
i

INDOOR PERFORMANCE OF WIRELESS SENSOR NETWORK

HASRI BIN HAMDAN

A thesis submitted in partial

Fulfillment of the requirement for the award of the

Degree of Master of Electrical Communication Engineering

Faculty of Electrical and Electronic Engineering

Universiti Tun Hussein Onn Malaysia

JULY 2012

v

ABSTRACT

Wireless sensor networks have the potential to become significant subsystems of

engineering applications where every each node functions as transmitter, receiver,

router and data sink. It is necessary to understand the dynamic behaviour of these

systems in simulation environments. It is critical to develop simulation platforms that

are useful which can be used to explore both networking and wireless sensor

networks issues. A discrete-event simulation is a trusted platform for modeling and

simulating a variety of systems. This project emphasize on using new simulator for

wireless sensor networks that is based on the discrete event simulation framework

called Objective Modular Network Test bed in C++ version 4.1 (OMNeT++4.1)

Simulator. This simulator is used to test the performance of sensor nodes within the

networking in wireless communication networks based on indoor scenario. The test

performances are focussed on aspects such as the time delay and packet utilization of

the particular approach. The analysis approach is done through simulation software

by the following metrics: packet frames delivery, packet loss and time delay

experience within the system.

vi

ABSTRAK

Rangkaian pengesan tanpa wayar mempunyai potensi untuk menjadi subsistem

penting dalam aplikasi kejuruteraan di mana setiap nod boleh berfungsi sebagai

pemancar, penerima, router dan sink data. Ia adalah perlu untuk memahami tingkah

laku dinamik sistem-sistem ini dalam persekitaran suatu simulasi. Ia adalah sangat

penting dalam membangunkan sebuah platform simulasi yang berguna untuk

digunakan dalam meneroka isu-isu rangkaian dan rangkaian pengesan tanpa wayar.

Penyelakuan diskret-acara adalah satu platform yang dipercayai untuk pemodelan

dan simulasi pelbagai sistem. Projek ini menekankan penggunaan simulator baru ini

bagi suatu rangkaian pengesan tanpa wayar berdasarkan rangka kerja simulasi

peristiwa diskret yang dipanggil Simulator Ujian Objektif Rangkaian Modular Katil

dalam C + + versi 4.1 (OMNeT + 4,1). Simulator ini digunakan untuk menguji

prestasi nod pengesan dalam sesuatu rangkaian komunikasi tanpa wayar berdasarkan

senario yang tertutup. Penilaian prestasi ujian tertumpu kepada aspek-aspek seperti

penangguhan masa dan penghantaran paket berdasarkan pendekatan tertentu.

Pendekatan analisis dilakukan melalui perisian simulasi melalui metrik berikut:

penghantaran rangka paket, kehilangan paket dan penangguhan masa berlandaskan

dalam sistem.

vii

CONTENTS

TITLE i

DECLARATION ii

ACKNOWLEDGEMENT iv

ABSTRACT v

CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS AND ABBREAVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER 1 INTRODUCTION

