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ABSTRACT 

 

 

Wireless sensor networks have the potential to become significant subsystems of 

engineering applications where every each node functions as transmitter, receiver, 

router and data sink. It is necessary to understand the dynamic behaviour of these 

systems in simulation environments. It is critical to develop simulation platforms that 

are useful which can be used to explore both networking and wireless sensor 

networks issues. A discrete-event simulation is a trusted platform for modeling and 

simulating a variety of systems. This project emphasize on using new simulator for 

wireless sensor networks that is based on the discrete event simulation framework 

called Objective Modular Network Test bed in C++  version 4.1 (OMNeT++4.1) 

Simulator. This simulator is used to test the performance of sensor nodes within the 

networking in wireless communication networks based on indoor scenario. The test 

performances are focussed on aspects such as the time delay and packet utilization of 

the particular approach. The analysis approach is done through simulation software 

by the following metrics: packet frames delivery, packet loss and time delay 

experience within the system. 
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ABSTRAK 

 

 

Rangkaian pengesan tanpa wayar mempunyai potensi untuk menjadi subsistem 

penting dalam aplikasi kejuruteraan di mana setiap nod boleh berfungsi sebagai 

pemancar, penerima, router dan sink data. Ia adalah perlu untuk memahami tingkah 

laku dinamik sistem-sistem ini dalam persekitaran suatu simulasi. Ia adalah sangat 

penting dalam membangunkan sebuah platform simulasi yang berguna untuk 

digunakan dalam meneroka isu-isu rangkaian dan rangkaian pengesan tanpa wayar. 

Penyelakuan diskret-acara adalah satu platform yang dipercayai untuk pemodelan 

dan simulasi pelbagai sistem. Projek ini menekankan penggunaan simulator baru ini 

bagi suatu rangkaian pengesan tanpa wayar berdasarkan rangka kerja simulasi 

peristiwa diskret yang dipanggil Simulator Ujian Objektif Rangkaian Modular Katil 

dalam C + + versi 4.1 (OMNeT + 4,1). Simulator ini digunakan untuk menguji 

prestasi nod pengesan dalam sesuatu rangkaian komunikasi tanpa wayar berdasarkan 

senario yang tertutup. Penilaian prestasi ujian tertumpu kepada aspek-aspek seperti 

penangguhan masa dan penghantaran paket berdasarkan pendekatan tertentu. 

Pendekatan analisis dilakukan melalui perisian simulasi melalui metrik berikut: 

penghantaran rangka paket, kehilangan paket dan penangguhan masa berlandaskan 

dalam sistem. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

1.1 Background and History 

 

The Wireless Sensor Network (WSN) is built of "nodes" where from a few to several 

hundreds or even thousands, where each node is connected to one or several sensors. 

Each such sensor network node has typically several parts: a radio transceiver with an 

internal antenna or connection to an external antenna, a microcontroller, an electronic 

circuit for interfacing with the sensors and an energy source, usually a battery or an 

embedded form of energy harvesting. A sensor node might vary in size from that of a 

shoebox down to the size of a grain of dust. The cost of sensor nodes is similarly 

variable, ranging from a few to hundreds of dollars, depending on the complexity of the 

individual sensor nodes. Size and cost constraints on sensor nodes result in corresponding 

constraints on resources such as energy, memory, computational speed and 

communications bandwidth. The topology of the WSNs can vary from a simple star 

network to an advanced multi-hop wireless mesh network. The propagation technique 

between the hops of the network can be routing or flooding. 

In general, wireless sensor networks have made a lot of progress recently and 

have been widely discussed in many applications. According to J.Kenyeres et al (2010) it 

is expected that this technology will play an important role in improving the quality of 

the living environment through the creation of so called sensing environments. However, 

there is a gap in knowledge about WSN to help at least not to broaden this gap, but it is 

important that some scientific and educational research should be done in this area and 

that young generation should gain opportunity to study this technology.  

http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Transceiver
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Battery_(electricity)
http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Sensor_node
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Mesh_networking
http://en.wikipedia.org/wiki/Wireless_mesh_network


2 
 

A wireless sensor network consists of spatially distributed autonomus sensors to 

cooperatively monitor physical or environmental conditions, such as temperature, sound, 

vibration, pressure, motion or pollutants. The development of wireless sensor networks 

was motivated by the military applications such as battlefield surveillance. Nowadays, it 

is also used in many industrial and civilian application areas, including industrial process 

monitoring and control, machine health monitoring, environment and habitat monitoring, 

healthcare applications, home automation, and traffic control. 

