View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CiteSeerX

Proceedings of the ASME 2008 International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference
IDETC/CIE 2008
August 3-6, 2008, Brooklyn, New York, USA

DETC2008-49669

A COMPREHENSIVE METRIC FOR COMPARING TIME HISTORIES IN VALIDATION
OF SIMULATION MODELS WITH EMPHASIS ON VEHICLE SAFETY APPLICATIONS

H. Sarin, M. Kokkolaras; G. Hulbert, P. Papalambros

{harshit,mk, hulbert, pyp}Qumich.edu

Department of Mechanical Engineering
The University of Michigan, Ann Arbor

ABSTRACT

Computer modeling and simulation are the cornerstones
of product design and development in the automotive industry.
Computer-aided engineering tools have improved to the extent
that virtual testing may lead to significant reduction in prototype
building and testing of vehicle designs. In order to make this
a reality, we need to assess our confidence in the predictive ca-
pabilities of simulation models. As a first step in this direction,
this paper deals with developing a metric to compare time histo-
ries that are outputs of simulation models to time histories from
experimental tests with emphasis on vehicle safety applications.
We focus on quantifying discrepancy between time histories as
the latter constitute the predominant form of responses of inter-
est in vehicle safety considerations. First we evaluate popular
measures used to quantify discrepancy between time histories
in fields such as statistics, computational mechanics, signal pro-
cessing, and data mining. Then we propose a structured combi-
nation of some of these measures and define a comprehensive
metric that encapsulates the important aspects of time history
comparison. The new metric classifies error components asso-
ciated with three physically meaningful characteristics (phase,
magnitude and topology), and utilizes norms, cross-correlation
measures and algorithms such as dynamic time warping to quan-
tify discrepancies. Two case studies demonstrate that the pro-
posed metric seems to be more consistent than existing metrics.
It is also shown how the metric can be used in conjunction with
ratings from subject matter experts to build regression-based val-
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idation models.

1 Introduction

Vehicle safety has become a major concern in modern so-
ciety. Automotive manufacturers have to meet several regula-
tions and mandatory Federal Motor Vehicle Safety Standards
(FMVSS). Additionally, consumer information programs such
as the New Car Assessment Program (NCAP) and the Insurance
Institute of Highway Safety (ITHS) impose further requirements
for vehicle safety. Currently, testing whether these requirements
are satisfied is conducted through numerous, costly and time-
consuming physical experiments.

Computer modeling and simulation-based methods for vir-
tual vehicle safety analysis and design verification could make
this process more cost-efficient. Moreover, virtual testing (VT)
can improve real-world vehicle safety beyond regulatory require-
ments since computer predictions can be used to extend the range
of protection to real-world crash conditions at speeds and config-
urations not addressed by current regulations.

To achieve the promises of VT, computer predictions need
verification and validation (V&V), so that the designs obtained
using simulation models can be cleared for production with min-
imized prototype testing. The AIAA guide for verification and
validation of computational fluid dynamics simulations defines
verification and validation as follows [1].

Verification is the process of determining that a model implemen-
tation accurately represents the developer’s conceptual descrip-
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tion of the model and the solution to the model.

Validation is the process of determining the degree to which a
model is an accurate representation of the real world from the
perspective of the intended uses of the model.

The American Society of Mechanical Engineers Standards
Committee on verification and validation in computational solid
mechanics describes model validation as a two step process [2]:
1. Quantitatively comparing the computational and experimen-
tal results for the response of interest.

2. Determining whether there is acceptable agreement between
the model and the experiment for the intended use of the model.
Moreover, Oberkampf and Barone proposed in [3] six proper-
ties that a validation metric should satisfy. These six properties
form a generic guideline and act as a set of requirements for the
development of a new validation metric.

