) 87+ 40 2

9 32K 8 64 2 N.A N.A 64 < 1 N.A N.A
10 32K 16 64 8 N.A N.A 64 1 N.A N.A
11 32K 500 64 206 64 8 64 (BF) 206+ 64 3
12 32K 1000 64 216 64 9 64 (BF) 216+ 64 3

13 64K 8 128 4 N.A N.A 128 2 N.A N.A
14 64K 16 128 16 N.A N.A 128 3 N.A N.A
15 64K 500 128 412 128 18 128 (BF) 412+ 128 5
16 64K 1000 128 432 128 19 128 (BF) 432+ 128 6

17 100K 8 200 12 N.A N.A 200 4 N.A N.A
18 100K 16 200 24 N.A N.A 200 5 N.A N.A
19 100K 500 200 640 200 27 200 (BF) 640+ 200 7
20 100K 1000 200 675 200 28 200 (BF) 675+ 200 8

Table 4.3: Summarizing our experimental results, with and without random projection using
16K, 20K, 32K, 64K and 100K data sizes.

4.5.4.1 Synthetic dataset experiments:

The experimental results are shown in Table 4.3 and Figure 4.6. Recall the two basic

algorithms described in Section 4.3; the Brute-Force (BF) and Pipe methods. The BF

method does not use any indexing, instead it consists of two nested loops, the outer one

specifying a potential flock center and the inner one computing the distance between a

point and the potential flock center. If there are at least m points within a ball of radius

2r centered at the potential flock center then a flock is reported. In that respect, the BF

method is a 2-radius approximation. Notice that the complexity of the BF method is

quadratic in the number of entities and only has a small dependency on the number of

time stamps. This explains the small increase in time (Table 4.3, rows 3 and 4) for 16K

points from 50 seconds to 59 seconds as the number of time steps (TS) increases from

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 119

0 0

50

59

0 0 1 10 0

45

55

0 0 1 1
0

10

20

30

40

50

60

8 16 500 1000
Number of Timesteps - Data Size 16K

R
un

tim
e

(s
ec

s)

BF BF-Proj Pipe Pipe-Proj

(a)

0 0 3 30 10 1 2 2

82

2

87

2

85

75

0

20

40

60

80

8 16 500 1000
Number of Timesteps - Data Size 20K

R
un

tim
e

(s
ec

s)

BF BF-Proj Pipe Pipe-Proj

(b)

2 8

206

2 8 8 9
0 1

200
208

0 1 3 3

216

0

40

80

120

160

200

8 16 500 1000
Number of Timesteps - Data Size 32K

R
un

tim
e

(s
ec

s)

BF BF-Proj Pipe Pipe-Proj

(c)

4 16

412

4 16 18 19
2 3

409

2 3 5 6

432 429

0

50

100

150

200

250

300

350

400

450

8 16 500 1000
Number of Timesteps - Data Size 64K

R
un

tim
e

(s
ec

s)

BF BF-Proj Pipe Pipe-Proj

(d)

12 24

640

12 24 27 28
4 5

635

4 5 7 8

675 670

0

100

200

300

400

500

600

700

8 16 500 1000
Number of Timesteps - Data Size 100K

R
un

tim
e

(s
ec

s)

BF BF-Proj Pipe Pipe-Proj

(e)

Figure 4.6: Results- with and without random projection using 16K, 20K, 32K, 64K and
100K data sizes.

500 to 1000.

The pipe method is based on Equivalence 4.1 and uses a compressed quadtree as the

underlying indexing structure. As expected, the pipe method beats the BF approach for

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 120

0

50

100

150

200

250

300

350

400

100% 75% 50% 25%
Reduced Dimensions Percentage

Fl

oc
ks

Caribou Mobile Users NDSSL

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100% 75% 50% 25%
Reduced Dimensions Percentage

C
om

m
on

 m
em

be
rs

 -
A

cc
ur

ac
y

Caribou Mobile Users NDSSL

(b)

Figure 4.7: Accuracy after applying random projections on the real datasets.

low-dimensions. For example, for 32K points, BF requires 2 and 8 seconds to find the

64 flocks for time duration 8 and 16, respectively (rows 9 and 10), while the pipe method

requires less than one second. For higher dimensions (500 and 1000) the quad tree pro-

vides no extra advantage, the internal nodes of a quadtree has 2d children where d is the

number of dimensions. Using 16 time stamps means 32 dimensions which translates to

more than 4 billion quadrants. It is very unlikely that the 32K randomly distributed points

(not in flocks) fall into the same quadrant. This results in a very flat tree and, hence, a

high query time.

We did not apply the random projection preprocessing step for time steps 8 and 16. The

overall cost of random projection isO(ndκ) which is around 1 to 3 seconds for the dataset

32K and 100K respectively for the largest time steps.

A key result with the random projection is that we retrieve exactly the same number of

flocks as retrieved without the random projection using the synthetic datasets. Table 4.3

shows that the distortion induced by the random projection is within an acceptable bound

and does not violate the overall correctness.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 121

4.5.4.2 Real dataset results

In the previous section we have shown the performance of our approach as well as the

distortion induced by applying the random projection on synthetic datasets. In this sec-

tion we report on the accuracy of obtaining flocks after applying random projection on

real life datasets.

1. Number of reported flocks before and after the projection. Table 4.4 presents the

total number of reported flocks before and after applying random projection. The

original dimensions were reduced by 75%, 50%, and 25%. For the caribou data,

exactly the same number of flocks (19 flocks) were discovered for all three pro-

jections. For the mobile users data, the exact number of flocks (111 flocks) were

discovered for the first two projections (75% and 50%). However, for the third

projection (25%) an extra flock was reported (112 flocks), as seen in Figure 4.7(a).

NDSSL data originally contained a lot of missing locations. Therefore, the data

had to be processed before using our method. This was performed in two steps;

(a) filling in missing values (locations) and (b) making all trajectories of the same

length.

(a) Missing location in the middle of the trajectory: We assumed that the GPS

was faulty and the object location was not sent. Hence the last location was

repeated to fill the missing location.

Before Projection I Projection II Projection III
Projection (75%) (50%) (25%)

Data Name Flock Size #TS #Flocks #TS #Flocks #TS #Flocks #TS #Flocks
NDSSL ≥ 4 Objects 18 173 13 173 9 313 4 400
Caribou ≥ 3 Objects 359 19 269 19 179 19 89 19
Mobile Users ≥ 3 Objects 500 111 375 111 250 111 125 112

Table 4.4: Number of flocks before and after applying random projection onto real life
datasets.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 122

(b) If a trajectory is shorter than the others, we assumed that the object stopped

before finishing its trip, or the GPS device stopped sending details because

of some defects. To handle this we assumed that the object stopped and just

repeated the last location until the length of the trajectory was equal to the

longest trajectory.

Due to the above assumptions random projection did not work very well when

projecting the NDSSL data to very low-dimensions, which clearly can be seen in

Table 4.5 and Figure 4.7. For example, if two trajectories were part of the same

flock before one of the GPS becomes faulty, will now not be reported as part of the

same flock.

2. Number of common flock members. After reporting the flock patterns before and

after the projection, we compare the retrieved flock members from each dataset.

Table 4.5 illustrates the average accuracy for each dataset. For the caribou dataset

the accuracy was 100%, 97% and 96% for the three projections 75%, 50% and

25%, respectively. For the mobile users dataset, the accuracy decreased from 100%

to 94%. However, for NDSSL dataset, the accuracy deteriorated from 100% to

19% when the number of dimensions is reduced from 75% to 25% of the original

dimension. These results are shown in Figure 4.7(b).

Before Projection I Projection II Projection III
Projection (75%) (50%) (25%)

Data Name #TS #TS Accuracy #TS Accuracy #TS Accuracy
NDSSL 18 13 100% 9 20% 4 19%
Caribou 359 269 100% 179 97% 89 96%

Mobile Users 500 375 100% 250 96% 125 94%

Table 4.5: Accuracy based on the flock members after the random projections.

The distance matrix was calculated for all flocks before and after the projection and

histograms were plotted to show the difference between the two matrices. As expected,

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 123

the two histograms for each dataset show that the distances in the projected space are

smaller than the distances in the original space as noted in Fact 4.1. They show that the

two matrices are very similar. Figure 4.8 shows the caribou, the mobile users and the

NDSSL flock distributions, before and after applying the random projection 100 times

and averaging the results. Table 4.6 shows the number of dimensions before and after

applying the random projection.

dataset Number of original dimensions Number of dimensions after the projection
NDSSL 36 12
Caribou 718 16
Mobile users 1000 48

Table 4.6: Number of dimensions before and after applying the random projection.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 124

5 10 15 20 25 30 35 40 45 50 55
0

2

4

6

8

10

12

14
Before Projection

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14
After Projection

Caribou Dataset

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

3500
Before Projection

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500
After Projection

Mobile Users Dataset

0 2 4 6 8 10 12 14

x 104

0

1

2

3

4

5

6
x 105 Before Projection

0 1 2 3 4 5 6 7 8

x 104

0

1

2

3

4

5

6
x 105 After Projection

NDSSL Dataset

Figure 4.8: Distance matrix distributions for the three datasets flocks (Caribou, Mobile
Users, and NDSSL) before and after applying the random projection 100 times and aver-
aging the results.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 125

4.6 Random Projection (RP) and Principal Components

Analysis (PCA)

In this section we compare the accuracy of flock discovery between random projection

and principal component analysis. We first report a result on a synthetic dataset and then

on real datasets described in the previous section. For completeness we begin by giving

a brief introduction on Principal Component Analysis.

4.6.1 Principal Components Analysis (PCA)

PCA is a dimensionality reduction technique. It operates by first rotating the coordinate

system and then “dropping” some of the dimensions (axis) and effectively projecting the

data into a lower dimension space. The new coordinate system is determined based on the

direction of the variance in the data. For most real datasets, the majority of the variance

is captured in the first few new dimensions and by “dropping” the other dimensions, the

“essential structure” of the data is preserved. PCA does not guarantee the preservation

of the pairwise distance (even approximately) between data points. Bishop (2006) is a

good source for a geometric and algebraic introduction to PCA.

Algebraically, PCA works as follows. Let A be an m× n matrix, where m is the number

of objects each of dimension n. Then A can be decomposed as

A = Σr
i=1σiuiv

t
i .

Here, σ′is are the eigenvalues of the mean-centered covariance matrix AtA, v′is are the

corresponding eigenvectors, r is the rank of the matrix A and the u′is are the new coordi-

nates in space spanned by the new eigenvectors. The decomposition of A is organized in

a way such that σ1 > σ2 > . . . > σr. Geometrically, the σ′is are variance in the direction

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 126

0 10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9

10

11
Example of 2 flocks

flock2

flock1

(a)

−25 −20 −15 −10 −5 0 5 10 15 20 25
−3

−2

−1

0

1

2

3
PCA PCA RP RP

(b)

Figure 4.9: Two flocks before projection (a) and after projection (b). It is clear that RP leads
to better flock preservation.

determined by the v′is. Thus for k < r,

A = Σk
i=1σiuiv

t
i

is effectively a lower dimension projection of the objects in A.

4.6.2 Comparison on a Synthetic Dataset

We first compare RP and PCA on a synthetic dataset shown in Figure 4.9(a) which shows

two distinct flocks moving along the diagonals of the rectangle. Each flock consists of

four objects. We project the dataset on a two-dimensional space using RP and PCA.

The results of RP are the average of ten runs of the random matrix. It is clear that RP

clusters the elements of the flocks in clean clusters which can be discovered by the flock

algorithm in the two-dimensional space. PCA separates the elements of the flock but the

inter-element distance within flocks is large.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 127

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Caribou Mobile Users NDSSL

Ac
cu

ra
cy

RP PCA

Figure 4.10: Accuracy after applying random projections (RP) and principal components
analysis (PCA) on the real datasets.

4.6.3 Comparison on Real Datasets

Again, RP and PCA were applied on the real datasets described in the previous sec-

tion. The accuracy, as measured by Equation 4.1 and 4.2, after projection onto the two-

dimensional dataset are shown in Figure 4.10. Again, RP achieves better accuracy than

PCA on all the datasets. It is important to reiterate that RP scales linearly in the number

of dimensions while PCA has a cubic dependency. Figure 4.11 shows how the accuracy

of RP and PCA changes with increasing dimensions on the Caribou dataset. Starting

from dimension two, RP immediately achieves high accuracy, while the accuracy of PCA

reaches a local maxima at dimension four and then stays the same till the full dimension

is attained. The reason we go upto 32 dimensions and then jump to the full dimension of

718 is because the PCA reports eigenvalues of magnitude zero beyond thirty two dimen-

sions.

CHAPTER 4. MINING COMPLEX SPATIO-TEMPORAL PATTERNS 128

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2 4 8 16 32 718
Number of dimensions from Caribou data set

A
cc

ur
ac

y
RP PCA

Figure 4.11: The accuracy of RP and PCA on Caribou dataset as a function of the dimension.

4.7 Summary and Conclusions

Given a large ST dataset, an important query is to retrieve objects which move close to

each other for a long-duration of time. This is called a Flock pattern query and is the

basis of many important ST pattern queries (Gudmundsson et al., 2007). The previously

best known approximation algorithm for such queries have a running time which is either

quadratic with respect to the number of entities or has an exponential dependency on the

duration parameter of the query pattern. In this chapter we have proposed the use of ran-

dom projection as a practical solution to manage the exponential dependency. We have

proved that the random projection will return the “correct” answer with high probabil-

ity, and our experiments on real, quasi-synthetic and synthetic datasets, strongly support

our theoretical bounds. The use of random projection in conjunction with an indexing

structure allows us to efficiently discover long flock patterns which was not possible till

now.

Chapter 5

Mining Complex Time Series Patterns

This chapter proposes a novel technique to speed up the computation of DTW mea-

sure. It is organized as follows: We provide an introduction in Section 5.1. Sec-

tion 5.2 describes related work on DTW. The DTW algorithm is described in Section 5.3.

In Section 5.4, we give an overview of the techniques used to speed up DTW by adding

constraints. Section 5.5 reviews the Divide and Conquer approach for DTW which is

guaranteed to take up O(m + n) space and O(mn) time. Furthermore, we provide an

example which clearly shows that the divide and conquer approach fails to arrive at the

optimal DTW result. The SparseDTW algorithm is introduced with a detailed example

in Section 5.6. In Section 5.7, we analyze and discuss our results. Table 5.1 lists the

notations used in this chapter1.

1This chapter is based on the following publications:

• Ghazi Al-Naymat, Sanjay Chawla and Javid Taheri. SparseDTW: A Novel Approach to Speed up
Dynamic Time Warping. In communication with the Data and Knowledge Engineering (DKE),
2008 (Al-Naymat et al., 2008b).

129

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 130

Symbol Description
TSD Time Series Data
TSDM Time Series Data Mining
DTW Dynamic Time Warping
LCSS Longest Common Subsequence
DC Divide and Conquer
BandDTW Sakoe-Chiba Band
SparseDTW Sparse Dynamic Time Warping
EucDist Euclidean Distance
D A set of time series (sequences) data
D Warping Matrix
S Time series (Sequence)
Q Query time series (Sequence)
C Candidate time series (Sequence)
si The ith element of sequence S
qi The ith element of sequence Q
DTW (Q,S) DTW distance between two time series Q and S
LBF Lower Bound Function
d·e Function that gives the ceiling of a value
b·c Function that gives the floor of a value
|S| The length of the time series S
SM Sparse Matrix
D Warping matrix
K Number of cells in the sparse matrix
W Warping path

Table 5.1: Description of the notations used.

5.1 Introduction

Dynamic time warping (DTW) uses the dynamic programming paradigm to compute the

alignment between two time series. An alignment “warps” one time series onto another

and can be used as a basis to determine the similarity between the time series. DTW has

similarities to sequence alignment in bioinformatics and computational linguistics except

that the matching process in sequence alignment and warping have to satisfy a different

set of constraints and there is no gap condition in warping. DTW first became popular

in the speech recognition community (Sakoe and Chiba, 1978) where it has been used to

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 131

determine if the two speech wave-forms represent the same underlying spoken phrase.

Since then it has been adopted in many other diverse areas and has become the similarity

metric of choice in time series analysis (Keogh and Pazzani, 2000).

Like in sequence alignment, the standard DTW algorithm has O(mn) space complexity

where m and n are the lengths of the two sequences being aligned. This limits the practi-

cality of the algorithm in todays “data rich environment” where long sequences are often

the norm rather than the exception. For example, consider two time series which repre-

sent stock prices at one second granularity. A typical stock is traded for at least eight

hours on the stock exchange and that corresponds to a length of 8 × 60 × 60 = 28800.

To compute the similarity, DTW would have to store a matrix with at least 800 million

entries!

Figure 5.1(a) shows an example of an alignment (warping) between two sequences S

and Q. It is clear that there are several possible alignments but the challenge is to select

the one which has the minimal overall distance. The alignment has to satisfy several

constraints which we will elaborate on in Section 5.3.

Salvador and Chan (2007) have provided a succinct categorization of different techniques

that have been used to speed up DTW:

• Constraints: By adding additional constraints the search space of possible align-

ments can be reduced. Two well known exemplars of this approach are the Sakoe

and Chiba (1978) and the Itakura (1975) constraints which limit how far the align-

ment can deviate from the diagonal. While these approaches provide a relief in the

space complexity, they do not guarantee the optimality of the alignment.

• Data Abstraction: In this approach, the warping path is computed at a lower res-

olution of the data and then mapped back to the original resolution (Salvador and

Chan, 2007). Again, optimality of the alignment is not guaranteed.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 132

• Indexing: Keogh and Ratanamahatana (2004) and Sakurai et al. (2005) proposed

an indexing approach, which does not directly speed up DTW but limits the number

of DTW computations. For example, suppose there exists a database D of time

series sequences and a query sequence q. We want to retrieve all sequences d ∈ D

such that DTW (q, d) < ε. Then instead of checking q against each and every

sequence in D, an easy to calculate lower bound function LBF is first applied

between q and D. The argument works as follows:

1. By construction, LBF (q, d) < DTW (q, d).

2. Therefore, if LBF (q, d) > ε then DTW (q, d) > ε and DTW (q, d) does not

have to be computed.

5.1.1 Main Contribution

The main insight behind our proposed approach, SparseDTW, is to dynamically exploit

the possible existence of inherent similarity and correlation between the two time series

whose DTW is being computed. This is the motivation behind the Sakoe-Chiba band and

the Itakura Parellelogram but our approach has three distinct advantages:

1. Bands in SparseDTW evolve dynamically and are, on average, much smaller than

the traditional approaches. We always represent the warping matrix using sparse

matrices, which leads to better average space complexity compared to other ap-

proaches (Figure 5.9).

2. SparseDTW always yields the optimal warping path since we never have to set

apriori constraints independently of the data. For example, in the traditional banded

approaches, a sub-optimal path will result if all the possible optimal warping paths

have to cross the bands.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 133

3. Since SparseDTW yields an optimal alignment, it can easily be used in conjunction

with lower bound approaches.

5.2 Related Work

DTW was first introduced in the data mining community in the context of mining time

series (Berndt and Clifford, 1994). Since it is a flexible measure for time series similarity

it is used extensively for ECGs (Electrocardiograms) (Caiani et al., 1998), speech pro-

cessing (Rabiner and Juang, 1993), and robotics (Schmill et al., 1999). It is important to

know that DTW is a measure not a metric, because DTW does not satisfy the triangular

inequality.

