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Abstract 

Here, we review different methods for non-destructive horticultural produce size 

determination, focusing on electronic technologies capable of measuring fruit volume. 

The usefulness of produce size estimation is justified and a comprehensive classification 

system of the existing electronic techniques to determine dimensional size is proposed. 

The different systems identified are compared in terms of their versatility, precision and 

throughput. There is general agreement in considering that online measurement of axes, 
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perimeter and projected area has now been achieved. Nevertheless, rapid and accurate 

volume determination of irregular-shaped produce, as needed for density sorting, has 

only become available in the past few years. An important application of density 

measurement is soluble solids content (SSC) sorting. If the range of SSC in the batch is 

narrow and a large number of classes are desired, accurate volume determination 

becomes important. A good alternative for fruit three-dimensional surface 

reconstruction, from which volume and surface area can be computed, is the 

combination of height profiles from a range sensor with a two-dimensional object image 

boundary from a solid-state camera (brightness image) or from the range sensor itself 

(intensity image). However, one of the most promising technologies in this field is 3-D 

multispectral scanning, which combines multispectral data with 3-D surface 

reconstruction. 
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Abbreviations: CCD, charge-coupled device; CMOS, complementary metal oxide 
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1. Introduction 

The fresh fruit and vegetable postharvest sector is dynamic, due 
largely to increasing consumer demand for quality produce (Ale-
ixos et al., 2002). This, together with the fact that machines are 
more consistent than humans (Deck et al., 1995; Njoroge et al., 
2002; Aleixos et al., 2002), the scarceness of labor in developed 
countries (Walsh, 2005), and the opportunity to reduce labor costs 
(Bato et al., 2000), has led to remarkable mechanization and auto­
mation in packinghouses during the past few decades. In the past 
few years, several authors have reviewed the main advances in this 
field. Studman (2001) reviewed the operations in the postharvest 
industry, where computers and electronic technologies have had 
a huge impact. Brosnan and Sun (2004) compared different com­
puter vision systems for horticultural produce blemish and disease 
detection. Garcia-Ramos et al. (2005) reviewed state-of-the-art 
non-destructive fruit firmness sensors. Butz et al. (2005) and Nic-
olai et al. (2006) compared different technologies to characterize 
the internal quality (IQ.) of fruits and vegetables. 

Although it is now established that IQ. assessment has an impor­
tant role in the fruit and vegetable postharvest stage, the external 
appearance of fresh produce will continue to be an important fac­
tor, and an important aspect of external appearance is fruit size; 
the reasons why fruit size is important are outlined in Section 2. 
The aim of this paper is to review different modern approaches 
to measure the size of horticultural produce; in particular elec­
tronic systems capable of non-destructively determining produce 
dimensional size. To our knowledge, the last synthesis paper deal­
ing with size determination was that by Affeldt et al. (1994). There 
have been many new developments since then, highlighting the 
need for an updated review. 

This document is organized as follows: Section 2 outlines the 
need for measuring fruit size; Section 3 compares mechanical 
and electronic sizers; Section 4 provides some background infor­
mation on weight sizers; Section 5 addresses the problems associ­
ated with reference laboratory instruments for volume 
measurement; Section 6, the core of the paper, classifies and com­
pares the different dimensional measurement systems (a within-
group comparison is performed for some groups, whereas for oth­
ers, a between-group comparison is performed); Section 7 presents 
the conclusions; finally, Section 8 is an Appendix that outlines the 
basic statistical mentioned throughout the paper. 

2. Interest of horticultural produce size determination 

Fruit size can be expressed in terms of parameters such as vol­
ume, weight, and diameter; a detailed description of sizing param­
eters is included in Section 3. In terms of fruit volume, in-the-field 
non-destructive estimates of this parameter can be used as a ripe­
ness index to predict optimum harvest time (Hahn and Sanchez, 
2000), predict yield (Mitchell, 1986), or to study the relationship 
between fruit expansion rate and susceptibility to physiological 
disorders such as fruit cracking (Ngouajio et al., 2003). 

In the context of postharvest operations, fruit size determina­
tion is important for several reasons. 

• It allows the sorting of fresh market fruits into size groups. This 
is convenient to assign market and price differentials of large 
and small produce, to match consumer preferences (most con­

sumers prefer fruit classified into batches of uniform size), and 
probably most important, to allow pattern packing. The advan­
tage of pattern packs over jumble packs is that they provide bet­
ter protection of the produce (Peleg, 1985a). Moreover, pattern 
packages better utilizes the volume in the shipping container, 
owing to the higher packing density that can be achieved with 
this type of packaging (Studman, 1999). Peleg (1985a) and 
Miller (1992), based on geometric analysis and on experimental 
tests, showed that the packing density for a jumble pack of 
oranges was 60%, whereas the packing density for a pattern pack 
configuration such as the so-called face -centered cubic configura­
tion was 74%. 

• Size determination is mandatory for modern or 'dry' on-line fruit 
density sorting, for which two size-related parameters, volume 
and weight, are required.1 Fruit density sorting is useful for two 
reasons. First, in many species fruit density and soluble-solids 
content (SSC) are correlated (Ting and Blair, 1965; Sugiura et al., 
2001; Jordan and Clark, 2004); in addition, potato tuber density 
and starch content are also correlated (Hoffmann et al., 2004). 
Second, density determination is important for separating, for 
example, freeze-damaged citrus fruits (Wardowski et al., 1998), 
fruits that have undergone natural internal desiccation (Miller, 
1993), puffy tangerines (Aleixos, 1999), fruits with internal dam­
age caused by insects (Forbes and Tattersfield, 1999a), watermel­
ons with a high degree of hollowness (Kato, 1997), and apples 
affected by watercore (Throop et al., 1989). Differences in density 
between fruits of the same cultivar with different SSC are usually 
very small (Jordan and Clark, 2004). Therefore, a high level of 
accuracy is required in density measurement if the fruits are to 
be sorted by SSC based on density. If the range of SSC in the batch 
is narrow and a high number of classes are desired, accurate vol­
ume determination becomes critical. Miller et al. (1988) per­
formed an error analysis based on the square error propagation 
law (also known as root-sum-square formula; Doebelin, 1966) to 
determine required dimensional and weight accuracy for a 1% 
density accuracy. Assuming a perfectly spherical citrus fruit with 
an average diameter of 100 mm and a mass of 450 g (density = 
0.859 g/ml), and equal error contributions of mass and volume, 
they found that, for a 1% root mean square (RMS) density accu­
racy, mass, volume, and diameter accuracies of 3.2 g, 3.7 ml, 
and 0.24 mm, respectively, were required. Dividing the mass 
and volume accuracies by their respective mean values results 
in a root mean squared percentage error (RMSPE) of 0.7% in each 
case. Hoffmann et al. (2004) and Hoffmann et al. (2005), stated 
that for high quality cooked potatoes it is necessary to classify 
the single tubers into different starch categories before cooking. 
For on-line sorting of potato tubers according to their starch con­
tent, these researchers used a previously developed linear rela­
tionship between starch content and tuber density. Owing to 
the law of square error propagation, they stated that a 1% RMSPE 
of mass and volume was required for classifying the tubers into 
three starch classes, each with a class width of 6%. 

• Size measurement is important for determining produce surface 
area. The latter is also of use for quantifying the microbial pop­
ulation on the surface of a foodstuff (Eifert et al., 2006), for 

1 Fruit density sorting can also be achieved in a traditional or 'wet way', through 
differences in flotation; in this case fruit size estimation is not necessary. 



assessing the rates of heat, water vapor and gas transfer (Clayton 
et al., 1995), or for estimating the throughput of peeling opera­
tions (Wright et al.,1986). 

• Fruit size can provide useful information for suitable working of 
some IQ. sensors. For instance, in packing lines where brix sensing 
is performed, it is common to position a size sensor upstream of 
the near infrared (NIR) spectrophotometer to allow adjustment 
of the NIR head height according to fruit size (W. Miller, per­
sonal communication, 15 November 2003). Likewise, the size 
and position of fruits traveling on a conveyor system may be 
evaluated prior to firmness testing, thereby eliminating false 
firmness measurements due to improper fruit position in the 
firmness sensor (Peleg, 1995). 

• Grading of fruits into size groups is often necessary in the food 
industry, to meet the requirements of some processing 
machines, or to assign process differentials of large and small 
produce. For example, extractors in citrus juice plants are usu­
ally designed for a given fruit size. Peeling machines in artichoke 
canning factories require correctly sized vegetables for working. 
In the peach canning industry, fruit must be size-graded to 
accommodate the pitting machines. Peaches that are too small 
to be halved, quartered, or sliced, are processed into concentrate. 

• According to Du and Sun (2004), shape features can be measured 
independently (for example, by Fourier descriptors of the planar 
image boundary, invariant moments) or by combining size mea­
surements (for example, circularity, aspect ratio, compactness, 
eccentricity, roundness). Hence, the determination of fruit size 
parameters allows simple shape sorting. 

3. Definition of sizing. Types of sizers. Sizing parameters 

Peleg (1985a) defined sizing as separating produce into size 
groups, that is, sorting by size. Mattone et al. (2000), studying recy­
clable packaging, stated that any sorting process involves two is­
sues - sensing and gripping. Sensing consists of detecting and 
classifying the items, whereas gripping involves realizing the re­
quired separation in the most efficient way. As a sorting process, 
sizing includes two operations: fruit size measurement/classifica­
tion and its effective separation along different takeaway cross 
belts (receiving belts) placed below the sizer ejection points. As re­
viewed by Peleg (1985b), with mechanical sizers these operations 
co-occur in space, whereas with electronic sizers sensing and eject­
ing take place at different zones of the sizer. This means that elec­
tronic sizers must be equipped with devices such as shaft encoders 
for identifying the location of fruit at all times, as well as some 
means for separating ("singulating") fruits into individual "cups" 
or "pockets". Shawver and Henderson (1973) defined singulation 
as the act of organizing items in an initially disorganized state into 
a regular configuration, although not necessarily oriented in a par­
ticular way. They further defined three degrees of singulation. In 
the first, articles are received in a three-dimensional (3-D) bulk 
arrangement and are organized into a disordered monolayer with 
indeterminate and irregular spacing between articles. In the sec­
ond, articles are received in a disordered monolayer and are orga­
nized into a row (or rows) with indeterminate and irregular 
spacing between articles within a row. Finally, in the third, articles 
are received in a row and are organized into a specified configura­
tion with definite, predictable spacing between articles. Most com­
mercial electronic sizers now use the third type of singulation. 