1.1 Background and History 1

1.2 Problem Statement 3

1.3 Objectives Of Project 4

1.4 Scope Of Project 4

1.5 Thesis Layout 4

CHAPTER 2 LITERATURE REVIEW

 2.1 Introduction 6

 2.2 Related Works 6

 2.3 Wireless Sensor Network 8

 2.4 Objective Modular Network Test-bed In C++ (OMNeT++) 9

 2.4.1 Background And History 9

 2.4.2 What Is OMNeT++ 10

 2.4.3 Applications Of OMNeT++ 10

 2.4.4 Modeling Concepts 11

2.4.4.1 Hierarchical Modules 11

2.4.4.2 Module Types 12

 2.4.5 Components Of OMNeT++ 13

viii

 2.4.6 Simulations With OMNeT++ 13

 2.4.7 Running Simulation And Analyzing Results 16

 2.4.8 The NED Language 16

 2.4.9 Components Of A NED Description 17

 2.4.10 User Interfaces 17

 2.4.11 The Configuration File: omnetpp.ini 18

 2.4.11.1 File Syntax 18

 2.5 IEEE 802.15.4 18

 2.5.1 Technical Overview 19

 2.5.2 Description Of IEEE 802.15.4 Model In OMNeT++ 22

 2.5.3 Path Loss Indoor Propagation Model 23

 2.6 Summary 25

CHAPTER 3 METHODOLOGY

 3.1 Introduction 26

 3.2 Process Flowchart 26

 3.3 Wiseroute Routing 30

 3.4 Starting OMNeT++ Version 4.1 30

 3.5 The Workbench 31

 3.6 Opening A Workspace 32

 3.7 The Simulation Perspective 33

 3.8 Configuring OMNeT++ 4.1 Preferences 33

 3.9 Creating Project In OMNeT++ 4.1 34

 3.10 Editing NED Files 36

 3.11 Editing INI Files 38

 3.12 The Omnetpp.ini File 38

 3.13 The Convergecast.anf File 42

 3.14 Scalars Tools 43

 3.15 Summary 46

CHAPTER 4 ANALYSIS AND DISCUSSION

 4.1 Introduction 47

 4.2 Simulation Results For Frames Delivery Performance 48

 4.2.1 Frames Transmitted And Received Based On TX

 Power Of 0.1mW 48

ix

 4.2.2 Frames Transmitted And Received Based On TX

 Power Of 1mW 53

 4.2.3 Discussions On Transmitted And Received Frames 59

 4.2.4 Frames Received With And Without Interference

 Based On TX Power Of 0.1mW 59

 4.2.5 Frames Received With And Without Interference

 Based On TX Power Of 1mW 65

 4.2.6 Discussions On Received Frames With And Without

Interference 70

 4.3 Received Packets 71

 4.4 Latency 72

 4.5 Number Of Hops For Received Packet 73

4.6 Summary 74

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

 5.1 Introduction 75

 5.2 Conclusions 76

 5.3 Future Works 76

REFERENCES 78

APPENDIX 81

x

LIST OF TABLES

TABLES TITLE PAGE

3.1 Parameters Used In The Simulation Process 39

3.2 Path Loss Exponents For Different Environment 39

3.3 Parameters Used In Convergecast Routing 42

4.1 Number Of Frames Transmitted Over Distances For WSN

Routing Protocols (TxPower = 0.1mW) 49

4.2 Number Of Frames Received Over Distances For WSN

Routing Protocols (TxPower = 0.1mW) 50

4.3 Number Of Frames Transmitted Over Distances For WSN

Routing Protocols (TxPower = 1mW) 54

4.4 Number Of Frames Received Over Distances For WSN

Routing Protocols (TxPower = 1mW) 55

4.5 Number Of Frames Received Without Interference Over

Distances For WSN Routing Protocols (TxPower = 0.1mW) 60

4.6 Number Of Frames Received With Interference Over

Distances For WSN Routing Protocols (TxPower = 0.1mW) 61

4.7 Number Of Frames Received Without Interference Over

Distances For WSN Routing Protocols (TxPower = 1mW) 66

4.8 Number Of Frames Received Without Interference Over

Distances For WSN Routing Protocols (TxPower = 1mW) 67

xi

LIST OF FIGURES

FIGURE TITLE PAGE

1.1 A Wireless Sensor Network 2

2.1 Simple And Compound Modules 11

2.2 Graphical NED Editor 14

2.3 NED Source Editor 15

2.4 Graphical Runtime Environment 15

2.5 A Zigbee Protocol Stack 21

2.6 The Structure And Components Of IEEE 802.15.4 Model 23

3.1 The Flowchart Of The Project Process Development 27

3.2 Flowchart Of Wiseroute Routing Algorithm 29

3.3 Window Command Script Box For OMNeT++ 4.1 30

3.4 OMNeT++ 4.1 Simulator Box 31

3.5 Interface Window Box For The Workbench 32

3.6 Window Box For Selecting A Workspace 33

3.7 Configuring OMNeT++ Preferences 34

3.8 Selecting Workspace Directory For Creating Project

In OMNeT++ 4.1 35

3.9 Selecting WSNRouting.ned File 35

3.10 WSN Routing Modules 36

3.11 Source Of The Design For .NED File In C++ Languages 37

3.12 OMNeT++/Tkenv – WSN Routing Box 40

3.13 WSN Routing Box Simulation Module 41

3.14 Three Combo Box – Selection Convergecast Running ID 44

3.15 Three Combo Box – Selection Module Filter 44

3.16 Three Combo Box – Selection Statistic Name Filter 45

xii

4.1 Number Of Frames Sent And Received Based On

Nodes (ID #1) 51

4.2 Number Of Frames Sent And Received Based On

Nodes (ID #10) 51

4.3 Number Of Frames Sent And Received Based On

Nodes (ID #20) 52

4.4 Number Of Frames Sent And Received Based On

Nodes (ID #30) 52

4.5 Number Of Frames Sent And Received Based On

Nodes (ID #40) 53

4.6 Number Of Frames Sent And Received Based On

Nodes (ID #5) 56

4.7 Number Of Frames Sent And Received Based On

Nodes (ID #15) 57

4.8 Number Of Frames Sent And Received Based On

Nodes (ID #25) 57

4.9 Number Of Frames Sent And Received Based On

Nodes (ID #35) 58

4.10 Number Of Frames Sent And Received Based On

Nodes (ID #45) 58

4.11 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#1) 62

4.12 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#10) 63

4.13 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#20) 63

4.14 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#30) 64

4.15 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#40) 64

4.16 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#5) 68

xiii

4.17 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#15) 68

4.18 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#25) 69

4.19 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#35) 69

4.20 Number Of Frames Retrieved With And Without Interference

Based On Nodes (ID#45) 70

4.21 Received Packets Between Nodes Upon Distances 72

4.22 Mean Latency For Received Packets 73

4.23 Mean Number Of Hops For Received Packet 74

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

WSN - Wireless Sensor Network

IEEE - Institute of Electrical and Electronic Engineers

OMNeT++ - Objective Modular Network Test-bed in C++

RSSI - Received Signal Strength Indication

CPU - Central Processing Unit

OPNET - Optimized Network Engineering Tools

TCP/IP - Transmission Control Protocol/Internet Protocol

GUI - Graphical User Interface

NED - Network Description

MiXiM - Mix Simulator

MANET - Mobile Ad Hoc Network

PAN - Personal Area Network

WPAN - Wireless Personal Area Network

LR – WPAN - Low Rate Wireless Personal Area Network

ZDO - Zigbee Device Object

CAP - Contention Access Period

CFP - Contention Free Period

CSMA – CA - Carrier Sense Multiple Access – Collision Avoidance

MAC - Medium Access Control

FFD - Full Function Device

RFD - Reeduce Function Ddevice

LOS - Line Of Sight

OSI - Open System Interconnection

PL - Path Loss

α - Path Loss Exponent

PRX - Received Power

d - Length or Distance Path

h - Antenna Height

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A WSN Routing (omnetpp.ini) Source Code 81

 B Convergecast (omnetpp.ini) Source Code 83

 C Wiseroute (wiseroute.cc) Source Code 84

CHAPTER 1

INTRODUCTION

1.1 Background and History

The Wireless Sensor Network (WSN) is built of "nodes" where from a few to several

hundreds or even thousands, where each node is connected to one or several sensors.

Each such sensor network node has typically several parts: a radio transceiver with an

internal antenna or connection to an external antenna, a microcontroller, an electronic

circuit for interfacing with the sensors and an energy source, usually a battery or an

embedded form of energy harvesting. A sensor node might vary in size from that of a

shoebox down to the size of a grain of dust. The cost of sensor nodes is similarly

variable, ranging from a few to hundreds of dollars, depending on the complexity of the

individual sensor nodes. Size and cost constraints on sensor nodes result in corresponding

constraints on resources such as energy, memory, computational speed and

communications bandwidth. The topology of the WSNs can vary from a simple star

network to an advanced multi-hop wireless mesh network. The propagation technique

between the hops of the network can be routing or flooding.

In general, wireless sensor networks have made a lot of progress recently and

have been widely discussed in many applications. According to J.Kenyeres et al (2010) it

is expected that this technology will play an important role in improving the quality of

the living environment through the creation of so called sensing environments. However,

there is a gap in knowledge about WSN to help at least not to broaden this gap, but it is

important that some scientific and educational research should be done in this area and

that young generation should gain opportunity to study this technology.

http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Transceiver
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Battery_(electricity)
http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Sensor_node
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Mesh_networking
http://en.wikipedia.org/wiki/Wireless_mesh_network

2

A wireless sensor network consists of spatially distributed autonomus sensors to

cooperatively monitor physical or environmental conditions, such as temperature, sound,

vibration, pressure, motion or pollutants. The development of wireless sensor networks

was motivated by the military applications such as battlefield surveillance. Nowadays, it

is also used in many industrial and civilian application areas, including industrial process

monitoring and control, machine health monitoring, environment and habitat monitoring,

healthcare applications, home automation, and traffic control.