Several techniques have been introduced to speed up DTW and/or reduce the space over-

head (Hirschberg, 1975; Yi et al., 1998; Kim et al., 2001; Keogh and Ratanamahatana,

2004).

Divide and conquer (DC) heuristic proposed by Hirschberg (1975) is a dynamic pro-

gramming algorithm that finds the least cost sequence alignment between two strings in

linear space and quadratic time. The algorithm was first used in speech recognition area

to solve the Longest Common Subsequence(LCSS). However as we will show with the

help of an example, DC does not guarantee the optimality of the DTW distance.

Sakoe and Chiba (1978) speed up the DTW by constraining the warping path to lie within

a band around the diagonal. However, if the optimal path crosses the band, the result will

not be optimal.

Keogh and Ratanamahatana (2004) introduced an efficient lower bound that reduces the

number of DTW computations in a time series database context. However itself it does

not reduce the space complexity of the DTW computation, which is the objective our

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 134

work.

Sakurai et al. (2005) presented FTW, a search method for DTW; it adds no global con-

straints on DTW. Their method designed based on a lower bounding distance measure

that approximates the DTW distance. Therefore, it minimizes the number of DTW com-

putations but does not increase the speed the DTW itself.

Salvador and Chan (2007) introduced an approximation algorithm for DTW called Fast-

DTW. Their algorithm begins by using DTW in very low resolution, and progresses to

a higher resolution linearly in space and time. FastDTW is performed in three steps:

coarsening shrinks the time series into a smaller time series; the time series is projected

by finding the minimum distance (warping path) in the lower resolution; and the warping

path is an initial step for higher resolutions. The authors refined the warping path using

local adjustment. FastDTW is an approximation algorithm, and thus there is no guarantee

it will always find the optimal path. It requires the coarsening step to be run several times

to produce many different resolutions of the time series. The FastDTW approach depends

on a radius parameter as a constraint on the optimal path; however, our technique does

not place any constrain while calculating the DTW distance.

DTW has been used in data streaming problems. Capitani and Ciaccia (2007) proposed a

new technique, Stream-DTW (STDW). This measure is a lower bound of the DTW. Their

method uses a sliding window of size 512. They incorporated a band constraint, forcing

the path to stay within the band frontiers, as in (Sakoe and Chiba, 1978).

All the above algorithms were proposed either to speed up DTW, by reducing its space

and time complexity, or reducing the number of DTW computations. Interestingly, the

approach of exploiting the similarity between points (correlation) has never, to the best of

our knowledge, been used in finding the optimality between two time series. SparseDTW

considers the correlation between data points, that allows us to use a sparse matrix to

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 135

0

1

2

3

4

5

6

S

Q

(a) The alignment of measurements for mea-
suring the DTW distance between the two se-
quences S and Q.

3532343334282525563
3231313029252424522
3236373739292424514
2830262829232020423
2727261919382
4443393834302219373
4443393834302118333
4547404442402517295
3637313228261598134
33322827231910653
2121101221D

Q

S

8

4

17

18

19

20 24 25 26

27

31

32

33

(b) The warping matrix D produced by DTW;
highlighted cells constitute the optimal warping
path.

Figure 5.1: Illustration of DTW.

store the warping matrix instead of a full matrix. We do not believe that the idea of

sparse matrix has been considered previously to reduce the required space.

Algorithm 5.1 DTW: The standard DTW algorithm.
Input: S: Sequence of length n, Q: Sequence of length m.
Output: DTW distance.

1: Initialize D(i, 1)⇐ iδ for each i
2: Initialize D(1, j)⇐ jδ for each j
3: for all i such that 2 ≤ i ≤ n do
4: for all j such that 2 ≤ j ≤ m do
5: Use Equation 5.3 to compute D(i, j)
6: end for
7: end for
8: return D(n,m)

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 136

5.3 Dynamic Time Warping (DTW)

DTW is a dynamic programming technique used for measuring the similarity between

any two time series with arbitrary lengths. This section gives an overview of DTW and

how it is calculated. The following two time series will be used in our explanations.

S = s1, s2, s3, · · · , si, · · · , sn (5.1)

Q = q1, q2, q3, · · · , qj, · · · , qm (5.2)

Where n and m represent the length of time series S and Q, respectively. i and j are the

point indices in the time series.

DTW is a time series association algorithm that was originally used in speech recognition

(Sakoe and Chiba, 1978). It relates two time series of feature vectors by warping the time

axis of one series onto another.

As a dynamic programming technique, it divides the problem into several sub-problems,

each of which contribute in calculating the distance cumulatively. Equation 5.3 shows

the recursion that governs the computations is:

D(i, j) = d(i, j) +min

D(i− 1, j)

D(i− 1, j − 1)

D(i, j − 1).

(5.3)

The first stage in the DTW algorithm is to fill a local distance matrix d. That matrix

has n × m elements which represent the Euclidean distance between every two points

in the time series (i.e., distance matrix). In the second stage, it fills the warping matrix

D (Figure 5.1(b)) on the basis of Equation 5.3. Lines 1 to 7 in Algorithm 5.1 illustrate

the process of filling the warping matrix. We refer to the cost between the ith and the jth

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 137

elements as δ as mentioned in line 1 and 2.

After filling the warping matrix, the final stage for the DTW is to report the optimal

warping path and the DTW distance. Warping path is a set of adjacent matrix elements

that identify the mapping between S and Q. It represents the path that minimizes the

overall distance between S and Q. The total number of elements in the warping path is

K, where K denotes the normalizing factor and it has the following attributes:

W = w1, w2, . . . , wK

max(|S|, |Q|) ≤ K < (|S|+ |Q|)

Every warping path must satisfy the following constraints (Keogh and Ratanamahatana,

2004; Salvador and Chan, 2007; Sakoe and Chiba, 1978):

1. Monotonicity: Any two adjacent elements of the warping path W , wk = (wi, wj)

and wk−1 = (w
′
i, w

′
j), follow the inequalities, wi − w

′
i ≥ 0 and wj − w

′
j ≥ 0. This

constrain guarantees that the warping path will not roll back on itself. That is, both

indexes i and j either stay the same or increase (they never decrease).

2. Continuity: Any two adjacent elements of the warping path W ,wk = (wi, wj) and

wk+1 = (w
′
i, w

′
j), follow the inequalities, wi − w

′
i ≤ 1 and wj − w

′
j ≤ 1. This

constraint guarantees that the warping path advances one step at a time. That is,

both indexes i and j can only increase by at most 1 on each step along the path.

3. Boundary: The warping path starts from the top left corner w1 = (1, 1) and ends

at the bottom right cornerwk = (n,m). This constraint guarantees that the warping

path contains all points of both time series.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 138

Although there are a large number of warping paths that satisfy all of the above con-

straints, DTW is designed to find the one that minimizes the warping cost (distance).

Figures 5.1(a) and 5.1(b) demonstrate an example of how two time series (S and Q) are

warped and the way their distance is calculated. The circled cells show the optimal warp-

ing path, which crosses the grid from the top left corner to the bottom right corner. The

DTW distance between the two time series is calculated based on this optimal warping

path using the following equation:

DTW (S,Q) = min

√∑K

k=1Wk

K
(5.4)

The K in the denominator is used to normalize different warping paths with different

lengths.

Since the DTW has to potentially examine every cell in the warping matrix, its space and

time complexity is O(nm).

5.4 Global Constraint (BandDTW)

In Chapter 2 we described several methods that add global constraints on DTW to in-

crease its speed by limiting how far the warping path may stray from the diagonal of

the warping matrix. In this chapter we use Sakoe-Chiba Band (henceforth, we refer to

it as BandDTW) Sakoe and Chiba (1978) when comparing with our proposed algorithm

(Figure 5.2). BandDTW used to speed up the DTW by adding constraints which force

the warping path to lie within a band around the diagonal; if the optimal path crosses the

band, the DTW distance will not be optimal.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 139

Figure 5.2: Global constraint (Sakoe Chiba Band), which limits the warping scope. The
diagonal green areas correspond to the warping scopes.

5.5 Divide and Conquer Technique (DC)

In Section 5.3, we have shown how to compute the optimal alignment using the standard

DTW technique between two time series. In this section we will show another technique

that uses a Divide and Conquer heuristic, henceforth we refer to it as (DC), proposed

by Hirschberg (1975). DC is a dynamic programming algorithm used to find the least

cost sequence alignment between two strings. The algorithm was first introduced to solve

the Longest Common Subsequence (LCSS) (Hirschberg, 1975). Algorithm 5.2 gives a

high level description of the DC algorithm. Like in the standard sequence alignment, the

DC algorithm hasO(mn) time complexity butO(m+n) space complexity, wherem and

n are the lengths of the two sequences being aligned. We will be using Algorithm 5.2

along with Figure 5.3 to explain how DC works. In the example we use two sequences

S = [3, 4, 5, 3, 3] and Q = [1, 2, 2, 1, 0] to determine the optimal alignment between

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 140

Algorithm 5.2 DC: Divide and Conquer technique.
Input: S: Sequence of length n, Q: Sequence of length m.
Output: DTW distance.

1: Divide-Conquer-Alignment(S,Q)
2: n⇐ |S|
3: m⇐ |Q|
4: Mid⇐ dm/2e
5: if n ≤ 2 or m ≤ 2 then
6: Compute optimal alignment using standard DTW
7: else
8: f ⇐ ForwardsSpaceEfficientAlign(S,Q[1:Mid])
9: g ⇐BackwardsSpaceEfficientAlign(S,Q[Mid:m])

10: q ⇐ index that minimizing f(q,Mid) + g(q,Mid)
11: Add (q,Mid) to global array P
12: Divide-Conquer-Alignment(S[1:q],Q[1:Mid])
13: Divide-Conquer-Alignment(S[q:n],Q[Mid:m])
14: end if
15: return P

them. There is only one optimal alignment for this example (Figure 5.3(e)), where shaded

cells are the optimal warping path. The DC algorithm works as follows:

1. It finds the middle point in Q which is Mid = |Q|/2, (Figure 5.3(a)). This

helps to find the split point which divides the warping matrix into two parts (sub-

problems). A forward space efficiency function (Line 8) uses S and the first cut

of Q = [1, 2, 2], then a backward step (Line 9) uses S and Q = [2, 1, 0] (Fig-

ure 5.3(a)). Then by adding the last column from the forward and backward steps

together and finding the index of the minimum value, the resultant column indicates

the row index that will be used along with the middle point to locate the split point

(shaded cell in Figure 5.3(a)). Thus, the first split point is D(4,3). At this stage of

the algorithm, there are two sub-problems; the alignment of S = [3, 4, 5, 3] with

Q = [1, 2, 2] and of S = [3, 3] with Q = [2, 1, 0].

2. DC is recursive algorithm, each call splits the problem into two other sub-problems

if both sequences are of length > 2, otherwise it calls the standard DTW to find

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 141

6543

19
18
17
8

2

19373
18333
17295
9134

21

33
32
39
35
33 3684227

9
18
43
59

0

31314
31314
52922
43826

12

Forward cut Backward cut

Middle point

(a) Finding first split point.

543

18
17
8

2

333
295
134

1

20
27
22
20 31515

1
10
14

2

32
510
414

2

Middle point

Backward cutForward cut

(b) Finding second split point.

(c) Split points (sub-problems).

3
3
5
4
3

01221

(d) Final optimal path using DC.

3223203

322319193

18185

994

6543

01221

(e) Final optimal path using standard DTW.

30221919373
30211818333
40251717295
261598134
19106543
01221D

Q

S

Q

S

Q

S

Q

S

Q

S

Q Q

S

Figure 5.3: An example to show the difference between the standard DTW and the DC
algorithm.

the optimal path for that particular sub-problem. In the example, the first sub-

problem will be fed to Line 12 which will find another split point, because both

input sequences are of length > 2. Figure 5.3(b) shows how the new split point is

found. Figure 5.3(c) shows the two split points (shaded cells) which yield to have

sub-problems of sequences of length ≤ 2. In this case DTW will be used to find

the optimal alignment for each sub-problem.

3. The DC algorithm finds the final alignment by concatenating the results from each

call of the standard DTW.

The example in Figure 5.3 clarifies that the DC algorithm does not give the optimal warp-

ing path. Figures 5.3(d) and (e) show the paths obtained by the DC and DTW algorithms,

respectively.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 142

DC does not yield the optimal path as it goes into infinite recursion because of how it

calculates the middle point. DC calculates the middle point as follows:

There are two scenarios: first, when the middle point (Algorithm 5.2 Line 4) is floored

(Mid = bm/2c) and second when it is rounded up (Mid = dm/2e). The first sce-

nario causes infinite recursion, since the split from the previous step gives the same sub-

sequences (i.e., the algorithm keeps finding the same split point). The second scenario

is shown in Figures 5.3(a-d), which clearly confirms that the final optimal path is not the

same as the one retrieved by the standard DTW 2. The final DTW distance is different

as well. The shaded cells in Figures 5.3(d) and (e) show that both warping paths are

different.

5.6 Sparse Dynamic Programming Approach

In this section we outline the main principles we use in SparseDTW and follow up with

an illustrated example along with the SparseDTW pseudo-code. We exploit the following

facts in order to reduce space usage while avoiding any re-computations:

1. Quantizing the input time series to exploit the similarity between the points in the

two time series.

2. Using a sparse matrix of size k, where k = n ×m in the worst case. However, if

the two sequences are similar, k << n×m.

3. The warping matrix is calculated using dynamic programming and sparse matrix

indexing.

2It should be noted that our example has only one optimal path that gives the optimal distance.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 143

5.6.1 Key Concepts

In this section we introduce the key concepts used in our algorithm.

Definition 5.1 (Sparse Matrix SM) is a matrix that is populated largely with zeros. It

allows the techniques to take advantage of the large number of zero elements. Fig-

ure 5.4(a) shows the SM initial state. SM is linearly indexed, The little numbers, in

the top left corner of SM ’s cells, represent the cell index. For example, the indices of the

cells SM(1, 1) and SM(5, 5) are 1 and 5, respectively.

Definition 5.2 (Lower Neighbors (LowerNeighbors)) a cell c ∈ SM has three lower

neighbors which are the cells of the indices (c − 1), (c − n), and (c − (n + 1)) (where

n is the number of rows in SM) . For example, the index of cell SM(2, 3) is 12 and its

lower neighbors are SM(1, 3), SM(1, 2) and SM(2, 2) which has indices 11,6 and 7,

respectively (Figure 5.4(a)).

Definition 5.3 (Upper Neighbors (UpperNeighbors)) a cell c ∈ SM has three upper

neighbors which are the cells of the indices (c + 1), (c + n), and (c + n + 1) (where n

is the number of rows in SM) . For example, the index of cell SM(2, 3) is 12 and its

upper neighbors are SM(3, 3), SM(2, 4) and SM(3, 4) which has indices 13,17 and 18,

respectively (Figure 5.4(a)).

Definition 5.4 (Blocked Cell (B)) a cell c ∈ SM is blocked if its value is zero. The

letter (B) refers to the blocked cells (Figure 5.4(a)).

Definition 5.5 (Unblocking) Given a cell c ∈ SM , if SM(c)’s upper neighbors (SM(c+

1),SM(c + n), and SM(c + n + 1)) are blocked, they will be unblocked. Unblocking

is performed by calculating the EucDist for these cells and adding them to SM . In

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 144

BBBBB3
BBBBB3
BBBBB5
BBBBB4
BBBBB3
01221SM

94BB43
94BB43
B1699165
1694494
94BB43
01221SM

Q

S

9411373
94BB333
251699295
16944134
94BB43
01221SM

30253534373
3021BB333
38281717295
2013128134
134BB43
01221SM

(a) SM initially blocked [B]. (b) SM after unblocking the optimal cells.
Values are Euclidean distances.

(c) Unblocking upper neighbor
(Shaded cell).

(d) Constructing SM. (f) Final optimal path using standard DTW.

Q Q

S S

Q

30221919373
30211818333
40251717295
261598134
19106543
01221D

Q

S
S

30253534373
3021BB333
38281717295
2013128134
134BB43
01221SM

(e) Final optimal path using SparseDTW.

S

Q

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 5.4: An example of the SparseDTW algorithm and the method of finding the optimal
path.

other words, adding the distances to these cells means changing their state from blocked

(B) into unblocked. For example, the upper neighbors of SM(4, 2) (Figure 5.4(c)) are

blocked. They need to be unblocked.

5.6.2 SparseDTW Algorithm

The algorithm takesRes, the resolution parameter as an input that determines the number

of bins as 2
Res

. Res will have no impact on the optimality. We now present an example

of our algorithm to illustrate some of the highlights of our approach: We start with two

sequences:

S = [3, 4, 5, 3, 3] and Q = [1, 2, 2, 1, 0].

In Line 1, we first quantize the sequences into the range [0, 1] using Equation 5.5:

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 145

Algorithm 5.3 SparseDTW: Sparse dynamic programming technique.
Input: S: Time series of length n, Q: Time series of length m, and Res.
Output: Optimal warping path and SparseDTW distance.

1: [S ′, Q′]⇐ Quantize(S,Q)
2: LowerBound⇐ 0, UpperBound⇐ Res
3: for all 0 ≤ LowerBound ≤ 1− Res

2
do

4: IdxS ⇐ find(LowerBound ≤ S ′ ≤ UpperBound)
5: IdxQ⇐ find(LowerBound ≤ Q′ ≤ UpperBound)
6: LowerBound⇐ LowerBound+ Res

2

7: UpperBound⇐ LowerBound+Res
8: for all idxi ∈ IdxS do
9: for all idxj ∈ IdxQ do

10: Add EucDist(idxi, idxj) to SM {When EucDist(idxi, idxj) =
0, SM(i, j) = −1.}

11: end for
12: end for
13: end for
{Note: SM is linearly indexed.}

14: for all c ∈ SM do
15: LowerNeighbors⇐ {(c− 1), (c− n), (c− (n+ 1))}
16: minCost ⇐ min(SM(LowerNeighbors)) {SM(LowerNeighbors)=-1 means

cost=0.}
17: SM(c)⇐ SM(c) +minCost
18: UpperNeighbors⇐ {(c+ 1), (c+ n), (c+ n+ 1)}
19: if |UpperNeighbors| == 0 then
20: SM ∪ EucDist(UpperNeighbors)
21: end if
22: end for
23: WarpingPath⇐ Φ
24: hop⇐ SM(n×m) {Last index in SM.}
25: WarpingPath ∪ hop
26: while hop 6= SM(1) do
27: LowerNeighbors⇐ {(hop− 1), (hop− n), (hop− (n+ 1))}
28: [minCost, index]⇐ min[Cost([LowerNeighbors])
29: hop⇐ index
30: WarpingPath ∪ hop
31: end while
32: WarpingPath ∪ SM(1)
33: return WarpingPath, SM(n×m)

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 146

QuantizedSeqki =
Ski −min(Sk)

max(Sk)−min(Sk)
. (5.5)

Where Ski denotes the ith element of the kth time series. This yields the following se-

quences:

S ′ = [0, 0.5, 1.0, 0.0, 0.0] and Q′ = [0.5, 1.0, 1.0, 0.5, 0]

In Lines 4 to 7 we create overlapping bins, governed by two parameters: bin-width and

the overlapping width (which we refer to as the resolution). It is important to note that

these two parameters do not affect the optimality of the alignment but do have an affect

on the amount of space utilized. For this particular example, the bin-width is 0.5. We

thus have 4 bins which are shown in Table 5.2. We iterate over these bins by changing

the variable LowerBound.

