657 research outputs found

    Non-destructive technologies for fruit and vegetable size determination - a review

    Get PDF
    Here, we review different methods for non-destructive horticultural produce size determination, focusing on electronic technologies capable of measuring fruit volume. The usefulness of produce size estimation is justified and a comprehensive classification system of the existing electronic techniques to determine dimensional size is proposed. The different systems identified are compared in terms of their versatility, precision and throughput. There is general agreement in considering that online measurement of axes, perimeter and projected area has now been achieved. Nevertheless, rapid and accurate volume determination of irregular-shaped produce, as needed for density sorting, has only become available in the past few years. An important application of density measurement is soluble solids content (SSC) sorting. If the range of SSC in the batch is narrow and a large number of classes are desired, accurate volume determination becomes important. A good alternative for fruit three-dimensional surface reconstruction, from which volume and surface area can be computed, is the combination of height profiles from a range sensor with a two-dimensional object image boundary from a solid-state camera (brightness image) or from the range sensor itself (intensity image). However, one of the most promising technologies in this field is 3-D multispectral scanning, which combines multispectral data with 3-D surface reconstructio

    A Novel Tomato Volume Measurement Method based on Machine Vision

    Get PDF
    Density is one of the auxiliary indicators for judging the internal quality of tomatoes. However, in the density measurement process, it is often difficult to measure the volume of the tomatoes accurately. To solve this problem, first, this study proposed a novel tomato volume measurement method based on machine vision. The proposed method uses machine vision to measure the geometric feature parameters of tomatoes, and inputs them into the LabVIEW software to convert the calculation of irregular tomato volume into a BP neural network (BPNN) model that calculates the plane pixel area and pixel volume, thereby realizing the modeling, analysis, design and simulation of tomato volume; then, an experimental platform was constructed to compare the results of the proposed method with the results predicted by the 3D wireframe model. When the number of photos taken was n = 5, the average error of the tomato volume prediction results of the 3D wireframe model was 8.22%, and the highest accuracy was 92.93%; while the average error of the tomato volume prediction results of the BPNN was 4.60%, and the highest accuracy was 95.60%. Increasing the number of orthographic projections can improve the accuracy of the model, but when the number of photos was more than 7, the accuracy improvement was not significant. Also, increasing the number of nodes in the hidden layer can improve the accuracy of the model, however, considering that increasing the number of nodes will increase the host operating cost, it is suggested to choose a node number of 12 for the tomato volume measurement. In the end, the final experimental results showed that the proposed method achieved better measurement results. However, the volume measured by the two models is larger than the real volume of tomatoes. For this reason, we added a correction coefficient to the BPNN model, and its highest accuracy has increased by 1.3%

    Yield sensing technologies for perennial and annual horticultural crops: a review

    Get PDF
    Yield maps provide a detailed account of crop production and potential revenue of a farm. This level of details enables a range of possibilities from improving input management, conducting on-farm experimentation, or generating profitability map, thus creating value for farmers. While this technology is widely available for field crops such as maize, soybean and grain, few yield sensing systems exist for horticultural crops such as berries, field vegetable or orchards. Nevertheless, a wide range of techniques and technologies have been investigated as potential means of sensing crop yield for horticultural crops. This paper reviews yield monitoring approaches that can be divided into proximal, either direct or indirect, and remote measurement principles. It reviews remote sensing as a way to estimate and forecast yield prior to harvest. For each approach, basic principles are explained as well as examples of application in horticultural crops and success rate. The different approaches provide whether a deterministic (direct measurement of weight for instance) or an empirical (capacitance measurements correlated to weight for instance) result, which may impact transferability. The discussion also covers the level of precision required for different tasks and the trend and future perspectives. This review demonstrated the need for more commercial solutions to map yield of horticultural crops. It also showed that several approaches have demonstrated high success rate and that combining technologies may be the best way to provide enough accuracy and robustness for future commercial systems

    Sensing and Automation Technologies for Ornamental Nursery Crop Production: Current Status and Future Prospects

    Get PDF
    The ornamental crop industry is an important contributor to the economy in the United States. The industry has been facing challenges due to continuously increasing labor and agricultural input costs. Sensing and automation technologies have been introduced to reduce labor requirements and to ensure efficient management operations. This article reviews current sensing and automation technologies used for ornamental nursery crop production and highlights prospective technologies that can be applied for future applications. Applications of sensors, computer vision, artificial intelligence (AI), machine learning (ML), Internet-of-Things (IoT), and robotic technologies are reviewed. Some advanced technologies, including 3D cameras, enhanced deep learning models, edge computing, radio-frequency identification (RFID), and integrated robotics used for other cropping systems, are also discussed as potential prospects. This review concludes that advanced sensing, AI and robotic technologies are critically needed for the nursery crop industry. Adapting these current and future innovative technologies will benefit growers working towards sustainable ornamental nursery crop production