 

 

Figure 1.1 : A Wireless Sensor Network. (F.L.Lewis, 2004) 

 

Feng Chen et al (2010) indicate that in wireless sensor network deployment 

techniques experiment, the important parameters such as connectivity of nodes, cost 

effective, energy efficiency and lifetime. Experimentation might be too expensive for 

such setups or infeasible due to physical limitations. Thus, in most cases performance 

evaluation is based on simulation models. For this study, the simulation experiment on 

the coexistence between wireless technologies based on IEEE 802.15.4 and IEEE 

802.11b standards can be considered using OMNeT++ software.  OMNeT++ software is 

suitable to implement simulation experiment and to evaluate the performance of the WSN 

network within indoor environment. 
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1.2 Problem Statement 

 

In the last decade, significant advances have been achieved in the domain of Wireless 

Sensor Networks (WSN). In the recent years, Wireless Sensor Networks probably plays a 

crucial role in creation of ubiquitous intelligent sensing environment. According to 

J.Kenyeres et al (2010), WSN are suitable for great variety of environments and 

conditions, what broadens the scale of their applications. Furthermore, simulation is 

frequently used to evaluate the performance of networking algorithms and techniques in 

wireless communication networks. Feng Chen et al (2010) indicate that however, 

performance aspects such as the transmission delay, the channel utilization, or the 

throughput provide only limited information about the feasibility of the particular 

approach. Some of the most challenging issues that have been studied are the medium 

access, routing strategies, clustering schemes, and application layer dynamics. All these 

approaches contribute to enable designers to develop and to deploy applications under 

various environmental conditions. 

The idea is to provide a broad range of design variants that can be chosen and 

combined in order to provide the optimal behaviour of the wireless sensor network. In 

certain cases, monitoring and automatic control of building environment is a crucial 

application of WSN in which maximizing network lifetime. It shows that transitional 

region is particular concern its accommodates high variance unreliable links due to the 

inside building environment could be the obstacles such as concrete or brick walls, 

partitions, office furniture and other items as additional absorption term to the path loss 

according to C. Mallanda (2005). Most of the approaches are targeted to improve the 

performance of the wireless communication with respect to the quality of service. 

Therefore, all the individual algorithms and techniques have been analyzed with regard to 

their performance, example, the speed of adaptation to environmental changes and the 

end-to-end nodes performance. Furthermore, most of the aim in wireless communication 

networks and especially for sensor networks is to reduce the energy consumption.  
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1.3 Objectives of Project 

 

The main objectives of this project are: 

i. To design a simulation process for wireless sensor network in an indoor scenario 

using OMNeT++ 4.1 

ii. To test the performance of packet delivery among the nodes within indoor 

scenario using OMNeT++4.1 

 

1.4 Scope of Project 

 

The scopes of this project is to evaluate wireless sensor network routing through research 

and simulation process. An open source software called OMNeT++ version 4.1 will be 

used in this project to run simulation process according to certain parameters that 

acquired according to indoor scenario. The parameters such as numbers on nodes, 

transmitting power used by the nodes and distances between nodes. Throughout the 

simulation process, the performances of packet delivery among the nodes within the 

network will be analyzed based on the results. 

 

1.5 Thesis Layout 

 

The thesis layout is organized as follows: 

 Chapter 1: This chapter explain on the introduction to wireless sensor network 

(WSN). It is also consists of background, problem statement, objectives of project and 

scope of project. 

 Chapter 2: In this chapter, it discussed on literature reviews of other research or 

previous studies which conclude theoritical and results. It is also to clarified, justified and 

compared between results based on related research. 

 Chapter 3: In order to achieve the goal of this project, this chapter will expalin on 

the methodology of the project. It showed the steps or protocols used in completion of 

this project. The simulation process and parameters are also explained and discussed in 

this chapter. 
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 Chapter 4: The results of this studies are presented and compared within this 

chapter. Analysis and simulation output and comparison between results such as graphs 

are explained in this chapter. 

 Chapter 5: Lastly, this chapter will summarizes all the results and concluded the 

conclusions of the project studies including the recommendation for future works. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

The objective of this chapter is to survey on previous studies that had been carried out 

among other researchers in order to gain more information related to the project. It is 

critically important to review the existing research on wireless sensor network routing 

protocols within indoor scenario. By critically reviewing the following previous thesis, 

journals, articles and reports, substantially it provides great significance knowledge and 

information to this project. 

 

2.2 Related Works 

 

In this section, related works on the routing protocol for WSN that improve the energy 

consumption are studied and critically analyzed. 

J. Kenyeres et al. (2010) focused on the monitoring of functionality and reliability 

as well as on the influence on varying parameters of wireless sensor network placed in 

the indoor environment. The experiment clearly revealed the relationship between data 

rate and reponsibility of the whole WSN network. In reducing error rate and increase 

number of packets for static WSN can be achieved by reducing topology, decrease the 

distance between nodes and increase packet sending interval. 