Figure 1.1 : A Wireless Sensor Network. (F.L.Lewis, 2004)

Feng Chen et al (2010) indicate that in wireless sensor network deployment

techniques experiment, the important parameters such as connectivity of nodes, cost

effective, energy efficiency and lifetime. Experimentation might be too expensive for

such setups or infeasible due to physical limitations. Thus, in most cases performance

evaluation is based on simulation models. For this study, the simulation experiment on

the coexistence between wireless technologies based on IEEE 802.15.4 and IEEE

802.11b standards can be considered using OMNeT++ software. OMNeT++ software is

suitable to implement simulation experiment and to evaluate the performance of the WSN

network within indoor environment.

3

1.2 Problem Statement

In the last decade, significant advances have been achieved in the domain of Wireless

Sensor Networks (WSN). In the recent years, Wireless Sensor Networks probably plays a

crucial role in creation of ubiquitous intelligent sensing environment. According to

J.Kenyeres et al (2010), WSN are suitable for great variety of environments and

conditions, what broadens the scale of their applications. Furthermore, simulation is

frequently used to evaluate the performance of networking algorithms and techniques in

wireless communication networks. Feng Chen et al (2010) indicate that however,

performance aspects such as the transmission delay, the channel utilization, or the

throughput provide only limited information about the feasibility of the particular

approach. Some of the most challenging issues that have been studied are the medium

access, routing strategies, clustering schemes, and application layer dynamics. All these

approaches contribute to enable designers to develop and to deploy applications under

various environmental conditions.

The idea is to provide a broad range of design variants that can be chosen and

combined in order to provide the optimal behaviour of the wireless sensor network. In

certain cases, monitoring and automatic control of building environment is a crucial

application of WSN in which maximizing network lifetime. It shows that transitional

region is particular concern its accommodates high variance unreliable links due to the

inside building environment could be the obstacles such as concrete or brick walls,

partitions, office furniture and other items as additional absorption term to the path loss

according to C. Mallanda (2005). Most of the approaches are targeted to improve the

performance of the wireless communication with respect to the quality of service.

Therefore, all the individual algorithms and techniques have been analyzed with regard to

their performance, example, the speed of adaptation to environmental changes and the

end-to-end nodes performance. Furthermore, most of the aim in wireless communication

networks and especially for sensor networks is to reduce the energy consumption.

4

1.3 Objectives of Project

The main objectives of this project are:

i. To design a simulation process for wireless sensor network in an indoor scenario

using OMNeT++ 4.1

ii. To test the performance of packet delivery among the nodes within indoor

scenario using OMNeT++4.1

1.4 Scope of Project

The scopes of this project is to evaluate wireless sensor network routing through research

and simulation process. An open source software called OMNeT++ version 4.1 will be

used in this project to run simulation process according to certain parameters that

acquired according to indoor scenario. The parameters such as numbers on nodes,

transmitting power used by the nodes and distances between nodes. Throughout the

simulation process, the performances of packet delivery among the nodes within the

network will be analyzed based on the results.

1.5 Thesis Layout

The thesis layout is organized as follows:

 Chapter 1: This chapter explain on the introduction to wireless sensor network

(WSN). It is also consists of background, problem statement, objectives of project and

scope of project.

 Chapter 2: In this chapter, it discussed on literature reviews of other research or

previous studies which conclude theoritical and results. It is also to clarified, justified and

compared between results based on related research.

 Chapter 3: In order to achieve the goal of this project, this chapter will expalin on

the methodology of the project. It showed the steps or protocols used in completion of

this project. The simulation process and parameters are also explained and discussed in

this chapter.

5

 Chapter 4: The results of this studies are presented and compared within this

chapter. Analysis and simulation output and comparison between results such as graphs

are explained in this chapter.

 Chapter 5: Lastly, this chapter will summarizes all the results and concluded the

conclusions of the project studies including the recommendation for future works.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The objective of this chapter is to survey on previous studies that had been carried out

among other researchers in order to gain more information related to the project. It is

critically important to review the existing research on wireless sensor network routing

protocols within indoor scenario. By critically reviewing the following previous thesis,

journals, articles and reports, substantially it provides great significance knowledge and

information to this project.

2.2 Related Works

In this section, related works on the routing protocol for WSN that improve the energy

consumption are studied and critically analyzed.

J. Kenyeres et al. (2010) focused on the monitoring of functionality and reliability

as well as on the influence on varying parameters of wireless sensor network placed in

the indoor environment. The experiment clearly revealed the relationship between data

rate and reponsibility of the whole WSN network. In reducing error rate and increase

number of packets for static WSN can be achieved by reducing topology, decrease the

distance between nodes and increase packet sending interval.

Malka N. Halgamuge et al. (2009) investigate the link quality distribution to

obtain full coverage of the signal strength within a single floor of a building environment.

The results comfirmed where the transitional region in wireless sensor network since it

accomodates high variance unreliable links. The reason is due to this transitional region

7

inside a building environment could be the obstacles including concrete walls, partitions,

furnitures and other items affect as additional absorption term to path loss.

Yunchun Zhang et al. (2009) presented the existing localization algorithm in

Wireless Sensor Network (WSN) which can be divided into two categories: range based

and range free. Most of the range based localization algorithms proposed made use of the

Received Signal Strength Indication (RSSI) to make an estimation of the distance

between transmitter and receiver. Throughout the experiment it shows there is no

relationship between RSSI and distance in indoor situations. Only the outdoor shows that

RSSI is closely related with distance, direction of antenna, the height of nodes above the

ground and obstructions.

D. J. Dechene examined currently proposed clustering algorithms for Wireless

Sensor Networks (WSN) which discussed the operations of the algorithms, as well as

comparisons on the performance between the various schemes. Optimal clustering in

terms of energy efficiency should eliminate all overhead associated not only with the

cluster-head selection process, but also with node association to their respective cluster-

heads. Sensor network reliability is currently addressed in various algorithms by utilizing

re-clustering that occurs at various time intervals; however inefficient energy and limits

the time available within a network for data transmission and sensing tasks. Further

improvements in reliability should examine possible modifications to the re-clustering

mechanisms following the initial cluster-head selection. Other mechanisms such as the

ability of nodes to maintain membership in auxiliary clusters can reinforce the current

state of sensor network reliability.

