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Abstract

Bipedal locomotion is a phenomenon that still eludes a fundamen-

tal and concise mathematical understanding. Conceptual models that

capture some relevant aspects of the process exist but their full ex-

planatory power is not yet exhausted. In the current study, we intro-

duce the robustness criterion which defines the conditions for stable
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locomotion when steps are taken with imprecise angle of attack. In-

tuitively, the necessity of a higher precision indicates the difficulty to

continue moving with a given gait. We show that the spring-loaded

inverted pendulum model, under the robustness criterion, is consis-

tent with previously reported findings on attentional demand during

human locomotion. This criterion allows transitions between running

and walking, many of which conserve forward speed. Simulations of

transitions predict Froude numbers below the ones observed in hu-

mans, nevertheless the model satisfactorily reproduces several biome-

chanical indicators such as hip excursion, gait duty factor and vertical

ground reaction force profiles. Furthermore, we identify reversible ro-

bust walk-run transitions, which allow the system to execute a robust

version of the hopping gait. These findings foster the spring-loaded

inverted pendulum model as the unifying framework for the under-

standing of bipedal locomotion.

Keywords SLIP model, gait transitions, bipedal locomotion, human loco-

motion, biomechanics

1 Introduction1

The study of bipedal locomotion has motivated the development of several2

models that explain the most important principles governing the dynamics3

of the observed gaits. Some researchers have adopted models that include4

detailed representations of different leg components or that emulate neuro-5

muscular structures using physical elements such as springs, dampers and6
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multi-segmented legs. Although these models reproduce the dynamics of7

locomotion, their use as conceptual models is not widespread due to their8

complexity. In contrast, simpler models have been used extensively as con-9

ceptual models of bipedal locomotion [1].10

Most of these simple models were developed to explain the exchange of11

kinetic and potential energy of the center of mass (CoM) of biological agents.12

During walking, kinetic and potential energy of the CoM are out of phase, i.e.13

the maximum height of the CoM corresponds with a minimum of its speed [2].14

In consequence, the inverted pendulum (IP) model [3] is frequently used to15

represent walking, since in this model the exchanges of energy are also out of16

phase. Detailed analyses of the passive dynamics of the IP model constituted17

a conceptual cornerstone for the development of mechanical devices capable18

of stable walking without any actuators or controllers [4]. Despite its concep-19

tual explanatory power, the IP model does not correctly reproduce several20

aspects of human walking [5], e.g. the vertical oscillations of the CoM experi-21

mentally observed are smaller than the ones predicted by the model. Inspired22

in this model Srinivasan and Ruina proposed a biped model with ideal ac-23

tuators on the legs [6]. They determined the periodic gaits that minimized24

the work cost assuming that the leg forces are unbounded if necessary. They25

found that transitions from walking to running at constant Froude number26

and step length are possible only when the Froude number is one. As a re-27

sult, they found an optimal walking gait that resembles the conditions of the28

walking gait at human walk to run transition, but at this condition they did29

not found an optimal running gait. In contrast, they identified a hybrid gait30

called pendular running which is not supported with the experimental data31
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of human gait transitions. Further more, in this study the double support32

phase in walking was not allowed.33

Running is commonly represented with another model, the spring-loaded34

inverted pendulum (SLIP) [7]. The SLIP model consist of a point mass (the35

body) attached to a massless spring (the leg). During the stance phase the36

spring is fixed to the ground via an ideal revolute joint that is removed during37

flight phase. This model has been successfully used for the control of running38

machines [8]. In terms of combining multiple gaits, the explanatory power39

of the SLIP model surpasses that of the IP model, since the former can be40

extended to reproduce the mechanics of human walking by adding an extra41

massless spring representing the second leg, therefore unifying walking and42

runnig in a single model. However, the analyses carried out with the SLIP43

model had not yet explained gait transitions at constant forward speed, e.g.44

from walking to running at a characteristic Froude number. Previous studies45

suggested that transitions were only possible if the total energy was drasti-46

cally increased or decreased to induce a considerable change in the forward47

speed of the system [9]. With a simulation study [10], Srinivasan explained48

gait transitions for springless bipeds model as a mechanism to minimize the49

energetic cost of the locomotion. However, in the case of springy biped50

systems the walk to run transition is not predicted by work minimization51

because for a certain range of stiffness it is possible to find work-free running52

at very low speeds.53

Given that the legs in the SLIP model are massless, their swinging motion54

cannot be directly described using equations derived from Newton’s laws.55

Therefore, a control policy that sets the angle of attack at touchdown (the56
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angle spanned by the landing leg and the horizontal at the time the foot57

collides with the ground) must be defined a priori. Generally, the angle of58

attack at touchdown is kept constant. Herein, we assume a more general59

control policy: the system selects a new angle of attack at each step. The60

study of the system is based on a return map. With the return map, we61

can understand the evolution of the dynamical system as a function of the62

selection of the gait and the angle of attack. This analysis is similar to [11,63