Malka N. Halgamuge et al. (2009) investigate the link quality distribution to 

obtain full coverage of the signal strength within a single floor of a building environment. 

The results comfirmed where the transitional region in wireless sensor network since it 

accomodates high variance unreliable links. The reason is due to this transitional region 
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inside a building environment could be the obstacles including concrete walls, partitions, 

furnitures and other items affect as additional absorption term to path loss. 

Yunchun Zhang et al. (2009) presented the existing localization algorithm in 

Wireless Sensor Network (WSN) which can be divided into two categories: range based 

and range free. Most of the range based localization algorithms proposed made use of the 

Received Signal Strength Indication (RSSI) to make an estimation of the distance 

between transmitter and receiver. Throughout the experiment it shows there is no 

relationship between RSSI and distance in indoor situations. Only the outdoor shows that 

RSSI is closely related with distance, direction of antenna, the height of nodes above the 

ground and obstructions. 

D. J. Dechene examined currently proposed clustering algorithms for Wireless 

Sensor Networks (WSN) which discussed the operations of the algorithms, as well as 

comparisons on the performance between the various schemes. Optimal clustering in 

terms of energy efficiency should eliminate all overhead associated not only with the 

cluster-head selection process, but also with node association to their respective cluster-

heads. Sensor network reliability is currently addressed in various algorithms by utilizing 

re-clustering that occurs at various time intervals; however inefficient energy and limits 

the time available within a network for data transmission and sensing tasks. Further 

improvements in reliability should examine possible modifications to the re-clustering 

mechanisms following the initial cluster-head selection. Other mechanisms such as the 

ability of nodes to maintain membership in auxiliary clusters can reinforce the current 

state of sensor network reliability. 

Feng Chen et al. (2010) introduced a generic energy model developed for the 

simulation framework OMNeT++. The sensor was designed based on the IEEE802.14.5 

architecture by using a simple CPU model to estimate the energy consumption for 

computationally intensive operations. The aspect discuss in this paper is more on the 

sensor design and not taking into account the routing algorithm. The model allows to 

accurately evaluate the energy performance in terms of energy consumption or network 

lifetime of the wireless sensor network. 
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2.3 Wireless Sensor Network 

 

Wireless Sensor Networks (WSN) comprises of numerous tiny sensors that are deployed 

in spatially distributed terrain. These sensors are endowed with small amount of 

computing and communication capability and can be deployed in ways that wired sensor 

systems couldn’t be deployed. Yunchun Zhang et al. (2009) indicates that despite the 

prolific conceptualization of sensor networks as being useful for large-scale military 

applications which originally motivated by military applications such as battlefield 

surveillance, is a wireless network consisting of spatially distributed autonomous devices 

using sensors to cooperatively monitor physical or environmental conditions, such as 

temperature, sound, vibration, pressure, motion or pollutants, at different locations. 

Wireless sensor networks have the potential to become significant subsystems of 

engineering applications. Before relegating important and safety-critical tasks to such 

subsystems, it is necessary to understand the dynamic behavior of these subsystems in 

simulation environments. C Mallanda et al. (2005) urge that it is an urgent need to 

develop simulation platforms that are useful to explore both the networking issues and 

the distributed computing aspects of wireless sensor networks.  

According to J. Kenyeres et al. (2010) of the experiments aim was to estimate 

how parameters such as number of packet errors and retransmissions deteriorate real 

WSN functionality. The experiment with WSN was realized in indoor area, which 

resulted in a variety of different conditions influencing functionality of sensor nodes. 

This area offers lot of different spaces ranging from long, open sight hallways, stairways, 

lifts and many others. This surrounding environment at the main hallway consists of 

many different materials, like concrete, steel, glass and so on, what causes heterogeneous 

influences on WSN. 

WSN signal in this area might be interfaced with signals from other sources, for 

example from 802.11b communication. Main goal of this experiment was to create WSN 

network covering almost whole area of hallway and also to test its functionality with 

various parameters set up. Discrete-event simulation is a trusted platform for modeling 

and simulating a variety of systems. Results can be obtained from a new simulator for 

wireless sensor networks networks that is based on the discrete event simulation 

framework called OMNeT++.  

Work is underway to develop a simulation platform that allows developers and 

researchers to investigate topological, phenomenological, networking, robustness and 
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scaling issues related to wireless sensor networks. Such simulation studies must explore 

the effects of scale, density, node-level architecture, energy efficiency, communication 

architecture, failure modes at node and communication media levels, system architecture, 

algorithms, protocols and configuration among other issues. C Mallanda et al. (2005) told 

that unlike traditional computer systems, it is not sufficient to simulate the behavior of 

the sensor network in isolation because of the tight and ubiquitous coupling between the 

sensor network and its application. 