Bin Number (Bk) Bin Bounds Indices Bin of S ′ Indices of Q′

1 0.0-0.5 1,2,4,5 1,4,5
2 0.25-0.75 2 1,4
3 0.5-1.0 2,3 1,2,3,4
4 0.75-1.25 3 2,3

Table 5.2: Bins bounds, where Bk is the kth bin.

Our intuition is that points in sequences with similar profiles will be mapped to other

points in the same bin or neighboring bins. In which case the non-default entries of the

sparse matrix can be used to compute the warping path. Otherwise, default entries of the

matrix will have to be “opened”, reducing the sparsity of the matrix but never sacrificing

the optimal alignment.

In Lines 3 to 13, the sparse warping matrix SM is constructed using the equation below.

SM 3 is a matrix that has generally few non-zero (or “interesting”) entries. It can be
3If the Euclidean distance (EucDist) between S(i) andQ(j) is zero, then SM(i, j) = −1, to distinguish

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 147

represented in much less than n × m space, where n and m are the lengths of the time

series S and Q, respectively.

SM(i, j) =

 EucDist(S(i), Q(j)) if S(i) and Q(j) ∈ Bk

B otherwise
(5.6)

We assume that SM is linearly ordered and the default value of SM cells are zeros.

That means the cells initially are Blocked (B) (Figure 5.4(a)). Figure 5.4(a) shows the

linear order of the SM matrix, where the little numbers on the top left corner of each

cell represent the index of the cells. In Line 6 and 7, we find the index of each quantized

value that falls in the bin bounds (Table 5.2 column 2, 3 and 4). The Inequality 5.7 is

used in Line 4 and 5 to find the indices of the default entries of the SM .

LowerBound ≤ QuantizedSeqki ≤ UpperBound. (5.7)

Where LowerBound and UpperBound are the bin bounds and QuantizedSeqki repre-

sents the quantized time series which can be calculated using Equation 5.5.

Lines 8 to 12 are used to initialize the SM . That is by joining all indices in idxS and

idxQ to open corresponding cells in SM . After unblocking (opening) the cells that

reflect the similarity between points in both sequences, the SM entries are shown in

Figure 5.4(b).

Lines 14 to 22 are used to calculate the warping cost. In Line 15, we find the warping cost

for each open cell c ∈ SM (cell c is the number from the linear order of SM ’s cells) by

finding the minimum of the costs of its lower neighbors, which are [c−1, c−n, c−(n+1)]

(black arrows in Figure 5.4(d) show the lower neighbors of every open cell). This cost

is then added to the local distance of cell c (Line 17). The above step is similar to DTW,

between a blocked cell and any cell that represents zero distance.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 148

however, we may have to open new cells if the upper neighbors at a given local cell

c ∈ SM are blocked. The indices of the upper neighbors are [c + 1, c + n, c + n + 1],

where n is the length of sequence S (i.e., number of rows in SM). Lines 18 to 21 are

used to check always the upper neighbors of c ∈ SM . This is performed as follows: if

the |UpperNeighbors| = 0 for a particular cell, its upper neighbors will be unblocked.

This is very useful when the algorithm traverses SM in reverse to find the final opti-

mal path. In other words, unblocking allows the path to be connected. For example,

the cell SM(5, 1) has one upper neighbor that is cell SM(5, 2) which is blocked (Fig-

ure 5.4(c)), therefore this cell will be unblocked by calculating the EucDist(S(5),Q(2)).

The value will be add to the SM which means that cell SM(5, 2) is now an entry in

SM (Figure 5.4(c)). Although unblocking adds cells to SM which means the number

of open cells will increase, but the overlapping in the bins boundaries allows the SM ’s

unblocked cells to be connected mostly that means less number of unblocking operations.

Figure 5.4(d) shows the final entries of the SM after calculating the warping cost of all

open cells.

Lines 23 to 32 return the warping path. hop initially represents the linear index for the

(m,n) entry of SM , that is the bottom right corner of SM in Figure 5.4(e). Starting

from hop = n × m we choose the neighbors [hop − n, hop − 1, hop − (n + 1)] with

minimum warping cost and proceed recursively until we reach the first entry of SM ,

namely, SM(1, 1) or hop = 1. It is interesting that while calculating the warping path

we only have to look at the open cells, which may be fewer in number than 3. This

potentially reduces the overall time complexity.

Figure 5.4(e) demonstrates an example of how the two time series (S and Q) are warped

and the way their distance is calculated using SparseDTW. The filled cells show the op-

timal warping path, which crosses the grid from the top left corner to the bottom right

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 149

corner. The distance between the two time series is calculated using Equation 5.4. Fig-

ure 5.4(f) shows the standard DTW where the filled cells are the optimal warping path. It

is clear that both techniques give the optimal warping path which will yield the optimal

distance.

5.6.3 SparseDTW Complexity

Given two time series S and Q of length n and m, the space and time complexity of

standard DTW is O(nm). For SparseDTW we attain a reduction by a constant factor

b, where b is the number of bins. This is similar to the BandDTW approach where the

reduction in space complexity is governed by the size of the band. However, SparseDTW

always yields the optimal alignment. The time complexity of SparseDTW is O(nm) in

the worst case as we potentially have to access every cell in the matrix.

5.7 Experiments, Results and Analysis

In this section we report and analyze the experiments that we have conducted to compare

SparseDTW with other methods. Our main objective is to evaluate the space-time trade-

off between SparseDTW, BandDTW and DTW. We evaluate the effect of correlation on

the running time of SparseDTW4. As we have noted before, both SparseDTW and DTW

always yield the optimal alignment while BandDTW results can often lead to sub-optimal

alignments, as the optimal warping path may lie outside the band. As we noted before

DC may not yield the optimal result.

4The run time includes the time used for constructing the Sparse Matrix SM .

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 150

5.7.1 Experimental Setup

All experiments were carried out on a PC with Windows XP operating system, a Pen-

tium(R) D (3.4 GHz) processor and 2 GB main memory. The data structures and algo-

rithm were implemented in C++.

5.7.2 Datasets

We have used a combination of benchmark and synthetically generated datasets. The

benchmark dataset is a subset from the UCR time series data mining archive (Keogh,

2006). We have also generated synthetic time series data to control and test the effect

of correlation on the running time of SparseDTW. Appendix C provides more details

about the preparation process and the source of the datasets. We briefly describe the

characteristics of each dataset used.

• GunX: comes from the video surveillance application and captures the shape of a

gun draw with the gun in hand or just using the finger. The shape is captured using

150 time steps and there are a total of 100 sequences (Keogh, 2006). We randomly

selected two sequences and computed their similarity using the three methods.

• Trace: is a synthetic dataset generated to simulate instrumentation failures in a

nuclear power plant (Roverso, 2000). The dataset consists of 200 time series each

of length 273.

• Burst-Water: is formed by combining two different datasets from two different

applications. The average length of the series is 2200 points (Keogh, 2006).

• Sun-Spot: is a large dataset that has been collected since 1818. We have used

the daily sunspot numbers. More details about this dataset exists in (Vanderlinden,

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 151

2008). The 1st column of the data is the year, month and day, the 2nd column

is year and fraction of year (in Julian year)5, and the 3rd column is the sunspot

number. The length of the time series is 2898.

• ERP: is the Event Related Potentials that are calculated on human subjects6. The

dataset consists of twenty sequences of length 256 (Makeig et al., 1999).

• Synthetic: Synthetic datasets were generated to control the correlation between

sequences. The length of each sequence is 500.

0.01

0.1

1

10

100

1000

150 273 2191 2898

GunX Trace Burst-Water Sun-Spot
Top (Time series lengths) - Bottom (Datasets)

El
ap

se
d

tim
e

(s
ec

on
ds

) l
og

. s
ca

le

DTW DC BandDTW SparseDTW

Figure 5.5: Elapsed time using real life datasets.

5The Julian year is a time interval of exactly 365.25 days, used in astronomy.
6An indirect way of calculating the brain response time to certain stimuli.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 152

0%

20%

40%

60%

80%

100%

150 273 2191 2897

GunX Trace Burst-Water Sun-Spot
Top (Time series lengths) - Bottom (Datasets)

Pe
rc

en
ta

ge
 o

f c
om

pu
te

d
ce

lls
DTW DC BandDTW SparseDTW

Figure 5.6: Percentage of computed cells as a measure for time complexity.

Number of computed cells used by
Data size DTW DC BandDTW SparseDTW
2K 4× 106 > 8× 106 2500 2000
4K 16× 106 > 30× 106 5000 4000
6K 36× 106 > 70× 106 7500 6000

Table 5.3: Number of computed cells if the optimal path is close to the diagonal.

5.7.3 Discussion and Analysis

SparseDTW algorithm is evaluated against three other existing algorithms, DTW, which

always gives the optimal answer, DC, and BandDTW.

5.7.3.1 Elapsed Time

The running time of the four approaches is shown in Figure 5.5. The time profile of both

DTW and BandDTW is similar and highlights the fact that BandDTW does not exploit

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 153

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 0.2 0.3 0.4 0.5
Band Width

El
ap

se
d

Ti
m

e
(S

ec
s)

GunX Trace Burst-Water Sun-Spot

0.
01

0.
01

0.
52

0.
38

0.
0 0.
02

0.
67

0.
88

0.
88

1.
19

1.
10

1.
50

1.
27

1.
69

0.
02 0.
03

0.
02 0.
05

0.
02 0.
05

Figure 5.7: Effect of the band width on BandDTW elapsed time.

Dataset size Algorithm name #opened cells Elapsed Time(Sec.)

3K DTW 9× 106 7.3
SparseDTW 614654 0.65

6K DTW 36× 106 26
SparseDTW 2048323 2.2

9K DTW 81× 106 N.A
SparseDTW 4343504 4.8

12K DTW 144× 106 N.A
SparseDTW 7455538 200

Table 5.4: Performance of the DTW and SparseDTW algorithms using large datasets.

the nature of the datasets. DC shows as well the worst performance due to the vast

number of recursive calls to generate and solve sub-problems. In contrast, it appears that

SparseDTW is exploiting the inherent similarity in the GunX and Trace data.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 154

0

20

40

60

80

100

120

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bin width

Op

en
 C

el
ls

 (T
ho

us
an

ds
)

Correlation 100%

Correlation 75%

Correlation 50%

Correlation 25%

Correlation 0%

Figure 5.8: Effects of the resolution and correlation on SparseDTW.

In Figure 5.6 we show the number of open/computed cells produced by the four algo-

rithms. It is very clear that SparseDTW produces the lowest number of opened cells.

In Table 5.3 we show the number of computed cells that are used in finding the optimal

alignment for three different datasets, where their optimal paths are close to the diagonal.

DC has shown the highest number of computed cells followed by DTW. That is because

both (DC and DTW) do not exploit the similarity in the data. BandDTW has shown

interesting results here because the optimal alignment is close to the diagonal. However,

SparseDTW still outperforms it.

Two conclusions are revealed from Figure 5.7. The first, the length of the time series

affects the computing time, because the longer the time series the bigger the matrix.

Second, band width influences CPU time when aligning pairs of time series. The wider

the band the more cells are required to be opened.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 155

Dataset Algorithm Number of Warping path Elapsed Time DTW
name name opened cells size (K) (Seconds) Distance

GunX
DTW 22500 201 0.016 0.01
BandDTW 448 152 0.000 0.037
SparseDTW 4804 201 0.000 0.01

Trace
DTW 75076 404 0.063 0.002
BandDTW 1364 331 0.016 0.012
SparseDTW 17220 404 0.000 0.002

Burst-Water
DTW 2190000 2190 1.578 0.102
BandDTW 43576 2190 0.11 0.107
SparseDTW 951150 2190 0.75 0.102

Sun-Spot
DTW 1266610 357 0.063 0.021
BandDTW 12457 358 0.016 0.022
SparseDTW 66049 357 0.016 0.021

ERP
DTW 1000000 1533 0.78 0.008
BandDTW 19286 1397 0.047 0.013
SparseDTW 210633 1535 0.18 0.008

Synthetic
DTW 250000 775 0.187 0.033
BandDTW 4670 600 0.016 0.043
SparseDTW 105701 775 0.094 0.033

Table 5.5: Statistics about the performance of DTW, BandDTW, and SparseDTW. Results in
this table represent the average over all queries.

DTW and SparseDTW are compared together using large datasets. Table 5.4 shows that

DTW is not applicable (N.A) for datasets of size > 6K, since it exceeds the size of the

memory when computing the warping matrix. In this experiment we excluded BandDTW

and DC given that they provide no guarantee on the optimality.

To determine the effect of correlation on the elapsed time for SparseDTW we created sev-

eral synthetic datasets with different correlations. The intuition being that two sequences

with lower correlation will have a warping path which is further away from the diagonal

and thus will require more open cells in the warping matrix. The results in Figure 5.8

confirm our intuition though only in the sense that extremely low correlation sequences

have a higher number of open cells than extremely high correlation sequences.

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 156

(a) GunX-DTW (b) GunX-BandDTW (c) GunX-SparseDTW

(d) Trace-DTW (e) Trace-BandDTW (f) Trace-SparseDTW

Figure 5.9: The optimal warping path for the GunX and Trace sequences using three al-
gorithms (DTW, BandDTW, and SparseDTW). The advantages of SparseDTW are clearly
revealed as only a small fraction of the matrix cells have to be “opened” compared to the
other two approaches.

5.7.3.2 SparseDTW Accuracy

The accuracy of the warping path distance of BandDTW and SparseDTW compared to

standard DTW (which always gives the optimal result) is shown in Table 5.5. It is clear

that the error rate of BandDTW varies from 30% to 500% while SparseDTW always

gives the exact value. It should be noticed that there may be more than one optimal path

of different sizes but they should give the same minimum cost (distance). For example,

CHAPTER 5. MINING COMPLEX TIME SERIES PATTERNS 157

the size of the warping path for the ERP dataset produced by DTW is 1533, however,

SparseDTW finds another path of size 1535 with the same distance as DTW.

Figure 5.9 shows the dramatic nature in which SparseDTW exploits the similarity inher-

ent in the sequences and creates an adaptive band around the warping path. For both the

GunX and the Trace data, SparseDTW only opens a fraction of the cells compared to

both standard DTW and BandDTW.

5.8 Summary and Conclusions

In this chapter we have introduced the SparseDTW algorithm, which is a sparse dynamic

programming technique. It exploits the correlation between any two time series to find

the optimal warping path between them. The algorithm finds the optimal path efficiently

and accurately. SparseDTW always outperforms the algorithms DTW, BandDTW and

DC. We have shown the efficiency of the proposed algorithm through comprehensive

experiments using synthetic and real life datasets. Our algorithm can be easily combined

with lower bound techniques. The SparseDTW algorithm was applied on large stock

market data to efficiently find pairs trading patterns (Chapter 6).

Chapter 6

Pairs Trading Mining using

SparseDTW

We propose an efficient approach for reporting pairs trading patterns in large

stock market datasets. This will be achieved by using our proposed algorithm

(SparseDTW), presented in Chapter 5. In Section 6.1, we provide an overview about

pairs trading strategy, and define the key concepts. A review of state-of-the-art research

conducted in mining pairs trading is given in Section 6.2. Section 6.3 demonstrates the

pairs trading framework. Several classical methods that are used to find the pairs trad-

ing patterns are described in Section 6.4. This section also describes how the speed of a

SparseDTW sequential search can be increased using a lower bounding technique. Ta-

ble 6.1 lists the notations used in this chapter1.

1This chapter is based on the following publications:

• Ghazi Al-Naymat, Sanjay Chawla and Javid Taheri. SparseDTW: A Novel Approach to Speed up
Dynamic Time Warping. In communication with the journal of Data and Knowledge Engineering
(DKE), 2008 (Al-Naymat et al., 2008b).

158

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 159

Symbol Description
TSD Time Series Data
TSDM Time Series Data Mining
DTW Dynamic Time Warping
EucDist Euclidean Distance
SparseDTW Sparse Dynamic Time Warping
S Time series (Sequence)
Q Query time series (Sequence)
C Candidate time series (Sequence)
si The ith element of sequence S
qi The ith element of sequence Q
Pi The price of stock i
nPi Normalized price of stock i
DTW (Q,S) DTW distance between two time series Q and S
LB Keogh(Q,C) Lower bound for query sequence Q and candidate sequence C
SP Stock pair
ASX Australian Stock eXchange

Table 6.1: Description of the notations used.

6.1 Introduction

The volume of financial data has rapidly increased due to advances in software and hard-

ware technologies. Stock markets provide examples of financial data that contains many

attributes – far more than traders can readily understand. Traders nonetheless attempt to

determine relationships between data attributes that can yield profitable trading of finan-

cial instruments. As traders’ needs have become more complex, the demand for more

efficient techniques has grown. Many researchers have developed algorithms and frame-

works that concentrate on mining useful patterns in stock market datasets. Interesting pat-

terns include collusion, money laundering, insider trading, and pairs trading (Donoho,

2004; Zhang et al., 2003; Little et al., 2002; Gatev et al., 2006; Vidyamurthy, 2004; Nes-

bitt and Barrass, 2004). The literature has shown that pairs trading is one of the most

sought-after patterns because of its market-neutral strategy – the return is uncorrelated to

the market (Vidyamurthy, 2004). The concept of pairs trading was originally developed

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 160

in the late 1980s by quantitative analysts and was subsequently refined by Gerald Bam-

berger at Morgan Stanley during the 1990s2. With the help of others, they found that the

day-to-day price movements of certain securities, often competitors in the same sector,

are closely correlated. When the correlation breaks down, i.e., one stock trades up while

the other trades down, traders tend to sell the outperforming stock and buy the underper-

forming one, anticipating that the “spread”3 between the two will eventually converge.

A number of real-life examples of potentially correlated pairs are listed below (Vidya-

murthy, 2004; Nesbitt and Barrass, 2004).

• Coca-Cola (KO) and Pepsi (PEP)

• Wal-Mart (WMT) and Target Corporation (TGT)

• Dell (DELL) and Hewlett-Packard (HPQ)

• Ford (F) and General Motors (GM)

Pairs trading is an investment strategy that involves buying the undervalued security and

short-selling the overvalued one, thus maintaining market neutrality. This helps to hedge

sector and market risk. For example, if the market crashes and a trader’s two stocks

plummet with it, the gain will occur on the short position and lose on the long position,

which minimizes the overall loss. Finding pairs trading is one of the pivotal issues in

the stock market, because investors tend to conceal from others their prior knowledge

about the stocks that form pairs, to gain the greatest advantage from them; in other words,

investors always try to selfishly exploit market inefficiency. The idea behind pairs trading

is to profit from market amendments towards the normal behavior. To this end, the reason

to understand and identify pairs trading is to help all investors take advantage of the large

number of stocks that appear in pairs. This can guide them to invest their money in stocks
2(NYSE: MS) is a global financial services provider headquartered in New York City.
3Spread is the difference between bid and ask prices.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 161

that have a lower market risk and to return the maximum profit (i.e., by guiding investors

to choose the right time to buy and sell particular stocks) (Vidyamurthy, 2004; Gatev

et al., 2006; Cao et al., 2006b).