A comprehensive metric for measuring the discrepancy be-
tween simulation model responses represented by time histories
is necessary to accomplish the first step of the validation process
as defined above. In this paper, we review existing metrics and
discuss their advantages and limitations. We then propose a new
metric that is based on components associated with three phys-
ically meaningful error characteristics: phase, magnitude and
topology. The proposed metric utilizes measures such as cross-
correlation and L; norm and algorithms such as dynamic time
warping to quantify the discrepancy between time histories. We
use two vehicle safety case studies to demonstrate that the pro-
posed metric seems to be more consistent than existing metrics.
We then show how the metric can be used to build regression-
based validation models in cases where subject matter expert data
are available.

2 Review of selected metrics and algorithms

In this section we review popular metrics and algorithms
used currently to quantify discrepancies between time histories
in various fields such as voice, signature or pattern recognition,
computational mechanics, data mining and operations research.
We review these metrics with respect to their advantages and dis-
advantages in order to propose a new comprehensive metric that
utilizes strengths and avoids weaknesses of existing tools and
techniques. We provide references only for the less commonly
used metrics.

To illustrate some limitations of the reviewed metrics, we
consider an example with three time histories that shall be re-
ferred to as “test 17, “test 2” and “test 3.” Time histories test 2
and test 3 are compared to test 1 to determine which one has
the smallest discrepancy and is thus the best prediction of test 1
(Figure 1).

Figure 1. Time history examples

2.1 Vector norms

When time histories are discretized (i.e., finite-dimensional),
the most popular measure for quantifying their difference is to
use vector norms. Assuming two time history vectors A and B of
equal size N, the L, norm of the difference of the two is

P

N
lA=Bll,={Y la—bl"]| . (1)
i=1

The three most popular norms are L;, L, (Euclidean) and L.
The results obtained when using these three norms for measuring
the discrepancy between test 1 and test 2 and test 1 and test 3
are presented in Table 1, and confirm the known fact that norm
choice may lead to different conclusions: One would conclude
that test 2 is “closer” to test 1 when using the L; and and L.
norms, while the use of the L, norm would lead to the conclusion
that test 3 is in fact closer to test 1. The major limitation of using
norms (and the reason of the illustrated differences) is that they
are not capable of distinguishing error due to phase from error
due to magnitude. Even with this limitation, norms form the
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Table 1. Results for the L1, L, and L., norms

Norm | test 1 and test 2 | test 1 and test 3

Ly 0.3 0.45
L 0.6 0.58
L 0.82 0.85

foundation for quantifying discrepancy between time histories.

2.2 Average residual and its standard deviation
The average residual measures the mean difference between
two time histories:

R =i=1\% " 7i) 2)

A distinct disadvantage is that positive and negative differences
at various points may cancel each other out. The standard de-
viation of residuals is defined as the square root of the sample
variance of the residuals:

3)

Syo1=

where R,’ = (a,' — b,’).
The results for the time history examples shown in Figure 1
are presented in Table 2. The results cannot lead to conclusive

Table 2. Results for average residual and its standard deviation

Measure | test 1 and test 2 | test 1 and test 3

R 0.8 3.85
Sn—1 7.7 6.4

statements regarding which test (2 or 3) is closer to test 1, as
the measures of average residual and its standard deviation are
conflicting.

2.3 Coefficient of correlation and cross-correlation
The coefficient of correlation is a measure that indicates the
extent of linear relationship between two time histories, i.e., to
what extent can A be represented as mB + c¢. The coefficient of
correlation can range from —1 to +1. The value of 41 represents
a perfect positive linear relationship between the time histories,

which implies that they are both identical in topology (or shape!).
A value of —1 would indicate a perfect negative linear relation
which would indicate that the two time histories are mirror im-
ages of each other. The coefficient of correlation is computed
as

o @b
\/):?/:1 (a;—a)2 L)L, (bi —b)?

“

The square of the coefficient of correlation is called the coeffi-
cient of determination and is commonly known as R-square.
The results of applying this measure to the previous time
history examples are presented in Table 3, and indicate that test
3 is better correlated to test 1 than test 2. However, the R-

Table 3. Results for coefficient of correlation and R-square

Measure | test 1 and test2 | test 1 and test 3
p 0.5 0.6
R-square 0.25 0.36

square values for test 2 and test 3 are very low and hence neither
seems to be close to test 1. This is mainly because these measures
are sensitive to phase difference and cannot distinguish between
error due to phase from error due to magnitude.