Feng Chen et al. (2010) introduced a generic energy model developed for the

simulation framework OMNeT++. The sensor was designed based on the IEEE802.14.5

architecture by using a simple CPU model to estimate the energy consumption for

computationally intensive operations. The aspect discuss in this paper is more on the

sensor design and not taking into account the routing algorithm. The model allows to

accurately evaluate the energy performance in terms of energy consumption or network

lifetime of the wireless sensor network.

8

2.3 Wireless Sensor Network

Wireless Sensor Networks (WSN) comprises of numerous tiny sensors that are deployed

in spatially distributed terrain. These sensors are endowed with small amount of

computing and communication capability and can be deployed in ways that wired sensor

systems couldn’t be deployed. Yunchun Zhang et al. (2009) indicates that despite the

prolific conceptualization of sensor networks as being useful for large-scale military

applications which originally motivated by military applications such as battlefield

surveillance, is a wireless network consisting of spatially distributed autonomous devices

using sensors to cooperatively monitor physical or environmental conditions, such as

temperature, sound, vibration, pressure, motion or pollutants, at different locations.

Wireless sensor networks have the potential to become significant subsystems of

engineering applications. Before relegating important and safety-critical tasks to such

subsystems, it is necessary to understand the dynamic behavior of these subsystems in

simulation environments. C Mallanda et al. (2005) urge that it is an urgent need to

develop simulation platforms that are useful to explore both the networking issues and

the distributed computing aspects of wireless sensor networks.

According to J. Kenyeres et al. (2010) of the experiments aim was to estimate

how parameters such as number of packet errors and retransmissions deteriorate real

WSN functionality. The experiment with WSN was realized in indoor area, which

resulted in a variety of different conditions influencing functionality of sensor nodes.

This area offers lot of different spaces ranging from long, open sight hallways, stairways,

lifts and many others. This surrounding environment at the main hallway consists of

many different materials, like concrete, steel, glass and so on, what causes heterogeneous

influences on WSN.

WSN signal in this area might be interfaced with signals from other sources, for

example from 802.11b communication. Main goal of this experiment was to create WSN

network covering almost whole area of hallway and also to test its functionality with

various parameters set up. Discrete-event simulation is a trusted platform for modeling

and simulating a variety of systems. Results can be obtained from a new simulator for

wireless sensor networks networks that is based on the discrete event simulation

framework called OMNeT++.

Work is underway to develop a simulation platform that allows developers and

researchers to investigate topological, phenomenological, networking, robustness and

9

scaling issues related to wireless sensor networks. Such simulation studies must explore

the effects of scale, density, node-level architecture, energy efficiency, communication

architecture, failure modes at node and communication media levels, system architecture,

algorithms, protocols and configuration among other issues. C Mallanda et al. (2005) told

that unlike traditional computer systems, it is not sufficient to simulate the behavior of

the sensor network in isolation because of the tight and ubiquitous coupling between the

sensor network and its application.

2.4 Objective Modular Network Test-bed in C++ (OMNeT++)

Thru simulation, there are many types of current available simulators such as ns2,

SensorSim, OPNET, J-Sim, GlomoSim and etc. all these simulators have certain function

that provides support or platform for simulating TCP/IP, routing protocols, energy

models, sensor channels and etc. In this project, the selected simulator used is Objective

Modular Network Test-bed in C++ (OMNeT++).

2.4.1 Background And History

OMNeT++ started with a programming assignment at the Technical University of

Budapest (Hungary), to which two students applied. One of them, András Varga, still is

the maintainer of this open source simulation package. During the years several people

contributed to OMNeT++, among which several students from the Technical University

of Delft (The Netherlands) and Budapest. Milestones in the development are the first

public release in 1997 and the added animation functionality in 1998, which made the

package even more usable for education.

In 2000 several people at the University of Karlsruhe created the TCP model for

OMNeT++. This version included several bug fixes and important changes and additions

to the manual. The website also had a major update. A beta version of version 3.0 is now

also available. All simulations in this report were done using OMNeT++ version 4.1. It is

also offers an Eclipse-based IDE, a graphical runtime environment, and a host of other

tools. There are extensions for real-time simulation, network emulation, alternative

programming languages (Java, C#), database integration, SystemC integration, and

several other functions. The latest extension version is OMNeT++4.2.

10

2.4.2 What Is OMNeT++

OMNeT++ is an extensible, modular, component-based C++ simulation library and

framework, primarily for building network simulators. OMNeT++ is also an object

oriented discrete event simulation environment focusing on the simulation of

communication networks. It provides component architecture for models programmed in

C++ with GUI support. Its primary application area is the simulation of communication

networks, but because of its generic and flexible architecture, is successfully used in

other areas like the simulation of complex IT systems, queueing networks or hardware

architectures as well.

OMNeT++ provides a component architecture for models. Components (modules)

are programmed in C++, then assembled into larger components and models using a

high-level language (NED). Reusability of models comes for free. OMNeT++ has

extensive GUI support, and due to its modular architecture, the simulation kernel (and

models) can be embedded easily into any applications. Although OMNeT++ is not a

network simulator itself, it is currently gaining widespread popularity as a network

simulation platform in the scientific community as well as in industrial settings, and

building up a large user community.

2.4.3 Applications of OMNeT++

A C++ class library which consists of the simulation kernel and utility classes (for

random number generation, statistics collection, topology discovery etc) This will be use

to create simulation components (simple modules and channels); infrastructure to

assemble simulations from these components and configuration (NED language, ini

files); runtime user interfaces or environments for simulations (Tkenv, Cmdenv); an

Eclipse-based simulation IDE for designing, running and evaluating simulations;

extension interfaces for real-time simulation, emulation, MRIP, parallel distributed

simulation, database connectivity and so on.

OMNeT++ provides the fundamental machinery and tools in writting simulations,

but it does not provide any components specifically for computer network simulations,

queueing network simulations, system architecture simulations or any other area. Instead,

these application areas are supported by various simulation models and frameworks of an

11

open source such as INET/INETMANET, MiXiM or Castalia. These models are

developed completely independent of OMNeT++, and follow their own release cycles.

2.4.4 Modelling Concepts

OMNeT++ provides efficient tools for the user to describe the structure of the actual

system. Some of the main features are:

• hierarchically nested modules

• modules are instances of module types

• modules communicate with messages through channels

• flexible module parameters

• topology description language

2.4.4.1 Hierarchical Modules

An OMNeT++ model consists of hierarchically nested modules, which communicate by

passing messages to each another. OMNeT++ models are often referred to as networks.