12, 13], but in our study we define the return map at midstance. With this64

analysis, we can identify the initial conditions that, under this control policy,65

can perform a gait indefinitely. Instead of adding perturbations to the terrain66

to measure the robustness of the system as in [14], we extended the concept67

of viability introduced in [15], and assume that all the initial conditions with68

a valid control policy must be able to select an angle of attack inside a range69

of an arbitrary minimum size. We considered the length of the range of valid70

angles of attack as a qualitative measure of the robustness. The regions in71

which this control policy is valid are called robust regions, and regions where72

the system can change from one gait to another are called transition regions.73

In this study, we propose this definition of robustness as a criterion to74

explain the onset of gait transitions, complementing the classical energetic75

criterion [16, 17]. Intuitively, the robustness of a gait can be understood as76

inversely related to the attentional demand required to maintain it. If highly77

precise inputs are needed to continue with a gait the system must spend78

more resources to select an adequate action, e.g. use of detailed models,79

better estimation of states from noise sensory data, more processing time;80

i.e. cognitive load or attention.81
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This new perspective is accompanied with a trade-off between robust-82

ness and energetic cost. A similar trade-off have been observed in bees [18]:83

when flying in turbulent flows, the animal extends its lower limbs reduc-84

ing the chances of rolling, but increases the drag force sacrificing forward85

speed. Furthermore, the transitions found under the newly included robust-86

ness criterion qualitatively reproduce experimental values of the changes in87

the amplitude of the oscillations of the hip, changes in the gait duty factor88

and variations of ground reaction forces. Incidentally, these transitions use89

a gait pattern that we identify with hopping.90

This paper is organized as follows. In section 2, we define the mod-91

els used for the simulation and introduce several concepts required for the92

understanding of the results. In section 3 we show the regions of robust93

locomotion and gait transition. In that section we also compare our results94

with biological data. Discussions are given in section 4 and we conclude the95

paper in section 5.96

2 Definitions97

The time evolution of a gait is segmented in several phases, each phase is de-98

scribed with a sub-model. These sub-models represent the motion of a point99

mass under the influence of: only gravity (flight phase), gravity and a linear100

spring (single stance phase), gravity and two linear springs (double stance101

phase). The point mass stands for the body of the agent and the massless102

linear springs model the forces from the legs. During walking, running and103

hopping the system always goes through the single stance phase, therefore all104

6



gaits can be studied and compared during this phase. We denote the maps105

defined by walking, running and hopping asW , R andH, respectively. Given106

an initial state xi of the model, a walking step taken with angle of attack107

α is denoted xi+1 = Wα(xi) and similarly for running. As explained later a108

step of the hopping gait requires two angles, therefore it can be denoted with109

xi+1 = Hαβ(xi).110

The state of the system is observed when its continuous trajectory passes111

through a section, called S. This section is defined by the support leg forming112

a right angle with the ground. At this section the state of the system is113

defined by the height of the hip (i.e. height of the CoM), r, and the velocity114

in the vertical direction, vy (see Appendix A for more details).115

All initial conditions are given in the S section and in the single stance116

phase, i.e. only one leg touching the ground and oriented vertically. (r, vy)117

pairs were simulated for values of the total energy E in the range [780, 900]J118

at intervals of 10 J. The model was implemented is in MATLAB(2009, The119

MathWorks) and simulations were run using the step variable integrator120

ode45. Experimental data analysis was performed using GNU Octave.121

2.1 Viability, Robustness, symmetric gaits and biome-122

chanical observables123

Viability, as presented in [15], defines the easiness of taking a further step

during locomotion. That is, the wider the range of angles of attack that can

be used to take a step the easier is to take that step. In a physical platform

it is required that a valid angle of attack exists for a definite interval, since
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real sensors and actuators have a finite resolution and are affected by noise.

A viability region in the section S contains all the states for which at least

one step can be taken selecting an angle of attack from an interval of at least

∆α, i.e. states for which if at least one iteration of the gait is applied map

into states of the same gait. For example, for the running gait, this can be

expressed as,

V R (∆α) ={x| x ∈ S∧

(∃α ∈ Iα, ‖Iα‖ ≥ ∆α | y = Rα (x) , y ∈ S)}.
(1)

Where Iα stands for the angle interval and ‖Iα‖ for its size. Narrower angle124

intervals, i.e. more precise angle definition, lead to bigger viability regions125

and wider intervals to smaller regions. An example of the viability regions126

can be found in appendix A.127

The concept of robustness is defined on top of that of viability. A state in

the robust region is a viable state that can always be mapped into the robust

region by choosing the appropriate angle of attack. This angle should be

viable, i.e. it must be selected from an interval of at least ∆α. For example,

for the walking gait, this can be expressed as,

ρW (∆α) ={x| x ∈ ρW (∆α)∧(
∃α ∈ Iα, ‖Iα‖ ≥ ∆α | y =Wα (x) , y ∈ ρW (∆α)

)
}.