A modification to the concept of coefficient of correlation
used in signal processing is called cross-correlation. It is some-
times called the sliding dot product, and has applications in the
fields of pattern recognition and cryptanalysis. It can be used
to measure the phase lag between two time histories. Cross-
correlation is a series defined as
(N =) X" aibien = X" @i LY bicn

V- EY @ (25 )\ - m) B (2 b

p(n) = =

5
forn=0,1,...,N— 1. To compute the phase difference between
two time histories we determine the maximum value p(n,); n.
would then be a measure for phase lag. This concept has been
used by Liu et al. [4] and Gu and Yang [5], and is also included
as a metric in ADVISER, a commercial software package that
contains a simulation model quality rating module[6, 7], for ve-
hicle safety applications.

2.4 Sprague and Geers (S&G) metric

Geers proposed an error measure for comparing time histo-
ries that combined the errors due to magnitude and phase differ-
ences [8]. Recently, Sprague and Geers updated the phase error

'We use the terms topology and shape interchangeably.
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portion of the metric [9, 10]. The error in magnitude and phase
are computed for the time histories by using Equations (6) and
(7), respectively. The combined error Csg is then used to pro-
vide an overall error measure between the two time histories.

WYaa
M =,/——1 6
S&G = V3B (6)

Psgc = %00871 (WAB> @)

VaaVBB

CsaG = \/Migg+ Pieg - (3

where

N 2 N 2
YV at Y b?
Yaa = 7;\} - V= i1 by VaB =

YV aib;
==

The results of applying the S&G metric to the time history
examples are presented in Table 4. The S&G metric quantifies a
lower magnitude error for test 2 and a lower phase error for test
3. The combined error is lower for test 2, indicating that test 2 is
closer to test 1 than test 3. The limitation of the S&G metric is
that it is not symmetric. The results depend on the time history
that is used as a reference in Equation (6).

Table 4. Results for S&G metric

tlvst2 | t2vstl | t1vst3 | t3vstl

Msgc | 0.0824 | -0.0761 0.6745 -0.4028
Psgc | 0.2014 0.2014 0.1744 0.1744
Csgc | 0.2176 0.2153 0.6967 0.4389

The separation of the error into magnitude and phase com-
ponents is an advantage when more detailed investigation of the
error sources is necessary. But, the metric lumps the entire in-
formation of the time histories into W44, WYpp and yyp. Conse-
quently, this metric cannot consider the shape of the time his-
tories. This limitation is illustrated by the example in Figure 2:
The two simple time histories have the same value for Y44 and
ypp but differ from each other in magnitude, phase and shape.
Even though there exists an error in magnitude, the S&G metric
quantifies it as zero.

Figure 2. Failure of S&G metric to quantify error due to magnitude

2.5 Russell’'s error measure

Russell proposed a set of magnitude, phase and comprehen-
sive error measures to provide a robust means for quantifying the
difference between time histories [11, 12]. The metric is simi-
lar to the S&G metric with a modification in the magnitude error
factor. The magnitude error factor is defined such that it has ap-
proximately the same scale as the phase error when there exists
an order-of-magnitude difference in amplitude of the responses.
These are then combined to form the comprehensive error facto,
similar to the S&G metric. The magnitude error factor is given

by
) NC)

Even though Russell’s error measure overcomes the limitation of
asymmetry as observed in the S&G metric, it still fails in identi-
fying and quantifying the magnitude error of the example shown
in Figure 2.

WYaa — VBB
V' VAAVBB

Mg = sign(yas — ypp)log"” (1 + ‘

2.6 Normalized Integral Square Error (NISE)

The Normalized Integral Square Error (NISE) is used to
quantify the difference between acceleration histories from re-
peated tests, e.g., see [13]. It measures the difference between
two time histories and is related in principle to the concept of
cross-correlation. It considers three aspects: phase shift, ampli-
tude (magnitude) difference and shape difference.