The top level module is the system module. The system module contains submodules,

which can also contain submodules themselves (Fig. 2.1). The depth of module nesting is

not limited; this allows the user to reflect the logical structure of the actual system in the

model structure.

Model structure is described in OMNeT++’s NED language.

Figure 2.1: Simple and compound modules

Simple modules are the active components in the model. Simple modules are

programmed in C++, using the OMNeT++ class library. The following sections contain a

short introduction to discrete event simulation in general, explain on how its concepts are

http://inet.omnetpp.org/
http://mixim.sourceforge.net/
http://castalia.npc.nicta.com.au/

12

implemented in OMNeT++, and give an overview and practical advice on how to design

and code simple modules.

Modules that contain submodules are termed compound modules, as opposed

simple modules which areat the lowest level of the module hierarchy. Simple modules

contain the algorithms in the model. The user implements the simple modules in C++,

using the OMNeT++ simulation class library.

In OMNeT++, events occur inside simple modules. Simple modules encapsulate

C++ code that generates an events and reacts to events, in other words, implements the

behaviour of the model. The user creates simple module types by sub classing the

cSimpleModule class, which is part of the OMNeT++ class library. cSimpleModule, just

as cCompoundModule, is derived from a common base class, cModule. cSimpleModule,

although packed with simulation-related functionality, doesn’t do anything useful by

itself . It needs to redefine some virtual member functions to make it do some useful

work. These member functions are the following:

• void initialize()

• void handleMessage(cMessage *msg)

• void activity()

• void finish()

In the initialization step, OMNeT++ builds the network: it creates the necessary

simple and compound modules and connects them according to the NED definitions.

OMNeT++ also calls the initialize() functions of all modules. The finish() functions are

called when the simulation terminates successfully. The most typical use of finish() is the

recording of statistics collected during simulation.

2.4.4.2 Module Types

Both simple and compound modules are instances of module types. While describing the

model, the user defines module types; instances of these module types serve as

components for more complex module types. Finally, the user creates the system module

as an instance of a previously defined module type; all modules of the network are

instantiated as sub modules and sub-sub modules of the system module. When a module

type is used as a building block, there is no distinction whether it is a simple or a

compound module. This allows the user to split a simple module into several simple

modules embedded into a compound module, or vice versa, aggregate the functionality of

13

a compound module into a single simple module, without affecting existing users of the

module type. Module types can be stored in files separately from the place of their actual

usage. This means that the user can group existing module types and create component

libraries.

2.4.5 Components of OMNeT++

There are several types of components used in OMNeT++’s simulation. The following

main components are as follows:

• simulation kernel library

• compiler for the NED topology description language

• OMNeT++ IDE based on the Eclipse platform

• GUI for simulation execution, links into simulation executable (Tkenv)

• command-line user interface for simulation execution (Cmdenv)

• utilities (makefile creation tool, etc.)

• documentation, sample simulations, etc.

2.4.6 Simulation with OMNeT++

This section provides insight into working with OMNeT++ in practice: Issues such as

model files, compiling and running simulations are discussed.

An OMNeT++ model consists of the following parts:

• NED language topology description(s) (.ned files) which describe the module

structure with parameters, gates etc. NED files can be written using any text

editor or the GNED graphical editor.

• Message definitions (.msg files). Define various message types and add data

fields to them. OMNeT++ will translate message definitions into full-fledged C++

classes.

• Simple modules sources. They are C++ files, with .h/.cc suffix.

The simulation system provides the following components:

• Simulation kernel. This contains the code that manages the simulation and the

simulation class library. It is written in C++, compiled and put together to form a

library (a file with .a or .lib extension)

14

• User interfaces. OMNeT++ user interfaces are used in simulation execution, to

facilitate debugging, demonstration, or batch execution of simulations. There are

several user interfaces, written in C++, compiled and put together into libraries (.a

or .lib files).

Simulation programs are built from the above components. First, .msg files are

translated into C++ code using the opp_msgc. program. Then all C++ sources are

compiled, and linked with the simulation kernel and a user interface library to form a

simulation executable. NED files can either be also translated into C++ (using nedtool)

and linked in, or loaded dynamically in their original text forms when the simulation

program starts.

 In figure 2.2, figure 2.3 and figure 2.4 shows the window box related to the NED

graphical editor, source code editor and graphical runtime environment.

Figure 2.2: Graphical NED Editor

15

Figure 2.3: NED Source Editor

Figure 2.4: Graphical Runtime Environment

2.4.7 Running Simulation and Analyzing Results

16

The simulation executable is a standalone program, thus it can be run on other machines

without OMNeT++ or the model files being present. When the program is started, it reads

a configuration file (usually called omnetpp.ini). This file contains settings that control

how the simulation is executed, values for model parameters, etc. The configuration file

can also prescribe several simulation runs; in the simplest case, they will be executed by

the simulation program one after another.

The output of the simulation is written into data files: output vector files, output

scalar files, and possibly the user’s own output files. OMNeT++ provides a GUI tool

named Plove to view and plot the contents of output vector files. It is not expected that

someone will process the result files using OMNeT++ alone: output files are text files in

a format which can be read into math packages like Matlab or Octave, or imported into

spreadsheets like Open Office Calc, Gnumeric or MS Excel. All these external programs

provide rich functionality for statistical analysis and visualization, and it is outside the

scope of OMNeT++ to duplicate their efforts. This manual briefly describes some data

plotting programs and how to use them with OMNeT++.

2.4.8 The NED Language

The topology of a model is specified using the NED language. The NED language

facilitates the modular description of a network. This means that a network description

may consist of a number of component descriptions (channels, simple/compound module

types). The channels, simple modules and compound modules of one network description

can be reused in another network description. Files containing network descriptions

generally have a .ned suffix. NED files can be loaded dynamically into simulation

programs, or translated into C++ by the NED compiler and linked into the simulation

executable.

The NED language, the network topology description language of OMNeT++ will

be given using the extended BNF notation. Space, horizontal tab and new line characters

counts as delimiters, so one or more of them is required between two elements of the

description which would otherwise be unseparable. ’//’ (two slashes) may be used to

write comments that last to the end of the line. The language only distinguishes between

lower and upper case letters in names, but not in keywords.

17

In this description, the {xxx...} notation stands for one or more xxx’s separated

with spaces, tabs or new line characters, and {xxx„,} stands for one or more xxx’s,

separated with a comma and (optionally) spaces, tabs or new line characters. For ease of

reading, in some cases we use textual definitions. The network description symbol is the

sentence symbol of the grammar.