 

2.4 Objective Modular Network Test-bed in C++ (OMNeT++) 

 

Thru simulation, there are many types of current available simulators such as ns2, 

SensorSim, OPNET, J-Sim, GlomoSim and etc. all these simulators have certain function 

that provides support or platform for simulating TCP/IP, routing protocols, energy 

models, sensor channels and etc. In this project, the selected simulator used is Objective 

Modular Network Test-bed in C++ (OMNeT++). 

 

2.4.1 Background And History 

 

OMNeT++ started with a programming assignment at the Technical University of 

Budapest (Hungary), to which two students applied. One of them, András Varga, still is 

the maintainer of this open source simulation package. During the years several people 

contributed to OMNeT++, among which several students from the Technical University 

of Delft (The Netherlands) and Budapest. Milestones in the development are the first 

public release in 1997 and the added animation functionality in 1998, which made the 

package even more usable for education. 

In 2000 several people at the University of Karlsruhe created the TCP model for 

OMNeT++. This version included several bug fixes and important changes and additions 

to the manual. The website also had a major update. A beta version of version 3.0 is now 

also available. All simulations in this report were done using OMNeT++ version 4.1. It is 

also offers an Eclipse-based IDE, a graphical runtime environment, and a host of other 

tools. There are extensions for real-time simulation, network emulation, alternative 

programming languages (Java, C#), database integration, SystemC integration, and 

several other functions. The latest extension version is OMNeT++4.2. 
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2.4.2 What  Is OMNeT++ 

 

OMNeT++ is an extensible, modular, component-based C++ simulation library and 

framework, primarily for building network simulators. OMNeT++ is also an object 

oriented discrete event simulation environment focusing on the simulation of 

communication networks. It provides component architecture for models programmed in 

C++ with GUI support. Its primary application area is the simulation of communication 

networks, but because of its generic and flexible architecture, is successfully used in 

other areas like the simulation of complex IT systems, queueing networks or hardware 

architectures as well.  

OMNeT++ provides a component architecture for models. Components (modules) 

are programmed in C++, then assembled into larger components and models using a 

high-level language (NED). Reusability of models comes for free. OMNeT++ has 

extensive GUI support, and due to its modular architecture, the simulation kernel (and 

models) can be embedded easily into any applications. Although OMNeT++ is not a 

network simulator itself, it is currently gaining widespread popularity as a network 

simulation platform in the scientific community as well as in industrial settings, and 

building up a large user community. 

 

2.4.3 Applications of OMNeT++ 

 

A C++ class library which consists of the simulation kernel and utility classes (for 

random number generation, statistics collection, topology discovery etc) This will be use 

to create simulation components (simple modules and channels); infrastructure to 

assemble simulations from these components and configuration (NED language, ini 

files); runtime user interfaces or environments for simulations (Tkenv, Cmdenv); an 

Eclipse-based simulation IDE for designing, running and evaluating simulations; 

extension interfaces for real-time simulation, emulation, MRIP, parallel distributed 

simulation, database connectivity and so on.  

OMNeT++ provides the fundamental machinery and tools in writting simulations, 

but it does not provide any components specifically for computer network simulations, 

queueing network simulations, system architecture simulations or any other area. Instead, 

these application areas are supported by various simulation models and frameworks of an 
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open source such as INET/INETMANET, MiXiM or Castalia. These models are 

developed completely independent of OMNeT++, and follow their own release cycles. 

 

2.4.4 Modelling Concepts 

 

OMNeT++ provides efficient tools for the user to describe the structure of the actual 

system. Some of the main features are: 

•  hierarchically nested modules 

• modules are instances of module types 

• modules communicate with messages through channels 

•  flexible module parameters 

• topology description language 

 

2.4.4.1 Hierarchical Modules 

 

An OMNeT++ model consists of hierarchically nested modules, which communicate by 

passing messages to each another. OMNeT++ models are often referred to as networks. 

The top level module is the system module. The system module contains submodules, 

which can also contain submodules themselves (Fig. 2.1). The depth of module nesting is 

not limited; this allows the user to reflect the logical structure of the actual system in the 

model structure. 

Model structure is described in OMNeT++’s NED language. 

 

 
Figure 2.1: Simple and compound modules 

 

Simple modules are the active components in the model. Simple modules are 

programmed in C++, using the OMNeT++ class library. The following sections contain a 

short introduction to discrete event simulation in general, explain on how its concepts are 

 

http://inet.omnetpp.org/
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http://castalia.npc.nicta.com.au/
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implemented in OMNeT++, and give an overview and practical advice on how to design 

and code simple modules.  

