1,338 research outputs found

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    Persim - Simulator for Human Activities in Pervasive Spaces

    Get PDF
    Activity recognition research relies heavily on test data to verify the modeling technique and the performance of the activity recognition algorithm. But data from real deployments are expensive and time consuming to obtain. And even if cost is not an issue, regulatory limitations on the use of human subjects prohibit the collection of extensive datasets that can test all scenarios, under all circumstances. A powerful and verifiable simulation tool is needed to accelerate research on human activity recognition. We present Persim, an event driven simulator of human activities in pervasive spaces. Persim is capable of capturing elements of space, sensors, behaviors (activities), and their inter-relationships. We focus on presenting the five main use cases for Persim addressing dataset synthesis, reuse and extension of existing datasets, sharing of data and simulation projects, as well as data validation. © 2011 IEEE

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    An experimental characterization of reservoir computing in ambient assisted living applications

    Get PDF
    In this paper, we present an introduction and critical experimental evaluation of a reservoir computing (RC) approach for ambient assisted living (AAL) applications. Such an empirical analysis jointly addresses the issues of efficiency, by analyzing different system configurations toward the embedding into computationally constrained wireless sensor devices, and of efficacy, by analyzing the predictive performance on real-world applications. First, the approach is assessed on a validation scheme where training, validation and test data are sampled in homogeneous ambient conditions, i.e., from the same set of rooms. Then, it is introduced an external test set involving a new setting, i.e., a novel ambient, which was not available in the first phase of model training and validation. The specific test-bed considered in the paper allows us to investigate the capability of the RC approach to discriminate among user movement trajectories from received signal strength indicator sensor signals. This capability can be exploited in various AAL applications targeted at learning user indoor habits, such as in the proposed indoor movement forecasting task. Such a joint analysis of the efficiency/efficacy trade-off provides novel insight in the concrete successful exploitation of RC for AAL tasks and for their distributed implementation into wireless sensor networks

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions

    TCitySmartF: A comprehensive systematic framework for transforming cities into smart cities

    Get PDF
    A shared agreed-upon definition of "smart city" (SC) is not available and there is no "best formula" to follow in transforming each and every city into SC. In a broader inclusive definition, it can be described as an opportunistic concept that enhances harmony between the lives and the environment around those lives perpetually in a city by harnessing the smart technology enabling a comfortable and convenient living ecosystem paving the way towards smarter countries and the smarter planet. SCs are being implemented to combine governors, organisations, institutions, citizens, environment, and emerging technologies in a highly synergistic synchronised ecosystem in order to increase the quality of life (QoL) and enable a more sustainable future for urban life with increasing natural resource constraints. In this study, we analyse how to develop citizen- and resource-centric smarter cities based on the recent SC development initiatives with the successful use cases, future SC development plans, and many other particular SC development solutions. The main features of SC are presented in a framework fuelled by recent technological advancement, particular city requirements and dynamics. This framework - TCitySmartF 1) aims to aspire a platform that seamlessly forges engineering and technology solutions with social dynamics in a new philosophical city automation concept - socio-technical transitions, 2) incorporates many smart evolving components, best practices, and contemporary solutions into a coherent synergistic SC topology, 3) unfolds current and future opportunities in order to adopt smarter, safer and more sustainable urban environments, and 4) demonstrates a variety of insights and orchestrational directions for local governors and private sector about how to transform cities into smarter cities from the technological, social, economic and environmental point of view, particularly by both putting residents and urban dynamics at the forefront of the development with participatory planning and interaction for the robust community- and citizen-tailored services. The framework developed in this paper is aimed to be incorporated into the real-world SC development projects in Lancashire, UK

    Zone-Based Energy Aware Data Collection Protocol for WSNs

    Get PDF
    In this paper we propose the Zone-based Energy Aware data coLlection (ZEAL) protocol. ZEAL is designed to be used in agricultural applications for wireless sensor networks. In these type of applications, all data is often routed to a single point (named “sink” in sensor networks). The overuse of the same routes quickly depletes the energy of the nodes closer to the sink. In order to minimize this problem, ZEAL automatically creates zones (groups of nodes) independent from each other based on the trajectory of one or more mobile sinks. In this approach the sinks collects data queued in sub-sinks in each zone. Unlike existing protocols, ZEAL accomplish its routing tasks without using GPS modules for location awareness or synchronization mechanisms. Additionally, ZEAL provides an energy saving mechanism on the network layer that puts zones to sleep when there are no mobile sinks nearby. To evaluate ZEAL, it is compared with the Maximum Amount Shortest Path (MASP) protocol. Our simulations using the ns-3 network simulator show that ZEAL is able to collect a larger number of packets with significantly less energy in the same amount of time

    Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Get PDF
    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper
    corecore