It uses the cross-correlation principle from Section 2.3 to
compute n,. It then shifts one of the time histories (A or B) rel-
ative to the other by n, “steps” to compensate for the error in
phase. The quantity Wag(n.) is computed after this adjustment.
The equations for the phase, magnitude and shape error are given
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in (10), (11) and (12), respectively.

2yap(ne) —2Wap

Puise = (10
NISE Yaa + VBB )
2yap(n.)
M, =p(ny) — ——= 11
NisE = P(n.) Vir+Vas (1)
Snise =1 —p(n.) (12)
The overall NISE for two time histories is given by
Cnise = Pnise +Mnise + Snise = 1 — Zwi~ (13)
Yaa + VaB

Even though NISE accounts for error in shape, it can be ob-
served that the overall measure (Cyssg) is independent of p(n,)
and hence does not account for the effect of shape.

2.7 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) is an algorithm for measur-
ing discrepancy between time histories and was first used in con-
text with speech recognition in the 1960’s [14]. Since then, it
has been used in a variety of applications: computer vision (e.g.,
[15]), data mining (e.g., [16]), signature matching (e.g., [17]),
and polygonal shape matching (e.g., [18]).

The ability of time warping measurement to identify that two
time histories with time shifts are a “match,” makes it an impor-
tant similarity identification technique [19] in speech recogni-
tion, since human speech consists of varying durations and paces.
The time warping technique aligns peaks and valleys as much
as possible by expanding and compressing the time axis accord-
ingly [20].

The definition of DTW is based on the notion of a warping
path. Let d be the N x N matrix of pairwise squared distances
between the components of A and B: d[i,j] = (a; — b;)* (see
Figure 3). The matrix d is called the cost matrix. The function
used to calculate the value for each cell of d is called the cost
function (in this example, the cost function is (a; — b;)?; filled
matrix entries represent cost of considered steps while non-filled
entries are not considered as a step option). A warping path
W = (wi,wy,...,wg) is a sequence of K(N < K < 2N —1)
matrix cells, wy = [ig, ji] (1 < ig, jx < N), such that the following
conditions are satisfied:

Boundary conditions: wy = [1, 1] and wg = [N,N], i.e., W starts
in the lower-left cell and ends in the upper right cell.

| LSS
I \A/ B

N
N
s
N
h N
o

Figure 3. Warping path example

Continuity: given wy_| = [ik—lajk—l] and w, = [ik,jk], then
i —ir—1 <l and ji — jx—1 < 1. This ensures that the cells of the
warping path are adjacent.

Monotonicity: given wi_y = [ix_1, ji—1] and wg = [ix, ji], then
ir —ir—1 > 0and ji — jr—1 > 0, with at least one strict inequality.
This forces W to progress over time.

Any warping path W defines an alignment between A and
B and, consequently, a cost to align the two time histories. The
squared DTW distance is the minimum of such costs, i.e., the
cost of the optimal warping path W,;:

(DTW(A,B) =min ¥ dlic.j)= ¥

lig.jx|€eW [k jk|EWopr

dlig, ji] (14)

The DTW distance can be recursively computed using an O(NZ)
dynamic programming approach that fills the cells of a cumula-
tive cost matrix D using the recurrence relation

D[laj] = d[laj] +mln(D[l_ L,j— 1]aD[i_ 17j]7D[ivj_ 1])
s)
and setting DTW (A, B) = \/D[N,N].

Using the cost function defined in the previous example, the
DTW distance for test 2 and test 3 was 786 and 5636, respec-
tively: Test 2 seems to be a closer representation of test 1.

The advantage associated with DTW is its capability to map
many-to-one or one-to-many points relative to the Euclidean
norm or the coefficient of correlation, which map one-to-one
[21].