To find the similarity between time series, a similarity measure should be used. Examples

of these measures include Euclidean distance and Dynamic Time Warping (DTW). Pre-

vious research in this area concentrated in using the Euclidean distance as the similarity

measure when comparing stock prices. As shown in Chapter 2, the Euclidean distance is

not a good measure for similarity due to its limitations – it does not, for example, capture

the shape of the time series because of its linearity method of calculating the distance. In

this research, we used the DTW as the underlying similarity measure. DTW is a well-

accepted measure, due to its ability to capture the time series shapes as well as its power

to handle time series of different lengths. The space and time complexity of DTW is

O(nm), where n and m are the length of the time series being compared – this is the ma-

jor limitation DTW. Therefore, we have used our novel technique (SparseDTW), which

increases the speed of DTW by reducing its space complexity using sparse matrices, as

described in Chapter 5. This is the first time that DTW has been used for mining pairs

trading patterns from large stock-market data. Our experiments show the validity of the

proposed framework.

6.1.1 Problem Statement

Given a large time series dataset (stock market data set), efficiently find all stock

pairs that are correlated (similar) as defined by their similarity measure (DTW),

being below a threshold.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 162

6.1.2 Contributions

In this chapter we make the following contributions:

1. We propose a framework to find efficiently pairs trading patterns amongst large

stock market datasets.

2. We show for the first time the use of DTW as a similarity measure in finding pairs

trading patterns.

3. We show that our proposed technique (SparseDTW) can be used to mine stock pairs

successfully, and can be combined with a lower bounding technique to reduce the

number of its computation.

4. We describe two different trading rules which can be used by analysts to guide

investors to exploit periods of opportunity for generating profit, and to reduce the

market risk.

6.1.3 Key Concepts

Definition 6.1 (Short selling) is the practice of selling stocks which are not owned by

the seller, in the hope of repurchasing them in the future at a lower price.

Definition 6.2 (Long buying) is the practice of buying stocks in the hope of selling them

in the future at a higher price.

Definition 6.3 (Ask price) is the lowest price a seller of a stock is willing to accept for

a share of a given stock. .

Definition 6.4 (Bid price) is the highest price that a buyer is willing to pay for a share

of a given stock.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 163

Definition 6.5 (Spread) is the difference between the price available for an immediate

sale (a “bid”) and an immediate purchase (an “ask”).

Definition 6.6 (Pairs trading) is a strategy to find two stocks whose prices have moved

together over a period of time. Once the price deviation is noticed, two opposite positions

will be taken to make the most profit (by short-selling one and long-buying the other)

(Gatev et al., 2006; Vidyamurthy, 2004).

6.2 Related Work

Mining pairs has attracted the attention of the data mining and machine learning com-

munity for the last decade. A number of algorithms have been proposed for extracting

knowledge from stock market data sets. This section reviews the most recent techniques

that have been developed to mine pairs trading.

Stock market prediction has been a major issue in the field of finance. Neural networks

(NNs) were used to mitigate the prediction issue. The most primitive stock market pre-

diction model based on NNs was designed by White (White, 1988; WEIGEND, 1996).

They used feed forward neural networks (FFNNs) to interpret previously hidden regu-

larities in the equity price movements, such as oscillations of stock prices, and showed

how to search for such regularities using FFNNs. One of the advantages of using NNs

is the capability to discover patterns in the data itself, which can help in finding the rela-

tionship between two different stocks (stock pairs). NNs have non-linear, non-parametric

adaptive learning properties and have the most desirable outcome in modeling and fore-

casting. However, NNs have their drawbacks, such as the “over-training” problem, where

the network loses its generalizability. The generalization capability of NNs is important

when forecasting future stock prices (Lawrence, 1997). NNs can be applied to forecast

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 164

price changes before divergence and after convergence periods. This will help prepare

traders to take the correct trading positions (sell-short, buy-long).

Rule discovery can be considered a method of finding relationships between stocks or

markets by studying the correlation between individuals (antecedent and consequent) (Thu-

raisingham, 1998; Han and Kamber, 2006). Association rule mining techniques are not

specifically used to solve the pairs trading problem, but rather to provide traders with

greater insight. For example, mining frequent two itemsets (two stocks) from stock data

is a method of generating stocks rules. For example, “if IBM’s stock price increases,

the MSFT stock price is likely to increase too” and vice versa. Association rules can be

used to predict the movement of the stock prices, based on the recorded data (Lu et al.,

1998; Ellatif, 2007). This will help in finding the convergence in stock prices. However,

association rule mining techniques usually generate a large number of rules; this presents

a major interpretation challenge for investors.

Clustering can be considered the most important unsupervised learning technique in both

the data mining and machine learning areas. Basalto et al. (2004) have applied a non-

parametric clustering method to search for correlations between stocks in the market.

This method, the Chaotic Map Clustering (CMC), does not depend on prior knowledge

about a cluster, making it an optimal strategy to find pairs; originally proposed in (An-

gelini et al., 2000), it identifies similar temporal behavior of traded stock prices.

Lin et al. (2004) have used a genetic algorithm (GA) technique which has been applied to

many financial problems (Chen, 2002; Allen and Karjalainen, 1999) to tackle the param-

eters problem in the trading process. A solution has been obtained by using a sub-domain

for each parameter instead of one value. Lin et al. (2005) have subsequently applied the

GAs to reduce the effect of noise in the input data. This noise can cause the system to

generate unwanted alerts, which can mislead traders into making the wrong decisions.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 165

The trading process is based on many rules that depend on many parameters. Trading

rules help traders to decide what position to take regarding their shares (sell or buy). GA

was used to find the best combination of parameters which is the first step for two other

GA approaches presented in (Lin et al., 2005; Cao et al., 2006a).

Cao et al. (2006a) proposed a technique that has been used in mining stock pairs. In

their approach, they used genetic algorithms combined with fuzzy operations. Fuzzy

logic (Zadeh, 1965) was combined with (GAs) (Coley, 1999) because of the challenges

that GAs encounter when dealing with domain-oriented businesses that consist of multiple-

user requirements and demands. They used correlation to analyze the pairs’ relationship

by considering their correlation coefficient to find highly correlated stock in Australian

Stock Exchange (ASX). As a result, they found unexpected pairs that are distant from the

traders’ expectations, and that most of the correlated stocks belonged to different sectors.

Cao et al. (2006b) introduced fuzzy genetic algorithms to mine pairs relationships and

proposed strategies for the fuzzy aggregation and ranking to generate the optimal pairs

for the decision-making process. They categorized the pairs into two classes: pairs that

come from the same class, named “kindred”, and others, named “alien”. They classified

the type of relationship between the pairs. The first type is the “negative relationship”,

where pairs are dissimilar (i.e., they move in opposite directions). The second type is

the “positive relationship”, where pairs follow a similar pattern. This classification of

the pairs helps when using correlation and association mining techniques to predict deci-

sions (Kovalerchuk and Vityaev, 2000; Chatfield, 2004).

The focus of these researchers (Lin et al., 2004, 2005; Cao et al., 2006a,b) who used

GAs or a combination of GAs and fuzzy logic was to overcome the parameter obstacle.

Therefore, they managed to use sub-range values for each of the parameters instead of

using a single value. This ensures that the process of finding relationships between assets

(stocks, rules) comes from optimal values that help in obtaining optimum pairs.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 166

Figure 6.1: The complete Pairs trading process, starting from surfing the stocks data until
making the profit.

Since none of these methods has used the DTW as the similarity measure to capture the

shape of the stock sequences, a clear distinction between their approach and ours.

6.3 Pairs Trading Framework

This section describes the general framework of the pairs trading strategy. Figure 6.1 is

a flowchart showing the five main stages of pairs trading.

1. Mining stock pairs: Any two stock prices that move together over time (i.e., in

similar patterns). The simplest way of finding all pairs in a given stock dataset is

by screening the entire dataset and returning stocks that form pairs with each other.

This stage is important, because it identifies pairs that should be monitored. Our

technique SparseDTW is used to report all pairs efficiently.

2. Monitoring the spread: An alert system is used to notify traders if there is a

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 167

change in the price in comparison with the pair’s historical price series. Alerts

will be sent if there is a noticeable divergence in the price (lose in one and win in

another).

3. Trading process: An investor chooses the appropriate positions in the market.

Once the divergence alerts are received, investors can decide how many shares

they should buy or sell. Traders will determine the stocks for which they should

take a short or long position. The main hope is that the stock prices will soon revert

to their normal price levels.

4. Looking for convergence: This stage is similar to stage two, but convergence is

monitored. When the pair’s price series starts heading towards the normal historical

price level, alerts will be generated to notify investors of the best time to gain a

profit.

5. Reverse stage 3: After receiving alerts that show the pair’s status is returning to

normal, investors need to reverse the positions they initially took when the prices

diverged.

This research used the ASX (S&P 50) indices instead of dealing with huge number of

stocks. Table 6.2 lists the 50 indices and their codes.

To summarize the pairs trading strategy, Figure 6.2 illustrates an example of a simple

index pair Developer & Contractors (XDC) and Transport (XTP) over 500 days (almost

two years of price movements).

This example shows two price series moving together over time, which means that index

XDC and XTP are a pair. After finding that indices XDC and XTP form a pair, their price

series will be monitored. It is clear that prices start to diverge from day 200. Around day

240, prices show the greatest deviation. Then alerts will be issued to investors so they can

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 168

Code Index Description Code Index Description
XAI All industrials XME Media

XAM All mining XMI Miscellaneous industrials
XAO All ordinaries XMJ Materials
XAR All resources XNJ Industrial
XAT Alcohol & tobacco XOM Other Metals
XBF Banks & finance XPJ Property trusts
XBM Building materials XPP Paper & Packaging
XCE Chemicals XPT Property Trusts
XDC Developers & contractors XRE Retail
XDI Diversified industrials XSJ Consumer Staples
XDJ Consumer Discretionary XSO Small Ordinaries
XDR Diversified resources XTE Telecommunications
XEG Engineering XTJ Telecommunications Services
XEJ Energy XTL 20 leaders
XFH Food & household goods XTO ASX 100
XFJ Financials XTP Transport
XFL 50 leaders XTU Tourism & Leisure
XGO Gold XUJ Utilities
XHJ Health Care XXJ Financial & Property Trusts
XIF Investment & financial services XUI Infrastructure & Utilities
XIJ Information Technology XAG ASX/Russell all Growth
XIN Insurance XCN Asian Listing
XJO ASX 200 XTT Trans-Tasman 100
XKO ASX 300 XSF Soild Fuel
XMD MIDCAP 50 XOG Oil & Gas

Table 6.2: Indices (S&P 50) in the Australian Stock eXchange (ASX).

take the right position in the market. In this example, investors should short sell index

XDC (sell the winner) and long buy index XTP (buy the loser). Investors must continue

to monitor the pair’s price series to maximize their profit. From day 250, prices start

reverting to their normal levels. Alerts will be generated again, this time showing that

prices are normal and that investors can reverse their trades to make the maximum profit.

6.4 Finding Pairs Trading Approach

The previous sections provided an introduction and overview of the pairs trading strategy.

In this section we show that our approach uses (SparseDTW) to mine all pairs.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 169

0 50 100 150 200 250 300 350 400 450 500
−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

N
o

rm
al

iz
ed

 d
ai

ly
 p

ri
ce

XDC
XTP

Figure 6.2: An example of pair of indices, Developer & Contractors (XDC) and Transport
(XTP). Divergence in prices is clearly shown during the period of 200 days and 300 days.

6.4.1 Preprocessing Stock Data

The stock data used in this research comprises the daily stocks/indices prices. Our con-

cern here is the stock prices that have been traded (the ask price matches with the bid).

This research used the ASX data obtained in the methods described in Appendix C.

Stock prices are normally extracted from the order book4. This data has to be prepro-

cessed before using it. The following steps show the preprocessing stage.

• Given the focus was on the price of the stocks, other attributes like order type and

volume were removed.

• The stock prices have to be normalized (by locating all prices in a particular unit).

The underlying reason is that each stock has its own unit, and this may lead to an

unfair comparison. However, by normalizing the prices by the standard deviation
4The order book is a register (database) in a securities exchange that stores all public orders (sell and

buy orders) as well as all transactions that are executed (traded).

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 170

0 100 200 300 400 500 600 700 800 900 1000
500

600

700

800

900

1000

O
ri

g
in

al
 d

ai
ly

 p
ri

ce

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.9

−0.8

−0.7

−0.6

N
o

rm
al

iz
ed

 d
ai

ly
 p

ri
ce

Figure 6.3: Index All Industrials (XAI) before and after the normalization.

the comparison between any two stocks will make more sense. The normalization

is performed using Equation 6.1.

nP t
i =

P t
i − P t

i

σi
(6.1)

Where nP t
i is the normalized price of stock i at time t, P t

i is the actual price for

stock i, and P t
i is the average price of stock i. σi is the standard deviation of stock

i within a moving window.

Figure 6.3 plots the original and normalized daily prices of the index All Industrials

(XAI). This figure shows clearly that the price trends are very similar before and after the

normalization.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 171

Pair EucDist DTW
1 XDC XTP 3.39 0.73
2 XAI XRE 2.01 0.39
3 XJO XKO 6.33 0.13
4 XIN XFH 11.4 0.49
5 XXT XFJ 28.92 0.65

Table 6.3: Comparison between the EucDist and DTW measures for five different pairs.

6.4.2 Choosing a Proper Similarity Measure

Our focus is monitoring the similarity in the price movement. Therefore, similarity mea-

sures should be used to evaluate how the prices of particular pairs are close to one another.

Similarity or dissimilarity can be clearly captured using a distance measure. The issue

here is to choose the proper (dis)similarity measure. Two of the most famous measures in

the area of time series are the Euclidean (EucDist) and Dynamic Time Warping (DTW)

distances. An overview about these two measures is given in Chapter 2 (Section 2.6).

Since EucDist has several limitations (as discussed in Chapter 2), DTW is used as the

similarity measure here. Table 6.3 shows the distances between five different pairs, using

EucDist and DTW measures. If we are using a similarity threshold = 1, using EucDist

will lead to missing all of these pairs.

6.4.3 Report Stock Pairs

We describe the process of finding stocks pairs using our SparseDTW as the similarity

mining technique. This is performed through the following steps.

• After normalizing the stocks/indices prices, DTW distance is used to check stocks

that behave similarly; in other words, we find stock pairs that have their DTW

distance is the minimum.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 172

Algorithm 6.1 The sequential search algorithm pseudocode.
Input: Q: Query sequence of length n, Time Series Database TSD.

1: BestSoFar =∞
2: for all C ∈ TSD do
3: LB Dist = LowerBoundDistance(Ci, Q)
4: if LB Dist < BestSoFAR then
5: True Dist = SparseDTW(Ci, Q)
6: if True Dist < BestSoFar then
7: BestSoFar = True Dist
8: IndexOfBestMatch = i
9: end if

10: end if
11: end for

Pair DTW SparseDTW
1 XDC XTP 0.73 0.73
2 XAI XRE 0.39 0.39
3 XJO XKO 0.13 0.13
4 XIN XFH 0.49 0.49
5 XXT XFJ 0.65 0.65

Table 6.4: Comparison between standard DTW and SparseDTW techniques when calculat-
ing the DTW distance for five different pairs.

• The DTW distance is computed using SparseDTW, which always returns the opti-

mal distance between any two time series (stocks).

Figure 6.4 shows the dendrogram of the ASX indices after clustering them using hi-

erarchical clustering. We obtained the DTW distance matrix using the SparseDTW

algorithm. Three of the top closest pairs were reported after using a distance thresh-

old of 1; the dashed line indicates the threshold. Table 6.4 provides a comparison

between the standard DTW and the SparseDTW techniques that used in calculating

the DTW distance between indices. The table clearly shows that SparseDTW gives

the exact distance as that obtained from standard DTW.

• Usually, time series datasets contain huge number of stocks; hence, we need an

efficient technique that scans through the entire dataset to find all pairs. There-

fore, we have used a sequential search technique which incorporates a lower bound

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 173

051015

XJO
XKO
XFJ
XXJ
XSJ
XNJ
XPJ
XUJ
XTE
XDJ
XHJ
XEJ
XMJ
XMD
XSO
XAI
XRE
XTO
XBM
XDC
XTP
XME
XCE
XBF
XPP
XDR
XTU
XPT
XAT
XFH
XIN
XDI
XIF
XGO
XMI
XOM
XAO
XFL
XTL
XAR
XEG
XAM
XTJ
XIJ

Figure 6.4: Dendrogram plot after clustering the ASX indices. The closest three pairs (small-
est distance between the indices) are chosen as examples of pairs trading pattern.

technique that was proposed by Keogh and Ratanamahatana (2004) to reduce the

number of SparseDTW computations, thus speeding up the sequential scan search

for the query stock. Algorithm 6.1 shows the pseudocode for the sequential search

technique. This finds the index of the closest candidate stock C to the query stock

Q, and it calculates the DTW distance between them only if the lower bound dis-

tance satisfies the condition LB Keogh(Q,C) ≤ BestSoFar, whereBestSoFar

is treated as predefined threshold. The idea is to use a cheap lower bounding cal-

culation which will allow us to perform the expensive calculations when are they

critical. Equation 6.2 shows the lower bound distance between stocks Q and C.

To give an example about the way the lower bound LB Keogh works, Figure 6.5

depicts two sequences – index ASX 200 as the query sequence, and ASX 300 as the

candidate sequence – and the lower and upper bounds (U and L, respectively) of

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 174

the query sequence.

LB Keogh(Q,C) =

√√√√√√√√√
n∑
i=1

(ci − Ui)2 if ci > Ui

(ci − Li)2 if ci < Li

0 otherwise.

(6.2)

LB Keogh uses a refine-and-filter strategy, where U and L are used as an envelope

around the query sequence. This is similar in behavior to the minimum bounding

rectangle (MBR) strategy.

0 5 10 15 20 25 30 35 40 45 50
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

No
rm

al
ize

d
da

ily
 p

ric
e

LB UB Query Candidate

Figure 6.5: Plot of index ASX 200 as a query sequence and ASX 300 as a candidate sequence
from the ASX index daily data. LB and UB are the lower bound and upper bound of index
ASX 200, respectively.

• After reporting all pairs, it is necessary to monitor them and look for signals which

indicate that the proper time for taking the suitable position in the market. This

can be performed by applying several trading rules. Examples of such rules are

described in Section 6.4.4.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 175

Figure 6.6(a) and Figure 6.6(b) are two examples of index pairs in the ASX. Figure 6.6(a)

shows two indices which behave for most of the time similarly. Figure 6.6(b) shows

example of an identical pair.

An example of two indices which behave differently from each other is given in Fig-

ure 6.7. The Information Technology (XIJ) and Retail (XRE) are from two different

industries. Investors can easily understand that the price movement in XIJ will not be

influenced by XRE and vice versa. Therefore, looking for pairs trading patterns in these

two indices is meaningless.

The number of reported pairs depends on the sectors where the stocks belong. Two major

features of the sectors are as follows:

1. The sector volatility: If the sector is showing high volatility, it will produce few

pairs.

2. The sector homogeneity: Since the homogeneity can be a feature of similarity, we

know that pairs should be very similar; therefore, sectors with high homogeneity

should produce large number of pairs.

For example, a commercial services sector is expected to have few pairs; on the other

hand a financial sector should give huge number of pairs because of the enormous number

of trades and homogenous operations between companies.