Although electronic sizers have now almost totally displaced 
mechanical ones, it is unclear whether they have resulted in a 
superior sizing accuracy. For example, Miller (1990), working on 
tangerines, compared the sizing accuracy of two types of mechan­
ical sizers and an electronic sizer comprising a weight and an opti­
cal subsystem. He found that one of the mechanical sizers, a 

diverging grommet roller sizer, had the worst accuracy for all four 
sizing units, whereas the other mechanical sizer, a belt and roller 
unit, showed no significant differences compared with the elec­
tronic sizer. Likewise, it is unclear whether electronic sizers have 
resulted in a significant reduction in the damage inflicted to the 
produce. Thus, Miller (1990), found no significant difference in 
damage level with the three types of sizer (diverging grommet roll­
er, belt and roller, and electronic weight-optical). Damage assess­
ment was based on weight loss, decay level, and a dye test as 
indicators of recent injuries. Garcia-Ramos et al. (2004), using an 
instrumented sphere, assessed the mechanical aggressiveness of 
four different sizers commonly used in stone-fruit packing lines, 
three were electronic and the fourth was mechanical. By measur­
ing the impacts registered in the transfer points, they found no dif­
ferences among the different sizers. They concluded that any sizer 
could perform correctly with a correct design of the transfer points. 

Therefore, it has not been proven that electronic sizers have 
better performance compared with mechanical sizers, in terms of 
sizing accuracy and damaged to the produce. Some practical as­
pects can be considered that may account for the obsolescence of 
mechanical sizers. First, electronic sizers provide a direct interface 
for PLU (Price-Look-up) labeling and packing-line flexibility on 
diverting fruit to final packing stations (Miller and Drouillard, 
2001). Second, electronic sizers compute the amount of fruit 
ejected at each ejection point, thereby supplying real-time 
throughput data to the packing-house computer management sys­
tem (Torregrosa and Orti, 1999). Third, many electronic sizers 
incorporate video cameras, that allow for color sorting and, in 
some cases, blemish sorting; this is, in part, due to the third-degree 
singulation used in these machines. This type of singulation also al­
lows the on-line set-up of devices such as firmness sensors and 
spectrophotometers for measuring produce IQ. Considering exter­
nal quality only, in a modern fruit packing line it is typical to find 
one of the following: vision-based sorters, electronic weight-based 
sorters, or integrated sorters including vision and weight modules. 

Produce can be sized according to different physical parameters, 
such as diameter, length, weight, volume, circumference, projected 
area, or any combination of these (Peleg, 1985a). Hence, sizing 
methods can be classified into two categories, weight and dimen­
sional, the latter referring to volume, axes, projected area and 
perimeter measurements. For many produce, the European Com­
munities (EC) marketing standards for fresh fruits and vegetables 
have ruled that the size is determined "by the maximum diameter 
of the equatorial section", whereas in other cases it is determined 
by the fruit weight. Similarly, in the United States, standards for 
grades of several produce are defined by fruit diameter, "the great­
est dimension measured at right angles to a line from stem to blos­
som end". However, the fact that size groups must be classified 
according to a given parameter does not compel the packer to per­
form the sizing operation using a machine which specifically mea­
sures this parameter. For example, in the case of oranges, where 
size is determined according to maximum diameter of the equato­
rial section (EC Commission Regulation, 2001), if there is a high 
correlation between this diameter and the fruit weight, the packer 
will probably be able to use a weight sizer rather than a dimen­
sional sizer. Of course, the size information appearing in the pack­
age label must be expressed in terms of the parameter stipulated 
by the appropriate marketing standard. 

4. Fruit weight direct determination 

Although most of this review focuses on dimensional sizing, it is 
useful to include some background information on weight sizing. 
Weight sizing can be accomplished by direct or indirect methods. 
The indirect method involves estimating fruit weight from 



dimensional measurements such as projected area using a model 
or equation (Jahns et al., 2001; Varghese et al., 1991; Jarimopas 
et al., 1991; Davenel et al., 1988). 

Fruit weight direct determination can be performed using a 
mechanical or an electronic weight sizer. The main design differ­
ence between both concepts is that the mechanical sizer weight 
measurements are performed at the ejection points; each mechan­
ical sizer ejection point represents a weight measurement point, 
whereas electronic weight sizers have a single weight measure­
ment point per lane, typically arranged a short distance before 
the first ejection point. The advantages of electronic weight sizers 
over mechanical sizers, according to Studman (1999) are: it is eas­
ier to recalibrate the machine for different size groups because it is 
not necessary to adjust all the ejection points individually; the 
electronic weight grader can achieve a more accurate weight mea­
surement; and higher operating speeds are possible. Frances et al. 
(2000), using an electronic weight sizer, processed a 150-g weight 
pattern piece 100 times at a speed of 16 fruits per second, obtain­
ing a coefficient of variation (CV) of 0.34%. Disadvantages of the 
electronic weight sizer, according to Studman (1999), include the 
cost of the equipment and the need of personnel trained in elec­
tronics and computing. After considering the advantages and dis­
advantages, we conclude that electronic weight sizers have now 
superseded and replaced mechanical sizers. 

5. Reference method for estimating the volume of fruits and 
vegetables 

Obtaining fast and accurate weight measurement of a body in 
the laboratory is straightforward by using a precision top-loading 
balance. However, obtaining fast and accurate volumetric mea­
surements is more troublesome. The method of specific gravity 
bottle, or of pycnometer and toluene, which owing to its high pre­
cision is considered the benchmark for volume determination of 
seeds and grains, is considered too slow. For larger commodities 
such as an apple, faster methods may have merit, even at the ex­
pense of accuracy. The rationale for this is that for the same rela­
tive error, a greater error (numerator in Eq. (7), see Appendix) is 
allowed when measuring the volume of an apple compared with, 
for example, a corn kernel. 

For medium-sized fruits (such as apples, oranges, peaches), the 
xylometric method is an obvious alternative. This method involves 
measuring the volume of an object by submerging it in a beaker of 
water and measuring the displacement of the water in the beaker 
graduations. As water is uncompressible, and provided the volume 
of water absorbed by the fruit is small, the change in water height 
should yield a good approximation of the fruit volume. Neverthe­
less, this method is associated with two sources of error. The main 
is due to the ratio of the water free surface area (A) to volume (V), 
which is high for a beaker compared with a graduated cylinder. To 
achieve accurate fruit volume measurements, a high A/V is a disad­
vantage, but if the volume of medium-sized fruits is to be mea­
sured, a vessel similar to a beaker is required so that the fruit 
can fit into it. The second source of error is because the operator 
eye level is at the water free surface to achieve an accurate reading. 

Theoretically, a good alternative to the xylometric method is 
use of an "eureka can". This instrument, which is essentially a bea­
ker with a spillway spout, is filled with water until it overflows. 
The object, the volume of which is to be measured, is then sub­
merged in the eureka can and the water that is displaced via the 
spout is collected in a graduated cylinder, and the volume of the 
object can be accurately calculated. However, in practice, the eur­
eka can requires a long measurement period to achieve an accurate 
measurement; for example, Forbes (2000) noted that the water 
continued to drip out of the eureka can spout for several minutes 
after the fruit had been submerged. 

Therefore, we can conclude that the best method for measuring 
the volume of most fruits is by water displacement based on the 
Archimedes principle. A methodology based on this principle was 
outlined by Mohsenin (1970). This method represents a good bal­
ance between accuracy and measurement speed. Another possibil­
ity could be the design of an ad hoc pycnometer, as outlined by 
Forbes (2000). 

In situations where fruit growth is continuing, it is preferable to 
estimate fruit volume by air displacement using an air pycnometer. 
This is because submerging fruits in water can make them more 
susceptible to subsequent fungal attack. Air pycnometers are based 
on the ideal gas (Boyle-Mariotte) law. The main disadvantage of 
these instruments is the long measuring time. Iraguen et al. 
(2006) designed a portable air pycnometer to measure the volumes 
of grape clusters attached to vine plants. Using a multivariate lin­
ear regression calibration technique instead of the analytical ideal 
gas law approach, and with the reference volumes being obtained 
from water displacement approaches, their device yielded a RMSE 
of 19.3 ml and a RMSPE of 3.8%. The complete measurement cycle 
for one cluster took about 45 s. 

6. Electronic systems to determine horticultural produce 
dimensional size 

Over the past few decades, different electronic systems have 
been developed for non-destructive determination of horticultural 
produce dimensional size. We propose a classification of these sys­
tems into six different groups, according to their principle of 
measurement. 

• Systems based on measurement of the volume of the gap 
between the fruit and the outer casing of embracing gauge 
equipment. 

• Systems that calculate fruit size by measuring the distance 
between a radiation source and the fruit contour, where this dis­
tance is computed from the time of flight (TOF) of the propa­
gated waves. 

• Systems that rely on the obstruction of light barriers or blockade 
of light. 

• Two-dimensional (2-D) machine vision systems. 
• Three-dimensional (3-D) machine vision systems. 
• Other systems. This group includes systems based on internal 

images, such as computed tomography (CT) or magnetic reso­
nance imaging (MRI), as well as some other approaches not 
included in the other groups. 

Some of the measurement systems referred to in this paper 
could be assigned to more than one of the above-listed groups; 
for example, the optical ring sensor system (Gall, 1997), described 
in the next subsection, which could be assigned to the first and 
third groups. 

6.1. Systems based on measuring the volume of the gap between the 
fruit and an outer casing 

The three systems in this group involve a surrounding casing 
through which the fruit is passed. Although not being machine-vi­
sion-based, these are 3-D systems. In each case, the surrounding or 
outer casing is of fixed dimensions, whereas the fruit size (the 
characteristic being measured) is variable. Although the principle 
of measurement is different for each system, all systems share 
the idea of measuring the volume of the gap between the fruit 
and the outer casing. 

One of these systems is the optical ring sensor system devel­
oped by Gall (1997). This light-blocking-based system consists 
of a circular frame on which a large number of infrared transmit-



ters and receivers are alternately arranged (Fig. 1). When the in­
ner space of the ring is clear, every receiver detects the light 
emitted by the activated transmitter owing to the Lambertian re­
sponse of all the transducers. However, as soon as an object is 
introduced in the ring, a shadow zone appears, corresponding to 
the receivers obscured from the activated transmitter. The trans­
mitters are switched on in sequence round the ring, with the 
emitted light rays representing chords in the circumference. The 
two closest non-interrupted chords, or 'tangential' chords, are 
used to approximate the object's contour. The algorithms are 
the same for 2-D and 3-D objects. Fruit cross-sectional area 
(Fig. 1) is computed as the difference between the area of the 
whole circle encompassed by the ring and the sum of the trian­
gles and segments of the circle that comprise the gap between 
the object's contour and the ring (Eq. (1)). 