(2)

Where Iα stands for the angle interval and ‖Iα‖ for its size. This assumes128

that the controller can select an angle of attack for each step. In particular,129

this includes constant angle of attack policies and some of the self-stable130
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regions identified in [9] belong to a robust region. However, this does not131

mean that the system remains in the self-stable region for each step, since132

that would imply that the angle of attack is selected precisely. Instead,133

robustness implies that if the system was in that region at time t, it can134

remain close to it, even if the angles are selected with finite resolution.135

The gaits commonly used by humans are symmetric, meaning that the136

dynamical behavior of the left leg mirrors the one of the right leg. In our137

model this is possible when two conditions are satisfied: the velocity in the138

vertical direction at S is zero and there is an angle of attack α that can bring139

the system back to the same state.140

In the subsequent section we will show that the discovery of robustness as141

a useful criterion to induce gait transitions allows for qualitative comparisons142

with experimental biomechanical data. In particular we present results in143

terms of Froude number, hip excursion, gait duty factor, and vertical ground144

reaction forces. The Froude number is the ratio between the weight and the145

centripetal force w2lo/g, where g is the acceleration due to gravity, lo is the146

natural length of the leg and w is the angular velocity of the body around147

the foot in contact with the ground. Hip excursion denotes the amplitude of148

vertical oscillations of the hip. The gait duty factor is the fraction of the total149

duration of a gait cycle in which a given foot is on the ground. The vertical150

ground reaction force is vertical component of the normal force exerted by151

the ground.152
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3 Results153

We report the results obtained from the study of gait transitions in the SLIP154

model following the criterion of robustness detailed in Section 2.1. It turns155

out that the concept of robust gaits offer an alternative explanation for the156

onset of gait transitions in bipedal locomotion, comparable with arguments157

based on metabolic costs.158

We begin our exposition with a detailed explanation of the conditions,159

in terms of decrease of robustness, that may trigger gait transitions. From160

there we move on to describe the mechanism underlying robust gait transi-161

tions. The results of those two sections are combined to present qualitative162

comparison with biomechanical observables, followed by a short description163

of robust hopping.164

The definition of robust gait applies for symmetric and non-symmetric165

gaits. Figure 1a shows the area of the robust regions in the section S for dif-166

ferent energies and different interval lengths ∆α. With this model we identify167

three different gaits: running, walking and grounded running. Grounded run-168

ning has the same phases as walking but in the transition from the single169

support to the double support the vertical velocity of the center of mass is170

positive while in walking the velocity is negative (Appendix A). Results show171

that the grounded running gait is less robust that walking and running. For172

a ∆α bigger than 0.5◦, the grounded running gait covers less than 15% of173

the initial conditions in the section S.174

Figure 1b shows the area of the viable transitions to the robust regions175

in the section S for different energies and different interval lengths ∆α. For176
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example, the viable transition to robust running considers the initial condi-177

tions outside robust running that under walking or grounded running can be178

brought to robust running in one step. Given that this transitions are viable179

the angle of attack can be selected from an interval of length ∆α. A similar180

condition is applied to calculate the viable transition to robust walking or181

robust grounded running. For a ∆α bigger than 0.75◦, the viable transition182

to robust grounded running gait covers less than 10% of the initial conditions183

in the section S. Figure 1c shows the total area of robust regions and viable184

transitions with and without grounded running. Results show that for a ∆α185

bigger than 0.5◦ grounded running does not cover different initial conditions186

from walking and running.187

Figure 1d shows the range of forward speed for robust running and walk-188

ing at several energies and different interval lengths ∆α. Results show that189

the length of the interval affects the maximum Froude number in the walking190

gait. The bigger the ∆α, the lower the walking Froude number. In addition191

considering an interval length lower than 1◦, robust walking exists only at low192

locomotion energies, while running increases robustness for higher energies.193

For an interval length bigger than 1◦ walking walking is not possible in all194

the low energy levels.195

We can draw an analogy between the results of the system with an interval196

length lower than 1◦ and the experimental results reported in [19], where it197

was shown that imposed fast walking required higher attention than running198

at similar speeds. Furthermore, normal switching between gaits did not199

required high attentional demand.200
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3.1 Conditions for transitions201

We studied the transitions for a robustness criterion of ∆α equal to 1◦ because202

this was the limit condition in which the results of attentional demand can be203

qualitatively explained by the model. In addition we focused in the walking204

and running gait given that grounded running does not provide new possible205

states from the ones identified in robust walking and robust running (Fig. 1c).206

All the possible states of the system in the section S lie in a hemispherical207

region (see equations (15)-(21) of [15] and Appendix A). In Fig. 1e-g, we208

marked the apex of this hemisphere with a star symbol. The closer the209

system is to the star, the higher the forward speed of the gait. Symmetric210

gaits are marked with a solid line, all symmetric gaits have vy = 0. The211

figure shows that symmetric robust walking moves away from the apex of the212

hemisphere as energy increases, i.e. it becomes slower. At 830 J symmetric213

robust walking is constrained to the rightmost side of the viability region214

reducing the speed of this gait considerably. Furthermore, at this energy the215

region of symmetric walking breaks down into two unconnected segments.216

This is also evident in Fig. 1d where the maximum speed of symmetric robust217

walking shows a strong slowdown with a sudden change of slope. The latter is218

a consequence of the rupture of the symmetric gait region. This milestone in219

the evolution of the gait can be used as a natural trigger for a gait transition.220