2.4.9 Components Of A NED Description

A NED description consist of the following components, in arbitrary number or order:

• import directives

• channel definitions

• simple and compound module definitions

• network definitions

2.4.10 User Interfaces

OMNeT++ simulations can be run under different user interfaces. Currently, there are

two types of user interfaces were supported:

• Tkenv: Tcl/Tk- which is based graphical, windowing user interface

• Cmdenv: a command-line user interface for batch execution

Typically test and debug are simulation which is under Tkenv, which run the

actual simulation experiments from the command line or shell script, using Cmdenv.

Tkenv is well suited for the use of educational or any demonstration purposes. Both

Tkenv and Cmdenv are provided in the form of a library, and by choosing between them

by linking one or the other into the simulation executable. Both user interfaces are

supported on Windows or Unix platforms.

Common functionality in Tkenv and Cmdenv has been collected and placed into

the Envir library, which can be thought of as the “common base class” for the two user

interfaces. The user interface is separated from the simulation kernel, and the two parts

interact through a well defined interface. This means that, if it is necessary needed, the

user can write its own user interface or embed an OMNeT++ simulation into the

application without any changes to models or the simulation library.

Configuration and input data for the simulation are described in a configuration

file usually called omnetpp.ini. Some entries in this file apply to Tkenv or Cmdenv only,

18

other settings are in effect regardless of the user interface. Both user interfaces accept

command-line arguments.

2.4.11 The Configuration File: omnetpp.ini

OMNeT++ is an open source simulator that can execute several simulations runs

automatically, one after another without any distortion. If multiple runs are selected,

option settings and parameter values can be given either individually for each run, or all

together for the whole runs, depending in which of the section the option or parameter

will appeared.

2.4.11.1 File Syntax

The ini file is a text file consisting of entries grouped into different sections. The order of

the sections doesn’t matter. Also, if there have two sections with the same name:

(e.g. [General] occurs twice in the file), they will be merged.

• Lines that start with "#" or ";" are comments, and will be ignored during

processing.

• Long lines can be broken up using the backslash notation: if the last character of a

line is "\", it will be merged with the next line.

The size of the ini file (the number of sections and entries) is not limited. Currently

there is a 1024- character limit on the line length, which cannot be increased by breaking

up the line using backslashes.

2.5 IEEE 802.15.4

An IEEE standard 802.15.4 intends to offer the fundamental lower network layers of a

type of wireless personal area network (WPAN) which focuses on low-cost, low-speed

ubiquitous communication between devices which in contrast with other, more end-user

oriented approaches, such as Wireless Fidelity (WiFi). It emphasis on very low cost

communication within a nearby devices with little to none underlying infrastructure,

which intending more to exploit very low power consumption.

19

IEEE 802.15.4 is a standard which specifies the physical layer and media access

control for low-rate wireless personal area networks (LR-WPANs). It is maintained by

the IEEE 802.15 working group. It is the basis for the ZigBee specifications, which

further extends the standard by developing the upper layers which are not defined in

IEEE 802.15.4.

ZigBee is a specification for a suite of high level communication protocols using

small, low-power digital radios based on an IEEE 802 standard for personal area

networks. Applications include wireless light switches, electrical meters with in-home-

displays, and other consumer and industrial equipment that requires short-range wireless

transfer of data at relatively low rates. The technology defined by the ZigBee

specification is intended to be simpler and less expensive than other WPANs, such as

Bluetooth. ZigBee is targeted at radio-frequency (RF) applications that require a low data

rate, long battery life, and secure networking. ZigBee has a defined rate of 250 kbit/s best

suited for periodic or intermittent data or a single signal transmission from a sensor or

input device. ZigBee based traffic management system have also been implemented.

2.5.1 Technical Overview

ZigBee is a low-cost, low-power, wireless mesh network standard. The low cost allows

the technology to be widely deployed in wireless control and monitoring applications.

Low power-usage allows longer life with smaller batteries. Mesh networking provides

high reliability and more extensive range. ZigBee chip vendors typically sell integrated

radios and microcontrollers with between 60 KB and 256 KB flash memory.

The ZigBee network layer natively supports both star and tree typical networks,

and generic mesh networks. Every network must have one coordinator device, tasked

with its creation, the control of its parameters and basic maintenance. Within star

networks, the coordinator must be the central node. Both trees and meshes allows the use

of ZigBee routers to extend communication at the network level.

http://en.wikipedia.org/wiki/Physical_layer
http://en.wikipedia.org/wiki/Media_Access_Control
http://en.wikipedia.org/wiki/Media_Access_Control
http://en.wikipedia.org/wiki/Personal_area_network
http://en.wikipedia.org/wiki/IEEE_802.15
http://en.wikipedia.org/wiki/ZigBee
http://en.wikipedia.org/wiki/Protocol_stack
http://en.wikipedia.org/wiki/Specification_(technical_standard)
http://en.wikipedia.org/wiki/Digital_radio
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://en.wikipedia.org/wiki/Personal_area_network
http://en.wikipedia.org/wiki/Personal_area_network
http://en.wikipedia.org/wiki/Personal_area_network#Wireless_PAN
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Wireless_mesh_network
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Tree_network
http://en.wikipedia.org/wiki/Routing

20

Figure 2.5 shows the ZigBee protocol stack. The diagram is a compact

representation of the complete ZigBee protocol stack, including IEEE 802.15.4-defined

bottom layers. It builds upon the physical layer and medium access control defined in

IEEE standard 802.15.4 for low-rate WPANs. The specification goes on to complete the

standard by adding four main components: network layer, application layer, ZigBee

device objects (ZDOs) and manufacturer-defined application objects which allow for

customization and favor total integration.

Besides adding two high-level network layers to the underlying structure, the

most significant improvement is the introduction of ZDOs. These are responsible for a

number of tasks, which include keeping of device roles, management of requests to join a

network, device discovery and security. ZigBee is not intended to support powerline

networking but to interface with it at least for smart metering and smart appliance

purposes. ZigBee nodes can go from sleep to active mode in 30 ms or less, the latency

can be low and devices can be responsive, particularly compared to Bluetooth wake-up

delays, which are typically around three seconds. Because ZigBee nodes can sleep most

of the time, average power consumption can be low, resulting in long battery life.

The basic framework conceives a 10-meter communications range with a transfer

rate of 250 kbit/s. Tradeoffs are possible to favor more radically embedded devices with

even lower power requirements, through the definition of not one, but several physical

layers. Lower transfer rates of 20 and 40 kbit/s were initially defined, with the 100 kbit/s

rate being added in the current revision.