Af = nr2-J2(AT+Ac) (1) 

where A{ is the area of the fruit cross-section, r is the ring radius, AT 

is the area of a triangle, and Ac is the area of a circle segment. 
The optical ring sensor system can be used to estimate the vol­

ume of fruits travelling at high speed, up to 2 m/s when measuring 
elongated produce such as cucumber or zucchini (Moreda, 2004). 
The system generates an enveloping helix used to estimate the 
fruit's length, volume and major and minor axes of two particular 
cross sections. Owing to the small pitch of the helix, its turns are 
approximated to cross-sections. Fruit volume is calculated by sum­
ming the individual products of the cross-section areas multiplied 
by the helix pitch. Gall et al. (1998), studying potatoes, reported 
CVs of less than 2.5% for tubers larger than 100 ml. Owing to the 
geometry of the system, errors were larger for smaller objects. 
Moreda et al. (2005) determined optimal levels of speed and pas­
sage zone for an on-line size determination system comprising 
an optical ring sensor and a singulator made of two angled belts. 
In a subsequent work, Moreda et al. (2007), working on tomato 
and kiwifruit, analyzed the effect of fruit orientation on the preci­
sion of measurements obtained using the optical ring sensor. Con­
trolled vs random orientations were compared. Controlled 
orientation implied an absence of fruit swinging movement (stabil­

ity). Random orientation negatively affected the precision of vol­
ume measurements owing to the swinging movement of the fruit 
when crossing the optical ring sensor. The conclusion was that 
the sizing provisions of the European Communities marketing 
standard for kiwifruit were met by sensor measurements of vol­
ume in the controlled orientation (RMSE = 6.9 ml; RMSPE = 5.6%), 
but not in the random orientation. On the other hand, Moreda 
(2004) obtained a RMSE of 26 ml (RMSPE = 5.8%) for volume esti­
mates of zucchini. 

Kato (1997), working on watermelon, devised an electric meth­
od for measuring fruit volume based on the fundamental relation­
ship between the capacitance of concentric double spheres and the 
radius of the inner sphere. In its practical application, a precision 
instrument measured the capacitance between the inner sphere, 
generated by the watermelon, and the outer sphere or external 
electrode, represented by a polygonal grounded tunnel (Fig. 2). 
The internal electrode consisted of conductive rubber suckers on 
which the watermelon was placed. Watermelon volume was mea­
sured as the fruit passed through the tunnel at a speed of 0.22 m/s, 
which corresponded to a throughput of 0.4 fruits/s. This method 
yielded an RMSE of 26 ml, and an RMSPE of 0.4%, both of which 
rather small, but it had the disadvantage of requiring correctly ori­
ented watermelons. In Kato's method, the polygonal tunnel was 
the outer casing, whereas the fruit volume was estimated from 
the electrical capacitance of the gap. 

Nishizu et al. (2001) developed an on-line volume measure­
ment system based on the relationship between the volume of 
an object in a Helmholtz resonator and an acoustic resonant fre­
quency. A Helmholtz resonator consists of a narrow part or 
'throat' and a wide part called the chamber or cavity, and the 
two parts together resemble a wine bottle. Blowing or hitting 
the lip of the throat creates a sound that includes a resonant com­
ponent. This component is called the Helmholtz resonant fre­
quency, and it depends on the cavity volume minus its content. 
The practical effect is that the resonant frequency provides infor­
mation on the content volume. In the concept by Nishizu et al. 
(2001) the resonator cavity wall featured two lateral openings, 
through which a conveyor belt passed (Fig. 3). A "chirp wave" 
sound was transmitted into the cavity and a microphone was 
used to detect the response signal, from which the resonant fre­
quency was extracted. The researchers tested their system on 

Fig. 1. Triangles and circle segments making up the area between the fruit contour 
and the optical ring sensor frame (redrawn from Gall et al., 1998). 

Fig. 2. Setup of the on-line electrical capacitance system for watermelon volume 
measurement (redrawn from Kato, 1997). 
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Fig. 3. Setup of the on-line Helmholtz resonator system for food volume measurement (redrawn from Nishizu et al., 2001) 

wooden blocks, metallic blocks, and boiled rice. The system deliv­
ered a high correlation (r2 = 0.97) with the actual volume, 
although the operating speed was rather slow (maximum 
0.05 m/s). As the speed increased, the prediction accuracy de­
creased. This was due to movement of the object out of the center 
of the resonator during the duration of the sound chirp. They did 
not assess the precision of the system. In this model, the resona­
tor cavity was the outer casing, whereas the gap volume was 
measured as a function of the resonant acoustic frequency. 

6.1.1. Discussion 
Of the three systems described above (optical ring sensor, elec­

trical capacitance, and Helmholtz resonator), the most versatile is 
the optical ring sensor because it can measure fruit axes in addition 
to volume. In terms of the precision of the volume estimates, only 
the ring sensor and the electrical capacitance method are similar; 
no RMSE value is available for the Helmholtz resonator system. 
The electrical capacitance method, with a RMSPE of 0.4%, is more 
accurate than the optical ring sensor (RMSPE 5.7%). In terms of sys­
tem throughput, the optical ring sensor (standard conveying speed 
of 100 cm/s, up to 200 cm/s for some elongated produce) is supe­
rior to the other two systems. The Helmholtz resonator system 
(conveying speed 5 cm/s) is the slowest system, whereas the elec­
trical capacitance system, with a conveying speed of approxi­
mately 25 cm/s, is intermediate. The throughput limitation of the 
Helmholtz resonator system leads us to conclude that it does not 
yet seem ready for widespread commercial use; therefore, the fol­
lowing comparisons have been limited to the other two systems. If 
we do not consider that the electrical capacitance system has only 
been tested on watermelons and we suppose that a smaller ma­
chine is developed for medium-sized fruits, and equivalently, that 
a larger optical ring sensor is designed with a diameter sufficiently 
large for a watermelon to pass through, then we can compare the 
two systems. The electrical capacitance method is more accurate 
than the optical ring sensor, although it has a lower throughput, 
approximately one quarter that of the ring sensor. On the other 
hand, the electrical capacitance machine requires oriented fruits, 
whereas the optical ring sensor only requires this for axis measure­
ments. However, zucchini are an exception to this: owing to their 
length, correct orientation is required even when measuring vol­
ume to ensure they can cross the optical ring sensor. However, this 
does not normally cause a problem because it is quite easy to 
mechanically achieve the required orientation for zucchini using 
angled belts. Finally, to obtain accurate volume measurements, 
the optical ring sensor needs fruits with no swinging movement 
when crossing the ring. 

6.2. Time of flight (TOF) range finding systems 

A basic consideration regarding this group of systems is that 
whatever the type of waves involved, mechanical or electromag­
netic, in addition to a transmitter to generate the signal and a re­
ceiver to detect the reflected signal, an accurate measurement of 
time (especially with electromagnetic waves) is also needed. Laing 
et al. (1995) developed an apparatus for rapid estimation of fruit 
size in the field, which consisted of three rods forming an inverted 
tripod (Fig. 4). Unlike a conventional photography tripod, this one 
was fixed - the angle formed by the three rods was constant. How­
ever, an inverted tripod instead of a solid truncated cone was used 
because the device was intended for measuring the size of fruits at­
tached to branches of trees; thereby gaps in the recipient wall were 
necessary to allow the branches to pass through. An ultrasonic dis­
tance sensor was arranged on the base of the tripod (Fig. 4). When 
a fruit was placed inside the inverted tripod, it would slide down 
until it became stuck. The point at which it stuck depended on 
the size of the fruit. Large fruits would stick far from the ultrasonic 
sensor, whereas small fruits would slip down and become stuck 
near the ultrasonic distance sensor. The authors measured a set 
of lemons with this device and with a vernier caliper, obtaining a 
RMSE of 1.1 mm and a RMSPE of 2.0%. The measurement of one 
fruit took 10 s. 

Fig. 4. Schematic of the inverted tripod system for fruit size determination based 
on TOF of ultrasonic waves (redrawn from Laing et al., 1995). 



Ultrasonic distance sensors have been used for sizing fruits in 
packing lines. For instance, Miller (1993) compared a video-camera 
sensor with an ultrasonic sensor, both of which were operating at a 
translation speed of 5 cups/slane. The ultrasonic system delivered 
only one average diameter for each fruit. Both sensors showed high 
dimensional accuracy when tested with a set of artificial grape­
fruit, compared with manual caliper measurements of fruit equato­
rial diameters (relative error of 1.7% for the camera system and 
1.8% for the ultrasound system). The repeatability of both systems 
was also high (CVs of 0.46% and 0.48% for the camera and ultra­
sound system, respectively). The artificial grapefruits used were 
all of the typical desired shape. On the other hand, in a misshapen 
grapefruit, the magnitude of the polar and the equatorial diameter 
are inverted compared with a well-shaped grapefruit. A suitable 
way of detecting misshapen fruits is by identifying the polar or 
stem-calyx axis. By doing so, uncertainty regarding whether the 
diameter measured is an actual equatorial diameter of a well-
shaped grapefruit or is the polar diameter of a misshapen fruit 
can be resolved. As neither the ultrasonic system nor the camera 
system analyzed in Miller (1993) had the ability to identify the 
stem-calyx axis, if a natural batch of grapefruits had been mea­
sured, the precision of both techniques would had been lower, ow­
ing to the probability of occurrence of misshapen fruits. 

Another technique that could eventually be used to determine 
fruit size is time of flight (TOF) laser range finding. There are two 
different techniques used in laser range finders, which are com­
monly known as laser scanners: TOF and triangulation. The latter, 
considered one of the most accurate methods for reconstructing 
the 3-D surface of an object, is discussed in Section 6.5. A TOF laser 
range finder measures the distance from the scanner to a surface 
by timing the round-trip time of a pulse of light. Compared with 
triangulation laser range finders, TOF laser range finders are better 
suited to measurements with a large depth of field, even in the or­
der of kilometers, therefore they are not usually used for industrial 
inspection. Their accuracy is about 10~4m, whereas triangulation 
laser range finders have an accuracy of 10~6 m (Besl, 1989). 

6.3. Systems based on the blocking of light 

Iwamoto and Chuma (1981) described three opto-electronic 
systems based on the blocking of light. The first (I in Fig. 5) mea­
sures the horizontal width of fruits in the direction of movement. 

It is comprised of a couple of transmitter and a receiver, placed 
at opposite sides of the conveyor. Provided the space between 
the transmitter and the receiver is clear, the receiver will detect 
the light emitted by the transmitter. When a fruit passes through 
the system, the light path is blocked. For a given conveyor speed, 
fruit size is correlated with the duration of the light blocking. 
The second type (II in Fig. 5) also measures the horizontal width 
of fruits in the direction of movement. It consists of several trans­
mitters with their corresponding receivers placed at opposite sides 
of the conveyor. Both types of transducers are arranged in pairs. 
The distance between the elements of each pair, or "within-pair" 
distance is decreased in the forward direction. Distances are deter­
mined according to commercial size ranges for the produce in 
question. When a fruit traveling on the conveyor reaches a pair 
at which both beams are simultaneously blocked, the fruit is as­
signed to the size group matching that within-pair distance. The 
third type (III in Fig. 5) measures the vertical width or height of a 
fruit as it passes between two lateral vertical arrays of optical 
transducers, one of which is equipped with LEDs and the other 
with photodiodes. The ideal scenario for the third type of system 
would be for each receiver to detect only the light that is projected 
by the transmitter located at the same height; however, when LED 
transmitters are used, a small light diffusion occurs, so the adjacent 
receivers also detect light. An economic way of solving this prob­
lem is by logical comparison (Fon et al.,1990); an alternative but 
more expensive solution would be the use of laser light. 