The evolution of the area of robust walking, and robust running, are221

shown in detail in Figure 1e-f. This figures show that, at low energy, robust222

walking covers a wide region of the viable states of the system, while at high223

energy robust running covers a wider area. Around 800 J both robust gaits224
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have similar area. Based on robustness alone, this will imply a transition.225

However, symmetric robust walking intersects the apex of the hemisphere226

producing the fastest forward speed up to energies of 810 J, favoring walking227

in terms of energy efficiency. When the energy is increased further, the area of228

robust walking decreases and symmetric robust walking is constrained to low229

speeds. Due to these facts, at energies close to 840 J, the speed of symmetric230

robust walking and running match. For higher energies the gait transition is231

imminent, since the only robust gait remaining is symmetric running.232

3.2 Mechanism of gait transitions233

Assuming that during locomotion the fastest robust gait patterns are pre-234

ferred over slower or non-robust ones, we see that for energies below 840 J235

walking is the gait of choice and for energies above that value running would236

be chosen. Therefore, we study viable transitions at 840 J and compare them237

with results from an experiment on human gait transition. We consider tran-238

sitions only when all angles of attack used in the process can be chosen from239

an interval of length 1◦ or greater, i.e. we define admissible transitions using240

the concept of viability (sec. 2.1).241

We consider two mechanisms to execute gait transitions between symmet-242

ric robust gaits (symmetric gaits are known to be self-stable and therefore243

a good choice for stable locomotion, see [9]). The first mechanism, which244

can only be used from walking to running, consist in moving from the robust245

region of walking to the viability (non-robust) region of the same gait, and246

from there select an angle of attack to go to the robust region of running.247
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This mechanism can be used in robust walking between 830 J and 840 J (see248

Figure 2a). The second mechanism consist in going from a robust region of249

a given gait (walking or running) directly to the robust region of a different250

gait. This mechanism is applicable for robust running between 830 J and251

840 J while in robust walking is only applicable around 840 J.252

These mechanisms can be further constrained by selecting desired prop-253

erties of the final gait. One possibility is to execute a transition in such a254

way that the final gait has the same (or as close as possible) Froude number255

as the initial gait. Another possibility is to execute a transition that sets256

the hip excursion of the new gait to a desired value (see Figure 2b for a257

graphical description). These constraints are referred in this study as strate-258

gies and they are used for the comparison between our simulated results and259

experimental data presented in the next section.260

3.3 Qualitative Prediction of Biomechanical Observ-261

ables262

As we mention before, the biomechanical observables used to compare our263

results with experimental data are: Froude number, hip excursion, gait duty264

factor and vertical ground reaction forces. In the Appendix B-C, we extended265

this comparison to include angle of attack sequences and change of phase.266

We compare all our simulations against the experimental data reported in267

Figure 2 of [20], we will refer to this data as “experimental data” or “the268

experiment”.269

Figure 2a shows the transition regions at two energy levels. We painted270
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the robust regions of running and walking with a solid color, the shaded re-271

gions inside these are transitions regions where the system can change the272

gait. The diagonal shading corresponds to regions where the system can273

change between robust gaits (non-symmetric) in only one step. The horizon-274

tal shading delimits the region where the system can go to the non-robust275

transition region, as described in 3.2. The right panel shows examples of276

a transition from walking to running and another from running to walking277

using the two mechanisms mentioned in the previous section. For the first278

transition, the system starts at symmetric robust walking (1), in the first279

step it moves to the non-robust transition region (2*) and executes the tran-280

sition to robust running (3*). With two further steps the system is able to281

reach symmetric robust running (4-5). The transition in the other direction282

starts at symmetric robust running (5). Then the system moves to the ro-283

bust transition region (6*) from which, in a single step, it changes to robust284

walking (7*). With two more steps the system reaches symmetric robust285

walking (8-9). In both transitions, the hip excursion was kept as constant as286

possible.287

Figure 2b shows the Froude number and the hip excursion of all symmetric288

robust gaits at 840 J. As indicated in the figure, vertical transitions keep the289

hip excursion constant, while horizontal transitions produce gaits with the290

same Froude number.291

Figure 3 shows time series of hip excursion and duty factor for a transition292

at constant hip excursion, together with a transition at constant Froude293

number. In both situations we obtain a Froude number that is about 60%294

smaller than the one found in human gait transitions, which is around of295
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0.5 [20]. Nevertheless the SLIP model provides the best Froude number296

estimation to the date, when compared to other simple models, e.g. the IP297

model.298

Ground reaction forces prior to the transition from walking to running299

have three main characteristics [21]. Firstly, they present an asymmetric300

double bell-shaped profile. Secondly, the earlier peak becomes bigger than301

the later one and, thirdly the depression between the peaks becomes more302

accentuated in the last step of walking, exactly before the transition. In303

the case of the transition from running to walking, it was reported that304

the vertical ground reaction forces decrease during the steps prior to the305

transition.306

In Figure 4 we have plotted the vertical ground reaction forces for three307

different simulated examples. The first row of panels shows transitions from308

walking to running, and the second row of panels shows transitions in the309

other direction. Panels (a) and (b) show transitions keeping the Froude310

number constant. Panels (c) and (d) show transitions at constant hip excur-311

sion. The last example, presented in the panels (e) and (f), shows transitions312