Even lower rates can be considered with the resulting effect on power

consumption. As already mentioned, the main identifying feature of IEEE 802.15.4

among WPAN's is the importance of achieving extremely low manufacturing and

operation costs and technological simplicity, without sacrificing flexibility or generality.

http://en.wikipedia.org/wiki/Physical_layer
http://en.wikipedia.org/wiki/Medium_access_control
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://en.wikipedia.org/wiki/Personal_area_network#Wireless
http://en.wikipedia.org/wiki/Power_line_communication
http://en.wikipedia.org/wiki/Power_line_communication
http://en.wikipedia.org/wiki/Smart_meter
http://en.wikipedia.org/wiki/Smart_appliance
http://en.wikipedia.org/wiki/Transfer_rate
http://en.wikipedia.org/wiki/Transfer_rate
http://en.wikipedia.org/wiki/Embedded_system

21

Figure 2.5: A Zigbee protocol stack

A Zigbee network can work in one of three ISM frequency bands and choose

from a total of 27 channels. Two different types of devices are defined in an LR-WPAN,

a full function device (FFD) and a reduced function device (RFD).

The first one is the FFD. An FFD can talk to any other device and serves as a

PAN coordinator, a coordinator or a device. It can serve as the coordinator of a personal

area network just as it may function as a common node. It implements a general model of

communication which allows it to talk to any other device: it may also relay messages, in

which case it is dubbed a coordinator (PAN coordinator when it is in charge of the whole

network).

http://upload.wikimedia.org/wikipedia/commons/4/4f/ZigBee_protocol_stack.png

22

On the other hand there is RFD. An RFD can only talk to an FFD node. These are

meant to be extremely simple devices with very modest resource and communication

requirements; due to this, they can only communicate with FFD's and can never act as

coordinators. The standard supports two network topologies, star and peer-to-peer. In the

star network, the communication occurs only between devices and a single central

controller, called the PAN coordinator, which manages the whole PAN. The peer-to-peer

topology also has a PAN coordinator, however is differs from the star topology in that

any devices can communicate with any other one as long as they are in range of one

another.

 To achieve better energy-efficiency, Zigbee can operate on beacon-enabled mode,

for which a super frame structure is utilized. A super frame is bounded by periodically

transmitted beacon frames, which allow nodes to associate with and synchronize to their

coordinators. It consists of two parts, active and inactive period. An active portion is

divided into 16 contiguous time slots that form three parts: the beacon, contention access

period (CAP) and contention-free period (CFP). In CAP, all data transmission should

follow a successful execution of the slotted CSMA-CA algorithm.

2.5.2 Description of IEEE 802.15.4 Model in OMNET++

The IEEE 802.15.4 model is developed in the MIXIM framework, which is an open-

source communication networks simulation package for the OMNeT++ simulation

environment and suited for simulations of wired, wireless and ad-hoc networks. The

architecture of the 802.15.4 model is shown in Figure 2.6. There are three sub models,

traffic, MAC and PHY, each of which is an independent module and inherited from the

basic C++ class cSimpleModule in OMNeT++. The modules are connected with each

other via gates and communicate among each other via messages.

23

Figure 2.6: The structure and components of IEEE 802.15.4 model

2.5.3 Path Loss Indoor Propagation Model

Path loss or path attenuation is the reduction in power density (attenuation) of an

electromagnetic wave as it propagates through space. Path loss is a major component in

the analysis and design of the link budget of a telecommunication system. This term is

commonly used in wireless communications and signal propagation. Path loss may be

due to many effects, such as free-space loss, refraction, diffraction, reflection, aperture-

mediumcoupling loss, and absorption. Path loss is also influenced by terrain contours,

environment, propagation medium (dry or moist air), the distance between the transmitter

and the receiver, and the height and location of antennas.

The model is applicable to indoor propagation modeling where log distance path

loss model is formerly expressed as:

PL. = PTx(dBm) - PRx(dBm) (2.1)

 = PLo + 10 α log10 (d/do) + Xg

where;

PL is the total path loss measured in Decibel (dB)

PTx(dBm)=10 log10 (PTx/1mW) is the transmitted power in dBm, where

PTx is the transmitted power in watt.
PRx(dBm)=10 log10 (PRx/1mW) is the received power in dBm, where
PRx is the received power in watt.

http://en.wikipedia.org/wiki/Attenuation_(electromagnetic_radiation)
http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Link_budget
http://en.wiktionary.org/wiki/signal
http://en.wikipedia.org/wiki/Wave_propagation
http://en.wikipedia.org/wiki/Free-space_loss
http://en.wikipedia.org/wiki/Refraction
http://en.wikipedia.org/wiki/Diffraction
http://en.wikipedia.org/wiki/Reflection_(physics)
http://en.wikipedia.org/wiki/Aperture_(antenna)
http://en.wikipedia.org/wiki/Transmission_medium
http://en.wikipedia.org/wiki/Coupling_loss
http://en.wikipedia.org/wiki/Absorption_(optics)
http://en.wikipedia.org/wiki/Path_loss
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/DBm
http://en.wikipedia.org/wiki/Watt

24

PLo is the path loss at the reference distance d0. Unit: Decibel (dB)
d is the length of the path.
do is the reference distance, usually 1 km (or 1 mile).
 α is the path loss exponent.
Xg is a normal (or Gaussian) random variable with zero mean, reflecting the
attenuation (in decibel) caused by flat fading.

When an electromagnetic wave propagates through space; there is the reduction in

power density or attenuation of the wave, namely path loss, which is a major component

in the channel modelling. According to Jing Lu et al. (2010), the simplest channel is the

free space line of sight channel with no objects between the receiver and the transmitter

or around the path between them. In this simple case, the transmitted signal attenuates

since the energy is spread spherically around the transmitting antenna. For this line of

sight (LOS) channel, the received power is given by:

PL (d) dB = PL (do) + 10α log (d/do) σ (2.2)

Some of the waves will reflect and reach the transmitter due to the presence of the

ground. These reflected waves sometime have a phase shift of 180° and so may reduce

the net received power. So, a simple two-ray approximation for path loss can be shown as

below:

Pr = Pt (GrGthr
2ht

2/d4) (2.3)

Respectively, from the given formula, where hr and ht are the antenna heights of

the transmitter and receiver. Note that there are three major differences from the previous

formula. First, the antenna heights have effect. Second, the wavelength is absent and third

the exponent on the distance is 4. In general, a common formula for path loss is:

 Pr = Pt Po (do/d)α (2.4)

Where Po is the power at a distance do and α is the path loss exponent.