When classifying satsuma tangerines into six size groups, Iwam­
oto and Chuma (1981) reported average sorting accuracies of 92.8% 
for the first type of sizer, and 93.9% for the second type. They did 
not report on the throughput of these sizers. Chen et al. (1992), 
classifying lemons into three size groups using a sizer of the third 
type, obtained a sorting accuracy of 94.7%. The throughput of this 
sizer was of 0.8 fruits/slane. 

Hahn (2002) developed a sizer for jalapeno chillies based on the 
blocking of a plane or sheet of laser light. Fruits traveling on a con­
veyor belt were passed between a laser line generator and a bar of 
photodetectors, both of which were arranged vertically. The belt 
ran at a speed of 1 m/s, allowing sorting up to 15 fruits/slane. To 
obtain accurate measurements, fruits had to be oriented on the 
conveyor belt with their polar axes perpendicular to the line. The 
photodetector bar scanned the laser stripe every 20 ms. Each scan 
showed a different number of photodetectors that did not receive 
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Fig. 5. Three types of optoelectronic sizing systems based on the obstruction of light barriers (redrawn from Iwamoto and Chuma, 1981). 



the laser stripe; this quantity was recorded in the memory of a 
microcontroller. For each chilli, the maximum value saved in the 
microcontroller memory corresponded to the fruit height or verti­
cal width. Horizontal width measurements were obtained after 
counting the number of blocked laser stripes as the fruit advanced 
on the conveyor belt. For each chilli, the minimum horizontal or 
vertical width gave the final width used for classification in three 
size classes. The second class included those fruits ranging from 
24-29 mm in width, whereas the first and third classes included 
fruits greater than 29 mm or smaller than 24 mm, respectively. 
For the first class (large) chillies, the sorting accuracy was 92% 
when the chillies were manually oriented and 87% when the sys­
tem operated in the fully automatic mode. Hahn (2002) proposed 
the use of machine vision to increase sorting accuracy. Two cam­
eras should be used to view the top and lateral chilli sides and de­
tect chilli horizontal and vertical widths, respectively. 

6.3.1. Discussion 
Both type I and II (Fig. 5) sizers measure fruit horizontal width, 

whereas type III sizers measure the vertical width or height. There­
fore, for oblate fruits such as conventional ('beefsteak') tomatoes, 
tangerines and grapefruits, which have a clear resting or stability 
position when tossed on a horizontal surface, types I and II would 
be better because according to most marketing standards the size 
is determined by the equatorial diameter. Nevertheless, type III has 
the important advantage that, in addition to linear dimensions 
(diameters), it can also measure projected area by integrating the 
different heights measured as the fruit passes. On the other hand, 
for prolate fruits such as lemons, the type III sizers are better, be­
cause, owing to the stability position, the height measured by the 
sizer corresponds to the equatorial diameter. For sizing of lemon 
with types I and II sizers, an orienting device should be installed 
to orient the polar axes perpendicular to the line; otherwise the 
polar diameter could be mistaken for the equatorial diameter. Sort­
ing accuracies are similar for the three types. No data are available 
on the throughput of types I and II sizers, whereas the throughput 
of a type III sizer when measuring lemons was 0.8 fruits/slane. Due 
to the lack of information on the throughput of systems I and II, 
only the type III (Chen et al., 1992) can be compared with the sys­
tem of Hahn (2002). The throughput of the system of Hahn (2002) 
is much higher than that of Chen et al. (1992) (15 fruits/slane vs 
0.8 fruits/slane, respectively), although the sorting accuracy is 
lower (87% vs 94.7%, both values corresponding to classification 
into three size groups). The design of both systems is similar, with 
the main difference being that the machine of Chen et al. (1992) is 
cheaper because it does not use laser light. 

6.4. Two-dimensional machine vision systems 

These systems use video-cameras, usually equipped with CCD 
or CMOS sensors, to take brightness images of the fruits. Specially 
developed computing hardware and software are used to analyze 
these images with the aim of estimating features such as diameter, 
perimeter, or projected area from the fruit 2-D digital profile im­
age. Apart from the camera itself, the main hardware components 
are the lighting devices, the image capture board, and the com­
puter hardware. The image capture board, or digitizer, converts 
pictorial images into numerical form (Brosnan and Sun, 2004). 
The system software performs image preprocessing, segmentation, 
and feature extraction or measurement. Today, most packing 
houses incorporate 2-D computer vision technology in their optical 
sorters. In a typical system, fruits traveling on a chain conveyor are 
viewed from above by one or more zenithal cameras. Sometimes 
lateral mirrors are also installed to increase the number of views. 
Miller (1987) has reported that, for analyzing fruit size and shape 
by machine vision, backlighting can be used; however, front light­

ing is usually preferred because it is easier to implement and sup­
plies the necessary reflectance data for color and blemish grading. 

Wechsler (1981), using the chain-code technique for character­
ization of digital image boundary, reported that area measure­
ments are more reliable than perimeter measurements because 
the quantization errors introduced by the digitization and thres­
holding processes tend to have no effect on the final measure­
ments. Sarkar and Wolfe (1985), working on fresh market 
tomatoes, developed image analysis algorithms for classification 
based on fruit size, shape, color and surface defects. For shape 
and size assessment they used the chain-coded boundary of the to­
mato profile image. Despite being aware of the recommendations 
by Wechsler (1981), they selected perimeter as the size measure­
ment because, in preliminary analyses of tomato profiles, they 
had found that perimeter and area correlated equally well with 
the mean equatorial diameter, and that perimeter measurements 
were computationally less expensive than area measurements. In 
the application of their system to classification of tomatoes in three 
size groups (small, 61-70 mm; medium, 70-80 mm; and large, 
greater than 80 mm), they obtained an overall error rate of 5.6%. 
Most of the misclassified tomatoes were of the medium size group 
and all had diameters that were borderline between classes. 

Bato et al. (2000) used the projected area of the fruit image as 
the parameter for classifying strawberries into three size groups, 
regardless of the fruit orientation angle. The class limits of the 
three size groups were established by measuring the areas of 50 
strawberries which had been pre-sorted in a commercial packing 
house. Using these judging criteria as a standard, they obtained a 
sizing accuracy (classification success rate) of 98.6% with 200 
strawberries of different shapes and sizes. They concluded that 
the total number of pixels resulting from the scanning procedure 
had to be multiplied by the corresponding pixel size of the specific 
camera height to determine the actual strawberry projected area 
for size classification according to the developed standard. 

The typical axes used for fruit size and simple shape determina­
tion are the equatorial or transversal diameter, and the polar diam­
eter or length. The reference method for measuring these diameters 
on small- and medium-sized fruits involves a vernier caliper. Owing 
to the odd shapes of horticultural produce, shape and dimension or 
size are 3-D values; that is, the same measurement on the same 
fruit often varies in different planes around the central axis of mea­
surements (Affeldt et al., 1994). This means that there are several 
possible equatorial and polar diameters in a same piece of fruit. 

Miller (1990), working on tangerines, used an algorithm to cal­
culate the position of the fruit image centroid. Eight axes were 
scanned with center on the centroid at incremental angles of 
22.5°. The length of each axis was computed, and the eight axes 
were ranked from minimum to maximum. Miller took the mean 
of three of the greater axes, in particular the fifth, sixth and sev­
enth, as the equatorial diameter. This method had the disadvan­
tage of being dependent on fruit orientation. 

Aleixos (1999) and Aleixos et al. (2002), working with machine 
vision on citrus fruits, defined the boundary of the fruit image and 
calculated the centroid coordinates. They then computed the dis­
tance from each boundary pixel to the centroid. The major axis 
was located in the direction of the maximum distance, whereas 
the minor axis was determined as perpendicular to the major axis 
and passing through the centroid. Their algorithm, which had the 
advantage of being independent of fruit orientation, was applied 
to seven consecutive infrared images of each fruit, each of which 
was obtained while the fruits were transported below the camera 
on a bicone conveyor chain at a speed of 10 fruits/s. For computing 
the size of tangerines, the reference equatorial diameter was re­
gressed against the minimum, maximum, and average of the seven 
major axes estimated by the vision system. Computation of lemon 
equatorial diameters involved the same procedure, but from the 



seven minor axes, since in a lemon the equatorial diameter is smal­
ler than the polar diameter. The best result obtained on tangerines 
was a RMSE of 1.98 mm, corresponding to the average of the major 
axes, whereas the best result for lemons was a RMSE of 0.99 mm, 
corresponding to regression against the minimum of the minor 
axes. The greater accuracy in size estimation of lemons compared 
with tangerines was due to the elongated shape of the lemons, 
resulting in rotation around a single axis; by contrast, tangerines 
do not always rotate around the same axis, which led to an in­
crease in measurement variability. 

Blasco et al. (2003) developed an on-line machine vision system, 
which obtained four images per fruit for automatic quality grading 
of apples, peaches and oranges. As the apples were not oriented, 
they calculated the equatorial diameter, defined in the image as 
the length of the principal axis of inertia, from the view in which 
the stem was located nearest the fruit centroid. For evaluating the 
sizing performance of their system, they conducted a repeatability 
test using a large number of apples. The test consisted of passing the 
fruits through the machine, which boxed them into one of four size 
groups. The respective boxes were then passed repeatedly through 
the system, and the changes in the classification were observed and 
recorded. The repeatability varied from 89% for the fruits of the 
smallest size to 100% for the largest apples, with an average of 
93%. The results were considered good, because the vision system 
rate of misclassification was 7%, lower than the 10% allowed by 
the respective marketing standard. In terms of the machine yield, 
the time taken by the system to inspect the fruit was less than 
300 ms/fruit; however, the authors concluded that this could be re­
duced to less than 50 ms with faster computers and by improving 
the algorithms to allow overlaps between the acquisition and the 
image processing procedures. A conservative estimate might be 
100 ms, which corresponds to a throughput of 10 fruits/slane. 