Modules that contain submodules are termed compound modules, as opposed 

simple modules which areat the lowest level of the module hierarchy. Simple modules 

contain the algorithms in the model. The user implements the simple modules in C++, 

using the OMNeT++ simulation class library. 

In OMNeT++, events occur inside simple modules. Simple modules encapsulate 

C++ code that generates an events and reacts to events, in other words, implements the 

behaviour of the model. The user creates simple module types by sub classing the 

cSimpleModule class, which is part of the OMNeT++ class library. cSimpleModule, just 

as cCompoundModule, is derived from a common base class, cModule. cSimpleModule, 

although packed with simulation-related functionality, doesn’t do anything useful by 

itself . It needs to redefine some virtual member functions to make it do some useful 

work. These member functions are the following: 

•  void initialize() 

•  void handleMessage(cMessage *msg) 

•  void activity() 

•  void finish() 

In the initialization step, OMNeT++ builds the network: it creates the necessary 

simple and compound modules and connects them according to the NED definitions. 

OMNeT++ also calls the initialize() functions of all modules. The finish() functions are 

called when the simulation terminates successfully. The most typical use of finish() is the 

recording of statistics collected during simulation. 

 

2.4.4.2 Module Types 

 

Both simple and compound modules are instances of module types. While describing the 

model, the user defines module types; instances of these module types serve as 

components for more complex module types. Finally, the user creates the system module 

as an instance of a previously defined module type; all modules of the network are 

instantiated as sub modules and sub-sub modules of the system module. When a module 

type is used as a building block, there is no distinction whether it is a simple or a 

compound module. This allows the user to split a simple module into several simple 

modules embedded into a compound module, or vice versa, aggregate the functionality of 
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a compound module into a single simple module, without affecting existing users of the 

module type. Module types can be stored in files separately from the place of their actual 

usage. This means that the user can group existing module types and create component 

libraries.  

 

2.4.5 Components of OMNeT++ 

 

There are several types of components used in OMNeT++’s simulation. The following 

main components are as follows: 

• simulation kernel library  

• compiler for the NED topology description language  

• OMNeT++ IDE based on the Eclipse platform  

• GUI for simulation execution, links into simulation executable (Tkenv)  

• command-line user interface for simulation execution (Cmdenv)  

• utilities (makefile creation tool, etc.)  

• documentation, sample simulations, etc.  

 

2.4.6 Simulation with OMNeT++ 

 

This section provides insight into working with OMNeT++ in practice: Issues such as 

model files, compiling and running simulations are discussed. 

An OMNeT++ model consists of the following parts: 

•  NED language topology description(s) (.ned files) which describe the module 

structure with parameters, gates etc. NED files can be written using any text 

editor or the GNED graphical editor. 

•  Message definitions (.msg files). Define various message types and add data 

fields to them. OMNeT++ will translate message definitions into full-fledged C++ 

classes. 

•  Simple modules sources. They are C++ files, with .h/.cc suffix. 

The simulation system provides the following components: 

•  Simulation kernel. This contains the code that manages the simulation and the 

simulation class library. It is written in C++, compiled and put together to form a 

library (a file with .a or .lib extension) 
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•  User interfaces. OMNeT++ user interfaces are used in simulation execution, to 

facilitate debugging, demonstration, or batch execution of simulations. There are 

several user interfaces, written in C++, compiled and put together into libraries (.a 

or .lib files). 

Simulation programs are built from the above components. First, .msg files are 

translated into C++ code using the opp_msgc. program. Then all C++ sources are 

compiled, and linked with the simulation kernel and a user interface library to form a 

simulation executable. NED files can either be also translated into C++ (using nedtool) 

and linked in, or loaded dynamically in their original text forms when the simulation 

program starts. 

 In figure 2.2, figure 2.3 and figure 2.4 shows the window box related to the NED 

graphical editor, source code editor and graphical runtime environment. 

 

 
 

Figure 2.2: Graphical NED Editor 
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Figure 2.3: NED Source Editor 

 

 

 
 

Figure 2.4: Graphical Runtime Environment 

 

2.4.7 Running Simulation and Analyzing Results 
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The simulation executable is a standalone program, thus it can be run on other machines 

without OMNeT++ or the model files being present. When the program is started, it reads 

a configuration file (usually called omnetpp.ini). This file contains settings that control 

how the simulation is executed, values for model parameters, etc. The configuration file 

can also prescribe several simulation runs; in the simplest case, they will be executed by 

the simulation program one after another.  