that match the change in amplitude that was observed in the experiment.313

All cases qualitatively match the characteristics of the ground reactions re-314

ported in [21]. The decrement in the force of the last running step is due to315

the support of the second foot. A reduction of the peak in more than one316

step appears only on the case where we matched the hip excursion of the317

experimental data.318

In Table 1, we present a summary of the comparison between the simu-319

lated examples and the experimental data. Each column is discussed next.320
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Strategy # Steps vx ∆r Fy ∆α ∆φ
Const. Froude number 3 7 7 3 3 7

Const. hip excursion 3 7 7 3 3 7

Fitting experiment 3 7 3 3 3 7

Table 1: Comparison between three transition strategies and experimental data.
The symbol 3 indicates qualitative matching between simulation and experiment,
while the symbol 7 indicates the opposite. vx: forward speed of the center of
mass; ∆r: relative change in hip excursion before and after transition; Fy: vertical
ground reaction forces; ∆α: change of the angle of attack during transition; ∆φ:
change in phase of the oscillations of the hip before and after transition.

Due to the variety of transitions that can be generated with the model, the321

number of steps to execute them can be select in a wide range, at least from322

3 to 8 steps. From Figure 2b we can see that the Froude number of all these323

transitions are lower than 0.5, this reflects the fact that the simulations have324

lower forward speeds (vx) than the observed in humans. As pointed be-325

fore, the many transitions that can be simulated, permit the matching of326

the relative change in hip excursion (∆r) measured in the experiment. In327

all simulated transitions the vertical ground reaction forces (Fy) are qualita-328

tively well reproduced. The selection of the angle of attack are qualitative329

similar to what we found in the experimental case: the system moves pro-330

gressively from one gait to the other changing the angle of attack at each331

step. However, the oscillation of the hip before and after the simulated tran-332

sitions presents a change of phase (∆φ) that not always coincide with what333

is observed in reality. Details for these two observables are presented in the334

the Appendix B-C.335
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3.4 Robust Hopping Gait336

At 840 J we identify a transition region in robust walking where the system337

can go in one step to robust running. Among the states in this transition338

region, there a some that are mapped directly into the transition region of339

robust running. By selecting alternatively the right angles of attack, the340

system can sequentially walk and run, producing the hopping gait. Fig. 5341

shows an example of this gait. By looking at the vertical ground reaction342

forces in the figure, we see the different phases that compose this gait; from343

single stance phase to double stance phase then to single stance phase and344

finally to flight phase.345

4 Discussion346

Herein we have modeled bipedal locomotion using the SLIP model. This347

model conserves the total mechanical energy and at first glance it may seem348

inapposite for the prediction of gait transitions, since work has to be done on349

the system to increase the speed of locomotion. Nevertheless, by looking at350

the behavior of the model at different energies, we can emulate the situation351

where work is done on the system.352

We proposed robustness as a new measure of the easiness of locomotion.353

Robustness measures the level of attention that needs to be dedicated to take354

a step; the more robust a gait is, the less attention that is needed to take the355

next step.356

According to our results, the selection of the gait can be based on two357

criteria: efficiency, which is the selection of the gait with the highest forward358
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speed; and robustness, which defines how easy is to maintain the given gait.359

This second criterion is consistent with the experimental results of attentional360

demand in locomotion reported in [19]. Based on these criteria, walking is361

the best choice for energies below 840J, and running is more appropriate for362

higher energies. This resembles what is observed in human locomotion.363

Using robustness as the leading criterion, we identify transition regions364

that allow the system to go from one gait to the other even in the case of365

imprecise angle selection. These transition regions are present for energies366

from 830 J to 840 J (Fig. 2a). At 840 J, symmetric robust running and walk-367

ing share all the possible velocities, facilitating gait transitions. In the case368

of an increment of energy, to keep robustness and move forward faster, a369

walking system can execute a transition to robust running at 840 J. The370

transition can be reversed when the system decreases its energy. Note that371

the mechanisms of transition shown in Fig. 2a (right panel), have the fol-372

lowing properties. One mechanism connects the robust region of both gaits,373

while the other one connects the non-robust viability region of walking with374

robust running. The latter mechanism is not reversible, meaning that the375

system cannot go from running back to this region in a single step. The376

transitions connecting robust regions are reversible and the system can os-377

cillate between the two gaits robustly. Is in this situation where the hopping378

gait emerges. This locomotion pattern is frequently used by children when379

playing joyfully.380

The existence of non-empty transition regions (Fig. 2b) implies that the381

system has multiple alternatives to change gaits. These alternatives will382

produce different changes of forward speed and hip excursion. We show383
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three different scenarios: constant hip excursion, hip excursion similar to384