In some 2-D machine vision applications the features extracted 
from the images are used to determine fruit volume. Sabliov et al. 
(2002), developed an image-processing-based method to measure 
the volume of ellipsoidal agricultural produces such as eggs, lem­
ons, limes, and peaches. Their method modeled each object as a 
sum of superimposed elementary frustums of right circular cones. 
The dimensions of individual frustums were determined from a 
digitized picture of the product acquired by a CCD camera. Using 
their desktop vision system CVs of 2.4%, 3.4%, 5.5%, and 3.6% were 
obtained for eggs, lemons, limes, and peaches, respectively. Mar-
chant (1990), using dimensional analysis, stated that for a solid 
of fixed shape but variable size scale, any size measure including 
the dimension (length)3 will be proportional to volume. Based on 
this, and assuming a constant density for the tubers, he estimated 
the weight of potatoes from the average of (projected area)2/length 
derived from 12 different images that were captured as the tubers 
rolled along a conveyor system. In Marchant's model, no attempt 
was made to mechanically singulate the tubers in the direction 
across the conveyor. The potatoes were separated in parallel rows, 
sitting in the troughs between adjacent rollers. As adjacent tubers 
in a row would usually touch, a blob-splitting algorithm was devel­
oped for single tuber identification. The RMSE of the estimated 
weight was 14.2 g (Marchant et al., 1989) for a mean tuber weight 
of 200 g. Although the value of the RMSPE was not reported, a 
rough estimate of the RMSPE can sometimes be computed by 
dividing the RMSE by the mean. In this way, an approximate 
RMSPE of 7% is obtained. From the latter value, we can conclude 
that the system by Marchant would not be capable of classifying 
potatoes according to their starch content, because a boundary 
RMSPE of 1% is required for a three-way classification (Hoffmann 
et al., 2004). On the other hand, the foregoing numerical compari­
son of RMSPEs is not even necessary, because the system of Mar­
chant assumes a constant tuber density as an initial hypothesis, 
hence it cannot perform density sorting. 

Forbes and Tattersfield (1999b) developed a machine vision 
algorithm that estimated fruit volume from 2-D digital images. 
Their method, which included a neural network, was rotationally 
invariant and did not rely on conveyor mechanisms for aligning 
the fruits. Working on pears, they reported a RMSPE of 3% when 
a single image was analyzed, and 1.9% when the volume was esti­
mated from a set of four images. Forbes (2000) reported RMSPEs of 
1.6%, 1.3%, and 5.3% for lemons, oranges and potatoes respectively, 
when the volume was estimated from a set of four images. 

6.4.1. Discussion 
According to Imou et al. (2006), the system by Bato et al. (2000) 

was associated with some technical or cost problems, and so it has 
not been widely used. For valid comparisons with systems of other 
groups, in this section we only discuss 2-D machine vision systems 
for which some measure of precision is available. Therefore, the 
studies that report only on sorting accuracy (Bato et al., 2000; Sar-
kar and Wolfe, 1985) or sorting repeatability (Blasco et al., 2003) 
are excluded from further comparison here. Also, desktop systems 
such as that developed by Sabliov et al. (2002) are not included in 
the comparison. This limits the comparison to the systems by Ale-
ixos et al. (2002), Forbes (2000), and Marchant (1990). A serious 
limitation to any comparison between the Aleixos system and 
the other two systems (Forbes, Marchant) is that Aleixos did not 
report a RMSPE value or the mean actual equatorial diameter of 
lemons or tangerines (with the mean actual equatorial diameter, 
an estimate of RMSPE might be calculated, using the RMSEs re­
ported in Aleixos (1999) and Aleixos et al. (2002)). Since Aleixos 
only measured diameter and the other two authors only measured 
volume, comparisons attending to RMSEs are not possible. Hence, 
the only valid comparison is between the systems by Forbes and 
Marchant, because both authors reported on fruit/tuber volume. 
Although both systems are 2-D machine vision systems, their de­
sign is very different. One of the main differences is that Marchant 
concept uses a roller conveyor without singulation across the line 
instead of independent lanes. The system by Marchant, which has 
the benefit of a very high throughput (up to 40 tubers/s), yielded a 
RMSPE (7%) that was higher than the system developed by Forbes 
(5.3% for potatoes). The Marchant system is apparently cheaper 
than the Forbes system because it only uses one camera, whereas 
the Forbes system uses four cameras. Besides, the roller conveyor 
used by Marchant is presumably more cost-effective than the bi-
cone conveyor that the system of Forbes would require. The Mar­
chant system has the advantage that it has been tested on-line, 
whereas the Forbes system was tested in a desktop assembly 
mode, with a camera and three mirrors; however, the work of For­
bes aimed to provide compatibility between his method and com­
mercial machine vision systems. Although the methods of Forbes 
are intended for use in conjunction with color and blemish algo­
rithms of existing commercial machine vision systems, the concept 
of Marchant, despite having the advantages of low-cost and huge 
throughput, cannot perform color or blemish sorting. 

6.5. Three-dimensional machine vision systems 

This group of systems includes a vast number of techniques, 
which in the future will probably supplement 2-D machine vision 
based systems in many applications because automatic inspection 
processes increasingly require 3-D information to improve charac­
terization of the geometry of inspected products (Poussart and 
Laurendeau, 1989; Hall-Holt and Rusinkiewicz, 2001; Jain, 2003; 
Hardin, 2006). Chen et al. (1989) stated that the capability of 2-D 
visual systems may be limited by insufficient information con­
tained in the images. The most obvious limitation of 2-D images 
is the lack of information about height or depth dimensions and 
relationships among these dimensions, which, apart from fruit 



shape and surface texture recovery, have an important role in accu­
rate volume and surface area estimation. Thus, Miller et al. (1988), 
working on citrus fruits, identified two factors responsible for vol­
umetric inaccuracy, one of which was the extension of 2-D mea­
surements for volume estimation. Lee et al. (2001) found that, 
with the aid of the third dimension, the measurement error in vol­
ume estimates of oyster pieces was reduced by 41% compared with 
the conventional 2-D area projection method. 

Obtaining 3-D surface measurements is equivalent to measur­
ing scene depth. Depth measuring results in a special type of digital 
image, known as range images. Besl (1989) defined a range image as 
a large collection of distance measurements from a known refer­
ence coordinate system to surface points on object(s) in a scene. 
Hence, each pixel of a range image2 expresses the distance between 
a known reference frame and a visible point in the scene. 

We can classify 3-D machine vision techniques into two groups, 
passive and active. Besides, there is a singular approach called arti­
ficial or numerical retina, which uses a different technology to other 
3-D machine vision systems. 

Passive 3-D machine vision methods are known in the literature 
as shape or range from X techniques, where X represents different 
3-D cues such as stereo, shading, silhouettes or occluding contours, 
motion, contour or shape, shadows or darkness, texture, and fractal 
geometry. These 3-D cues can be determined from one or more 2-D 
images. All these methods try to estimate the shape of a surface, 
namely its orientation at each point, using any of the cues listed. 
To clarify the relationship between depth or range on one side, 
and surface orientation on the other, it is sufficient to say that sur­
face orientation can be obtained from the range by taking deriva­
tives. With the exception of stereovision, shape from X methods 
cannot be used to directly calculate absolute depth, only relative 
depths. On the other hand, shape from X methods usually require 
assumptions of certain regularities (Aggarwal and Chien, 1989). 
This is why they are generally considered as ill-posed problems. 

With the important exceptions of stereovision and shape from 
silhouettes, most of the passive 3-D techniques are monocular sys­
tems, that is, they only require a view of the inspected object from 
one direction. Aloimonos (1988) reviewed almost all shape from X 
methods, with the exception of shape from shadows. A survey of the 
latter was the focus of a paper by Yang (1996). In the present re­
view, we describe only those shape from X techniques that have 
been used in fruit and vegetable size determination. These tech­
niques are stereovision and shape from silhouettes, the latter is 
also known as the volume intersection (VI) method. 

The second large group of 3-D machine vision techniques in­
cludes the active methods. The name "active" is because energy 
is projected onto the surface of the inspected object, unlike the 
passive methods in which only a general illumination of the 
scene is required. Strat and Oliveira (2003) stated that, compared 
with passive techniques, easier shape extraction results are usu­
ally obtained with active optical range imaging systems. There 
are several comprehensive reviews on active 3-D systems; for 
example, Blais (2004), Battle et al. (1998), and Besl (1989). 
Although the group of active methods includes a range of tech­
niques, namely triangulation, moire interferometry, holographic 
interferometry, focusing, and Fresnel diffraction, in this paper 
we focus on triangulation, because it is the most commonly used. 
In fact, commercial 3-D cameras based on active triangulation are 
currently available (for example, from3 SICK IVP AB). Triangula­
tion systems can be sequential, as in point scanners, or parallel, 

2 Range images are known by a variety of names depending on context: range map, 
depth map, depth image, range picture, rangepic, 2.5-D image, surface profiles, 
pseudo-3D, etc. 

3 Trade and company names are included for benefit of the reader and imply no 
endorsement or preferential treatment of the product by the authors. 

as in the color-encoded stripe scheme. Despite the inherent slow­
ness of point and single stripe laser scanners, they offer the benefit 
of being robust, whereas faster systems such as the color encoded 
stripe scheme are more prone to error. Compared with other active 
optical systems, the accuracy provided by the focusing technique, 
although limited (10~3 m according to Besl, 1989), would be suffi­
cient for produce sizing. By contrast, holographic interferometry al­
lows for very high accuracy4 (10~10m); this level of accuracy is 
unnecessary for produce sizing requirements, and the cost of holo­
graphic equipment for this purpose alone cannot therefore be 
justified. 

6.5.1. Passive 3-D machine vision techniques 
Using triangulation, stereovision can derive 3-D information 

from images taken from two different viewpoints. The separation 
of the two viewpoints represents a balance between the require­
ment for precision in the depth estimates and the requirement that 
the two images are sufficiently similar to enable corresponding 
points on the object to be identified in both images. Therefore, 
the difficulty in finding matching points between the stereopair 
of images is one of the main challenges for application of stereovi­
sion to biological produce inspection. Hryniewicz et al. (2005) used 
stereovision for the 3-D shape modeling of carrots and other horti­
cultural produce with circular cross-sections using a desktop set­
up comprised of two internet-connected cameras (webcams) and 
a slide projector as the light source. Their fruit surface reconstruc­
tion was based on extruding a circular cross-section perpendicu­
larly to a 3-D curve. The stereovision method calculated the 
centers and radii of the different circular cross-sections. In the 
experiments conducted on apples and tomatoes, fruit equatorial 
diameter was estimated with an accuracy of 5%, although the 
authors did not specify whether this value corresponds to RMSPE 
or another statistical parameter. They concluded that results could 
be further improved by obtaining stereopair images from different 
stations or viewpoints. Interestingly, a set-up of the latter type was 
used by Wu et al. (2004) to obtain the 3-D shape of live pigs. The 
stereo imaging system was comprised of six cameras arranged in 
three stereo pods that captured the side, top, and rear views of 
each pig. Each stereoview was processed to produce a range image 
of the surface, and for each pig the three views were integrated to 
produce a complete 3-D mesh. 

