209,005 research outputs found

    Detecting Steps Walking at very Low Speeds Combining Outlier Detection, Transition Matrices and Autoencoders from Acceleration Patterns

    Get PDF
    In this paper, we develop and validate a new algorithm to detect steps while walking at speeds between 30 and 40 steps per minute based on the data sensed from a single tri-axial accelerometer. The algorithm concatenates three consecutive phases. First, an outlier detection is performed on the sensed data based on the Mahalanobis distance to pre-detect candidate points in the acceleration time series that may contain a ground contact segment of data while walking. Second, the acceleration segment around the pre-detected point is used to calculate the transition matrix in order to capture the time dependencies. Finally, autoencoders, trained with data segments containing ground contact transition matrices from acceleration series from labeled steps are used to reconstruct the computed transition matrices at each pre-detected point. A similarity index is used to assess if the pre-selected point contains a true step in the 30-40 steps per minute speed range. Our experimental results, based on a database from three different participants performing similar activities to the target one, are able to achieve a recall = 0.88 with precision = 0.50 improving the results when directly applying the autoencoders to acceleration patterns (recall = 0.77 with precision = 0.50)

    Robustness: a new SLIP model based criterion for gait transitions in bipedal locomotion

    Get PDF
    Bipedal locomotion is a phenomenon that still eludes a fundamental and concise mathematical understanding. Conceptual models that capture some relevant aspects of the process exist but their full explanatory power is not yet exhausted. In the current study, we introduce the robustness criterion which defines the conditions for stable locomotion when steps are taken with imprecise angle of attack. Intuitively, the necessity of a higher precision indicates the difficulty to continue moving with a given gait. We show that the spring-loaded inverted pendulum model, under the robustness criterion, is consistent with previously reported findings on attentional demand during human locomotion. This criterion allows transitions between running and walking, many of which conserve forward speed. Simulations of transitions predict Froude numbers below the ones observed in humans, nevertheless the model satisfactorily reproduces several biomechanical indicators such as hip excursion, gait duty factor and vertical ground reaction force profiles. Furthermore, we identify reversible robust walk-run transitions, which allow the system to execute a robust version of the hopping gait. These findings foster the spring-loaded inverted pendulum model as the unifying framework for the understanding of bipedal locomotion.Comment: unpublished, in preparatio

    Differences in gait between children with and without developmental coordination disorder

    Get PDF
    In the present study the walking pattern of 10 children with developmental coordination disorder (DCD) was investigated and compared to that of 10 typically developing, matched control children. All children walked at a similar velocity that was scaled to the length of the leg on a motor-driven treadmill. Three-dimensional kinematics were recorded with a motion capture digital camera system. The spatiotemporal parameters of the gait pattern revealed that children with DCD walked with shorter steps and at a higher frequency than the typically developing children. In addition, the children With DCD exhibited a body configuration that demonstrated increased trunk inclination during the entire gait cycle and enhanced during the entire gait cycle. At toe-off a less pronounced plantar flexion of the ankle was observed in children with DCD. In conclusion, it appeared that children with DCD make adaptations to their gait pattern on a treadmill to compensate for problems with neuromuscular and/or balance control. These adaptations seem to result in a safer walking strategy where the compromise between equilibrium and propulsion is different compared to typically developing children

    Variability of spatiotemporal gait parameters in children with and without Down syndrome during treadmill walking

    Get PDF
    Methods: Thirteen children with DS (aged 7–10 years) and thirteen age- and sex-matched typically developing (TD) children participated in this study. Subjects completed two bouts of 60-second treadmill walking at two different speeds (slow and fast) and two load conditions (no load and ankle load equaling to 2% bodyweight at each side). Kinematic data was captured using a Vicon motion capture system. Mean and coefficient of variance of spatiotemporal gait variables were calculated and compared between children with and without DS. Results and significance: Across all conditions, the DS group took shorter and wider steps than the TD group, but walked with a similar swing percentage, double support percentage, and foot rotation angle. Further, the DS group demonstrated greater variability of all spatiotemporal parameters, except for step width and foot rotation angle. Our results indicated that children with DS can modulate their spatiotemporal gait pattern accordingly like their TD peers when walking faster on a treadmill and/or with an external ankle load. Smaller step width variability in the DS group suggests that mediolateral stability may be prioritized during treadmill walking to safely navigate the treadmill and complete walking tasks. Similar temporal parameters but distinct spatial parameters in the DS group suggest that they may have developed similar rhythmic control but are confined by their spatial movement limitations

    Variability of gait patterns during unconstrained walking assessed by satellite positioning (GPS)

    Get PDF
    It is established that the ratio between step length (SL) and step frequency (SF) is constant over a large range of walking speed. However, few data are available about the spontaneous variability of this ratio during unconstrained outdoor walking, in particular over a sufficient number of steps. The purpose of the present study was to assess the inter- and intra-subject variability of spatio-temporal gait characteristics [SL, SF and walk ratio (WR=SL/SF)] while walking at different freely selected speeds. Twelve healthy subjects walked three times along a 100-m athletic track at: (1) a slower than preferred speed, (2) preferred speed and (3) a faster than preferred speed. Two professional GPS receivers providing 3D positions assessed the walking speed and SF with high precision (less than 0.5% error). Intra-subject variability was calculated as the variation among eight consecutive 5-s samples. WR was found to be constant at preferred and fast speeds [0.41 (0.04)m·s and 0.41 (0.05)m·s respectively] but was higher at slow speeds [0.44 (0.05)m·s]. In other words, between slow and preferred speed, the speed increase was mediated more by a change in SF than SL. The intra-subject variability of WR was low under preferred [CV, coefficient of variation = 1.9 (0.6)%] and fast [CV=1.8 (0.5)%] speed conditions, but higher under low speed condition [CV=4.1 (1.5)%]. On the other hand, the inter-subject variability of WR was 11%, 10% and 12% at slow, preferred and fast walking speeds respectively. It is concluded that the GPS method is able to capture basic gait parameters over a short period of time (5s). A specific gait pattern for slow walking was observed. Furthermore, it seems that the walking patterns in free-living conditions exhibit low intra-individual variability, but that there is substantial variability between subject

    The development of visually guided stepping

    Get PDF
    Adults use vision during stepping and walking to fine-tune foot placement. However, the developmental profile of visually guided stepping is unclear. We asked (1) whether children use online vision to fine-tune precise steps and (2) whether preci- sion stepping develops as part of broader visuomotor development, alongside other fundamental motor skills like reaching. With 6-(N = 11), 7-(N = 11), 8-(N = 11)-year-olds and adults (N = 15), we manipulated visual input during steps and reaches. Using motion capture, we measured step and reach error, and postural stability. We expected (1) both steps and reaches would be visually guided (2) with similar developmental profiles (3) foot placement biases that promote stability, and (4) correlations between postural stability and step error. Children used vision to fine-tune both steps and reaches. At all ages, foot placement was biased (albeit not in the predicted directions). Contrary to our predictions, step error was not correlated with postural stability. By 8 years, children’s step and reach error were adult-like. Despite similar visual control mechanisms, stepping and reaching had different developmental profiles: step error reduced with age whilst reach error was lower and stable with age. We argue that the development of both visually guided and non-visually guided action is limb-specific
    • …
    corecore