One of the concerns about the use of DTW distance is that
it does not satisfy the triangle inequality, i.e., DTW(A,B) +
DTW (B,X) is not always > DTW(A,X). Hence, it cannot be
treated as a metric [22]. Moreover, DTW computation can
be a time consuming operation due to the recursive dynamic
programming approach discussed earlier. Modifications like
Stream-DTW [23], Regression Time Warping [21] and Vector
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Quantization-DTW [17] have been proposed to reduce the com-
putational time of DTW at the expense of accuracy.

3 Proposed metric

Several measures used to quantify discrepancy (or error) be-
tween time histories have been discussed in the previous sec-
tion. Each of them has its own advantages and limitations. The
problem in quantifying error associated with three major features
(phase, magnitude and topology) separately is that there exists a
strong interaction among them. For example, to quantify the er-
ror associated with magnitude, the presence of a phase difference
between the time histories may result in a misleading measure-
ment. Thus, it is important to minimize the influence of the other
two features when quantifying the error due to the third one.

In this section we propose a new metric by combining ex-
isting measures and algorithms to achieve independent measures
for phase, magnitude and topology. The magnitude and phase
error components are discussed adequately in the literature. We
introduce a third component, the topology component to quan-
tify error due to difference in number of peaks and valleys in the
time histories.

The three aforementioned error components quantify the
overall (or global) discrepancy between time histories. In certain
applications, it may be beneficial to also distinguish error asso-
ciated with localized areas of interest in the time histories. Such
“target points” consider only a part of the entire time history and
do not indicate an overall performance of the time history. When
quantifying target point errors, we consider magnitude and phase
only.

3.1 Phase error

To quantify the error due to phase, we considered the phase
measure used by S&G and Russell in their metric (Equation (7))
and the cross-correlation technique presented in Section 2.3. The
geometric interpretation of the S&G phase measure is related to
the correlation coefficient. The cross-correlation based method
for quantifying error in phase (used in [24]) shifts one of the
time histories in order to maximize the correlation coefficient.
This shift is considered to be the measure for error in phase.

We compared the performance of the cross-correlation
method versus the S&G phase error, and concluded that the
cross-correlation method has greater potential. An example to
illustrate this is presented in Figure 4. It is evident that there ex-
ists a much larger phase difference between the CAE-1 and Test
time histories than between the CAE-2 and Test time histories.
However, the S&G phase error quantification was identical for
both cases. The cross-correlation quantification, however, was
able to distinguish between the two cases. Thus, we will use
the cross-correlation technique to quantify error in phase in our
metric.

Figure 4. Example to compare S&G phase measure to cross-correlation

If we consider the number of time steps shifted n, as the
measure for phase error, we essentially consider a linear penalty.
In most practical cases, small time step differences are treated as
local errors, and need not be penalized at the same rate as large
time step differences. In order to account for this, we propose a
penalty function that can be modified and tuned to suit a particu-
lar application:

Errorppese = e(@), (16)

where ¢ and r are parameters that define the rise start point and
rate of increase for the function.

3.2 Magnitude error

To quantify the error only associated with magnitude, we
need to first minimize the discrepancy between the time histories
caused by error in phase and topology. We can compensate for
global time shift by shifting the time history by the number of
steps (n,) computed in Section 3.1. The resultant time histories
after time shift are referred to as time-shifted histories and are
represented by A™ and B'S. However, time-shifted histories may
still exhibit local “timing” errors. Moreover, errors due to dif-
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ference in slope should not be treated as magnitude errors. To

address these issues, we use Dynamic Time Warping (DTW).
The cost function for warping is defined such to penalize for

distance and difference in slope between the two points:

dA® dB"
P ts _ pts 2 1) E— I
d[l7]] - ((al b] ) + (tl tj) ) ( dt )tl,‘ ( dt )ttj

A7)

This ensures the mapping of a point to the closest point having
similar slope on the other time history.