experimental data and constant Froude number.385

When the transition matches the hip excursion of the experimental data,386

the Froude number varies from 0.16 in walking to 0.08 in running, while in387

the experiment it is almost constant (slowly varying treadmill speed, see [20]388

for details on the experiment). As explained before, in all simulated cases389

the absolute values of Froude number are lower than in the experiments. The390

hip excursion has an amplitude of 5.2 cm in walking and 8.3 cm which also391

similar to the one reported in [20] which is around 7 cm.392

When the transition keeps the Froude number constant the hip excursion393

decreases from 5.7 cm in walking to 3.7 cm in running. This contradicts the394

behavior observed in our experimental data. The simulated Froude number395

for this transition is about 0.17.396

The robustness criterion induces an underestimation of the forward speed397

at gait transitions. The highest Froude number achieved using the previous398

strategies is around one third of the one observed in humans (0.5). However,399

given the strong simplifications in the model the result is encouraging. To400

reduce the gap between simulated and experimental Froude number, the401

model can be extended to include the displacement of the point where the402

leg is in contact with the ground during the stance phase [22].403

All transitions presented here produce similar results concerning the duty404

factor. Walking has a duty factor around 0.7 and running has a duty factor405

around 0.4, in accordance with the experiment. Furthermore, in all tran-406

sitions from walking to running the model predicts a progressive change in407

the vertical component of the reaction forces, i.e. the relation between the408
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first and the second peak of the force during the transition. This also applies409

to the transitions from running to walking. In particular, the ground reac-410

tion forces corresponding to transitions matching the hip excursion of the411

experimental data (Fig. 4) introduces a progressive reduction of the force412

peak in more than one step. All these results qualitatively reproduce the413

experimental results reported in [21].414

5 Conclusion415

The comparison between experimental data and simulations using the SLIP416

model shows that the model is not able to generate accurate quantitative417

predictions. Most strikingly, the forward speed in the simulations are con-418

siderable slower than that observed experimentally. This difficulty can be419

overcome by adding a more detailed description of the contact between leg420

and ground. Nevertheless, the SLIP model can be used as a conceptual model421

to explain the many aspects of bipedal locomotion such as the mechanics of422

running, walking, hopping and gait transitions.423

Our findings indicate that robustness can play an important role in induc-424

ing gait transition, complementing the usual view focused solely in energy425

expenditure. The robustness criterion is analogous to the attentional de-426

mand during locomotion and may play an important role deciding the gait427

transition events. To our knowledge this is the first time such a criterion is428

included in a numerical model of locomotion.429
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A Equations of motion506

We define a running gait as a trajectory that switches from the single stance507

phase to the flight phase and back to the single stance phase. A walking gait508

is defined as a trajectory that switches from the singles stance phase to the509

double stance phase and back again to the single stance phase.510

The state in the flight phase is represented in Cartesian coordinates of
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the position of the point mass and its velocity ~Xff = (x, y, vx, vy)
T ,

~̇Xff =



vx

vy

0

−g


, (3)

where g is the acceleration due to gravity.511

The state in the single stance phase is represented in polar coordinates

~Xs =
(
r, θ, ṙ, θ̇

)T
, where r is the length of the spring and θ is the angle

spanned by the leg and the horizontal, growing in clockwise direction. Thus,

the equations of motion are:

~̇Xs =



ṙ

θ̇

k
m

(r0 − r) + rθ̇2 − g sin θ

−1
r

(
2ṙθ̇ + g cos θ

)


. (4)

It is important to note that θ(tTD) = α, i.e. the angular state at the time512

of touchdown is equal to the angle of attack. The parameter r0 defines the513

natural length of the spring.514

In the double stance phase the state is also represented in polar coordi-515

nates ~Xd =
(
r, θ, ṙ, θ̇

)T
, with the origin of coordinates in the new touchdown516
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point. The motion is described by:517

~̇Xd =



ṙ

θ̇

k

m
[(r0 − r) +

(
1− r0

r♂

)
. . .

(x♂ cos θ − r)] + rθ̇2 . . .

− g sin θ

−1

r
[
k

m

(
1− r0

r♂

)
x♂ sin θ . . .

+ 2ṙθ̇ + g cos θ]



(5)

r♂ =
√
r2 + x2♂ − 2rx♂ cos θ, (6)

where x♂ is the horizontal distance between the two contact points and r♂ is518

the length of the back leg.519

The event functions are parameterized with the angle of attack and the520

natural length of the springs.521

Switches from the flight phase to the single stance phase are defined by:

Fff→s
(
~Xff , α, r0

)
:


y − r0 cosα = 0

vy < 0

, (7)

which means that the mass is falling and the leg can be placed at its natural

length with angle of attack α. Therefore, the motion is now defined in the

single stance phase. The switch in the other directions is simply:

Fs→ff
(
~Xs, r0

)
: r − r0 = 0. (8)
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These are the only two event functions involved in the running gait. The

map from one phase to the other is defined by:

x = −r cos θ y = r sin θ. (9)

It is important to have in mind that the origin of the single stance phase is522

always at the touchdown point.523

For the walking gait, we have to consider switches between single and

double stance phases:

Fs→d
(
~Xs, α, r0

)
:


r sin θ − r0 cosα = 0

θ > π
2

, (10)

which is similar to (7) with the additional condition that the mass is tilted524

forward. Additionally, if we consider the sign of the vertical speed, we dif-525

ferentiate between walking gait with vy ¡ 0 and Grounded Running gait with526

vy ¿ 0.527

The switch from the double stance phase to the single stance phase is528

defined by:529

Fd→s
(
~Xd, r0

)
: r♂ − r0 = 0, (11)

with r♂ as defined in (6). The map from the double stance phase to the single530
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stance phase is the identity. In the other direction we have:531

rd = r0 θd = α, (12)

x♂ = r0 cosα− rs cos θs, (13)

where the subscripts indicate the corresponding phase.532

If the system falls to the ground (y ≤ 0), attempts a forbidden transition533

(e.g. double stance phase to flight phase), or renders vx < 0 (motion to the534

left,“backwards”), we consider that the system fails.535

The state of the model is observed when the trajectory of the system

intersects the section S defined in the single stance phase, i.e. only one leg

touching the ground and oriented vertically (Figure 6). The results are visu-

alized using the values of the length of the spring r and the radial component

of the velocity which, in S, equals the vertical speed vy (vx is obtained from

these values and the equation of constant energy). It is important to note

that all possible values of r, vy , and vx , for a given value of the total energy

E, lie on an ellipsoid.

E =
1

2
k (r0 − r)2 +

1

2
m
(
v2x + v2y

)
+mgr (14)

This intermittent observation of the system renders the continuous evo-536

lution of the model into a mapping that transforms states in the section at537

a time t, to states in the section at t + ∆t. The interval ∆t is the time the538

system takes to reach a new vertical posture, only during periodic gaits it is539

equivalent to the period of the gait.540
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Using the maps we calculated the viability regions in the section S. The541

viability regions are the initial conditions that can perform an step selecting542

an angle of attack from a continuous interval of length ∆α the biggest interval543

size found with the system is 23◦. Figures 7-8 show different viable regions544

as a function of the interval length.545

B Angle of attack estimation from empirical546

data547

In the experimental data of reference [20] the angle of the right limb is mea-548

sure against the vertical. We use this information to estimate the angle of549

the leg at landing based in two facts. First, the angle of the leg changes more550

its velocity in the swing phase (the foot is not in contact with ground) than551

in the support phase (the foot is in contact with the ground), and second,552

as soon as the leg changes from the swing phase to the support phase there553

is a big change of the angular velocity due to the impact of the food against554

the ground when it lands.555

The angle of attack identified using this conditions allow the comparison556

of the strategy in human locomotion and the proposed model. The model557

qualitatively develops a similar strategy. The difference of the angle of attack558

between the steady state gait (e.g. walking or running) from the experiment559

and the model is around five degrees. To facilitate the qualitative comparison560

of the angle of attack, we evaluate the change of the angle of attack against561

the angle of attack of walking. Using this measurement, we can avoid the562
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difference of five degrees and focus in the strategy for gait transition.563

Fig. 9 and Fig. 10 show that the strategy developed with the model has564

similar steps and matches the change of the angle of attack in the transition.565

Fig. 9 shows a more drastic change of the angles of attack compare with the566

experiment result, however the data of the experiment is from one leg which567

allow the identification of the angle of attack every two steps. This can be568

emulated with the model selecting only the even or the odd steps. In any of569

these cases, the change of the angles of attack is going to look less drastic570

and qualitatively more similar to the ones from the experiment.571

C Change of phase of hip excursion before572

and after transition573

Strategy W → R R→W
Const. Froude number 36.3◦ 35.3◦

Const. hip excursion 55.3◦ 51.5◦

Fitting experiment 109.0◦ 110.9◦

Experiment −35.0◦ 86.8◦

Table 2: Change of phases for three strategies and experimental data. None of the
transitions shows a phase change in full accordance with the experimental data.
The absolute value of the phase change for the transition from walking to running
at constant Froude number is very close to the experimental value, however the
direction of the change is opposite.

As shown in Figure 11 (left axis), during walking and running the hip574

follows and oscillatory trajectory over time. We compare the phase of these575

oscillations with respect to the moment of transition. The moment of tran-576

sition was identified as follows:577
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1. Calculate the analytic signal of the hip trajectory by means of the578