Sun et al. (2007) developed a stereovision system for measuring 
the thickness of wheat grains placed on a tray with dimples. The 
stereopair of images was obtained using a single digital camera, 
which moved from the first viewpoint along a rail to a second po­
sition after acquisition of the first image; therefore, measurements 
were not taken in real time. The stereo images featured pixel 
dimensions of about 0.05 mm. The thickness of the grains were 
mostly between 1 mm and 3 mm. Using the 95% quantile of the 
thickness measurements, the authors reported a RMSE of auto­
matic stereo measurement of grain thickness compared with man­
ual measurement of 0.12 mm for the large grain group and 0.17 
mm for the small grain group. 

With the VI method, the 3-D object is reconstructed from sev­
eral 2-D silhouettes by back-projecting them from the corre­
sponding viewpoints and intersecting the resulting solid cones 
(cylinders instead of cones if the orthographic projection simplifi­
cation is assumed). Segmentation of the silhouettes from the rest 
of the image and combination with silhouettes taken from differ­
ent views provides a strong cue for image understanding. An 
advantage of the VI method compared with stereovision is that 
the computation time is reduced because it is not necessary to 

4 In fact, the laser distance interferometer is the current international standard for 
length measurements. 



find matching points between images. Another advantage is that 
silhouettes can usually be obtained with simple and robust im­
age-processing techniques, particularly with controlled back­
ground. Fig. 6 shows two 2-D silhouettes, S^ and S2, obtained 
by taking pictures of the object 0 from two different viewpoints, 
P} and P2, which correspond to the principal points of the cam­
eras. The silhouettes and viewpoints form cones Ci and C2. The 
silhouettes are conical or perspective projections of the object 
viewed from the principal points. The intersection of the cones 
is denoted R; the object 0 in Fig. 6 is a cone, surrounded by the 
region R. If we work with several silhouettes taken from different 
viewpoints, the region R will approximate the shape of 0. The re­
gion R reconstructs the 3-D shape of 0 owing to virtual small 
cubes called voxels5 or cubic pixels. In this way, a horizontal thin 
layer of the object is projected as horizontal thin lines on the sil­
houettes at the same height as the layer. 

Imou et al. (2006) used a simplified VI method to reconstruct 
the 3-D shape of strawberries. Their simplification involved 
reconstructing the strawberries from orthographic silhouettes. 
Orthographic silhouettes correspond to parallel rather than coni­
cal projections, and this simplification is useful when the objects 
being inspected are small compared with their distance from the 
camera, as in the case of strawberries. The authors used nine sil­
houettes, obtained with one camera and nine mirrors, in a desk­
top configuration. To quantify the difference between the 
contours obtained by the VI method and with the reference laser 
scanner, they assigned the term position error to the distance from 
a point on a contour line obtained by VI to the nearest point on 
the contour line obtained by the laser scanner for the same height 
in the sample. For 98.3% of the fruits, the positional RMSEs in the 
reconstructed contour were between 0.5 mm and 2 mm, and 
there was no relationship between the strawberry size and the 
RMSEs. 

Chalidabhongse et al. (2006) used the VI method to classify 
mangoes in three size classes. They used four silhouettes, each of 
which was obtained with one of four cameras. They estimated 
the volume by counting the number of voxels belonging to the 
fruit. Using the known calibration grid size, they were able to cal­
culate the volume of the fruits. They obtained CVs of 7.3%, 5.5%, 
and 13.1% with the reference laboratory instruments and 7.9%, 
4.3%, and 14.6% with the vision system for the smallest, intermedi­
ate and largest mangoes, respectively. They concluded that 
although the vision system gave bigger variations than the labora­
tory reference instrument, it was more efficient in terms of speed 
and time. 

Lee et al. (2006) used the VI method but they did not obtain dif­
ferent silhouettes using mirrors, as done by Imou et al. (2006), or 
several cameras, as performed by Chalidabhongse et al. (2006). In­
stead, they placed the inspected object on a turntable. By rotating 
the turntable at a fixed angular interval, a fixed camera generated a 
series of silhouettes from different directions.6 In their mathemat­
ical model, each silhouette was treated as a cross-section of the ob­
ject taken at a specific angular position. The system was developed 
to measure surface area and volume of fresh produce. To assess 
the volume measurement accuracy of their vision system, the 
authors performed a comparison with a reference instrument based 
on Archimedes' principle, on cantaloupes, strawberries, apples, and 
tomatoes. For apples, they obtained a RMSE of 6 ml and a RMSPE 
of 1.9%. They concluded that the precision of their method depended 
on the angular interval of the imaging system, namely the number of 

5 The term 'voxel' is a contraction of the words volumetric and pixel. 
6 Based on the concept of relative movement, for the inspection of the different 

sides or faces of an object, there are two alternatives: One is that the viewer revolves 
around the static object, and the other is fixing the position of the viewer and rotating 
the object in the viewer's field of view. Lee et al. (2006) followed the second approach. 

Fig. 6. Principle of the volume intersection method. Reprinted with permission 
from (Imou et al. 2006), © 2006 ASABE. 

viewing positions, as well as on the concavities of the object 
examined. 

6.5.2. Active 3-D machine vision techniques 
In the literature, the terms structured lighting and triangulation 

laser range finding (the latter of which is sometimes referred to as 
laser scanning) are often treated as separate methods. Neverthe­
less, according to Besl (1989), both techniques are particular cases 
of the same principle of active triangulation. In this paper, we have 
used this latter criterion, so we use the terms of structured lighting 
and triangulation laser range finding interchangeably. 

For 3-D surface modeling, an alternative approach to stereovi-
sion is the projection of structured light, that is, spatially modu­
lated light, onto a fruit. With this method the point matching 
problem is simplified, and it has the added advantage that only 
one camera is required. A structured light system uses the projec­
tion of a light pattern (plane, grid, or more complex shape) at a 
known angle onto an object. The most commonly used light pat­
tern is generated by dispersing a laser light beam into a plane or 
sheet of light.7 When the sheet of laser light intersects the surface 
of the object, a bright line of light can be seen on the surface of 
the object. By viewing with a camera the line of light from an angle 
(Fig. 7), the observed distortions in the line can be translated into 
height variations based on triangulation. 

Hatou et al. (1996) used a triangulation laser range finder for 
constructing the 3-D shape of tomato fruits as they traveled on a 
conveyor belt beneath the range finder or scanner. For the starting 
point, they built a reference or ideal tomato shape from measure­
ments obtained using the same laser range scanner. The inspected 
shape of each fruit was compared with the reference shape, and 
the differences between the two shapes were used for classifica­
tion. This was performed using an intelligent classifier system, 
which included neural networks and expert systems. The authors 
found that the grading results of their system were similar to those 
achieved by a skilled human inspector. The disadvantage was that 
the method was time-consuming - it took 5 s to classify each 
tomato. 

Sakai and Yonekawa (1992) developed a structured light system 
for measuring the volume of soybean seeds. They projected a plane 
of light onto the soybean sample, which was supported by a nee­
dle. The plane of light was created by deflecting a laser beam with 
the lateral faces of a prismatic mirror rotating at high speed. Using 
cylindrical coordinates, they developed an equation for calculating 
the seed volume. They measured a large number of seeds, equally 
distributed among six size groups. Using their method, the vol­
umes had CVs ranging from 5.7% for the larger seeds to 13.8% for 
the smaller. In general, the CV increased as the seed size decreased. 
Chen et al. (1989), working on cereal grains, developed an image 

7 An easy way of achieving this dispersion or 'fanning out' is by using a cylindrical 
lens. 
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Fig. 7. Active triangulation: projection of a simple structured light pattern 
consisting of three laser lines onto a piece of food. Reprinted with permission from 
(Lee et al., 2003), © 2003 SPIE. 

analysis system with the ability to acquire and combine 3-D laser 
range data and 2-D camera contour extracted images. The range 
finder was used to acquire one single cross-section profile at the 
midpoint of each grain. Based on the images acquired by the laser 
range finder and the CCD camera contour extractor, a set of kernel 
feature parameters with the potential to be used for disambigua­
tion among various grains was selected. They obtained a CV of 
0.6% for a parameter computed from the laser range data and that 
was closely related to grain thickness. To avoid the need for man­
ual positioning of grains in the method of Chen et al. (1989), Thom­
son and Pomeranz (1991) used a triangulation laser range finder 
for scanning multiple height profiles of wheat kernels, instead of 
the single height profile scanned by Chen et al. (1989), which al­
lowed 3-D grain surface reconstruction. However, their system 
did not include a CCD camera. The necessary boundary planar im­
age was obtained from an intensity image obtained by the laser 
range finder. To understand this, it is sufficient to say that the 
intensity images of the laser range finders contain the energy of 
the emitted laser signal, which is reflected back in the direction 
of the sensor. The authors did not report the precision of their 
system. 

Lee et al. (2001), and Lee et al. (2003), proposed an algorithm 
(3-D approach), which combined active triangulation with 2-D 
measurement to reconstruct the 3-D surface of oyster meat 
(although the present review deals with fruits and vegetables, this 
research on an animal produce like the oyster meat is included for 
comparison purposes). The final objective was to grade the oyster 
meat pieces according to their unit volume. The authors compared 
the 3-D approach with a 2-D approach which computed volume 
from projected area measured in pixels. The authors reported that 
the main source of error in the 2-D algorithm volume calculations 
were due to the inability to discriminate between two pieces of 
oyster with the same projected area but with different heights 
and therefore volumes. They reported that the 3-D approach re­
duced the volume measurement error by 41%; the RMSE of the 
3-D approach was 0.7 ml. 

6.5.3. Discussion 
Hryniewicz et al. (2005) obtained satisfactory results with their 

stereovision desktop system, using the assumption of circular fruit 
or vegetable cross-section. The performance of the system would 
be expected to be less good with produce that is elliptical in cross 
section, such as many kiwifruits, some cultivars of apple, and 
mangoes. 

Among the three mentioned studies that use the VI method, the 
most expensive is the model developed by Chalidabhongse et al. 
(2006), because it uses four cameras; the models of Imou et al. 
(2006) and Lee et al. (2006) only require one camera. On the other 
hand, the slowest system would be that developed by Lee et al. 