Figure 5 depicts two time history examples before and af-

ter warping. The warped time histories are now represented as

Figure 5. lllustration of effect of warping on time histories

Alstv] and BIstY Tt can be observed that warping minimizes
the local phase and topology effects. We then use the L; on the
warped time shifted histories to isolate the relative magnitude er-
ror between the two time histories:

H Altstw] _ gles+w] H

L (18)

Errormagnitude = ” Blts+w] ||
1

3.3 Topology error

Topology error is a measure of discrepancy in the shape of
the two time histories. The topology of a time history could be
classified by the number of times the curve crosses the mean
magnitude value. To provide a more local measure of topology,
and to enable a means to distinguish between phase/magnitude
and topology, we employ the slope of the time history at each
time point. Therefore, the topology error is computed on the
derivative of the time histories. In order to ensure that the ef-
fect of global time shift is minimized, the slope is calculated for
the time shifted histories. Thus, by taking the derivative at each
point, we obtain “derivative time-shifted histories” represented
by Altd) and BIstdl Considering the derivative information
ensures that the effect of magnitude is compensated for, as the
derivative depends on the slope and not on the amplitude. The
effect of localized time shifts still exist. Thus, we use the same
methodology to evaluate the magnitude error on the derivative
time shifted histories. The L; norm of the warped derivative time
shifted histories is then used to quantify the isolated contribution
of topology error:

Alts+d+w] _ gles+d+w] H
1

Errorioporogy = (19)

HB[terder] Hl

It should be mentioned that the topology error component will be
hard to compute and perhaps even meaningless for highly noisy
signals. Dealing with time histories rich in simulation noise is
out of the scope of the work presented in this paper.

4 Example

In this section we demonstrate the application of the pro-
posed metric using data from a case study provided by an Inter-
national Standards Organization (ISO) working group on Virtual
Testing (ISO technical committee (TC) 22, subcommittees (SC)
10 and 12, working group (WG) 4). An experimental test setup
used available crash pulses to record acceleration time histories
at different locations of a dummy during impact: head, thorax
and tibia. The test setup for the head impact is shown in Fig-
ure 6. Three experiments were conducted to collect sets of test
data. Figure 7 depicts a typical head acceleration history in the
x-direction. Three computational models were developed to sim-
ulate these tests. Computational results and test data were used to
rank the predictive capability of the computational models [25].
We present here calculations and rankings for three responses of
the head impact case: head impactor, head acceleration in the
x-direction and neck force in the x-direction.

We quantify error between the different tests and the com-
putational models for each response individually. For each re-
sponse, we compare tests among themselves to obtain the error
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ponents for one computational are less than all the three for
another, we can conclude that the first model is better than
the second.

3. Looking across all responses, if we find that one computa-
tional model performs well for all of the responses, we can
conclude that it is better than the other models collectively.

Figure 8 depicts the results for the three considered re-
sponses. Looking at the head impactor response, we can see
that all three error components for all three computational mod-
els relative to test 1 are less or equal to the errors of test 2 and
test 3 relative to test 1. Thus, we can conclude that they are all
adequate. Moreover, there are no differences between all three
Figure 6. Head impact test setup for ISO case study models, so they are all ranked equal. Looking at the head accel-

Figure 7. Typical head acceleration time history in the x-direction

between test repetitions. We then compare the computational
model predictions to each of these tests to obtain a measure for
the discrepancy between test and computational data. If the er-
ror between tests is greater than or equal to the error between
the computational model and the tests, we can conclude that the
computational model is adequate.

To demonstrate this idea, we assume that test 1 represents
“reality.” We compare the remaining two tests and the three com-
putational models to test 1. We then have three cases:

1. Looking at one response at a time, if the error associated

with all three components (phase, magnitude and topology)

for a computational model is less then or equal to the respec-

tive errors measured for the tests, then we can conclude that

the computational model is a good representation of reality. Figure 8. Sample of results for head impact case
2. Looking at one response at a time, if all the three error com-
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eration in the x-direction, we see that the computational models
have acceptable error only in the phase component; they are not
adequate in regard to magnitude and topology errors. Among
themselves, the three computational models do not exhibit con-
sistently better or worse errors, so no conclusive ranking can be
made. A similar situation exists for the neck force response in
the x-direction: Again, only the phase error is acceptable for all
three models. However, the computational models exhibit con-
sistent magnitude and topology errors, with model 1 being the
best and model 3 being the worse. In this case we can rank the
models without concluding whether their prediction capabilities
are acceptable or not.