The output of the simulation is written into data files: output vector files, output 

scalar files, and possibly the user’s own output files. OMNeT++ provides a GUI tool 

named Plove to view and plot the contents of output vector files. It is not expected that 

someone will process the result files using OMNeT++ alone: output files are text files in 

a format which can be read into math packages like Matlab or Octave, or imported into 

spreadsheets like Open Office Calc, Gnumeric or MS Excel. All these external programs 

provide rich functionality for statistical analysis and visualization, and it is outside the 

scope of OMNeT++ to duplicate their efforts. This manual briefly describes some data 

plotting programs and how to use them with OMNeT++. 

 

2.4.8 The NED Language 

 

The topology of a model is specified using the NED language. The NED language 

facilitates the modular description of a network. This means that a network description 

may consist of a number of component descriptions (channels, simple/compound module 

types). The channels, simple modules and compound modules of one network description 

can be reused in another network description. Files containing network descriptions 

generally have a .ned suffix. NED files can be loaded dynamically into simulation 

programs, or translated into C++ by the NED compiler and linked into the simulation 

executable. 

The NED language, the network topology description language of OMNeT++ will 

be given using the extended BNF notation. Space, horizontal tab and new line characters 

counts as delimiters, so one or more of them is required between two elements of the 

description which would otherwise be unseparable. ’//’ (two slashes) may be used to 

write comments that last to the end of the line. The language only distinguishes between 

lower and upper case letters in names, but not in keywords. 
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In this description, the {xxx...} notation stands for one or more xxx’s separated 

with spaces, tabs or new line characters, and {xxx„,} stands for one or more xxx’s, 

separated with a comma and (optionally) spaces, tabs or new line characters. For ease of 

reading, in some cases we use textual definitions. The network description symbol is the 

sentence symbol of the grammar. 

 

2.4.9  Components Of A NED Description 

 

A NED description consist of the following components, in arbitrary number or order: 

•  import directives 

•  channel definitions 

•  simple and compound module definitions 

•  network definitions 

 

2.4.10 User Interfaces 

 

OMNeT++ simulations can be run under different user interfaces. Currently, there are 

two types of user interfaces were supported: 

•  Tkenv: Tcl/Tk- which is based graphical, windowing user interface 

•  Cmdenv: a command-line user interface for batch execution 

Typically test and debug are simulation which is under Tkenv, which run the 

actual simulation experiments from the command line or shell script, using Cmdenv. 

Tkenv is well suited for the use of educational or any demonstration purposes. Both 

Tkenv and Cmdenv are provided in the form of a library, and by choosing between them 

by linking one or the other into the simulation executable. Both user interfaces are 

supported on Windows or Unix platforms. 

Common functionality in Tkenv and Cmdenv has been collected and placed into 

the Envir library, which can be thought of as the “common base class” for the two user 

interfaces. The user interface is separated from the simulation kernel, and the two parts 

interact through a well defined interface. This means that, if it is necessary needed, the 

user can write its own user interface or embed an OMNeT++ simulation into the 

application without any changes to models or the simulation library. 

Configuration and input data for the simulation are described in a configuration 

file usually called omnetpp.ini. Some entries in this file apply to Tkenv or Cmdenv only, 
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other settings are in effect regardless of the user interface. Both user interfaces accept 

command-line arguments.  

 

2.4.11 The Configuration File: omnetpp.ini 

 

OMNeT++ is an open source simulator that can execute several simulations runs 

automatically, one after another without any distortion. If multiple runs are selected, 

option settings and parameter values can be given either individually for each run, or all 

together for the whole runs, depending in which of the section the option or parameter 

will appeared. 

 

2.4.11.1 File Syntax 

 

The ini file is a text file consisting of entries grouped into different sections. The order of 

the sections doesn’t matter. Also, if there have two sections with the same name:  

(e.g. [General] occurs twice in the file), they will be merged.  

• Lines that start with "#" or ";" are comments, and will be ignored during 

processing. 

• Long lines can be broken up using the backslash notation: if the last character of a 

line is "\", it will be merged with the next line. 

The size of the ini file (the number of sections and entries) is not limited. Currently 

there is a 1024- character limit on the line length, which cannot be increased by breaking 

up the line using backslashes. 

 

2.5 IEEE 802.15.4 

 

An IEEE standard 802.15.4 intends to offer the fundamental lower network layers of a 

type of wireless personal area network (WPAN) which focuses on low-cost, low-speed 

ubiquitous communication between devices which in contrast with other, more end-user 

oriented approaches, such as Wireless Fidelity (WiFi). It emphasis on very low cost 

communication within a nearby devices with little to none underlying infrastructure, 

which intending more to exploit very low power consumption. 
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IEEE 802.15.4 is a standard which specifies the physical layer and media access 

control for low-rate wireless personal area networks (LR-WPANs). It is maintained by 

the IEEE 802.15 working group. It is the basis for the ZigBee specifications, which 

further extends the standard by developing the upper layers which are not defined in 

IEEE 802.15.4. 