(2006), because it requires some time for turning of the rotary ta­
ble to be completed. Considering cost and speed, we conclude that 
the preferred system should be that developed by Imou et al. 
(2006). A comparison of measurement accuracy should be re­
stricted to the systems of Imou et al. (2006) and Lee et al. (2006), 
because RMSE values have been reported for both, whereas the 
system by Chalidabhongse et al. (2006) reports results as CVs. 
Regardless, the latter system seems the worst of the three, accord­
ing to the CV of 14.6% obtained for mangoes of the first class (no 
overall average CV can be calculated, because the authors did not 
report the number of fruits in each of the three size groups). 
Restricting the comparison to the other two systems, we find that 
Imou et al. (2006) did not include the value of RMSPE, and the com­
parison between both systems cannot be done according to RMSE 
because the RMSEs correspond to different magnitudes (linear 
dimension in the work by Imou et al. and volume in the work by 
Lee et al.). Nevertheless, focusing on the best-shaped strawberries, 
it is possible to calculate a rough estimate of the RMSPE using a fig­
ure in the paper by Imou et al., and a mean equatorial diameter of 
31 mm can be estimated. Dividing 0.77 mm (the RMSE for the best-
shaped berries) by 31 mm, a value of 2.5% is obtained as a rough 
estimate of RMSPE for Imou system. This method of computing 
the RMSPE is not valid from an academic or statistical point of 
view, but it is the only way to compare these two systems with 
the information available. As the RMSPE obtained by Lee et al. 
(2006) was 1.9%, it can be concluded that the system of Lee et al. 
(2006) is more accurate than that of Imou et al. (2006). 

In terms of hypothetical on-line application, Chalidabhongse 
et al. (2006) reported no details on how their desktop concept 
could be incorporated into a packing line. According to the image 
acquisition set-up described by these authors, it would be straight­
forward to position three of the cameras in an on-line assembly, 
but it is not clear how the fourth camera could be mounted in a 
typical illumination chamber of an on-line machine vision system. 
Imou et al. (2006) reported a processing time of 1 s for the shape 
assessment of one strawberry. For a typical fruit sorter, this would 
represent a rather low throughput. However, the final goal of their 
work was to develop part of a comprehensive strawberry packing 
house, in which the berries would be harvested by a robot arm 
and placed on the table surrounded by mirrors for measurement 
and subsequent packing. This means that the time to measure 
one berry (1 s) should be increased to include the placing of the 
strawberry on the 'measurement table' and subsequent lifting, as 
both operations are performed by the robot arm. Lee et al. (2006) 
reported that the silhouette of each image was extracted at the 
frame rate, depending on the speed of turntable rotation; the vol­
ume and surface area measurements were reported before the ob­
ject was replaced, but the authors did not indicate how to translate 
their system to an on-line sorting machine. 

Of the active 3-D machine vision systems described, only those 
of Hatou et al. (1996) and Lee et al. (2001, 2003) correspond to on­
line implementation. The system by Hatou et al. (1996) was partic­
ularly slow, and these authors did not specify the precision of their 
system. The system by Lee et al. (2001, 2003) featured a conveying 
speed of 5 oyster meat pieces/slane. 

From the point of view of industrial applicability, active 3-D 
machine-vision-based technology is more robust than its passive 
2-D and 3-D counterparts. The main reason for this is the simpli­
fied lighting and camera adjustments utilized by active 3-D sys­
tems for taking images of the objects. By contrast, in the passive 
systems the lighting adjustments and camera calibration must be 
precise for a range of gray levels in the inspected object, and parts 
of these objects will be outside of the detectable gray-scale range 
(Lee et al., 2003). One of the main applications of 3-D machine vi­
sion in the future, other than volume estimation, will be in surface 
area and 3-D shape assessments. 



6.6. Other techniques 

Kanali et al. (1998) developed a prototype artificial retina ma­
chine vision system. In conventional digital image analysis tech­
niques for the inspection of agricultural produce, the image of 
the produce is first recorded by a video-camera, then the video sig­
nals are digitized and finally analyzed. However, with the artificial 
retina system there is a direct transfer of the acquired information 
to the processing algorithm, which can, for example, be the charge-
simulation method (CSM).8 Although most of the active 3-D ma­
chine vision methods depend on digital image analysis, which often 
involves pre-processing operations such as noise reduction, 
enhancement operations such as edge detection, feature extraction, 
and matching, the use of the artificial retina with the CSM requires 
no digital image analysis. This represents an advantage because dig­
ital image analysis often requires specialized and expensive software 
to successfully process the images. Another advantage of the artifi­
cial retina concept is that the photosensors used in this device are 
cheaper than any of the CCD or CMOS sensors equipped with vi­
deo-cameras. A disadvantage of the artificial retina concept is that 
it cannot calculate fruit diameters, only fruit volume (Gall et al., 
1998). The prototype artificial retina machine vision system devel­
oped by Kanali et al. (1998) transferred the data obtained to a retina 
model, which was identical to the 'hardware' prototype. This proto­
type was basically comprised of a hemispherical chamber (artificial 
retina) equipped with many photosensors, or sensory cells. One of 
these elements was located at the center of the Fresnel lens placed 
at the base of the hemisphere, another was placed at the pole of 
the hemisphere (Fig. 8), and the remainder were uniformly distrib­
uted on several circumferences on the hemisphere surface at differ­
ent heights from the base. The photosensors measured the 
distribution of light intensity based on images generated by different 
sizes of a 3-D object placed in the retina. The function of sensory 
cells was to obtain primary shape information, which would then 
be compressed using the CSM. To assess the performance of their 
system, Kanali et al. (1998) conducted tests on oranges and egg­
plants. They obtained overall size classification rates of 99% and 
74% for oranges and eggplants, respectively. One possible reason 
for a higher classification performance for oranges was that the size 
variability of oranges was greater than that among the eggplants. 

Hoffmann et al. (2005) aimed to sort potato tubers according to 
their starch content calculated from density measurements and 
used an optoelectronic device to measure the volume of the tubers. 
The details of the machine vision system are unclear from the 
scarce description reported in their paper, so this system has been 
included in the "Other techniques" group. The optoelectronic sor­
ter consisted of a ring-shaped basic body with four cameras. The 
tubers were passed individually through the basic body, while 
the camera system recorded their geometric dimensions in three 
axes and the surface of the tubers. A processor calculated the vol­
ume of the tuber using the elliptical integrals from the data sup­
plied by the camera. The authors obtained a CV of 1% in tuber 
volume determination. This high repeatability, together with the 
high precision achieved in the mass measurement device, made 
starch sorting in three classes possible. 

De Waal et al. (1988) used microwave technology for on-line 
weight estimation of apples and oranges. Their approach was 
based on the effect of fruit water content on the resonant fre­
quency of a resonant waveguide cavity. As apples and oranges con­
sist of more than 80% water, the determination of the volume of 
water represented an accurate measure of fruit volume, and there­
fore weight. They measured the microwave attenuation caused by 

Fig. 8. Configuration of the artificial retina machine-vision system (redrawn from 
Kanali et al., 1998). The numbers refer to: 1, tungsten halogen lamp; 2, Fresnel 
lenses; 3, light beam conditioner; 4, artificial retina; 5, inspective fruit; 6, CdS photo 
sensor; 7, data transfer unit; 8, A/D converter; and 9, computer. 

absorption in the fruit, and reported that the power levels used in 
their tests were too low to cause damage to the fruit. In their tests, 
better results were obtained for oranges than apples, owing to the 
lack of symmetry of the latter. Overall, they obtained accuracies of 
about 95% (they did not specify the statistical parameter com­
puted) for both fruits, for an operating speed of 5 m/s (Fig. 9). 

Andaur et al. (2004), who used MRI to measure wine grapes, 
developed reconstruction techniques for 3-D representation of ber­
ry clusters. Size distribution of berries is important to predict 
extractability in grapes because the wine-making parameter of 
extractability is a function of the skin-to-flesh ratio, so it is inver­
sely proportional to the volume of the berries. To obtain the refer­
ence volume of single berries, the authors used a vernier caliper to 
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8 The CSM is a numerical method used to obtain an approximate solution to the 
equation of Laplace. 

Fig. 9. Setup of the on-line microwave system for fruit volume determination 
(redrawn from De Waal et al., 1988). 



measure the berry equatorial diameter and computed the refer­
ence volume using the equation for the volume of a sphere, be­
cause the grapes tested were quite spherical. They obtained a 
mean absolute percentage error (MAPE) of 3.15% for the volume 
of single berries. 

Maisl et al. (2006) used CY to determine the 3-D structure of su­
gar beet seeds. The inspection system setup comprised a sealed 
microfocal X-ray tube, a turntable with a sample holder, a flat pa­
nel X-ray detector and a network of four PCs for data acquisition, 
reconstruction and image processing. To characterize the seeds 
the authors used an automatic segmentation procedure to separate 
the different seed materials or layers. Their approach for seed vol­
ume segmentation consisted of scanning central slices. Within 
each slice, the one-dimensional edge detection was performed on 
gray-value profiles, where the profiles represented radial lines. 
Merging the segmentation results of all radial lines into one image 
generated segmentation of the whole central slice, and merging all 
central slices into one volume generated segmentation of the 
whole seed volume. The final step of the automatic image process­
ing sequence consisted of computing features such as minimum 
and maximum diameters. The system was able to measure the geo­
metrical traits of seeds with a mean diameter of 3.5 mm with an 
accuracy of better than 0.1 mm. The authors did not report 
whether this value of accuracy corresponds to RMSE or another 
statistical parameter. The throughput of the machine was 
1000 seeds/h. 

6.7. General system comparison 

We have now discussed many different size sensing techniques. 
For convenience, a summary of some of the main features of some 
of these techniques is shown in Table 1. Only those techniques for 
which an RMSE value is available have been included in Table 1. 
Likewise, a summary of suitable techniques for on-line size deter­
mination of different fruits and vegetables is shown in Table 2, and 
a compilation of references on each dimension-sizing technique 
has been included in Table 3. 

Of all the systems described above, 2-D machine vision-based 
systems are the most widespread because, in addition to size and 
shape, they are used to classify produce according to surface color 
and external defects. In general, the technologies of 2-D machine 
vision and electronic weighing are suitable for any produce (Table 
2). Machine vision sorters are more aggressive with the produce 
than electronic weight sizers, since the fruit rotation generated in 
the first case to inspect all the surface of the fruit can cause abra­
sion damage to the fruit skin, particularly at high speeds. On the 
other hand, fruit rotation is necessary for viewing the whole fruit 
surface and allow sorting by colour or by number and size of exter­
nal blemishes. The only limitation to the applicability of machine 
vision to horticultural produce inspection would be the appearance 
of reflections that tend to saturate CCD and CMOS sensors of video-
cameras. Usually, this is circumvented by using indirect lighting, 
and, where necessary (e.g. for inspection of citrus, apples, and 
other waxed fruits), by mounting filters in the optics of the vi­
deo-camera. Another option would be the utilization of charge 
injection device (CID) sensors in the cameras, which do not satu­
rate as easily as CCD or CMOS sensors. 