6.4.4 Trading Process (TP)

After we have shown the process of reporting the pairs from stock datasets, those pairs

can be used for taking position (short sell or long buy) in the market. This should not be

performed arbitrary, since the period of the appropriate position is an important concern.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 176

0 50 100 150 200 250 300 350 400 450 500
−0.94

−0.92

−0.9

−0.88

−0.86

−0.84

−0.82

−0.8

−0.78

−0.76

No
rm

ali
ze

d d
ail

y p
ric

e
XAI
XRE

(a) An example of pair of indices, All Industrials (XAI) and Retail (XRE).

0 50 100 150 200 250 300 350 400 450 500
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

No
rm

ali
ze

d d
ail

y p
ric

e

XJO
XKO

(b) An example of an identical pair of indices, ASX 200 (XJO) and ASX 300 (XKO).

Figure 6.6: Two examples of index pairs.

Therefore, we will describe several trading rules which can decide the suitable time for

taking a position (i.e., the proper time for opening and closing a trade. Two of the trading

rules are as follows:

1. Mean and two-standard-deviations rule:

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 177

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

rm
al

iz
ed

 d
ai

ly
 p

ri
ce

XIJ
XRE

Figure 6.7: An example of two indices, Information Technology (XIJ) and Retail (XRE),
which do not form pair.

This rule was proposed by Herlemont (2004) to open a position when the ratio of

two stock/index prices hits the two rolling standard deviation and to close it when

the ratio returns to the mean. Generally, the position should not be opened when

the ratio breaks the two-standard-deviations limit for the first time, but rather when

it crosses it to reach to the mean again. This will avoid opening a position in a pair

with a wide spread. Figure 6.8 shows the entry/open and the closing positions, as

well as the limits (mean and two-standard-deviations).

2. Absolute distance rule:

This uses the absolute distance between the pair prices (Equation 6.3). The posi-

tions are taken on the basis of the value of this distance; if the absolute distance

AbsDist > t, where t is a predefined threshold, then a short sell position will be

appropriate on the overvalued stock and a long buy on the undervalued stock.

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 178

Time

Price

Profit

Entry point2 Std

Mean Closing point

Figure 6.8: Pairs Trading rules.

AbsDist = |nP t
i − nP t

j |, (6.3)

where nP t
i and nP t

j are the normalized prices at time t of stock i and j, respectively.

6.5 Summary and Conclusions

Pairs trading is an investment strategy that depends on the price divergence between a

pair of stocks. Essentially, the strategy involves choosing a pair of stocks that historically

move together, taking a long-short position if the prices of the pair diverge and reversing

the previous position when those prices converge. The rationales of pairs trading is to

make a profit and to avoid market risk. We have shown in this chapter a description of

state-of-the-art research conducted in finding pairs trading patterns. Since pairs trading

CHAPTER 6. PAIRS TRADING MINING USING SPARSEDTW 179

is useful to many investors, we have discussed the use of a similarity measure (DTW)

when finding stocks pairs. DTW is a superior similarity measure because of its ability to

capture the stock sequences.

We have shown the use of our algorithm SparseDTW, described in Chapter 5, in report-

ing all stock pairs from large stock-market data. SparseDTW can be combined with

lower bounding techniques that increase the search technique by reducing the number of

SparseDTW computations. The datasets used in this chapter are obtained from the ASX

on the basis of their suitability for our approach. The preparation process is set out in

Appendix C.

Chapter 7

Conclusion and Future Work

This chapter presents a summary and the implications of this research over different

domains. It provides additional research directions that could be extended in the

future.

7.1 Summary of the Research

Data mining refers to the extraction of knowledge from large amounts of data. It is an

analysis tool which can be combined with sophisticated mechanisms to analyze large

datasets. Data mining incorporates a variety of different techniques that aim to discover

diverse types of patterns from a given database, based on the requirements of the domain.

These techniques include association rules mining, classification, cluster analysis and

outlier detection.

Due to the wide-range of applications that deal with spatial, spatio-temporal (ST) and

time series data (TSD), we have conducted the research reported in this thesis. The

research was in four parts, each of which addressed a different problem.

180

CHAPTER 7. CONCLUSION AND FUTURE WORK 181

7.1.1 Mining Complex Co-location Rules

The widespread use of applications that produce large amounts of spatial data has moti-

vated many researchers to propose new tools for mining such data. The purpose of these

tools is to discover interesting knowledge that can contribute to the application domain by

adding new facts and proving existing facts. Many researchers have proposed interesting

tools to mine patterns that are hidden in large spatial databases. Several studies targeted

one type of spatial pattern, known as a “co-location pattern” – a group of objects, such as

galaxies, in which each object is located within a given distance of another object in the

group. Mining spatial co-location patterns is an important spatial data-mining task with

wide-ranging applications in areas such as public health, environmental management and

ecology (Huang et al., 2004). Co-location rules are defined as signs that specify the pres-

ence or absence of spatial features in the vicinity of other spatial objects. Examples of

such rules are given with more explanation in Chapter 3.

To mine such rules, the spatial data must first be transformed into a transactional-type

dataset, to allow the association rule mining technique to be applied. The transformation

is achieved by extracting co-location patterns (maximal clique patterns) from the raw

spatial data. A maximal clique pattern is one that does not appear as a subset of another

clique in the same co-location pattern. We focused on using maximal cliques to allow the

mining of interesting complex spatial relationships between the object types as discussed

in Chapter 3.

We have proposed an efficient algorithm (GridClique) that extracts maximal clique pat-

terns from a large spatial dataset (astronomy dataset). The GridClique algorithm is based

on a divide-and-conquer strategy that divides the space into grid structure and finds all

neighbors of each spatial object. It checks all neighbors against the co-location condi-

tions (i.e., that each object must be within a given distance of another). The extracted

CHAPTER 7. CONCLUSION AND FUTURE WORK 182

maximal clique patterns are used as raw data to the association rule mining technique,

where the maximal clique’s ID is considered as the transaction’s ID, and the maximal

clique’s members are the transaction items.

Previous research has not used the concept of maximal clique when mining complex

co-location rules. Our experiments, which were carried out on a real-life dataset ob-

tained from an astronomical source – the Sloan Digital Sky Survey (SDSS) – show that

our results are potentially valuable to the field of astronomy and can be interpreted and

compared easily in relation to existing knowledge.

7.1.2 Mining Complex Spatio-Temporal Patterns

The extensive availability of location-aware devices (such as GPS devices) promotes the

capture of the detailed movement trajectories of people, animals, vehicles and other mov-

ing objects, opening new opportunities for better understanding the processes involved.

The data generated is ST data, which contains the spatial evolution of objects over time.

Data mining research focuses on developing techniques to discover new ST patterns in

large repositories of ST data. We have focused on discovering fixed-subset flock pat-

terns (where objects are moving close together in coordination). Benkert et al. (2006) de-

scribed efficient approximation algorithms for reporting and detecting flocks. Their main

approach has an exponential dependency on the duration of the flock pattern. This mo-

tivated us to propose an approach that reduces this dependency. To accomplish this, we

have combined their approximation logarithm that reports flock patterns with a dimen-

sionality reduction technique (random projections). The random projections technique

generates a sparse random matrix that is used to project the original data into lower-

dimensional space, as described in Chapter 4. To the best of our knowledge, this is the

first time random projections have been used to reduce dimensionality in the ST setting

CHAPTER 7. CONCLUSION AND FUTURE WORK 183

presented in this thesis. We have proved that random projections will return the “correct”

answer with high probability. Our experiments on real-life, quasi-synthetic and synthetic

datasets strongly support our theoretical bounds.

7.1.3 Mining Large Time Series Data

Many applications, such as those in computational biology and economics, produce TSD.

The data generated by those applications continually grows in size, and places an in-

creased demand for developing tools that capture the similarities among them. An in-

teresting example of a real-life query, which can be answered by reporting the similarity

between sequences, is financial sequence matching, where investors plan to monitor the

movement of stock prices to obtain information about price-changing patterns or stocks

that have similar movement patterns. An example of such patterns in this sector is called

“pairs trading”, where investors search for knowledge to increase expected profit and

reduce expected loss.

Dynamic time warping (DTW) is a distance measure that allows sequences, which are of

different lengths, to be stretched along the time axis to minimize the distance between

them. Since TSD usually consists of sequences of different lengths, DTW has been used

as the underlying similarity measure in this research. Although DTW is a better similarity

measure, it has expensive space complexity, which leads to long computation times. This

has prompted many researchers to develop several techniques to increase its speed by

reducing the search space.

We have devised an efficient algorithm (SparseDTW) which exploits the possible exis-

tence of inherent similarity and correlation between the two time series whose DTW is

being computed. We always represent the warping matrix using sparse matrices, which

CHAPTER 7. CONCLUSION AND FUTURE WORK 184

lead to better average space complexity than other approaches. The SparseDTW tech-

nique can easily be used in conjunction with lower bounding approaches. We believe

that no previous technique has used the idea of sparse matrices to reduce the search

space. Our experiments show that SparseDTW gives exact results compared with other

techniques which give approximate or non optimal results.

7.1.4 Mining Pairs Trading Patterns

Many algorithms have focused on discovering useful patterns in stock market datasets.

One of the valuable patterns is called pairs trading; that is, a strategy that involves buy-

ing the undervalued stock and short-selling the overvalued one, thus maintaining market

neutrality. Investors need to watch stock price movements (changes) to find interesting

patterns that indicate an increased chance of making a profit. Reporting stocks (stock

pairs), that are correlated or that share a high level of similarity with each other, is a very

challenging problem.

This thesis has used DTW as the similarity measure due to its capability of capturing

the sequences’ shape. Previous approaches have never used DTW to mine similarities

between stock market data – specifically when mining pairs trading patterns. We believe

that we have achieved our main goal of accurately reporting all pairs trading patterns

from large daily TSD, such as stock market data. We have proposed a framework to find

pairs trading patterns in large stock market data efficiently. We have successfully applied

our proposed algorithm (SparseDTW), which we proposed to speed DTW, to report all

stocks pairs. Our experiments show that SparseDTW is a robust tool for mining pairs

trading patterns in TSD.

CHAPTER 7. CONCLUSION AND FUTURE WORK 185

7.2 Implications to Different Domains

This section describes the implications of the proposed approaches for different domains.

• A new algorithm (GridClique) is proposed for extracting complex co-location pat-

terns from large spatial dataset (astronomy dataset). This algorithm is the first of

its nature because it extracts complex maximal clique patterns to be used in min-

ing complex co-location rules. The GridClique algorithm has many potential uses

in diverse application areas where complex co-location rules may provide valuable

insights. Examples of these applications include: spatial data, climate and bioinfor-

matics analyses. In bioinformatics, the GridClique algorithm can be applied on the

Electron Microscopy Data Bank (EMDB) data to discover relationships between

nucleic acids and protein sequences.

• Another approach has been proposed to tackle the dimensionality curse in large

ST setting using the random projections technique. We have shown, for the first

time, that this approach produces “correct” results when extracting long-duration

flock patterns. The proposed approach which is used to mine long duration flock

patterns can be applied in many applications, such as moving object surveillance,

financial and ST applications.

• The SparseDTW algorithm as a technique to increase the speed of DTW by reduc-

ing its space complexity. The core idea of this algorithm is to dynamically exploit

the similarity and correlation between the two time series whose DTW is being

computed. This idea is the first of its kind that used to speed up DTW. In addi-

tion to the use of SparseDTW in mining pairs trading patterns, it can be used in

many other applications that generate TSD, such as networks fault management

and speech recognition.

CHAPTER 7. CONCLUSION AND FUTURE WORK 186

7.3 Future Work

This thesis has proposed several approaches to solve significant problems, suggesting

new research directions in three areas: spatial data mining (1 and 2), ST data mining (3

and 4), and TSD mining (5 and 6).

1. The GridClique algorithm can be modified to mine patterns such as stars and other

generic co-location patterns. This may allow for a different interpretation of the

complex co-location rules being mined.

2. One of the valuable directions to apply the GridClique algorithm is on the Electron

Microscopy Data Bank (EMDB) data, which contains experimentally determined

three-dimensional maps. The bank contains biological data including nucleic acid,

protein sequences and macromolecular structures. This could help scientists to

understand the relationship between protein sequences.

3. Our approach can be extended from mining long-duration flock patterns to mine

other patterns, such as convergence and encounter in large real-life ST data.

4. An interesting new direction of the flock mining approach is the use of association

rule mining type algorithms to discover novel flock-like patterns. For example, it

is known that if F is an (m, k, r)-flock then every subset of F of size m′ < m is

an (m′, k, r)-flock.

5. SparseDTW can be used for detecting outliers in large TSD, where the outliers

are defined as those patterns that have their DTW distance larger than a given

threshold.

6. A valuable research direction is to extend SparseDTW for streaming setting. The

aim would be to monitor TSD looking for predefined patterns. For example, using

SparseDTW for network fault management purposes or in stock market data where

noticeable price changes need to be reported.

Appendix A

Spatial Data Preparation

This appendix provides a comprehensive details about the data preparation steps

used to prepare the astronomy data – Sloan Digital Sky Survey (SDSS). This data

has been used when mining complex co-location rules (Chapter 3). Table A.1 provides

the notations used in this appendix.

A.1 Data Extraction

This section describes the method for extracting attributes from the SDSS Data Release

6 and using them to categorize galaxy objects. A view called SpecPhoto which is derived

from a table called SpecPhotoAll is used. The latter is a join between the PhotoObjAll and

SpecObjAll tables. In other words, SpecPhoto is view of joined Spectro and PhotoObjects

which contains only the clean spectra.

The concern is to extract only the galaxy objects from the SDSS using the parameter

(object type=0). The total number of galaxy type objects stored in the SDSS catalogue

is 507, 594. To ensure the accuracy for calculating the distance between objects and the

187

APPENDIX A. SPATIAL DATA PREPARATION 188

Symbol Description
parsec Unit of length used in astronomy. It stands for “parallax of one arc

second”
Mpc An abbreviation of “Mega-parsec”, which is one million parsecs, or

3261564 light years
arcmin Unit of angular measurement. Sizes of objects on the sky, field of view

of telescopes, or practically any angular distance “Arc of Minutes”
z RedShift
zWarning Parameter used to guarantee that the corrected RedShift values are used
zConf RedShift confidence
X X-coordinate
Y Y-coordinate
Z Z-coordinate
SDSS Sloan Digital Sky Survey
U Ultraviolet
R Red light magnitude
r-band r-band Petrosian magnitude
Ho Hubble’s constant
LRG Luminous Red Galaxies

Table A.1: Description of the notations used.

No Field name Field description
1. specObjID Unique ID
2. z Final RedShift
3. ra Right ascention
4. dec Declination
5. cx x of Normal unit vector
6. cy y of Normal unit vector
7. cz z of Normal unit vector
8. primTarget prime target categories
9. objType object type : Galaxy =0
10. modelMag u Ultraviolet magnitude
11. modelMag r Red Light magnitude

Table A.2: The SDSS schema used in this work.

earth, which leads to calculate the X, Y, and Z coordinates for each galaxy, number of

parameters are used, such as zConf < 0.95 (the rigid objects) and zWarning = 0

(correct RedShift). Therefore, the number of galaxy objects is reduced to 365, 425.

SDSS release DR6 provides a table called Neighbors. This table contains all objects

APPENDIX A. SPATIAL DATA PREPARATION 189

Figure A.1: The front end of the SDSS SkyServer. It provides an SQL search facilities to the
entire stored data.

that are located within 0.5 arcmins, this makes it not useful in this research because

there is no ability to choose any other distance greater than 0.5 arcmins to form the

neighborhood relationship between objects. For example, in our experiments (1, . . . , 5)

Mpc1 (distances) are used as the thresholds to check if objects are co-located or not.

Table A.2 lists the extracted fields from the SDSS (DR6) that have been used during the

preparation process.

The raw data was obtained from SDSS (DR6) (Survey, 2005). This data is extracted

from the online catalogue services using several SQL statements. The catalogue offers a

very elegant interface that allows users to extract easily the preferred data (Figure A.1).

The catalogue provides other tools that can be used to browse all tables and views in the

1See http://csep10.phys.utk.edu/astr162/lect/distances/distscales.html for details.

APPENDIX A. SPATIAL DATA PREPARATION 190

SDSS data. This catalogue is accessible from the SDSS website2.

The first SQL statement used to extract the first 65000 objects (galaxies) is as follows:

Select top 65000 specObjID, cx, cy,

cz, primTarget, z,

dbo.fObjTypeN(objType) as objType,

(299792.485 * z/71) as Mpc,

modelMag_u - modelMag_r as ’U-R’ modelMag_r

From specPhoto

Where z>0 and zConf>0.95 and zWarning=0

and objtype =0

Order by specObjID;

The second SQL statement used to extract the second 65000 objects starting from the last

object’s ID (119286486972497000) is as follows:

Select top 65000 specObjID, cx, cy,

cz, primTarget, z,

dbo.fObjTypeN(objType) as objType,

(299792.485 * z/71) as Mpc,

modelMag_u - modelMag_r as ’U-R’ modelMag_r

From specPhoto

Where z>0 and zConf>0.95 and zWarning=0

and objtype =0

and specObjID>119286486972497000

Order by specObjID;

2http://cas.sdss.org/dr6/en/tools/search/sql.asp

APPENDIX A. SPATIAL DATA PREPARATION 191

The second SQL statement is different from the first one by adding the a condition

specObjID > {lastID}. The reason behind extracting just 65000 objects is to be able

to handle them using Microsoft Excel 2003, which was used to cleaning to some records.

A.2 Data Transformation

The extracted data needs to be transformed into the right format before start mining it.

Transforming the data makes it accessible using Oracle10g, where we uploaded the data

into a normalized database. The use of the Oracle helps us in: (i) manipulating the

extracted data and report some statistics about it, (ii) eliminating the undesired fields

that we had to extract when we initially downloaded the data from the SDSS repository

and (iii) calculating the distance between galaxy objects and the earth. Few tables were

created to store the extracted data. We created number of stored procedures to categorize

galaxy objects and put the data into the right format.

A.3 New Attributes Creation

Having all necessary fields extracted, the next step is to calculate for each galaxy the

exact value of the X, Y , and Z coordinates that are not stored in the SDSS data. The

following steps show the process of calculating the coordinates of each galaxy:

1. Calculating the distance between the earth and galaxy objects using Hubble’s law

and redshift3 z value (Equation A.1).

D ≈ c× z
Ho

. (A.1)

3is a shift in the frequency of a photon toward lower energy, or longer wavelength.

APPENDIX A. SPATIAL DATA PREPARATION 192

Where c is the speed of light, z is the object RedShift, andHo is Hubble’s’ constant.

Currently the best estimate for this constant is 71 kms−1Mpc−1 (Spergel et al.,

1997; M. and Churchman, 2005).

2. Considering the extracted unit vectors cx, cy, and cz and multiplying them by D

that obtained form the previous step. Equations A.2, A.3 and A.4 used to calculate

the final value of X, Y and Z coordinates, respectively.

X = D × cx. (A.2)

Y = D × cy. (A.3)

Z = D × cz. (A.4)

A.4 Galaxies Categorization

Our purpose is to mine complex co-location rules in astronomy data. Therefore, we

have to add to our prepared data the galaxy types. More specifically, to use the asso-

ciation rule mining technique on the prepared data the galaxy type is used. If we go

back to the supermarket example {bread → cheese} rule, instead we use, for example,

{Galaxy type A → Galaxy type B}. This rule can be interpreted as the presence of

galaxy type A implies the presence of galaxy type B.