ZigBee is a specification for a suite of high level communication protocols using 

small, low-power digital radios based on an IEEE 802 standard for personal area 

networks. Applications include wireless light switches, electrical meters with in-home-

displays, and other consumer and industrial equipment that requires short-range wireless 

transfer of data at relatively low rates. The technology defined by the ZigBee 

specification is intended to be simpler and less expensive than other WPANs, such as 

Bluetooth. ZigBee is targeted at radio-frequency (RF) applications that require a low data 

rate, long battery life, and secure networking. ZigBee has a defined rate of 250 kbit/s best 

suited for periodic or intermittent data or a single signal transmission from a sensor or 

input device. ZigBee based traffic management system have also been implemented. 

 

2.5.1 Technical Overview 

 

ZigBee is a low-cost, low-power, wireless mesh network standard. The low cost allows 

the technology to be widely deployed in wireless control and monitoring applications. 

Low power-usage allows longer life with smaller batteries. Mesh networking provides 

high reliability and more extensive range. ZigBee chip vendors typically sell integrated 

radios and microcontrollers with between 60 KB and 256 KB flash memory. 

The ZigBee network layer natively supports both star and tree typical networks, 

and generic mesh networks. Every network must have one coordinator device, tasked 

with its creation, the control of its parameters and basic maintenance. Within star 

networks, the coordinator must be the central node. Both trees and meshes allows the use 

of ZigBee routers to extend communication at the network level. 
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Figure 2.5 shows the ZigBee protocol stack. The diagram is a compact 

representation of the complete ZigBee protocol stack, including IEEE 802.15.4-defined 

bottom layers. It builds upon the physical layer and medium access control defined in 

IEEE standard 802.15.4  for low-rate WPANs. The specification goes on to complete the 

standard by adding four main components: network layer, application layer, ZigBee 

device objects (ZDOs) and manufacturer-defined application objects which allow for 

customization and favor total integration.  

Besides adding two high-level network layers to the underlying structure, the 

most significant improvement is the introduction of ZDOs. These are responsible for a 

number of tasks, which include keeping of device roles, management of requests to join a 

network, device discovery and security. ZigBee is not intended to support powerline 

networking but to interface with it at least for smart metering and smart appliance 

purposes. ZigBee nodes can go from sleep to active mode in 30 ms or less, the latency 

can be low and devices can be responsive, particularly compared to Bluetooth wake-up 

delays, which are typically around three seconds. Because ZigBee nodes can sleep most 

of the time, average power consumption can be low, resulting in long battery life. 

The basic framework conceives a 10-meter communications range with a transfer 

rate of 250 kbit/s. Tradeoffs are possible to favor more radically embedded devices with 

even lower power requirements, through the definition of not one, but several physical 

layers. Lower transfer rates of 20 and 40 kbit/s were initially defined, with the 100 kbit/s 

rate being added in the current revision. 

Even lower rates can be considered with the resulting effect on power 

consumption. As already mentioned, the main identifying feature of IEEE 802.15.4 

among WPAN's is the importance of achieving extremely low manufacturing and 

operation costs and technological simplicity, without sacrificing flexibility or generality. 
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Figure 2.5: A Zigbee protocol stack 

 

A Zigbee network can work in one of three ISM frequency bands and choose 

from a total of 27 channels. Two different types of devices are defined in an LR-WPAN, 

a full function device (FFD) and a reduced function device (RFD).  

The first one is the FFD. An FFD can talk to any other device and serves as a 

PAN coordinator, a coordinator or a device. It can serve as the coordinator of a personal 

area network just as it may function as a common node. It implements a general model of 

communication which allows it to talk to any other device: it may also relay messages, in 

which case it is dubbed a coordinator (PAN coordinator when it is in charge of the whole 

network). 
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On the other hand there is RFD. An RFD can only talk to an FFD node. These are 

meant to be extremely simple devices with very modest resource and communication 

requirements; due to this, they can only communicate with FFD's and can never act as 

coordinators. The standard supports two network topologies, star and peer-to-peer. In the 

star network, the communication occurs only between devices and a single central 

controller, called the PAN coordinator, which manages the whole PAN. The peer-to-peer 

topology also has a PAN coordinator, however is differs from the star topology in that 

any devices can communicate with any other one as long as they are in range of one 

another.  