Other than the machine referred to in Section 6.2, on-line ultra­
sound sizing systems seem to have had little success. However, the 
portable ultrasonic instrument developed by Laing et al. (1995) 
seems a good option for non-destructive measurements in the 
field, having the advantage of higher speed (Table 1) over the air 
pycnometer system developed by Iraguen et al. (2006). However, 
the two portable systems of Laing et al. (1995) and Iraguen et al. 
(2006) are not fully comparable, because they are designed for dif­
ferent produce. Thus, the volume of a grape cluster, the produce 



Table 2 
Suitable size determination techniques for on-line inspection of fruits and vegetables. 

Fruit group 

Citrus (Orange, lemon, tangerine, grapefruit, 
lime) 

Apple 

Pear 

Tomato ('Beefsteak' type)b 

Stone fruits (Peach, nectarine, apricot, plum, 
cherry) 

Very elongated (Zucchini, cucumber, carrot, 
'Lamuyo' pepper, aubergine, papaya) 

Moderately elongated (Kiwifruit, mango, 
avocado, 'California Wonder' bell pepper) 

Large and heavy (Melon, watermelon) 

Bulbs (Onion, garlic) 

Leafy round vegetables ('Iceberg' lettuce, 
cabbage, cauliflower, broccoli) 

Potential sizing technology 

2D, 3D machine vision; electronic weighing 

2D, 3D machine vision; electronic weighing 

2D, 3D machine vision; electronic weighing 

2D, 3D machine vision; electronic weighing 
2D, 3D machine vision; electronic weighing 

2D, 3D machine vision; optical ring sensorc (Gall, 
1997; Moreda, 2004); electronic weighing 
2D, 3D machine vision; optical ring sensorc; 
electronic weighing 
2D, 3D machine vision; electrical capacitance (Kato, 
1997); electronic weighing 
2D, 3D machine vision; electronic weighing 

2D, 3D machine visiond; electronic weighing 

Sizing technology 
currently used (as to 

2D machine vision, 
electronic weighing 
2D machine vision, 
electronic weighing 
2D machine vision, 
electronic weighing 
2D machine vision 
2D machine vision, 
electronic weighing 
Electronic weighing, 
machine vision 
Electronic weighing, 
machine vision 
Electronic weighing 

Electronic weighing, 
mechanical diameter 
sizing 
Electronic weighing 

2008) 

2D 

2D 

Sizing parameter provided by 
EU marketing standards3 

MDES 

MDES, FW 

MDES 

MDES 
MDES (Peach, nectarine, apricot, 
plum, cherry), C (Peach, nectarine) 
FW (Cucumber, carrot), MDES (Carrot) 

FW 

FW (Melon, watermelon), MDES 
(Melon) 
MDES 

FW (Lettuce), MDES (Cauliflower) 

a EU: European Union; MDES: maximum diameter of the equatorial section; FW: fruit weight; C: circumference. 
b Whenever the applicable marketing standard stipulates the MDES as the sizing parameter for 'beefsteak' tomatoes, electronic weighing should be discarded as a sizing 

alternative for these tomatoes, due to the low correlation between MDES and FW featured by these fruits (Sargent et al., 1988). 
c Since the optical ring sensor generates a convex hull of each cross-section scanned, the pepper fruit volume measurements made by the optical ring sensor would be 

overestimated, due to the presence of concavities in the cross-sections of these fruits. 
d 'Iceberg' lettuces are usually film-wrapped before being sized. Due to the difficulty of achieving a perfect fit of the film onto the external surface of the lettuce, 2D and 3D 

machine vision would probably overestimate the size of these vegetables. On the other hand, the plastic wrapping-film provokes reflections that tend to saturate the CCD or 
CMOS video-camera sensors. This is why currently the sizing of'iceberg' lettuces is entrusted to electronic weight sizers (furthermore, presumably the correlation between 
MDES or volume and FW is not very high for this produce). 

Table 3 
Types of technologies and relevant literature on produce dimension-sizing. 

Technology References 

SBMVGBFOC: Optical ring sensor 
SBMVGBFOC: Electrical capacitance 
SBMVGBFOC: Helmholtz resonator 
Blocking of lightb 

Ultrasound TOFc 

2D machine vision 

3D machine vision: Passive stereovision 
3D machine vision: Volume intersection method 

(Shape from silhouettes) 
3D machine vision: Active triangulation 

Computed tomography (CT) 
Magnetic resonance imaging (MRI) 
Artificial retina 
Microwave 

Gall (1997), Gall et al. (1998), Moreda (2004), Moreda et al. (2007) 
Kato (1997) 
Nishizu et al. (2001) 
Iwamoto and Chuma (1981), Fon et al. (1990), Chen et al. (1992), Hahn (2002) 
Miller (1993), Laing et al. (1995) 
Sarkar and Wolfe (1985), Marchant et al. (1989), Marchant (1990), Miller (1990), Aleixos (1999), Forbes and 
Tattersfield (1999b), Bato et al. (2000), Forbes (2000), Aleixos et al. (2002), Sabliov et al. (2002), Blasco et al. (2003), 
etc. 
Hryniewicz et al. (2005), Sun et al. (2007) 
Chalidabhongse et al. (2006), Imou et al. (2006), Lee et al. (2006) 

Chen et al. (1989), Sakai and Yonekawa (1992), Thomson and Pomeranz (1991), Hatou et al. (1996), Lee et al. (2001), 
Lee et al. (2003) 
Maisl et al. (2006) 
Andaur et al. (2004) 
Kanali et al. (1998) 
De Waal et al. (1988) 

SBMVGBFOC: Systems based on measuring the volume of the gap between the fruit and an outer casing. 
The optical ring sensor also belongs to this category. 
TOF: Time of flight. 

tested with the air pycnometer, cannot be measured using the 
ultrasonic inverted tripod. 

The optical ring sensor system (Gall, 1997) has a good perfor­
mance on elongated produce. It does not require correctly oriented 
fruits for volume determination but it does for axes determination. 
For accurate volume determination, the only requirement is that 
the fruits cross the ring with no swinging movement. The electrical 
capacitance method (Kato, 1997) accurately measured the volume 
of watermelons, but it had the disadvantage of requiring fruit 
orientation. 

Of the 2-D machine-vision systems described, those by Aleixos 
et al. (2002), Forbes and Tattersfield (1999b), and Blasco et al. 
(2003) can be considered good options, sharing the advantage of 

not requiring fruit orientation. Another sophisticated system, with 
a singular design that differs from other systems in that it does not 
need singulation across the line, is that developed by Marchant 
(1990). The system developed by Sabliov et al. (2002) delivers good 
results but is a desktop configuration. 

Among 3-D machine-vision systems, those of the passive type 
(stereovision, VI method) have not yet been implemented on-line, 
whereas the active triangulation systems have. In applications in 
which, in addition to volume determination, surface area is of 
interest, 3-D shape recovery is particularly importance and 3-D 
methods can have an important role. If only volume measurement 
is needed, the 2-D machine vision method by Forbes (2000) is a 
good option. Another way of exploiting 3-D machine vision is by 



combining it with multispectral imaging (Lathuliere et al., 2006). 
These authors developed a 3-D multispectral scanner comprised of 
an LCD projector and a multispectral camera. The setup is similar 
to the system depicted in Fig. 7, with the main difference of the 
type of structured light and camera used. Given the remarkable 
success that multispectral cameras are having in our days, -they 
are very useful in detecting fruit blemishes-, the approach by Lath­
uliere et al. reveals as a very interesting option for the future, since 
it allows the reconstruction and association of a complete reflec­
tive spectrum to each 3-D point. 

Of the systems referred to in Section 6.6 (Other techniques), CY 
and MRI are expensive techniques, the use of which does not seem 
justified for size determination alone. The waveguide cavity con­
cept reported by De Waal et al. (1988) is likely to have been asso­
ciated with some technical or cost problems because there have 
been no additional reports on this system. Although interesting, 
the artificial retina machine-vision system of Kanali et al. (1998) 
has the disadvantage of being a desktop system. These authors 
concluded that more work needs to be done before the technique 
can be used for automated inspection of fruits and vegetables. 

7. Conclusions 

This review focuses on different electronic-based approaches 
used for horticultural produce size estimation, with emphasis on 
the dimensional-type approaches. The benefits of fruit size assess­
ment have been described. A comprehensive classification of the 
different systems available has been proposed. The different sys­
tems identified are compared in terms of their versatility, precision 
and throughput. Although the challenge of on-line determination 
of diameters, projected area and perimeter is considered to have 
been overcome, on-line volume determination of irregularly 
shaped produce both at high speed, and sufficiently accurate en­
ough to allow subtle SSC density-based sorting, has only become 
available in the past few years. 

Among the different techniques reviewed here, 2-D machine vi­
sion and electronic weighing are currently the most widespread 
techniques used in fresh produce packing houses. The main reason 
for the prevalence of 2-D machine-vision systems over other sys­
tems is that it allows classification of fruits according to their sur­
face color and external defects; associated with this is the rapidly 
decreasing price of CCD and CMOS sensors. Nevertheless, we ex­
pect that 3-D imaging systems will be increasingly used to supple­
ment 2-D machine-vision technology. Off-the-shelf smart 3-D 
cameras are now available for food inspection. However, it seems 
reasonable to predict that the introduction of 3-D machine-vision 
systems in horticultural produce packing houses will be slower 
than in the food industry owing to the low unitary value of pro­
duce. As has occurred before (for example, with brix sensing), some 
markets will lead the introduction of 3-D surface data inspection, 
whereas other markets and/or countries will still have to wait to 
benefit from progress in this field. 

A good method of fruit 3-D surface reconstruction, from which 
volume and surface area can be calculated, is the combination of 
height profiles obtained from a range sensor with a 2-D object im­
age boundary obtained from a solid-state camera (brightness im­
age) or from the range sensor itself (intensity image). However, 
one of the most promising technologies in this field is 3-D multi­
spectral scanning, which combines multispectral data with 3-D 
surface reconstruction. 

8. Appendix: basic statistics used in precision quantification 

Here, we outline the mathematical expressions of some basic 
statistics mentioned in this review. These include: the root mean 
squared error (RMSE), Eq. (2), and the root mean squared percent­

age error (RMSPE), Eq. (3), (Forbes, 2000); the coefficient of varia­
tion (CV), Eq. (4); the mean absolute error (MAE), Eq. (5); the mean 
absolute percentage error (MAPE), Eq. (6), (Chen et al., 2003); and 
the relative error, Eq. (7). 
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1 " 
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where xai = ith actual value; xpi = ith predicted value; n = number of 
samples. 

CV (%)= = • 100 = 
lux*-*?)2 

n S x p i 
i=l 

100 (4) 

where a = standard deviation of a set of predicted values; xpi = ith 

predicted value; Xp = arithmetic mean of the set of predicted values; 
n = number of samples in the set. 
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where xai = ith actual value; xpi = ith predicted value; n = number of 
samples. 

Relative error (%) ===== X a _ X p • 100 (7) 

where xa = arithmetic mean of a set of actual values; xp = arithmetic 
mean of the set of predicted values. 
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