Galaxy types were not existed in the SDSS data. Therefore, we used several parameters

to find the galaxy objects types. That is performed as follows:

APPENDIX A. SPATIAL DATA PREPARATION 193

Object ID Object type X-Coordinate Y-Coordinate Z-Coordinate
1 LRG-Late 2.5 4.5 5.5
2 Main-Early 6 4 2.5
3 LRG-Early 2 9 11
4 Main-Late 1.5 3.5 3
5 LRG-Late 5 3 4.5
6 Main-Early 7 1.5 2.5

Table A.3: An example to show the final data after the preparation.

1. The difference between Ultraviolet U and Red light magnitude R, is used to cat-

egorize galaxy objects into either “Early” or “Late”. If the difference ≥ 2.22 the

galaxy is considered to be “Early”, otherwise “Late”.

2. The value of the r-band Petrosian magnitude indicates whether a galaxy is “Main”

(close to the earth) or “Luminous Red Galaxies” LRG (far away from the earth).

If r-band ≤ 17.77 the galaxy object is “Main”, otherwise it is LRG (Martin and

Saar, 2002).

Consequently, four galaxy types were found as a combination of the above mentioned

types. These categories are: Main-Late, Main-Early, LRG-Late, and LRG-Early.

A.5 Final Format of the Spatial Data

Table A.3 displays an example of the final format of the SDSS data after the pre-processing

process. This final format is used when mining maximal clique patterns, which are the

co-location patterns.

APPENDIX A. SPATIAL DATA PREPARATION 194

A.6 Summary

We have provided in this appendix the preparation process that was performed on the

spatial data that was extracted from the SDSS catalogue.

Appendix B

Spatio-Temporal Data Preparation

This appendix describes the pre-processing step (i.e. data preparation) applied on

the raw datasets that used in Chapter 4. The data was used for mining long dura-

tion flock patterns. Table B.1 lists all notations used in this appendix.

B.1 Spatio-Temporal (ST) data

We used both real-world datasets and synthetic datasets to demonstrate the efficiency of

our proposed approach. Table B.2 gives an example of the final format of the used ST

data.

B.1.1 Synthetic datasets

Twenty datasets with varying number of points, number of flocks and duration of flocks

were created. In particular, five datasets each of size 16K, 20K, 32K, 64K and 100K were

seeded with 32, 40, 64, 128 and 200 flocks respectively of duration (number of time step)

8, 16, 500 and 1000. The size of each flock was set to 50 entities and the radius was fixed

195

APPENDIX B. SPATIO-TEMPORAL DATA PREPARATION 196

Symbol Description
NDSSL Network Dynamics and Simulation Science Laboratory
RP Random Projection
PCA Principle Component Analysis
ST Spatio-Temporal
Xn×d Original dataset
Rn×κ Random matrix
rand(·) Function to generate random numbers between 0 and 1
princomp(·) Function to retrieve the principle Components of a matrix

Table B.1: Description of the notations used.

Object Location 1 Location 2 · · · Location 359
ID X Y X Y · · · X Y

13313 65.106 -139.317 65.228 -139.44 · · · 65.739 -139.481
13314 66.45 -139.169 66.453 -139.174 · · · 66.473 -139.254
17733 66.145 -139.668 67.143 -138.972 · · · 67.381 -138.951
17734 67.29 -137.994 67.542 -137.699 · · · 67.586 -137.592
17735 69.559 -141.56 69.571 -140.442 · · · 68.352 -138.041
18750 67.395 -138.79 67.429 -138.835 · · · 67.663 -138.471
18757 66.286 -138.502 66.535 -138.527 · · · 66.678 -138.833
18762 69.555 -141.49 69.538 -141.133 · · · 69.503 -139.771

Table B.2: An example of 8 caribou cow locations. This data is an example of the ST data
that we used in this thesis.

to 50 units. In the original data (before the random projection), each point coordinate

was selected from the integer interval [0, . . . , 216].

B.1.2 Real-world datasets

Three different real-world datasets were used in our experiments. These datasets were

generated by three different projects, namely, Network Dynamics and Simulation Science

Laboratory (NDSSL) (pan, 2006), Caribou Herd Satellite Collar Project (pch, 2007), and

Mobile Users profiles (Taheri and Zomaya, 2005).

When preparing the caribou data, we faced a problem, that is, trajectories are not of the

APPENDIX B. SPATIO-TEMPORAL DATA PREPARATION 197

same length. Therefore, we had to adjust the length of the short trajectories by repeating

the last location. Program B.1 displays the code used to put the Caribou data in the

desired ST format.

Program B.1 Preparing the Caribou dataset.

Data = Load unformatted caribou data.
IDs = All Caribou’s ID numbers
for i = 1 to //Number of IDs

RawData=[];
idx = find(Data(:,1)==IDs(i,1));
NumTimeSteps= size(idx,1);
RowData=[IDs(i,1)];
for j = 1 : NumTimeSteps

RawData = cat(2,RawData, Data(idx(j,1),2)); % Latitude
RawData = cat(2,RawData, Data(idx(j,1),3)); % Longitude

end
end
// Filling the gabs
n = Number of rows in RawData.
d = number of dimensions in RawData.
for i=1 to n

Zeroes = find(Data(i,:) == 0);
[r c] = size(Zeroes); % The size of the Zeroes matrix
NoRep = (col) - c;
x= Data(i,NoRep - 1);
y= Data(i,NoRep);
for j=NoRep+1 to d step 2

Data(i,j) = x;
Data(i,j+1) = y;

end % inner for
end % Outer for
Return(Data) // final format

Program B.2 shows the technique that used to prepare the NDSSL data. NDSSL data

contained originally a lot of missing locations in the middle of the trajectories. Therefore,

the missing locations had to be filled before using it in our method. This was conducted

in two steps:

APPENDIX B. SPATIO-TEMPORAL DATA PREPARATION 198

1. Filling the missing locations in the middle of the trajectory: We assumed that the

GPS was faulty and the object’s location was not sent. Hence the last location was

repeated to fill the missing location.

2. Making all trajectories of the same length: If a trajectory is short, we assumed

that the object stopped before finishing its trip, or the GPS device stopped send-

ing details because of some defects. To handle this we assumed that the object

stopped and thus the last location is repeated until the trajectory length is equal to

the longest trajectory.

B.2 Dimensionality Reduction Techniques

This section gives the pseudocode of the two dimensionality reduction techniques that

have been applied on the ST datasets. Algorithms B.1 and B.2 show the pseudocode of

RP and PCA techniques, respectively.

B.3 Summary

We have provided in this appendix the preparation process applied on the ST datasets as

well as the pseudocodes of the two techniques used to tackle the curse of dimensionality.

APPENDIX B. SPATIO-TEMPORAL DATA PREPARATION 199

Program B.2 Preparing the NDSSL dataset.

L= Locations;
A= Activities;
// get rid from the unwanted columns.
// We need Column #2 (Object ID) because it is unique,
// and Column#7.
// We need to find all locations
AA=cat(2,A(:,2),A(:,7));
m = max(AA(:,1));
// Obtain the maximum ID to be the limit of the iterations
// we need to find the location for each ID.
[rL cL]=size(L);
for i = 1 : m

idx=find(AA(:,1)==i);
[r c]=size(idx);
tempLocation=[];
tempLocation=i;
for j=1 : r

lID = AA(j,2);
if (lID <= rL)

X = round(L(lID,2));
tempLocation=cat(2,tempLocation,X);
Y = round(L(lID,3));
tempLocation=cat(2,tempLocation,Y);

end
end

end
Return(tempLocation);

APPENDIX B. SPATIO-TEMPORAL DATA PREPARATION 200

Algorithm B.1 The Random Projection pseudocode.
Input: Xn×d: Original data.

κ: number of desired dimensions.
Output: En×κ: Projected data.

1: X ⇐ Load the raw data.
2: d⇐ number of dimensions (X);
{Generating random matrix R.}

3: R⇐ zeroes(d, k); Initialize R with zeroes.
4: M ⇐ rand(d, k); This generates a matrix of entries between 0 and 1.
{Filling R based on Achlioptas (2003)}.

5: R(find(M > 5/6)) =
√

(3);
6: R(find(M < 1/6)) = −

√
(3);

7: E ⇐ X ×R.
8: return E

Algorithm B.2 The Principle Component Analysis (PCA) pseudocode.
Input: Xn×d: Original data.

κ: number of desired dimensions.
Output: En×κ: Projected data.

1: X ⇐ Load the raw data.
2: d⇐ number of dimensions (X);
3: SCORE ⇐ princomp(X);
{Get the highest number of vectors based on the value of κ.}

4: V ectors⇐ SCORE(:, 1 : κ);
5: E ⇐ V ectors;
6: return E

Appendix C

Time Series Data Preparation

This appendix illustrates the pre-processing step (i.e. data preparation) applied on

the time series datasets which were used in Chapter 5 and 6. Table C.1 lists the

notations used in this appendix.

C.1 Time Series Data

In this thesis, we were exposed to different applications that produce time series data.

Chapter 5 has given some information about some of these datasets. In this section we

will categorize the time series datasets into two groups on the basis of their sources,

namely, University of California - Riverside (UCR) and Australian Stock eXchange

(ASX) datasets.

C.1.1 UCR Data

Keogh (2006) has made a collection of time series datasets. These datasets are publicly

available from (Keogh, 2006). However, not all datasets were in the format that we are

201

APPENDIX C. TIME SERIES DATA PREPARATION 202

Symbol Description
SIRCA Securities Industry Research Centre of Asia-Pacific
ASX Australian Stock eXchange
UCR University of California - Riverside

Table C.1: Description of the notations used.

using. Therefore, some techniques were used to put it in the desired format such as

flipping the data from column data into row data in addition to deleting unwanted fields.

C.1.2 ASX Data

We managed to download the stock datasets from two different sources. The yahoo

finance1 and the Securities Industry Research Centre of Asia-Pacific (SIRCA)2, which is a

not-for-profit financial services research organization involving twenty-six collaborating

universities across Australia and New Zealand. From both sources we downloaded the

ASX data.

Program C.1 illustrates a script that used to download the stock/index data from yahoo

finance.

C.2 Summary

We have provided in this appendix the preparation process applied on the time series

datasets which used in mining complex time series patterns. We have categorized the

datasets into two groups based on their sources, namely, UCR and ASX data.

1http://au.finance.yahoo.com/
2http://www.sirca.org.au/

APPENDIX C. TIME SERIES DATA PREPARATION 203

Program C.1 AutoIt code to download stock market data.

; AutoIt version 3.0

;Run iexplorer.exe

Run("C:\Program Files\Internet Explorer\iexplore.exe")

Local $NumIndices = 50
;Declaring array

Dim $Indices[$NumIndices] = ["XAI","XAM","XBF",
"XCE","XRE",]

For $i = 0 to $NumIndices - 1
$OutPut="C:\Documents and Settings\Ghazi\Desktop\d\"
$OutPut&=$Indices[$i]
$OutPut&=".csv"
MsgBox(0, "We are downloading index=", $Indices[$i])
$TheURL="http://ichart.finance.yahoo.com/table.csv?s="
$TheURL&=$Indices[$i]
$TheURL&="&a=00&b=1&c=2000&d=11&e=31&f=2006&g=d&ignore=.csv"
InetGet($TheURL,$OutPut)

Next

Bibliography

Workshop on spatial data mining: Consolidation and renewed bearing. in conjunction

with SIAM-DM, June 2006. URL http://ndssl.vbi.vt.edu/opendata/.

Network dynamics and simulation science laboratory.

http://ndssl.vbi.vt.edu/opendata/index.html, July 2007. URL http://ndssl.

vbi.vt.edu/opendata/index.html.

Porcupine caribou herd satellite collar project. http://www.taiga.net/satellite/, July 2007.

URL http://www.taiga.net/satellite/.

The ireland story, November 2008. URL http://www.wesleyjohnston.com/

users/ireland/map_index.html.

Wildlife tracking projects with GPS GSM collars. http://www.environmental-

studies.de/projects/projects.html, August 2008. URL http://www.

environmental-studies.de/projects/projects.html.

John Aach and George M. Church. Aligning gene expression time series with time warp-

ing algorithms. Bioinformatics, 17(6):495–508, 2001.

Tamas Abraham and John F. Roddick. Discovering meta-rules in mining temporal and

spatio-temporal data. In Proceedings of the Eighth International Database Workshop,

Data Mining, Data Warehousing and Client/Server Databases (IDW), pages 30–41,

Hong Kong, 1997. Springer-Verlag.

204

http://ndssl.vbi.vt.edu/opendata/
http://ndssl.vbi.vt.edu/opendata/index.html
http://ndssl.vbi.vt.edu/opendata/index.html
http://www.taiga.net/satellite/
http://www.wesleyjohnston.com/users/ireland/map_index.html
http://www.wesleyjohnston.com/users/ireland/map_index.html
http://www.environmental-studies.de/projects/projects.html
http://www.environmental-studies.de/projects/projects.html

BIBLIOGRAPHY 205

Tamas Abraham and John F. Roddick. Survey of spatio-temporal databases. Geoin-

formatica, 3(1):61–99, 1999. ISSN 1384-6175. doi: http://dx.doi.org/10.1023/A:

1009800916313.

Dimitris Achlioptas. Database-friendly random projections. Journal of Computer Sys-

tem Science, 66(4):671–687, 2003. ISSN 0022-0000. doi: http://dx.doi.org/10.1016/

S0022-0000(03)00025-4.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules

in large databases. In Proceedings of the 20th International Conference on Very Large

Data Bases (VLDB), pages 487–499, San Francisco, CA, USA, 1994. Morgan Kauf-

mann Publishers Inc. ISBN 1-55860-153-8.

Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient similarity search in

sequence databases. In Proceedings of the 4th International Conference on Founda-

tions of Data Organization and Algorithms (FOD), pages 69–84, London, UK, 1993.

Springer-Verlag. ISBN 3-540-57301-1.

Ghazi Al-Naymat. Enumeration of maximal clique for mining spatial co-location pat-

terns. In Proceedings of the 6th ACS/IEEE International Conference on Computer

Systems and Applications (AICCSA), pages 126–133, Doha, Qatar, 2008.

Ghazi Al-Naymat and Sanjay Chawla. Data preparation for mining complex patterns in

large spatial databases. TR 576, University of Sydney, Sydney-Australia, November

2005.

Ghazi Al-Naymat and Javid Taheri. Effects of dimensionality reduction techniques on

time series similarity measurements. In Proceedings of the 6th ACS/IEEE International

Conference on Computer Systems and Applications (AICCSA), pages 393–397, Doha,

Qatar, 2008.

BIBLIOGRAPHY 206

Ghazi Al-Naymat, Sanjay Chawla, and Joachim Gudmundsson. Dimensionality reduc-

tion for long duration and complex spatio-temporal queries. TR 600, University of

Sydney, Sydney-Australia, October 2006.

Ghazi Al-Naymat, Sanjay Chawla, and Joachim Gudmundsson. Dimensionality reduc-

tion for long duration and complex spatio-temporal queries. In Proceedings of the 2007

ACM symposium on Applied computing (ACM SAC), pages 393–397. ACM Press,

2007. ISBN 1-59593-480-4. doi: http://doi.acm.org/10.1145/1244002.1244095.

Ghazi Al-Naymat, Sanjay Chawla, and Joachim Gudmundsson. Random projection for

mining long duration flock pattern in spatio-temporal datasets. To Appear in GeoIn-

formatica, 2008a.

Ghazi Al-Naymat, Javid Taheri, and Sanjay Chawla. SparseDTW: A novel approach to

speed up dynamic time warping. Data and Knowledge Engineering, 2008b.

Franklin Allen and Risto Karjalainen. Using genetic algorithms to find technical trading

rules1. Journal of Financial Economics, 51(2):245–271, February 1999. available at

http://ideas.repec.org/a/eee/jfinec/v51y1999i2p245-271.html.

Leonardo Angelini, F. De Carlo, C. Marangi, Mario Pellicoro, and Sebastiano Stramaglia.

Clustering data by inhomogeneous chaotic map lattices. Physical Review Letters, 85

(3):554–557, Jul 2000. doi: 10.1103/PhysRevLett.85.554.

Sanjeev Arora and Carsten Lund. Approximation algorithms for NP-hard problems,

chapter Hardness of approximations, pages 399–446. PWS Publishing Co., Boston,

MA, USA, 1997.

BIBLIOGRAPHY 207

Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust con-

cepts and random projection. In Proceedings of the 40th Annual Symposium on Foun-

dations of Computer Science (FOCS), pages 616–624, Washington, DC, USA, 1999.

IEEE Computer Society. ISBN 0-7695-0409-4.

Bavani Arunasalam, Sanjay Chawla, and Pei Sun. Striking two birds with one stone:

Simultaneous mining of positive and negative spatial patterns. In Proceedings of the

Fifth SIAM International Conference on Data Mining (SDM), pages 173–182, 2005.

Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y.

Wu. An optimal algorithm for approximate nearest searching fixed dimensions. The

Journal of the ACM (JACM), 45(6):891–923, 1998.

Yasuo Asakura and Eiji Hato. Tracking survey for individual travel behaviour using

mobile communication instruments. Transportation Research Part C: Emerging Tech-

nologies, 12(3-4):273–291, June 2004.

Nicolas Basalto, Roberto Bellotti, Francesco de Carlo, Paolo Facchi, and Saverio Pas-

cazio. Clustering stock market companies via chaotic map synchronization. Physica

A: Statistical Mechanics and its Applications, 345(1-2):196–206, 2004.

Peter N. Belhumeur, Jo ao P. Hespanha, and David J. Kriegman. Eigenfaces vs. fisher-

faces: Recognition using class specific linear projection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19:711–720, 1997.

Richard Bellman. Adaptive Control Processes. Princeton University Press, 1961.

Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Report-

ing flock patterns. In Proceedings of the 14th European Symposium on Algorithms

(ESA), volume 4168/2006 of Lecture Notes in Computer Science, pages 660–671.

BIBLIOGRAPHY 208

Springer Berlin / Heidelberg, 2006. doi: 10.1007/11841036. URL http://www.

springerlink.com/content/87626406v8410v7v/.

Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in

time series. In Association for the Advancement of Artificial Intelligence, Workshop on

Knowledge Discovery in Databases (AAAI), pages 229–248, 1994.

Donald J Berndt and James Clifford. Finding patterns in time series: A dynamic pro-

gramming approach. In Proceedings of the Advances in Knowledge Discovery and

Data Mining, pages 229–248, 1996.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: ap-

plications to image and text data. In Proceedings of the seventh ACM SIGKDD inter-

national conference on Knowledge discovery and data mining (KDD), pages 245–250.

ACM Press, 2001. ISBN 1-58113-391-X. doi: http://doi.acm.org/10.1145/502512.

502546.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, 2006.

Michael J. Black, Yaser Yacoob, Allan D. Jepson, and David J. Fleet. Learning parame-

terized models of image motion. In Proceedings of the 1997 Conference on Computer

Vision and Pattern Recognition (CVPR), pages 561–567, Washington, DC, USA, 1997.

IEEE Computer Society. ISBN 0-8186-7822-4.