 To achieve better energy-efficiency, Zigbee can operate on beacon-enabled mode, 

for which a super frame structure is utilized. A super frame is bounded by periodically 

transmitted beacon frames, which allow nodes to associate with and synchronize to their 

coordinators. It consists of two parts, active and inactive period. An active portion is 

divided into 16 contiguous time slots that form three parts: the beacon, contention access 

period (CAP) and contention-free period (CFP). In CAP, all data transmission should 

follow a successful execution of the slotted CSMA-CA algorithm. 

 

2.5.2 Description of IEEE 802.15.4 Model in OMNET++ 

 

The IEEE 802.15.4 model is developed in the MIXIM framework, which is an open-

source communication networks simulation package for the OMNeT++ simulation 

environment and suited for simulations of wired, wireless and ad-hoc networks. The 

architecture of the 802.15.4 model is shown in Figure 2.6. There are three sub models, 

traffic, MAC and PHY, each of which is an independent module and inherited from the 

basic C++ class cSimpleModule in OMNeT++. The modules are connected with each 

other via gates and communicate among each other via messages. 
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Figure 2.6: The structure and components of IEEE 802.15.4 model 

 

2.5.3 Path Loss Indoor Propagation Model 

 

Path loss or path attenuation is the reduction in power density (attenuation) of an 

electromagnetic wave as it propagates through space. Path loss is a major component in 

the analysis and design of the link budget of a telecommunication system. This term is 

commonly used in wireless communications and signal propagation. Path loss may be 

due to many effects, such as free-space loss, refraction, diffraction, reflection, aperture-

mediumcoupling loss, and absorption. Path loss is also influenced by terrain contours, 

environment, propagation medium (dry or moist air), the distance between the transmitter 

and the receiver, and the height and location of antennas. 

The model is applicable to indoor propagation modeling where log distance path 

loss model is formerly expressed as: 

 

PL. = PTx(dBm) - PRx(dBm)     (2.1) 

 = PLo + 10 α log10 (d/do) + Xg

where; 

PL is the total path loss measured in Decibel (dB) 

PTx(dBm)=10 log10 (PTx/1mW) is the transmitted power in dBm, where 

PTx  is the transmitted power in watt. 
PRx(dBm)=10 log10 (PRx/1mW) is the received power in dBm, where 
PRx  is the received power in watt. 

 

http://en.wikipedia.org/wiki/Attenuation_(electromagnetic_radiation)
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Link_budget
http://en.wiktionary.org/wiki/signal
http://en.wikipedia.org/wiki/Wave_propagation
http://en.wikipedia.org/wiki/Free-space_loss
http://en.wikipedia.org/wiki/Refraction
http://en.wikipedia.org/wiki/Diffraction
http://en.wikipedia.org/wiki/Reflection_(physics)
http://en.wikipedia.org/wiki/Aperture_(antenna)
http://en.wikipedia.org/wiki/Transmission_medium
http://en.wikipedia.org/wiki/Coupling_loss
http://en.wikipedia.org/wiki/Absorption_(optics)
http://en.wikipedia.org/wiki/Path_loss
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/DBm
http://en.wikipedia.org/wiki/Watt


24 
 

PLo  is the path loss at the reference distance d0. Unit: Decibel (dB) 
d  is the length of the path. 
do is the reference distance, usually 1 km (or 1 mile). 
 α is the path loss exponent. 
Xg is a normal (or Gaussian) random variable with zero mean, reflecting the 
attenuation (in decibel) caused by flat fading. 

 

When an electromagnetic wave propagates through space; there is the reduction in 

power density or attenuation of the wave, namely path loss, which is a major component 

in the channel modelling. According to Jing Lu et al. (2010), the simplest channel is the 

free space line of sight channel with no objects between the receiver and the transmitter 

or around the path between them. In this simple case, the transmitted signal attenuates 

since the energy is spread spherically around the transmitting antenna. For this line of 

sight (LOS) channel, the received power is given by: 

 

PL (d) dB = PL (do) + 10α log (d/do) σ   (2.2) 

 

Some of the waves will reflect and reach the transmitter due to the presence of the 

ground. These reflected waves sometime have a phase shift of 180° and so may reduce 

the net received power. So, a simple two-ray approximation for path loss can be shown as 

below:  

 

Pr = Pt (GrGthr
2ht

2/d4)      (2.3) 

 

Respectively, from the given formula, where hr and ht are the antenna heights of 

the transmitter and receiver. Note that there are three major differences from the previous 

formula. First, the antenna heights have effect. Second, the wavelength is absent and third 

the exponent on the distance is 4. In general, a common formula for path loss is: 

 

  Pr = Pt Po (do/d)α      (2.4) 

 

Where Po is the power at a distance do and α is the path loss exponent. 

Theoretically, the power falls off in proportion to the square of the distance. In 

practice, the power falls off more quickly, typically 3rd or 4th power of distance. The 
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