5 Building regression-based validation models using
ratings of subject matter experts

We now consider a case where ratings of subject matter ex-
perts (SMEs) are available. Subject matter experts are individu-
als with long experience in a particular discipline. They are thus
trusted to evaluate and rank the predictive capability of computa-
tional models by (mostly visual) inspection of comparison plots.
We use SME ratings of computational models and the three com-
ponent errors as quantified by our proposed metric to build a
regression-based validation model that can validate and/or rank
other computational models.

We consider a case (previously reported in [26]), where a de-
celeration time history from a crash is known by means of mea-
surement (physical experiment). Fifteen computational models
have been developed to predict the deceleration time history for
this crash (note that these are not necessarily different computa-
tional models; they may be fifteen different substantiations of the
same computational approach due to different parameters in the
numerical models). Six SMEs have been presented with fifteen
comparison plots (one for each model) and their average ranking
of the models has been recorded. Ratings range from 1 (worst
match) to 10 (excellent match). Figure 9 depicts a typical plot
shown to the SMEs.

We used ten of the available fifteen data sets and ratings to
build our regression-based validation model. We then used the
remaining five data sets to test our model. Obviously, there are
many combinations of which ten data sets to use to build the
regression model, but this discussion is out of the scope of this
paper (please refer to [25] for a full discussion of this case study).
Table 5 presents the individual and average SME ratings (in as-
cending order) for the time histories associated with the training
and test data sets. Each computational model (CAE) is identified
with an ID number.

The error components computed using our proposed metric
are summarized in Table 6 in the order of Table 5 to facilitate
comparisons. Note that the relatively large phase error for CAE
1189 is not a typing error: this model exhibits a large phase error
as reflected by the low SME rating. We now can combine all

Figure 9. A typical plot presented to the SMEs

three error components into a regression model that can predict
predict the average expert ratings. We built a linear regression
model, i.e., used the following first-degree polynomial to fit our
data to the SME average ratings

Rp =10— (ClErrorphase + C2Err0rmagnitude + C3Errort()p()logy> )
(20)
where R, denotes predicted rating.

The plots in Figure 10 depict the regression model rating
predictions (denoted by the acronym EARTH — Error Assess-
ment of Response Time Histories) on the ten time histories used
to build the model and on the five remaining time histories rela-
tive to the average SME ratings (the bars for the SME ratings rep-
resent the range of the SME ratings). It can be seen that the val-
idation model predictions are good and always within the range
of the individual SME ratings. this is the case for all regression
models we built using different combinations of training and test
time histories, i.e., data sets [25].

Lastly, we compare the rating predictions of our regression-
based validation model to the rating predictions of four existing
metrics used currently for this particular application [26]:

1. Wavelet decomposition method

This metric uses a pre-processing operation on the origi-
nal time histories to split into two base functions called the
scale and envelop functions. These functions can be thought
of as component time histories that, when added together,
would result in the original time history. The discrepancy
for both the component histories is computed using the Rus-
sell’s measure. The error for both the scale and envelop
function is then combined using a regression approach sim-
ilar to EARTH.
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Table 5. SME ratings for the fifteen CAE models (first ten models used
to build the regression-based validation model; last five used to test it)

CAEID | SME1 2 3 4 5 6 | Average
1188 5 31 2 3 4 3.00
1189 3 4 4 3 3 3 333
1130 4 4 4 3 4 5 4.00
1047 5 4 5 4 5 5 4.67
1020 6 4 5 6 7 4 5.33
1041 6 55 6 6 5 5.50
1028 7 6 5 5 7 6 6.00
1005 8 7 7 6 8 6 7.00
1083 7 77 9 9 7 7.67
1052 8 7 8 10 10 8 8.50
1042 4 3 4 3 4 4 3.67
1100 5 4 3 3 4 6 4.17
1009 7 6 6 7 T 6 6.50
1016 7 7 7 8 9 5 7.17
1022 8 9 8 10 10 8 8.83