    Autonomous Apple Fruitlet Sizing and Growth Rate Tracking using Computer Vision

    Full text link
    In this paper, we present a computer vision-based approach to measure the sizes and growth rates of apple fruitlets. Measuring the growth rates of apple fruitlets is important because it allows apple growers to determine when to apply chemical thinners to their crops in order to optimize yield. The current practice of obtaining growth rates involves using calipers to record sizes of fruitlets across multiple days. Due to the number of fruitlets needed to be sized, this method is laborious, time-consuming, and prone to human error. With images collected by a hand-held stereo camera, our system, segments, clusters, and fits ellipses to fruitlets to measure their diameters. The growth rates are then calculated by temporally associating clustered fruitlets across days. We provide quantitative results on data collected in an apple orchard, and demonstrate that our system is able to predict abscise rates within 3.5% of the current method with a 6 times improvement in speed, while requiring significantly less manual effort. Moreover, we provide results on images captured by a robotic system in the field, and discuss the next steps required to make the process fully autonomous

    Synthetic data driven deep learning for plant phenotyping

    Get PDF
    The need for large quantities of high quality training data is one of the overarching problems facing the Computer Vision and Deep Learning research community. The need to seek versatile, scalable solutions to this problem is imperative as neural networks become involved with almost every aspect of the modern world. The topic of this thesis is training neural networks with Synthetic Data, one of the most promising solutions to the problem of data scarcity. In this thesis I focus these attempts on plant phenotyping tasks, an important field of interest within Computer Vision concerned with the automatic measurement of the physical features of different plants. This thesis presents a number of Synthetic Datasets created with deep learning in mind, and then details a number of novel techniques for leveraging these datasets when working on phenotyping problems, focusing on domain adaptation, style transfer and network fine-tuning. I present a heatmap guidance extension for style transfer, and a clustering approach to deep learning training to improve generalisation on diverse target datasets. Then my work on 3D reconstruction is presented, where domain adaptation is performed simultaneously with training a volumetric regression network, allowing for an unsupervised domain adaptation approach using an unlabeled train set. I present a series of experiments comparing Synthetic Data and fine-tuning approach between CNN and Transformer based architectures. Finally I look at Diffusion Models, a new form of generative neural network that promises to be the future of synthetic data generation

    Synthetic data driven deep learning for plant phenotyping

    Get PDF
    The need for large quantities of high quality training data is one of the overarching problems facing the Computer Vision and Deep Learning research community. The need to seek versatile, scalable solutions to this problem is imperative as neural networks become involved with almost every aspect of the modern world. The topic of this thesis is training neural networks with Synthetic Data, one of the most promising solutions to the problem of data scarcity. In this thesis I focus these attempts on plant phenotyping tasks, an important field of interest within Computer Vision concerned with the automatic measurement of the physical features of different plants. This thesis presents a number of Synthetic Datasets created with deep learning in mind, and then details a number of novel techniques for leveraging these datasets when working on phenotyping problems, focusing on domain adaptation, style transfer and network fine-tuning. I present a heatmap guidance extension for style transfer, and a clustering approach to deep learning training to improve generalisation on diverse target datasets. Then my work on 3D reconstruction is presented, where domain adaptation is performed simultaneously with training a volumetric regression network, allowing for an unsupervised domain adaptation approach using an unlabeled train set. I present a series of experiments comparing Synthetic Data and fine-tuning approach between CNN and Transformer based architectures. Finally I look at Diffusion Models, a new form of generative neural network that promises to be the future of synthetic data generation

    BRUISE DETECTION IN APPLES USING 3D INFRARED IMAGING AND MACHINE LEARNING TECHNOLOGIES

    Get PDF
    Bruise detection plays an important role in fruit grading. A bruise detection system capable of finding and removing damaged products on the production lines will distinctly improve the quality of fruits for sale, and consequently improve the fruit economy. This dissertation presents a novel automatic detection system based on surface information obtained from 3D near-infrared imaging technique for bruised apple identification. The proposed 3D bruise detection system is expected to provide better performance in bruise detection than the existing 2D systems. We first propose a mesh denoising filter to reduce noise effect while preserving the geometric features of the meshes. Compared with several existing mesh denoising filters, the proposed filter achieves better performance in reducing noise effect as well as preserving bruised regions in 3D meshes of bruised apples. Next, we investigate two different machine learning techniques for the identification of bruised apples. The first technique is to extract hand-crafted feature from 3D meshes, and train a predictive classifier based on hand-crafted features. It is shown that the predictive model trained on the proposed hand-crafted features outperforms the same models trained on several other local shape descriptors. The second technique is to apply deep learning to learn the feature representation automatically from the mesh data, and then use the deep learning model or a new predictive model for the classification. The optimized deep learning model achieves very high classification accuracy, and it outperforms the performance of the detection system based on the proposed hand-crafted features. At last, we investigate GPU techniques for accelerating the proposed apple bruise detection system. Specifically, the dissertation proposes a GPU framework, implemented in CUDA, for the acceleration of the algorithm that extracts vertex-based local binary patterns. Experimental results show that the proposed GPU program speeds up the process of extracting local binary patterns by 5 times compared to a single-core CPU program
    corecore