Jaron Blackburn and Eraldo Ribeiro. Human Motion Understanding, Modeling, Capture

and Animation, volume 4814/2007 of Lecture Notes in Computer Science, chapter

Human Motion Recognition Using Isomap and Dynamic Time Warping, pages 285–

298. Springer Berlin / Heidelberg, November 2007.

http://www.springerlink.com/content/87626406v8410v7v/
http://www.springerlink.com/content/87626406v8410v7v/

BIBLIOGRAPHY 209

John S Boreczky and Lawrence A. Rowe. Comparison of video shot boundary detection

techniques. Journal of Electronic Imaging, 5(2):122–128, April 1996.

Kevin Buchin, Maike Buchin, and Joachim Gudmundsson. Detecting single file move-

ment. In Proceedings of the 16th ACM Conference on Advances in Geographic Infor-

mation Systems (ACM GIS), pages 288–297, 2008a.

Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Maarten Löffler, and Jun Luo.

Detecting commuting patterns by clustering subtrajectories. In Proceedings of the

19th International Symposium on Algorithms and Computation (ISAAC), volume 5369

of Lecture Notes in Computer Science, pages 644–655. Springer, 2008b.

Jeremy Buhler and Martin Tompa. Finding motifs using random projections. In Pro-

ceedings of the fifth annual international conference on Computational biology (RE-

COMB), pages 69–76, New York, NY, USA, 2001. ACM. ISBN 1-58113-353-7. doi:

http://doi.acm.org/10.1145/369133.369172.

EG Caiani, A Porta, G Baselli, M Turie, S Muzzupappa, Piemzzi, C Crema, A Malliani,

and S Cerutti. Warped-average template technique to track on a cycle-by-cycle basis

the cardiac filling phases on left ventricular volume. Computers in Cardiology, 5:

73–76, 1998.

Huiping Cao, Nikos Mamoulis, and David W. Cheung. Mining frequent spatio-temporal

sequential patterns. In Proceedings of the Fifth IEEE International Conference on

Data Mining (ICDM), pages 82–89, Washington, DC, USA, 2005. IEEE Computer

Society. ISBN 0-7695-2278-5. doi: http://dx.doi.org/10.1109/ICDM.2005.95.

Longbing Cao, Chao Luo, Jiarui Ni, Dan Luo, and Chengqi Zhang. Stock data min-

ing through fuzzy genetic algorithms. In Proceedings of the 9th Joint Conference on

Information Sciences (JCIS), Advances in Intelligent Systems Researc, 2006a.

BIBLIOGRAPHY 210

Longbing Cao, Dan Luo, and Chengqi Zhang. Fuzzy genetic algorithms for pairs mining.

In Proceedings of the 9th Pacific Rim International Conference on Artificial Intelli-

gence (PRICAI), volume 4099 of Lecture Notes in Computer Science, pages 711–720.

Springer Berlin / Heidelberg, 2006b.

Paolo Capitani and Paolo Ciaccia. Warping the time on data streams. Data and Knowl-

edge Engineering, 62(3):438–458, 2007. ISSN 0169-023X. doi: http://dx.doi.org/10.

1016/j.datak.2006.08.012.

Chris Chatfield. The Analysis of Time Series: An Introduction. CRC press, sixth edition,

2004.

An-Pin Chen, Sheng-Fuu Lin, and Yi-Chang Cheng. Time registration of two image

sequences by dynamic time warping. IEEE International Conference on Networking,

Sensing and Control, 1(21–23):418 – 423, March 2004.

Shu-Heng Chen. Genetic Algorithms and Genetic Programming in Computational Fi-

nance. Kluwer Academic, 2002.

Jin Cheqing, Xiong Fang, Huang Joshua Zhexue, Yu Jeffrey Xu, and Zhou Aoying. Min-

ing frequent items in spatio-temporal databases. Lecture Notes in Computer Science,

3129:549–558, 2004.

Benny Chor and Madhu Sudan. A geometric approach to betweenness. SIAM Journal

on Discrete Mathematics (SIDMA), 11(4):511–523, 1998. ISSN 0895-4801. doi: http:

//dx.doi.org/10.1137/S0895480195296221.

David A. Coley. An Introduction to Genetic Algorithms for Scientists and Engineers.

World scientific publishing co, 1999.

Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active appearance

BIBLIOGRAPHY 211

models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(6):681–

685, June 2001.

Steve Donoho. Early detection of insider trading in option markets. In Proceedings

of the tenth international conference on Knowledge discovery and data mining (ACM

SIGKDD), pages 420–429, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-

888-1. doi: http://doi.acm.org/10.1145/1014052.1014100.

Cedric du Mouza and Philippe Rigaux. Mobility patterns. GeoInformatica, 9(4):297–

319, December 2005.

Bertrand Dumont, Alain Boissy, C Achard, A Sibbald, and H.W. Erhard. Consistency of

animal order in spontaneous group movements allows the measurement of leadership

in a group of grazing heifers. Applied Animal Behaviour Science, 95(1–2):55–66,

2005.

Max Egenhofer. What’s special about spatial?: database requirements for vehicle naviga-

tion in geographic space. In Proceedings of the ACM SIGMOD international confer-

ence on Management of data (SIGMOD), pages 398–402, New York, NY, USA, 1993.

ACM Press. ISBN 0-89791-592-5. doi: http://doi.acm.org/10.1145/170035.170096.

Mahmoud Mohamed Abd Ellatif. Association rules technique to diagnosis financial per-

formance for ksa stock market companies, December 2007. URL http://ssrn.

com/abstract=899023.

David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun. The skip quadtree: A simple

dynamic data structure for multidimensional data. In Proceedings of ACM Symposium

on Computational Geometry (SCG), pages 296–305, Pisa, 2005. URL http://www.

citebase.org/abstract?id=oai:arXiv.org:cs/0507049.

http://ssrn.com/abstract=899023
http://ssrn.com/abstract=899023
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0507049
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0507049

BIBLIOGRAPHY 212

Christos Faloutsos, Mudumbai Ranganathan, and Yannis Manolopoulos. Fast subse-

quence matching in time-series databases. SIGMOD Record, 23(2):419–429, 1994.

ISSN 0163-5808. doi: http://doi.acm.org/10.1145/191843.191925.

Xiaoli Zhang Fern and Carla E. Brodley. Random projection for high dimensional data

clustering: A cluster ensemble approach. In Proceedings of the 20th International

Conference on Machine Learning (ICML), pages 186–193, August 2003.

Dmitriy Fradkin and David Madigan. Experiments with random projections for ma-

chine learning. In Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining (KDD), pages 517–522. ACM Press, 2003.

ISBN 1-58113-737-0. doi: http://doi.acm.org/10.1145/956750.956812.

Andrew Frank. Life and Motion of Socio-Economic Units, chapter 2: Socio-Economic

Units: Their Life and Motion, pages 21–34. Taylor & Francis, 2001.

Peter Frankl and Hiroshi Maehara. The johnson-lindenstrauss lemma and the sphericity

of some graphs. Journal of Combinatorial Theory Series A, 44(3):355–362, 1987.

ISSN 0097-3165.

Evan Gatev, William N. Goetzmann, and K. Geert Rouwenhorst. Pairs trading: Per-

formance of a relative-value arbitrage rule. Published by Oxford University Press on

behalf of The Society for Financial Studies, 19(3):797–827, February 2006.

Navin Goel, George Bebis, and Ara Nefian. Face recognition experiments with ran-

dom projection. In Proceedings of Society of Photo-Optical Instrumentation Engineers

Conference Series (SPIE), volume 5779, pages 426–437, Bellingham, WA, 2005.

Jim Gray, Don Slutz, Alex S. Szalay, Ani R. Thakar, Jan vandenBerg, Peter Z. Kunszt,

and Christopher Stoughton. Data mining the sdss skyserver database. Technical Report

MSR-TR-2002-01, Microsoft Research, 2002.

BIBLIOGRAPHY 213

Joachim Gudmundsson and Marc van Kreveld. Computing longest duration flocks in

trajectory data. In Proceedings of the 14th annual ACM international symposium on

Advances in geographic information systems (GIS), pages 35–42. ACM Press, 2006.

ISBN 1-59593-529-0. doi: http://doi.acm.org/10.1145/1183471.1183479.

Joachim Gudmundsson, Marc van Kreveld, and Bettina Speckmann. Efficient detection

of motion patterns in spatio-temporal data sets. GeoInformatica, 11(2):195–215, 2007.

Joachim Gudmundsson, Patrick Laube, and Thomas Wolle. Movement patterns in spatio-

temporal data. In Shashi Shekhar and Hui Xiong, editors, Encyclopedia of GIS, pages

726–732. Springer US, March 2008.

Ralf Hartmut Güting. An introduction to spatial database systems. The VLDB Journal, 3

(4):357–399, 1994. ISSN 1066-8888.

Ralf Hartmut Güting and Markus Schneider. Moving Objects Databases. Morgan Kauf-

mann, 2005.

Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig, Christian S. Jensen, Nikos A.

Lorentzos, Markus Schneider, and Michalis Vazirgiannis. A foundation for represent-

ing and querying moving objects. ACM Transactions on Database Systems (TODS),

25(1):1–42, 2000. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/352958.352963.

Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig, Christian S. Jensen, Nikos

Lorentzos, Enrico Nardelli, Markus Schneider, and Jose R.R. Viqueira. Spatio-

Temporal Databases: The CHOROCHRONOS Approach, volume Volume 2520/2003,

chapter 4: Spatio-temporal Models and Languages: An Approach Based on Data

Types, pages 117–176. Springer Berlin / Heidelberg, 2003.

Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan

Kaufmann, 2 edition, March 2006. ISBN 1-55860-901-6.

BIBLIOGRAPHY 214

Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate gen-

eration. In Proceedings of the International Conference on Management of Data

(ACM SIGMOD), pages 1–12. ACM Press, May 2000. ISBN 1-58113-218-2. URL

citeseer.ist.psu.edu/han99mining.html.

Daniel Herlemont. Pairs trading, convergence trading, cointegration, June 2004. URL

http://www.yats.com/doc/cointegration-en.pdf.

Dan Hirschberg. A linear space algorithm for computing maximal common subse-

quences. Communications of the ACM, 18(6):341–343, 1975. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/360825.360861.

Harold Hotelling. Analysis of a complex of statistical variables into principal compo-

nents. Journal of Educational Psychology, 24:417–441, 1933.

Yan Huang, Hui Xiong, Shashi Shekhar, and Jian Pei. Mining confident co-location

rules without a support threshold. In Proceedings of the ACM symposium on Applied

computing (ACM SAC), pages 497–501, New York, NY, USA, 2003. ACM. ISBN

1-58113-624-2. doi: http://doi.acm.org/10.1145/952532.952630.

Yan Huang, Shashi Shekhar, and Hui Xiong. Discovering spatial co-location patterns

from spatial data sets:a general approach. IEEE Transaction on Knowledge and Data

Engineering (TKDE), 16(2):1472–1485, 2004.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the

curse of dimensionality. In Proceedings of the 30th ACM Symposium on Theory of

Computing (STOC), pages 604–613. ACM Press, 1998.

Yoshiharu Ishikawa, Yuichi Tsukamoto, and Hiroyuki Kitagawa. Extracting mobility

statistics from indexed spatio-temporal datasets. In Second Workshop on Spatio-

Temporal Database Management (STDBM), pages 9–16, 2004.

citeseer.ist.psu.edu/han99mining.html
http://www.yats.com/doc/cointegration-en.pdf

BIBLIOGRAPHY 215

Fumitada Itakura. Minimum prediction residual principle applied to speech recognition.

IEEE Transactions on Acoustics, Speech and Signal Processing, 23(1):67–72, 1975.

Christian S. Jensen, Dan Lin, and Beng Chin Ooi. Continuous clustering of moving

objects. IEEE Transactions on Data Engineering, 19(9):1161–1174, 2007.

Mennis Jeremy and Liu Jun Wei. Mining association rules in spatio-temporal data: An

analysis of urban socioeconomic and land cover change. Transactions in GIS, 9(1):

5–17, 2005. ISSN j.1467-9671.2005.00202.x.

Hoyoung Jeung, Heng Tao Shen, and Xiaofang Zhou. Mining trajectory patterns using

hidden markov models. In Proceedings of the 9th International Conference on Data

Warehousing and Knowledge Discovery (DaWaK), volume 4654 of Lecture Notes in

Computer Science, pages 470–480, 2007.

Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian Jensen, and Heng Tao Shen.

Discovery of convoys in trajectory databases. In Proceedings of the 34th International

Conference on Very Large Data Bases (VLDB), pages 1068–1080. ACM Press, 2008.

William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a

hilbert space. In Conference in modern analysis and probability (New Haven, Conn.,

1982), pages 189–206. American Mathematical Society, 1982. doi: http://doi.acm.org/

10.1145/502512.502546.

Damon D. Judd. What’s so special about spatial data?, 2005.

Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters in

spatio-temporal data. In Proceedings of the 9th International Symposium on Advances

in Spatial and Temporal Databases (SSTD), pages 364–381, 2005.

Samuel Kaski. Dimensionality reduction by random mapping: Fast similarity compu-

tation for clustering. In Proceedigns of the International Joint Conference on Neural

BIBLIOGRAPHY 216

Networks (IJCNN), volume 1, pages 413–418, Piscataway, NJ, 1998. IEEE Service

Center. URL citeseer.ist.psu.edu/kaski98dimensionality.html.

Eamonn Keogh. The ucr time series data mining archive.

http://www.cs.ucr.edu/˜eamonn/TSDMA/index.html, Septemper 2006.

Eamonn Keogh and Michael Pazzani. Scaling up dynamic time warping for datamining

applications. In Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD), pages 285–289, New York, NY, USA,

2000. ACM Press. ISBN 1-58113-233-6. doi: http://doi.acm.org/10.1145/347090.

347153.

Eamonn Keogh and Chotirat Ratanamahatana. Exact indexing of dynamic time warping.

Knowledge and Information Systems (KIS), 7(3):358–386, 2004. ISSN 0219-1377.

doi: http://dx.doi.org/10.1007/s10115-004-0154-9.

Sang-Wook Kim, Sanghyun Park, and Wesley Chu. An index-based approach for sim-

ilarity search supporting time warping in large sequence databases. In Proceedings

of the 17th International Conference on Data Engineering (ICDE), pages 607–614,

Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1001-9.

Jon M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In

Proceedings of the twenty-ninth annual ACM symposium on Theory of computing

(STOC), pages 599–608, New York, NY, USA, 1997. ACM. ISBN 0-89791-888-6.

doi: http://doi.acm.org/10.1145/258533.258653.

George Kollios, Stan Sclaroff, and Margrit Betke. Motion mining: Discovering spatio-

temporal patterns in databases of human motion. In Workshop on Research Issues in

Data Mining and Knowledge Discovery (DMKD), 2001.

Krzysztof Koperski, Junas Adhikary, and Jiawei Han. Spatial data mining: Progress and

citeseer.ist.psu.edu/kaski98dimensionality.html

BIBLIOGRAPHY 217

challenges. In Proceedings of the SIGMOD Workshop on Research Issues on data

Mining and Knowledge Discovery (DMKD, pages 1–10, 1996.

Manolis Koubarakis, Yannis Theodoridis, and Timos Sellis. Spatio-Temporal Databases,

volume 2520/2003 of Lecture Notes in Computer Science, chapter 9: Spatio-temporal

Databases in the Years Ahead, pages 345–347. Springer Berlin / Heidelberg, 2003.

Z.M. Kovacs-Vajna. A fingerprint verification system based on triangular matching and

dynamic time warping. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 22(11):1266–1276, November 2000.

Boris Kovalerchuk and Evgenii Vityaev. Data Mining in Finance: Advances in Relational

and Hybrid Methods. Kluwer Academic Publishers, 2000.

Hans-Peter Kriegel. Knowledge discovery in spatial databases. 2005.

Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characterization of network-wide

anomalies in traffic flows. In Proceedings of the 4th ACM SIGCOMM conference on

Internet measurement (IMC), pages 201–206, New York, NY, USA, 2004a. ACM.

ISBN 1-58113-821-0. doi: http://doi.acm.org/10.1145/1028788.1028813.

Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide

traffic anomalies. In Proceedings of the 2004 conference on Applications, tech-

nologies, architectures, and protocols for computer communications (SIGCOMM),

pages 219–230, New York, NY, USA, 2004b. ACM. ISBN 1-58113-862-8. doi:

http://doi.acm.org/10.1145/1015467.1015492.

Patrick Laube and Stephan Imfeld. Analyzing relative motion within groups of track-

able moving point objects. In Proceedings of the second International Conference on

Geographic Information Science (GIS), pages 132–144. Springer-Verlag, 2002. ISBN

3-540-44253-7.

BIBLIOGRAPHY 218

Patrick Laube, Marc van Kreveld, and Stephan Imfeld. Finding REMO – detecting rel-

ative motion patterns in geospatial lifelines. In Proceedings of the eleventh Interna-

tional Symposium on Spatial Data Handling (SDH), pages 201–215. Springer Berlin

Heidelberg, 2004.

Ramon Lawrence. Using neural networks to forecast stock market prices, De-

cember 1997. URL http://www.cs.uiowa.edu/˜rlawrenc/research/

Papers/nn.pdf.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections.

In Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD), pages 287–296, New York, NY, USA, 2006. ACM.

ISBN 1-59593-339-5. doi: http://doi.acm.org/10.1145/1150402.1150436.

Li Lin, Longbing Cao, Jiaqi Wang, and Chengqi Zhang. The applications of genetic

algorithms in stock market data mining optimisation. Information and Communication

Technologies, 33:9, 2004.

Li Lin, Longbing Cao, and Chengqi Zhang. Genetic algorithms for robust optimization

in financial applications. In M.H. Hamza, editor, Computational Intelligence, 2005.

Bertis B. Little, Walter L. Johnston, Ashley C. Lovell, Roderick M. Rejesus, and Steve A.

Steed. Collusion in the u.s. crop insurance program: applied data mining. In Proceed-

ings of the eighth ACM SIGKDD international conference on Knowledge discovery

and data mining (KDD), pages 594–598, New York, NY, USA, 2002. ACM Press.

ISBN 1-58113-567-X. doi: http://doi.acm.org/10.1145/775047.775135.

Kun Liu and Jessica Ryan. Random projection-based multiplicative data perturbation

for privacy preserving distributed data mining. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 18(1):92–106, 2006. ISSN 1041-4347. doi: http://dx.doi.

org/10.1109/TKDE.2006.14. Senior Member-Hillol Kargupta.

http://www.cs.uiowa.edu/~rlawrenc/research/Papers/nn.pdf
http://www.cs.uiowa.edu/~rlawrenc/research/Papers/nn.pdf

BIBLIOGRAPHY 219

Ines Fernando Vega Lopez and Bongki Moon. Spatiotemporal aggregate computation: A

survey. IEEE Transactions on Knowledge and Data Engineering (TKDE), 17(2):271–

286, 2005. ISSN 1041-4347. doi: http://dx.doi.org/10.1109/TKDE.2005.34. Senior

Member-Richard T. Snodgrass.

Hongjun Lu, Jiawei Han, and Ling Feng. Stock movement prediction and n-dimensional

inter-transaction association rules. In ACM SIGMOD Workshop on Research Is-

sues on Data Mining and Knowledge Discovery (SIGMOD), pages 121–127, Seat-

tle,Washington, 1998.