Theoretically, the power falls off in proportion to the square of the distance. In

practice, the power falls off more quickly, typically 3rd or 4th power of distance. The

http://en.wikipedia.org/wiki/Path_loss
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Path_loss
http://en.wikipedia.org/wiki/Normal_random_variable
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Flat_fading

78

REFERENCES

Ali, Q.I., Abdulmaowjod, A., & Mohammed, H.M. (2011). Simulation and Performance

Study of Wireless Sensor Network (WSN) Using MATLAB. Irag J. Electrical and

Electronic Engineering Vol. 7 No. 2, 112-119.

Cetin, B. (2006). Opportunistic Relay Protocol for IEEE 802.11 WLANs. Swedish

Institute of Computer Science, Stockholm, Sweden. March 2006.

Chen, F., Dietrich, I., German, R., & Dressler, F. (2010). An Energy Model for

Simulation Studies of Wireless Sensor Network using OMNeT++. Computer

Networks and Communication Systems, University or Erlangen, Germany.

Chen, F., & Dressler, F. (2007). A Simulation Model of IEEE 802.15.4 in OMNeT++.

Computer Networks and Communication Systems, University of Erlangen-

Nuremberg. 91058 Erlangen, Germany.

Dechene, D.J., Jardali, A.E., Luccini, M., & Sauer, A. (2010). A Survey of Clustering

Algorithms for Wireless Sensor Networks. Department of Electrical and Computer

Engineering, University of Western Ontario, Ontario.

Halgamuge, M.N., Chan, T.K., & Mendis, P. (2009). Experiences of Deploying an Indoor

Building Sensor Network. Third International Conference on Sensor Technologies

and Applications, in IEEE Computer Society.

Haque, I.T. (2011). Location-Based Routing and Indoor Location Estimation In Mobile

Ad hoc Networks. Department of Computing Science, University of Alberta,

Edmonton Alberta.

Hill, J.L. (2003). System Architecture for Wireless Sensor Networks. University of

California, Berkeley.

Idserda, J. (2004). TCP/IP Modelling in OMNeT++. B-Assignment Telematics.

University of Twente, Netherlands.

Jangra, A., Richa, Sweti, & Priyanka. (2010). Wireless Sensor Network (WSN):

Architectural Design Issues and Challenges. International Journal on Computer

Science and Engineering (IJCSE). Vol. 02, No. 09. 3089-3094.

79

Kenyeres, J., Sajban, S., Farkas, P., & Rakus, M. (2010). Indoor Experiment with

Wireless Sensor Network Apllication. Department of Telecommunications, Slovak

University of Technology, Slovakia, (MIRPO 2010).

Krishnamachari, B. (2005). Networking Wireless Sensors. Cambridge University Press,

New York.

Lewis, F.L. (2004). Wireless Sensor Networks. Advanced Controls, Sensors, and MEMS

Group, Automation and Robotics Research Institute, University of Texas at

Arlington, Jack Newell Blvd. S, Texas.

Loong, W.M. (2011). Wireless Mesh Network Simulation Using OMNeT++. SIM

University School of Science and Technology.

Lu, J., Lu, D., & Huang, X. (2010). Channel Model for Wireless Sensor Networks in

Forest Scenario. Shenzhen Institutes of Advanced Technology Chinese Academy of

Sciences, Shenzhen, China.

Mallanda, C. D. (2005). Sensor Simulator: Simulation Framework for Sensor Networks.

Department of Computer Science and Engineering. Kuvempu University.

Mallanda, C., Suri, A., Kunchakarra, V., Iyengar, S.S., Kannan, R., & Durresi, A. (2005).

Simulating Wireless Sensor Network with OMNeT++. Sensor Network Research

Group, Department of Computer Science, Louisiana State University, Baton Rouge,

LA 2005, Version 1.

Panditharathne, C., & Sen, S.J. (2009). Energy Efficient Communication Protocols for

Wireless Sensor Networks. Department of Electronics and Communication

Engineering, National Institute of Technology, Rourkela, Orissa.

Park, S., Savvides, A., & Srivastava, M.B. (2000). SenSim: A Simulation Framework for

Sensor Networks. Electrical Engineering Department, University of California, Los

Angeles.

Sahni, S., & Xu, X. (2004). Algorithms for Wireless Sensor Networks. Department of

Computer and Information Science and Engineering. University of Florida

Gainesville, Florida, USA.

Salazar, A. (2010). Wireless Sensor Network Simulator. Office of Graduate Studies,

Texas A&M University Corpus Cristi.

Selvakennedy, S., & Sinnappan, S. (2006). An Energy-Efficient Clustering Algorithm for

Multihop Data Gathering in Wireless Sensor Networks. Journal of Computers, Vol.

1, No. 1, Aprill 2006. 40-47.

80

Schwartz, M. (2006). Mobile Wireless Communication. 2nd ed. Cambridge University

Press, New York.

Sohrabi, K., Minollil, D., & Znati, T.F. (2007). Wireless Sensor Network: Technology,

Protocol and Application. Wiley Interscience.

Varga, A. (2005). OMNeT++ Discrete Event Simulation System. Version 3.2. User

Manual. Last updated 29 March, 2005.

Velmani, P., & Ramar, K. (2011). Design and Implementation of Logical Topology in

Sensor Network for an Industrial Stack Monitoring. International Journal of

Computer Applications (0975-8887), Volume 25 No. 7, July 2011.

Yang, H., & Yang, S.H. (2009). Connectionless Indoor Inventory Tracking in Zigbee

RFID Sensor Network. Computer Science Department, Ioughborough University

UK.

Zhang, J., Chen, J., Xu, W., & Sun, Y. (2008). OMNeT++ Based Simulation for

Topology Control in Wireless Sensor Network: A Case Study. Institute of

Industrial Process Control, Zhejiang University & College of Informatics and

Electronics, Zhejiang Sci-Tech University, Hangzhou, China. IEEE.

Zhang, Y., Fang, Z., Li, R., & Hu, W. (2009). The Design and Implementation of a RSSI-

Based Localization System. School of Computer Science and Technology, Jilin

University, Changchun, 130012, R.R China.

Zhao, J., & Govindan, R. (2003). Understanding Packet Delivery Performance in Dense

Wireless Sensor Networks. Proc. 2nd, Embedded Networked Sensor Systems Conf.

SenSys ’03. (pp. 1- 13) ACM Press, New Yprk, USA.