2. Step function
Most crash pulses for this application can be characterized
as step functions; each period of a step function reflects a
certain impact event in the vehicle structure. The parameters
for the step function that are used to quantify the discrepancy
are the slope for the first edge, the value for the first and sec-
ond steps, the duration of the first and second steps, the peak
value and its timing, maximum crush distance and variation
computed for the value of the first and second steps. All of
these measures are combined using the regression approach
similar to EARTH.
3. ADVISER model evaluation criteria

This metric is a combination of target point error measures.
For this particular application, ten target point errors are
considered. These target point errors correspond to timing
of first and second extreme, time and value for first and
second edge, p(n.), n. and time and value score of the shape
corridor. The time and value score of the shape corridor is
evaluated by creating a corridor around the experimental
time history and comparing the CAE time history to this
corridor. The time score is based on the duration hat the
CAE time history lies “outside” the corridor. Similarly, the
value score is based on the maximum distance between the

10

Table 6. Error components of proposed metric for the CAE models

CAEID | Phase Magnitude Topology
1188 0.52 0.42 0.43
1189 51.94 0.20 0.33
1130 1.73 0.31 0.51
1047 0.67 0.22 0.41
1020 0.61 0.19 0.48
1041 0.50 0.22 0.31
1028 0.52 0.19 0.27
1005 0.50 0.16 0.23
1083 0.52 0.12 0.33
1052 0.52 0.09 0.25
1042 0.64 0.33 0.45
1100 1.16 0.28 0.69
1009 0.70 0.16 0.28
1016 0.61 0.17 0.44
1022 0.52 0.08 0.22

CAE time history and the corridor when a violation occurs.
All the different error scores are used to form a regression
model that combines them.

4. Corridor Violation Plus Area (CVPA)

This metric evaluates the error associated with the integral
of the time histories. It uses a similar concept as the shape
corridor and evaluates time score and an area score. The area
score is computed based on the area enclosed by the CAE
time history outside the corridor. The time and area scores
are computed for multiple corridor widths. These different
scores are combined using linear regression.

The performance of EARTH is compared to these metrics in Fig-
ure 11: The top plot illustrates that the EARTH and wavelet de-
composition metrics predict the SME ratings very well. The bot-
tom plot shows results for a different EARTH regression model
(built using a different combination of data sets): in this case the
EARTH and step function metrics predict the SME ratings very
well. In all the regression model we built, EARTH consistently
predicted SME ratings well. This indicates that EARTH is ca-
pable of recognizing the key features associated with the time
histories for this application and provide an over all error mea-
sure by combining them. EARTH is capable of bringing in an
objective method to evaluate time histories even though it is de-

Copyright © 2008 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Figure 10. Regression-based validation model: data fit and test

veloped on the subjective opinion of SMEs.

6 Concluding remarks

The objective of the research presented in this paper was to
evaluate existing measures for assessing the error between time
histories and to introduce a combined approach to remedy limi-
tations of these metrics when applied to vehicle safety.

We proposed a new metric that quantifies error associated
with three components: phase, magnitude and topology. We
adopted the idea of classifying error into phase and magnitude
based on existing metrics like S&G, Russell’s error measure
and NISE criteria. At the same time, identifying their inability
to quantify error due to difference in shape, we introduced the
concept of topology error to account for discrepancy in shape.
Lastly, we introduce the use of the dynamic time warping (DTW)
algorithm to process time history data so that the three error com-
ponents can be isolated and quantified.

The applicability of the proposed metric has been demon-
strated through two case studies pertaining to vehicle safety. The
first case study illustrates how the proposed metric can be used
to assess predictive capability of computational models. The sec-
ond case study showed how the metric can be used in conjunc-
tion with subject matter expert (SME) data to develop regression-

11

Figure 11.  Comparison of EARTH to other metrics

based models to validate simulation models. A comparison with
four existing metrics for model validation in vehicle safety ap-
plications demonstrated that the proposed metric agrees consis-
tently with SME ratings.
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