Haynes M. and S. Churchman. Hubble’s law. http://map.gsfc.nasa.gov/, March 2005.

URL http://map.gsfc.nasa.gov/.

Scott Makeig, Marissa Westerfield, Jeanne Townsend, Tzyy-Ping Jung, Eric Courchesne,

and Terrence Sejnowski. Functionally independent components of early event-related

potentials in a visual spatial attention task. Philosophical Transaction of The Royal

Society: Bilogical Science, 354(1387):1135–1144, 1999.

Luis Malagón-Borja and Olac Fuentes. An object detection system using image recon-

struction with pca. In Proceedings of the 2nd Canadian conference on Computer and

Robot Vision (CRV), pages 2–8, Washington, DC, USA, 2005. IEEE Computer Society.

ISBN 0-7695-2319-6. doi: http://dx.doi.org/10.1109/CRV.2005.16.

Nikos Mamoulis, Huiping Cao, George Kollios, Marios Hadjieleftheriou, Yufei Tao, and

David W. Cheung. Mining, indexing, and querying historical spatiotemporal data.

In Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD), pages 236–245. ACM Press, 2004. ISBN 1-58113-

888-1. doi: http://doi.acm.org/10.1145/1014052.1014080.

Vicent Martin and Enn Saar. Statistics of the Galaxy Distribution. Chapman and

Hall/CRC, 2002. ISBN 1584880848.

http://map.gsfc.nasa.gov/

BIBLIOGRAPHY 220

Baback Moghaddam and Alex Sandy Pentland. Probabilistic visual learning for object

detection. In Proceedings of the Fifth International Conference on Computer Vision

(ICCV), pages 786–793, Washington, DC, USA, 1995. IEEE Computer Society. ISBN

0-8186-7042-8.

Yasuhiko Morimoto. Mining frequent neighboring class sets in spatial databases. In

Proceedings of the Seventh ACM SIGKDD international conference on Knowledge

discovery and data mining (KDD), pages 353–358. ACM Press, 2001.

Mario E. Munich and Pietro Perona. Continuous dynamic time warping for translation-

invariant curve alignment with applications to signature verification. In Proceedings

of the 8th IEEE International Conference on Computer Vision, pages 108–115, 1999.

Rob Munro, Sanjay Chawla, and Pei Sun. Complex spatial relationships. In Proceedings

of the 3rd IEEE International Conference on Data Mining (ICDM), pages 227–234.

IEEE Computer Society, 2003. ISBN 0-7695-1978-4.

Hiroshi Murase and Shree K. Nayar. Visual learning and recognition of 3-d objects from

appearance. International Journal of Computer Vision, 14(1):5–24, 1995. ISSN 0920-

5691. doi: http://dx.doi.org/10.1007/BF01421486.

Cory Myers, Lawrence R. Rabiner, and Aaron E. Rosenberg. Performance tradeoffs in

dynamic time warping algorithms for isolated word recognition. IEEE Transactions

on Acoustics, Speech and Signal Processing, 28(6):623–635, December 1980.

Keith Nesbitt and Stephen Barrass. Finding trading patterns in stock market data. IEEE

Computer Graphics and Applications, 24(5):45–55, 2004. ISSN 0272-1716. doi:

http://dx.doi.org/10.1109/MCG.2004.28.

Raymond Ng. Geographic Data Mining and Knowledge Discovery, chapter 9: Detecting

Outliers form Large Datasets, pages 218–235. Taylor & Francis, 2001.

BIBLIOGRAPHY 221

Nuria M. Oliver, Barbara Rosario, and Alex P. Pentland. A bayesian computer vision

system for modeling human interactions. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8):831–843, 2000. ISSN 0162-8828. doi: http://dx.doi.org/

10.1109/34.868684.

Hyun Kyoo Park, Jin Hyun Son, and Myoung-Ho Kim. An efficient spatiotemporal

indexing method for moving objects in mobile communication environments. In Pro-

ceedings of the 4th International Conference on Mobile Data Management (MDM),

pages 78–91, London, UK, 2003. Springer-Verlag. ISBN 3-540-00393-2.

Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel approaches in query

processing for moving object trajectories. In Proceedings of the 26th International

Conference on Very Large Data Bases (VLDB), pages 395–406, San Francisco, CA,

USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-715-3.

Gregory Piatetsky-Shapiro and William J. Frawley. Knowledge Discovery in Databases.

AAAI/MIT Press, 1991. ISBN 0-262-62080-4.

Yunyao Qu, Changzhou Wang, and X. Sean Wang. Supporting fast search in time series

for movement patterns in multiple scales. In Proceedings of the seventh international

conference on Information and knowledge management (CIKM), pages 251–258, New

York, NY, USA, 1998. ACM Press. ISBN 1-58113-061-9. doi: http://doi.acm.org/10.

1145/288627.288664.

Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition. Pren-

tice Hall Signal Processing Series, Upper Saddle River, NJ, USA, 1993. ISBN 0-13-

015157-2.

Davood Rafiei and Alberto Mendelzon. Efficient retrieval of similar time sequences

using dft. In Proceedings of the In Intertional Conference on Foundations of Data

Organization and Algorithms (FODO), pages 249–257, 1998.

BIBLIOGRAPHY 222

Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. Sensitivity of

pca for traffic anomaly detection. In Proceedings of the 2007 ACM SIGMETRICS in-

ternational conference on Measurement and modeling of computer systems (SIGMET-

RICS), pages 109–120, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-639-4.

doi: http://doi.acm.org/10.1145/1254882.1254895.

Ali A. Roshannejad and W. Kainz. Handling identities in spatio- temporal databases. In

Proceedings of the Twelfth International Symposium on Computer- Assisted Cartogra-

phy, pages 119–126, Charlotte, North Carolina, 1995.

Davide Roverso. Multivariate temporal classification by windowed wavelet decompo-

sition and recurrent neural networks. In Proceedings of the 3rd ANS International

Topical Meeting on Nuclear Plant Instrumentation, Control and Human-Machine In-

terface Technologies (NPIC and HMIT), 2000.

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spo-

ken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing,

26(1):43–49, 1978.

Yasushi Sakurai, Masatoshi Yoshikawa, and Christos Faloutsos. FTW: Fast similarity

search under the time warping distance. In Proceedings of the twenty-fourth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS),

pages 326–337, New York, NY, USA, 2005. ACM. ISBN 1-59593-062-0. doi: http:

//doi.acm.org/10.1145/1065167.1065210.

Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear time

and space. Intelligent Data Analysis, 11(5):561–580, 2007.

Hanan Samet. Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, 2006.

BIBLIOGRAPHY 223

David Sankoff and Joseph Kruskal. Time Warps, String Edits, and Macromolecules: The

Theory and Practice of Sequence Comparison. Addsion Wisely Press,, 1999.

Mohamad H. Saraee and Babis Theodoulidis. Knowledge discovery in temporal

databases. In IEE Colloquium on Digest No. 1995/021(A), pages 1–4. February 1995.

Matthew Schmill, Tim Oates, and Paul Cohen. Learned models for continuous plan-

ning. In The Seventh International Workshop on Artificial Intelligence and Statistics

(AISTATS), pages 278–282, 1999.

Shashi Shekhar and Yan Huang. Discovering spatial co-location patterns: A summary of

results. Lecture Notes in Computer Science, 2121:236–256, 2001. URL citeseer.

ifi.unizh.ch/shekhar01discovering.html.

Takeshi Shirabe. Correlation analysis of discrete motions. In Proceedings of the 4th

International Conference on Geographic Information Science (GIScience), pages 370–

382, 2006.

David Spergel, Michael Bolte, and Wendy Freedman. The age of the universe. Proceed-

ings of the National Academy of Science, 94(13):6579–6584, Jun 24 1997.

Barry Storey and Robert Holtom. The use of historic gps data in transport and traffic

monitoring. Traffic Engineering and Control, 44(10):376–379, November 2003.

Sloan Digital Sky Survey. Sdss - sloan digital sky survey. retrieved august 5, 2005 from

http://cas.sdss.org/dr3/en/help/download/, 2005.

Javid Taheri and Albert Y. Zomaya. Realistic simulations for studying mobility man-

agement problems. International Journal of Wireless and Mobile Computing, 1(8),

2005.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.

Pearson Addison-Wesley, 2006.

citeseer.ifi.unizh.ch/shekhar01discovering.html
citeseer.ifi.unizh.ch/shekhar01discovering.html

BIBLIOGRAPHY 224

Chunqiang Tang, Sandhya Dwarkadas, and Zhichen Xu. On scaling latent semantic in-

dexing for large peer-to-peer systems. In Proceedings of the 27th annual international

ACM SIGIR conference on Research and development in information retrieval (SI-

GIR), pages 112–121, New York, NY, USA, 2004. ACM. ISBN 1-58113-881-4. doi:

http://doi.acm.org/10.1145/1008992.1009014.

Yufei Tao and Dimitris Papadias. Mv3r-tree: A spatio-temporal access method for times-

tamp and interval queries. In Proceedings of the 27th International Conference on Very

Large Data Bases (VLDB), pages 431–440, San Francisco, CA, USA, 2001. Morgan

Kaufmann Publishers Inc. ISBN 1-55860-804-4.

Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias. Spatio-

temporal aggregation using sketches. In Proceedings of the 20th International Con-

ference on Data Engineering (ICDE), pages 214–225, Washington, DC, USA, 2004.

IEEE Computer Society. ISBN 0-7695-2065-0.

Charles C. Tappert and Subrata K. Das. Memory and time improvements in a dynamic

programming algorithm for matching speech patterns. IEEE Transactions on Acous-

tics, Speech and Signal Processing, 26(6):583–586, December 1978.

Bhavani Thuraisingham. Data Mining: Technologies, Techniques, Tools and Trends.

CRC Press, 1998. ISBN 0-8493-1815-7.

Yann Tremblay, Scott A. Shaffer, Shannon L. Fowler, Carey E. Kuhn, Birgitte I. Mc-

Donald, Michael J. Weiseand Charle-Andr Bostand Henri Weimerskirch, Daniel E.

Crocker, Michael E. Goebel, and Daniel P. Costa. Interpolation of animal tracking

data in a fluid environment. Journal of Experimental Biology, 209:128–140, 2006.

Ilias Tsoukatos and Dimitrios Gunopulos. Efficient mining of spatiotemporal patterns. In

Proceedings of the 7th International Symposium on Advances in Spatial and Temporal

BIBLIOGRAPHY 225

Databases (SSTD), pages 425–442, London, UK, 2001. Springer-Verlag. ISBN 3-540-

42301-X.

Thierry Urruty, Chabane Djeraba, and Dan A. Simovici. Clustering by random projec-

tions. In Advances in Data Mining. Theoretical Aspects and Applications, volume

4597/2007, pages 107–119. 2007.

Ronald Vanderlinden. Sunspot data. http://sidc.oma.be/html/sunspot.html, May 2008.

URL http://sidc.oma.be/html/sunspot.html.

Santosh Vempala. Random projection: A new approach to vlsi layout. In Proceedings of

the 39th Annual Symposium on Foundations of Computer Science (FOCS), pages 389–

396, Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-9172-7.

Florian Verhein and Ghazi Al-Naymat. Fast mining of complex spatial co-location pat-

terns using glimit. In The 2007 International Workshop on Spatial and Spatio-temporal

Data Mining (SSTDM) in cooperation with The 2007 IEEE International Conference

on Data Mining (ICDM), pages 679–684, Los Alamitos, CA, USA, 2007. IEEE Com-

puter Society. ISBN 0-7695-3033-8.

Florian Verhein and Sanjay Chawla. Geometrically inspired itemset mining. In Proceed-

ings of the International Conference on Data Mining (ICDM), pages 655–666. IEEE

Computer Society, 2006. URL http://doi.ieeecomputersociety.org/

10.1109/ICDM.2006.75.

Florian Verhein and Sanjay Chawla. Mining spatio-temporal patterns in object mobility

databases. Data Mining and Knowledge Discovery (DMKD), 16(1):5–38, February

2008.

Granapathy Vidyamurthy. Pairs Trading Quantitative Methods and Analysis. Wiley,

2004.

http://sidc.oma.be/html/sunspot.html
http://doi.ieeecomputersociety.org/10.1109/ICDM.2006.75
http://doi.ieeecomputersociety.org/10.1109/ICDM.2006.75

BIBLIOGRAPHY 226

Yida Wang, Ee-Peng Lim, and San-Yih Hwang. On mining group patterns of mobile

users. In Proceedings of the 14th International Conference on Database and eXpert

Systems Applications (DEXA), pages 287–296, Prague, September 2003.

ANDREAS S. WEIGEND. Data mining in finance: Report from the post-nncm-96 work-

shop on teaching computer intensive methods for financial modeling and data analysis.

In Proceedings of the Fourth International Conference on Neural Networks in the Cap-

ital Markets (NNCM), pages 399–412, 1996.

Halbert White. Economic prediction using neural networks: the case of IBM daily stock

returns. In IEEE International Conference on Neural Networks (ICNN), volume 2,

pages 451–458, 1988.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. The Morgan Kaufmann, 2000.

Jean Wolf, Stefan Schoenfelder, Marcelo Gurgel Simas de Oliveira, and Kay W Ax-

hausen. Eighty weeks of global positioning system traces: Approaches to enriching

trip information. Transportation Research Record: Journal of the Transportation Re-

search Board, 1870:46–54, January 2004.

Ouri Wolfson and Eduardo Mena. Spatial Databases: Technologies, Techniques and

Trends, chapter VIII Applications of Moving Objects Databases, pages 186–203. Idea

Group Publishing, 2004.

Ouri Wolfson, Bo Xu, Sam Chamberlain, and Liqin Jiang. Moving objects databases: Is-

sues and solutions. In Proceedings of the Tenth International Conference on Scientific

and Statistical Database Management (SSDBM), pages 111–122, 1998.

X. Xu, J. Han, and W. Lu. Rt-tree: an improved r-tree index structure for spatiotemporal

BIBLIOGRAPHY 227

databases. In In Proceedings of the 4th International Symposium on Spatial Data

Handling, volume 2, pages 1040–1049, Zurich, Switzerland, July 1990.

Byoung-Kee Yi, Hosagrahar V. Jagadish, and Christos Faloutsos. Efficient retrieval of

similar time sequences under time warping. In Proceedings of the Fourteenth Inter-

national Conference on Data Engineering (ICDE), pages 201–208, Washington, DC,

USA, 1998. IEEE Computer Society. ISBN 0-8186-8289-2.

Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

Xin Zhang, Nikos Mamoulis, David W. Cheung, and Yutao Shou. Fast mining of spa-

tial collocations. In Proceedings of the tenth ACM SIGKDD international conference

on Knowledge discovery and data mining (KDD), pages 384–393. ACM Press, 2004.

ISBN 1-58113-888-9.

Zhongfei (Mark) Zhang, John J. Salerno, and Philip S. Yu. Applying data mining

in investigating money laundering crimes. In Proceedings of the ninth interna-

tional conference on Knowledge discovery and data mining (ACM SIGKDD), pages

747–752, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-737-0. doi:

http://doi.acm.org/10.1145/956750.956851.

	Abstract
	State of Originality
	Dedication
	Quotation
	Supervision
	Acknowledgements
	Publications
	Glossary of Terms
	Acronyms
	Introduction
	Background and Rationale
	Mining Complex Co-location Rules (MCCRs)
	Mining Complex Spatio-temporal Patterns
	Mining Large Time Series Data
	Mining Pairs Trading Patterns

	Objectives and Contributions
	Mining Complex Co-location Rules
	Mining Complex Spatio-Temporal Patterns
	Mining Large Time Series Data
	Mining Pairs Trading Patterns

	Organization of the Thesis

	Related Work
	Data Mining Overview
	Overview of Databases
	Spatial Data
	Spatial Patterns Mining
	Spatial Challenges

	Spatio-Temporal Data
	Spatio-Temporal Applications
	Motion Patterns
	Spatio-Temporal Mining
	Spatio-Temporal Challenges

	The Curse of Dimensionality
	Dimensionality Reduction Techniques
	Principle Components Analysis (PCA)
	Random Projections (RP)

	Comparison of Dimensionality Reduction Techniques

	Time Series Data Mining
	Time Series Similarity Measures
	Euclidean Distance (EucDist)
	Euclidean Distance Limitations

	Dynamic Time Warping (DTW)
	DTW Features
	DTW Calculation
	DTW Applications
	DTW Complexity
	Speeding up DTW

	Longest Common Subsequence (LCSS)
	Comparison between Similarity Measures

	Summary and Conclusions

	Mining Complex Co-location Rules (MCCRs)
	Introduction
	Problem Statement
	Contributions

	Related Work
	Mining Complex Co-location Rules (MCCRs)
	Mining Maximal Cliques
	Basic Definitions and Concepts
	GridClique Algorithm
	GridClique Algorithm Analysis

	Extracting Complex Relationships
	Mining Interesting Complex Relationships

	Experiments and Results
	Experimental Setup
	Results
	Galaxy Types in Large Maximal Cliques
	Cliques Cardinalities
	GridClique Performance
	Association Rules Mining Performance
	Interesting Rules from SDSS

	Summary and Conclusions

	Mining Complex Spatio-Temporal Patterns
	Introduction
	Main Contribution and Scope

	Related Work
	Approximating Flock Patterns
	Previous Approach

	Random Projections
	A Theoretical Analysis
	Random Projection in a Database Management System

	Experiments, Results and Discussion
	Experimental setup and datasets
	Synthetic datasets
	Real world datasets

	Random Projection Parameters
	Assessment methods
	Results
	Synthetic dataset experiments:
	Real dataset results

	Random Projection (RP) and Principal Components Analysis (PCA)
	Principal Components Analysis (PCA)
	Comparison on a Synthetic Dataset
	Comparison on Real Datasets

	Summary and Conclusions

	Mining Complex Time Series Patterns
	Introduction
	Main Contribution

	Related Work
	Dynamic Time Warping (DTW)
	Global Constraint (BandDTW)
	Divide and Conquer Technique (DC)
	Sparse Dynamic Programming Approach
	Key Concepts
	SparseDTW Algorithm
	SparseDTW Complexity

	Experiments, Results and Analysis
	Experimental Setup
	Datasets
	Discussion and Analysis
	Elapsed Time
	SparseDTW Accuracy

	Summary and Conclusions

	Pairs Trading Mining using SparseDTW
	Introduction
	Problem Statement
	Contributions
	Key Concepts

	Related Work
	Pairs Trading Framework
	Finding Pairs Trading Approach
	Preprocessing Stock Data
	Choosing a Proper Similarity Measure
	Report Stock Pairs
	Trading Process (TP)

	Summary and Conclusions

	Conclusion and Future Work
	Summary of the Research
	Mining Complex Co-location Rules
	Mining Complex Spatio-Temporal Patterns
	Mining Large Time Series Data
	Mining Pairs Trading Patterns

	Implications to Different Domains
	Future Work

	Spatial Data Preparation
	Data Extraction
	Data Transformation
	New Attributes Creation
	Galaxies Categorization
	Final Format of the Spatial Data
	Summary

	Spatio-Temporal Data Preparation
	Spatio-Temporal (ST) data
	Synthetic datasets
	Real-world datasets

	Dimensionality Reduction Techniques
	Summary

	Time Series Data Preparation
	Time Series Data
	UCR Data
	ASX Data

	Summary

	Bibliography