Hilbert transform, e.g. hilbert function in GNU Octave’s signal pack-579

age [23].580

2. Obtain the phase of the signal from the angle of the analytic signal.581

3. Take the time derivative of the phase, this is an approximation of the582

frequency of the oscillations as a function of time.583

4. Search for the highest peak in the frequency signal. This point separates584

the regions of walking from the regions of running.585

Figure 11 shows the frequency signal superimposed to the experimental data.586

The transition point is indicated with a vertical arrow. Taking this point as587

the origin of time, we calculate the initial phase of walking and the initial588

phase of running, by means of fitting a first order polynomial to the phase589

signal of each gait. This is shown in Figure 12 when applied to the exper-590

imental data. The change of phase is calculated as the difference of these591

initial phases normalized to the interval (−π, π]. The exact same analysis592

was applied to all the signals, simulated and experimental.593

The changes of phase for the three transition strategies presented in the594

paper are summarized in Table 2. All the simulated examples are able to595

match the direction of the change of phase in the running to walking tran-596

sition. However, none of the transitions shows a phase change in full accor-597

dance with the experimental data. The absolute value of the phase change598

for the transition from walking to running at constant Froude number is599

very close to the experimental value, however the direction of the change is600

opposite.601
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Figure 1: (Color online) Robust regions. For panels (a) - (d) the (copper) gray
color scale represents the interval size used to calculate the robust region. (a)
shows the robust region area in the section S for running (dashed line), walking
(continuous line), and grounded running (dash-dotted line). (b) shows the area of
viable transitions that brings the system to robust running (dashed line), robust
walking (continuous line), and robust grounded running (dash-dotted line) in the
section S. (c) shows the total area in the section S cover by the robust gaits
and the viable transitions. The dash-dotted line represents all the gaits, and the
continuous line represents walking and running. (d) shows the maximum and
minimum Froude number for a robust gait at the section S for different energies.
Robust walking is depicted with the dashed line, and robust running is depicted
with the continuous line. In panels (e) - (g) filled patches represents robust
running ((blue) light gray) and robust walking ((magenta) dark gray) in the section
S. The dashed region represents viable transition to robust running using walking
((blue) light gray), and to robust walking using running ((magenta) dark gray).
The solid black line depicts the symmetric gaits.
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Figure 2: (Color online) Viable transitions. In all panels (blue) light gray color
represents running and (magenta) dark gray color represents walking. (a) shows
viable transitions at two energy levels. Filled patches corresponds to robust re-
gions. Shaded regions inside these are viable transitions regions. Diagonal shading
corresponds to regions where the system can change between robust gaits (non-
symmetric) in only one step. The horizontal shading delimits the region where
the system can go to the non-robust transition region. The right panel shows two
transition using both mechanisms. See text for details. (b) shows the Froude
number versus hip excursion for symmetric robust running and walking at 840 J.
Arrows indicate: (1) constant hip excursion, (2) constant Froude number and (3)
relative change of the amplitude of the hip excursion fitted to experimental data.
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Figure 3: (Color online) Hip excursion and gait duty factor for transition at
constant hip excursion (a); and constant Froude number (b). The (blue) light
gray color represents the hip excursion and the black line represents the duty
factor. The plots show several steps before and after each transition.
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Figure 4: Vertical ground reaction forces during transitions. The six panels show
a transition from symmetric robust walking to symmetric robust running with
three different strategies, (a)-(b) constant Froude number, (c)-(d) constant hip ex-
cursion, (e)-(f) hip excursion similar to the experimental data. The forces present
an asymmetric double bell-shaped profile. In the walking to running transition,
(a)-(c) and (e), the earlier peak becomes bigger than the later one, exactly before
the transition. The transitions in the other direction, running to walking (b)-(d)
and (f) show vertical ground reaction forces that decrease considerably in the last
running step due to the support of the second foot. The selection of a hip ex-
cursion similar to the experimental data introduces a progressive reduction of the
force peak in more than one step (f). All forces are normalized with respect to the
weight of the system.

35



Figure 5: (Color online) Vertical ground reaction forces during hopping. Panel
(a) shows the transition regions in section S for E = 840 J; the arrows show the
states in the robust transition region that are used alternately. Panel (b) shows the
ground reaction forces for each leg. The (pink) gray rectangles show the different
flight phases. The forces from the legs are indicated with solid lines with different
colors.

Figure 6: (Color online) Illustration of the evolution of the SLIP model for running
and walking. The different phases are indicated as well as the section S where the
system is observed.
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Figure 7: (Color online) Viability regions for running and walking. The (cooper)
gray scale color represents the viability regions for energies between [780J-810J].
The first column shows the viability region for running and the second column for
walking
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Figure 8: (Color online) Viability regions for walking and running. The
(cooper) gray scale color represents the viability regions for energies between [820J-
880J].The first column shows the viability region for running and the second col-
umn for walking
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Figure 9: (Color online) Change of the angle of attack in the running to walk-
ing transition. The solid line represent the change of the angle of attack in the
model and the doted line represent the change of the angle of attack in a human
experiment. In both case there is a transition from running to walking.

Figure 10: (Color online) Change of the angle of attack against in the walking to
running transition. The solid line represent the change of the angle of attack in
the model and the doted line represent the angle of attack in a human experiment.
In both case there is a transition from walking to running.
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Figure 11: (Color online) Transition point determination. Plot of the experimen-
tal data (left axis) and the the derivative of the phase signal (right axis). this
derivative gives a frequency signal that presents a peak during the transition that
is used to determine the transition point (vertical arrow).

Figure 12: (Color online) Phase difference calculation. Taking the point of tran-
sition as the origin of time, the phase difference is calculate from the intercept of
linear fits applied to the two parts of the phase signal. Solid lines show the phase
signal for walking and running. Dashed lines show the linear fits.
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